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Abstract
Yaw Control is an interesting topic especially when applied to 4WD electric vehi-
cles. Given the high number of degree of freedom, the torque distribution can be
performed according to many ways, both with good engineering practices or with nu-
merical optimization strategies. The need of a validated Yaw Controller for Squadra
Corse PoliTo has become important since the level of the competition in Formula
Student is increased in the last years. This controller is meant to help the driver
both during tight turns, by make the car to rotate faster, and high speed cornering,
with a stabilizing effect.

To make proper advantage of the Yaw Control, vehicle sideslip angle information
should be used as a safety measure. An Extended Kalman Filter and a combined
estimation strategy was implemented in past works, but was lacking of reliability
and some measure had been taken in order to properly validate this system.

This work aims to propose a validation method, with a track performance assess-
ment of both the Yaw Controller and the sideslip angle estimation, also presenting
state-of-the-art methodologies for Yaw Controllers, estimators and model validation
techniques. Moreover, a deeper detail description of SC vehicle control system is
performed, giving some hints based on the last years experience of how it can be
evolved. In the end some strategies for different estimation strategies blend, between
dynamic,kinematic and combined, are suggested based on the experience and on the
possible working condition of the vehicle.

The work has been divided into two main moments: data acquisition and data
processing, which comprehends the sideslip estimation enhancement. Data was ac-
quired in a dedicated test session, comparing passive vehicle and controlled per-
formance. The controller was flashed on a dSpace MicroAutobox2 that is usually
employed by the team as VCU. Sideslip angle measurement is performed, via a
Kistler SF-Motion sensor, to provide the information to the controller and retrieve
data for the sideslip estimation validation. During data processing, important KPI
analysis is performed to evaluate the behavior of the controller and estimator, while
tire temperature information has been used to enhance the performance of the EKF.

The results show that the controller is very effective, also in the low grip con-
ditions in which has been tested, with a reduction during a Double Lane Change
maneuver in IACAδ , from 37.15 deg to 14.13 deg, and δSW,max, from 104.3 deg to
35.0 deg with the vehicle in passive mode that was running at an entry speed of 53
km/h, while 54 km/h is kept during TV ON tests.

The performance of the EKF has been enhanced for all the test maneuvers, and
Especially during DLC and slalom maneuvers. The GOF(NRMSE) value lowered
from 1.2 up to 0.44 for a DLC and from 0.84 up to 0.39.
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1 Introduction

1 Introduction
Electric sport cars are intrinsically more dependent on vehicle dynamics control sys-
tems due to the high instant possible torque that can be delivered to the single
wheel or to the differential. Being the electric motor widespread across the au-
tomotive population, mounted on mostly hybrid cars, but also BEV, the demand
in advanced control systems architectures raised in the last decades, passing from
the traditional traction control and ABS up to more innovative solutions of torque
vectoring. If the vehicle is equipped with 4 electric motors driving one wheel each,
the engineer has much more freedom compared to a 2WD car, leading to complex
solutions but a final result in terms of performance that is much more satisfying.
These controls can be applied both for racing performance, to increase the effective
grip of a vehicle, or for road use mainly to increase the safety of a vehicle.

Form the 60’s, in a parallel way to the automotive industry, was also expanding
the field of mathematics and statistics that concerns the filtering and the estimation
of a real quantity based on a set of measures, science of which Rudolph E. Kalman is
the father with its well known in literature Kalman filter. Today, with the increasing
cost of the materials, the automotive industry is much interested in replacing the
actual physical sensors with ’virtual’ sensor or estimators: mathematical recursive
algorithms capable of estimating a variable of a dynamic system without directly
measuring it, hence saving the cost of the physical sensor. The aim of this work is
to present both these two aspects of current automotive industry and research field,
with practical application that have been implemented in Squadra Corse, FSAE
team of the Politecnico di Torino.

1.1 Formula Student

Figure 1: Formula Student Germany teams picture at the Hockenheimring

Formula Student is an engineering competition organised by the Society of Au-
tomotive Engineers in which teams more than 200 teams form all over the world
challenge themselves and other by building a race vehicle and competing in ma-
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1.1 Formula Student 1 Introduction

jor circuits situated in mainly Europe. The main objective of this championship
is to train engineering students in a highly demanding, competitive and dynamic
environment before entering professional environments.

To this competition can participate internal combustion engine vehicles, hybrid
vehicles or fully electric vehicles, and all of them can compete in a manual driv-
ing mode category or in a Driverless Cup, in which the car becomes completely
autonomously driven. ICEs and EVs compete in different categories while driven
in manual mode but they compete against each other when driven in autonomous
mode.

Each race is composed by different events that are evaluating the team and the
car at 360 degrees. Among the events there are two major categories: static events
and dynamic events.

Figure 2: Formula Student race events

Static events are three: Engineering Design, Business Plan Presentation, and
Cost and Manufacturing.

The engineering Design consists of presenting the design choices made during
the season and the development of the prototype. Each category of the score has
one or more judges that based on their experience in the automotive industry will
give a mark to the work done by the division.

The Cost and Manufacturing has the target of explaining and justifying the
team’s costs of the current season, all related to the manufacturing of the vehicle,
with a focus on the environmental impact and carbon footprint of the production
of a particular vehicle subsystem.

Business Plan Presentation consists in a simulating a real business plan case
study. The target is to find the best innovative business idea to sell the car or a a
service relative to the car. An entire financial analysis is needed, from the idea, to
the product one, passing from market forecast, marketing and future trends. The
most appreciated ideas can come from the renewable field of energy, like reusing car
parts to generate energy of any type or to guarantee high tech services like vehicle
fleet command, communication and so on.

Dynamic events are four: Acceleration, Skidpad, Autocross and Endurance &
Efficiency.

4



1.1 Formula Student 1 Introduction

Acceleration event consists in a straight acceleration of 75 m, the lower the time
and the higher is the score. In this events are truly important the weight repartition
of the car and the automatic controls like traction control and launch control so that
the driver has just to accelerate and control possible reactivity of the car without
thinking about the actual grip.

In the Skidpad event the car has to run in a track formed by two symmetric
circles, with a track width of 3 m and a diameter of about 18 m. This is done to test
the lateral grip of the car. In this event it is crucial to have a light car, equipped
possibly with 4WD and torque vectoring. The limit between a good result and a
failure is very thin since all the teams are very near in performance because usually
it is a test case during design to optimize car performance.

Autocross event consists in a complete lap around a cone delimited track with
minimum corner radius of 4.5 m, slaloms and straights with maximum length of 80
m. They are very tortuous with tight turns and fast bits. The key for a good lap
is a confident driver, capable to put the car on the limit with cold tires and only
helped by traction control during strong accelerations and torque vectoring for the
tight sections.

Endurance event is the most important of the race, in 31, since it consists in
running a total of 22 km with a driver change in between of 3 minutes held after
11 km. Even this short distance is a challenge for the vehicle equipped with a low
capacity battery pack compared to road vehicles (around 7 kWh against at least
45 kWh of a road vehicle). Moreover this vehicles have usually a low reliability
due to the advanced technologies implemented and the inexperience of the team
members. During the endurance a mid-high pace must be held in order to not
overheat critical parts, save battery but also lower the energy consumption because
points are awarded also for the efficiency of the vehicle.

(a) Engineering Design (b) Business Plan Presentation

(c) Autocross (d) Endurance

Figure 3: some representative FSAE events

1© Formula Student Germany, wintermantel, seizinger
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1.2 Competitors 1 Introduction

The races are held in the main circuits around Europe. For safety reasons the
car are not driven on the actual track but on some of its section delimited by cones,
in order to slow down the cars and guarantee minimum risk to the drivers.

Figure 4: Main formula student races of the championship

The most important races are considered to be the ones held in Germany, held
in the Hockenheimring, and Austria,held in the Red Bull ring, followed by all the
others. The Italian race is held in Varano de’ Melegari, at Dallara test track.

1.2 Competitors

Among all the teams, being the turn over of the people involved in the project very
high, there is not always a fixed winner or a more frequent winner in the years. To
win in formula student a team must have a validated and reliable architecture, both
for the team composition and the car. Good documentation must be produced each
year to trace different examined solutions, document faults and possible solutions.

The rule book allow to the engineers a lot of freedom concerning the design of the
vehicle, so that the students can come up with innovative ideas that are sometimes
a test bench for real road applications in the case of a collaboration with an OEM.

On this topic, in the last years, in Formula student has been more and more
frequent the implementation of active suspensions, starting from a decoupled con-
figuration, to control roll and pitch. This is particularly useful during the German
race in which the track is particularly bumpy.

Another technical advancement that increases exponentially the performance
of these vehicles is the utilization of active aerodynamics, especially high power
solutions, up to 20kW fans where used to push or suck the air at the floor level
increasing by almost twice the aerodynamic down force. This feature is a game
changer because in this way a car of this type, that usually can have a maximum
speed of 140 km/h and an average speed during a lap in a FSAE circuit of 60-70
km/h, can express a much higher grip at lower speeds by exploiting the aerodynamic
features already at 30-40 km/h by generating an air speed under the body of over
100 km/h. It is also possible to supply the power fan directly from the HV battery
pack without the risk of exceeding the 80 kW power request since the power ground

6



1.2 Competitors 1 Introduction

effect can be progressively switched off when the car becomes more and more power-
limited instead of grip-limited at increasing speed. Due to the high performance gap
and the increasing volume an power and thus the voltage and speed of the fan, this
solution has been limited to a max power of 500 W.

Active aerodynamics and active suspensions are very efficient if implemented
together due to the high sensitivity to the ground high of a car that exploits aero-
dynamic power ground effect. A car that can dynamically adjust its ride heights
to have a very stable platform for the aerodynamics is therefore a very high perfor-
mance vehicle.

All the previously mentioned features, combined with a weight without the driver
of less than 180 kg, 10 inches tires, proper suspension kinematics and an advanced
torque repartition control can make these vehicles to achieve blistering performances:
0-100 km/h in less than 2.5 s, maximum lateral acceleration of over 3 g, maximum
longitudinal deceleration of 4 g.

The performance benchmark in 2024 is established by some teams like FS Team
Tallinn, from Tallinn University of Technology and Tallinn University of Applied
Science, AMZ racing, from ETH Zurich, TU Graz racing from Technical University
of Graz and Yohanneum Racing Graz from University of Applied Sciences of Graz.

(a) ETH Zurich (b) TU Graz

(c) UAS Graz (d) UAS and TU Tallinn

Figure 5: Top FSAE teams

This vehicles are equipped with 4 in-wheel electric motors, a carbon fiber mono-
coque, full aerodynamic package, active suspensions for roll and heave control and
active aerodynamics and all of them have a weight of about 170 kg without the
driver. The cars from Tallinn and Zurich can run also in fully autonomous mode,
hence provided with superior control system strategies.
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1.3 Squadra Corse PoliTo 1 Introduction

1.3 Squadra Corse PoliTo

Squadra Corse is the FSAE team from Politecnico di Torino, competing in the EV
class. Founded in 2004, the team raced in the first event in 2005 with the first
internal combustion prototype SC05.

Figure 6: Squadra Corse past prototypes

From that moment, a constant evolution has been brought to the prototype:

• in 2009 the first hybrid prototype was built, the SC08H, world title winner.

• in 2012 the first completely electric powertrain was introduced with the SC12e.

• in 2013 the first carbon fiber monocoque is manufactured.

• in 2014 the first complete aerodynamic package is studied with the SC14.

• in 2017 and 2019 the car won the Italian race in Varano.

In 2023 the team decided to not take part at any race event and the season was
devoted to a testing session that lasted more than 40 days, successfully completing
more than 300 km that were useful to enhance the reliability of the car, update and
test all the control systems and test the sensitivity to tire setup angles and pressures.

