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Summary

In the ever-evolving scenario of present days, the road transport industry is in the
middle of a period of great changes. The urgent need for more energy-efficient
transport has led to significant advancements in the introduction of vehicles powered
by cleaner energy forms than fossil fuels: the Electric Vehicles (EVs).

Simultaneously, road safety remains a critical concern, where the human factor
represents the primary cause of traffic accidents. So, the increasing demand for
safer solutions has driven the automotive industry toward the development of
autonomous driving vehicles and driving assistance systems.

Autonomous driving, combined with electric propulsion, represents a promising
future solution to these challenges by reducing road accidents and optimizing energy
consumption. However, the introduction of electric autonomous vehicles leads to
new technical challenges, particularly in terms of efficient energy management and
precise vehicle control.

This thesis specifically addresses these challenges by focusing on the development
of a Nonlinear Model Predictive Control (NMPC) strategy with the aim of improving
both driving safety and energy efficiency.

Traditional controllers like PID and LQR have inherent limitations: the PID is
not an optimal control strategy, while the LQR, despite being optimal, is limited
by its linear nature, making it unsuitable for handling nonlinear dynamics and
constraints on states and inputs. In contrast, NMPC predicts and optimizes future
control actions while explicitly considering physical and safety constraints, making
it particularly well-suited for autonomous driving applications.

In order to obtain an NMPC controller able to predict the behavior of the
vehicle and suggest the best control sequence, such that a safe and energy-efficient
scenario is achieved, a detailed vehicle model is developed by incorporating the
vehicle longitudinal dynamics and the electric powertrain characteristics. Other
than system model, the NMPC controllers also need to considers accurate real-
world constraints, such as battery SOC limits, motor power capabilities, and
maximum allowable speed, that allow the NMPC to ensure feasibility and efficiency
in real-time applications.

In this thesis, NMPC has been chosen as suitable control tool for designing an
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optimal Adaptive Cruise Control. The NMPC- based ACC performances have been
compared with respect to traditionally used controller, the Constant-Time-Gap
(CTG) controller, producing good results in terms of both driving safety and energy
efficiency.

The aim of this work is to contribute to the development of control strategies
for future electric autonomous vehicles, in particular by focusing on the energy
saving, that may be seen as one of the main concerns that limits the shift to electric
vehicles, while not losing sight of safety, that remains a fundamental objective.
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Chapter 1

Introduction

In the last decades, the automotive industry has undergone significant transfor-
mations. Two major innovations have reshaped the sector: the rise of electric and
hybrid powertrains and the development of autonomous driving vehicles. These
advancements have been driven by both environmental concerns and the pursuit of
safer and more efficient transportation solutions.

The first major shift, the transition toward electrification, arises from the need
to address environmental issues, particularly air pollution. As shown in Figure
1.1, the contribution of road transport to global CO2 emissions is significant, and
this is mainly due to the widespread use of internal combustion engines (ICE). To
address this issue, the European Union has set ambitious targets, aiming for a
100% reduction in CO2 emissions from passenger and light-duty vehicles by 2035
[1]. In response, automotive manufacturers have accelerated the production of
hybrid (combining internal combustion and electric powertrains) and fully electric
vehicles (EVs), where electric motors convert the energy stored in the battery into
mechanical power.

Despite their environmental benefits, electric vehicles face a major challenge:
limited range, i.e. the maximum distance a vehicle can travel on a single battery
charge. This limitation has been a key factor limiting their widespread adoption,
forcing manufacturers and researchers to focus on optimizing energy consumption
to maximize vehicle range.

The second crucial transformation in the automotive industry is the development
of autonomous driving technologies. Modern vehicles already feature varying
levels of automation, from adaptive cruise control to advanced driver assistance
systems (ADAS). However, fully autonomous vehicles are not yet widely available,
particularly in Europe, whereas in some regions of North America, they are already
in commercial use.
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Introduction

Figure 1.1: Road transport emission with respect to total transport emissions

Source: European Environment Agency,
url: https://www.europarl.europa.eu/topics/en/article/20190313STO31218/

co2-emissions-from-cars-facts-and-figures-infographics

The push toward autonomous driving is largely motivated by road safety concerns.
A substantial percentage of traffic accidents are caused by human error. By
delegating vehicle control, on braking, steering, acceleration, and gear selection,
to advanced algorithms, autonomous vehicles have the potential to significantly
reduce accident rates. Although these technologies are still being refined, early
data from the deployment of autonomous vehicles in the U.S. suggests promising
safety improvements.
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Introduction

Given this evolving landscape, this thesis focuses on the development and
implementation of a Nonlinear Model Predictive Control (NMPC) strategy for
the autonomous driving of an electric vehicle. Particular emphasis will be placed
on safety and energy efficiency, with the ultimate goal of maximizing vehicle
operational range while ensuring robust and reliable autonomous navigation.

1.1 Objectives
The main objective of this Master Thesis is to elucidate the functionality of a
Nonlinear Model Predictive Control, applied in the automotive field. This
aim will be pursued by using the control strategy to predict the states of the
longitudinal dynamics of a vehicle with an electric powertrain, with the objective of
minimizing the battery consumption when following a given speed profile (WLTP3).

Furthermore, in order to highlight the advantages of the Nonlinear Model
Predictive Controller with respect to other kind of controller, the studied controller
results will be compared with the results given by a Constant-Time-Gap (CTG)
Controller on the same mission.

To summarize, this research aims to:

• Analyze the dynamic model of the vehicle and of its electric powertrain,
highlighting the main non-linear aspects that influence the control.

• Formulate the NMPC control problem, considering physical constraints, input
limits and an appropriate objective function.

• Implement and simulate the controller in a software environment, in particular
in MATLAB environment by exploiting CasADi functionalities.

• Evaluate the performance of the NMPC through comparative tests with other
controllers, such as a Constant-Time-Gap controller.

• Identify potential improvements and future developments, especially in terms
of computational optimization and implementation on real hardware.

1.2 Thesis structure
The present work will be organized in the following chapters:

• Chapter 2 - State of the Art: An overview of the main control techniques
in autonomous vehicles is presented, with particular focus on the Model
Predictive Control.
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• Chapter 3 – Vehicle Model: The dynamics of the vehicle and the operations
of its electric powertrain are analyzed and the system equations needed in the
controller design are defined.

• Chapter 4 – Nonlinear Model Predictive Control (NMPC): The
methodology adopted for designing the controller is described, by specifying
the numerical equations, the constraints and the cost function that define the
optimization problem.

• Chapter 5 - Implementation and Simulation: The exploited simulation
tools and the tests performed to assess NMPC performances are described in
details.

• Chapter 6 - Simulation results: The results obtained from performed
simulations are accurately analyzed in order to gain a deep understanding of
the performances of the NMPC.

• Chapter 7 – Conclusions: The main results of the whole analyses are
summarized and possible future extensions of the work are discussed.

5



Chapter 2

State of Art

Before entering into the details of vehicle and controller model development, an
intensive research had been carried out about the state of the art in autonomous
driving and especially about the types of Model Predictive Controllers used today
in the automotive industry and in research field.

This chapter aims to provide an overview of the main existing technologies
related to autonomous vehicle control and, in particular, Nonlinear Model Predictive
Control (NMPC).

2.1 Literature Review
The automotive industry has undergone significant transformation in recent years,
mainly driven by the need for energy-efficient and safe motion and also by the
surprising advances in autonomous driving technology.

Many have been the autonomous control strategies that researchers and manu-
facturers have analyzed in order to develop a smart controller that would be capable
of accurately driving a vehicle by responding promptly to any sudden change in
the surrounding ’environment’.

The first two control technologies to be widely used for vehicle control ap-
plications are the Proportional-Integral-Derivative (PID) controllers and Linear
Quadratic Regulators (LQR) controllers.

The PID controller operate based on a feedback loop, where the control input is
determined by considering the proportional, integral and derivative terms of the
error signal. They have historically been largely used in automotive applications
due to their simplicity and effectiveness. For instance, PID controller have been
successfully implemented in Adaptive Cruise Control systems to enhance vehicle
safety by maintaining a desired speed or by safely following a certain distance from
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the preceding vehicle [2]. Additionally, Jain et al. (2023) demonstrated that PID
controller can be well applied not only for vehicle longitudinal dynamics, but also
for lateral dynamics control [3]. However, the main drawback of PID controllers is
their lack of adaptability to system changing conditions, in fact they need to be
accurately tuned for different operating scenarios, and they struggle with handling
non-linearities, that are typical of autonomous driving applications.

To address some of the PID controllers limitations, Linear Quadratic Regulators
(LQR) controllers have been introduced as a control approach for linear systems.
In particular, LQR minimizes a quadratic cost function that balances tracking
performance and control effort. This kind of control strategy makes it well suited
for managing the yaw rate of the vehicle to ensure the stability during different
driving conditions [4]. Furthermore, LQR controllers have been also exploited
in active suspension systems to optimize vehicle body displacement, in order to
improve riding comfort and handling [5]. However, LQR assumes to deal with a
linear system model, which limits its applicability to real-world driving conditions
where vehicle dynamics are strongly non-linear.

Both PID and LQR controllers have proven to be efficient in some specific
scenarios, but they have also shown some important limitations in handling the
non-linear and highly dynamic nature of autonomous driving operations. For those
reasons, researches and manufacturers have explored different control strategies
such as Model Predictive Control (MPC).

MPC is an optimization-based control strategy that predicts the future behavior
of the system over a finite time horizon and solves an optimal control problem
at each step. This allows to explicitly handle the system constraints and the
anticipation of future events, making it well-suited for dynamic and uncertain
scenarios encountered in autonomous driving. Traditionally, Linear MPC have
been successfully implemented in autonomous vehicle control for many different
applications: for example, longitudinal and lateral applications [6] and steering
control [7], but also path tracking and obstacle avoidance [8]. Unfortunately, due
to the typical non-linearities of vehicle dynamics, especially under high-speed
maneuvers or varying road conditions, the Linear MPC controllers have shown
some limitations in accurately predicting vehicle behavior.

To solve the issue related to the limitations of Linear MPC, researchers have
developed Nonlinear Predictive Control (NMPC), which integrates non-linear vehicle
models to improve the accuracy and performances of the controller. Many studies
have demonstrated the effectiveness of the NMPC implementation in autonomous
driving applications. Falcone et al. (2007) introduced an NMPC designed to
account for the nonlinearities of vehicle dynamics, improving trajectory tracking
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capabilities compared to traditional methods [9]. Di Cairano et al. (2013) further
extended NMPC to vehicle stability control, where the model effectively controls
nonlinear tire-road interactions, ensuring stability in high-speed driving scenarios
[10]. Additionally, Rosolia and Borrelli (2017) explored a peculiar NMPC approach,
where the iterative learning was used to refine the control strategies over multiple
driving cycles, leading to improved performance in real-world driving conditions[11].
Brown et al. (2020), instead, investigated the application of NMPC for obstacle
avoidance, demonstrating its capability to dynamically adapt to dynamic scenarios
while maintaining its stability [12].

