
POLITECNICO DI TORINO

Master’s degree in Automotive Engineering

Real-Time Implementation of an
Electric Vehicle Thermal
Management System

Candidate:
Mattia SCALISI

Supervisor(s):
Prof. Ezio SPESSA

Prof. Daniela Anna MISUL
Dr. Federico MIRETTI

MARCH 2025

Abstract

The importance of the Battery Thermal Management System (BTMS)
is paramount within the context of the life cycle and autonomy of hybrid
and electric vehicles, considering also the increasing importance of the EV
market. In this context, this work explores the feasibility of a real-time
application of a BTMS, developed in the Simscape environment by Math-
works. In a previous work, the PID Controller originally used by Math-
works was replaced with a much more efficient Model Predictive Control
(MPC). The MPC manages the compressor of the refrigerant cycle and is
fundamental in battery temperature management. Within this work, the
model was first adapted to a previous Matlab version (2020b), and vari-
ous components were completely modified, such as the compressor and the
fan. The model was then tested with a proper solver in a fixed time-step
before carrying out different real-time simulations. These were conducted
using the dSPACE environment with different Hardware setups. Simu-
lations were first performed with the whole system uploaded to a single
Hardware unit and then, by ensuring CAN communication between two
different dSPACE Hardware units, one was used solely for the Controller
and the other for the Plant. The results were then analysed in this work,
comparing them to the offline ones, and considerations on CAN payload
and control system computational burden were made. The control system
turned out to be feasible, and new developments on the full model (with
HVAC) could be carried out in the future.

3

Contents

1 Introduction 11
1.1 Thesis Outline . 12

2 Thermal Management System 13
2.1 Plant . 13

2.1.1 Scenarios . 14
2.1.2 Components description 14

2.2 Downgrade to Matlab 2020b 18
2.2.1 Compressor and Fan 18

2.3 Controller . 20
2.3.1 Model Predictive Control 21
2.3.2 Adaptive Model Predictive Control 24
2.3.3 AMPC in Simulink 26

3 Real Time Simulation Settings 29
3.1 Solver . 29

3.1.1 Explicit vs Implicit Solvers 30
3.1.2 ode14x: Implicit Extrapolation Solver 31
3.1.3 ode1be: Backward or Implicit Euler Method . . 32

3.2 dSPACE Hardware . 35
3.2.1 Scalexio . 35
3.2.2 MicroAutobox III 38

3.3 dSPACE Software . 40
3.3.1 ConfigurationDesk 40
3.3.2 ControlDesk . 41

4 Single and Double Model Simulation 43
4.1 Simulation Scenario . 43
4.2 Single Model Simulation 44

4.2.1 Results . 50
4.3 Double Model Simulation 54

4.3.1 Results . 57

5

5 HiL Simulation with CAN Communication 62
5.1 Controller Area Network 63
5.2 Physical Requirements 67
5.3 Creation of a DBC file 70
5.4 dSPACE initialization 76

5.4.1 Results . 84
5.5 Analysis of CAN payload and Controller Task TurnAround

Time . 86

6 Thermal Model with Custom Components 88
6.1 Simscape Components: Compressor and Fan 88

6.1.1 New Compressor 91
6.1.2 New Fan . 93
6.1.3 Results . 94

7 Conclusions 98

6

List of Figures

1 Full Model . 13
2 In order: Battery, Motor, Radiator, Motor Pump . . . 16
3 In order: Condenser and Fan, Expansion Valve, Chiller,

Compressor . 18
4 Compressor Model Matlab 2020b 19
5 Fan Model Matlab 2020b 20
6 MPC scheme . 21
7 Controller: Simulink scheme 27
8 Newton’s Method . 33
9 Backward Euler example 34
10 dSPACE Scalexio LabBox Hardware 36
11 dSPACE Scalexio LabBox Technical Characteristics . . 38
12 dSPACE MicroAutobox III Hardware 40
13 ConfigurationDesk . 41
14 ControlDesk . 42
15 Simulation Scenario: MPC parameters 43
16 ConfigurationDesk: New Project 45
17 ConfigurationDesk: Model Function 46
18 Real-time overruns . 47
19 ConfigurationDesk: Tasks 48
20 ControlDesk: New Project 49
21 ControlDesk: Hardware and Variables Description . . . 49
22 Single Model Simulation: EPower Compressor 51
23 Single Model Simulation: Command Compressor 52
24 Single Model Simulation: Temperature 52
25 Thermal Plant . 54
26 Controller . 54
27 Communication Interface 55
28 ConfigurationDesk: Multiple Models 56
29 ConfigurationDesk: Tasks Double Model 57
30 Double Model Simulation ode4: EPower Compressor . 57
31 Double Model Simulation ode4: Command Compressor 58
32 Double Model Simulation ode4: Temperature 58

7

33 Double Model Simulation ode1be: EPower Compressor 59
34 Double Model Simulation ode1be: Command Compressor 60
35 Double Model Simulation ode1be: Temperature 60
36 Hardware in the Loop (HiL) Scheme 62
37 Data Frame . 65
38 Error Frame . 66
39 CAN Error Counters 67
40 Scalexio CAN channel 68
41 MicroAutobox III CAN channel 68
42 Multimeter: resistance measures 69
43 CANdb++ New Project 70
44 CAN Signal setting . 71
45 CAN Message settings 72
46 Message Layout Editor 73
47 Controller: Tx Messages 74
48 Signal overview: DBC file 75
49 Messages overview DBC file 75
50 ConfigurationDesk: Bus Interface 77
51 ConfigurationDesk: Bus Access Request 77
52 ConfigurationDesk: Bus Configuration Ports 78
53 ConfigurationDesk: Signal Chain, CAN project 79
54 Turning ON/OFF physical terminations 80
55 ConfigurationDesk: Tasks, CAN project 81
56 ControlDesk: Double Device Experiment 82
57 ControlDesk: Operational Interface 82
58 ControlDesk: CAN device 83
59 ControlDesk: CAN generator 83
60 HiL simulation: EPower Compressor 84
61 HiL simulation: Command Compressor 84
62 HiL simulation: Temperature 85
63 Analysis of the CAN payload and messages 86
64 Controller Task Turnaround Time 87
65 Simscape: Nodes . 88
66 Simscape: Parameters 89
67 Simscape: Variables . 89

8

68 Simscape: Intermediates 89
69 Simscape: Branches . 90
70 Simscape: Equations 90
71 Simscape: Annotations 91
72 HiL simulation custom components: EPower Compressor 95
73 HiL simulation custom components: Command Com-

pressor . 95
74 HiL simulation custom components: Temperature . . . 96

List of Tables

1 Results Single Model 53
2 Results Double Model ode4 59
3 Results Double Model ode1be 61
4 Results Hardware in the Loop 85
5 Results HiL with custom components 96

9

1 Introduction

In the context of the actual automotive industry, electric cars continue
to make progress towards becoming a mass-market product in a larger
number of countries. Despite the widespread concerns about battery
technology, inflation, and the rising prices of metals, their sales remain
very strong. [1]
Moreover, with the increasingly stringent policies on greenhouse gas
emissions, every other car sold in Europe by 2035 is set to have zero
emissions, so electrification is at the center of research in the automo-
tive field as a technology that can help achieve these goals.
Batteries, the energy storage system used in electric vehicles, are a rel-
atively new technology; this means that there are various challenges to
be addressed and significant room for improvement. The main issues
are related to their capacity and recyclability, but one of the biggest
drawbacks linked to Lithium-Ion Batteries (LIB), currently the most
widely used technology in the market, is the risk of overheating and
safety hazards, including thermal runaway with a series of chain reac-
tions that can lead to a fire.
Moreover, LIBs perform much better within a temperature range of
15°C to 35°C, with a temperature difference between the cells that
does not exceed 5°C. Failure to comply with these rules can lead to
premature degradation of the battery and reduced performance. [2]
Battery Thermal Management Systems (BTMS) ensure the safe
and efficient use of batteries, keeping them in an optimal range for
extended battery life and reliable operations; they play a vital role
to protect batteries from the negative impact of heat generation and
increased temperatures.[3] At the same time, the use of BTMS can
reduce the life of the battery within a single mission, so it is essential
to manage the proper components with it, like the compressor in this
work, using them only when strictly necessary.
It has thus become increasingly urgent to improve current control sys-
tems for these technologies to reduce their energy consumption further.
In this context, to manage the compressor power within a BTMS, a
Model Predictive Controller (MPC) has been developed in place of a

11

reactive Controller: this configuration has shown better performance
and improved battery efficiency.

1.1 Thesis Outline

This Master’s Thesis aims to continue working on the MPC-based
Thermal Management System by testing it in a real-time environ-
ment through the dSPACE systems and Software.
The core objective is to evaluate how effective the Controller can be in
pursuing the target temperature even with all the constraints linked
to an operational environment.
Different configurations have been tested to progressively study the
critical aspects of different real-time configurations, ranging from a
full model simulation on a single Hardware to a much more complex
setup with a second Hardware and a CAN communication.
Each simulation of this work has distinct goals and foundations. After
the system is ready for a real-time simulation, the study starts with the
single model simulation, which has as its aim to show the feasibility of
real-time application of the full BTMS model, with its bottlenecks and
high computational load, to pave the way for the other developments.
Then, the Controller and the Plant are divided between two different
tasks to assess how the division of the computational load into more
than one memory stack can improve the results. Moreover, different
solvers are used and compared for the Controller.
Afterward, the core of the work lies in the HiL simulation: it is es-
sential to analyze the performance of the Controller, the element that
will work in a real-time context, both in terms of errors and latencies
introduced by the CAN bus communication.
In the last simulations, the same HiL setting is used with a much more
robust model, that uses custom components (compressor and fan) to
improve the representation of the system behavior.

12

2 Thermal Management System

In this chapter, the Simscape/Simulink model used in this work will be
presented. The work is based on a Thermal Management System
of a BEV (Battery Electric Vehicle) that has been downloaded
directly from Mathworks documentation.[4]
This model originally used a Reactive logic of control that was then
modified into an AMPC, Adaptive Model Predictive Control.

Figure 1: Full Model

2.1 Plant

The system originally consisted of two liquid coolant loops, a refriger-
ant loop, and a cabin HVAC loop. The thermal loads are the battery,
the powertrain, and the cabin. However, in this case, the HVAC loop
and the cabin have been left out as a continuation of the previous Mas-
ter Thesis work since the MPC was implemented for this configuration.
To understand the modalities in which the system works, the valves
are the components to start with. There are two three-way valves
and one four-way valve. As far as the four-way valve is concerned,

13

it makes the system work in series or parallel. In parallel mode, the
system works as if there were two different refrigerant circuits (A-D,
B-C connections), while in serial mode, it works as a single circuit (A-
B, C-D).
As far as the three-way valves are concerned, the upper one is the ra-
diator bypass and the other the chiller bypass.

2.1.1 Scenarios

In cold weather, the system works in serial mode, the chiller and the
radiator are bypassed while the motor heat is used to warm the bat-
teries. There is also a heater in series with the battery. Cold weather
was anyway not considered in the first work because the main focus
was the cooling of the battery for temperatures higher than 20 °C.
In warm weather, when the temperature rises above 25 °C, the radia-
tor bypass is switched off so that both the batteries and the motor are
cooled by the radiator in serial mode.
When the weather is hot, the coolant loop switches to parallel and
separates the system; while one loop cools the powertrain using the
radiator, the other cools the battery through the chiller in which a
refrigerant liquid flows due to the compressor. The main focus of the
MPC in this model is indeed the control of the compressor that is by
far the most power-draining element within the whole thermal man-
agement system.

2.1.2 Components description

To better understand the system behavior it is necessary to describe
its most significant parts. There are three different liquids: the one
flowing in the yellow domain is glycol water, the one flowing in the
blue domain is a refrigerant fluid (R134a), and the one flowing in the
purple domain is moist air.