1.4 SC24 prototype Overview

In 2024 Squadra corse raced in Austria, Germany and Italy with the last prototype,
SC24, named Andromeda.
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1.4 SC24 prototype Overview 1 Introduction

Figure 7: Squadra Corse 2024 prototype: Andromeda

Main vehicle data
Mass without driver 207 kg
Front mass repartition 45%

Wheelbase 1.525 m
Track 1.202 m

Center of gravity height from ground 0.28 m
Tires 185/40 R14 slick
Rims R13 magnesium alloy

Aerodynamic lift coefficient 4.8
Aerodynamic drag coefficient 1.5
front aerodynamic balance 58%

Nominal HV battery pack capacity 7.7 kWh
Nominal HV battery pack voltage 564 V

0-100 km/h 2.6 s
Maximum speed 122 km/h

Maximum lateral acceleration 2.5 g
Powertrain type Electric 4WD

Maximum motor power by data sheet 35 kW
Maximum regenerated power 40 kW

transmission ratio 14.69
Autonomous mode not available

Table 1: SC24 vehicle data
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1.5 SC24 Vehicle Control System 1 Introduction

This vehicle had some reliability problems in the first part of the season due
to high sensibility to magnetic interference and water infiltration during heavy rain
in FSG. Apart from these episodes, showed both performance and resilience under
heavy rain in FSATA and allowed the team to retrieve the data for this work.
In general is characterized by an inefficient static weight repartition, that creates
undesired understeering behavior at low speeds and a oversteering behavior at high
speed that will be solved in future projects.

1.5 SC24 Vehicle Control System

SC24 control systems have 5 macro-sections: MCB and HVCB CAN communication,
inverter CAN communication and control, Control Systems, Global Parameters and
dSpace Log.

1.5.1 MCB and HVCB

The main can bus is responsible for the communication between the ECU and the
low voltage electronic boards that acquire and condition the signals from sensors.
In the MCB is included the board that governs the status of the TSAL (tractive
system active light), fundamental component for the safety of the vehicle since it
indicates if the powertrain is effectively energized and ready to run or not.

The state machine that determines the state of the vehicle itself is implemented
here. The car can be in 5 states: LV ON, Precharge, HV ON, RTD, Discharge.

In LV ON state the powertrain is not energized, the car is safe to touch and
the TSAL is steady and green since the voltage across the DC bus is lower than
60 V. After a first push of the RTD button, one of the two AIRs (accumulator
insulation relays) and the precharge relay close to allow the voltage across the DC
bus to progressively equalize the one at the output of the HV battery pack, this is
the precharge state. When 60 V are reached across the DC bus the TSAL starts
flashing red to warn people before touching the car. The Precharge state ends when
the other AIR is closed too, thus the car enters HV ON state. In this state the
car cannot move but the inverters and the motors are supplied with high voltage.
This is the worst case for electromagnetic interference since the lowest control level
embedded in the AMK inverters is switching at extremely high frequency to obtain
an ideal duty cycle of 0. This problem can be solved by feeding the inverters only
when a torque request is actually coming from the vehicle control system section,
but this was not done for a lack of testing facility.

To definitely turn on the car, according to the rule book a simultaneous actuation
of the brakes and the push button must be done, to prevent in case of errors, bugs
or faults that the car starts moving immediately after entering the RTD (Ready To
Drive) state, the TSAL is red flashing and the motors can actually give torque and
respond to the accelerator pedal. When the car is switched off again or has some
kind of fault, the powertrain is progressively de-energized and the voltage across the
DC bus is lowered while the car enters in the Discharge state. The discharge state
should end after a maximum time following the rules.

This state machine directly influences the state machine used in the inverter can
communication
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Signals coming from the BMS (HVCB) are also processed here and are mainly
used for two things: error detection and measurement of bus voltage and bus current.
These last two will be particularly useful for the SOC estimation.

Other important signals used in the section are the steering sensor signal, the
brake line pressure signal, the two throttle signals, many temperature signals coming
from both LV battery and HV battery, IMU signals, GPS signals.

In this section can be commanded the switch on of the pumps and fan for the
main cooling system and the fan for the battery cooling system, as well as the brake
light switch on.

1.5.2 Inverter CAN communication

In the car there are 2 more can bus, related to front inverters and motors and rear
inverters and motors. The split between the two buses was performed for reliability
reasons in case of a failure on one line, at least the car is able to continue to run at
lower power to complete an event.

In this section, each inverter is controlled at high level by a FSM that has the
main objective to manage possible errors arising in the inverters during the opera-
tion. 4 out of the 6 states mirror pretty well the states of the car state machine that
was described in 1.5.1, only in state 4 the inverter can make a current request to
actuate a torque. State 5 and 6 are error states named ’soft error’ and ’hard error’.
An intermediate error can be reset without an external intervention and can be due
to a minor fault like the loss of supply. A hard error is latched until a manual reset
is done by performing a power cycle of the low voltage system.

The motors are speed controlled because it is easier to implement with respect
to a torque control, since once the target speed is reached automatically the inverter
lowers the motor torque to not overcome the target speed. It is important to remind
that the vehicle control system is a dynamic control system, not a kinematic control
system. Thus, it produces torque requests that will be used as torque limits in
the lower level speed control of the motor to reach a target speed equal to the
maximum of 20000 rpm, in case of positive torque request, or 0 in case of commanded
regenerative braking. This is also good from the safety point of view since the motor
cannot spin in reverse, thus the vehicle cannot go rearwards, that is in effect banned
by the rule book.

The behavior of the lower level controller can be checked by looking at the two
feedback current signals from the inverter, the torque current and the magnetizing
current using the well known eq.1 that links the dqframe currents to the torque in
an IPM motor

Te =
3

2
pλmiq +

3

2
p(Ld − Lq)idiq = Ktiq +

3

2
p(Ld − Lq)idiq (1)

Where p is the pole pair number,λm is the flux linkage, Kt is the torque constant
given by the manufacturer, Ld,q are the coil inductance in dq frame given by the
manufacturer, id is the magnetizing current and iq is the torque current. The motor
speed control characteristic is shown in fig.8
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Figure 8: motor speed control characteristic

This figure shows how the torque request signal is followed by the motors output
torques with a sufficient precision. The blue dots represent the requested torque
while the orange dots represent the output torque from the torque current signal.
Both the signals are plotted in function of the motor speed. The good overlay
between the two signals show the correct functioning of the motors speed control,
since the motors return what the Control System asks them.

1.5.3 Global parameters

In this section, all the possible internal parameters of the control system are initial-
ized. This parameters contain vehicle major characteristics and tuning parameters
related to Power Control, Launch Control, Traction Control and Torque Vectoring.

Grouping all these parameters in a single control subsystem is particularly useful
with real time interface programs, when the control system has been compiled and
flashed on the ECU, so that, being a specific location is chosen to be equal among
all these constants, it is much easier to access to that constant and change its value
in ControlDesk. A more efficient way to do this, is to load the parameters into
datastore memory initialized in the Matlab workspace at code generation time.

1.5.4 dSpace Log

The used ECU is a MicroAutobox II, by dSpace, a general purpose ECU commonly
used for control testing and rapid prototyping environment. This ECU gives the
opportunity to log a maximum of 250 signals sampled at 100 Hz, single format. In
this section, among the logged signals we can find some sensor signals, some error
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message and code from the inverter CAN and HVCB, some internal control system
signal useful for debug purposes and many others.

1.5.5 Control Systems

In Control Systems section can be found a cascade architecture of Power Control &
Launch Control, Torque Vectoring and Traction control in parallel with a Velocity
estimator, longitudinal slip estimator and vehicle sideslip estimator as in fig.9.

Figure 9: SC24 control system architecture

1.5.6 Power Control

The Power control is divided into two subsystems: Feedback and Feedforward.

Figure 10: Power Control architecture

The Feedback control is made by a discrete PI controller based on the error
between a moving average of the actual power required at the DC link and the
maximum power. The controller output is saturated to negative values so that it
will not increase the power request when a low throttle is applied. Due to the
architecture of the controller and the high responsiveness of the electrical system of
the car, a lot of power fluctuations where common. The power limit had to be set
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to 75 kW since the overshoot on the moving average of the signal was circa of 5 kW,
this was done to ensure rule compliancy until 2023 (power limit of 80 kW). In the
end this controller provides perfect tracking at steady state conditions due to the
integrator, but it is inefficient in the compromise between reactivity and overshoot,
since 5 kW were lost at steady state to compensate the overshoot during transients.
Take into account that fast power transients are happening only in case of wheel
slipping, due to the high peak rotational velocity.

The Feedforward calculates what is the reduction in the throttle signal such that,
assumed equal and mean the rotational velocity of the 4 motors and efficiency of
the powertrain of 0.8, the throttle signal output is translated in a total torque on
the 4 motors that multiplied by the mean rotational velocity and divided by the
efficiency it does not overcome the maximum power. The feedforward was added
to the previous architecture in order to keep the same reactivity of the controller
without limiting the maximum power to 75 kW. To the feedback control is then
given the duty on fast transients, since it limits the power looking at the wheel or
motor speed a priori.

One problem of this whole architecture encountered during Acceleration disci-
plines, is that after about 2 s in which a motor is giving 21 Nm, the lower level
AMK control raises an error code and lowers its power output for thermal protec-
tion. This spoils the high level architecture since it is completely lost power tracking
at steady state due to the fact that the Feed forward controller commands an impos-
sible torque on the rear wheels, that is just saturated by the lower level controller.
This resulted in a power loss at the end of the acceleration of about 10 kW, not
acceptable.

The final solution that brought to a complete, stable tracking of a maximum
power of 79 kW, was to deactivate the feed forward controller when the error code
arises, that is fine since after 2 s the steady state was well reached, and let all the
control duty to the feedback only. In this way the feedback control can increase the
torque con the front wheels instead of giving more on the rear wheels in order to
match the power reduction due to lower level protection mode from AMK.

The whole system has been validated in 2024 early season. Some work should
be done to correctly join the power control during regenerative mode, that has the
aim to avoid overvoltage or overcurrents on the DC bus and during an endurance
increase the power that can be regenerated via a one-pedal drive mode.

1.5.7 Launch Control

Launch control is engaged during straight accelerations to correctly split the torque
between front and rear axle. It is again a combination of two subsystem: feedback
and feedforward.
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Figure 11: SC24 Launch Control architecture

The feed forward contribution is a model based torque distribution algorithm
that estimates the maximum torque that can be commanded on one wheel to exploit
the maximum longitudinal force guaranteed by the grip, taken from tire data, and
the estimated vertical force. This subsystem do not guarantees the stability at
steady state and is particularly susceptible to low grip conditions found with low
tire temperatures or damp track.

The feedback contribution has the duty only to reduce the torque in case of slip-
ping. It is implemented by a 4 state FSM in StateFlow, a slip controller specifically
tuned for longitudinal application only, and it is independent of the tire or vehicle
model, thus guarantees stability also in low grip applications.

The whole system has been validated in the 2024 season, with the opportunity
also to extend this logic to the lateral and combined application in the lower level
Traction Control.

1.5.8 Yaw Control

The Yaw Control is responsible for the torque repartition between left and rear sides
and partially also on front and rear. It is composed by a reference calculation, a
feedback controller a feedforward controller and a torque allocation function.

For more information about the validation in simulation of this architecture refer
to [3] and [4].
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Figure 12: SC24 Yaw Control architecture

The reference generator produces the target yaw rate and vehicle sideslip to be
fed as references to the yaw controllers.

To get the yaw reference, it uses the speed of the vehicle and steering angle to
calculate the neutral behavior yaw rate as in eq.2.

ψ̇ss =
Vxδ

Kyrl(1 +KusV 2
x )

(2)

This reference is saturated according to the lateral grip limit and so the lateral
acceleration limit of the vehicle as in eq.3 and eq.4.

ψ̇max =
µg

Vx
(3)

ψ̇ref = ψ̇maxtanh(
ψ̇ss

ψ̇max
) (4)

in these equations, µ is a tuning parameter as well as Kyr, to obtain the desired
reference, more oversteering or more understeering, depending on vehicle character-
istics.

The saturation ensures that a car already at the grip limit is not destabilized by
a yaw rate reference that is not reachable due to its dynamic limits.

To get the sideslip reference, it uses the the measure or estimated sideslip of the
vehicle in order to reduce it in case it exceeds a variable maximum value as in eq.5
and eq.6.

βref = βmaxtanh(
β

βmax
) (5)

βmax = 0.02µg (6)

In these equations, µ is the actual grip of the vehicle and can be a function of
vehicle speed due to aerodynamics, but can be tuned as well to increase or decrease
the maximum sideslip angle allowed by the controller.

16



1.5 SC24 Vehicle Control System 1 Introduction

1.5.9 Feedforward controller

The model based feed forward controller has the task of making the car more reactive
due to its open loop contribution. It works in parallel with the feedback controller
that instead guarantees steady-state stability.

