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Summary

Tumor invasion is one of the most complex and critical processes in cancer pro-
gression. This thesis explores the ability of tumor cells to overcome biological
barriers, specifically muscle fibers. This process is driven by the activity of matrix
metalloproteinases (MMPs), which degrade the extracellular matrix (ECM) and
facilitate cellular movement.

To investigate this phenomenon, the Cellular Potts Model (CPM) was employed as
a mathematical framework particularly well-suited for modeling tumor invasion.
The CPM enables the simulation of collective cell behavior and the analysis of
interactions between tumor cells, ECM, and muscle fibers, providing both quanti-
tative and qualitative insights into the invasion process.

Numerical simulations were conducted using CompuCell3D. First, a realistic tumor
invasion scenario was recreated, simulating the migration of tumor cells through
muscle fibers without the ECM and then the ECM was introduced. Subsequently,
the effects of key model parameters such as cell elasticity, motility, and MMPs
secretion were analyzed to identify conditions that could slow or stop tumor pro-
gression.

The findings offer a deeper understanding of tumor invasion dynamics and suggest
potential strategies to limit tumor spread, providing valuable insights for future
clinical and therapeutic developments.
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Chapter 1

Introduction

Connective tissue is a complex and multi-scale biomaterial made up of proteins, gly-
cosaminoglycans, and water. It plays a crucial role in connecting tissues and organs,
both mechanically and functionally. This tissue serves as the main environment
where cells migrate during processes like inflammation and cancer development.
Therefore, to accurately study cell behavior in biological models, it is essential to
create connective tissue models that closely mimic the real in vivo environment.
These models should be able to predict the molecular and physical mechanisms of
cell movement with high precision.

One of the main challenges in developing in vitro models, such as reconstituted
basement membrane, fibrillar collagen, and cell-derived extracellular matrix (ECM),
is to ensure their physiological relevance. To improve these models, it is necessary
to create a realistic representation of connective tissue, considering aspects such as
different scales, spatial organization, and structural patterns. Achieving detailed
mapping of living connective tissue and its interactions with cells is key to improving
tissue models for in vitro studies.

Cell migration within the ECM is highly influenced by the design of extracel-
lular confinement. If the spaces between collagen fibers are too narrow for the cell
nucleus to pass through, movement relies on matrix metalloproteinases (MMPs)
to break down the ECM and create a path. On the other hand, models that lack
sufficient collagen fibers may not provide the necessary viscoelastic properties,
which are crucial for generating traction forces needed for mesenchymal movement.
Instead, such models may only support cell growth through pushing mechanisms.
In microfluidic channels with irregular spatial patterns, non-deformable surfaces
allow friction-free leukocyte migration driven by cortical actin flow. However, it is
still unclear which specific tissue conditions and interstitial environments support
these migration mechanisms in living organisms. Connective tissue consists of an
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Introduction

ECM with a heterogeneous texture, which can act as either a guide or a barrier
for moving cells, such as leukocytes, stromal cells, and cancer cells. Recent studies
suggest that the ECM and its integrated cells are not arranged randomly; instead,
they exhibit a highly organized structure. Interstitial fluid spaces (IFS), which are
present in various organs such as the liver, play an important role in nutrient and
fluid exchange. However, it remains unclear how these spaces are organized within
different tissue types, such as collagen-rich or adipocyte-rich connective tissue, and
whether they facilitate or hinder cell migration under normal and disease conditions.

The structure and function of the IFS have been investigated in previous research
[1], which serves as the starting point for this thesis. In that study they performed
spatial mapping of the deep mouse dermis using intravital microscopy in models of
inflammation and cancer progression. This technique allows for the visualization of
tissue architecture while minimizing artifacts caused by tissue processing, such as
dehydration or shrinkage. The results indicate that connective tissue is organized
as a deformable network of confined spaces, similar to microfluidic channels, with
varying shapes and sizes depending on surrounding structures like muscle fibers,
fat cells, nerves, or blood vessels. The structural organization of these conduits can
be either symmetrical or asymmetrical, bordered by bundled collagen or basement
membrane layers. These structures provide a rich environment for cells to migrate
efficiently without the need for MMPs activity, allowing for nearly barrier-free
directional movement.

This thesis develops computational models using the Cellular Potts Model (CPM)
to simulate tumor cell migration through muscle fibers. The proposed simulations
aim to replicate the interactions between tumor cells and their microenvironment,
focusing on key factors such as cell elasticity, adhesion energies between different
components, and the enzymatic degradation of ECM by MMPs. The initial simula-
tion setting consists of tumor cells near muscle fibers. The second simulation setting
consists of tumor cells near muscle fibers held together by ECM .The objective of
the model is to recreate these two environments and analyze how the cell proper-
ties affect migration. Through this approach, the study provides a quantitative
and qualitative analysis of the factors that most significantly influence tumor cell
movement, offering potential insights for improving therapeutic interventions.
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Chapter 2

Cellular Potts Model (CPM)

The Cellular Potts Model (CPM), also known as the Glazier-Graner-Hogeweg
model (GGH), is a computational framework used to study the spatiotemporal
behavior of cells and tissues [2]. François Graner and James A. Glazier introduced
the first CPM by simulating cell sorting as a modification of a large-Q Potts model.
Initially, it was developed to model biological cells, but the CPM has since been
expanded to simulate individual parts of cells or even fluid regions.
The CPM uses a framework derived from statistical mechanics to describe cellular
behaviors, a choice that is not immediately intuitive. Unlike continuum models,
which overlook individual cells and treat tissues as homogeneous materials, the CPM
focuses on cells as the fundamental units. This approach contrasts with pointillistic
models, which simplify biological tissues into point-like cells, ignoring critical
aspects such as cell shape and adhesion at cellular membranes. Both continuum
and pointillistic models offer convenience and have contributed significantly to
understanding tissue development and physiology. However, many biological
structures, like capillaries and pancreatic islets, operate on scales close to the size
of individual cells, requiring a more detailed spatial representation. Therefore, the
CPM provides a more accurate analysis of these systems by focusing on the spatial
organization of cells [3].
The CPM, also, excels in capturing dynamic behaviors such as cell detachment,
reattachment, and diverse forms of cell-cell adhesion. This capability highlights
its strength in representing complex biological processes at the cellular level,
including inherent stochasticity in movements and deformations [4]. The CPM is
often characterized as a time-discrete Markov chain, simplifying the complexity of
millions of molecular interactions by focusing on key cell behaviors.
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Cellular Potts Model (CPM)

Figure 2.1: Representative 2D CPM domain formed by 144 square sites. The
numbers indicate cell index values σ. The levels of gray indicate cell types τ(σ). A
CPM object is a collection of lattice sites with the same spin value [3].

2.1 CPM domain and cell representation
In the CPM framework, the system is represented on a grid domain D ⊂ Rn, being
n ∈ {1,2,3}. The grid domain is composed of identical square or hexagonal sites,
each identified by a vector i⃗ ∈ Rn which indicates its center and labeled by an
integer number σ(⃗i) ∈ N , which can be interpreted as a degenerate spin. A group
of domain sites with the same identification number form a generalized cell, i.e., a
CPM object that may represent an entire biological cell, a subcellular compartment,
a cluster of cells, or even non-cellular material or a component of the surrounding
environment. Of course, a biological cell conceptualized as a cluster of subunits,
can be characterized by more complex and detailed morphologies.