These are the components in the Thermal Liquid and Moist Air
domains (yellow and purple lines):

14

• Pumps: Two pumps drive the coolant loop, one is used for the
charger/motor/inverter and the other one for the battery/DC-DC
converter. The pumps are controlled by a velocity input and re-
spond to a reactive logic. They are modeled with pump blocks that
make the mechanical and thermal domains interact. The electrical
energy necessary to make them work is considered through me-
chanical efficiency.

• Charger, Motor, and Inverter: These components are not
modeled functionally but from a thermal point of view. There
is a coolant jacket placed around the component, represented by
a heat flow rate source, which models the heat generated by Joule
effect and a thermal mass. The goal is to depict the conductive and
convective heat exchange between the thermal liquid and the com-
ponents through the coolant jacket. The thermal liquid absorbs
heat from the components.

• Battery: The battery is modeled by considering four battery
packs connected in series and a coolant jacket that models the con-
ductive/convective heat exchange for each of them. The thermal
liquid absorbs heat from the battery. Then, there is the electrical
circuit where a certain voltage is imposed on all the packs, and a
certain current is required by the battery based on the performance
requirements. Within each pack, the lithium cell is modeled by a
1RC equivalent circuit model.

• Radiator: The radiator is a component that primarily rejects heat
to the environment. It is used to cool the thermal liquid involved
in the loop in warm weather whenever the temperature exceeds a
certain threshold (25°C), and the valve of the radiator bypass is
opened. The radiator is used to cool all the elements of the circuit,
such as the battery and the motor. The radiator is modeled as a
cross-flow heat exchanger.

• Fan: The fan is the element that causes the fluid (moist air) to
move within the proper channels when the ram pressure of the ex-

15

ternal air (pressure given by the reciprocal speed) isn’t high enough
to enhance the heat transfer. The description of the fan used in
the first model will be explained in detail later.

Figure 2: In order: Battery, Motor, Radiator, Motor Pump

Then the components in the Refrigerant domain (blue line) can
be highlighted. The blue line identifies a refrigeration cycle [5] that
contains the compressor, which, being the energetically most demand-
ing component, is, as mentioned, controlled by the MPC (differently
from the other elements controlled by a reactive logic). In this circuit,
the refrigerant is heated to cool the battery through the thermal liquid.

• Condenser: The condenser is a heat exchanger that allows the
heat transfer between the refrigerant and the moist air coming
from the outside through the radiator. Here the refrigerant in su-
perheated vapor form is cooled down at constant pressure until

16

reaching the saturation temperature, then the condensation hap-
pens and the fluid is further sub-cooled.
The main component in the subsystem is the heat exchanger but
there is also the fan in the same subsystem. A proper Simscape
cross-flow heat exchanger block is used for its modeling.

• Expansion Valve: The expansion valve expands the fluid from
condensing to evaporating pressure through an isenthalpic trans-
formation. Through the expansion valve, indeed, a pressure drop
occurs.
It is modeled by using the proper expansion valve block present in
Simscape.

• Chiller: The chiller is the evaporator of the cycle and makes pos-
sible the heat exchange between the refrigerant and the thermal
liquid. The liquid from the expansion valve is heated at constant
pressure up to evaporation temperature. The refrigerant is com-
pletely vaporized and then superheated to avoid mechanical dam-
age to the compressor due to the liquid droplets.
Here a cross-flow heat exchanger to model the chiller is used as
seen before.

• Compressor: The compressor creates the pressure increase from
the evaporator to the condenser and can be used to modify the
cooling capacity by adjusting the refrigerant mass flow rate through
the evaporator. This happens by controlling the input velocity
and, by it, the correspondent mass flow rate.
The description of the compressor used in the first model will be
explained in detail.

17

Figure 3: In order: Condenser and Fan, Expansion Valve, Chiller,
Compressor

2.2 Downgrade to Matlab 2020b

To set up the real-time simulation and to make the model compatible
with the licenses available for the dSPACE environment, a downgrade
to Matlab 2020b was mandatory.

2.2.1 Compressor and Fan

With the downgrade, some components had to be redesigned according
to the old Matlab version with fewer functions.
The two elements that were changed the most are the compressor
and the fan, because the related blocks weren’t available on Simscape
2020b.
At first, the compressor was modeled based on the compressor sys-
tem that was used in the original model provided by Mathworks, by
consulting the documentation before cited, but relative to Matlab ver-
sion 2020b. The component is based on Simscape block ”Controlled
Mass Flow Rate Source” where the mass flow Rate is given by a

18

2D LookUp Table. It is obtained as a function of the compression ra-
tio and of the input speed provided by the control system. Then the
related torque is simply found by the equation :

T =
ṁ(hout − hin)

ηmechω
=

Pmech

ω
(1)

This provides the actual compressor torque to the Controller: consid-
ering thermal power and mechanical efficiency, the mechanical power
is obtained, and, dividing by the speed, the torque is given.

Figure 4: Compressor Model Matlab 2020b

The compressor behavior seems reasonable and works according to
its purpose, lowering the battery temperature when is heading towards
30 °C.
Then, also the fan model was created starting from the one given by
Mathworks documentation. It uses a ”Controlled Volumetric Flow
Rate Source” whose volumetric flow is chosen through a 2D Look-up
Table as a function of the vehicle speed and the command of the fan,
which is controlled in terms of velocity. While the parameters remain
unchanged in this first phase of the study, the fan doesn’t work right
now (and this is a problem that will be addressed later since the fan

19

isn’t the object of the control system and won’t affect the real-time
implementation).

Figure 5: Fan Model Matlab 2020b

2.3 Controller

In the original model provided by Mathworks, a reactive control logic
is used. Control systems are often reactive, which means that the
Controller doesn’t predict anything but reacts to an event that occurs
(like the reaching of a certain threshold) by triggering actuators that
change the state of the system after the feedback that come from the
sensors. A straight example comes from the valves that were described
before; these valves are actuated once a certain condition is reached.
This is the easiest way to tune a Controller, but not the most effective
one: the dynamic of a complex system can only be controlled effectively
with a tool that keeps into account its complexity. That’s why MPC
becomes a valuable alternative. In the previous work, as mentioned,
an Adaptive Model Predictive Control was implemented and is
still the control system used in this model.

20

2.3.1 Model Predictive Control

Model Predictive Control (MPC) is a control scheme that is used
to predict the behavior of the system over a finite time window, the
horizon. At each time step, the optimal input is chosen based on a
cost function that should be minimized. This is computed from the
system states chosen in the formulation of the Controller. In a certain
time instant, the sequence of optimal inputs is computed over a certain
time horizon but only the first value for the actual timestep is picked,
then the horizon is shifted. The MPC works with a closed-loop control
system as can be seen in the picture below.[6]

Figure 6: MPC scheme

In order to use an MPC in its basic formulation (for linear sys-
tems), the system to be controlled can be modeled as a Linear Time-
Invariant System (LTI), whose model can be implemented with
State Space (SS) equations. These can be expressed both in continu-
ous time and discrete time.

ẋ(t) = Acx(t) +Bcu(t)

y(t) = Ccx(t) +Dcu(t)
(2)

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)
(3)

21

The first equation explains how the state evolves in time as a func-
tion of the state and the input itself, while the latter explains how
the chosen output depends on state and input. So, while A and B
matrices are determined by the system structure and elements, C and
D matrices are determined based on the chosen output.[7]
Given that, any LTI system can be expressed as a series of n state
equations where n is the number of states that define the system, and
these states are defined in terms of the matrices A and B, while the
p outputs equations, where p is the number of outputs of the system,
are expressed in terms of matrices C and D.

In some contexts (like this project), there are other variables to be
considered, disturbances: these variables can be considered as inputs
that are not controlled and that can be either measured or unmeasured.
Following this statement, the final state equations (in discrete state)
can be seen as:

x(k + 1) = Ax(k) +Buu(k) +Bvv(k) +Bdd(k)

y(k) = Cx(k) +Dvv(k) +Bdd(k)
(4)

Where v are the measured disturbances and d are the unmeasured
disturbances.[8]

Then, it is necessary to compute a suitable cost function for the lin-
ear (or linearized) system to give the proper importance to the key vari-
ables that influence the achievement of control objectives, distributing,
at the same time, the appropriate weights to penalize commands or un-
wanted behaviors.
This cost is calculated through a certain prediction horizon, but the
inputs are optimized only for the predetermined control horizon. Af-
ter the final control horizon step, all the other inputs are considered
constant, not optimized, until the end of the prediction horizon.

The standard cost function for the typical MPC can be formulated
this way:[9]

22

J(zk) = Jy(zk) + Ju(zk) + J∆u(zk) + Jϵ(zk). (5)

That essentially sums up different costs, each one of them linked
to a different variable. Now each cost element can be summarized and
explained.

Jy(zk) =

ny∑
j=1

p∑
i=1

{
wy

i,j

syj
[rj(k + i|k)− yj(k + i|k)]

}2

. (6)

The first equation says that for each output variable (from 1 to
ny), a summation that goes from the actual step to the end of the
prediction horizon (from 1 to p) assigns a certain weight w, properly
scaled by s factor since there are different physical entities in the sum
of the costs, to the difference that arises between the reference value
and the actual output. The summations are performed for the square
of the weighted and scaled differences. This is done for each time step
within the prediction horizon.

Ju(zk) =

nu∑
j=1

p−1∑
i=0

{
wu

i,j

suj
[uj(k + i|k)− uj,target(k + i|k)]

}2

. (7)

The second equation puts a weight on the input. The mechanism
is completely similar to what has been explained before, but here, the
difference between the actual input and the target one is evaluated.

J∆u(zk) =

nu∑
j=1

p−1∑
i=0

{
w∆u

i,j

suj
[uj(k + i|k)− uj(k + i− 1|k)]

}2

. (8)

The third equation penalizes the excessive variation of the input
from one step to another. The proper setting of these equations de-
pends obviously on the context and the wanted scope of the Controller

23

in the design phase.

It is worth adding that zk is the vector of the decision variables
of the optimization program (which is a Quadratic Optimization pro-
gram); it is the vector of all the inputs within the prediction horizon
(control horizon + constant input). In the end, in the actual step, only
the first input is taken.

Jε(zk) = ρεε
2
k. (9)

This last equation refers to the weight given to the constraints
violation. There are indeed certain constraints that variables can’t by-
pass, but with the slack variable ϵk these are taken less rigidly so that
the system can operate also out of the constraints region, but with an
increasing penalty to them associated.

2.3.2 Adaptive Model Predictive Control

MPC can give good results any time there is a linear system or a
system that doesn’t have great non linearity, so it can be used only
for LTI systems, but if the Plant is strongly nonlinear or its charac-
teristics vary consistently with time, LTI prediction accuracy might
reduce and MPC would not be consistent for the application. Adap-
tive MPC can address this degradation by adapting the prediction
model for changing operating conditions.

Moreover, the battery’s system significant thermal inertia results
in slow thermal response, necessitating longer prediction horizon for
battery optimization.

AMPC overcomes the need to use a LTI system in the control logic
by successive linearizations around the current system state for each
timestep. After the system is linearized step by step, it operates as a
standard MPC.