The concept behind its design is to make the actual car to rotate like another
ideal vehicle with a different yaw inertia, that can be tuned via a parameter. The
ideal vehicle must have lower inertia if the wanted real vehicle behavior should be
more oversteering and vice versa. The internal model of this controller is a linear
bicycle model, with constant cornering stiffness. A more advanced model can be
introduced taking care of possible oscillations in the output of the controller.

The transfer function of the controller is presented in eq.7 and eq.8.

FF (s) =
Mz,FF (s)

δf (s)
=
Gdes(s)−Gnom(s)

GP (s)
(7)

Gdes(s) =
ψ̇des(s)

δF (s)
;Gnom(s) =

ψ̇(s)

δF (s)
;GP (s) =

ψ̇(s)

Mz,FF (s)
(8)

WhereGnom, Gdes andGp are all transfer functions, respectively between nominal
vehicle yaw rate and steering input, desired vehicle yaw rate and steering input and
nominal vehicle yaw rate and yaw moment input.

The magnitude of the output of the controller depends basically on two things:
the difference between the ideal inertia and the vehicle inertia and the frequency of
the steering input, hence its velocity. The faster the steering input, the higher the
magnitude of the commanded yaw moment. This is very useful, but needs first of
all a lot of driver training to be properly exploited. As an example, this controller
is usually switched off because a driver that is not used to it would be scared of
the reactivity of the car at high speed, since generally the higher the speed and the
faster should be the steering wheel input by a proper racing driver. It must be noted
that a parameter of the bicycle model is the speed of the vehicle, so the actuation
of the controller increases when vehicle speed increases.

In order to mitigate this, two strategies can be actuated. A soft switch depending
on vehicle speed can be implemented easily to progressively switch off the controller
at high vehicle speed, but is not a clean model-based solution. Another solution
can be to implement an internal model of the controller that takes into account the
actual grip limit of the car and not only the linear cornering stiffness, for example
by using a model in which the cornering stiffness saturates at high sideslip angles.
This strategy would require an estimation of vehicle sideslip to retrieve the front
and rear sideslips.

1.5.10 Feedback controller - ALQR

The feedback controller is a model-based Adaptive LQR and has the aim to guar-
antee steady state tracking. The internal model is based on a linear bicycle model
with time-varying parameters as described in eq.9.

ẋ = Ax+Buu+Bdd (9)

In which A,Bu and Bd are the continuous-time, time-varying matrices of the
system, while x is the state vector composed by the sideslip angle of the vehicle and
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the yaw rate. This system has one control input u, that is the yaw momentMz, and
a disturbance, that is the wheel steering δw.

A =

[
−CF−CR

mV
−CF a+CRb−mV 2

mV 2

−CF a+CRb
Jz

−CF a
2−CRb

2

JzV

]
(10)

Bd =

[
CF

mV
CR

mV
CF a
Jz

−CRb
Jz

]
(11)

Bu =

[
0
1
Jz

]
(12)

x =

{
β

ψ̇

}
(13)

The cornering stiffness used in this model is not constant but is derived from
the lateral Pacejka model of the mounted tires. This model has some advantages
compared to a symbolic Jacobian calculation. For example, there is a split between
the Pacejka model that influences only Cf and Cr, this allows deeper understanding
of the internal model and helps separating the effects of different parameters. It is a
easy to understand, easy to analyze and very portable, flexible to a possible future
change in tire model. Other tire models that can be implemented are, for example,
a combined longitudinal-lateral Pacejka model, to improve the behavior in case of
longitudinal ground forces (strong braking and acceleration), or a strongly different
architecture like a FIALA tire.

Using the vertical forces on the tires and the sideslip angle of the tires, we
can retrieve through the Pacejka model the cornering stiffness of all the tires.The
cornering stiffness of two tires on the same axle are then summed up to obtain the
cornering stiffness of the axle. This model takes into account both the possibility to
have different sideslip angles between inner wheel and outer wheel due to toe angle
setup or due to Ackermann steering geometry and also the vertical load transfer due
to lateral accelerations, still keeping a linear-like computational effort.

This very same model is also implemented inside the dynamic estimation of the
sideslip angle of the vehicle, inside the EKF.

The cost function minimized by the LQR is showed in eq.14.∫ t

0

(x′Qx+ uRu)dt (14)

Q and R are weight matrices defined in literature as in 15 and 16.

Q =

[
1

β2
max

0

0 1
ψ̇2
max

]
(15)

R = 1
Mz2max

(16)
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Mz,max is the maximum possible yaw moment that can be obtained by commanding
maximum positive torque on one side and maximum negative torque on the other.
It can be assumed constant, with straight front wheels and generated by the lon-
gitudinal ground force caused by the maximum torque of the motor, in this case a
maximum of around 2000 Nm can be obtained.

In reality the maximum traction torque is function of the state of the vehicle,
depending on the speed the motor can run in flux weakening operation and thus
the maximum torque is heavily reduced. About the regenerative torque instead, it
might not be available in the first instant of the maneuver due to the possible high
SOC of the battery, any commanded regenerative torque will increase the voltage
on the DC bus due to the internal resistance of the battery and if the SOC is too
high it may cause an overvoltage error, causing a DNF (Did Not Finish) for any
discipline in the race.

1.5.11 Torque allocation

The feedback and the feedforward controllers give as output a yaw moment Mz, it
must be translated into the torques of the electric motors such that the longitudinal
forces at the ground level give rise to that moment. To do this, a Matlab function is
used, implementing an heuristic local optimization method. It takes as inputs: Mz,
the reference sum of the 4 torques, the flux weakening limits, the vertical estimated
forces on the wheels, the estimated longitudinal wheel slips, the steering angles of
the front wheels and two additional parameters s1 and K.

The reference sum of four torques is directly commanded by the power control, it
is crucial to not overcome this limit both during traction, because of disqualification,
and during regenerative braking, to avoid overvoltages on the DC bus and the DNF.
The torque split between left and right is then actuated such that both the reference
sum of the four torques and the Mz are respected considering the front steering
angles and a steady state condition in which the car is not accelerating. Take into
account that, if we don’t look at the vertical forces on the tire, the front wheels have
much more potential to express a yaw torque due to the steering. In fact, when
the two wheels are steered, the lateral component in vehicle reference frame of the
longitudinal tire force can cause a yaw moment up to 8 times higher than the one
expected if all the calculations where done without considering the steering angle.
This is due to the fact that the over-mentioned component of forces have concord
direction between left and right wheels and have an efficient lever arm with respect
to the center of gravity of the vehicle. While this might be useful during traction,
it is pretty disadvantaging during braking, since a longitudinal negative force with
the turned steering wheel will result in an understeering moment.

The torque split between front and rear axle is done taking into account both the
vertical force on the wheel and the slip of the wheel. The more a wheel is vertically
loaded and the higher is the given torque, while the higher is its slippage ,the lower
its given torque. To merge the vertical force and the wheels slip to obtain an actual
’weight’, in the optimization meaning of the term. At low wheel slip values the
vertical force is taken more into account, while at high slip values only the slippage
is taken into account. This was done to promote a better collaboration between
Torque Vectoring and Traction Control, that is in our interest since the TC would
cut out the torque in case of wheel slippage but will not take into account the loss
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in yaw moment, while if we try to avoid wheel slippage already with the torque
distribution then the risk of having it to be cut out is lower. As a last step, the
torque is saturated to the flux weakening limits or the control limits. Due to this,
the recommendation during a skidpad maneuver is to limit the power of the vehicle
to 30 kW, to make it more drivable at the low speeds imposed by the event, but to
keep a high possible limit torque of about 15 Nm out of the 21 at disposal. In this
way, the throttle request will produce a total torque that can be distributed without
the risk of cutting it, thus reducing the efficiency of the Yaw Control.

It must be pointed out that if the two wheels on the same side are slipping at
the same rate, then this distribution will not have any effect since the total torque
to be done one one side is already decided by the previous step and so for equal
slippage at front and rear on the same side, then the torque will be more or less
even distributed between front and rear.

The tuning parameters can partially modify the repartition between front and
rear, taking into account that the car in question is a sport car and thus a mainly
RWD must be implemented to avoid understeering behavior due to the torque re-
quest on the front axle. The target torque repartition between front and rear ranges
between 40%f-60%r and 30%f-70%r.

This function is suitable for our application because is simple, efficient, has a
continuous output and its reliable in most of the circumstances, in the sense that
the actual yaw moment at the ground is coherent with the command yaw moment
from feedback and feedforward controllers. While this function works pretty well
in steady-state applications, as in a skidpad event, it is not optimal in case of high
angular acceleration of the wheels since it overestimates the ground force. The
ground force is lower in case of strong accelerations because of a higher contribution
of the inertia of wheel and motor, thus a higher part of the commanded torque is
accelerating the wheel and is not discharged at the ground. This effect is very hard
to quantify but is in general minor.

A better solution for this application might be the implementation of a real-
time proper optimization problem solution algorithm. An optimization problem
formulation is characterized by an objective function and a set of constraints. In
the standard form of such a problem, the function is a minimization function as in
eq.17 and the constraints are a set of equalities as in eq.18.

min fobj(x, si) (17)

b = A

{
x̄
si

}
(18)

where x̄ is the vector of the optimization variables (in this case are the mo-
tor torques), si is a set of slack or surplus variables useful to convert constraint
inequalities into equalities and b the vector of the known terms. Among the con-
strain equation, should be encoded the torque limits for each motor and the total
reference torque limit from the power control. The final formulation of the problem
depends wether if we want to minimize the error between the actual Mz and the
commanded from the controllers, or wether Mz is taken as a constraint and in the
objective function the slip and vertical forces are taken into account.
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It must be pointed out that the best optimization strategy should take into
account also the elliptical model of the tire, to avoid unwanted oversteering or un-
dersteering due to lateral grip loss as a consequence of longitudinal force exploita-
tion. Moreover, a real-time optimization problem solver has a computational cost
that is orders of magnitude higher than the simple function previously described,
hence it couldn’t be implemented since it is not available for code generation on the
MicroAutobox II that is at team’s disposal.

A partial solution to this problem can be the implementation of a fully connected
part of a neural network. Neural Networks are much more computationally efficient
than the recursive real-time optimization problem solver, they can be trained offline
with the results gained from the optimizer and then loaded on the ECU for online
applications. In this way the Neural Network can partially mimic the much more
complex solver.

1.5.12 Traction Control & ABS

Traction Control and ABS have the aim of avoiding wheel slippage during accel-
eration or deceleration, to maximize lateral and longitudinal ground forces. The
solution implemented in the vehicle uses a Fuzzy Logic controller as in fig.13.

Figure 13: Fuzzy Logic controller structure

Each fuzzy logic controller takes as input the slip error and its discrete derivative
and outputs a value between [0-1]. This value indicates the percentage of torque
that must be subtracted to the input torque to obtain the desired behavior.

Talking about Traction Control, it is optimized in two conditions, straight ac-
celeration and acceleration in turn. This requires the implementation of two fuzzy
logic controllers per each wheel. Four level of slip error were identified, each rep-
resented by a membership function: Low Error (LE), Medium Error (ME), High
Error (HE) and Maximum Error (MAXE). Six levels, instead, have been defined
for the slip error rate: Negative High Error Rate (NHER), Negative Medium Error
Rate (NMER), Negative Low Error Rate (NLER), Positive Low Error Rate (PLER),
Positive Medium Error Rate (PMER) and Positive High Error Rate (PHER).

The controller MFs define the controller action. Also these MFs work between
0 and 1, since the goal of the control action is to reduce the input torque: at most
it will be reduced of its entire quantity, with a controller action equal to 1. Five
controller MFs have been defined: Low Control (LC), Medium Low Control (MLC),
Medium High Control (MHC), High Control (HC) and Maxium Control (MAXC).
For more detailed information about how the tuning was performed, see [5].
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Figure 14: Error membership functions

Figure 15: Error rate membership functions

Figure 16: Controller membership functions

Talking about ABS, it is optimized in two conditions, straight braking and corner
entry. It must be pointed out that an ABS system on a road vehicle works in a
completely different manner with respect to what is implemented on SC car. In a
road vehicle the ABS acts directly on the pressure inside the brake line, releasing
it when wheel locking is detected. In SC vehicle the ABS is implemented only
from the regenerative braking point of view since the control system commands the
motor torques. To sum things up, ABS is less effective than Traction Control, while
traction control is a life saver when a wheel starts slipping, we cannot tell the same
for ABS when a wheel is locked. What can be said is that ABS can be essential in
case of a one-pedal drive mode when maybe there is a difficulty from the driver in
controlling the actual negative torque request.