Despite its advantages, the practical implementation of NMPC leads to several
problems. One of the most significant obstacles is the computational complexity:
in fact, solving non-linear optimization problems in real-time requires an extremely
high computational power. Another critical challenge is the model accuracy, in
fact, NMPC relies on the accuracy of the vehicle model that predicts future states,
so too simplified models may lead to non-optimal performances, while too complex
models may increase the computational demand. Moreover, the NMPC response
to uncertainties remains a key concern, particularly in real-world applications
where sensor noise, road conditions and/or external disturbances may affect system
performances.

Nowadays, the NMPC continues to be an important subject in autonomous
vehicle research, offering a flexible and effective solution for real-time vehicle control,
despite computational limitations and robustness concerns remain research fields.
The current trend in terms of new researches aims to integrate NMPC algorithms
with emerging AI-driven techniques to enhance performance.

As autonomous vehicles are currently getting closer and closer to be approved
for market release, the continued development of NMPC-based control systems will
play a crucial role in ensuring safe, efficient, and reliable autonomous driving.
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Chapter 3

Vehicle Model

As it has been stated previously, the performances of the NMPC are strictly related
also to the system model, exploited to predict future states, that is considered: a
too simplified model may lead to not really accurate results, while a too complex
model may produce an increase in the computational cost for the controller. So,
the modeling of the system in simulation environment becomes crucial for the
operations of the NMPC.

In the present work, the NMPC has been developed to control the dynamic of
an electrified vehicle, so in this chapter an overview of the longitudinal dynamic
laws of the vehicle, of the main components of the electric vehicle powertrain and
of the way in which they have been modeled will be provided.

3.1 Longitudinal Dynamics Model
The longitudinal dynamics model represents the forces acting on the vehicle on
the x-axis direction (the axis on which it is moving). In particular, this dynamic
describes the relationship between the applied traction force, given by the motor
through the wheels) and the resulting vehicle motion, observed at the vehicle center
of gravity. The difference between those two quantities is given by the resistance
that different components put up to the vehicle motion.

The vehicle motion, or acceleration, is computed based on the Newton’s Second
Law as:

m v̇x = Ftrac − (Froll + Faero + Fslope) (3.1)
where:

• m is the vehicle mass;

• vx is the longitudinal velocity, so v̇x is the longitudinal acceleration;

9
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• Ftrac is the traction force provided by the powertrain;

• Froll is the rolling resistance force;

• Faero is the aerodynamic resistance force;

• Fslope is the gravitational force due to road inclination (slope).

The next paragraphs provide an explanation of the resistance forces that influence
the longitudinal dynamics of the vehicle: the Rolling Resistance, the Aerodynamic
Resistance, and the Slope Resistance.

These forces play a crucial role in the energy consumption of the vehicle and
must be taken into account when implementing NMPC control to ensure optimal
efficiency.

3.1.1 Rolling resistance

The rolling resistance force (Froll) arises due to the deformation of tires as they
roll on the road surface. This deformation leads to some change in the pressure
distribution, and consequently to some energy dissipation, that results in a resistive
force that opposes to vehicle motion. Rolling resistance is one of the major sources
of energy loss in vehicles, especially at low speeds.

The rolling resistance force is typically modeled as :

Froll = m g fr cos(θ) (3.2)

where:

• m is the vehicle mass;

• g is the gravitational acceleration;

• fr is the rolling resistance coefficient;

• θ is the road inclination angle.

In particular, the rolling resistance coefficient fr depends on several factors: tire
type and material, tire pressure and road surface.

10
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Figure 3.1: Rolling resistance principle schematization

Source: meccanicadelveicolo.com,
url: meccanicadelveicolo.com/2019/01/07/la-resistenza-al-rotolamento/

3.1.2 Aerodynamic resistance
The aerodynamic resistance, also called Drag Force (Faero) is a force that arises in
opposition to vehicle motion and is caused by the air pushing against the vehicle
as it moves forward. This force largely increases with speed, so it is the dominant
component of the vehicle motion resistance when vehicle travels at high velocities.

The aerodynamic resistance force is modeled by the following equation:

Faero = 1
2ρAfCdv2

x (3.3)

where:

• ρ is is the air density (typically 1.225kg/m3 at sea level);

• Af is the frontal area of the vehicle;

• Cd is the drag coefficient;

11
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• vx is the longitudinal velocity of the vehicle.
Most of the focus is usually given to the drag coefficient since it is a dimensionless

parameter that quantifies the aerodynamic efficiency of the vehicle.

Figure 3.2: Aerodynamic resistance principle schematization

Source: scienceabc.com,
url: https://www.scienceabc.com/eyeopeners/

why-do-cars-undergo-wind-tunnel-testing.html

3.1.3 Slope resistance
The slope resistance, also known as gravitational resistance, represents the compo-
nent of vehicle’s weight that acts along the direction of motion when traveling on
an inclined road. This force plays a significant role especially in determining the
required traction force needed to travel on a extremely steep road.

By considering the schematization in figure below, when a vehicle travels on a
road with an inclination angle θ (considered positive for uphill roads and negative
for downhill roads), the gravitational force can be decomposed in two components:

• A vertical component, that is perpendicular to the road and to vehicle motion
and contributes to the normal force on wheels;

• A longitudinal component, that acts on a direction that is parallel to the
road, and that opposes to vehicle motion in case of uphill roads or assists it in
downhill scenarios.

The slope resistance force, that corresponds to the longitudinal component of
the gravitational force, is given by:

Fslope = m g sin θ (3.4)

12
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Vehicle Model

where:

• m is the vehicle mass;

• g is the gravitational acceleration;

• θ is the road inclination angle.

The value of the road angle is the major component in this equations since
according to its value the effect of the slope force significantly changes:

• If θ > 0 (uphill), the Fslope acts against vehicle’s motion, increasing the power
needed from the powertrain to move the vehicle;

• If θ < 0 (downhill), the Fslope acts in the direction of vehicle motion, meaning
that the vehicle may increase its speed without additional propulsion from the
powertrain, possibly requiring some braking force to maintain a safe control
of vehicle speed.

Figure 3.3: Slope resistance principle schematization

Source: Hermansson, V., and Moparthi, K. (2016). Control of an electric vehicle
powertrain to mitigate shunt and shuffle [13]

13
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3.2 Electric Vehicle Powertrain Model
In this section, the aim is to provide an overview of the electric powertrain archi-
tecture and what is the “dynamic” that regulates its operations.

The powertrain of an electric vehicle [14] is composed by:

• The Power Source, that is a crucial component since it provides the necessary
energy to propel the vehicle. The most used power sources are battery cells,
usually lithium-ion batteries, due to their high energy density and long cycle
life. Other power sources, like fuel cells, are also being explored;

• The Battery Management System (BMS), that is responsible for moni-
toring and controlling the operations of the battery pack ensuring good levels
of performance, efficiency and safety;

• The Traction Inverter is the electronic component responsible of converting
the DC output from the battery into a AC input for the electric machine;

• The DC-DC converter, instead, does not change the “nature” of the signal
itself, but it steps down the DC voltage from the battery to a much smaller
value to be used by auxiliary electronics in vehicles (such as air conditioning,
infotainment, etc);

• The Electric Motor may be considered as the heart of the electric powertrain,
it is responsible for converting the electrical energy coming from the battery
into the mechanical energy needed at the wheels to move the vehicle. Various
types of electric motors can be used in an electric powertrain, including perma-
nent magnet synchronous motors, induction motors, and switched reluctance
motors.
The electric machine also works as a generator when the torque is negative
(breaking maneuver) making it possible to generate power and charge the
battery - regenerative breaking;

• The Transmission system is responsible for transferring the mechanical
power from the electric motor to the wheels, may be single-speed or multi-
speed and plays a crucial role in optimizing the power and torque delivery to
the wheels, ensuring efficient and smooth acceleration of the vehicle;

• The On-Board Charger is responsible for converting the AC power from an
external power source, such as a charging station, into DC power to charge
the vehicle’s battery.
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These components work together to provide the necessary power and control for
the operation of the electric vehicle.

The figure below shows a generic architecture of a electric vehicle powertrain.

Figure 3.4: Electric Vehicle Powertrain architecture

Source: Exro.com website,
url: www.exro.com/industry-insights/ev-power-electronics-explained

3.2.1 Battery Model
The mathematical model of the battery has a crucial role in the understanding of
the relation between the power that is provided by the battery to the wheel and
the State of Charge (SOC) of the battery itself. This importance is due to the fact
that the State of Charge of the battery is essentially the correspondent of the fuel
level in a traditional combustion engine vehicle: it gives an idea of the autonomy,
so distance that can be covered without the need for refueling or recharging the
battery.

As previously stated, the autonomy of the vehicle is the major issue to be
assessed when designing an electric vehicle, so the understanding of the manners
in which the battery provides energy to the powertrain and then to the wheels is
fundamental in order to improve the vehicle’s range.
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The battery model accurately relates the power that is delivered by the battery
to the State of Charge (SOC) of the battery at the present time instant. In
particular, the SOC is defined as the ratio between the battery charge Qb, the
amount of energy available inside the battery, and the nominal battery capacity
Qnom, the maximum amount of energy that can be stored inside the battery of the
vehicle:

SOC = Qb

Qnom
∈ [0,1] (3.5)

Differentiating both sides it is possible to obtain the derivative of the SOC as a
function of the current flowing through the battery Ib:

˙SOC = − 1
η

sign(Ib)
c

Ib

Qnom
(3.6)

Where Ib is the battery current, Qnom is the nominal capacity and ηc is the
coulombic efficiency, that quantifies the fraction of current that is lost during
battery charge and discharge [15].

In particular, when the battery current has a positive, it is in discharge mode, so
the energy is flowing from the battery to the wheels; while when it has a negative
value, it is in charge mode, so the energy that is generated at the wheel when
performing a regenerative-braking is fed to the battery.

The battery model in consideration is composed of Nb battery cells connected
in series. Each cell is modelled as an ideal voltage source Voc,s with a series
output resistance Rob, so considering the whole battery system Voc = Nb Voc,s and
Ro,b = Nb Ro,s respectively. The values of Voc and Ro,b are generally functions of
the battery State of Charge. In the present model, such dependencies are derived
from the experimental data considered from [16] and interpolated. The results of
the interpolations are reported in the figure below.

By considering this model of the battery, the battery power can be related to
the battery current, and so to the battery SOC, by the equation:

Ib =
Voc,b −

ñ
V 2

oc,b − 4Ro,bPbatt

2Ro,b
(3.7)

Solving the two equation (3.6) and (3.7), finally a relation between the power
provided by the battery to the powertrain and the battery State of Charge is
obtained.
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Figure 3.5: Interpolated values of Voc and Ro in function of SOC values

3.2.2 Electric Motor Model
As previously explained, the main purpose of the electric motor is to convert the
electric power that is provided in input by the battery to a mechanical power in
output to be fed to wheels.