24

A nonlinear system of the type:

ẋ(t) = f [x(t), u(t)]

y(t) = h[x(t), u(t)]
(10)

Can be linearized around the equilibrium state x̄ corresponding to
a constant input ū. [10]
In this context, small perturbations can be defined as:

δx(t) = x(t)− x̄

δu(t) = u(t)− ū

δy(t) = y(t)− h(x̄, ū)

(11)

Then, considering the Taylor expansions of first order of functions
f (state) and h (output), it can be obtained that:

ẋ(t) ≡ f(x̄, ū) +

[
∂f

∂x

]
(x̄,ū)

δx+

[
∂f

∂u

]
(x̄,ū)

δu (12)

δẋ(t) ≡
[
∂f

∂x

]
(x̄,ū)

δx+

[
∂f

∂u

]
(x̄,ū)

δu (13)

y(t) ≡ h(x̄, ū) +

[
∂h

∂x

]
(x̄,ū)

δx+

[
∂h

∂u

]
(x̄,ū)

δu (14)

δy(t) = y(t)− h(x̄, ū) =

[
∂h

∂x

]
(x̄,ū)

δx+

[
∂h

∂u

]
(x̄,ū)

δu (15)

Which means that the final linearized system, which can be con-
sidered an approximation of the nonlinear system in the neighborhood
of the point(x̄,ū), has this form in its state-space representation:

δẋ(t) = Aδx(t) +Bδu(t)

δy(t) = Cδx(t) +Dδu(t)
(16)

Where the state matrices have been obtained by the Taylor expan-
sions previously described.

25

2.3.3 AMPC in Simulink

It is now necessary to introduce how the AMPC works in the model
used in this Master Thesis work. The AMPC, as said before, is here
used to control the BTMS of the vehicle and it is implemented in
Simulink through the MPC Matlab Toolbox.
Before implementing the toolbox, a formulation of the equations has
been made, starting from a model without the cabin temperature reg-
ulation and, so, the HVAC system.
In this case, quite a simple formulation, to avoid unnecessary compu-
tational burden, has been realized. At first, it was hypothesized to
control the compressor power by giving, at the same time, a certain
weight to the Battery Temperature and to the State of Charge (SoC) of
the battery, but the results were quite similar even without this contri-
bution. So to derive the state-space model that describes the battery
temperature dynamics, the first law of thermodynamics is used:

Q̇J − Q̇BTM = mbcpṪb (17)

Where Q̇J is the heat generated due to Joule Effect, Q̇BTM is the
heat removed to cool the battery and mb is the mass of the battery. To
find a proper state equation for the controller, it it necessary to find
how these terms are related to other variables, like disturbances.

The first equation that describes the rate of heat generation due to
traction current, comes from the simple formula of the Joule effect, by
considering a certain correcting coefficient (a) and a dependency of the
resistance on both the temperature and the SoC of the battery. The
rate of heat generation is calculated for all the cells (ncell).

Q̇J = a · ncell ·R0(Tb, SOC) · i2 (18)

Then the rate of heat removal due to battery cooling is considered as
a linear function of the power used by the compressor, whose coefficient
of proportionality is expressed by a COP (a coefficient of performance

26

that has been calculated in the previous work) that is considered only
a function of the environment temperature for sake of simplicity.

˙QBTM = COP (Tenv) · Pcomp (19)

By what has been said before, the state equation at the basis of
the MPC is therefore found.

Ṫb =
1

mbcP

(
a ·R0(Tb, SOC) · i2 − COP (Tenv) · Pcomp

)
(20)

In this AMPC formulation the only state variable is the Battery
Temperature Tb, the input of the Controller is the Compressor
Power Pcomp, which is the variable that is found through optimiza-
tion, while there are only a few measured disturbances, the Battery
Current i, and the Environment Temperature Tenv. The output
for this application has been considered the state itself.

The control subsystem of the compressor was implemented in Simulink
from these considerations:

Figure 7: Controller: Simulink scheme

In this subsystem, the main block is the Adaptive MPC block,
where the manipulated variable is optimized given certain inputs. Here,
the manipulated variable is the power of the compressor, while the
control input required by the component is the angular speed, easily

27

obtained from the torque data that comes from the Plant.
The AMPC Toolbox uses as inputs the linearized model, which, in this
case, is updated at each timestep, the manipulated output (the battery
temperature), the reference (the target temperature), and the distur-
bances before described. The linearized model is obtained by giving
all the inputs (controlled and disturbances) to a Matlab function that
generates the Jacobian matrices (Jacobians block), then with another
Matlab function, these matrices are discretized for each timestep and
ready to be given to the Toolbox as an LTI model description.

28

3 Real Time Simulation Settings

Real-time simulation consists of a simulation method for a system
where simulation time and and physical time match; it is strictly cor-
related to the capacity of the system itself to respond to certain events
within a certain timestep, and its implementation is paramount in a
modern control system where, in every condition, the vehicle should be
able to respond quickly to external sources of potential harm or abrupt
condition changes, considering that in real-time environment 1 second
of simulation corresponds to 1 real-time second. In this context, it
is not only important how precise the dynamic representation of the
system is, but also the time it takes to represent it properly.[11]

With the improved performances of the computational resources,
it is possible to use tools and control systems that are more and more
complicated and precise.
In order to perform a real-time simulation, different steps should be
taken, but the main thing to do is make the system work in a fixed
timestep. it is essential to make sure the right solver is chosen together
with the correct timestep for a well-defined simulation.
Afterward, it is necessary to have the proper Hardware and Software
to make it possible. In this thesis, as before mentioned, Hardware and
Software from the dSPACE environment have been used.

3.1 Solver

By solver, we mean the mathematical tool that calculates the state
variables of the model at every timestep during the simulation. Solvers
solve, as the name suggests, the system of differential equations and, in
the case of variable timestep, determine the next simulation timestep
by taking into account system dynamics and error tolerances.

For this reason, variable timestep solvers are much preferred since
they are more flexible and can adjust the interval between steps, while
fixed timestep solvers have to follow a predetermined timestep for the

29

whole simulation time.
However, as mentioned before, for real-time simulation environments,
only fixed timestep solvers can be used. Each one of them has its ad-
vantages and drawbacks, so whenever a simulation is started, it has to
be chosen carefully to avoid errors.
It is indeed interesting to understand the solver used in this work and
analyze why a certain solver comes to be much more stable than an-
other one for a certain application.

3.1.1 Explicit vs Implicit Solvers

Explicit and implicit solvers exploit different ways of solving differential
equations [12] and since their mathematical formulation is different,
their efficiency and, as a consequence, their computational complexity,
change accordingly. An explicit system can be expressed in the form:

ẋ = f(x) (21)

This is called explicit since it is possible to calculate the derivative in
every point by substituting x in the equation. At the same time, an
implicit system can be expressed as:

F (ẋ, x) = 0 (22)

Implicit solvers are usually better for dynamically stiff systems. A
stiff system, as the one analyzed in this work, is more complex because
it involves different dynamics: while a part of the system can vary
slowly, another one can vary much more rapidly, so it requires very
small timesteps; in this context, implicit solvers, even if much more
heavy computationally, can deal more efficiently with oscillations.
While explicit solvers are quite slow for stiff problems, implicit solvers
are better thanks to their mechanism of approximation of the next step
solution, and are more mathematically stable for high timesteps, as it
will be explained.
While the Controller can be dealt also with explicit solvers, the Plant

30

can only be solved with implicit solvers because it involves many dif-
ferent physical domains, with many different physical dynamics.

Few solvers were tried out during the tests, the more important ones
were ode14x and ode1be, which turned out to be the most efficient.
The choice of the solver, as mentioned before, is paramount to address
the stiffness of a system.

3.1.2 ode14x: Implicit Extrapolation Solver

ode14x is a fixed time step solver that uses both Newton Method
(that will be explained later for ode1be) and Extrapolation from the
current state to compute model state as an implicit function of the
state and the state derivative at the next time step. [13]
As formulated in Mathworks documentation, the equation at the basis
of the solver is the following:

Xn+1 −Xn − h dXn+1 = 0 (23)

Where X is the state, dX is the state derivative, and h is the step
size. Two parameters can be adjusted in Matlab: the number of New-
ton’s method iterations and the order of extrapolation that can be cho-
sen to compute the future state. The more iterations, and the higher
the extrapolation order selected, the higher the accuracy, but, at the
same time, the higher the computational burden. [14] Its formulation
is very similar to ode1be, but the latter has a fixed number of Newton
iterations and a fixed computational cost: this makes it much more
suitable for a complex system like the one involved in this work.

31

3.1.3 ode1be: Backward or Implicit Euler Method

ode1be is a fixed timestep solver that is based on an ODE solver
method called the ”Backward Euler”method or ”Implicit Euler”.[15]
It is an implicit solver because, to find the future state, a function that
is future state-dependent has to be used. As stated here:

yn+1 − yn
h

= f(tn+1, yn+1), (24)

Where yn+1 is the future state of the system, yn is the actual state
and h is the chosen timestep.
This simple equation is given by the backward difference approximation
shifted by a timestep:

dy

dt
≈ yn − yn−1

h
(25)

The function must be transformed to make possible the resolution.
By taking the equation (24) and, at first, moving the future state
to the left-hand side and the actual state to the right-hand side, by
subtracting from both sides the actual state, with a little mathematical
manipulation the following equation can be found:

g(yn+1) = yn+1 − hf(tn+1, yn+1)− yn = 0 (26)

The equation that comes out, g(yn+1) can be highly non-linear and,
for this reason, other numerical methods have to be used, like Newton’s
Method, because this becomes a root finding problem.
Newton’s Method ”is built around tangent lines. The main idea is that
if x is sufficiently close to a root of f(x), then the tangent line to the
graph at (x,f(x)) will cross the x-axis at a point closer to the root than
x”.[16]

32

Figure 8: Newton’s Method

Iteratively Newton’s Method converges to the root.
So the formulation of the future state with Newton’s Method can be
found by the equation:

xn = xn−1 −
f(xn−1)

f ′(xn−1)
. (27)

Coming back to ”Backward Euler”, the formula can be expressed
this way:

y
(k+1)
n+1 = y

(k)
n+1 −

y
(k)
n+1 − yn − hf(y

(k)
n+1, tn+1)

1− h∂f
∂y (y

(k)
n+1, tn+1)

. (28)

The ”Backward Euler” algorithm for each timestep finds this way
the slope of y and then moves forward by a timestep h. The found
slope is used at the end of the actual interval.

33

Figure 9: Backward Euler example

Backward Euler happens to be a very stable method even for high
timesteps, and its stability is very much suitable for this application;
indeed while the dynamic of the compressor is quite rapid, with very
steep variations when its activation is demanded by the control system,
at the same time, the battery system’s (and all the other components)
significant thermal inertia results in slow thermal response, and this
dynamic is quite different from the one of the compressor as before
said. Furthermore, there are many electrical components with a much
faster dynamic.
This makes the system particularly stiff, so it is quite more difficult
to solve it with high timesteps, as the one used in this research. This
makes ode1be particularly suitable for the model due to its stability,
especially for high timesteps.

The stability of the ”Backward Euler” method can be analyzed
starting from the exponential growth ODE:

dy

dt
= λy (29)

Then by discretizing and manipulating the equation it can be found
that:

yn+1 − hλyn+1 − yn = 0 (30)

34

Since this is a linear equation, it is extremely easy to find the value
of the future step:

yn+1 =
yn

1− hλ
(31)

So intuitively the formulation of the exact solution has this form:

yn =

(
1

1− hλ

)n

y0 (32)

Then, to analyze the stability of the system, the domain of the
possible solutions of λ is restricted to the negative field, so that the
exact solution decays to 0 when t tends to infinity. At the same time,
the numerical solution should follow the same pattern, i.e. decay to 0
as the exact solution, when t tends to infinity. So by considering the
stability condition: ∣∣∣∣ 1

1− hλ

∣∣∣∣ < 1 (33)

Considering that lambda is often a Real number, the condition for
stability is:

|1− hλ| > 1 (34)

And since h is always positive because it is the timestep, and λ is
always negative as stated before, this is always true. This makes Back-
ward Euler stable even for high timestep values as the one chosen.[17]

3.2 dSPACE Hardware

3.2.1 Scalexio

For this application, two different devices are used.[18]
The first Hardware used is dSPACE Scalexio LabBox in its 19-slot
chassis variant.
Scalexio LabBox is a modular and scalable real-time system designed
for Hardware-in-the-loop (HiL) simulations and Rapid Control

35

Prototyping (RCP) in various application fields like automotive, aerospace,
and industrial automation.