Mechanical ABS is not allowed by the rules since the brake system is a safety
critical system. The car in fact has to pass a technical inspection called ’brake test’ in
which the powertrain is deactivated while the vehicle is moving at a reasonable speed
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and the driver must press the brake pedal in order to lock all 4 wheels simultaneously.
The test cannot be passed if mechanical ABS is embedded in the vehicle, because
it would prevent the locking of the wheels. This inspection is meant to test the
mechanical capability of the brakes and their correct functioning in case of panic
braking, take into account that the trend in Formula student is to reduce as much
as possible the size of the brakes and let the regenerative torque do the majority or
sometimes all the job, in order to increase the efficiency of the vehicle. The effect
of this trend is that majority of teams are under-dimensioning the brakes in order
to just pass the inspection and save weight. This is not applicable to SC car, given
its weight and faster SOH (State Of Health) decrement that a HV battery pack
undergoes if high charging currents are commanded, that would require a complete
rebuild of the battery pack every year if not multiple times during the same season.

About the activation of TC or ABS, they cannot be active simultaneously on the
same wheel. The activation of one with respect to the other depends on the input
torque, if that is positive then TC activates and vice versa.

1.5.13 Vehicle Sideslip estimation

The model chosen to perform sideslip angle estimation is a dual track model as in
fig.17.

Figure 17: Dual track model [1][2]

The usage of this model is justified by the fact that FSAE vehicle undergoes
to high lateral acceleration, thus the load transfer has a worsening effect on the
total grip of the vehicle that cannot be ignored. Moreover, some of the assumptions
behind simpler models (linear bicycle models) are not met during the vehicle normal
working, since the track length of about 1.2 m is not negligible with respect to the
radius of a skidpad of 9.125 m or even worse with the minimum turn radius during
an Autocross of circa 5 m. The cornering stiffness of the tires are found according
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to a Pacejka model. The problems and the solutions related to this model will be
further discussed in section 4.

The architecture consists in a kinematic sideslip angle derivative estimation, a
dynamic estimation performed by an Extended Kalman Filter, merged together after
being filtered with two low-pass filters.

Figure 18: Vehicle sideslip angle estimation architecture

The kinematic contribution is meant to give good results in cases in which the
internal model is not satisfactory in performance or sufficiently close to the real
system. The EKF instead must guarantee the stability and convergence of the
estimation at steady-state.

For more information about the validation in simulation of this architecture refer
to [3] and [4].

The covariance matrix of the EKF has been tuned with a trial and error proce-
dure, as well as some fine tuning of the filters.

1.5.14 Vehicle Speed estimation

Vehicle speed estimation subsystem is responsible for estimating the vehicle speed
by taking into account the rotational speed of the motors and the accelerations from
the IMU. It is implemented via a fuzzy logic system as in fig.19 from [6].

Figure 19: Fuzzy velocity estimation architecture
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The linear speed of the wheel can be computed looking at the speed of the motor
and the wheel radius. Assuming to have already an estimate of vehicle speed, it can
be compared to the linear wheel speed to understand if a wheel is slipping, locking
or neither of those.

A driving condition selection block is fed with the measurement of the longitu-
dinal acceleration and allows identifying five different conditions: strong braking,
braking, coasting, acceleration, and strong acceleration according to acceleration
value.

According to a Fuzzy controller, tuned as in [6], to each wheel is given a weight
stating how much reliable is its linear speed when it will be used to compute the
vehicle speed as a weighted average.

A reasonable objection can be raised if this speed is used to calculate then the
slippage of a wheel to be fed into the Traction Control or the ABS. To have a better
vehicle speed estimation, less dependent on wheel velocities, GPS speed can be used.

This estimator has been validated in 2023 comparing its estimation with the
measure of the the sideslip angle and speed sensor Correvit S-Motion by Kistler.

1.6 Thesis Outline

This work is structured as follows:

• Section 2 presents the State of the Art for vehicle State Estimation and Yaw
Control Systems;

• Section 3 presents the track validation of the feedback part of the previously
presented architecture for Yaw Control;

• Section 4 presents an enhancement proposal for the sideslip estimation EKF.
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2 State of the Art

2.1 Yaw Controllers

Yaw controllers are widespread to improve vehicle handling in limit condition. With
the advent of hybrid and electric powertrain this has become an even more inter-
esting topic given the possibility to have multiple powertrain and different torque
distribution. The goal of these algorithms is to compute a yaw moment Mz needed
to reduce a yaw rate error with respect to an arbitrary reference. Usually it is com-
puted with the neutral and kinematic characteristic of a bicycle model, as stated
in section 1.5.8. Yaw Controllers can be implemented also for vehicle sideslip angle
control as a safety measure to avoid too large angles at high speeds. We must re-
member that the larger is the sideslip angle and the higher is the non-linearity in the
behavior of the vehicle and a normal human driver can find difficulties in controlling
the car in such a situation.

The following categories are implemented for high level controllers, to which
other two control layers must be complemented: a torque repartition layer and a
lower level torque control of the motors.

2.1.1 PID controllers

The simplest method consists in a Proportional-Integral-Derivative (PID) controller,
based on the yaw rate reference error and/or the sideslip angle error. The law
governing the output of a PID controller is reported in eq.19 and a possible control
architecture is reported in fig.20.

Mz = KP e(t) +KI

∫ t

0

e(t) dt+KDė(t) (19)

Figure 20: PID controller structure

PID controllers are simple and easy to tune, their behavior is linked to the gains
KP ,KI and KD that can be tuned according to tab.2 and to tab.3, that reports the
Ziegler–Nichols’ method.
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Parameter Rise time Overshoot Steady-state error Stability

KP Decrease Increase Decrease Degrade
KI Decrease Increase Eliminate Degrade
KD Minor Change Decrease No effect in theory Improve if small

Table 2: Effect of the PID parameters on the system

We can start from a P controller. Let Ku be the value of KP at which the
closed-loop system oscillates with a constant amplitude. Let Tu be the oscillation
period.

Controller KP KI KD

P 0.5Ku - -
PI 0.45Ku 1.2KP

Tu
-

PD 0.8Ku - KpTu
8

PID 0.6Ku 2KP

Tu

KpTu
8

Table 3: Effect of the PID parameters on the system

It is possible to tune this controller looking at the resulting damping ratio, since
the whole system will behave like a mass-spring-damper setup.

PID controllers are robust against external disturbances, noise and change in
plant parameters. Optimality of the control output is not guaranteed. The drawback
of PID controller is that they are effective if the plant is LTI (Linear Time Invariant)
meaning that the dynamic equations of the plant are linear differential equations
characterized by fixed parameters with respect to time. The linear model of a
vehicle, the bicycle model, is not properly time invariant since the A and Bd matrices
reported in 10 and 11 have elements that depend on the vehicle speed. If speed is
assumed to be constant, then the model is LTI. In this application this cannot be
assumed, so the a PID controller with fixed gains is not a possible solution. A
possible solution to this problem consists in a gain-scheduling approach, tuning the
gains at different speeds for the wanted response and interpolating for intermediate
speeds with a LUT (Look Up Table)

Generally, the controller is reduced to a PI only, since the derivative component
has the effect to amplify error noise that is detrimental for stability. If the derivative
term is considered, the error is usually conditioned with a discrete low-pass filter,
this configuration is called PIDF controller.

2.1.2 LQR controllers

LQR controllers fall into the category of optimal controllers. Differently from the
PID, they require an internal model of the vehicle which reliability affects the effec-
tiveness of the controller itself.

LQR stands for Linear Quadratic Regulator, meaning that it minimizes a quadratic
weighted cost function that includes the vehicle state and the control input, in this
case the torque vectoring actuation of Mz. The minimization is usually referred
to the weighted Energy of a signal, another name to call the weighted squared L2

norm. In general, the objective is to minimize the summation between the weighted
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energy of the state vector, with nonzero weights on the Q matrix corresponding
to the variables that are under control, and the energy of the control input. It is
possible to reformulate the internal dynamic model of a plant in order to have the
state error vector as new state vector, in this case LQR controller would minimize
the Energy of the error.

Being a state feedback controller, the control gain is obtained by solving the
Riccati equation. The equation is usually solved offline if the plant is LTI. If the
plant cannot be assumed as LTI, the equation can be solved online, with some more
computational effort, but with an adaptive model as in the case explained in 1.5.10,
becoming an Adaptive LQR controller and showing much better performance in an
extended range of speed. The architecture of such a controller looks like the one
depicted in fig.21 from [7].

Figure 21: LQR controller structure

2.1.3 FeedForward controllers

This category of controller act in open loop, thus they cannot operate to ensure
steady state stability. For this reason, their operation is much faster with respect
to a closed loop control and are usually employed in systems like the one showed
in fig.22 from [7], in which they are coupled with a state feedback controller of any
sort and their aim is to improve the responsiveness and the reactivity of the whole
control architecture, without spoiling the steady state stability.

Figure 22: Feedforward controller structure

In fig.22, the feedforward branch is implemented via a Proportional controller
on the steering angle imposed by the driver, Kδ, that is summed to the feedback
contribution. An advantage of this solution is that it is extremely easy to tune and
very drivable. Considering the perspective of the driver that has to handle the car
on the limit, knowing that the more steering angle and the higher the yaw moment
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is very intuitive. The limit of this approach is that it is not adaptive with respect
to the car speed, or in general it does not adapt to the vehicle state.

Another possibility is to have a transfer function instead of a simple gain, in this
way the system has the possibility to react differently depending on the frequency
of the input or depending on the system state, as implemented in 1.5.9.

2.1.4 Sliding Mode controllers

Sliding mode controllers are Variable Structure Controllers [8]. The output of this
controller is binary, low or high, usually implemented with a sign function. The
high control output (can be positive or negative) is meant to bring the state of the
plant as close as possible to a state surface, composed by working points in which
it is more convenient to operate the plant. After having reached this state surface,
the plant will work while ’sliding’ on it. In this formulation, the SMC gives rise
to chattering phenomena when the plant is near the target surface, attenuated via
low-pass filters. The advantage of this solution is that it is completely unaware of
the plant characteristic, thus also unaware of plant and model discrepancies.

Evolutions of this architecture can be considered:

• SMC with boundary surface: The target surface has a thickness in which the
control action is continous. Avoids control discontinuities but chattering is
still a possible problem.

• SOSM Second Order Sliding Mode: The controller defines the control action
first order derivative with the switching function, suppresses the chattering
behavior.

• ISM integral Sliding Mode: Starts immediately with sliding motion, without
the requirement of the reaching phase in which the system dynamic is not the
ideal one.

2.1.5 Fuzzy Logic Controllers

Fuzzy Logic controllers is an approach regarding the design of control systems for
strongly non linear systems for which the competence and experience of the designer
prevails about the controlled plant is much more robust than the actual mathemat-
ical modeling. This logic do not rely on some deep mathematical theory or complex
models, but on three main blocks: fuzzification, inference engine and defuzzification.
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Figure 23: Fuzzy Logic controller structure

Fuzzification happens with the Input Membership Functions, where the yaw rate
error, sideslip angle error and possibly their rates are the numeric variables and are
converted into classes or language variables, A single numeric variable can belong
to multiple classes with different importance.

The inference engine is a table of rules, in which the classes are combined to
decide possible control rules. Since more classes for the same numeric variable can
be activated, then more rules with different importance can be activated as well.

Defuzzification has the job of converting the activated rules into a numeric control
output with the Output Membership Functions. The most used algorithm is the
CoG method.

Figure 24: Fuzzy Logic torque vectoring controller structure

The tuning of such a system is much more effective if it is performed on the
real system, given the uncertainties in the model, but this means that has a limited
portability between systems.

2.1.6 NMPC controllers

Numerical Model Predictive Control is a widespread control strategy for strongly
nonlinear systems, for which is defined a constrained control problem [9]. The
difference between LQR and NMPC lays in the fact that NMPC optimizes the
behavior of the vehicle in a finite time horizon, differently from LQR in which the
optimization is ideally defined up to t = ∞. With NMPC controllers, at each time
instant the cost function that takes into account the trajectory in the state space is
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minimized through the computation of a suitable control trajectory along the time
horizon, but only the first element of the control trajectory is applied. It is easy to
understand that this is substantially more computational expensive with respect to
traditional strategies.