Each CPM object σ, has an associated type, τ(σ). The boundaries between
lattice sites with different indices represent the contact regions between objects [3].
In Figure 2.1, a typical configuration of a bidimensional CPM domain is shown.
Each generalized cell in the CPM has further defining attributes, including surface
area, volume, and more intricate properties, e.g. its biochemical state and internal
regulatory networks, that may drive its behavior and dynamics in various biological
contexts.
CPM frameworks can include also molecular elements, described in terms of con-
tinuous variables whose evolution is established by appropriate partial differential
equations (PDEs) that possibly account for their diffusion, decay, absorption, secre-
tion. The genetic scale can be included as well by the introduction of boolean/di-
chotomic variables. The connection between the different levels gives the CPM
an intrinsic multiscale characteristic, coupled with a hybrid approach, since the
cell scale is reproduced by an IBM whereas the subcellular scale by a continuous
approximation.
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2.2 Modified Metropolis algorithm
In the CPM, the system evolution is determined by a stochastic process that
implements a Metropolis algorithm for Monte Carlo dynamics. It iteratively
reduces the system free energy defined by a Hamiltonian functional H (to be
discussed in more detail later).
To represent the temporal evolution of the model, the concept of a Monte Carlo
Step (MCS) is introduced. A single MCS is defined as 1 index-copy attempt, it is
the natural time unit for the model and in biologically realistic scenarios can be
considered approximately proportional to experimental time.
Each MCS consists of the following sequence of actions:

1. Randomly select a source lattice site, i⃗, and an unlike neighboring target site,
i⃗′.

2. If these two sites belong to different generalized cells, i.e, if σ(⃗i) /= σ(i⃗′)
calculate the energy difference (∆H) between the current configuration of
the domain and the trial one obtained by assigning to i′ the same index of i
(σ(i⃗′) = σ(⃗i)).

3. Accept the configuration update with a probability P (σ(⃗i) −→ σ(i⃗′)) based on
a Boltzmann like acceptance function:

P (σ(⃗i) −→ σ(i⃗′)) =
1 if ∆H ≤ h = 0

e
− ∆H

T
τ(σ(⃗i)) if ∆H > h = 0

(2.1)

In Eq.(2.1), Tτ(σ(⃗i)) is "Boltzmann temperature" which affects the likelihood of
changes and a "transition threshold" h which controls whether a new configu-
ration is accepted. Initially, the transition threshold was set to a fixed value
in the original model, but subsequent studies have shown that adjusting it in
specific applications can improve results.
∆H represents the change in effective energy if the copy occurs, and Tτ is a
parameter controlling the magnitude of cell-membrane fluctuations. The value
of Tτ can be set globally for the entire system or tailored for specific cells or cell
types, as in this case. The ratio ∆H/Tτ for a given object of type τ determines
how much its boundaries fluctuate. If ∆H/Tτ is large, cells become more
rigid and exhibit minimal or no motility, resulting in little cell rearrangement.
Conversely, a low ∆H/Tτ allows for more significant fluctuations, promoting
higher cell motility and rearrangement. When ∆H/Tτ is extremely small, cells
may fragment if no constraint maintains their boundary integrity.
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Figure 2.2: CPM representation of an index-copy attempt for two cells on a 2D
square lattice. The “white” pixel (source) attempts to replace the “grey” pixel
(target). The probability of accepting the index copy is given by Eq.(2.1). This
image is adapted from [5]

4. If the new configuration is accepted, update the lattice site. Otherwise, keep
the current configuration unchanged.

The basic step of the algorithm has to be repeated until the system reaches an
energy global minimum or for a given number of iterations. To illustrate an index-
copy attempt in this algorithm, Figure 2.2 provides a graphical representation of
two cells on a 2D square lattice, where the “white” pixel (source) attempts to
replace the “grey” pixel (target). The probability of accepting the index copy is
given by Eq.(2.1).

These dynamics are thought to mimic membrane fluctuations, where one cell
reduces its volume by releasing a lattice site while a neighboring cell gains volume
by occupying that same site.
An index copy that increases the effective energy is unlikely to occur. As a result,
cell configurations evolve following biologically relevant principles encoded in the
effective energy. The Metropolis algorithm updates the configuration of the cell
lattice in a way that satisfies the constraints to the greatest extent possible, with
perfect damping (i.e., average velocities are proportional to the forces applied).
Consequently, the time evolution of the cell lattice mirrors what could be achieved
deterministically using methods like finite-element models or center-model ap-
proaches with perfect damping [6].
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To finalize the model, suitable boundary conditions must be established. When
the influence of domain boundaries is irrelevant, periodic boundary conditions are
applied, effectively treating the space as if it were wrapped onto a torus. This
approach ensures that cells can move continuously across boundaries. Alternatively,
fixed boundary conditions can be imposed, explicitly modeling the interactions
between cell surfaces and the surrounding environment within the framework,
offering more precise control over cell behavior near boundaries [7].

2.3 Energy Function: Hamiltonian
The energy function, called the Hamiltonian, controls the behavior of the system
in the CPM. The Hamiltonian reflects the energetic cost associated with different
cellular configurations and depends on several factors, such as cell adhesion, volume
constraints, and surface tension. The Hamiltonian captures most of the cell
characteristics, behaviors, and interactions through constraint terms.
To avoid confusion, it’s important to clarify that the term "energy function"
simulates specific cellular behaviors and doesn’t correspond to the actual physical
energy of the cells.
In the time-discrete Markov chain, the Hamilton function is associated with the
transition probabilities, as shown in Eq.(2.1).
Generally, the Hamiltonian consists of several terms, which control distinct aspects
of cell behaviors. The typical structure of a CPM-Hamiltonian is:

H = Hadhesion + Hattribute + Hforce (2.2)

Most studies incorporate an adhesive interaction term, characterized by a
symmetric matrix of contact energy coefficients:

Hadhesion =
Ø

(⃗i,i⃗′)−neighbors

J(τ(σ(⃗i)), τ(σ(i⃗′)))(1 − δ(σ(⃗i), σ(i⃗′))) (2.3)

Eq.(2.3) takes over all pairs of neighboring lattice sites i⃗ and i⃗′, that belongs to
different elements, computes the boundary or contact energy between them, thereby
modeling adhesion interactions. The coefficients J(τ(σ(⃗i)), τ(σ(i⃗′))) represent a
boundary energy per unit of contact area for a pair of cells, where σ(⃗i) of type
τ(σ(⃗i)) occupies the lattice site i⃗ and σ(i⃗′) of type τ(σ(i⃗′)) occupies the neighboring
site i⃗′. J(τ(σ(⃗i)), τ(σ(i⃗′))) is typically specified as a matrix indexed by the types
of cells. Higher boundary energies between cells lead to increased repulsion, while
lower boundary energies correspond to greater adhesion. The Kronecker delta term
1 − δ(σ(⃗i), σ(i⃗′)) ensures that neighboring lattice sites of the same state do not
contribute to the total energy of the system [8].
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Depending on the specific biological scenario being investigated, other types of
terms can be integrated into the model. They describe selected attributes of the
set of modeled elements (such as their geometrical characteristics) and have the
structures of elastic potentials:

Hattribute =
Ø
attr

Ø
σ

[λattr(σ)(a(σ, t) − A(σ))2] (2.4)

The summation in Eq. (2.4) calculates the effective energy arising from attribute
constraints on each generalized cell, where a(σ, t) represents the value of the
attribute for element σ at time t, and A denotes the target value. Deviations of
the cell’s attribute from its target value A(σ) increase the effective energy, thus
penalizing such deviations. The parameter λattr functions like a Young’s modulus,
with larger values reducing fluctuations of the cell’s attribute around its target
value.
The last term accounts for the energetic contributions of the forces (both effective
and generalized) that act on the simulated individuals. All of these are modeled :

Hforce =
Ø

σ

Ø
i⃗∈σ

Ø
k-force

µk
σ(t)F k(t)r⃗i (2.5)

where r⃗i = (x⃗i, y⃗i, z⃗i)T is the position vector of lattice site i⃗, which represents the
application point of force F k, and µk

σ is the relative parameter, which measures the
effective strength of the force on object σ. Common examples in CPM simulations
include forces exerted by extracellular chemical gradients, which are continuous
CPM objects, on a discrete population of cells:

Hchemical
force = -

Ø
σ

Ø
i⃗∈σ

µσ(t)c(⃗i, t) (2.6)

where c(⃗i, t) is the concentration of the chemical sensed by cell site i⃗ and the
Potts coefficient µσ is, in this case, interpreted as an effective chemical potential of
cell σ. Moreover, the net energy difference caused by such a chemical force is:

∆Hchemical
force |σ(⃗i)→σ(i⃗′) = µσ[c(⃗i, t)-c(i⃗′, t)] (2.7)

where i⃗ , which belongs to the boundary of σ, and i⃗′ are the two neighboring
lattice sites randomly selected during the trial update at time t. If µσ is a constant,
σ has a linear chemical sensitivity. In particular, µσ > 0 results in movement
up the chemical gradient (making c a chemoattractant, and the relative force is
called chemotaxis), while µσ < 0 causes motion down the gradient (and c is a
chemorepellent).
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Chapter 3

CPM Application to Tumor
Infiltration

Given in the previous chapter the general structure of the CPM, this part of the
thesis will be focus on its application to describe tumor infiltration within confined
tissues.