The presence of the slots makes the system flexible for different
uses; slots can be added and removed according to the needs. So, not
only it is equipped with a multi-core processor, but it can be upgraded
with additional boards due to its modularity.
Moreover, it is a low-noise system, which is optimal for laboratory ac-
tivities. It can be used both as a stand-alone real-time system and as
an I/O carrier for other boards.

It uses high-performance processors, often powered by multi-core
processors, to handle real-time simulations and control systems. More-
over, the modularity allows for upgrading the computational power by
adding other processing boards. Scalexio high-performance processors
are used in order to simulate the Plant of the thermal system, which
in this case study results in a highly demanding computational system.

Figure 10: dSPACE Scalexio LabBox Hardware

Scalexio LabBox has several interfaces that are used in the auto-

36

motive field:

• CAN (Controller Area Network) - 6341 Board

• Ethernet

• LIN (Local Interconnected Network)

• FlexRay

• SPI, I2C, UART, and others.

While some Scalexio LabBox are equipped with a LIN board it is not
the case with this Hardware. Anyway, the modularity of the Hardware
makes possible the extension to other boards.

Moreover, other I/O boards provide I/O analog and digital channels
for control systems:

• Analog Input/Output modules with high-resolution ADC/DAC.

• Digital Input/Output modules for precise signal generation and
capture.

• PWM, Encoder, and Resolver inputs for motor and actuator con-
trol.

Scalexio Hardware is compatible with the Matlab/Simulink envi-
ronment, which makes possible the use of their product models for
this work goals, and is compatible with all the Software developed by
the dSPACE environment, like, in this case, ConfigurationDesk and
ControlDesk.

Here are the technical characteristics of Scalexio LabBox:

37

Figure 11: dSPACE Scalexio LabBox Technical Characteristics

3.2.2 MicroAutobox III

The MicroAutobox III is a compact Rapid Control Prototyping
(RCP) unit that can replace an Electronic Control Unit (ECU) in
a vehicle or control system, allowing the user to experience and test
control functions in a real environment. It is indeed compliant with
automotive standards on shock and vibrations. The control Software
is developed model-based using Matlab/Simulink. This Hardware is
indeed compatible with Mathworks environment and with dSPACE
environment Software like ConfigurationDesk and ControlDesk.
The MicroAutobox III can be equipped with I/O interfaces as well as

38

bus and network interfaces for various applications.
The MicroAutobox III used in this work is equipped with a DS 1511
Multi I/O board.

It supports a wide range of standard automotive and industrial
communication protocols:

• CAN (Controller Area Network)

• Ethernet

• LIN (Local Interconnected Network)

• FlexRay

• XCP on Ethernet, others...

Moreover, it offers also a comprehensive range of analog and digital
I/O to interface with sensors, actuators, and others:

• Analog I/O: 16-bit resolution for high-precision analog signal ac-
quisition and generation.

• Digital I/O: configurable as standard digital I/O or pulse width
modulation (PWM) for controlling actuators.

• PWM and Frequency I/O: for controlling motors and other pulse-
based systems.

• Encoder Inputs: for interfacing with rotational devices (e.g. mo-
tors and sensors).

MicroAutobox III is characterized by lower processing power com-
pared to Scalexio LabBox, but it is ideal for real-time applications
since it is designed to represent real-world conditions. For this reason,
it is used to simulate the Controller, which is much lighter than the
full thermal model uploaded to Scalexio LabBox.

39

Figure 12: dSPACE MicroAutobox III Hardware

3.3 dSPACE Software

3.3.1 ConfigurationDesk

ConfigurationDesk is an intuitive interface to set up the model for
the real-time simulation. it is widely used for both Hardware-in-the-
loop (HiL) tests and rapid control prototyping (RCP) applications. It
configures real-time Hardware and the connected behavioral models.
ConfigurationDesk facilitates smooth interaction with Simulink, which
allows the user to jump from one tool to the other easily.
To connect any electrical device, ConfigurationDesk provides many
I/O function types, which are separated from the behavioral model, so
they are flexible and reusable.
It allows an intuitive configuration of the I/O ports and it makes it
possible to automatically generate the C code that is then to be loaded
on dSPACE Hardware targets.
In this work, it has been used to initialize the simulations, to configure

40

the CAN communication in the double Hardware configuration, and,
of course, to build the C code for the online applications.

Figure 13: ConfigurationDesk

3.3.2 ControlDesk

ControlDesk is a universal, modular experiment and instrumenta-
tion Software for ECU development and data analysis. ControlDesk
can access virtual ECUs generated with dSPACE’s ConfigurationDesk
and Simulink models that are simulated offline on the PC.
It can be used for Rapid Control Prototyping (RCP), Hardware in
the Loop (HiL) simulations, Electronic Control Units (ECUs) mea-
surements, calibration, and diagnostics. Moreover, it allows access to
system buses such as CAN, CAN FD, LIN and Ethernet.
In this thesis, the Software has been used mainly to have a graphical
interface, to monitor all the data that are considered useful for the
overall analysis and, moreover, it can be used also to monitor the data
that are exchanged through busses, like CAN bus in this case.
It is compatible with the Matlab/Simulink environment, and real-time
application of models to them related are here analyzed after being
configured in ConfigurationDesk.

41

Figure 14: ControlDesk

42

4 Single and Double Model Simulation

4.1 Simulation Scenario

The initial conditions for this first simulation are the ones that were
optimized in the previous work. The initial temperature for all the
simulations is 26°C. The other parameters are never changed. The
simulations are done only with this setting to understand their feasi-
bility in real-time.

Figure 15: Simulation Scenario: MPC parameters

About MPC parameters, everything was kept as in the previous
work, except for the weight given to the rate of change of the com-
pressor power, which is set to 0.5. This is done so that the compressor
dynamic is damped: with this parameter change, the compressor be-

43

havior is still quite the same, but the output power has a smoother
rate of change, which helps the solver to deal with different types of
dynamics without giving errors as output.
The result in terms of absolute power is very similar but with fewer
oscillations.

For all the simulations, ode1be is used, even when Plant and Con-
troller are decoupled.
Since the full system works with ode1be and the reference results ob-
tained in the offline simulation are given by Backward Euler, the con-
troller’s solver isn’t changed because the main goal is to assess the
differences with the offline simulation due to the real-time constraints;
another solver would add other errors that could lead to other inter-
pretations.
Anyways, for the double model simulation, an explicit solver will be
compared to the implicit one, to assess differences and possible future
developments.

4.2 Single Model Simulation

The first simulations are carried out in the dSPACE environment by
only using Scalexio LabBox as Hardware: the idea is to test at first
the full model and its performance in real-time in order to understand
the feasibility of the simulation.
All the necessary steps will be now explained.

At first, the code is simulated on a Matlab/Simulink environment
with the proper settings adjustments to make it work on the dSPACE
environment. It is necessary to go to Simulink Settings and adjust the
parameters relative to the solver (ode1be) and the timestep. Although
different timestep configurations have been tried out, in the end, the
one used is 0.2 seconds. This turns out to be the best timestep possible
for the simulation. The choice is done considering that 0.2 seconds is
the highest possible for this model and the solver to have a finite and
errorless simulation. This timestep is anyway much lower than the

44

MPC one, which is as high as 1 second.

In ”Code Generation” it is necessary to use dsrt.tlc (dSPACE Run-
Time Target for VEOS on Windows and ConfigurationDesk). This
allows selecting the correct system target file to which the code should
be generated.

Then, after the Simulink Model is ready and the parameters have
been adjusted, ConfigurationDesk can be opened. In the ”New” win-
dow, the root of the file is selected together with the name of the
project and the application.
In ConfigurationDesk, several applications can be initialized within the
same project, and this function is quite useful in the double model sim-
ulations.
Then the Simulink model(s) that will be part of the project can be
selected (in the picture, the case of the double model scenario can be
seen) together with the relative Hardware.

Figure 16: ConfigurationDesk: New Project

Inside ConfigurationDesk there are different windows with different
functions. In the ”Model Function” window, there is an overview of the

45

main function blocks that are uploaded into dSPACE from Simulink.

Figure 17: ConfigurationDesk: Model Function

Then, for the first run with the full system working on dSPACE
Scalexio, there are only a few other passages that should be made.
At first, proper simulation parameters should be assigned in ”Tasks”.
The parameters to adjust are overrun count and stack size. For the
full system, the count of the overruns had to be increased to make the
simulation continue to run in real-time.
Each Task has to work within a given timestep: there is a factor called
the Real Time Factor [19] that has to be lower than 1 and it is
expressed as:

RTF =
simulation time

clock time
(35)

Whenever the idle time, which is the spare time needed to process
data and communicate within the I/O environment, isn’t enough, over-
runs occur. These always lead to some kind of inaccuracy. When this
happens, the system can’t always schedule the next timestep opera-
tions and could go directly to the following one, avoiding some crucial
operations.

46

Figure 18: Real-time overruns

Anyway, given the fact that the Simscape Plant is very complex
and uses, in its real-time simulation, a much lower timestep than the
one used by the MPC, the stability of the simulation isn’t affected.
Moreover, these events happen only a few times during the simulation,
primarily along faster dynamic changes, such as when the compressor
is turned on: as it will be shown later, results are not of much con-
cern. If the system hadn’t accepted overruns, errors would have been
present, and the simulation wouldn’t have started.

Furthermore, the full system requires a minimum stack memory size
higher than the custom one of 128kB. Therefore, it was increased up to
2048 kB. In the dSPACE environment, each periodic task can be given
its memory allocation for efficiency’s sake. Every multi-core processor,
such as Scalexio LabBox, has a Memory Stack for each thread, and its
role is to store the local variables relative to C codes executed within
that thread; during the processor operations it works dynamically with
data with a LIFO logic (Last In - First Out logic).[20]

47

Figure 19: ConfigurationDesk: Tasks

Here setting ”Number of Accepted overruns” at 1 was acceptable; it
should be remembered that the goal of these simulations is not to prove
that the Controller works for all the conditions, so this parameter is
quite specific to the actual simulation. Eventually, it can be set to 5 so
that the system is errorless in all the conditions. It has to be mentioned
that this is not the number of overruns, but the maximum acceptable
number per simulation step: in the dSPACE environment, there is a
certain tolerance for a given amount of overruns at each timestep: the
system continues to work in real-time but with more inaccuracies.
Then into the ”Build” window, pressing the ”Build” button generates
a code in C language of the Simulink model to load on the Hardware
and make it run in real time. After the C code is generated, a SDF
file is given and ControlDesk can be opened. Before building up the
code, in ”Build Settings” it is possible to deactivate ”start Real-Time
simulation” so that the simulation is started only when everything is
ready on ControlDesk, and not right after the code is uploaded on the
Hardware.

When ControlDesk is opened, ”New Project + Experiment” has to
be selected.

48

Figure 20: ControlDesk: New Project

Figure 21: ControlDesk: Hardware and Variables Description

After defining a project and an experiment name, the platform rel-
ative to the project has to be chosen (Scalexio in this case) and the
description of the model that was generated through the build button
in ConfigurationDesk is uploaded (the SDF file).

After ControlDesk is opened, it can be seen that the model, which
has been already uploaded, can be sent online. But before that, a new

49

layout for the given experiment has to be made. There are various in-
struments to be added and the ones used the most in this work are the
”time plotter”, which, as the name suggests, displays a given variable
as a function of time (variables can be added with the right click on
the mouse) and the ”display”, which as the name suggests, displays
the actual value of the signal.

After the signals are set, the system can be sent online. A possibil-
ity is to press start recording, so that ControlDesk starts recording the
values of the chosen signals right away. If the online button is pressed
before, the system starts doing all the required real-time calculations
without recording the signals, so in the postprocessing phase, this can
lead to time-aligning problems.