This controller gives the opportunity not only to optimize the squared L2 norm of
the state vector, but also to limit the operational domain of the plant by prohibiting
or limiting some states, by performing what is called constrained optimization.

Figure 25: NMPC torque vectoring controller structure

A controller of this type can take into account powertrain layout limits in torque
and power and overcome them with a suitably studied control strategy

Given the importance of the model in this strategy, the inconsistency between
model and real vehicle can spoil the algorithm characteristics.

2.1.7 Neural Networks

Neural networks are the new frontier in control system strategies. They are the
opposite of what is usually called ’model based’ approach, since their performance
is based on previously produced data on which the training is performed. These can
be used in multiple ways:

• Internal models of other control architectures. NN can be trained to mimic the
behavior of a physical system, let it be a model or a real system hat produce
synthetic or real data.

• Real time tuning of other control system architecture parameters as reported
in[10].

• Mimic the behavior of more complex and computationally expensive algo-
rithms such as NMPC controllers. The Neural network can be tuned offline
with the results coming from a NMPC that is not able to run in real time.
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Figure 26: Fully connected Neural Network structure

2.2 Side slip angle estimation

The implementation of a Yaw Controller requires signals that are generally not
available in a vehicle equipped with medium-low cost sensors. Among these missing
sensors are present:

• Tire load sensor/ push-rod load sensors. Useful to have a better view of load
transfer repartition during real operation, without using dynamic equilibrium
equations and a better estimation of tire ground forces;

• Tire longitudinal and lateral forces load sensors. Useful in order to validate tire
models in post-processing and use those models for suspension optimization;

• Tire temperature and pressure sensors. These would be useful to validate
thermal models and to monitor in real time the proper functioning of the tires
with respect to the camber angle setup;

• Sideslip angle sensor. This is extremely useful for proper handling control.

Some of the previous signals can be roughly estimated. For example front and rear
axle total lateral force can be found with the lateral equilibrium of the bicycle model,
while vertical forces can be estimated using IMU accelerations and vehicle estimated
speed.

The sideslip angle of a vehicle can be measured in 2 ways:

• Two-antenna GPS system: the two points for which the GPS position is known
provide both the speed vector in the inertial reference frame and the yaw
direction of the vehicle, hence the sideslip angle can be derived as the angle
between the yaw direction and the speed vector in global coordinates. While
the two absolute positions measure can be relatively inaccurate, up to 5-10 m
of inaccuracy, the fact that there is a fixed distance between the two can give
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accurate results when estimating the yaw angle as stated in [11]. The cost of
this system can be up to e 500.

• Optical sensor: Some optical sensors are available on the market. Their work-
ing principle is based on comparing two frames of the tarmac texture, taken
at a known ad calibrated distance. The relative position of the two frames
indicates the spacial movement, hence the speed and the direction. The cost
of this system can be up to e 15.000.

In order to make the yaw control of the vehicle satisfactory, sideslip angle esti-
mation must be performed if direct measure is not available.

2.2.1 Kinematic estimation

One way to estimate the sideslip angle of a vehicle is by using the kinematical
relationship of slip angle velocity, yaw rate, lateral acceleration, longitudinal velocity
and road bank angle reported in eq.20 and the estimation can be performed as in
eq.21.

ay,meas = (β̇ + r)Vx − g sin(ϕr) (20)

β̂kin =

∫
˙̂
β dt =

∫
(
ay,meas + g ϕr

Vx
− r) dt (21)

With r that is the yaw rate and Vx is the longitudinal speed. For our specific
application, the road bank angle is assumed to be null.

This method is of course robust against discrepancies between a vehicle and its
model, tire model and track grip, since it is based on measured variables only. The
problem of this approach is that the integral will for sure diverge due to bias errors
in the sensors, no matter how limited it is.

2.2.2 Dynamic estimation

Dynamic estimation methods are robust in case of sensor errors, with proper tuning
of the parameters the estimation should be stable and will not diverge. The problem
of these approaches is that their accuracy depends a lot on accuracy of the internal
model, on road condition, on the overall grip and so on. One of the most relevant
dynamic estimation method is for sure the Kalman filter.

2.2.3 Kalman Filter

The Kalman filter is the best possible (optimal)estimator for a large class of prob-
lems and a very effective and useful estimator for an even larger class [12], and
consists in a recursive procedure of prediction and correction. A possible problem
for which the Kalman filter can be a solution is the observer design problem, in other
words determine the internal state of a system looking only at its outputs. In the
assumption that the system in question works with a linear stochastic difference
equation like eq.22

xk = A xk−1 +B uk + wk−1 (22)
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and its outputs are described like eq.23

zk = H xk + vk (23)

where wk−1 and vk are respectively process and measurement noise, random vari-
ables, that model both sensor noise and electrical circuit noise. These are assumed
to be white and with normal probability distribution. In theory, A,B and H can
change in time. The complete algorithm is shown in fig.27.

Figure 27: Kalman filter algorithm

2.2.4 Extended Kalman filter

When the plant is not linear, simple Kalman filter equations are no more valid,
using a simple Kalman filter for estimating the state of a nonlinear system is not a
solution.

The new plant in analysis is characterized by the following difference equation
and measurement equation

xk = f(xk−1, uk, wk−1) (24)

zk = h(xk, vk) (25)

The solution to this problem is the Extended Kalman Filter, which recursive
procedure is reported in fig.28.
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Figure 28: Extended Kalman filter algorithm

where A is the Jacobian matrix of f with respect to the state x, W is the
Jacobian of f with respect to w, H is the Jacobian of h with respect to x and V is
the Jacobian of h with respect to v.

In the specific case of this work, we have that

z =


r

Fy,F
Fy,R

 (26)

where Fy,F and Fy,R are the axle side forces that can be estimated as in eq.27
and 28, since IMU signals are reliable these estimated forces can be assumed as
measurements.

F̂y,F =
m ay b+ Jz ṙmeas

a+ b
(27)

F̂y,R =
m ay a− Jz ṙmeas

a+ b
(28)

The result of the dynamic estimation is β̂dyn.

2.2.5 Combined estimation

As analyzed in [11], there is the possibility to join the kinematic and dynamic
estimation, trying to keep the best characteristics of the two sides. The law is
reported in eq.29.

β̂ =
1

τs+ 1
β̂dyn +

τ

τs+ 1
˙̂
βkin (29)

At lower frequencies the main contribution is given by the dynamic part, robust
against bias errors, while at high frequencies the dynamic change of sideslip is done
according to the kinematic estimation.
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2.2.6 Neural Networks

The implementation of a Neural network for the estimation of the sideslip angle of a
vehicle is becoming more and more common, especially for the latter implementation
inside more complex models or inside other controllers. The neural network can be
tuned offline with synthetic or real data.

One problem linked to this approach is the complete absence of a physical model,
if a parameter of the plant is changed or there is an important mismatch, then the
neural network must often be retrained, using time and computational cost.

2.3 Model validation

Model validation is the base for model based control and estimation design. A
vehicle model can be validated under a limited number of operational conditions,
for example the internal model inside the torque vectoring algorithm exposed in
1.5.10 works better for small values of longitudinal acceleration due to the pure
lateral model that is taken into account for the cornering stiffness (no elliptical
model is considered).

Another aspect can be related to tire data: if we expect that a vehicle is mostly
driven under ’linear’ conditions, then a linear characteristic of Cα(Fz) can be con-
sidered, if the vehicle will work under strong saturation of the tires and at with high
tire sideslip angle the linear characteristic is no more satisfactory and will cause an
overestimation of the performance.

The main task of validation is comparing the metrics with the accuracy require-
ments, these metrics can be vector norms, average residuals with standard deviation,
coefficient of correlation, normalized integral squared error, normalized root mean
squared error, maximum absolute error and many others.

2.3.1 Tests and data

According to [13], the following five test cases are defined as primary validation
maneuvers:

• Steady-state lateral dynamics (low frequency);

• Transient lateral dynamics (wide frequency range steering input);

• Longitudinal acceleration(throttle inputs);

• Longitudinal deceleration (braking);

• Road disruption input (suspension kinematics and ride dynamics)

If the model that is interested by validation is a pure lateral rigid vehicle model,
only the first two can be adopted.

The higher number of data and signals is acquired, the better it is. In case of a
vehicle it would be ideal to measure:

• Fz, vertical forces on the tires or at the spring, assuming to be in steady-state
and knowing the anti-roll and installation ratio of the suspension, it is possible
to retrieve the vertical force con the contact patch.
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• Fy,tire, lateral force on the contact patch, retrievable with load cells or strain
gauges placed on the suspension control arms. These will be fundamental for
tire model validation, since there is no known method to measure the single
tire contact patch force starting from the accelerometers on board. Only the
axle force can be measured by IMU.

• ax,ay and r are usually available from an IMU and Gyro.

• δW from a steering angle sensor and the LUT between driver steering input
and wheel steering.

• β, from 2 point GPS measurement or optical sensor.

It is important to measure all the possible parameter of a model as well.

The position of the center of gravity, both in longitudinal and vertical can be
measure with the weights. Another way to measure the CoG height is to run a
turn at different speeds, and so different lateral acceleration, measuring the vertical
force on each tire and then retrieving the CoG height by reversing the dynamic
equilibrium equation 30.

∆Fz =
m ay hCG

l
(30)

The different speed and lateral acceleration should allow to take different measures
to extrapolate a mean value and variance.

One of the most difficult to measure parameters is the yaw inertia of a vehicle.
The best way is to measure it on a test dynamic platform. Another way can be to
perform a sensorized step steer maneuver, retrieve the lateral and longitudinal forces
in vehicle reference frame, translate the forces into moments around the CoG taking
into account the wheelbase, track and load distribution, sum all the contributions
and divide by the yaw measured acceleration.

The powertrain characteristic must be well known, given by manufacturer or test
bench.

Any measured parameter in theory should be provided with its uncertainty val-
ues.

2.3.2 Manual procedure

The conventional procedure involving:

• Run a simulation;

• Compare the outputs with real logged data;

• Based on the difference look for the reason;

• Change the parameter that affects that particular phenomenon.

This is repeated for different maneuvers until a suitable and reasonable model is
found, ideally within the uncertainty limits of the measured parameters.
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2.3.3 Automatized procedure

An automatized procedure for model validation is proposed by [13], reported in
fig.29.

Figure 29: Automatic model validation algorithm

In this algorithm, the job of updating the model parameters is left to a Neural
Network specifically trained for this purpose.

Even if the automated procedure might be a nice solution to reduce time and
effort, the chosen solution for this work is the manual tuning. The decision was
taken considering the fact that the automated procedure needs the interval in which
the algorithm can change the parameters, but these intervals were not meaningful
since the weight repartition has very low uncertainty while the yaw inertia is not even
measure but it is estimated from the CAD of the vehicle. This is due to two reasons:
the absence of strain gauge for tire lateral force measure and the impossibility to
perform step steer maneuvers.
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3 Torque Vectoring - track
performance assessment

This section has the aim to present the tests performed to validate the feedback
Torque Vectoring algorithm proposed in 1.5.10.

3.1 Test setup

Here is reported the hardware used. All sensors have been properly calibrated
before the tests. Apart from the sensors and hardware presented here, many more
are implemented in the vehicle, but their description is out of the scope of this work.

We want to remember that each sensor signal comes with a certain amount
of noise. IMU and Correvit SF-Motion, presented in the following, will be used in
section 4.3.3 to retrieve forces and sideslip angles. A Butterworth filter with a cutoff
frequency of 15 Hz is used in post processing to filter-out noise.

3.1.1 VCU - dSpace MicroAutobox2

The Vehicle Control Unit is a dSpace MicroAutobox2,1401/1511 equipped with IBM
PPC 750GL processor running at 900 MHz, 16 Mb memory, 16 Mb nonvolatile flash
memory containing data recorder.

Figure 30: dSpace MicroAutobox II installation

Since all the logics are developed using Matlab/Simulink, also the code genera-
tion is done exploiting this software. In fact, Matlab offers together with dSpace,
dedicated tools for can communication (both Tx and Rx) and code generation with
full-executable, just requiring as input the target dSpace ECU. Moreover, CAN.dbc
files are needed to be imported into Simulink before code generation, for proper
CAN communication. Once all the parameters are set correctly (CAN communica-
tion subsystems, target ECU selected), the C code can be generated autonomously.