More specifically, we will deal with two different scenarios: in the first one
(S1), a single malignant cell is assumed to migrate through a pair of muscle fibers.
The second one (S2) is similar but introduces a key difference: the muscle fibers
are encased in and connected by a layer of extracellular matrix filaments that
ensure their structural cohesion. In both cases, we will employ a two-dimensional
approximation.

In this respect, the first part of this chapter will be focused on the model, and
the relative simulations, of setting S1, whereas in the second part of the chapter we
will add the model ingredients necessary to implement the setting S2 and present
the relative numerical results.

3.1 Scenario S1

3.1.1 S1: Model
In the first scenario S1, a single tumor cell, i.e., a CPM object of type τ = T , is set
to migrate through a pair of muscle fibers. Each of them is composed of muscle
elements which are CPM objects of type τ = F . Domain sites not occupied by the
previously mentioned elements are assigned a generalized spin value of σ = 0 and a
type τ = M , indicating the medium, i.e., a sort of interstitial fluid characteristic of
biological environments.

In more details, cell movement is established by a directional potential that
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biases the locomotion of the malignant individual in between the pair of muscle
elements. Effective tumor infiltration is determined by the elastic properties of
both the cell and the muscle fibers. In this respect, the tumor cell is set to maintain
an almost constant surface area during movement, with temporary variations of
its perimeter. This adaptive mechanism enables it to deform and adjust its shape
to navigate through such narrow spaces. Muscle fibers can also display elastic
properties, though to a lesser extent than tumor cells, as they have to retain a
relatively stable structure.

Building upon this biological framework, the Hamiltonian of the system is given
by

H(t) = Hsur(t) + Hper(t) + Hpot(t) + Hadh(t), (3.1)

where

• Hsur(t) and Hper(t) account for surface and perimeter constraints, the former
ensuring variations in the area of the cell the latter dealing with its deforma-
bility. These terms are derived from a specific formulation of the attribute
energy term (Hattr), as introduced earlier in Eq.(2.4);

• Hpot(t) models the directional movement of the tumor cell along the y-axis.
This is a particular instance of the force energy term (Hforce), described in Eq.
(2.5);

• Hadh(t) describes the possible adhesive interactions between the tumor cell and
muscle fibers, as detailed in Eq.(2.3). This term reflects the energy associated
with contact dynamics between different types of elements.

Expanding the Hamiltonian, it can be explicitly written as:

H(t) =
Ø

σ

λsur(σ) (s(σ, t) − S(σ))2 +
Ø

σ

λper(σ) (p(σ, t) − P (σ))2

+
Ø
i∈σ

v(t)r⃗i +
Ø

(⃗i,i⃗′)-neighbors

J
1
τ(σ(⃗i)), τ(σ(i⃗′))

2 1
1 − δ(σ(⃗i), σ(i⃗′))

2 (3.2)

We recall that the system evolves according to the Boltzmann-like transition law
introduced in Eq. (2.1).

Simulation details and parameter setting. The initial conditions of the simulation are
designed to replicate a biologically relevant scenario while ensuring computational
feasibility. The simulation domain D ∈ R2, consists of a 230 × 1000 pixels regular
grid. The temporal resolution of the model is defined in terms of Monte Carlo
Steps (MCS).
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Figure 3.1: Initial configuration for setting S1: Tumor cells migrating through
muscle fibers without ECM.

The tumor cell is initially represented as a circular object with an area of 1200
pixels. The domain also includes two parallel myo-fiber structures, separated by 21
pixels. Each muscle fiber consists of two closely spaced parallel elements, each with
a thickness of 8 pixels and separated by a single pixel. Each fiber has a length of
660 pixels and is composed of small elements with an individual area of 16 pixels.
Cell and fibers initial measures also correspond to the target values present in the
Hamiltonian. Such a structural choice that ensures an accurate representation of
the tumor infiltration through the constrained environment.

The parameters required for the Hamiltonian calculation, including elasticity
coefficients, target values, and interaction energies, are summarized in Table 3.1.

11
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In particular, TT is a measure of the intrinsic motility of the overall individual,
as it gives the frequency of the ruffles of its cytosol (which, on a molecular level, are
determined by polarization/depolarization processes of the actin cytoskeleton). It is
set, after some preliminary simulations, equal to an high 20. TF instead determines
the vibration degree of the components of the muscle fibers, which are not allowed
to substantially move from their original position. For this reason, we set a lower
TF = 4.

Assuming that the tumor cell does not significantly grow during migration, the
fluctuations of its area are kept negligible with a high constant value λsur ≫ 1.
Moreover, malignant cells moving in confined environments are typically deformable:
therefore, we set a low λper = 5. Muscle components are finally assumed to maintain
their extension but to be characterized by a high degree of deformability. For them,
we indeed fix λsur = 30 and λper = 2.

JT,M and JT,F evaluate the heterophilic contact interactions between the tumor
cell and extracellular components: specifically, the former coefficient is a measure of
the affinity between integrins complexes on cell surfaces and soluble ligands present
in the medium, whereas the latter one quantifies possible adhesive interaction
between the malignant individuals and muscle elements. Specifically, we set high
values (i.e., >> 1) for both parameters: the aim of the thesis in fact to analyze the
direct influence of cell and fiber deformability on tumor infiltration and therefore
we prefer to avoid that adhesive interactions affect cell movement. This choice is
also consistent with the experimental literature, which widely demonstrates that
most cell lines display sustained ameboid motility in confined environments in a
poorly adhesive mode

This mathematical framework provides a robust basis for analyzing the interplay
between the physical and biological factors that drive cell migration in the simulated
environment.

3.1.2 S1: Numerical results
Reference simulation. With the terminology reference simulation, we hereafter
indicates the numerical setting given the parameter values listed in Table 3.1.

Initially, the tumor cell is seeded in the close proximity to the muscular structure
and display an unpolarized morphology.

It then starts to squeeze between the pair of fibers. In particular, it remodels
towards an elongated shape. The transition from a stationary cell morphology to a
polarized shape, which is completely self generating and due to the geometry of the
environment, is necessary but not sufficient to determine the infiltration capacity
of the individual. The muscle elements, subjected by mechanical stresses exerted
by the tumor cell, in fact widen allowing the malignant individual to penetrare in
between them. The figure 3.2 shows this kind of behavior.
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Table 3.1: Model Parameters (I)

Parameter Description Value Reference(s)
Tumor cell

λsur elasticity coefficient for surface deformation 40 estimated
λper elasticity coefficient for perimeter deformation 5 estimated
S initial/target surface area 1200 Friedl et Al [1]
P initial/target perimeter 120 Friedl et Al [1]
v potential driving directional migration. -6 estimated

JT,M adhesion energy between medium and tumor cell 15 estimated
JT,F adhesion energy between tumor cell and muscle fibers 40 estimated
TT Motility of tumor cell 20 estimated

Muscle fibers
λsur elasticity coefficient 30 estimated
λper elasticity coefficient 2 estimated
S initial/target surface area of muscle fibers 16 Friedl et Al [1]
P initial/target perimeter of muscle fibers 16 Friedl et Al [1]

JF,M adhesion energy between medium and muscle fibers 2 estimated
TF Motility of muscle fibers. 4 estimated

The same mechanism, i.e., inter-fiber space enlargement upon tumor cell passage,
is repeated until the malignant individual reached the top border of the domain.
The time needed by the cell to cross the entire muscle structure is ≈ 30000 MCS.
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(a) Initial configuration
(b) Tumor cell reached the
fibers

(c) Tumor cell in the middle
of the fibers

(d) The tumor cell reached
the top border of the domain

Figure 3.2: Tumor cell infiltration through muscle fibers in S1
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Varying cell elasticity. As previously pointed out, to migrate within the pair of
muscle fibers, the tumor cell needs to deform its body. Thus, the elastic properties
of the cell represent a critical determinant for its migration efficacy. In this respect,
we run a series of simulations where the malignant individual is assumed to have
different degrees of deformability, given by different values of λper. The muscle
tissue is instead fixed, i.e., non-deformable, by setting TF = 0. All the other model
parameters are kept the same as in the reference simulation.