After the recording is done and ready, it can be converted to a .mat
file that can be used in postprocessing.

4.2.1 Results

To analyze the results, 4 different types of errors have been used to pro-
vide a complete picture of the differences between the simulations.[21]

• Root Mean Square Error: it is the square root of the mean
squared errors. This can give a straightforward idea of the entity
of the error, being not normalized, and, speaking of a squared
error, it is more sensible to outliers and peaks, but at the same
time, takes into account the direction of the error.

• Mean Absolute Error: it is the mean value of the errors, so
it doesn’t keep into account the direction of the error, but, as its
main advantage, it is less influenced by peaks and outliers, so it is
more robust.

• Normalized Mean Absolute Error: This is the MAE, normal-
ized for the mean value, being expressed in percentage, useful to

50

make a comparison between parameters with different scales. In
this case, the error was normalized excluding the 0 values of the
compressor’s parameters: the mean value would have been too low,
generating an unreasonable error because the compressor operat-
ing window is reduced within the driving cycle.

• Max Absolute Error: it is the maximum absolute error between
the two simulations.

These errors are related to the 3 parameters that have been ana-
lyzed, the ones related to the compressor, Electric Power(W), and
Command (rad/s, as calculated by the controller, not yet saturated
to the maximum compressor speed) and Target Temperature (°C),
the objective of the control.

Figure 22: Single Model Simulation: EPower Compressor

51

Figure 23: Single Model Simulation: Command Compressor

Figure 24: Single Model Simulation: Temperature

52

Parametro EPower Compressor Command Compressor Temperature

RMSE 25.82 W 87.17 rad/s 0.019 °C
MAE 6.39 W 5.38 rad/s 0.011 °C
NMAE 2.80% 5.12% 0.04%
MAXAE 318.88 W 2966.23 rad/s 0.073 °C

Table 1: Results Single Model

In this first simulation, it can be noted that the results in real-time
differ from the ones in Simulink, especially when the compressor is
turned on.
This can be justified by the fact that when this happens the Compres-
sor Command has some important oscillations and peaks that can lead
to errors, as can be seen in Figure 23.
The RMSE are quite high, especially for the first two parameters due
to the scale of the values for the Electric Power and due to the initial
peaks and oscillations for the Compressor Command.
The MAE are much lower and their values are acceptable considering
the scale of the variables while the NMAE is higher for the Com-
pressor Command: the peaks are penalized in a normalized error to
the mean value (even if 0 aren’t considered). Anyway, considering the
initial oscillations, it is a reasonably low error.
Moreover, peaks relative to the command of the compressor are that
high in absolute terms also because the parameter isn’t saturated to
the maximum compressor speed: the ideal command requested by the
controller is here considered.
Anyways, the Temperature, which is the object of control, has very
satisfactory error values, so the Controller keeps up well, balancing
the initial offset along the way to reach the Target Temperature as
shown in Figure 24.
The oscillations are probably given because the whole system (Con-
troller + Plant) is simulated in a single memory stack, leading to some
inaccuracies in the data when the computational load is higher and,
at the same time, the highest error happens whenever some overrun
occurs as expected.

53

4.3 Double Model Simulation

With double model simulation, the system is tested by dividing Con-
troller and Plant into two different tasks when uploaded on Scalexio
LabBox. So, for this sake, two different Matlab models are created,
one for the Controller and the other for the Plant. More specifically,
this is the configuration of the Thermal Plant model:

Figure 25: Thermal Plant

While this is the configuration of the Controller model.

Figure 26: Controller

54

Concerning the original model, the ”Scenario” subsystem can be
found in both models to avoid the exchange of an excessive number of
signals, while the ”Measurements” subsystem is kept in the ”Plant”
model for the very same reason since its variables are mainly used in
the Thermal system.
An additional subsystem is then added to initialize the communication
between the two models on dSPACE. So a new subsystem, ”Commu-
nication Network”, has been created.

Figure 27: Communication Interface

In this specific case, it can be seen that two dSPACE blocks avail-
able in the Matlab environment are used: data inport and data outport
blocks are the proper way to make the two models communicate with
each other in ConfigurationDesk, and are native to the dSPACE envi-
ronment. The Communication Networks are the same and opposite in
terms of sent and received signals.

Once ConfigurationDesk is opened, as it was previously shown,
the two models are opened and uploaded in a single unit, which is,
also in this case, Scalexio LabBox. The passages are the same as be-
fore presented, but, this time, before building, it is necessary to go to

55

the ”Multiple Models” window. Here, there are the signals from the
Simulink models that have to be connected reciprocally.
After the connections are complete, the button ”Propagate” can be
pressed: this makes the changes available and observable in the Simulink
models.

Figure 28: ConfigurationDesk: Multiple Models

This time there are two different tasks to set, and it can be noted
that the Controller here can work with a very low timestep (Figure 29).
This is, anyway, unnecessary, since the Controller works with a time-
step equal to 1 second: using a much lower timestep doesn’t change
how the Controller operates, so results would be the same; in the end,
0.2 seconds was used for both tasks.
It can be observed that also in this case, allowing a certain number of
overruns is necessary to complete the simulation in time.
Then, for what concerns the other passages, they are very similar to
the ones that have been shown before.

56

Figure 29: ConfigurationDesk: Tasks Double Model

4.3.1 Results

Figure 30: Double Model Simulation ode4: EPower Compressor

57

Figure 31: Double Model Simulation ode4: Command Compressor

Figure 32: Double Model Simulation ode4: Temperature

58

Parametro EPower Compressor Command Compressor Temperature

RMSE 13.64 W 76.68 rad/s 0.023 °C
MAE 3.86 W 4.57 rad/s 0.021 °C
NMAE 1.69% 4.31% 0.07%
MAXAE 165.41 W 2711.73 rad/s 0.054 °C

Table 2: Results Double Model ode4

Figure 33: Double Model Simulation ode1be: EPower Compressor

59

Figure 34: Double Model Simulation ode1be: Command Compressor

Figure 35: Double Model Simulation ode1be: Temperature

60

Parametro EPower Compressor Command Compressor Temperature

RMSE 10.59 W 59.90 rad/s 0.020 °C
MAE 2.92 W 3.17 rad/s 0.018 °C
NMAE 1.28% 3.01% 0.06%
MAXAE 115.67 W 2324.01 rad/s 0.031 °C

Table 3: Results Double Model ode1be

For double model simulations, the results are better than the single
model simulation, as highly expected, considering that a dedicated
memory stack is used for each of the two full model parts (Controller
and Plant). This makes the simulation much more efficient when the
computational load is higher, like when the compressor is turned on.
Two different simulations were carried out because two different solvers
have been analyzed for the Controller, the ode4 (Runge-Kutta 4) and
the ode1be.
As mentioned before, an implicit solver has been chosen for all the
simulations to deal with the stiffness of the Plant; anyway, whenever
the Plant is decoupled from the Controller, other possibilities could be
explored.
As a result, the differences between the two solvers are low and both
can be used; moreover, since the whole system simulation was done
with ode1be, a higher similarity with the offline simulation is justified.
For this setup all the errors (RMSE, MAE, NMAE, MAPE) di-
minished and, in some cases, were more than halved. (e.g. EPower
Compressor (W) RMSE 25.82 against 10.59, MAE 6.39 against 2.92,
considering Tables 1 and 3).
Temperature errors are a little higher but this can be due to little time
misalignments that can be noticed when the error is that low (Figures
32,35).
As before, the bigger misalignments are present when the compressor
is turned on, and the oscillations of the command are higher.
Anyway, these results show that splitting the full model into two differ-
ent tasks significantly enhances real-time performance, ensuring more
robustness and precision.

61

5 HiL Simulation with CAN Communi-
cation

After the first real-time simulations, a proper HiL (Hardware in the
Loop) simulation is initialized. [22]
With Hardware in the Loop, a simulated Plant model, that, in this
case, is uploaded to LabBox Scalexio, communicates with a Hardware
dedicated to the Controller, which in this application is uploaded to
MicroAutobox III.
Controllers, in real-time applications, after being simulated with their
behavioral model, have to be tested within an ECU, so that residual
mistakes in the Software or Hardware could be removed.

Figure 36: Hardware in the Loop (HiL) Scheme

Indeed, the main advantage is that with HiL simulations the proper
Controller can be simulated without risking to damage the high-cost

62

Plant, having at the same time the possibility to test it in a wide range
of conditions.
So, sensors acquisitions from the Plant go to the Controller that then,
through actuators, controls the system.
To make this possible, a proper communication that has to be as real-
istic as possible and comparable with a real automotive environment
has to be chosen.
CAN (Controller Area Network) is a communication technology
that is widely used in the Automotive field. It is used alternatively to
LIN (Local Interconnect Network) but CAN is faster and is used
for more critical applications; actually CAN is used for ECU to ECU
communication while ECU to actuator communication is done by LIN,
which is cheaper and simpler.

In this application, the communication between the two dSPACE
”ECUs” is implemented using CAN technology. As said before, this is
much faster, and the LabBox Scalexio used in this work isn’t equipped
with a proper LIN board, but only with a CAN board.

5.1 Controller Area Network

CAN is a very reliable technology with an exchange rate that can go up
to 1 Mb/s, excelling in terms of error recognition and management.[23]

It involves different layers:

• Physical Layer: it is the layer that transfers physically the bits
on the shared medium (copper bus).

• Medium Access Control (MAC): It implements the protocols
for the nodes to access and communicate within the medium.

• Logical Link Control (LLC): it is important in terms of the
interface that creates the upper layers.

63

In terms of physical communication, bits are transmitted by a Non-
Return to Zero (NRZ) coding scheme, which means that consecutive
bits of the same logic value (High or Low) don’t change level, so this
makes this encoding method quite simple, but at the same time diffi-
cult to synchronize.
Synchronization is made possible every time the incoming signal has a
transition from High to Low level.
Whenever the information coming through has 5 consecutive identi-
cal bits, Bit stuffing is used. After 5 consecutive identical bits, the
opposite is inserted (high after 5 lows and vice versa). The system
automatically drops the bit that comes after 5 identical bits and ev-
erything is synchronized.

CAN uses a Carrier Sense Multiple Access protocol, which means
that there is no schedule, and whenever the bus is sensed free, the node
can transmit. At the same time, it has an error detection and arbi-
tration protocol, that, through a distributed algorithm, identifies the
winner within the transmission by the presence of a certain dominant
bit (Low voltage) rather than a recessive ones (High voltage).

Messages have different frames in it:

• Data Frame

• Remote Frame

• Error Frame

• Overload Frame

The Data Frame structure is made of a Start Of Frame (SOF), a
single dominant bit that makes the bus status busy for all nodes. It is
the bit that informs all the nodes that a communication is happening.
Then there is the Arbitration Field: each frame has a different iden-
tifier with 11 bits in standard format and 29 bits in extended format.
It is needed because when different nodes send different frames, the

64

one with the most consecutive dominant bits wins.
Remote Transmission Request indicates whether the frame carries Data
(Dominant Frame) or is only a Remote Frame (Recessive Frame).
Then there is the Control Field: its main parts are IDE (Identifier
Extension), which gives information on the CAN format (Standard
or Extended) and Data Length Code, which gives information on the
length of the Data frame.
Then there are the bits of the Data Field that can be up to 8 bytes.
Then there is theCRC field (Cyclic Redundancy Check) that is gener-
ated using a specific algorithm applied to the transmitted data. When
the receiver calculates the CRC for the received data and finds it dif-
fers from the transmitted CRC, an error is detected.
In the end, there is the ACK field (Acknowledgment Field), which,
with a single bit, tells whether a frame has been correctly received or
not.

Figure 37: Data Frame

The Remote Frame is the same as the Data Frame but without
the Data themselves, so, as said before, its role is data request, while
the Data Frame is the response to the request.