3.1.2 IMU - SBG Ellipse-N

This inertial measurement unit is equipped with an internal GNSS receiver, fig.31,
and provides data regarding:
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• Accelerations

• Roll,Pitch

• GPS position

• Azimuth

The sensor is placed between the front dampers, under the suspension cover. A
different position has been found for the GNSS sensor as a consequence of Faraday
cage effect. GNSS should be positioned horizontally.

Figure 31: IMU installation

3.1.3 Sideslip angle sensor - Kistler Correvit SF-Motion

The Correvit SF-Motion sensors enable direct, slip-free measurement of the longi-
tudinal and lateral speed as well as the sideslip angle of ground vehicles. Additional
measurements, such as the leveled acceleration or the curve radius are already cal-
culated inside the sensor. A conversion of speed to any other point of interest, e.g.
the center of gravity or rear axis is possible.

The sensor was placed in the back of the vehicle, perpendicular to ground, in a
vertical position as suggested by the data sheet, on the symmetry plane of the car
and at a known longitudinal distance with respect to the CoG. The delivered KiCen-
ter software allows an easy sensor configuration. Programmable and standardized
signal outputs and interfaces provide direct connection to PC and virtually all data
acquisition systems, which makes available all measured state variables.

Extreme attention must be put on the calibration of the sensor: since the sideslip
angle ranges normally between -5 and 5 deg, an error of 0.5 deg means a loss of
precision by 10%.

The sensor can give as outputs:

• Distance

• Speed vector (x,y)
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Figure 32: Sideslip angle sensor installation

• sideslip angle

• accelerations and angular rates

• GPS position and UTC time

• pitch and roll angle

Accelerations and angular rates have been compared to the IMU signals in order
to have an indication of goodness of the measurements.

3.1.4 Steering angle sensor - RLS RM08

The RM08 is a compact, sealed, super small, high speed rotary magnetic encoder
designed for use in space limited applications. The non-contact two part design
removes the need for seals or bearings ensuring long-term reliability and simple
installation.

Figure 33: Steering angle sensor

The calibration of this sensor is crucial since the model that will be evaluated
using the steering signal is very sensitive to steering input bias errors. Steering angle
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sensor is generally characterized by a very small amount of noise, thus its output is
not filtered.

3.2 Maneuvers

The chosen maneuvers to test the performance of the Torque Vectoring strategy are:
Slaloms, Double Lane Change and track laps, held in the old SC test facility. Being
on an actual track the maneuvers that can be performed are limited by the available
space: ramp-steer, step-steer and sine sweep steer maneuvers are almost impossible
to perform because they need much longer straits or much wider tarmac regions for
safety reasons.

3.2.1 Slalom

The slalom is performed according to FSG rules, with a port distance of 8 m. The
maneuver consisted in arriving at the first port while braking, perform the the
slalom in the best of the possibilities using throttle inputs, and steering inputs and
accelerate at the exit of the last port.

Figure 34: slalom cone setup

The torque deliverable by each motor to the wheels was set to the maximum
torque in traction of 21 Nm, and 10 Nm in regenerative. The maximum power
available was set to 30 kW to increase the drivability at low speed but the actual
used maximum power was never higher than 17 kW, hence this limit introduced
for drivability is not affecting the maximum performance of the vehicle. All the
maneuvers had been performed with the same wheel angle setup and on the same
date and in the same session, to minimize grip variation and induced errors due to
temperature, moreover only the maneuvers characterized by small tire temperature
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difference where taken into account for this work (the first test were discarded due
to tire warm-up). Traction Control is enabled for safety reasons.

A very important thing to point out is that there are three ways to limit an elec-
tric vehicle speed: limit the maximum deliverable torque, limit the maximum speed
of the motor or limit the maximum power. If we want to limit vehicle performance, it
is much more convenient to limit the maximum power, especially if we are testing a
torque distribution algorithm. The maximum speed limit has to be avoided because
when the motor reaches the maximum speed, the lower level controller presented
in 1.5.2 reduces the commanded torque to avoid overcoming the speed limit. As a
result, the TV effort would be completely spoiled.

The temperature of the tires was measured after each maneuver and ranges
between 23 and 32 °C, temperature at which the tire cannot work properly. This
is a more challenging scenario for the vehicle, even if it is compatible with its race
utilization, in which tires cannot be warmed up.

3.2.2 Double Lane Change

Double Lane Change is a standard maneuver to assess vehicle stability during emer-
gency situations, its procedure standardized by the norm ISO 3888-1:2018 for pas-
senger cars. The prescribed dimensions from the norm allow too high speed for
our test vehicle, putting the driver in danger of a high-speed spin out. Given the
limited road width, the test vehicle speed had to be reduced to limit the risk to an
acceptable level, hence a non-standard layout has been chosen. This is reported in
fig.35.

Figure 35: DLC cone setup scheme

This layout is characterized by a track width of about 3.5 m, a port width of
about 6 m and a distance between the ports of about 7 m, allowing a maximum
speed of the vehicle lower than 55 km/h.

The DLC maneuver is performed as follows:

• The power is limited at about 12 kW, Torque is not restricted.

• The driver accelerates and reaches maximum speed allowed by the maximum
power before the entry of the first turn.
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• The driver performs the maneuver while keeping 100% throttle.

The choice of having the throttle pedal always pressed has been driven by the
willingness to separate as much as possible the power delivery problem joined with
the driver behavior and the vehicle dynamics control problem. The possibility of
adjusting the throttle actuation is given during slalom maneuvers.

The maximum power at which the maneuver is performed is found with a trial-
and-error procedure, in which an initial power, thus an initial maximum speed, is
set. If the maneuver is successful, the power is increased iteratively until the test
becomes impossible to perform. The maximum power is tuned with the torque
vectoring control switched off and kept the same for the test with control switched
on. Traction control is enabled for safety reasons.

As for the slalom tests, all the maneuvers had been performed with the same
wheel angle setup and on the same date and in the same session. The temperature
of the tires was measured after each maneuver and ranges between 22 and 26 °C,
taken after each test.

3.2.3 Tack Lap

The layout used for track test has been chosen among the all the possibilities in order
to have a lot corners, especially low speed. This layout has a length of approximately
450 m and a maximum speed of 80 km/h. The laptime for this configuration with the
imposed maximum power ranges from 28 s up to 34 s depending on grip condition.

Figure 37: track for complete laps upper view

The maximum power of the vehicle was limited to 50 kW in order to preserve
the HV battery pack, the maximum torque was set to 15 Nm in traction an 10 Nm
during regeneration. Traction Control was always enabled for safety reasons.

As for the previous maneuvers all the laps were performed in the same session,
the first laps were not taken into account for the analysis since tire warm-up took

44



3.2 Maneuvers
3 Torque Vectoring - track

performance assessment

Figure 36: DLC photo sequence while TV is off
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between 4 and 5 laps. The steady-state working temperature of the tire were ex-
tremely low even after the warm up, between 45 and 55 °C, due to cloudy weather
conditions and low air temperature of 16°C. Again. this is an important proving
ground for the vehicle since the low grip conditions.

3.3 Results

For each test type, a couple of maneuvers were selected, one with activated Torque
Vectoring and the other completely passive (Traction Control switched on). Results
are presented in terms of plots of notorious signals versus distance and a table with
KPI in tables 4,5 and 6.

The analyzed signals are:

• Driver steering input δSW

• Vehicle longitudinal measured speed from Correvit SF-Motion sensor Vx

• Lateral acceleration from IMU sensor ay

• Yaw rate from IMU sensor ψ̇

• Sideslip angle β

• Yaw moment Mz commanded by Torque Vectoring

• Motor torques commanded during Torque Vectoring Tmot

• GG-plot is presented for the track lap

The analyzed KPI are the following:

• IACAδ as described in eq.31, to measure steering effort.

1

tfin − tin

∫ tfin

tin

|δSW | dt (31)

• Maximum steering angle value δSW,max

• Maximum lateral acceleration ay,max

• Maximum sideslip angle βmax

• Yaw rate reference maximum error ψ̇err,max

• Yaw rate reference RMS error ψ̇err,rms

• Laptime, only for track laps, Tlap
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TV
IACAδ
[deg]

δSW,max
[deg]

ay,max
[g]

βmax
[deg]

ψ̇err,max
[rad/s]

ψ̇err,rms
[rad/s]

Tlap
[s]

OFF 28.82 70.3 1.63 2.27 0.92 0.24 -
ON 24.5 55.7 1.70 5.09 0.63 0.16 -

Table 4: KPI table for slalom maneuver

TV
IACAδ
[deg]

δSW,max
[deg]

ay,max
[g]

βmax
[deg]

ψ̇err,max
[rad/s]

ψ̇err,rms
[rad/s]

Tlap
[s]

OFF 37.15 104.3 1.69 4.21 1.57 0.67 -
ON 14.13 35.0 1.64 3.19 0.40 0.12 -

Table 5: KPI table for DLC maneuver

TV
IACAδ
[deg]

δSW,max
[deg]

ay,max
[g]

βmax
[deg]

ψ̇err,max
[rad/s]

ψ̇err,rms
[rad/s]

Tlap
[s]

OFF 26.08 94.0 1.96 8.71 1.28 0.40 32.19
ON 24.52 74.1 2.10 9.46 1.13 0.34 30.79

Table 6: KPI table for track lap

All the maneuvers have in common a reduction in the steering wheel operation,
which is good for the driver effort. It is also clear that in all the test cases, when
the control is active, the maneuver can be performed at a higher speed. It must be
pointed out that the comparison between the maneuvers is not influenced by tire
grip, as can be seen from the maximum lateral acceleration values that are very
similar for the same test category.

Talking about the slalom maneuver, it is nice to notice that the speed is in-
creased and the peak of needed steering is decreased, this means that the curvature
gain characteristic or the understeering factor characteristic versus speed has been
enhanced towards a more neutral behavior.

It is possible to notice that in the last part of the maneuver there is an increment
of Yaw Rate that is not corresponding to an increment in steering angle or speed,
thus an oversteer is present and can be seen also on the sideslip trace, as a little
drifting. This near to an optimal behavior since and understeering behavior in the
exit of a corner is much more impacting on the laptime than an oversteer. It can
be noticed anyway that the controller in that instant acts to stabilize the vehicle,
ensuring stability and not only performance. This oversteering is very probably due
to the torque request at the exit of a corner, thus this effect can be reduced partially
acting on the Traction Control. We can appreciate a reduction in maximum and rms
yaw rate reference error, this is very important because of the increment in speed
as well: the higher is the speed at fixed steering angle and the harder is to maintain
the trajectory [14] [15].

47 Andrea Masoero



3.3 Results
3 Torque Vectoring - track

performance assessment

0.
92

0.
24

0.
63

0.
16

Max Error RMS Error
0

0.5

1

1.5

Y
aw

 r
at

e 
re

fe
re

n
ce

 e
rr

o
r 

[r
ad

/s
]

0 10 20 30 40 50 60

Distance [m]

-50

0

50

S
te

er
in

g
 a

n
g
le

 
S

W
 [

d
eg

]

0 10 20 30 40 50 60

Distance [m]

35

40

45

50

L
o
n
g
it

u
d
in

al
 v

el
o
ci

ty
 V

x
 [

k
m

/h
]

0 10 20 30 40 50 60

Distance [m]

-2

-1

0

1

2

L
at

er
al

 a
cc

el
er

at
io

n
 a

y
 [

g
]

0 10 20 30 40 50 60

Distance [m]

-2

-1

0

1

2

Y
aw

 r
at

e 
[r

ad
/s

]

0 10 20 30 40 50 60

Distance [m]

-6

-4

-2

0

2

S
id

e 
sl

ip
 a

n
g
le

 
 [

d
eg

]

0 10 20 30 40 50 60

Distance [m]

-200

-100

0

100

200

300

400

M
z 

[N
m

]

0 10 20 30 40 50 60

Distance [m]

-10

-5

0

5

10

T
m

o
t [

N
m

]

FL FR RL RR

Torque Vectoring Torque Vectoring ref. Passive Passive ref.Slalom

Figure 38: Torque Vectoring validation signals - Slalom
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Figure 40: Torque Vectoring validation signals - Track lap
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Looking at the DLC it can be said that, with the passive maneuver, due to the
high amount of steering needed, the vehicle is slowing due to the longitudinal com-
ponent of lateral force. Also, some front axle traction force component is needed to
provide some yaw moment and it is not able to supply power to maintain constant
vehicle speed. The reduction in steering wheel is enormous. The reduction in steer-
ing input is good also because the sideslip angle of front tires is reduced, hence the
tire behave more linearly and not in strong saturation region.