In particular, the power that the electric motor provides is given by a torque
component TEM and an angular speed component wEM of the engine shaft, so
the value of the power provided or needed by the electric motor is given by the
equation:

PEM = TEM · ωEM (3.8)

The relation between this value of power PEM and the power provided by the
battery Pb essentially depends on the value of the efficiency of the electric motor
ηEM . This efficiency intrinsically depends on the values of angular speed and shaft
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torque at which the electric motor is operating. So, the relationship between PEM

and Pb can be obtained by:

Pb = PEM

[ηEM(ωEM, TEM) · ηinv]sign(PEM) (3.9)

In order to obtain an electric motor model as complete as possible, the value of
the efficiency has been mapped with respect to experimental values. The electric
motor modeling, therefore, is mainly dependent on the efficiency mapping based
on a given angular speed and shaft torque. The resulting efficiency map for the
electric motor is represented in the following figures, in 2D and in 3D respectively.

Figure 3.6: 2D representation of the Efficiency Map
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Figure 3.7: 3D representation of the Efficiency Map

3.2.3 Gearbox Model
In the context of an electric powertrain the role of the gearbox element is different
with respect to the case of internal combustion engines (ICE). For this reason, while
in ICEs multi-speed transmissions are operated, in electric vehicles a single-speed
reduction gearbox is employed. In electric vehicles the gearbox has dual purpose:

• Speed matching: The gearbox adjusts the relationship between the motor’s
rotational speed (wEM ) and the wheel speed (wwheel ), ensuring efficient power
transfer;

• Torque amplification: The gearbox reduces the high-speed, low-torque output
of the electric motor and converts it into a higher torque at the wheels, ensuring
smooth acceleration.

Given this, it can be stated that the well-designed gearbox can minimize energy
losses and improve overall efficiency of the powertrain.

For an electric vehicle single-speed transmission, the gearbox can be modeled as
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a fixed-ratio reduction system, characterized by a gear ratio τgb. Obviously, also
the gearbox element introduces some losses in terms of power transmitted, so also
the gearbox efficiency ηtr has to be introduced.

Now the relationships between the electric motor angular velocity wEM and
torque TEM and the wheel angular velocity wwheel and torque Twheel are given by:

ωEM = ωwheel · τgb (3.10)

TEM = Twheel

η
sign(Twheel)
tr · τgb

(3.11)

3.2.4 Wheel Model
When modeling a vehicle, it is fundamental to model also the wheel dynamics, since
wheels play a crucial role in translating the torque from the powertrain into linear
motion of the vehicle. In fact, the force that is transmitted by the powertrain to
the wheels and through the wheels significantly affects vehicle acceleration, traction
and overall driving dynamics.

In the wheel model taken into consideration, the force at the wheel-ground
contact Fwheel and the vehicle speed vveh are respectively related to the torque at
the wheel Twheel and to the wheel angular speed wwheel by the wheel radius rw:

Fwheel = Twheel

rw

(3.12)

vveh = wwheel · rw (3.13)

3.3 Vehicle and Electric Powertrain model pa-
rameters

To accurately simulate the behavior of the vehicle and its electric powertrain,
several parameters have been defined based on realistic assumptions and existing
literature. These parameters play a crucial role in modeling the longitudinal vehicle
dynamics, electric motor performance, and battery characteristics.

The vehicle parameters have been selected considering a standard passenger
electric vehicle, in particular a FIAT 500e, and are reported in the Table 3.1 below:
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Parameter Symbol Value Unit
Vehicle Mass Mveh 1400 kg

Front axle - CoG distance a 1 m
Rear axle - CoG distance b 1.3 m

CoG Height h 0.3 m
Wheel radius rw 0.3 m
Frontal Area Af 2.15 m2

Drag coefficient Cd 0.33 -
Static rolling resistance coefficient f0 4.5 N/kN

Dynamic rolling resistance coefficient k 0.013 Ns/m

Table 3.1: Vehicle parameters

Source: Raffaele Manca et al. [17]

In the Table 3.2, instead, the Electric Powertraind and Battery parameters
values are reported:

Parameter Symbol Value Unit
Number of series cells Ns 108 -

Number of parallel cells Np 1 -
Number of total cells Nb 108 -

Battery nominal capacity Qnom 60 Ah
Coloumbic efficiency ηc 0.95 -

Transmission system efficiency ηtr 0.95 -
Inverter efficiency ηinv 1 -

Gear ratio τgb 9.6 -
Gearbox efficiency ηgb 0.97 -

Table 3.2: Electric Powertrain and Battery parameters

Source: Raffaele Manca et al. [17]
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Chapter 4

Nonlinear Model Predictive
Control (NMPC)

4.1 Introduction to NMPC

The high complexity of autonomous driving systems demands advanced control
strategies that can handle the highly non-linear vehicle dynamics and the required
high-speed decision-making. Among various control methodologies, Model Predic-
tive Control (MPC) has emerged as a powerful solution due to its ability to predict
future states, optimize control actions, and respect system constraints.

Model Predictive Control is, in particular, a control strategy widely exploited in
various application fields, including the control of electric vehicle powertrains. This
control strategy takes into account the dynamic nature of the system and predicts
future states and control inputs based on a mathematical model of the system. By
explicitly considering the system dynamics, MPC is able to optimize control inputs
over a finite time horizon, called prediction horizon, to achieve desired objectives
such as energy efficiency, performance, and constraint satisfaction.

Model Predictive Control is capable of dealing with complex multi-input multi-
output systems with hard state and input constraints, making it suitable for
controlling electric vehicle powertrains with longitudinal dynamics [18].

Furthermore, the ability of MPC to continuously update the model and control
strategy allows it to handle changes in system parameters, such as variations in
battery capacity or motor efficiency, or even in external environment, like road or
weather conditions, without the need for extensive re-calibration.
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In particular, while Linear MPC (LMPC) is commonly used in control applica-
tions, its effectiveness is limited when dealing with highly nonlinear phenomenon in
a vehicle, such as tire slip, electric powertrain dynamics, and regenerative braking.
To address these challenges, Nonlinear Model Predictive Control (NMPC) improves
MPC performances by incorporating nonlinear system models, allowing for more
accurate control in real-world driving conditions.

This chapter introduces the NMPC formulation applied to the considered au-
tonomous electric vehicles, describing its prediction model, cost function, con-
straints, and optimization approach. The objective of the NMPC controller is to
guarantee safe and energy-efficient driving, while optimizing trajectory tracking,
power consumption, and vehicle stability.

4.2 NMPC General Formulation
Nonlinear Model Predictive Control is an optimization-based control method that
uses a simplified model of the system to predict future states and optimize control
inputs based on a cost function and subject to several constraints.

In particular, NMPC works by solving an optimization problem at each
control interval, where the objective is to find the optimal control inputs that
minimize the cost function while satisfying system constraints.

The NMPC operates with a moving horizon approach, meaning that at each
time step:

• The controller predicts the future vehicle states over a finite time horizon N,
called prediction horizon, based on the current state and control inputs.;

• A constrained nonlinear optimization problem is solved to determine the
optimal control sequence that minimizes a given cost function while respecting
system constraints;

• Only the first control input of the optimized sequence is applied to the vehicle.
This process, known as the receding horizon strategy, is repeated at each
time step using updated sensor data.

By looking at it from a mathematical point of view, the NMPC seeks to solve,
at each step, an optimization problem by minimizing the cost function subject
to system dynamics and constraints. In the discrete-time domain, this can be
expressed as:

min J =
N−1Ø
i=0

L
1
x(i), u(i)

2
+ ϕ

1
x(N)

2
(4.1)

23



Nonlinear Model Predictive Control (NMPC)

subject to:
x(i + 1) = f

1
x(i), u(i)

2
g

1
x(i), u(i)

2
(4.2)

where:
• J is the cost function;

• N is the prediction horizon;

• x(i) represents the state of the system at instant i;

• u(i) represents the control input at instant i;

• L is the stage cost function that quantifies the performance of the system at
each time step;

• ϕ is the terminal cost function that captures the desired final state of the
system;

• f represents the system dynamics, and describe how the state evolves over
time as function the current state and control input;

• g represents the system constraints, which limit the feasible state and input
space.

By iteratively solving this optimization problem, the NMPC algorithm generates
a sequence of control inputs that minimizes the cost function while satisfying the
dynamics and constraints of the system.

4.3 NMPC Development
Having established the general formulation of NMPC in the previous paragraph,
this section formally defines the structure of the NMPC framework that had been
developed during this thesis. Specifically, it details the prediction model employed,
the cost function formulated to optimize performance, and the constraints imposed
to ensure feasibility and compliance with physical limitations.

4.3.1 Prediction model for NMPC
In this work, the prediction model used for the NMPC framework, which is essential
for predicting future states over the prediction horizon, has been developed following
the discussion on vehicle longitudinal dynamics and electric powertrain functioning
presented in Chapter 3.

The system model, which results from the combination of vehicle longitudi-
nal dynamics and electric powertrain equations, is formulated in a state-space
representation. The selected state variables of the system are:
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• x1 = SOC → Battery State of Charge (SOC);

• x2 = x → Vehicle Position;

• x3 = ẋ → Vehicle Velocity.

The control input of the state-space model is the electric motor torque, which
is the output of the NMPC controller:

u = TEM (4.3)
To express the state-space equations, it is necessary to rewrite the equations

from Chapter 3 in terms of the selected state variables and control input.
The longitudinal dynamics of the vehicle are governed by the forces opposing

motion, which can be classified into three main components:

• Aerodynamic resistance (3.3) : Faero = 1
2ρAfCdx2

3;

• Rolling resistance (3.2): Froll = m g fr cos(θ);

• Slope resistance (3.4): Fslope = m g sin θ.

The resulting longitudinal dynamic equation of the vehicle can be written as:

Mveh ẋ3 = FEM − Froll − Faero − Fslope (4.4)
where Mveh is the equivalent mass of the vehicle, ẋ3 is the vehicle acceleration

and FEM is the traction force provided by the powertrain.
The electric motor converts electrical energy into mechanical torque, and its

rotational speed is related to the vehicle velocity (x3) by the gearbox ratio:

ωEM = τgb x3

rw

(4.5)

where ωEM is the motor angular velocity, τgb is the gearbox ratio, and rw is the
wheel radius.

The mechanical power delivered by the motor is given by:

PEM = ωEM TEM = ωEM u (4.6)
where PEM represents the power output of the motor.
The battery model is essential for tracking the State of Charge (SOC) and

ensuring optimal energy management. The power supplied by the battery is
computed as:

Pb = PEM

(ηEM ηinv)sign(PEM) (4.7)
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where ηEM and ηinv are the efficiencies of the electric motor and inverter, respec-
tively.