65

The Error Frame is sent as a response to the Active Error Flag (6
consecutive dominant bits) generated by the bus every time an error
is detected. The Error Frame is sent by the nodes when certain Bus
errors arise:

• Bit Error: when a received bit is different from the one sent

• Stuff Error: after 5 identical bits the sixth isn’t changed

• Form Error: a bit which has a certain expected value is wrong

• CRC Error: receiver CRC is different from the sender one

• ACK Error: no ACK delimiter in the ACK field

There is a sequence of specific bits that each node sends whenever
an error is detected.

Figure 38: Error Frame

The Overload Frame is a sequence of 6 dominant bits that oc-
cupy the bus till the end of the Overload Frame (it comes after the
Error Frame).

There is a counter that is updated every time an error is trans-
mitted (Transmit Error Counter - TEC) or received (Receive
Error Counter - REC), and there are different states the node can

66

be whether some thresholds are reached or not (as depicted in Fig-
ure 39). Each node can be in different states and, when an error is
detected, the counter is increased, but when everything is fine, it is
decreased.
In Error Active state, the condition is the basic one, in Error Passive
state error flags can’t be sent and, in Bus off, the node is disconnected
and no transmission passes through it.

Figure 39: CAN Error Counters

5.2 Physical Requirements

A CAN bus requires physically 120 Ohm resistance between the CAN
high and low pins, whether the pins are relative to the nodes that are
placed at the bus ends. If the node is not at the end of the bus, this
is not necessary; however, in this particular case, the nodes are two,
the Plant (Scalexio) and the Controller (MicroAutobox III) and they
are both at the end of the bus. So, as a first step, it is necessary to
understand if this condition is met by the Hardware. By using dSPACE
documentation, the physical characteristics of the CAN boards are
displayed.

This is a channel of the CAN board 6341, the one installed in
Scalexio:

67

Figure 40: Scalexio CAN channel

While this is the configuration of the CAN channels of the DS1511,
which is the board that is installed in the MicroAutobox III used in
this study:

Figure 41: MicroAutobox III CAN channel

It can be observed that in Scalexio there is a termination that
can be activated, as will be seen later, through ConfigurationDesk.
This has been confirmed experimentally by manually measuring the
resistance between the CAN high and low pins of both Hardware.

68

Figure 42: Multimeter: resistance measures

The first picture refers to the channels of the 6341 board and, as
premised, it can be seen that the resistance is almost 120 Ohm, while
in the other Hardware the resistance is higher than 42 kOhm because
termination is missing.
So it was necessary to install a 120 Ohm resistance manually between
the pins and this makes the communication, which would otherwise
have been impossible, possible.
Resistances can even be welded by opening the Hardware in a proper
slot, but in this case, an external resistance worked properly.

The CAN communication between Scalexio and MicroAutobox III
has been implemented this way, particularly channel 1 of CAN board
6341 (Scalexio) was linked to channel 1 of the DS1511 board (MicroAu-
tobox III).

69

5.3 Creation of a DBC file

Before creating a new project on dSPACE, it is necessary to configure
the communication matrix of the CAN bus between the two Hardware.
In this case, it is necessary to create a new DBC file. A CAN DBC
file (CAN database) is a text file that contains information for decod-
ing raw CAN bus data to ”physical values”. [24]
So it is essential to use CANdb++, a Software used to develop this
kind of communication, with an interface that makes the process intu-
itive to people who are not used to this kind of Software.
Moreover, the tool is compliant with the automotive environment,
which makes it perfectly suitable for this application.

To start with, when CANdb++ is opened, it is necessary to press
”Create Database” and then select ”CANTemplate.dbc”

Figure 43: CANdb++ New Project

At first, signals should be configured. The signals that have to be
generated are the ones that are present in the ”Communication Net-

70

work” subsystem shown before in Simulink. Every signal has to be
created, with specific parameters to be chosen accordingly.

By right-clicking on signals, a new one can be initialized like the
one in the following example.

Figure 44: CAN Signal setting

The number of bits for a signal has to be chosen according to its
range of values found in the simulations in Simulink, together with the
factor that gives the resolution of the parameter. Then the type of sig-
nal is selected as in this case. Here ”unsigned” was chosen because the
values of the angular speed of the compressor are all positive. Accord-
ingly, ”signed” means that the values are both negative and positive
(if there is an offset, that is the zero value for the signed signal).

After all the signals are created, it is necessary to create the mes-
sages, which are the ones that are sent through the CAN bus.
Messages have been created similarly to the signals.

71

Figure 45: CAN Message settings

A message can carry a maximum Data of 8 bytes and has a unique
address so that there is no mistake during the communication. Data
length is expressed in the DLC field (Data Length Code). Then, in
the message window, the signals can be added and arranged at will.
By right-clicking on a specific message, in the ”Edit Message” window,
there is the ”Layout” subwindow, that is used to change the order of
the signals within the Data Field of the message.

As said before, the Data Field is 8 bytes (64-bit) long and this is
the maximum length of signals that can be sent with a single message.
The order and the starting bit of each signal can be arranged at will.
This is how the layout of the message looks like:

72

Figure 46: Message Layout Editor

Then, two nodes are initialized: the node relative to the Plant and
the one relative to the Controller; in the window of the created node,
the Tx (transmitted) and Rx (received) messages have to be assigned.
By mapping the Tx messages for both nodes, the relative signals will
be automatically assigned.

73

Figure 47: Controller: Tx Messages

Then it is necessary to generate the attributes of the communica-
tion. This can be easily done by the window ”View” and then by click-
ing on ”Add Attributes”. So the characteristics of the communication
can be specified, like the Baud Rate (which represents the maximum
amount of data that can be sent in 1 second) that has been set to 500
kbps and the GesMsgCycle Time (which defines the frequency of the
messages). The latter can be modified at will on ConfigurationDesk.

Here is an overview of the signals and messages of the above-
described DBC file:

74

Figure 48: Signal overview: DBC file

Figure 49: Messages overview DBC file

GenMsgCycleTime was originally set to 10 Hz (as it can be seen),
but then, in ConfigurationDesk, 5 Hz (0.2s) were used.

75

5.4 dSPACE initialization

After the CAN communication matrix is configured and the DBC file
is ready to be used, a new project within ConfigurationDesk can be
started.
Before creating a new project, both Hardware must be connected by
the Ethernet cable to the PC, so that both can be online at the same
time.

This time a different initialization has to be made: it is necessary
to use two different applications when starting ConfigurationDesk. So
at first, one of the two models (Plant or Controller) is uploaded in
ConfigurationDesk with its proper Hardware (Scalexio LabBox and
MicroAutobox III respectively), then the same operation is repeated
for the other application. Theoretically, it is possible to create multiple
Hardware applications, but only with the proper license, which in this
case was missing.

When ConfigurationDesk is started, it is necessary to go to the
”Buses” interface to configure the CAN communication.
While in the ”Buses” window, in the ”Buses” subwindow (Bottom left
part of Figure 50), it is necessary to press ”Add Communication Ma-
trix” by right-clicking and then, after adding the DBC file, drag and
drop the communication file on the ”Bus Configurations” section.

Then, it is necessary to go to ”Bus Access Requests” and, at first,
by right-clicking on ”Bus Access Request” (which can be seen un-
der ThermalCAN in Figure 51) ”Automatic Bus Access Assignment”
should be selected. With this, a CAN virtual channel is generated
(ThermalCAN(1)): by right-clicking again on this virtual channel, the
actual channel (of the Hardware) that has been physically used for
CAN communication must be selected (channel 1 in this case for both
Hardware).

76

Figure 50: ConfigurationDesk: Bus Interface

Figure 51: ConfigurationDesk: Bus Access Request

77

After that, it is necessary to go to ”Bus Configuration Ports” and
link the homonymous signals (through drag and drop) to the related
blank ”Connected Model Ports” space. Signals should be connected
only to the parts related to the ECU (Plant or Controller) of the ac-
tual application. Then, these passages should be repeated for the other
ECU. After that, the ”Test Automation support” should be ”Enabled”
for all the ports. This will make possible the analysis of the commu-
nication status between the nodes on ControlDesk.

Figure 52: ConfigurationDesk: Bus Configuration Ports

This is what the model looks like in the ”Signal Chain” window
(Figure 53). In the ”Functions” subwindow there is ”Bus Configura-
tion”, a block that represents what has been described up to now. So
all the arrows that link this block with the model’s interface represent
what has been done in ”Bus Configuration Ports”.
”ThermalCAN” function simply represents the physical CAN channel;
CAN High, Low, and GND are not linked because they are natively

78

connected with Hardware since the one used is dSPACE Hardware.
Anyway, this is an interesting function because it makes us see that
this kind of communication can be interfaced even between dSPACE
Hardware and an external Hardware.

Figure 53: ConfigurationDesk: Signal Chain, CAN project

Afterwards, by right-clicking on ThermalCAN, termination has to
be set at ”ON” for the Scalexio LabBox application, while it has to
be set at ”OFF” for the MicroAutobox III application, considering
that, as mentioned before, there is not an internal termination but the
resistance was added externally. Other parameters can be adjusted in
this window, like Baudrate, which was defined before.

79

Figure 54: Turning ON/OFF physical terminations

So everything is ready for the Build of the new configuration, both
for the Controller and the Plant. Here the reasoning is quite similar
to what has been explained before but with some differences.

80

Figure 55: ConfigurationDesk: Tasks, CAN project

It can be seen in Figure 55 that there are more than two tasks for
each application and, in this case, a higher priority was considered for
the Periodic Task (Plant or Controller model) because is the one that
has the higher computational burden, so, to avoid miscalculations, it
has to be that high; a little priority has to be configured for Bus Con-
figuration: if put to 0 there would be no communication and so no
signal would flow within the communication network. CAN RX task
is created by the Software to configure the transfer and it isn’t modi-
fied. According to dSPACE documentation ”CAN RX Task is a type
of task which calculates to do filtering by Software on the processor
whether to transfer a CAN event to the application or not based on
the received data”.

After the build is done and the two applications are loaded on the
Hardware, a new Experiment can be opened within ControlDesk.

In ControlDesk, the operations are the same but, after the first
Experiment + Application is opened, it is necessary to right-click on
”Hardware Configurations” and select ”add Platform/Device” to add

81

within the same Experiment the application linked to the second de-
vice.

Figure 56: ControlDesk: Double Device Experiment

Then everything is set up and the application, after a proper layout
is defined, can start as before seen.

Figure 57: ControlDesk: Operational Interface

It is possible to add another device: CAN device. Indeed, in de-
vices, it is possible to click on ”CAN Bus Monitoring” and then, in the

82

selection of variable description, choose ”CAN generator” that can be
found in ”Demos” among dSPACE documents.

Figure 58: ControlDesk: CAN device

Figure 59: ControlDesk: CAN generator

Then, with all the devices set up, it is possible to go to the sub-
window ”Bus Navigator” and, by right-clicking on ”CAN Controller”,
”Add Monitor” should be pressed: this way a new layout window is
opened and all the messages that come and go through the CAN bus
can be analyzed together with the payload. After the discussion of the
results, the CAN payload for these operations will be presented.

83

5.4.1 Results

Figure 60: HiL simulation: EPower Compressor

Figure 61: HiL simulation: Command Compressor

84

Figure 62: HiL simulation: Temperature

Parametro EPower Compressor Command Compressor Temperature

RMSE 25.74 W 87.91 rad/s 0.018 °C
MAE 6.06 W 5.39 rad/s 0.013 °C
NMAE 2.66% 5.13% 0.05%
MAXAE 342.85 W 2968.06 rad/s 0.065 °C

Table 4: Results Hardware in the Loop

As far as the results for the whole simulation system with CAN
communication are involved, it can be noted that they are very similar
in terms of errors to the first simulation with the single model.
The graphs are quite similar and the behavior is the same, when the
compressor is turned on, an initial peak of the Electric Power that
isn’t obtained in the Simulink results, can be observed in the dSPACE
simulation (Figure 60).
While results are quite similar to the single model, the reasons for
the differences have to be found in the latencies that a CAN bus can
introduce in the communication between Plant and Controller.