Considering the Track lap results, it is obvious that the control is beneficial for
the vehicle handling and performance since all the minimum speeds of the speed-
distance diagram are increased. It is interesting to notice on the GG-plot that the
peak lateral utilization region of the vehicle has been extended also at slightly higher
longitudinal acceleration (between 0 and 0.5 g): with the intervention of the con-
troller, it is convenient to apply the throttle earlier than before in the corner to
give maximum capability to the torque allocation function to distribute the torque
without power (throttle) limits. Moreover, with the control it is possible to brake
harder due to the decreased risk of spinning that is guaranteed. According to the
driver opinion, it is a pleasant sensation to make the car rotate with the throttle
input without the risk of spinning the tires. The time gained is impressive, with 1.4
s gained that is around 5% of the total. In perspective of FSG track, with a laptime
of around 85 s, that would be a gain of around 4.3 s.

Another benefit of the TV algorithm is that a convenient torque allocation is
studied upstream of the TC. This can minimize the wheel slippage and have positive
effects also on the energy consumption, effect that is not analyzed in this work.
It must be said that the Torque Vectoring control under analysis takes as input the
measured sideslip angle and not the estimated one. This does not spoil the results
of this work due to how the reference sideslip angle is computed. During the whole
operation the sideslip angle reference has been always equal to the measured sideslip,
since the sideslip control is active only in case of very high angles, see 1.5.8.

Figure 41: Test vehicle on a flying lap during testing
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The Torque Vectoring algorithm can work even without the sideslip angle estimation,
in this case only yaw rate tracking is performed. The sideslip estimation is however
an important matter for our test vehicle since the sideslip angle sensor cannot be
permanently put on the car and a safety measure to prevent high sideslip angles can
help avoiding spin out during low grip conditions.

In this chapter the problem of sideslip estimation is addressed, and a possible
solution is presented.

4.1 Test setup

Given the limited amount of time and resources, the team parallelized most of
the tests necessary to validate the TV algorithm and the sideslip angle estimation,
with exactly the same experimental setup. However two additional maneuvers are
performed: Sine sweep steering and Constant Radius Cornering

4.2 additional maneuvers

4.2.1 Steering sine sweep

Sine sweep steering maneuver is a common maneuver in vehicle model and control
validation since it evaluates the response of the system at different frequencies. If
performed correctly and for a broad range of frequencies, it can be processed to give
as output the transfer function of the vehicle.

Figure 42: Sine sweep steering maneuver trial test
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In our case, the maximum power had been fixed to 10, 20 and 30 kW, without
torque constraints. This was done to have a more or less constant speed to try to
evaluate the transfer function of the vehicle at these speeds and then interpolate the
parameters for the intermediate values.

The tests performed did not give any result from this point of view, due to the
limited available space on the straights of the racetrack (both as width and length),
resulting in too few data and at too high variation of frequency. Another problem
was due to the fact that the driver is not able to perform very high frequency steering
maneuvers if the track is limited due to the fear of spinning the vehicle and performs
counter-steering actions as in fig.42. These problems are even worse when the vehicle
speed increases.

These maneuver has been used instead as test for validation of the internal model
of the EKF and TV and test maneuvers for the real estimation.

4.2.2 Constant Radius Cornering

Constant radius cornering maneuvers are standard maneuvers to assess the steady-
state lateral performance and balance of vehicles. Usually set of CRC are performed
with variable turning radius, to allow different maximum speeds and steering angles
and better characterize the vehicle. The usual turning radius ranges from 20 up to
100 m, to simulate tight turns or highway behavior.

On a test track is practically impossible to find a place to run CRC test, especially
if that track is not conceived with test purposes. Given the reduced dimension of
our test vehicle and also the final application, the turn radius can be much smaller
with respect to road vehicles, reducing vehicle speed and risk.

The chosen layout is presented in fig.43, this is not very satisfactory since the
limit speed is of around 45 km/h, but in the end it simulates pretty well one circle
of a skidpad track. The allowed maximum turning radius of that layout is 10 m,
found in the mid path of the circular crown.

Figure 43: CRC layout
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Figure 44: CRC onboard view

CRC maneuver will be extremely useful while comparing the internal models of
EKF and TV.

4.3 Traditional EKF

The Extended Kalman Filter is analyzed, to understand wether its performance can
be enhanced in some way. The EKF have been simulated in open loop, fed with the
needed track data and compare with the ground truth established by the sideslip
angle sensor.

4.3.1 Results - The problem of tire temperature

The following results represent the performance of the estimator on maneuvers like:
slalom, DLC, sine sweep steering and a track lap. They are presented in terms of
time series of sideslip angle β, Yaw Rate r, vehicle measured longitudinal speed
Vx, wheel steering angle δW , longitudinal acceleration ax, lateral acceleration ay,
reported in a GG-plot for the track lap. The different contributions of the sideslip
estimator, as explained in section 2.2, are reported in figures 45,46,47 and 48.

Looking at the time series, it is easy to notice that the dynamic contribution is
not satisfactory. Nonetheless, the combined contribution gives good results in the
sine sweep and the track lap, which are the most complicated working situations.
The goodness of the combined estimation in these two tests is related mainly to the
kinematic estimation, which is fairly reliable in these maneuvers but is also spoiling
the result in the other tests.

The fundamental problem is related to the dynamic estimator, the EKF, that
is not reliable enough. The source of this mismatch will be found in the internal
model of the estimator: this model cannot take into account the real grip condition
in which the car is found to be working. The majority of the test were performed
under low grip, due to very low tire working temperature.
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Figure 45: Sideslip estimation performance - DLC
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Figure 46: Sideslip estimation performance - slalom
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Figure 47: Sideslip estimation performance - sine sweep steering
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Figure 48: Sideslip estimation performance - Track lap
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4.3.2 The internal model

The internal model is tested in open loop fed with real track data as Vx and δW
from CRC, DLC and slalom maneuvers. The resulting Yaw Rate and sideslip angle
are compared to the ground truth respectively from the IMU and the Kistler sensor.
The results are shown in figures 49,50 and 51.

The original model overestimates by far the lateral capability of the vehicle
during DLC and slalom, as can be seen from the difference in yaw rate peak values.
It is more difficult to understand the behavior of the sideslip, since during kinematic
conditions it theoretically is in phase with the steering and in dynamic conditions
it progressively changes sign. What we can say is that when the grip is increased,
the the sideslip angle becomes nearer to kinematic conditions.

It is evident that is not just a matter of tuning grip coefficient once for all. If the
tire model is adapted for low grip situations, as in DLC and slalom maneuver, then
it is not reliable for high grip maneuvers, as the CRC. This is remarked by the fact
that the low grip model is not able to perform completely the CRC maneuver, since
a strong oversteer leads to a loss of control before reaching the real car limit. Since
the test track is the same, the absolute track grip should be the same, moreover the
track and air temperatures at which the data is recorded is very similar between all
the maneuvers.

It seems that the variable that is not taken into account is the tire temperature:
higher tire temperature allow to reach higher lateral accelerations, higher corner
speeds, due to higher grip, as can be seen in fig.52.

-2 -1.5 -1 -0.5 0

Lateral Acceleration a
y
 [g]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

L
o
n
g
it

u
d
in

al
 A

cc
el

er
at

io
n
 a

x
 [

g
]

GG-plot

high mean temperature: 45°C

low mean temperature:22°C
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Figure 49: Internal model tests - CRC

60



4.3 Traditional EKF
4 Sideslip angle estimation - track

performance assessment

0 0.5 1 1.5 2 2.5 3 3.5 4

Time [s]

-5

0

5

10

15

 [
d
eg

]

Side Slip Angle

0 0.5 1 1.5 2 2.5 3 3.5 4

Time [s]

-2

-1

0

1

2

r 
[r

ad
/s

]

Yaw Rate

0 0.5 1 1.5 2 2.5 3 3.5 4

Time [s]

30

32

34

36

38

40

 V
x
 [

k
m

/h
]

 Vehicle Longitudinal Speed

0 0.5 1 1.5 2 2.5 3 3.5 4

Time [s]

-40

-30

-20

-10

0

10

20

W
 [

d
eg

]

Wheel Steering Angle

Measure Initial Model Optimal ModelDLC

Figure 50: Internal model tests - DLC
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Figure 51: Internal model tests - Slalom
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4.3.3 Temperature Model Validation

The next problem is how to estimate the temperature effect, having at our disposal
track data only. Two main datasets have been used for this purpose: lower tire
temperature complete track laps and the CRC maneuver.

The scatter plot in fig.53 represents the axle lateral forces from the low tire
temperature track laps, colored with respect to the estimated vertical axle force that
is function of longitudinal acceleration and vehicle speed because of aerodynamics.
These laps are characterized by low longitudinal acceleration since the requested
torque is lowered by traction control or by the driver that is waiting for the tires to
warm up. With a certain amount of caution, can give some reference values to tune
a Pacejka model seen at vehicle level.

In this case, the vehicle Pacejka forces are found using the same sideslip angle for
left and right tire, assuming a vertical axle force Fz,axle to be equally split between
the two tires on the same axle. The sum of the two so obtained lateral forces is Fy.
[16].

Figure 53: Axle lateral forces scatter plot vs vehicle Pacejka model

Lateral forces are calculated as in 27 and 28 in section 2.2.4. The sideslip angle
of the axle is calculated as in eq.32 and 33.

αf = arctan(
Vy + r a

Vx
)− δW (32)

αr = arctan(
Vy − r b

Vx
) (33)

From this plot we can already observe one possible temperature effect: being the
test track run in clockwise direction, the left wheels are more loaded and they heat
up faster. This produces an asymmetry in the force distributions that is evident
when compared to a symmetric model like the introduced Pacejka. It can be seen
that, for negative sideslip angles, the model that is more or less correctly fitting
in the opposite semi-plane, is pretty overestimating the lateral force for the same
vertical axle force.
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When comparing this data with the CRC we come across another problem:
during CRC the vertical force on the axle will be pretty much constant due to very
low longitudinal accelerations and low speeds. This implies that the colormap based
on Fz,axle will lose meaning. A more meaningful indicator will therefore be the
maximum vertical force on the axle, since we can expect that a high contribution of
the axle lateral force will be addressed by the most loaded tire.

If the corner radius is assumed to be constant, as in a CRC, there is a precise
relation between the maximum vertical force on between the wheels of the same
axle, the minimum vertical force and vehicle speed.

Fz,max,i = AFz + (BFz + CFz) V
2 (34)

where

AFz =
m g pi

2
; BFz =

ρ S Cz ki
4

; CFz =
m hCG pi
R t

(35)

In eq.35, pi is the front-rear weight repartition, ρ is the air density, ki is the front-rear
aerodynamic repartition, R is the turn radius and t is the vehicle track width. In
other words. AFz is the term that takes into account the static weight distribution
independent on the speed. BFz takes into account the aerodynamic load and is
related to the square of the speed. CFz is related to lateral load transfer, dependent
on the lateral acceleration that, at fixed turn radius, is dependent on the square of
the speed as well. In this way we can write eq.36 and 37.

V =

√
Fz,max − A

B + C
(36)

Fz,min,i = AFz + (BFz − CFz) V
2 (37)

In conclusion, we can say that we can fix Fz,max,i, for a known corner radius
retrieve V , and Fz,min,i, calculate the the lateral force produced by the inner and
outer wheel considering the calculated vertical forces and a series of side slip angles,
assumed equal between left and right. Summing the two contributions, we get the
lateral axle force for a fixed Fz,max,i. This is performed to obtain the plot in fig.54,
in which the solid lines represent the vehicle-side Pacejka model rear axle lateral
force colored with respect to Fz,max,r. The scatter plot represents the CRC track
estimated rear axle lateral force colored with respect to Fz,max,r. The dashed line
represents the Pacejka model optimized for low grip applications as in fig.53.

It is optimal to observe that for low values of Fz,max,r, the vehicle-side Pacejka
model shows an equivalent cornering stiffness that is higher with respect to higher
Fz,max,r values. This is coherent with a tire cornering that saturates over a certain
vertical force value, in other words, the lateral load transfer is lowering the cornering
stiffness of the axle since the most loaded tire works more and more in a saturation
region.
Coherently with these results, a new Pacejka model is introduced inside the vehicle
model that has variable coefficients with respect to temperature. It is important
to notice that the temperature affected parameters are not in generally the maxi-
mum cornering stiffness, but more often the lateral peak friction coefficient and the
saturation characteristic of the Lateral force with respect to the sideslip angle.