The open-circuit voltage and the internal resistance of the battery are functions
of the SOC:

VOC = Ns V (x1) (4.8)

RO = Ns

Np

R(x1) (4.9)

Where Ns is the number of series-connected battery cells, Np is the number
of parallel-connected cells, V and R are the function of the open circuit voltage
and resistance of the battery depending on the SOC that have been obtained from
experimental data.

Finally, the battery current is calculated as:

Ib =
VOC −

ñ
V 2

OC − 4ROPb

2RO
(4.10)

By combining all the previous equations, the state equation of the system can
be obtained:

ẋ1 = f(x1, x3, u) = − Ib

Qnom η
sign(Ib)
batt

(4.11)

ẋ2 = f(x3) = x3 (4.12)

ẋ3 = f(x3, u) =

1
ηgb τgb

rw

2
TEM − Froll − Faero

Mveh
(4.13)

So, the state derivative vector is calculated:

ẋ =

ẋ1
ẋ2
ẋ3

 =


− Ib

Qnomηbatt
sign(Ib)

x3
(ηgb/ϕ)TEM−Froll−Faero

Mveh

 (4.14)

And the output vector is given:

y =

y1
y2
y3

 =

x1
x2
x3

 (4.15)
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4.3.2 Prediction Horizon
In the Nonlinear Model Predictive Control (NMPC) framework, the prediction
horizon plays a crucial role in determining the controller’s ability to anticipate
future states and optimize control actions accordingly. The prediction horizon is
defined by two key parameters: the sampling time Ts and the number of prediction
steps N .

The sampling time Ts represents the time interval at which the NMPC updates
its predictions and computes the optimal control inputs. A smaller Ts allows for
more frequent updates, improving accuracy, but at the cost of higher computational
demand. Conversely, a larger Ts reduces computational burden but may lead to
delayed responses to dynamic changes.

The prediction horizon length N defines how far into the future the controller
predicts the system’s behavior. A longer horizon enables better foresight in decision-
making, but it also increases the computational complexity of the optimization
problem. Choosing N requires a trade-off between control accuracy and real-time
feasibility.

For this thesis, the NMPC controller was designed with a sampling time of
Ts = 0.5 seconds and a prediction horizon of N = 5 steps. These values were
chosen to ensure a balance between control responsiveness and computational
efficiency, allowing the system to react effectively to changes in the environment
while maintaining real-time feasibility for implementation.

As function of the values Ts and N , the value of the prediction period Tp can
be obtained:

Tp = Ts · N = 2.5 s (4.16)

4.3.3 Cost Function
The cost function in a Nonlinear Model Predictive Control (NMPC) framework
serves as the optimization criterion that guides the control decisions over the
prediction horizon. It is designed to balance multiple objectives, such as minimizing
energy consumption, ensuring safe inter-vehicle distances, maintaining optimal
speed, and preserving battery State of Charge (SOC).

The cost function introduced in the NMPC formulation can be expressed as:

J = λ1∥PEM∥2 +λ2∥SOC−SOCref∥2 +λ3∥d−dmax∥2 +λ4∥v−vref∥2 +λ5∥ak −ak−1∥2

(4.17)
where:

- PEM is Electric Motor Power;
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- SOC is Battery State of Charge;

- SOCref is the reference Battery SOC;

- d is Vehicle distance to preceding vehicle;

- dmax is Maximum allowable distance;

- v is Vehicle speed;

- vref is Reference speed;

- ak is the vehicle acceleration at instant k;

- ak−1 is the vehicle acceleration at instant k-1;

- λi are the weighting coefficients for cost function tuning.

Each component of the cost function is designed to address a specific control
objective:

• λ1∥PEM∥2 minimizes the electric power used by the motor to improve efficiency
and extend vehicle range;

• λ2∥SOC−SOCref∥2 keeps the battery SOC close to a reference value to prevent
excessive discharge;

• λ3∥d − dmax∥2 prevents the vehicle from falling too far behind in adaptive
cruise control (ACC) scenarios;

• λ4∥v − vref∥2 maintains the desired velocity while respecting traffic conditions
ensuring smooth acceleration and braking.

• λ5∥ak−ak−1∥2 aims to reduce the variation in terms of acceleration between two
consecutive instants, improving the level of comfort perceived by passengers.

The cost function weights (λ1, λ2, λ3, λ4, λ5) play a fundamental role in shaping
the behavior of the NMPC controller, as they determine the relative importance of
different optimization objectives, such as energy efficiency, tracking accuracy, and
driving comfort. The tuning of these weights was carried out through an iterative
process, balancing performance trade-offs to achieve optimal control behavior.

The final values of the cost function weights, as determined from the tuning
process, are summarized in Table 4.1 below.
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Weight Cost Parameter Value
λ1 PEM 1
λ2 SOC 1000
λ3 d 8 · 105

λ4 v 100
λ5 a 500

Table 4.1: Cost function weights values

Summarizing, the NMPC cost function optimizes the vehicle’s behavior by
balancing energy efficiency, safety, and trajectory tracking. Each term plays
a crucial role in ensuring the vehicle maintains optimal performance, operates
efficiently, and adheres to safety constraints. The weighting factors λi allow for
fine-tuning based on specific driving conditions and priorities.

4.3.4 Constraints
In a Nonlinear Model Predictive Control (NMPC) framework, constraints play
a crucial role in ensuring that the system operates within physical, safety, and
operational limits. In the NMPC developed in this thesis, the constraints in can be
categorized into:

• System Dynamics Constraints (ensuring consistency with vehicle equations).

• State Constraints (e.g., SOC, position, speed).

• Control Input Constraints (e.g., motor torque limits).

• Safety Constraints (e.g., minimum safe following distance).

System Dynamics Constraints

The system dynamics are enforced using discretization constraints to ensure that
the predicted states respect the equations of motion:

xk+1 = xk + Tsf(xk, uk) (4.18)

in the code part:

1 st_next = X(:,k+1);
2 f_value = f(st ,con);
3 st_next_euler = st + (Ts * f_value );
4 g = [g; st_next - st_next_euler ]; % compute constraints
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5 ...
6 args.lbg (1:3*( N+1)) = 0;
7 args.ubg (1:3*( N+1)) = 0;

This means that the predicted next state xk+1 must follow the system dynamics
using Euler discretization. The equality constraint ensures that NMPC predictions
are consistent with the actual system model. The lower bound (lbg) and upper
bound (ubg) are set to zero, ensuring the system equations hold exactly.

State Variables Constraints

The state variables are physically constrained to ensure realistic behavior:

• Battery State of Charge (SOC):

SOCmin ≤ SOCk ≤ SOCmax (4.19)

The SOC of the battery cannot fall below a critical threshold (to prevent deep
discharge), while the upper limit prevents overcharging during regenerative
braking.

• Position Constraints:
0 ≤ x2 ≤ ∞ (4.20)

The vehicle position is constrained to be nonnegative (ensuring it does not
move backward), while no upper bound is imposed, allowing unrestricted
forward motion.

• Speed Limits:
vmin ≤ vk ≤ vmax (4.21)

The vehicle must operate within a defined speed range to comply with the
safety and legal limits of traffic.

Control Input Constraints

The value of the control output, which corresponds to the electric motor torque, is
constrained to prevent excessive power demand and ensure the feasibility of real
components operations:

TEM,min ≤ TEM,k ≤ TEM,max (4.22)

The lower bound prevents negative torque beyond regenerative braking capabili-
ties, and the upper bound ensures the motor does not exceed its maximum power
output.
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Safety Constraints

A constraint is imposed to maintain a safe distance from the preceding vehicle:

dveh(k) − dref(k) ≥ dsafe(vk) (4.23)

in the code part:

1 for k=1:N
2 speed = X(3,k);
3 g = [g; P(( n_states + n_controls ) * k + 1) - X(2,k) -

Safety_Distance_function (speed)];
4 end
5 ...
6 args.lbg (3*(N+1) +1:3*( N+1)+N) = 0;
7 args.ubg (3*(N+1) +1:3*( N+1)+N) = inf;

The lower bound (lbg) of this constraint is zero, which means that the vehicle
must not violate the minimum distance limit, while the upper bound (ubg) is set
to infinity, meaning there is no restriction on exceeding the safe distance.

The function Safety_Distance_function(speed) dynamically calculates the mini-
mum safety distance required for a vehicle to maintain a safe gap from the vehicle
in front, based on its current speed:

dsafety = 1.5 · v2
veh

2 · abrake
+ treaction · vveh (4.24)

where:

• dsafety is the computed safety distance;

• vveh is the vehicle velocity (m/s);

• abrake is the maximum deceleration (m/s2);

• treaction is the reaction time (s),

The function takes into account two main factors: the braking distance required
to bring the vehicle to a complete stop in case of an emergency (given by the first
term) and the reaction time of the driver (or controller) treaction.

In summary, NMPC constraints ensure that the vehicle respects physical, safety,
and operational limits, allowing the controller to optimize energy efficiency, trajec-
tory tracking, and vehicle stability without exceeding the system capabilities.
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Chapter 5

Implementation and
Simulation

5.1 Implementation of the NMPC Framework
The NMPC algorithm was implemented in MATLAB, using CasADi, an open-source
symbolic framework for automatic differentiation and nonlinear optimization.

MATLAB was chosen due to its significant support for numerical computing,
vehicle modeling, and control system simulation, while CasADi was utilized to
efficiently formulate and solve the NMPC optimization problem.

5.1.1 Introduction to CasADi
CasADi is a powerful tool for symbolic and algorithmic differentiation, widely
used in optimization-based control applications, including NMPC. It provides an
efficient interface for defining nonlinear systems, cost functions, constraints, and
their gradients, significantly reducing computational complexity.

In this work, CasADi is also exploited for discretizing the system dynamics,
as the NMPC formulation introduced in the previous chapter 4.1 is based on
a continuous-time model. The discretization process ensures that the vehicle
dynamics can be expressed in a suitable form for real-time optimization, enabling
the NMPC controller to make accurate predictions and optimize control actions
over a finite prediction horizon.

Key advantages of using CasADi in this work:

• Symbolic Computation: CasADi allows defining optimization variables,
cost functions, and constraints symbolically, ensuring efficient computation
of gradients and Hessians.
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• Discretization of System Dynamics: Since NMPC is formulated in con-
tinuous time, CasADi is used to apply discretization methods (such as Euler
or Runge-Kutta integration), transforming the continuous-time vehicle model
into a discrete-time representation suitable for real-time optimization. This
process ensures that the NMPC framework can predict the system’s evolution
at discrete time steps, maintaining both accuracy and computational efficiency.

• Integration with MATLAB: It seamlessly integrates with MATLAB, al-
lowing direct implementation of NMPC for real-time control applications.

• Solver Compatibility: CasADi provides access to nonlinear optimization
solvers such as IPOPT, which are essential for handling constrained NMPC
problems.

• Computational Efficiency: By leveraging CasADi’s automatic differentia-
tion, the NMPC controller benefits from fast and accurate derivative calcula-
tions, improving real-time feasibility.