85

Anyway, results are acceptable, and the ability of the Controller to
match the Target Temperature is unchanged (Figure 62).
The fact that Temperature is, for every simulation, almost errorless,
gives another hint of the fact that slow dynamics, such as those of
thermal systems, are more faithfully reproduced and less affected by
overruns and latencies than more dynamically changing parameters
like the ones related to the compressor.
Skipping some operations is intuitively much less detrimental for slow
dynamics such as thermal ones, because the system evolves over longer
time scales.

5.5 Analysis of CAN payload and Controller Task

TurnAround Time

After the analysis of the parameters, it is convenient to analyze the
CAN payload and the messages that are being exchanged while the
application is online. As mentioned before, within the ControlDesk
application, it is possible to analyze the bus load:

Figure 63: Analysis of the CAN payload and messages

It can be seen that there are 35 frames exchanged per second, which
is what was expected: indeed, there are 7 messages exchanged only 5
times per second.
It can be seen that both the Peak and Average Bus Load are 1.0%.

86

Considering that these messages are CAN standard messages, which
include an Overhead of 61 bits and an average Data field of 40-45 bits
for each message, an average weight of 105 bits can be assumed. Con-
sidering the formula:

Bus Load =
Bit per cycle×Message Frequency× 100

CAN BaudRate
(36)

Bus Load =
7× 105× 5× 100

500000
= 0, 735% (37)

The result turns out to be compatible with what could be theoret-
ically expected, and what has been obtained is much lower than the
maximum payload. This is an advantage for possible further improve-
ments of the model, even with an increased frequency or an increased
number of exchanged messages.
Anyway, with this controller it would not be necessary; on the con-
trary, this number could be further reduced considering the timestep
of the MPC.

Speaking of the actual Controller, that is the main interest of this
work, the actual task period is already far below the control sample
time of 1 second: the simulation was indeed carried out for 0.2 seconds.
That considered, the Task Turnaround Time related is much lower
than the timestep, even with an implicit solver like ode1be as can be
seen in the picture below.

Figure 64: Controller Task Turnaround Time

87

6 Thermal Model with Custom Compo-
nents

6.1 Simscape Components: Compressor and Fan

For the final simulations new components in Simscape language are
used in place of the old compressor and fan.
It was necessary to create new custom Simscape components to have
an interface that provides the variables required for the control system
more directly and, at the same time, to improve their functionality on
the way of the components used in the newer Matlab versions.
Simscape components have some typical sections within their code that
characterize them in all their peculiar functions:[25]

• Nodes: These are the links of the component with the rest of the
system, they are specifically part of a certain physical domain and
they have to be defined in function of it. The picture below refers
to the nodes of the new fan that operates in the mechanical and
moist air domain.

Figure 65: Simscape: Nodes

• Parameters: These are the parameters that can be modified
through the Simulink interface. Parameters can then be ordered
in different sub-interfaces and can be made private with a proper
annotation (parameters set as non-modifiable by the user). Here
there are some parameters that have been used in the new com-
pressor component.

88

Figure 66: Simscape: Parameters

• Variables: These are the variables that are here defined in terms
of initial conditions and measure unit and that are then updated for
each timestep according to the equations after defined. As state
variables, their values are constantly updated and can be moni-
tored externally. Here in the example, there are some variables
initialized for the compressor.

Figure 67: Simscape: Variables

• Intermediates: These are variables that are defined but only
used for internal calculations, so they’re not accessible from the
outside and they’re not constantly saved. They’re mainly used
for intermediate calculations to find the main variables. Here’s an
example.

Figure 68: Simscape: Intermediates

89

• Branches: These define how the variables flow between the com-
ponent ports, so by them, there is an association between the
variables and the physical characteristics of the port as defined
in nodes. For example, if I have a ”Moist air port”, a variable
linked with the flow rate of the fluid is expected to be defined
(e.g.mdot A) and then linked here to the physical flow rate (e.g.
A.mdot).

Figure 69: Simscape: Branches

• Equations: These regulate the physical behavior of the system,
linking variables with each other through equations that define
important physical laws (like conservation of mass and energy).
Moreover, they are used to define the physical constraints of the
system: minimum and maximum values (temperature, pressure,
efficiency) to ensure an always realistic behavior of the component
and the feasibility of its interactions with the rest of the system.
Here is an example

Figure 70: Simscape: Equations

90

• Annotations: These are graphical notes about, for example, the
placement of the port in Simulink or the arrangement of the pa-
rameters in the interface.

Figure 71: Simscape: Annotations

6.1.1 New Compressor

This new compressor model represents a volumetric compressor that
manages, by a speed input, the flow rate of the fluid from A to B: this
makes it similar, logically, to a controlled mass flow rate.
It presents, as ports, two refrigerant ports (A and B), the mass flow
rate, and the mechanical power that makes the calculation of the torque
quite straightforward.
Some essential equations can be highlighted to understand the in-depth
behavior of the compressor.

The mass flow rate is controlled, as said, as a function of the
speed input which is the manipulated variable of the control logic, and
of the volumetric efficiency; its equation is the following:

ṁA = ηv · Vs ·
N

vin
(38)

where ṁa is the mass flow rate through port A, ηv is the volu-
metric efficiency, Vs is the displacement volume, N is the input speed
expressed in rpm and the latter vin is the specific volume of the enter-
ing fluid.

Then, there is the energy equation that accounts for the inter-
nal enthalpy increase of the fluid, considering that the compressor by

91

definition adds energy to it. This equation considers the increase in
enthalpy due to the compression, and the one due to the losses during
the process.

hout = hin +
hout,is − hin

ηis
(39)

This equation is needed because the compressor isn’t isentropic and
so it is necessary to correct the ideal enthalpy to account for this non-
ideality of a real compressor.

The output mechanical power is obtained through mechanical
efficiency as before described:

Pmech =
ṁA(hout − hin)

ηmech
(40)

Then there are common equations of mass and energy conser-
vation between the two compressor ports:

ṁA + ṁB = 0 (41)

ϕA + ϕB + ṁA(hout − hin) = 0 (42)

Then there is an equation for the volumetric efficiency that takes
into account the fact that this efficiency isn’t constant and varies as a
function of the difference between the nominal volume ratio, which is a
quantity that expresses how much the fluid is compressed under nom-
inal conditions, and the actual volume ratio, which takes into account
the operating conditions:

ηv = 1 + C − C · vin
vout

(43)

Where:

C =
1− ηv,nom
vnom,in

vnom,out
− 1

(44)

92

6.1.2 New Fan

This fan was modeled to follow the behavior of the fan component im-
plemented in the newest Simscape version.
It presents 2 moist air ports (A and B) and 2 mechanical rotational
conserving ports (R and C).
In this case, a properly set fan was essential because the one that was
modeled after Mathworks didn’t work properly. The fan principally
creates a pressure difference that, creating a continuous airflow, cools
more efficiently the system.

The pressure drop characteristic curve of this fan has been
modeled by using a quadratic equation.

dpch = a ·Q2 + b ·Q+ c (45)

Where Q is the volumetric flow rate, dp is the pressure drop, and
a,b,c are coefficients calculated as a function of the reference and zero
flow conditions of Q and dp.

Similarly, the fan efficiency characteristic curve is modeled:

ηch = aeff ·Q2 + beff ·Q (46)

Then in this fan, similarly to what happens with the compressor,
the speed is controlled, and the pressure drop is obtained as a func-
tion of it:

dp = dpch

(ωref

ω

)2

·Dr2 (47)

Where ω is the actual speed and ωref is the reference speed, while
Dr is the diameter scale factor.

In this model there are different interconnected equations, this one
links the volumetric flow rate, used in the equation above, to the
mass flow rate:

93

Q =
ṁA ·RA · TA

pA
(48)

Then, considering that the pressure drop linked with the volumetric
flow rate gives a measurement of the fluid power, this can be related
through efficiency to the mechanical domain by the following system
of equations:

Pfluid = Q · dp (49)

Pbrake =
Pfluid

ηnom
(50)

Pbrake = T · ω (51)

Where T is the Torque and ω is the input speed, namely the con-
trolled variable given as input.

Equations of conservation of mass and energy are considered
as before shown for the compressor.

Since the fan works both in the mechanical and moist air domain,
there are different mass and energy components to be accounted for;
anyway, although newer versions of Simscape include droplet dynamics,
this had to be removed to ensure compatibility with the older version.

6.1.3 Results

The HiL simulations have been performed in a very similar way to
what has been shown for the simulation with the previous model, so
results can be directly shown.

94

Figure 72: HiL simulation custom components: EPower Compressor

Figure 73: HiL simulation custom components: Command Compressor

95

Figure 74: HiL simulation custom components: Temperature

Parametro EPower Compressor Command Compressor Temperature

RMSE 62.86 W 24.44 rad/s 0.011 °C
MAE 5.51 W 0.95 rad/s 0.006 °C
NMAE 1.83% 1.59% 0.02%
MAXAE 1772.30 W 1000.97 rad/s 0.081 °C

Table 5: Results HiL with custom components

These data show an interesting behavior for the new model. It can
be seen that these results have a different tendency if compared to
the previous (the ones for HiL simulation are considered for similar-
ity of Hardware); indeed, while the RMSE of the Electric Power of
the Compressor is higher (62.89 W vs 25.74 W, Tables 4, 5), the one
related to the Compressor Command is much lower for all the errors
(RMSE(rad/s) 24.44 against 87.91, MAE(rad/s) 0.95 against 5.39, Ta-
bles 4, 5).
It can indeed be seen that with the new component, the response of
the compressor to the command is better: the compressor’s power rises

96

instantaneously producing a peak and this reduces the oscillations of
the command as shown in Figure 73.
So errors are reduced, but as far as the Power is concerned, the RMSE
is higher as mentioned before: this kind of error that considers the root
of the mean squared error penalizes much more the outliers; the other
errors are anyway slightly lower (MAE(W) 5.51 against 6.06, NMAE
1.83 % against 2.66 %, Tables 4, 5) because after the first peak, the
values converge completely with Simulink ones.
The temperature considerations are unchanged since the system can
easily achieve the Target Temperature.

97

7 Conclusions

In conclusion, this work shows the feasibility of a real-time implemen-
tation for an AMPC-based Battery Thermal Management System.
The main goal was to demonstrate how a more complex Controller
with predictive logic could work in an operational environment with a
relatively low error on the target temperature, the object of control,
even given the latencies and constraints that a HiL simulation intro-
duces.

Some considerations can be made on each simulation:

• The first simulation, with a single model uploaded on Scalexio,
showed that, even with overruns and errors correspondingly to
the most dynamically demanding parts, the system could run in
real-time in a single memory stack despite its computational com-
plexity.

• The double model simulations show that, as highly expected
and shown in literature [26], dividing a demanding model into two
different memory stacks, enhances the processor performances by
balancing computational load, more than halving the errors. More-
over, the use of an explicit solver for the Controller could be taken
into serious consideration for future developments to reduce the
computational load even more.

• Although the CAN bus introduces some latencies that make the
error rise if compared to the single Hardware simulations, HiL
simulation performances are similar to the first simulation, and,
while the NMAE relative to the Electric Power and the Command
of the Compressor are reduced to a very low amount (< 2%) with
the custom components, the Controller maintains very low the er-
ror of the Target Temperature, outperforming similar results
shown in literature (NMAE 1.7352 % for the Temperature of the
battery [27]) with a NMAE much lower than 1 % for all the simu-
lations.

98

• The introduction of custom components reduces the oscillations
and, despite an initial peak, shows better performances in terms
of convergence with offline simulations.