In fig.55 are reported the relative changes of the Pacejka parameters according
to a linear relation with temperature, found with an interpolation procedure. This
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Figure 54: Axle lateral forces vs vehicle Pacejka model at fixed Fz,max,i

procedure was performed knowing the tire temperatures at which the maneuver was
executed and a first estimation of the new parameter, this was found with manual
tuning of the parameters. Starting from the estimate given by the model depicted in
fig.54, the parameters have been tuned with open loop simulations fed with real track
data, trying to minimize the discrepancies between measured sideslip and yaw rate
with respect to simulated. This optimization was performed on three maneuvers:
DLC, slalom and CRC. The reference temperature was chosen to be 60°C, so that
the nominal parameters are found for that tire temperature.

The equations of the temperature adaptive model are the following.

dT1 = (T1 − T0)/T0 (38)

Cy = pcy1 ∗ (1 + PTY 2. ∗ dT1) (39)

dfz = (Fz − Fz,0)/(Fz,0) (40)

mupy = (pDy1 + pDy2 ∗ dfz) ∗ (1− pDy3 ∗ sin(γ)) (41)

Dy = mupy ∗ Fz ∗ (1 + PTY 3. ∗ dT1) (42)

Ey = (pEy1 + pEy2 ∗ dfz) ∗ (1− (pEy3 + pExy4 ∗ (sin(γ))2)) (43)

Kya0 = Fz,0 ∗ pky1 ∗ sin(2 ∗ atan(Fz/(pky2 ∗ Fz,0))) (44)

Kya = Kya0 ∗ (1− pky3 ∗ (sin(γ))2) (45)

By = Kya/(Cy1 ∗Dy) (46)

Fy = Dy ∗ sin(Cy1 ∗ atan(By ∗ (1− Ey) ∗ α + Ey ∗ atan(By ∗ α))) (47)

with γ as the camber angle, T0 = 60◦C and PTY 2, PTY 3 are the interpolated
coefficients.
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Figure 55: Pacejka coefficient variation with tire temperature

In theory, a better approximation would be parabolic, showing a peak value. For
temperatures higher than the one guaranteeing best performance, thermal degrada-
tion should happen. Unfortunately no data in this region have been recorded.

The final vehicle model is fed with the measured temperatures used to adapt
the Pacejka model, simulations are performed to assess the performance of this
temperature adaptive model through all the maneuvers. Results are reported in
terms described in 4.3.2 in fig.56, 57 and 58 and with a bar chart reporting the
Goodness of fit (NRMSE), the rms error and the max absolute error, both for yaw
rate and sideslip angle in fig.60.

It can be pointed out that being this model an interpolation between different
other models, its precision to the specific case is not as high as the specific tuning.
The advantage of this adaptive model is that it is just one general model that works
in a broader range of situations, as stated by the cumulative errors in the bar chart.
Low temperature optimized model errors are missing in the cumulative values since
they cannot be calculated properly: with a low temperature tuned model applied
to the CRC, the simulation ends due to divergency of the state of the vehicle before
the actual end of the maneuver, hence the error cannot be calculated.

It can be seen in fig.58 that the temperature model is also beneficial for the CRC,
since a little reduction of grip must be taken into account due to the inner wheels
very low temperatures, caused by the fact that the car is turning for a lot of time
only in one direction.
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Figure 56: Temperature adaptive model tests - DLC
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Figure 57: Temperature adaptive model tests - Slalom
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Figure 58: Temperature adaptive model tests - CRC
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Figure 59: Temperature model error bar chart
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4.3.4 Limits of this approach

The methodology used in this work works for the studied maneuvers and track, but
is not portable to other track since the grip that is estimated is the sum of two
contributions: track grip and tire grip. It is always the interaction between tire
and road that gives the real amount of force. A much better way of estimating
temperature coefficients would be to exploit tire testing machines directly, then the
overall grip can be adjusted on track by a quick trial-error procedure looking at the
accelerations.

Ideally it would be possible to extract tire parameters directly from the acquired
data with an optimization algorithm. This is not very meaningful since there are
constraints that the optimizer cannot take into account, it is better to leave this
work to a human operator that can act with the experience and reason to tune the
parameters, trying to avoid over-fitting on the data.

A huge disadvantage of this procedure is linked to the fact that lateral and
vertical forces are not directly measured on suspension arms by strain gauges or
load cells, this means that the real lateral force expressed by a single tire cannot be
found unless some stringent assumption on the lateral friction coefficient are made,
this is why fig.54 and 53 are reported as forces at vehicle or axle level and not at
tire level.

4.3.5 Yaw Moment Diagram

The Yaw Moment Diagram is a standard approach to evaluate vehicle performance
in terms of control and stability [15]. It represents the yaw moment, as the moment
of the tire forces at the ground level versus the lateral acceleration for constant iso-
lines of driver steering input and vehicle side-slip angle and it is useful to evaluate
the transient behavior of the vehicle.

Of course, the size of this diagram depends strictly on the grip and the capability
to change the rotation of the vehicle, both will depend on many parameters such as
suspension stiffness or the anti-roll bar stiffness, but in our case study they depend
mainly on tire temperature, that affects the tire model previously found, and vehicle
speed, that involves the aerodynamics.

The following picture represents the YMD of the test vehicle with the torque
vectoring control switched off.
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Figure 60: YMD representative of a DLC maneuver : tire temperature 30 °C

From this picture we can clearly see that the vehicle lacks of proper control from
steering angles above around 50 deg. This is due to the fact that, adding more
steering angle in the vehicle that is already in a limit condition will increase the
front wheels’ sideslip angles. Since the front wheels are already in saturation, an
increase in sideslip angle will cause a decrease in lateral force that will compromise
the lateral grip of the car.

From this picture we can see that the understeering is in the end due to both
tire characteristic and the increase of steering angle. The maximum performance
behavior is found in the oversteering region of the diagram ( Yaw Moment and
lateral acceleration of the same sign).

If tire temperature increases, this saturation effects decreases.
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4.4 Temperature Enhanced EKF - Results

Based on the previous discussion, the internal model of the EKF has been enhanced
with temperature coefficients. The new model is tested as was done in section4.3.1.
The results are reported in terms of timeseries of notorious signals (in figures 61, 62,
63, 64, 65 and 66) and in terms of Goodnees of Fit (NRMSE), maximum absolute
error and rms error with respect to sideslip angle (fig.67). The considered maneuvers
for this evaluation are the one previously used and, in addition, one more DLC and
one more slalom.

The tire temperature for each maneuver was measured at the end of the maneuver
itself, these data are reported in table 7.

Tire DLC 1 DLC 2 Slalom 1 Slalom 2 CRC
Steering
sine sweep

Track lap

FL 24.8 24.9 30.1 22.0 44.7 20.4 46.5
FR 22.3 22.3 27.2 18.6 26.8 20.2 45.1
RL 24.5 25.3 31.4 22.8 65.2 20.6 49.0
RR 23.7 23.8 28.3 22.2 43.9 20.7 48.0

Table 7: Table with tire temperature for the analyzed maneuver, in [°C]

It must be pointed out that the correct tuning of the filters downstream of the
kinematic and dynamic estimation changes with depending on the maneuver. This
is due to the fact that in some maneuver is normal that the dynamic estimation is
not exhaustive, while in others it is pretty reliable. Now that the internal model is
reliable for pure lateral maneuvers and adaptive filtering can be adopted.

From the bar chart in fig.67, it can be seen that in all the maneuvers there is a
reduction of the error, even in minimal, so we can assess that the temperature has
a positive contribution to the internal model of an estimator in order to increase its
performance.

One good thing about the new estimation is that, also during more challenging
maneuvers, peak estimated values are nearer to the measured ground truth. This
is good news for scope of this estimator that must track well the extreme work-
ing conditions to provide correct information to the TV algorithm that uses this
information only when a certain sideslip angle is reached.
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Figure 61: Sideslip enhanced estimation performance - DLC1
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Figure 62: Sideslip enhanced estimation performance - DLC2
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Figure 63: Sideslip enhanced estimation performance - Slalom1
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Figure 64: Sideslip enhanced estimation performance - Slalom2
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Figure 65: Sideslip enhanced estimation performance - Sine sweep steering
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Figure 66: Sideslip enhanced estimation performance - Track lap
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Figure 67: Sideslip estimation performance - bar chart KPI
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The reasons why steering sine sweep and track lap are still challenging situations
for the EKF can be the following:

• The traction force during these two maneuvers is not negligible. According to
the elliptical approximation there must be a decrement in lateral performance
when a longitudinal ground force is expressed. This is why during braking
maneuvers and especially during wheel locks the estimation is not reliable. It
can be clearly seen from the longitudinal acceleration plot during a track lap
that the time spent at low longitudinal acceleration is negligible compared to
the remaining.

• Both track lap and sine sweep steering are characterized by higher speeds
with respect to DLC and slalom. This might have something to do with
aerodynamics, that are not validated on track but only in wind tunnel.

• Both track lap and sine sweep steering excite the vehicle with higher steering
frequencies, this is also a consequence of the higher speeds. At higher frequen-
cies the behavior of the suspension system and the vertical bouncing of the
tire becomes more relevant, especially if low pressures are used inside the tires.
All these are not modeled inside the EKF.
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5 Conclusions and future works

5.1 Torque Vectoring

5.1.1 Track test of Feed Forward controller

Due to a malfunction in the map selection system implemented in the steering
wheel, the feedforward controller was always off during the track validation. New
test session are planned to asses the performance of this controller that must work
in parallel with the already validated feedback architecture.

5.1.2 Track test with new temperature based model

The torque vectoring algorithm uses the very same model implemented in EKF.
Another test campaign must be performed in order to assess the controller behavior
with the enhanced internal model, hoping in another increment in performance that
is expected when an internal model of an optimal controller matches even better the
characteristic of the plant.

5.1.3 Develop a model for wet operation, grip estimation

Based on this work, the adaptability of controllers to track conditions must be
analyzed. An online grip estimation algorithm can be implemented in order to adapt
the control output based on the ’measured’ condition, without modeling which is
the cause of that condition.

5.2 Side slip estimation

5.2.1 Dynamic and combined estimation blend

Dynamic an Kinematic estimation has revealed to be a life saver when it comes
to more complex maneuvers. Nonetheless, there might be situations in which the
dynamic only contribution is a better estimator than combined, as it was seen in
DLC maneuvers and Slalom maneuvers. The same behavior is expected to happen
during skidpad disciplines, in which the car runs under very low torque input in
almost pure lateral operation.

A possible suggestion to address this problem can be to develop a rule based
function that switches between the dynamic estimation and the combined estimation
depending on the longitudinal acceleration , or even better the torque request or the
longitudinal slip) and on the yaw rate derivative. Longitudinal slip is an indicator
that tells us how much far we are from the pure lateral conditions, hence the higher
the longitudinal speed and the higher the weight on the combined estimations. The
yaw rate derivative is a symptom of both strong oversteering, if the derivative is
coherent with the steering signal or understeering if the derivative has the opposite
sign with respect to steering angle. Both these conditions are characterized by a
loss of total grip of the vehicle, due to a high loss in grip at front or rear axle. As a
matter of fact, if a strong loss of grip happens at the rear axle, no lateral force can
counterbalance the centrifugal force apart from the yaw inertia of the vehicle. In
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the end, a suggestion can be to compute the absolute value of the yaw acceleration
and the higher it is, the higher is the weight given to the combined estimation.

5.2.2 Possible implementation of a longitudinal model

The implementation of a longitudinal model, in order to have a combined lateral-
longitudinal model, inside the EKF or TV is risky. Taken into account the high
frequency nature of the slip, this might decrease the performance due to unwanted
oscillatory behavior cause by high sensitivity of the tire Pacejka model to low longi-
tudinal slip values. Maybe a pseudo-longitudinal-lateral model can be implemented
while being fed by the commanded torques, that at least are known a priori and
shouldn’t be estimated.

Moreover, longitudinal slip must be estimated or measured. If the vehicle speed
is measured somehow, sensors or gps, then the estimation of the longitudinal slip
considering the rotational speed of the wheels can be performed and can give good
results. If, instead, the vehicle speed is estimated considering the wheel speed, as it
is done in 1.5.14, the wheel slip is hard to retrieve with the needed precision.
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