The migration time, expressed in Monte Carlo Steps (MCS), was recorded for
different values of λper, as summarized in Table 3.2.

λper Migration Time (MCS)
5 76500
20 99000
30 116000
45 190000
60 206000
80 144000*
90 110700*

Table 3.2: Migration time for different values of λper. *Values for may be affected
by numerical instabilities.

As shown in Table 3.2 and in the corresponding plot in Fig. 3.3, the results
indicate a clear trend: as the cell becomes more rigid (i.e., for higher values λper),
the migration time increases, being the migration time evaluated as the number of
MCS needed by the cell to reach the top border of the domain.

Such numerical outcomes suggest that cell excessive rigidity hinders movement.
Conversely, greater deformability facilitates a more efficient infiltration through
confined environments.

The above-described behavior is qualitatively illustrated in Fig. 3.4 where we
can observe the migration distance of the cell for different values of λper.
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Figure 3.3: the impact of cellular elasticity on migration time
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(a) λper = 5
MCS=60000

(b) λper = 20
MCS=60000

(c) λper = 30
MCS=60000

(d) λper = 45
MCS=60000

Figure 3.4: Tumor cell position at a fixed MCS equal to 60000 for different values
of λper
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We remark that the results with λper greater than 60 appear to deviate from
the expected trend. These anomalies are likely due to numerical instabilities, and
therefore they can be omitted from the graphical representation.

This finding is consistent with biological literature, which suggests that more
rigid cells experience greater difficulty in infiltrating confined environments. For
instance, Boyden chamber assays are typically used to correlate an increment in
the ability of cancer cells to squeeze and migrate through microporous membranes
to a drop in their elastic modulus, measured by a micro-plate based single-cell
stretcher. Furthermore, glioma cell lines have been shown to squeeze through narrow
locations in a brain model in vivo, thereby increasing their metastatic potential,
by significantly compressing their body upon recruitment of nonmuscle myosin
II (NMMII). Moreover, other authors have been provided that the directional
persistence of cancer cells in microsized structures is mainly regulated by their
steric hindrance. Finally, the number of acute promyelocytic leukemia (APL) cells
able to migrate through filters smaller than cell diameters have been shown to be
significantly reduced upon exposition to paclitaxel, which stabilizes the intracellular
microtubule network.
Varying fiber elasticity. In the body, extracellular tissues display a range of elastic
characteristics that affect the efficacy of tumor infiltration. To highlight this aspect,
we now use the reference value for cell deformability λper = 6 while varying the
rigidity of muscle elements. The results of the simulations are summarized in Table
3.3 and illustrated in Figure 3.5.

Muscle Rigidity Migration time (MCS)
0.5 130000
1 148000
2 199000
3 230000
5 250000

Table 3.3: Migration time for the tumor cell to pass through muscle fibers as a
function of muscle rigidity.

The results presented in Table 3.3 indicate a clear trend: as the muscle rigidity
increases, the number of MCS required by the tumor cell to pass through the
structure increases too.

The underlying explanation is that the more the muscle elements are rigid, the
more the cell needs time to deform and penetrate between the muscular elements,
given that it can not adapt its elastic properties.

Entering in more details, from the plot in Fig. 3.5, we observe a sort of
saturation behavior for substantially high stiffness of muscle elements (i.e., for
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λper > 3), suggesting that in this range of values muscle fibers form an effective
physical barrier to infiltration.

Figure 3.5: Number of MCS required for tumor cell passage as a function of
muscle rigidity.

The above-described behavior is qualitatively illustrated in Fig. 3.6 where we
can observe the migration distance of the cell for different values of λper.
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(a) λper = 0.5
MCS=100000

(b) λper = 1
MCS=100000

(c) λper = 3
MCS=100000

(d) λper = 5
MCS=100000

Figure 3.6: Tumor cell position at a fixed MCS equal to 100000 for different
values of λper
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3.2 Scenario S2

3.2.1 S2: Model
In the second setting S2, ECM elements, i.e., CPM objects of type τ = E, surround
and link the pair muscle fibers. The primary function of the extracellular matrix
is to provide mechanical and structural support, acting also as a barrier that the
tumor cell has to overcome to infiltrate the tissue. ECM elements are assumed to
be fixed over time, i.e., they are not allowed to move or change their dimensions.

With respect to the previous scenario, the tumor cell indeed exhibits an additional
dynamic: it secretes enzymes, such as matrix metalloproteinases (MMPs), that
selectively degrade extracellular matrix components, thereby facilitating their
passage through the muscle tissue.

According to these considerations, the Hamiltonian of the system is analogous
to the case of the first scenario, as given in Eq. (3.2) except to the fact that in
the adhesive term we have to account for the contact interactions between ECM
components and both the cell and the muscle fibers. iIt is useful to remark that
geometrical constrained are not needed for matrix elements since they are set to
be fixed objects.

The kinetics of the tumor-secreted matrix metalloproteinases (MMPs) are then
modeled using a reaction-diffusion equation. The current concentration of MMPs
at a given domain site i, denoted as hMMP (⃗i, t), evolves according to the following
equation:

∂hMMP (⃗i, t)
∂t

= DMMP ∇2hMMP − kMMP hMMP + θMMP (⃗i), (3.3)

where DMMP and kMMP are, respectively, the diffusion and degradation rate, and
θMMP is the production rate:

θMMP (⃗i) =
θMMP if τ(σ(⃗i)) = T and τ(σ(i⃗′)) = E,

0 otherwise,
(3.4)

where i⃗ and i⃗′ are neighboring pixels. We are indeed assuming that the MMPs are
secreted by the malignant individuals upon contact with an ECM component.

The mechanism of matrix degradation by tumor-produced proteolytic enzymes
is implemented as follows: a lattice site i⃗ within an ECM element becomes a
generalized pixel of medium when the local level of MMPs (hMMP (⃗i) ) is sufficiently
high, i.e., reaching a given threshold hdeg. This change is implemented by changing
( τ(σ(⃗i)) from τ(E) to τ(M), corresponding to the disruption of the ECM element.

From a numerical point of view, Eq. (3.3) is solved with a finite element method
employed on the CPM mesh underlying the spatial domain D, with 10 diffusion
step for MCS to ensure stability.
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Figure 3.7: Initial configuration for setting 2: Tumor cells migrating through
muscle fibers with ECM.

Simulation details and parameter setting. In the second setting S2, the simula-
tion domain D and temporal resolution remain unchanged, but the structural
composition of the extratumoral environment is modified to include an additional
ECM component. A layer of ECM, with a thickness of 1 pixel, surrounds the
inner side of each fiber along its entire length of 660 pixels. Randomly distributed
ECM filaments connect the two fibers as well, maintaining their cohesion. These
filaments have a thickness of 10 pixels and span the gap between the two myo-fiber
structures. Initially there are no proteolytic enzymes throughout the domain, i.e.,
hMMP (⃗i,0) = 0 for any i⃗ ∈ D.