Furthermore, for future developments, having a CAN bus payload
lower than 1 %, the use of this Controller within the CAN bus already
installed in the vehicle can be investigated. Moreover, given the high
timestep of the MPC, a LIN Bus can be tested, to assess the perfor-
mance with a cheap but effective alternative. Anyway, CAN payload
should be further investigated with more advanced logging instruments
to understand the real influence of latencies on the results.
The main bottlenecks in this work are related to the Plant itself, which,
due to its stiffness, constrained the simulations in terms of initial con-
ditions, MPC parameters, solver, and timestep, increasing the number
of errors due to overruns.
Anyway, the main goal was to ensure the feasibility of the Controller’s
algorithm in a real-time environment, being the only one interested
in a real-time simulation. New settings and a simplified Plant model,
could lead to more testing freedom for the Controller; in this context,
other solvers, even explicit, can be investigated as mentioned before.
Furthermore, the full system with HVAC could be tested to make an-
other step forward in this research.

In the end, it is possible to conclude that the insights of this work
pave the way for the application of more precise and robust Controllers
with predictive behavior to a Battery Thermal Management System;
this type of controller is ideal for this application: heat exchange is
characterized by very slow dynamics, allowing the controller to operate
with high timesteps, as in this case, ensuring an optimal behavior for a
real-time simulation; its application could be key to enhancing battery
performance, autonomy and life cycle.

99

References

[1] International Energy Agency (IEA), Global EV Outlook 2024,
https://www.iea.org/reports/global-ev-outlook-2024/

trends-in-electric-cars.

[2] Xia, G., Cao, L., Bi, G., A Review on Battery Thermal Manage-
ment in Electric Vehicle Application, Journal of Power Sources,
vol. 367, pp. 90-105, November 2017.

[3] Recent Advancements in Battery Thermal Management Systems
for Enhanced Performance of Li-Ion Batteries: A Comprehensive
Review, MDPI Batteries, https://www.mdpi.com/2313-0105/

10/8/265,

[4] Mathworks, Electric Vehicle Thermal Management,
https://it.Mathworks.com/help/hydro/ug/sscfluids_

ev_thermal_management.html

[5] Lemort, V., Olivier, G., de Pelsemaeker, G., Thermal Energy Man-
agement in Vehicles.

[6] University of Stuttgart, Model Predictive Control, Institute for
Systems Theory and Automatic Control, https://www.ist.

uni-stuttgart.de/research/group-of-frank-allgoewer/

model-predictive-control/.

[7] State-Space Representation, Massachusetts Institute of Technol-
ogy, https://web.mit.edu/2.14/www/Handouts/StateSpace.

pdf

[8] Mathworks, Adaptive Model Predictive Control (MPC), https:
//it.Mathworks.com/help/mpc/ug/adaptive-mpc.html

[9] Mathworks, Optimization Problem in Model Predictive Con-
trol (MPC), https://it.Mathworks.com/help/mpc/ug/

optimization-problem.html

101

https://www.iea.org/reports/global-ev-outlook-2024/trends-in-electric-cars
https://www.iea.org/reports/global-ev-outlook-2024/trends-in-electric-cars
https://www.mdpi.com/2313-0105/10/8/265
https://www.mdpi.com/2313-0105/10/8/265
https://it.Mathworks.com/help/hydro/ug/sscfluids_ev_thermal_management.html
https://it.Mathworks.com/help/hydro/ug/sscfluids_ev_thermal_management.html
https://www.ist.uni-stuttgart.de/research/group-of-frank-allgoewer/model-predictive-control/
https://www.ist.uni-stuttgart.de/research/group-of-frank-allgoewer/model-predictive-control/
https://www.ist.uni-stuttgart.de/research/group-of-frank-allgoewer/model-predictive-control/
https://web.mit.edu/2.14/www/Handouts/StateSpace.pdf
https://web.mit.edu/2.14/www/Handouts/StateSpace.pdf
https://it.Mathworks.com/help/mpc/ug/adaptive-mpc.html
https://it.Mathworks.com/help/mpc/ug/adaptive-mpc.html
https://it.Mathworks.com/help/mpc/ug/optimization-problem.html
https://it.Mathworks.com/help/mpc/ug/optimization-problem.html

[10] Novara, C., Driver Assistance System Design A, lecture notes

[11] Bélanger, J., Venne, P., Paquin, J.-N., The What, Where and Why
of Real-Time Simulation, IEEE.

[12] Mathworks, Compare Solvers in Simulink, https://it.

Mathworks.com/help/simulink/ug/compare-solvers.html.

[13] Mathworks, Solvers in Simulink, https://it.Mathworks.com/

help/simulink/gui/solver.html.

[14] MathWorks, Fixed-Step Solvers in Simulink,
https://www.mathworks.com/help/simulink/ug/

fixed-step-solvers-in-simulink.html

[15] LibreTexts, Backward Euler Method, https://math.libretexts.
org/Bookshelves/Differential_Equations/Numerically_

Solving_Ordinary_Differential_Equations_%28Brorson%29/

01%3A_Chapters/1.03%3A_Backward_Euler_method.

[16] LibreTexts, Newton’s Method, in Calculus 3e (Apex), https:

//math.libretexts.org/Bookshelves/Calculus/Calculus_

3e_(Apex)/04%3A_Applications_of_the_Derivative/4.01%

3A_Newton’s_Method,

[17] Wang, S., Stability Analysis, https://www2.it.uu.se/itwiki.
php?page=edu/course/homepage/bridging/ht13/Stability_

Analysis.pdf&action=browse.

[18] dSPACE, dSPACE Documentation, available under license.

[19] Böhm, S., König, H., Real-Time-Shift: Pseudo-Real-Time Event
Scheduling for the Split-Protocol-Stack Radio-in-the-Loop Emu-
lation, Brandenburg University of Technology (BTU) Cottbus-
Senftenberg, 2023.

[20] Stack Memory, in The Definitive Guide to the ARM Cortex-M0,
2011, https://www.sciencedirect.com/topics/engineering/

stack-memory.

102

https://it.Mathworks.com/help/simulink/ug/compare-solvers.html
https://it.Mathworks.com/help/simulink/ug/compare-solvers.html
https://it.Mathworks.com/help/simulink/gui/solver.html
https://it.Mathworks.com/help/simulink/gui/solver.html
https://www.mathworks.com/help/simulink/ug/fixed-step-solvers-in-simulink.html
https://www.mathworks.com/help/simulink/ug/fixed-step-solvers-in-simulink.html
https://math.libretexts.org/Bookshelves/Differential_Equations/Numerically_Solving_Ordinary_Differential_Equations_%28Brorson%29/01%3A_Chapters/1.03%3A_Backward_Euler_method
https://math.libretexts.org/Bookshelves/Differential_Equations/Numerically_Solving_Ordinary_Differential_Equations_%28Brorson%29/01%3A_Chapters/1.03%3A_Backward_Euler_method
https://math.libretexts.org/Bookshelves/Differential_Equations/Numerically_Solving_Ordinary_Differential_Equations_%28Brorson%29/01%3A_Chapters/1.03%3A_Backward_Euler_method
https://math.libretexts.org/Bookshelves/Differential_Equations/Numerically_Solving_Ordinary_Differential_Equations_%28Brorson%29/01%3A_Chapters/1.03%3A_Backward_Euler_method
https://math.libretexts.org/Bookshelves/Calculus/Calculus_3e_(Apex)/04%3A_Applications_of_the_Derivative/4.01%3A_Newton's_Method
https://math.libretexts.org/Bookshelves/Calculus/Calculus_3e_(Apex)/04%3A_Applications_of_the_Derivative/4.01%3A_Newton's_Method
https://math.libretexts.org/Bookshelves/Calculus/Calculus_3e_(Apex)/04%3A_Applications_of_the_Derivative/4.01%3A_Newton's_Method
https://math.libretexts.org/Bookshelves/Calculus/Calculus_3e_(Apex)/04%3A_Applications_of_the_Derivative/4.01%3A_Newton's_Method
https://www2.it.uu.se/itwiki.php?page=edu/course/homepage/bridging/ht13/Stability_Analysis.pdf&action=browse
https://www2.it.uu.se/itwiki.php?page=edu/course/homepage/bridging/ht13/Stability_Analysis.pdf&action=browse
https://www2.it.uu.se/itwiki.php?page=edu/course/homepage/bridging/ht13/Stability_Analysis.pdf&action=browse
https://www.sciencedirect.com/topics/engineering/stack-memory
https://www.sciencedirect.com/topics/engineering/stack-memory

[21] Diario di un Analista, Valutazione delle prestazioni di un modello
di regressione, https://www.diariodiunanalista.it/posts/

valutazione-delle-prestazioni-di-un-modello-di-regressione/.

[22] Munoz-Hernandez, G., Mansoor, S.P., Jones, D.I., Hardware-in-
the-Loop Simulation, in Advances in Industrial Control, Springer,
2013, pp. 139-158, doi: 10.1007/978-1-4471-2291-3 8.

[23] Crovetti, P. S., Electronic Systems for Vehicles, lecture notes.

[24] CS Selectronics, CAN DBC File Database Intro-
duction, https://www.csselectronics.com/pages/

can-dbc-file-database-intro.

[25] Mathworks, Creating Custom Components in Sim-
scape, https://it.Mathworks.com/help/simscape/lang/

creating-custom-components.html.

[26] Pandit, H. R., Biju, N., Pisharodi, V., Dimitrakopoulos, P.,
Shenoy, M., Framework for Digital Twin Real-Time Battery
System for Model-in-the-loop and Hardware-in-the-loop Simu-
lations, in 2023 IEEE Transportation Electrification Confer-
ence Expo (ITEC), Detroit, MI, USA, 2023, pp. 1-6, doi:
10.1109/ITEC55900.2023.10187077.

[27] Kumar, P., Fuerth, C., Rankin, G., Pattipati, K. R., Bal-
asingam, B., Hardware in the Loop Demonstration of Battery Sur-
face Temperature Prediction, in 2022 IEEE International Con-
ference on Environment and Electrical Engineering and 2022
IEEE Industrial and Commercial Power Systems Europe (EEEIC
/ ICPS Europe), Prague, Czech Republic, 2022, pp. 1-6, doi:
10.1109/EEEIC/ICPSEurope54979.2022.9854750.

103

https://www.diariodiunanalista.it/posts/valutazione-delle-prestazioni-di-un-modello-di-regressione/
https://www.diariodiunanalista.it/posts/valutazione-delle-prestazioni-di-un-modello-di-regressione/
https://www.csselectronics.com/pages/can-dbc-file-database-intro
https://www.csselectronics.com/pages/can-dbc-file-database-intro
https://it.Mathworks.com/help/simscape/lang/creating-custom-components.html
https://it.Mathworks.com/help/simscape/lang/creating-custom-components.html

	Introduction
	Thesis Outline

	Thermal Management System
	Plant
	Scenarios
	Components description

	Downgrade to Matlab 2020b
	Compressor and Fan

	Controller
	Model Predictive Control
	Adaptive Model Predictive Control
	AMPC in Simulink

	Real Time Simulation Settings
	Solver
	Explicit vs Implicit Solvers
	ode14x: Implicit Extrapolation Solver
	ode1be: Backward or Implicit Euler Method

	dSPACE Hardware
	Scalexio
	MicroAutobox III

	dSPACE Software
	ConfigurationDesk
	ControlDesk

	Single and Double Model Simulation
	Simulation Scenario
	Single Model Simulation
	Results

	Double Model Simulation
	Results

	HiL Simulation with CAN Communication
	Controller Area Network
	Physical Requirements
	Creation of a DBC file
	dSPACE initialization
	Results

	Analysis of CAN payload and Controller Task TurnAround Time

	Thermal Model with Custom Components
	Simscape Components: Compressor and Fan
	New Compressor
	New Fan
	Results

	Conclusions