5.2 Constant Time Gap (CTG) Controller
To estimate the performance improvements achieved by NMPC, particularly in
terms of battery energy efficiency and driving safety, the proposed NMPC controller
is compared with a Constant-Time-Gap (CTG) controller under the same simulation
conditions. The aim of this comparison is to quantify the benefits of predictive
control strategies over traditional rule-based approaches.

The Constant-Time-Gap (CTG) controller is a widely used rule-based strategy
for implementing an Adaptive Cruise Control (ACC) technology. It is based on
the idea of adjusting the vehicle acceleration/deceleration based on the distance
and on the relative speed between the controlled vehicle and the preceiding vehicle
according to a predefined equation [19]:

aego = −1
h

(λ δego + ε̇ego) (5.1)

where:

• εego = xego − xleading is the relative distance;

• ε̇ego = ẋego − ẋleading is the relative velocity;

• h is the desired time gap;

• Ldes = h ẋego is desired space distance;
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• δego = ε + Ldes is the spacing error;

• λ is a tuning parameter;

• aego is the calculated vehicle acceleration.

In this thesis, the CTG controller has been developed on Simulink, and applied to
a vehicle model totally corresponding to the vehicle model that had been presented
in the previous chapter.

Figure 5.1: Controlled vehicle model

Figure 5.2: CTG controller
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Figure 5.3: EM Torque block

Figure 5.4: Wheel model block
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Figure 5.5: Longitudinal dynamic block

Figure 5.6: Electric Motor block
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Figure 5.7: Electric Motor Efficiency block

Figure 5.8: Battery Model block

The CTG controller adjusts acceleration and/or deceleration to ensure that the
controlled vehicle maintains a predefined time gap [20]. However, since CTG does
not optimize power usage or account for future predictions, it can be considered as
a benchmark to investigate NMPC performance.

5.3 Simulations

This section describes the simulation scenarios designed to evaluate the performance
of the NMPC controller in a realistic Adaptive Cruise Control (ACC) task. The goal
of these scenarios is to test the ability of the NMPC controller to track a leading
vehicle’s position and speed while optimizing energy efficiency and maintaining a
safe inter-vehicle distance.
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5.3.1 Single-Vehicle ACC task
The first simulation scenario has been designed such that the vehicle controlled by
the NMPC or by the CTG has to perform an Adaptive Cruise Control (ACC) task
by following a leading vehicle while pursuing different objectives:

• Ensure safe following distance: The vehicle must never exceed the mini-
mum safety distance from the leading vehicle;

• Minimize energy consumption: By optimizing acceleration and braking,
the controller reduces battery energy usage;

• Maximize comfort: The control inputs should be applied smoothly, avoiding
abrupt changes in acceleration.

The leading vehicle travels following the WLTP cycle in Fig.5.9, that is a
standardized driving profile designed to simulate real-world driving conditions. It
consists of multiple phases with varying speeds, accelerations, and decelerations,
simulating urban, extra-urban and highway driving scenarios.

5.3.2 Platoon Simulation scenario
In addition to the Single-Vehicle Adaptive Cruise Control (ACC) task, a more
complex Platoon simulation scenario was designed to evaluate the performance of
the NMPC and CTG controllers in coordinating multiple vehicles’ motion.

In this setup, a leading vehicle follows the predefined WLTP driving cycle, while
four additional vehicles, each one controlled by an independent NMPC or CTG
controller, follow the vehicle ahead in a structured platoon formation. Each vehicle
regulates its motion based on the state of the vehicle directly in front.

An example of a platoon architecture, in this case developed on Simulink to
evaluate CTG performances on platoon, is reported in Fig.5.10.

The objective of this scenario is to ensure platoon stability, where speed
deviations and distance fluctuations decrease as they propagate down the platoon,
leading to a smooth, energy-efficient and synchronized motion of all vehicles.

Platoon Stability Objective

The main goal of this scenario is to achieve platoon stability, that is defined as:

lim
t→∞

∥vi(t) − vi−1(t)∥ → 0, ∀i ∈ {2, . . . , 5} (5.2)

where:

• vi(t) is the velocity of the i-th vehicle at time t;
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• vi−1(t) is the velocity of the preceiding vehicle.

The platoon stability condition ensures that speed deviations across the platoon
converge to zero over time, preventing propagation or amplification of disturbances.

Figure 5.9: WLTP speed cycle

Figure 5.10: Architecture of the platoon developed to test CTG controller
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Chapter 6

Simulation results

This chapter presents and analyzes the results obtained from the NMPC simulations,
evaluating its performance in two key scenarios: the single-vehicle Adaptive
Cruise Control (ACC) task and the platoon simulation scenario.

The objective is to evaluate the effectiveness of NMPC in optimizing vehicle
energy consumption, while ensuring speed tracking, maintaining safe inter-vehicle
distances and enhancing driving comfort.

A comparative analysis with the Constant Time Gap (CTG) controller is also
conducted to highlight the advantages of developed controller over traditional
rule-based approaches.

6.1 Single-Vehicle ACC simulation results
In the first simulation scenario, the NMPC and CTG controllers were tested in an
Adaptive Cruise Control (ACC) task, where the controlled vehicle was required to
follow a leading vehicle executing the WLTP driving cycle.

In the following plots, the results of CTG and NMPC simulations are reported
in terms of:

• State of Charge (SOC) of the controlled vehicle;

• Position of the two vehicles;

• Speed of the two vehicles;

• Acceleration of the two vehicles;

• Torque provided by the Electric Motor;

• Power spent by the Electric Powertrain during the simulation.
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6.1.1 State of Charge (SOC)
The two plots in Fig.6.1 illustrate the evolution of the battery State of Charge
(SOC) over time for a vehicle controlled by NMPC (top plot) and CTG (bottom
plot) during the simulation. The blue line represents the reference SOC (set for
bothe the controller to 0.8), while the red line shows the SOC evolution of the
controlled vehicle in each case. This comparison highlights the advantages of the
predictive control (NMPC) over a traditional rule-based approach (CTG) in terms
of energy efficiency.

Figure 6.1: Comparison of SOC evolution for NMPC and CTG

As it can be seen, The SOC of the vehicle controlled by NMPC (top plot)
declines gradually and smoothly, indicating a more efficient energy management
strategy. In contrast, the CTG-controlled vehicle (bottom plot) experiences a more
pronounced SOC drop, particularly after 1400 seconds, suggesting higher energy
consumption and lower efficiency. Moreover, for what concerns SOC fluctuations,
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it is evident that the SOC curve in the CTG plot shows higher oscillations, which
is due to more frequent and sudden accelerations and brakings. In contrast, NMPC
regulates energy flow more smoothly, resulting in a more consistent SOC decline.
This is another big advantage of NMPC controller with respect to CTG controller,
since more frequent SOC oscillations may results in a significant deterioration of
battery health.

Figure 6.2: SOC value at the end of the simulation for CTG and NMPC
controllers

The Fig.6.2 instead represents a comparison of the final values of the SOC of the
two vehicles at the end of the simulations. As it can be seen, the NMPC control
strategy allows the vehicle to mantain an higher value of SOC (around 72.6%) at
the end of the simulation with respect to CTG ( almost 71% ). This is a further
confirmation of the ability of the NMPC to improve the vehicle’s range.
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6.1.2 Positions
The two plots in Fig.6.3 illustrate the position evolution of the controlled vehicle
compared to the leading vehicle over time, for both NMPC (top plot) and CTG
(bottom plot). These results highlight how well each control strategy maintains a
proper following behavior, ensuring the controlled vehicle stays close to the leader
while respecting safety constraints.

Figure 6.3: Comparison of position plot for NMPC and CTG simulations

As it can be seen, the CTG controlled vehicle has an higher tracking behavior
with respect to NMPC, but since it strictly follows every variation in the speed of
the leading vehicle, this can results in more frequent accelerations and decelerations
lowering the driving comfort experienced by passengers.

A drawback of NMPC, as seen in the figure above, is that its focus on energy
efficiency causes the vehicle to gradually increase its distance from the leader.
Although this reduces energy consumption, it may conflict with the range limitations
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of current LiDAR, radar, and camera sensors, which require consistent tracking
distances for reliable perception. This highlights the need for a balance between
energy efficiency and sensor constraints in real-world implementations.

6.1.3 Speed
The two plots in Fig.6.4 compare the speed evolution of the controlled vehicle
in both NMPC (top plot) and CTG (bottom plot) simulations. These graphs
illustrate how well each controller tracks the speed of the leading vehicle and adjust
its velocity accordingly.

Figure 6.4: Comparison of speed plot for NMPC and CTG simulations

As it can be seen, the NMPC-controlled vehicle (red line) follows the leading
vehicle (blue line) with a more gradual and controlled speed profile. In fact, the
predictive nature of NMPC allows it to anticipate upcoming speed changes, leading
to fewer abrupt accelerations and decelerations compared to CTG.
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In practice, the NMPC controller smooths out the vehicle’s velocity profile,
leading to a more comfortable and energy-efficient driving experience. The CTG-
controlled vehicle, instead, shows higher speed oscillations, which can lead to
increased energy consumption and unnecessary damage on the powertrain.

6.1.4 Acceleration

The two graphs in Fig.6.5 illustrate the acceleration profiles of the controlled vehicle
compared to the leading vehicle over time for both NMPC (top plot) and CTG
(bottom plot). These graphs provide insights into how smoothly each controller
manages acceleration and braking, which directly impacts energy efficiency, driving
comfort, and safety.

Figure 6.5: Comparison of acceleration plot for NMPC and CTG simulations
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In the NMPC simulation, the controlled vehicle’s acceleration (red line) remains
more stable and less oscillatory than the reference acceleration (blue line). The
NMPC controller effectively filters out excessive acceleration variations, resulting
in a more comfortable and energy-efficient drive. There are fewer fluctuations,
meaning that NMPC minimizes effectively unnecessary acceleration and braking
inputs.

In the CTG simulation, the controlled vehicle acceleration (red line) shows more
oscillations and higher spikes. Since CTG is a reactive controller, it struggles to
soften rapid variations in acceleration, leading to an increase in jerk. The frequent
spikes indicate that CTG responds to each change in the leading vehicle speed,
resulting in more rapid acceleration and braking events.

6.1.5 Electric Motor Torque

The two graphs in Fig.6.6 compare the electric motor (EM) torque demand for the
controlled vehicle in both NMPC (top plot) and CTG (bottom plot) simulations.
These graphs illustrate how each controller regulates motor torque to optimize
vehicle dynamics, energy consumption, and driving smoothness.

In the NMPC simulation, the commanded torque (red line) closely follows the
reference torque (blue line) with a less oscillatory behavior. NMPC applies a
smoother torque, avoiding excessive fluctuations, which results in more energy-
efficient and comfortable driving. In fact, torque variations are reduced over time,
especially after 1000s, demonstrating that NMPC optimizes power delivery as the
vehicle stabilizes.