Table 3.4 lists the parameters that are specific for this second scenario S2: the
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remaining model coefficients are exactly the same as those included in Table 3.1.
In particular, we neglect the adhesive interactions between the structural ECM
and the tumor individuals by setting JT,E = 0. The analysis of the effect on cell
migration of adhesive dynamics is in fact beyond the scope of this thesis. We then
use a negative contact energy between muscle elements and ECM components to
ensure that they remain attached over time.

The parameters relative to MMP kinetics are instead taken from the literature,
see [9] and references therein.

Table 3.4: Model Parameters (II)

Parameter Description Value Reference(s)
Tumor cell

JT,E adhesion energy between ECM and tumor cell 0 estimated
Muscle fibers

JF,E adhesion energy between ECM and muscle fibers -2 estimated
MMPs

DMMP diffusion rate of MMPs 0.2 [9]
kMMP degradation rate of MMPs 0.1 [9]
θMMP MMPs production rate 0.3 [9]
hdeg MMP threshold for ECM degradation 2.5 [9]

3.2.2 S2: Numerical results
Reference simulation. As shown in the time-lapse images in Fig.3.8 and 3.9, the
cell approaches the entrance of the muscle structure whose overall rigidity is due
to the presence of the ECM. The structural matrix then starts to be degraded by
the tumor-derived MMPs: as a consequence, muscle elements are free to fluctuate
around their position.

The malignant individual indeed remodels in a polarized elliptic morphology
and initiates to penetrate the inter-fiber space, that gradually enlarges due ECM
digestion.

Once the tumor cell has infiltrated its body within the muscle structure, it starts
a sustained locomotion which is permitted by the above-described coordinated
mechanisms: matrix degradation and fiber widening.

The overall migrations takes to the cell approximately 47 000 MCS, a larger
value w.r.t. the reference simulation of S1 since the proteolytic enzymes need time
to digest elements of the structural matrix.
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(a) Initial configu-
ration

(b) Initial configu-
ration: MMP field

(c) First contact
between the tumor
cell and the fibers

(d) The tumor cell
begins producing
MMPs

Figure 3.8: Time evolution of tumor cell migration and the MMPs field (Part 1)
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(a) In the middle of
fibers

(b) In the middle of
fibers

(c) The tumor cell
reached the top bor-
der of the domain

(d) The tumor cell
reached the top bor-
der of the domain

Figure 3.9: Time evolution of tumor cell migration and the MMPs field (Part 2)

Varying MMP secretion rate. As seen, the tumor cell is able to move within the
muscle tissue deforming its overall body and activating proteolytic enzymes able
to degrade the structural ECM. In this respect, we now evaluate the relationship
between the amount of MMPs secreted by the malignant individual and the extent
of its directional movement.

In this respect, Table 3.5 summarizes the time required for the tumor cell to reach
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the bottom of the domain for different MMPs secretion rates. The corresponding
trend is also displayed in the plot in Figure 3.10.

MMP Secretion Rate migration time (MCS)
0.30 47000
0.25 50000
0.20 60000
0.17 100000
0.15 600000
0.10 no infiltration

Table 3.5: Time (in MCS) required for the tumor cell to migrate through the
ECM for different MMPs secretion rates.

Figure 3.10: Trend of tumor cell migration time as a function of MMPs secretion
rate. The increase in time suggests a nonlinear relationship, with a critical threshold
below which migration is blocked.

The results appear consistent with the hypothesis that MMPs secretion signifi-
cantly influences tumor cell migration speed. Several key observations can be made:
for high enough secretion rates (i.e., > 0.20) the time required by the cell to reach
the end of the muscle is almost constant. It possibly depends on the time needed
by both the cell and the muscle elements to deform and adapt their shapes.

Lower values of MMPs secretion rate result in higher values of the cell migration
time: they in fact imply a slow down of ECM degradation and therefore a delay in
tumor cell infiltration and subsequent locomotion.

At substantially low values of MMPs secretion rates (i.e., < 0.10) the tumor
cell is unable to penetrate and move through the muscle structure within the
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simulated timeframe. The underlying rationale is that in such a range of values of
MMPs production rate ECM degradation is too slow to allow cell migration within
biologically relevant timescales.

The above-findings provide insight into the role of ECM degradation in tumor
invasion, reinforcing the importance of proteolytic enzyme activity in facilitating
metastatic progression.

To better illustrate the impact of MMPs secretion on tumor cell migration, we
initially considered including simulation snapshots for a range of secretion rates.
However, our analysis revealed that for secretion rates above 0.15, the tumor cell
attains similar positions at the same simulation time (MCS), remaining close to its
initial configuration S2. As a result, including these cases would be redundant.

Therefore, we have chosen to present snapshots for secretion rates of 0.15 and
0.10, captured at the moment when the tumor cell, in S2, encounters the upper
boundary of the domain at MCS = 47,000. This selection effectively highlights the
differences in migratory behavior: with a secretion rate of 0.15, the cell continues
its infiltration with a noticeably delayed progression, whereas at 0.10, the cell is
unable to penetrate the muscle tissue at all.

Analogous outcomes would be obtained by keeping fixed MMPs secretion rates,
while increasing the MMPs concentration threshold needed to degrade a matrix
component.
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(a) secretion rate :
0.15

(b) MMPs field at
MCS=47000

(c) secretion rate :
0.1

(d) MMPs field at
MCS=47000

Figure 3.11: Time evolution of tumor cell migration and the MMPs field varing
secretion rate
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Modeling collective and coordinated migration. We finally keep the numerical setting
of the reference simulation while adding a second tumor cell. It is characterized by
the same biophysical properties of the other malignant individual except from the
fact that it has an inhibited proteolytic activity, i.e., it is not allowed to produce
MMPs.

In the simulation, the cell producing MMPs is represented in blue, while the
one lacking proteolytic activity is colored yellow.

The different steps of the simulation have been documented through images,
allowing a visual analysis of the collective migration dynamics. As it can be
seen, the leading blue cell, capable of degrading the ECM, is able to permit the
movement of the following cell, which instead lacks proteolytic activity. This visual
representation helps assess the interaction between the two tumor cells and the
efficiency of their coordinated invasion.
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(a) Initial configu-
ration (Step 1)

(b) Cells in be-
tween fibers (Step
2)

(c) Leading cell
reached the bottom
(Step 3)

(d) Both cells
reached the bottom
(Step 4)

Figure 3.12: Time evolution of tumor cells migration. The first cell actively
degrades the ECM, facilitating the movement of the second one.30



Chapter 4

Conclusions and Future
Perspectives

This thesis explored the migration of a tumor cell through two muscle fibers using
the Cellular Potts Model. The primary objective was to analyze how different
parameters affect the cell’s ability to traverse the fibers, identifying the key factors
that influence the migration process. Two main simulation settings were considered:
one without an extracellular matrix (ECM) and one with ECM.

In the absence of ECM, two types of simulations were performed. The first
examined the role of cell elasticity by keeping the muscle fibers fixed while varying
the cell’s surface elasticity parameter across a range of values. The results indicated
that higher values of the parameter, i.e., the cell was more rigid, led to longer
migration times. The second simulation focused on fiber rigidity, maintaining
a constant cell elasticity while varying the stiffness of the muscle fibers. The
findings revealed that increased fiber rigidity significantly prolonged migration time,
confirming that stiffer fibers act as stronger physical barriers to movement.

In the ECM-inclusive setting, two additional simulations were conducted. The
third simulation investigated the effect of proteolytic enzyme secretion by varying
the secretion rate of matrix metalloproteinases (MMPs). The results showed that
lower MMPs secretion rates drastically increased migration time, with complete
blockage occurring at the lowest tested rate. The fourth simulation explored
collective migration by introducing a second cell, incapable of secreting MMPs,
behind the leading cell. The results highlight the crucial role of MMPs in facilitating
invasion. This simulation was designed to illustrate tumor cell behavior in the
presence of multiple cells.