On the other hand, the CTG simulation exhibits a torque profile (red line) with
significant oscillations and abrupt changes.The higher variability indicates that
CTG reacts aggressively to speed changes of leading vehicle, causing frequent and
unnecessary torque adjustments. In fact, since CTG does not anticipate future
speed variations, it compensates reactively, leading to higher energy consumption
and lower efficiency.
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Figure 6.6: Comparison of EM Torque plot for NMPC and CTG simulations

6.1.6 Electric Motor Power
The two plots in Fig.6.7 represent a comparison on the electric motor (EM) power
usage for the controlled vehicle under NMPC (top plot) and CTG (bottom plot)
during the simulation. These results illustrate how efficiently each controller
manages power distribution, acceleration demands, and regenerative braking.

In the NMPC simulation, the power demand (red line) exhibits less variability
and smoother transitions compared to the leading vehicle power profile (blue
line).This means that NMPC efficiently regulates power delivery, avoiding excessive
peaks, which results in better energy optimization and reduced power waste.Also,
regenerative braking events (negative power values) are more pronounced and
stable, meaning NMPC maximizes energy recuperation during deceleration.

In the CTG simulation, the EM power demand fluctuates significantly, with high
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peaks and abrupt variations. Unlike NMPC, CTG does not optimize power transi-
tions effectively, leading to unnecessary accelerations and inefficient regenerative
braking.

Figure 6.7: Comparison of EM Power plot for NMPC and CTG simulations

Lastly, the Fig. 6.8 reports a comparison on the total value of power that the
Electric Motor provides to the vehicle during the whole simulation for CTG (red)
and NMPC (blue) controllers. It is evident that the value of EM power provided
in case of CTG controller is higher than for NMPC simulation and this provides
further confirmation that the NMPC effectively improves the energy efficiency of
the vehicle.
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Figure 6.8: Total value of power provided by the EM over the simulation for
CTG and NMPC controllers

6.2 Platoon simulation results
The second simulation scenario aimed to evaluate NMPC’s ability to control a
platoon of four vehicles, each following a leading vehicle executing the WLTP
cycle. In these simulations, the objective, in addition to safety and energy saving
goals already addressed previously, was to achieve platoon stability, ensuring that
speed deviations and spacing fluctuations diminish as they propagate through the
platoon.

6.2.1 State of Charge (SOC)
The two plots in Fig. 6.9 compare the State of Charge (SOC) evolution of the
vehicles in the platoon controlled by NMPC (top plot) and CTG (bottom plot)
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controllers. These graphs illustrate how each control strategy affects the energy
efficiency across multiple vehicles, showing the battery charge consumption trend
over time.

Figure 6.9: Comparison on SOC evolution over the platoon for NMPC and CTG
simulations

In the NMPC-controlled platoon (top plot), the SOC of the vehicles declines
gradually and consistently, with minimal deviations between vehicles, suggesting
that NMPC optimizes power usage.

Unlike NMPC, the CTG-controlled vehicles experience larger SOC deviations,
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which suggests that the reactive control approach causes greater variations in energy
consumption between different vehicles.

By looking at the deviations of the SOC curves through the multiple vehicles
in the platoon, it is evident that while in the CTG-controlled platoon the curves
are really close to each other, resulting in a similar value of SOC at the end of
the simulation, in NMPC-controlled platoon the curves are more distant from one
another, resulting in higher values of residuale SOC at the end of the simulation
for vehicles at the end of the platoon.

The difference in terms of battery charge consumption curves represents the
ability of the NMPC to effectively filter the fluctuations in the power usage of the
WLTP cycle when passing from a vehicle to another in the platoon.

Figure 6.10: Comparison on final value of SOC at the end of the simulation for
NMPC and CTG platoons

This is also confirmed by the Fig. 6.10 in which the residual values of battery
SOC at the end of the simulation are reported for each vehicle in the platoon. It is
evident that while in the CTG-controlled platoon the residual values of SOC are
really similar for each vehicle, the NMPC effectively provides an improvement in
the energy efficiency when passing from a vehicle to the next.
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6.2.2 Positions

Figure 6.11: Comparison on position evolution over the platoon for NMPC and
CTG simulations

In the Fig. 6.11 a comparison of the positions of the platoons controlled by
NMPC (top plot) and CTG (bottom plot) is reported. This comparison highlights
significant differences in how inter-vehicle distances and overall formation stability
are managed.

In the NMPC-controlled platoon, the vehicles maintain progressively increasing
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distances from the leading vehicle, but in a structured and coherent manner.
The gradual separation between the curves suggests that the NMPC controller
dynamically regulates each vehicle’s speed, increasing the value of safety distance at
higher velocities. This behavior is fundamental to ensure soft driving and efficient
energy consumption, reducing the propagation of disturbances along the platoon.

In contrast, the CTG-controlled platoon exhibits a much more rigid and syn-
chronized behavior, with the position curves of all vehicles almost overlapping.
This indicates that all vehicles follow the leading vehicle maintaining a fixed time
gap without flexibly adapting to speed variations. While this approach ensures a
consistent following distance, it may be less energy-efficient and less responsive
to sudden changes in traffic conditions. Furthermore, the lack of adaptability can
lead to sudden braking or dangerous maneuvers, especially when the leader’s speed
fluctuates significantly.

6.2.3 Speed

The Fig. 6.12 represents a comparative analysis on the speed evolution of each
vehicle in the NMPC (top plot) and CTG (bottom plot) controlled platoons. The
comparison of vehicle speeds aims to highlight the differences in how each control
strategy manages speed regulation and platoon stability.

In the NMPC-controlled platoon, the speeds of the individual vehicles show a
more flexible and adaptive response to the variations in the leading vehicle’s velocity.
The vehicles gradually adjust their speeds, with an evident smoothing effect that
prevents sudden accelerations and decelerations. This behavior suggests that
NMPC is effectively optimizing each vehicle’s speed trajectory while maintaining a
balance between tracking performance, energy efficiency and safety.

In contrast, the CTG-controlled platoon shows a much more synchronized and
rigid speed response. All vehicles closely follow the lead vehicle’s speed variations,
with their trajectories nearly overlapping during the simulation. While this ensures
a consistent following behavior, it also suggests that CTG enforces a fixed time
gap without smoothly adapting to changes in acceleration. As a result, the vehicles
are more prone to reactive braking and acceleration maneuver, which can lead to
higher energy consumption, potential powertrain stress and increased perceived
discomfort. The lack of adaptability in CTG can also contribute to a higher risk
of traffic-induced oscillations, where fluctuations in the leading vehicle speed may
propagate throughout the platoon, causing less efficient energy usage and potential
safety concerns.
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Figure 6.12: Comparison on speed evolution over the platoon for NMPC and
CTG simulations
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6.2.4 Acceleration

Figure 6.13: Comparison on acceleration evolution over the platoon for NMPC
and CTG simulations

The Fig. 6.13 describe the evolution in terms of acceleration of the vehicle in the
platoon controlled by NMPC (top plot) and CTG (bottom plot).

The analysis of acceleration profiles in the NMPC- and CTG-controlled platoons
highlights how each control strategy manages to handle vehicle dynamics, particu-
larly in terms of smoothness and stability, resulting in driving comfort perceived
by passengers.
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In the NMPC-controlled platoon, the acceleration curves of the controlled vehicles
show a softened response to the fluctuations of the leading vehicle, indicating that
NMPC effectively mitigates variations and prevents excessive oscillations from
propagating through the platoon.

The vehicles maintain more stable and controlled acceleration patterns, with
fewer spikes, allowing for reducing the presence of aggressive accelerations or
brakings and optimizing the energy usage for each vehicle in the platoon.

On the contrary, the CTG-controlled platoon displays a high synchronization
between vehicles in terms of acceleration, the acceleration curves almost perfectly
follows the lead vehicle’s fluctuations, indicating a more reactive but less adaptive
control approach.

This lack of filtering means that any acceleration oscillation from the leading
vehicle is immediately transferred throughout the platoon, leading to higher energy
consumption, increased stress of powertrain component, and a less comfortable
ride. The frequent peaks suggest that CTG depend on constant corrections rather
than on predictive adjustments, resulting in potentially higher power losses due to
unnecessary acceleration maneuvers.

6.2.5 Electric Motor Torque

The Fig.6.14 illustrate the plot of the Electric Motor Torque throughout the
simuation for each vehicle in the platoons controlled respectively by the NMPC
(top plot) and CTG (bottom plot). The comparison of those two plots is helpful to
catch informations on how each control strategy manages to regulate the torque
command to reach a trade-off between the objectives of trajectory tracking, energy
efficiency and comfort.

In the NMPC-controlled platoon, the controlled vehicles demonstrate a signifi-
cantly smoother and controlled torque response with respect to the highly oscillatory
torque of the leading vehicle. NMPC efficiently filters out fluctuations, allowing the
vehicles to maintain a stable torque distribution that minimizes sudden changes.
This results in reduced vehicle powertrain stress and improved energy efficiency,
as the system avoids excessive torque variations that could lead to unnecessary
energy expenditure or damage of components. As the simulation advances, NMPC
stabilizes the torque profiles, indicating that the system is successfully adapting to
driving conditions while maintaining efficient energy management.
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Figure 6.14: Comparison on EM Torque evolution over the platoon for NMPC
and CTG simulations

By contrast, in the CTG-controlled platoon the torque profiles of the controlled
vehicles closely follow one another, mirroring the leading vehicle’s variations almost
perfectly. While this may seem advantageous in terms of maintaining consistent
inter-vehicle distances, it also amplifies fluctuations instead of mitigating them,
leading to a more rigid and less adaptive driving strategy. The lack of smoothing in
CTG leads to a propagation of disturbances from the lead vehicle directly through
the platoon, increasing the risk of unnecessary energy consumption and mechanical
stress. Unlike NMPC, CTG does not optimize torque transitions dynamically,
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which can result in higher power losses and a less comfortable driving experience.

6.2.6 Electric Motor Power

Figure 6.15: Comparison on EM Power evolution over the platoon for NMPC
and CTG simulations

By looking at the Electric Motor (EM) power consumption in the NMPC- (top
plot) and CTG-controlled (bottom plot) platoons in Fig. 6.15, it is clear that the
two control strategies handle the energy usage in very different ways.
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The power demand of the controlled vehicles in the NMPC platoon stays rel-
atively stable and well-managed, despite the chaotic fluctuations of the leading
vehicle. NMPC seems to be efficiently filtering out unnecessary variations, ensuring
that each vehicle does not blindly copy every power rise or drop from the leading
vehicle. Instead, the power output is more balanced, and we can see that regenera-
tive braking is effectively utilized, as indicated by the occasional dips into negative
power values. This means that NMPC is not just controlling the vehicles but it is
actually optimizing energy use, recovering power when possible rather than wasting
it.