Overall, the study identified cell elasticity, fiber rigidity, and ECM degrada-
tion as key determinants of migration dynamics. These findings contribute to a
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deeper understanding of cell movement in constrained environments, with poten-
tial implications for tissue remodeling, cancer cell invasion, and related biological
processes.

Future research could expand on this work in several directions:

• Alternative Migration Scenarios: Investigating tumor cell migration
through adipocytes to compare movement dynamics in different tissue envi-
ronments.

• Collective Migration Mechanisms: Expanding the model to simulate
larger groups of tumor cells, allowing for a more comprehensive study of
cooperative dynamics and collective invasion strategies.

• Heterogeneous Cellular Properties: Incorporating biomechanical differ-
entiation between nuclear (more rigid) and cytoplasmic (more elastic) regions
of tumor cells for increased model accuracy.

• 3D Simulations: Extending the model to three dimensions in order to
capture more realistic spatial constraints and cell-cell interactions.

• Integration of Blood Vessels: Introducing vascular structures to simulate
tumor cell intravasation and explore the transition from tissue invasion to
metastatic dissemination.
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Appendix A

CompuCell3D

CompuCell3D (CC3D) is an open-source simulation environment, which is built
on the CPM. CC3D enables fast and intuitive modeling and simulation of both
individual cellular behaviors and multi-cellular dynamics, particularly in the context
of tissue formation and development.
Specifically, it captures various cell behaviors such as growth, division, adhesion,
and migration, making it suited for studying complex biological phenomena like
morphogenesis, tumor growth, and tissue regeneration.
The CC3D environment includes several important tools that facilitate model
development, execution, and analysis:

• Twedit++-CC3D: A dedicated model editor and code generator. Twedit++
includes a Simulation Wizard that generates draft CC3D model code based on
high-level specifications, such as cell types, fields, and interactions. Users cur-
rently need to adjust the default parameters of the generated code. Twedit++
also offers a Python code-snippet generator, simplifying the process of writing
custom Python scripts for CC3D models.

• CellDraw: A graphical tool that helps users define the initial configuration
of the cell lattice. This tool is particularly useful for setting up simulations
that require precise initial conditions, such as tissue structures or patterns of
cell distributions.

• CC3D Player: The graphical interface used to run, replay, and analyze CC3D
simulations. It supports steering, allowing users to adjust model parameters
in real-time as the simulation is running. CC3D Player also provides multiple
visualization options and supports batch-mode execution for high-throughput
simulations.

CC3D uses a modular architecture, which means that only the necessary components
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for a particular model are loaded, optimizing performance.The structure of a CC3D
model typically consists of:

• CC3DML scripts: these are XML-based files that define the core parameters
of the simulation, such as the lattice dimensions, cell types, biological mech-
anisms, and file paths for configuration. CC3DML are static, which means
that, throughout the simulation, those parameters remain unchanged.

• Python scripts: Python scripting allows building complex simulations
wherein the behaviors of individual cells change (according to user speci-
fication) as the simulation progresses. For instance, in a tumor growth model,
Python scripts can adjust the type of a cell based on the oxygen partial
pressure.

• Initialization files: These files define the initial configuration of the cell
lattice, they are called Pixel Initialization Files (PIFFs). A PIFF is a text file
that allows users to assign multiple rectangular (parallelepiped in 3D) pixel
regions or single pixels to particular cells.

The system includes several key modules:

• Plugins: These modules calculate the effective energy terms and monitoring
events on the cell lattice. They are invoked frequently during each pixel copy
attempt. Due to their frequent use, most plugins are written in C++ for
improved computational speed.

• Steppables: These modules perform operations at the cellular level rather
than the pixel level, and are called at fixed intervals (measured in Monte Carlo
steps). Steppables have a variety of uses, including adjusting cell parameters
based on simulation events, solving PDEs, and loading or saving simulation
results. Most steppables are implemented in Python, allowing for significant
customization by users.

In addition to Python and CC3DML scripts, CompuCell3D also uses C++ for mod-
ules that require high computational efficiency. While Python provides flexibility
for customizing cell behaviors and handling dynamic aspects of the simulation, C++
is employed for operations that are computationally intensive, such as calculating
energy terms or handling frequent pixel-copy events. Most plugins, which are
invoked repeatedly during the simulation, are written in C++ to ensure optimal
performance, making the system capable of handling large-scale and complex mod-
els efficiently [10].
CC3D also supports parallel computation through OpenMP, enabling efficient
execution on multi-core machines and providing substantial speed improvements in
large-scale simulations [6] [5].
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S1 code

In this simulation scenario, only the XML file is reported, as it is the key component
for the setup and configuration of the simulation environment. The XML file
contains the specifications for the Potts model, cell types, energy parameters, and
regions of interest for the simulation.

File xml

Listing B.1: XML Configuration for S1 Simulation
1 <CompuCell3D>
2 <!−− Python s c r i p t c o n t r o l l i n g the s imu la t i on −−>
3 <PythonScript>C:\CompuCell3D\MyDemos\sim_fineNov\sim_gen\

Simulat ion \ provaSteppables . py</ PythonScript>
4

5 <Potts>
6 <!−− L a t t i c e and s imu la t i on s e t t i n g s −−>
7 <Dimensions x=" 230 " y=" 1000 " z=" 1 " /> <!−− 2D s imu la t i on with

l a r g e y−dimension −−>
8 <LatticeType>Hexagonal</ Latt iceType> <!−− Using a hexagonal

l a t t i c e −−>
9 <Steps>100000000</ Steps>

10

11 <!−− Ce l l m o t i l i t y parameters −−>
12 <C e l l M o t i l i t y>
13 <Moti l i tyParameters CellType=" c e l l " Mot i l i t y=" 20 " /> <!−−

High m o t i l i t y f o r tumor c e l l s −−>
14 <Moti l i tyParameters CellType=" muscle " Mot i l i t y=" 4 " /> <!−−

Lower m o t i l i t y f o r muscle f i b e r s −−>
15 </ C e l l M o t i l i t y>
16

17 <NeighborOrder>2</NeighborOrder> <!−− Cons ider ing second−
order ne ighbors −−>

18 </ Potts>
19
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20 <!−− Tracks ne ighbor ing c e l l s −−>
21 <Plugin Name=" NeighborTracker " />
22

23 <!−− Def in ing c e l l types −−>
24 <Plugin Name=" CellType ">
25 <CellType TypeName="Medium" TypeId=" 0 " /> <!−− Background −−>
26 <CellType TypeName=" c e l l " TypeId=" 1 " /> <!−− Tumor c e l l −−>
27 <CellType TypeName=" muscle " TypeId=" 2 " /> <!−− Muscle f i b e r −−

>
28 </ Plugin>
29

30 <!−− Volume c o n s t r a i n t s to maintain r e a l i s t i c c e l l s i z e s −−>
31 <Plugin Name=" Volume ">
32 <VolumeEnergyParameters CellType=" c e l l " TargetVolume=" 1200 "

LambdaVolume=" 40 " />
33 <VolumeEnergyParameters CellType=" muscle " TargetVolume=" 16 "

LambdaVolume=" 30 " />
34 </ Plugin>
35

36 <!−− Sur face c o n s t r a i n t s to c o n t r o l c e l l morphology −−>
37 <Plugin Name=" Sur face ">
38 <VolumeEnergyParameters CellType=" c e l l " TargetSur face=" 120 "

LambdaSurface=" 5 " /> <!−− Sur face t en s i on f o r tumor c e l l s −−>
39 <VolumeEnergyParameters CellType=" muscle " TargetSur face=" 16 "

LambdaSurface=" 2 " /> <!−− Lower s u r f a c e c o n s t r a i n t f o r muscle
f i b e r s −−>