In contrast, the CTG-controlled platoon shows a much more synchronized
behavior, where the power demand curves of all vehicles practically overlap. This
tells us that CTG enforces a strictier following strategy, where each vehicle responds
almost instantly to power changes without considering whether those changes are
actually necessary. As a result, there are frequent and sharp power variations, which
could mean higher energy consumption over time. Another noticeable difference
is in the regenerative braking phases: they seem much less effective in the CTG
scenario, as the power dips aren’t as deep or as consistent as in the NMPC case.
This suggests that energy recovery isn’t being maximized, leading to more energy
being lost rather than reused.
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Chapter 7

Conclusions

This thesis focused on the development and implementation of a Nonlinear Model
Predictive Control (NMPC) strategy for longitudinal vehicle control in the context
of autonomous driving. The primary objective was to enhance energy efficiency,
driving stability, and safety compared to traditional rule-based approaches, such
as the Constant Time-Gap (CTG) controller. The study was motivated by the
increasing need for sustainable and efficient transportation solutions, particularly
in the perspective of the challenges associated with electric vehicle autonomy.

To achieve this goal, a detailed vehicle and powertrain model was developed
including vehicle longitudinal dynamics and a simplified electric powertrain model.

NMPC was designed to optimize control actions in terms of input torque, by
minimizing a cost function that considered parameters such as energy consumption,
safety, and driving comfort.

In order to evaluate the NMPC performances with respect to traditional rule-
based Constant Time Gap controller, the model was tested in two main simulation
scenarios:

• Single-vehicle Adaptive Cruise Control (ACC) task, where NMPC was com-
pared against CTG in tracking a leading vehicle following the standardized
WLTP driving cycle;

• Multi-vehicle Platoon scenario, in which NMPC was evaluated in maintaining
a stable and energy-efficient platoon, again in comparison with CTG.
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7.1 Key Findings
The simulation results demonstrated that NMPC significantly outperformed CTG
in multiple aspects:

• Energy efficiency: vehicles controlled by NMPC consistently retained higher
final State of Charge (SOC) values, demonstrating lower overall energy con-
sumption compared to CTG. This resulted from NMPC’s ability to optimize
power distribution and reduce unnecessary acceleration and braking.

• Driving smoothness and comfort: NMPC resulted in smoother accel-
eration and speed profiles, reducing high-frequency fluctuations that were
prominent in CTG. This behavior is crucial for reaching one of the major goals
of this thesis: improving passenger comfort and minimizing drivetrain stress.

• Platoon stability: In the multi-vehicle simulations, the NMPC effectively
mitigated the propagation of oscillations through the platoon, leading to better
coordination between vehicles. Unlike CTG, which imposed a rigid following
behavior, NMPC allowed for more adaptive spacing control, improving the
overall safety and performance of the platoon.

• Safety improvements: One of the most significant advantages of NMPC
over CTG is its ability to actively enforce safety constraints in real-time. The
NMPC framework explicitly incorporated minimum safe following distances
and speed constraints, ensuring that vehicles never violated safety margins.
Unlike CTG, NMPC is able to predict and adjust to changes in the leading
vehicle’s behavior, reducing the likelihood of sudden braking events and unsafe
proximity between vehicles. The improved stability in NMPC minimizes
collision risks, making it a more reliable solution for autonomous driving in
dynamic environments.

7.2 Next Steps
Given the excellent performance demonstrated by NMPC in terms of energy
efficiency, driving stability, and safety, it can be considered a highly promising
solution for future autonomous driving applications. The ability of NMPC to
optimize power consumption, smooth out accelerations, and maintain stable platoon
dynamics makes it a strong candidate for the implementation of next-generation
transportation systems. However, to fully unlock its potential and ensure its
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applicability in real-world applications, several areas require further investigation
and improvement.

One of the most critical aspects to analyze is the real-time implementation
of NMPC, since its computational complexity remains a challenge, particularly for
embedded automotive systems with limited processing capabilities. Future studies
could explore the optimization of numerical solvers, the use of parallel computing,
or even the integration of learning-based approaches to fasten the prediction and
optimization processes. Reducing computational load would make NMPC more
suitable for real-world applications, in which fast decision-making is essential.

Another significant extension would be the integration of lateral dynam-
ics into the control framework. While this study provided really good results
on longitudinal dynamics control, a more comprehensive NMPC strategy could
integrate both longitudinal and lateral motion, enabling full vehicle trajectory
planning. This would allow for more complex autonomous driving applications,
such as lane-changing maneuvers, obstacle avoidance, and intersection navigation,
where both speed and steering must be optimized simultaneously.

Another crucial area to explore is the robustness of NMPC in real-world
driving conditions. Since the current study was conducted in a controlled
simulation environment, real-world factors such as sensor noise, road irregularities,
unpredictable traffic behavior, and varying weather conditions should be considered
in future studies. Implementing NMPC in an experimental testing ground with
real vehicles would provide valuable information into its feasibility outside of
simulations.

7.3 Final Remarks
This study demonstrated that Nonlinear Model Predictive Control is a highly
effective strategy for improving the efficiency and stability of autonomous electric
vehicles.

By exploiting its predictive capabilities, NMPC demonstrated better performance
compared to traditional control strategies, particularly in terms of energy efficiency,
safety and vehicle stability. The ability to optimize power consumption, limit
unnecessary accelerations and adapt to dynamic conditions makes NMPC a highly
promising solution for next-generation transportation systems. Its performance in
both adaptive cruise control and platoon control scenarios confirms that predictive
control strategies can effectively improve the sustainability and safety of autonomous
driving.
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While further refinements and real-world validation are needed, the results
indicate that predictive control strategies like NMPC can play a crucial role in
shaping the future of energy-efficient and autonomous mobility. With advance-
ments in computational power and real-time optimization techniques, NMPC has
the potential to significantly impact the future of autonomous vehicle control,
making autonomous driving not only a reality but also a safer, more efficient, and
environmental-friendly solution for modern transportation systems.
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Appendix A

MatLab scripts

A.1 NMPC script

1

2 clear all
3 close all
4 clc
5

6 addpath (’DrivingCycles ’);
7 load DrivingCycles \WLTP.mat;
8 addpath (’Battery and EM data ’);
9 load bat_Ro_vs_SOC_data .mat;

10 load bat_Voc_vs_SOC_data .mat;
11 load BEV_mot .mat;
12 addpath (’CasADi ’);
13 folder =’C:\ Users\matti\ Desktop \ MAGISTRALE TORINO \ AUTONOMOUS

VEHICLE \TESI\ Result Plots\NMPC ’;
14

15 % Computation of WLTP Parameters
16 time_WLTP =T_z (1:1800) ; % WLTP time vector
17 speed_WLTP =V_z (1:1800) ; % WLTP speed vector
18 pos_WLTP = cumtrapz (time_WLTP , speed_WLTP )+10; % WLTP position

vector
19 for j=1: length ( speed_WLTP ) -1
20 acc_WLTP (j ,:) =( speed_WLTP (j+1) -speed_WLTP (j))/( time_WLTP (j+1) -

time_WLTP (j)); % WLTP acceleration vector
21 end
22 acc_WLTP = [ acc_WLTP ; acc_WLTP (end)]; % Extend to match length to

match dimensions
23

24 figure ()
25 plot(time_WLTP ,speed_WLTP ,’r’);
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26 title(’WLTP speed cycle ’);
27 xlabel (’Time [s]’)
28 ylabel (’Speed [m/s]’)
29 legend (’WLTP speed cycle ’)
30 grid on
31

32 %%
33 % List of vehicle parameters
34 r_w =0.3; % Wheel radius [m]
35 M_veh =1400; % Vehicle mass [kg]
36 a=1; % Front axle -CoG [m]
37 b=1.3; % Rear axle -CoG [m]
38 h_CoG =0.3; % Height of CoG [m]
39 grav =9.81; % Gravity [m/s^2]
40 f_0 =4.5*1e -3; % Rolling coefficient [N/kN]
41 k =0.013; % Rolling resistance coefficient depending on speed of

the vehicle [Ns/m]
42 alpha =0; % Road inclination [ ]
43 C_d =0.33; % Drag coefficient
44 A_f =2.15; % Frontal area [m^2]
45 rho= 1.225; % Air density [kg/m^3]
46 tau_gb =9.6; % Gearbox ratio [-]
47 eta_gb =0.97; % Gearbox efficiency [-]
48 Ns =108;% Number of series cells [-]
49 Np =1; % Number of parallel cells [-]
50 Nb =108; % Total number of cells in the battery [-]
51 Qnom =60* Np; % Nominal capacity [Ah]
52 Q_nom=Qnom *3600; % Nominal capacity [As]
53 eta_c =0.95; % Columbic efficiency [-]
54 eta_tr =0.95; % Transmission system efficiency [-]
55 eta_inv =1; % Inverter efficiency [-]
56 eps =0.1;
57

58 T_EM_WLTP =( acc_WLTP *M_veh * r_w)/( eta_gb * tau_gb ); % WLTP Torque
vector

59 w_WLTP = ( speed_WLTP * tau_gb /r_w);
60 P_EM_WLTP = T_EM_WLTP .* w_WLTP ;
61

62 % starting condition of vehicles
63 x_ego0 =0;
64 v_ego0 =0;
65 x_lead0 =10;
66 v_lead0 =0;
67 SOC0 =0.8; % Initial SOC [-]
68

69

70 t_sim =1800; % simulation time
71 Td =0.01;
72
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73 %% NMPC Design
74 import casadi .*
75

76 Ts = 0.5; % Sampling time [s]
77 N = 5; % prediction horizon (in terms of number of time steps to

look at)
78

79 % Limit values of the state variables
80 v_max = max(V_z);
81 v_min = 0;
82 SOC_max = 1;
83 SOC_min = 0;
84 T_EM_max =max( T_EM_WLTP );
85 T_EM_min =min( T_EM_WLTP );
86

87 max_dis =300;
88 max_dis_urb =100;
89 max_dis_exurb =200;
90 max_dis_high =300;
91 min_dis =20;
92 max_acc = 1.5;
93

94

95 % State Variables definition
96 p_veh = SX.sym(’p_veh ’); % Position
97 v_veh = SX.sym(’v_veh ’); % Speed
98 SOC = SX.sym(’SOC ’); % State of Charge
99 states = [ SOC; p_veh; v_veh ];

100 n_states = length ( states ); % Number of states
101

102 % Control Variable
103 T_EM = SX.sym(’T_EM ’); % EM Torque
104 controls =[ T_EM ];
105 n_controls = length ( controls );
106

107 %% SYSTEM MODEL
108

109 % Resistive Forces
110 F_roll = M_veh * grav * f_0; % Rolling resistance
111 F_aero = 0.5 * rho * C_d * A_f * v_veh ^2; % Aerodynamic resistance
112 F_grade = 0; % Force due to the slope of the street
113

114 % Voc and Ro calculation
115 SOC_table_Voc = SOC_Voc_data (: ,1) ’;
116 Voc_table = SOC_Voc_data (: ,2) ’;
117 SOC_table_Ro = SOC_Ro_data (: ,1) ’;
118 Ro_table = SOC_Ro_data (: ,2) ’;
119