40 </ Plugin>
41

42 <!−− Contact energy between d i f f e r e n t c e l l types −−>
43 <Plugin Name=" Contact ">
44 <Energy Type1="Medium" Type2="Medium">0</Energy>
45 <Energy Type1=" c e l l " Type2="Medium">15</Energy> <!−− Tumor

c e l l s weakly i n t e r a c t with medium −−>
46 <Energy Type1=" c e l l " Type2=" c e l l ">250</Energy> <!−− High

adhes ion between tumor c e l l s −−>
47 <Energy Type1=" muscle " Type2=" muscle ">0</Energy>
48 <Energy Type1="Medium" Type2=" muscle ">2</Energy>
49 <Energy Type1=" c e l l " Type2=" muscle ">40</Energy> <!−− Moderate

i n t e r a c t i o n between tumor and muscle −−>
50 <NeighborOrder>3</NeighborOrder> <!−− Extends i n t e r a c t i o n

range −−>
51 </ Plugin>
52

53 <!−− External f o r c e app l i ed to tumor c e l l s −−>
54 <Plugin Name=" Exte rna lPoten t i a l ">
55 <Externa lPotent ia lParameter s CellType=" c e l l " x=" 0 " y="−6" z="

0 " /> <!−− Downward f o r c e app l i ed to tumor c e l l s −−>
56 </ Plugin>
57
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58 <!−− I n i t i a l i z i n g muscle f i b e r s in s t ruc tu r ed v e r t i c a l r e g i o n s −−
>

59 <Steppable Type=" U n i f o r m I n i t i a l i z e r ">
60 <Region>
61 <BoxMin x=" 124 " y=" 340 " z=" 0 " />
62 <BoxMax x=" 132 " y=" 1000 " z=" 1 " />
63 <Gap>0</Gap>
64 <Width>4</Width>
65 <Types>muscle</Types>
66 </Region>
67 <Region>
68 <BoxMin x=" 133 " y=" 340 " z=" 0 " />
69 <BoxMax x=" 141 " y=" 1000 " z=" 1 " />
70 <Gap>0</Gap>
71 <Width>4</Width>
72 <Types>muscle</Types>
73 </Region>
74 <Region>
75 <BoxMin x=" 162 " y=" 340 " z=" 0 " />
76 <BoxMax x=" 170 " y=" 1000 " z=" 1 " />
77 <Gap>0</Gap>
78 <Width>4</Width>
79 <Types>muscle</Types>
80 </Region>
81 <Region>
82 <BoxMin x=" 171 " y=" 340 " z=" 0 " />
83 <BoxMax x=" 179 " y=" 1000 " z=" 1 " />
84 <Gap>0</Gap>
85 <Width>4</Width>
86 <Types>muscle</Types>
87 </Region>
88

89 <!−− I n i t i a l i z i n g tumor c e l l s in a compact r eg i on at the
bottom −−>

90 <Region>
91 <BoxMin x=" 132 " y=" 240 " z=" 0 " />
92 <BoxMax x=" 168 " y=" 280 " z=" 1 " />
93 <Gap>4</Gap>
94 <Width>36</Width>
95 <Types>c e l l</Types>
96 </Region>
97 </ Steppable>
98 </CompuCell3D>
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S2 code

This appendix presents the key components of the code used for simulation S2.
The simulation is performed using the CompuCell3D software, and the following
files are essential for its execution:
XML File: This file contains the initial configuration of the simulation, defining the
parameters related to cells, the extracellular matrix (ECM), and other simulated
objects. Specifically, the XML sets the initial conditions for tumor cells, muscle
fibers, and the ECM.
Steppable File: The Steppable file describes the dynamic behavior of the simulation.
It contains the rules governing the interaction between tumor cells and the ECM,
including the ability to modify the ECM as the simulation progresses.
Python File: The Python file manages the execution of the simulation, interacting
with the XML and Steppable files. It controls the simulation’s life cycle, the
execution of time steps, and the eventual collection and analysis of data.
Below are the details of each file:

Listing C.1: XML Configuration for S2 Simulation
1 <CompuCell3D>
2

3 <!−− Path to the Python s c r i p t r e s p o n s i b l e f o r c o n t r o l l i n g the
s imu la t i on −−>

4 <PythonScript>C:\CompuCell3D\MyDemos\sim_fineNov\sim_gen\ Simulat ion
\ provaSteppables . py</ PythonScript>

5

6 <!−− Def ine s imu la t i on l a t t i c e dimensions and p r o p e r t i e s −−>
7 <Potts>
8 <Dimensions x=" 230 " y=" 1000 " z=" 1 " /> <!−− L a t t i c e dimensions −−>
9 <LatticeType>Hexagonal</ Latt iceType> <!−− Hexagonal l a t t i c e type

−−>
10 <Steps>70000</ Steps> <!−− Number o f s imu la t i on s t ep s −−>
11

12 <!−− Def ine c e l l m o t i l i t y parameters −−>
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13 <C e l l M o t i l i t y>
14 <Moti l i tyParameters CellType=" c e l l " Mot i l i t y=" 20 " /> <!−−

Tumor c e l l m o t i l i t y −−>
15 <Moti l i tyParameters CellType=" c e l l 1 " Mot i l i t y=" 20 " /> <!−−

Tumor c e l l mot i l i t y , Modeling c o l l e c t i v e and coord inated migrat ion
−−>

16 <Moti l i tyParameters CellType=" muscle " Mot i l i t y=" 4 " /> <!−−
Muscle c e l l m o t i l i t y −−>

17 </ C e l l M o t i l i t y>
18

19 <NeighborOrder>2</NeighborOrder> <!−− Neighbor i n t e r a c t i o n order
−−>

20 </ Potts>
21

22 <!−− Plugin f o r ne ighbor t ra ck ing −−>
23 <Plugin Name=" NeighborTracker " />
24

25 <!−− Def ine c e l l types in the s imu la t i on −−>
26 <Plugin Name=" CellType ">
27 <CellType TypeName="Medium" TypeId=" 0 " />
28 <CellType TypeName=" c e l l " TypeId=" 1 " /> <!−− Tumor c e l l −−>
29 <CellType TypeName=" muscle " TypeId=" 2 " /> <!−− Muscle f i b e r −−>
30 <CellType Freeze=" " TypeName="ecm" TypeId=" 3 " /> <!−−

E x t r a c e l l u l a r Matrix −−>
31 <CellType TypeName=" c e l l 1 " TypeId=" 4 " /> <!−− Another type o f

tumor c e l l , Modeling c o l l e c t i v e and coord inated migrat ion −−>
32 </ Plugin>
33

34 <!−− Def ine volume energy parameters f o r c e l l s −−>
35 <Plugin Name=" Volume ">
36 <VolumeEnergyParameters CellType=" c e l l " TargetVolume=" 1200 "

LambdaVolume=" 40 " />
37 <!−−Modeling c o l l e c t i v e and coord inated migrat ion−−>
38 <VolumeEnergyParameters CellType=" c e l l 1 " TargetVolume=" 1200 "

LambdaVolume=" 40 " />
39 <VolumeEnergyParameters CellType=" muscle " TargetVolume=" 16 "

LambdaVolume=" 30 " />
40 </ Plugin>
41

42 <!−− Def ine s u r f a c e energy parameters f o r c e l l s −−>
43 <Plugin Name=" Sur face ">
44 <VolumeEnergyParameters CellType=" c e l l " TargetSur face=" 120 "

LambdaSurface=" 30 " />
45 <!−−Modeling c o l l e c t i v e and coord inated migrat ion−−>
46 <VolumeEnergyParameters CellType=" c e l l 1 " TargetSur face=" 120 "

LambdaSurface=" 30 " />
47 <VolumeEnergyParameters CellType=" muscle " TargetSur face=" 16 "

LambdaSurface=" 2 " />
48 </ Plugin>
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49

50 <!−− Def ine contact energy between d i f f e r e n t c e l l types −−>
51 <Plugin Name=" Contact ">
52 <Energy Type1="Medium" Type2="Medium">0</Energy>
53 <Energy Type1=" c e l l " Type2="Medium">15</Energy>
54 <Energy Type1=" c e l l 1 " Type2="Medium">15</Energy>
55 <Energy Type1=" c e l l " Type2=" c e l l 1 ">250</Energy>
56 <Energy Type1=" muscle " Type2=" muscle ">1</Energy>
57 <Energy Type1="Medium" Type2=" muscle ">2</Energy>
58 <Energy Type1=" c e l l " Type2=" muscle ">40</Energy>
59 <Energy Type1=" c e l l 1 " Type2=" muscle ">40</Energy>
60 <Energy Type1=" muscle " Type2="ecm">−2</Energy>
61 <NeighborOrder>3</NeighborOrder> <!−− Neighbor i n t e r a c t i o n order

f o r contact energy −−>
62 </ Plugin>
63

64 <!−− Def ine e x t e r n a l p o t e n t i a l app l i ed to tumor c e l l s −−>
65 <Plugin Name=" Exte rna lPot en t i a l ">
66 <Externa lPotent ia lParameter s CellType=" c e l l " x=" 0 " y="−6" z=" 0 " />
67 <!−−Modeling c o l l e c t i v e and coord inated migrat ion−−>
68 <Externa lPotent ia lParameter s CellType=" c e l l 1 " x=" 0 " y="−6" z=" 0 " /

>
69 </ Plugin>
70

71 <!−− Steppable c o n f i g u r a t i o n f o r s imu la t i on −−>
72 <Steppable Type=" F l ex ib l eD i f f u s i onSo lv e rFE ">
73 <!−− S p e c i f i c a t i o n o f PDE s o l v e r s f o r MMP d i f f u s i o n −−>
74 <D i f f u s i o n F i e l d Name="MMP">
75 <Dif fus ionData>
76 <FieldName>MMP</FieldName>
77 <Di f fus ionConstant>0.02</ Di f fus ionConstant> <!−− D i f f u s i o n

constant f o r MMP −−>
78 <DecayConstant>0.01</DecayConstant> <!−− Decay constant f o r

MMP −−>
79 </ Di f fus ionData>
80 <Secret ionData>
81 <SecretionOnContact Type=" c e l l " SecreteOnContactWith="ecm">

0 .1</ Secret ionOnContact> <!−− Tumor c e l l s e c r e t i o n on ECM −−>
82 </ Secret ionData>
83 </ D i f f u s i o n F i e l d>
84 </ Steppable>
85

86 <!−− I n i t i a l c o n f i g u r a t i o n o f r e g i o n s and c e l l types in the
s imu la t i on −−>

87 <Steppable Type=" U n i f o r m I n i t i a l i z e r ">
88 <!−− Def ine muscle c e l l r e g i o n s −−>
89 <Region>
90 <BoxMin x=" 124 " y=" 340 " z=" 0 " />
91 <BoxMax x=" 132 " y=" 1000 " z=" 1 " />
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92 <Gap>0</Gap>
93 <Width>4</Width>
94 <Types>muscle</Types>
95 </Region>
96 <!−− Addit iona l muscle and c e l l r e g i o n s −−>
97 <!−− ( more r eg i on d e f i n i t i o n s here ) −−>
98

99 <!−− Def ine ECM r e g i o n s −−>
100 <Region>
101 <BoxMin x=" 142 " y=" 340 " z=" 0 " />
102 <BoxMax x=" 161 " y=" 350 " z=" 1 " />
103 <Gap>0</Gap>
104 <Width>2</Width>
105 <Types>ecm</Types>
106 </Region>
107 <!−− Addit iona l ECM r e g i o n s −−>
108 <!−− ( more r eg i on d e f i n i t i o n s here ) −−>
109

110 </ Steppable>
111

112 </CompuCell3D>

Listing C.2: Python Steppable for S2 Simulation
1 from cc3d . core . PySteppables import ∗
2 from cc3d . core . XMLUtils import CC3DXMLListPy
3 import numpy as np
4 import sys
5

6 # Def ine the SwapCel lSteppable c l a s s , which extends SteppableBasePy
7 c l a s s SwapCel lSteppable ( SteppableBasePy ) :
8

9 # I n i t i a l i z e the f requency at which the s teppab l e execute s
10 de f __init__( s e l f , f r equency =1) :
11 super ( ) . __init__( frequency )
12

13 de f s t a r t ( s e l f ) :
14 # I n i t i a l i z e v a r i a b l e s that depend on the s imu la tor
15 s e l f . c e l l_ inven to ry = s e l f . s imu la tor . ge tPott s ( ) .

g e tCe l l Invento ry ( ) # Get the c e l l inventory
16 s e l f . c e l l _ l i s t = C e l l L i s t ( s e l f . c e l l_ inven to ry ) # Create a

c e l l l i s t
17 s e l f . c e l l _ f i e l d = s e l f . s imu la tor . ge tPott s ( ) . ge tCe l lF i e ldG ( )

# Get the c e l l f i e l d
18 s e l f . d imensions = s e l f . c e l l _ f i e l d . getDim ( ) # Get the

dimensions o f the c e l l f i e l d
19

20 de f setFieldName ( s e l f , _fieldName ) :
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21 # Set the name o f the concent ra t i on f i e l d to use in the
s t eppab l e

22 s e l f . f ie ldName = _fieldName
23

24 de f s tep ( s e l f , mcs ) :
25 # Function that i s c a l l e d at each step o f the s imu la t i on (MCS

)
26 f i leName = s e l f . f ie ldName + "_" + s t r (mcs ) + " . txt " # Def ine

the output f i l e name
27 s e l f . outputFie ld ( s e l f . f ieldName , f i leName ) # Cal l the output

func t i on
28

29 de f outputFie ld ( s e l f , _fieldName , _fileName ) :
30 # Function that wr i t e s the concent ra t i on f i e l d va lue s to a

f i l e
31 f i e l d = CompuCell . g e tConcent ra t i onF ie ld ( s e l f . s imulator ,

_fieldName ) # Get the concent ra t i on f i e l d
32 pt = CompuCell . Point3D ( ) # 3D point to i t e r a t e over the

f i e l d
33 i f f i e l d :
34 t ry :
35 # Open the f i l e f o r wr i t i ng
36 with open ( _fileName , "w" ) as f i l e H a n d l e :
37 # I t e r a t e over a l l the c e l l s in the f i e l d
38 f o r i in range ( s e l f . d imensions . x ) :
39 f o r j in range ( s e l f . d imensions . y ) :
40 f o r k in range ( s e l f . d imensions . z ) :
41 pt . x = i
42 pt . y = j
43 pt . z = k
44 value = f i e l d . get ( pt ) # Get the

concent ra t i on value o f the c e l l
45 # Check the adjacent c e l l ( i f i t ’ s

ECM)
46 ne ighborCe l l = s e l f . c e l l _ f i e l d . get ( pt

)
47 i f ne i ghborCe l l and ne ighborCe l l . type

== 3 : # Only ECM
48 # I f the concent ra t i on o f MMP i s

above a thresho ld , degrade ECM
49 i f va lue > 2 . 5 :
50 ne ighborCe l l . type = 0 #

Change ECM to Medium
51 except IOError :
52 # Handle e r r o r i f the f i l e can ’ t be opened
53 pr in t ( " Could not open f i l e f o r wr i t i ng . Check i f you

have nece s sa ry pe rmi s s i ons . " )

Listing C.3: Python Configuration for S2 Simulation
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1 import sys
2 import os
3 from os import env i ron
4 from os import getcwd
5 import s t r i n g
6

7 from provaSteppables import SwapCellSteppable # Import the de f ined
Steppable

8

9 # Create an in s t anc e o f the Steppable with a f requency o f 10 s t ep s
10 swap_cel l_steppable = SwapCel lSteppable ( f requency =10)
11

12 # Set the name o f the concent ra t i on f i e l d ( in t h i s case MMP)
13 swap_cel l_steppable . setFieldName ( "MMP" )
14

15 # Reg i s t e r the s t eppab l e with CompuCellSetup
16 CompuCellSetup . r e g i s t e r _ s t e p p a b l e ( s t eppab l e=swap_cel l_steppable )
17

18 # Run the s imu la t i on
19 CompuCellSetup . run ( )
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