120 figure ;

66



MatLab scripts

121 % First Subplot : Voc vs SOC
122 subplot (2 ,1 ,1);
123 plot( SOC_table_Voc , Voc_table , ’bo -’, ’LineWidth ’, 2, ’MarkerSize ’

, 6);
124 xlabel (’State of Charge (SOC)’);
125 ylabel (’Open Circuit Voltage (Voc) [V]’);
126 title(’Voc vs SOC ’);
127 grid on;
128

129 % Second Subplot : Ro vs SOC
130 subplot (2 ,1 ,2);
131 plot( SOC_table_Ro , Ro_table , ’ro -’, ’LineWidth ’, 2, ’MarkerSize ’,

6);
132 xlabel (’State of Charge (SOC)’);
133 ylabel (’Internal Resistance (Ro) [\ Omega]’);
134 title(’Ro vs SOC ’);
135 grid on;
136

137

138 % Initialize Voc and Ro with zero
139 Voc = 0;
140 Ro =0;
141

142 % Perform piecewise linear interpolation for Voc
143 for i = 1: length ( SOC_table_Voc ) -1
144 % Check if SOC is within the interval [ SOC_data (i), SOC_data (i

+1)]
145 in_interval = (SOC >= SOC_table_Voc (i)) & (SOC <=

SOC_table_Voc (i+1));
146

147 % Linear interpolation formula
148 Voc = Voc + in_interval .* ( Voc_table (i) + ( Voc_table (i+1) -

Voc_table (i)) * (SOC - SOC_table_Voc (i)) / ( SOC_table_Voc (i+1)
- SOC_table_Voc (i)));

149 end
150

151 % Perform piecewise linear interpolation for Ro
152 for i = 1: length ( SOC_table_Ro ) -1
153 % Check if SOC is within the interval [ SOC_data (i), SOC_data (i

+1)]
154 in_interval = (SOC >= SOC_table_Ro (i)) & (SOC <= SOC_table_Ro (

i+1));
155

156 % Linear interpolation formula
157 Ro = Ro + in_interval .* ( Ro_table (i) + ( Ro_table (i+1) -

Ro_table (i)) * (SOC - SOC_table_Ro (i)) / ( SOC_table_Ro (i+1) -
SOC_table_Ro (i)));

158 end
159

67



MatLab scripts

160 % Values for the entire battery
161 Vbatt=Voc*Nb;
162 Rbatt=Ro*Nb;
163

164 % Acceleration
165 a_veh = (T_EM * eta_gb * tau_gb / (M_veh * r_w)) - ( F_roll +

F_aero + F_grade ) / M_veh;
166

167 % SOC dot calculation
168 w_EM = v_veh * tau_gb / r_w; % [rad/s]
169 w_EM_rpm = w_EM * 30 / pi; % [rpm]
170

171 % EM Efficiency map
172 Speed_max = BEV_mot .Speed (: ,1); % Maximum Speed

[rpm]
173 Shaft_Torque_max = BEV_mot . Shaft_Torque (: ,1); % Maximum Torque

[Nm]
174

175 figure
176 contourf ( BEV_mot .Speed , BEV_mot . Shaft_Torque , BEV_mot . Efficiency )
177 %%
178 figure ;
179 contourf ( BEV_mot .Speed , BEV_mot . Shaft_Torque , BEV_mot .Efficiency ,

20); % Efficiency Map
180 colorbar ;
181 xlabel (’Speed [rpm]’);
182 ylabel (’Torque [Nm]’);
183 title(’Efficiency Map of the Electric Motor ’);
184 grid on;
185

186

187 % 3D EFFICIENCY MAP
188 figure ;
189 hold on;
190

191 h = surf( BEV_mot .Speed , BEV_mot . Shaft_Torque , BEV_mot . Efficiency );
192 shading interp ;
193 colormap ( parula );
194 h. FaceAlpha = 1;
195

196 mesh( BEV_mot .Speed , BEV_mot . Shaft_Torque , BEV_mot .Efficiency , ’
EdgeColor ’, ’k’, ’FaceColor ’, ’none ’);

197

198 contour3 ( BEV_mot .Speed , BEV_mot . Shaft_Torque , BEV_mot .Efficiency ,
20, ’k’);

199

200 hold off;
201 colorbar ;
202 xlabel (’EM speed [rpm]’);
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203 ylabel (’Shaft Torque [Nm]’);
204 zlabel (’Efficiency [-]’);
205 title(’Experimental Efficiency Map ’);
206 grid on;
207 view (-45, 30);
208

209

210 % Look -Up Table Interpolation
211 speed_values = BEV_mot .Speed (:);
212 torque_values = BEV_mot . Shaft_Torque (:);
213 efficiency_values = BEV_mot . Efficiency (:);
214

215 speed_axis = unique ( BEV_mot .Speed (: ,1));
216 torque_axis_high_res = linspace (min( torque_values ), max(

torque_values ), 120); % from 60 to 120 points
217

218 % Create the new grid
219 [ Speed_grid_high_res , Torque_grid_high_res ] = meshgrid (speed_axis ,

torque_axis_high_res );
220

221 % Interpolation on the new grid
222 Efficiency_grid_high_res = griddata ( speed_values , torque_values ,

efficiency_values , Speed_grid_high_res , Torque_grid_high_res , ’
cubic ’);

223 Efficiency_grid_high_res = Efficiency_grid_high_res ./100;
224

225 figure ;
226 subplot (1 ,2 ,1);
227 contourf ( BEV_mot . Shaft_Torque , BEV_mot .Speed , BEV_mot . Efficiency );
228 xlabel (’Torque ’); ylabel (’Speed ’); zlabel (’Efficiency ’);
229 title(’Original Efficiency Map ’);
230 shading interp ;
231

232 subplot (1 ,2 ,2);
233 contourf ( Torque_grid_high_res , Speed_grid_high_res ,

Efficiency_grid_high_res );
234 xlabel (’Interpolated Torque ’); ylabel (’Interpolated Speed ’);

zlabel (’Efficiency ’);
235 title(’High - Resolution Interpolated Efficiency Map ’);
236 shading interp ;
237

238 % Definition of the dynamic safety distance
239 reaction_time = 2; % Reaction time (s)
240 deceleration = 7; % Max Deceleration (m/s^2)
241 braking_distance = v_veh ^2 / (2 * deceleration ); % Braking

distance
242 safety_distance = 1.5* braking_distance + reaction_time * v_veh ; %

Safety distance
243 cond= safety_distance < min_dis ;
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244 safety_dist = if_else (cond ,min_dis , safety_distance );
245 % Symbolic function
246 Safety_Distance_function = Function (’Safety_Distance_function ’, {

v_veh}, { safety_dist });
247

248

249 % Maximum distance definition
250 cond1= p_veh < 2893.33;
251 cond2= p_veh >= 2893.33 & p_veh < 7850.41;
252 cond3= p_veh >= 7850.41;
253 max_dist = if_else (cond1 , max_dis_urb , max_dis );
254 max_dist = if_else (cond2 , max_dis_exurb , max_dist );
255 max_dist = if_else (cond3 , max_dis_high , max_dist );
256 Max_Distance_function = Function (’Max_Distance_function ’, {p_veh},

{ max_dist });
257

258 %% Efficiency Interpolation
259 % Perform piecewise linear interpolation for T_EM
260 for p = 1: length ( Speed_max ) -1
261

262 in_int = ( w_EM_rpm >= Speed_max (p)) & ( w_EM_rpm <=
Speed_max (p+1));

263

264 % Linear interpolation formula
265 Tem_interp = in_int .* ( Shaft_Torque_max (p) + (

Shaft_Torque_max (p+1) - Shaft_Torque_max (p)) * ( w_EM_rpm -
Speed_max (p)) / ( Speed_max (p+1) - Speed_max (p)));

266 end
267

268 Tmax= Tem_interp ;
269 Tmin=- Tem_interp ;
270

271 % Saturation
272 condition_up = T_EM >Tmax;
273 Tem = if_else ( condition_up , Tmax , T_EM);
274 condition_down = T_EM <Tmin;
275 Tem= if_else ( condition_down , Tmin , T_EM);
276

277 ind1 = 1;
278 for i = 1: length ( torque_axis_high_res ) -1
279 condition1 = (Tem >= torque_axis_high_res (i)) & (Tem <

torque_axis_high_res (i+1));
280 ind1 = if_else (condition1 , i, ind1);
281 end
282 ind1 = if_else (Tem >= torque_axis_high_res (end), length (

torque_axis_high_res ) - 1, ind1);
283 ind1 = if_else (Tem < torque_axis_high_res (1) , 1, ind1);
284

285 ind2 = 1;
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286 for j = 1: length ( speed_axis ) -1
287 condition2 = ( w_EM_rpm >= speed_axis (j)) & ( w_EM_rpm <

speed_axis (j+1));
288 ind2 = if_else (condition2 , j, ind2);
289 end
290 ind2 = if_else ( w_EM_rpm >= speed_axis (end), length ( speed_axis )

- 1, ind2);
291 ind2 = if_else ( w_EM_rpm < speed_axis (1) , 1, ind2);
292

293 T1 = 0; % Initialize the result
294 for i = 1: length ( torque_axis_high_res ) -1
295 T1 = T1 + if_else (i == ind1 , torque_axis_high_res (i), 0);
296 end
297 T2 = 0; % Initialize the result
298 for j = 1: length ( torque_axis_high_res ) -1
299 T2 = T2 + if_else (j == ind1 , torque_axis_high_res (j+1) , 0)

;
300 end
301

302 w1 = 0; % Initialize the result
303 for k = 1: length ( speed_axis ) -1
304 w1 = w1 + if_else (k == ind2 , speed_axis (k), 0);
305 end
306 w2 = 0; % Initialize the result
307 for q = 1: length ( speed_axis ) -1
308 w2 = w2 + if_else (q == ind2 , speed_axis (q+1) , 0);
309 end
310

311 eff11 = 0; % Initialize
312 for i = 1: size( Efficiency_grid_high_res , 1)
313 for j = 1: size( Efficiency_grid_high_res , 2)
314 eff11 = eff11 + if_else ((i == ind1) & (j == ind2),

Efficiency_grid_high_res (i, j), 0);
315 end
316 end
317 eff21 = 0; % Initialize
318 for i = 1: size( Efficiency_grid_high_res , 1) -1
319 for j = 1: size( Efficiency_grid_high_res , 2) -1
320 eff21 = eff21 + if_else ((i == ind1) & (j == ind2),

Efficiency_grid_high_res (i+1, j), 0);
321 end
322 end
323 eff12 = 0; % Initialize
324 for i = 1: size( Efficiency_grid_high_res , 1) -1
325 for j = 1: size( Efficiency_grid_high_res , 2) -1
326 eff12 = eff12 + if_else ((i == ind1) & (j == ind2),

Efficiency_grid_high_res (i, j+1) , 0);
327 end
328 end
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329 eff22 = 0; % Initialize
330 for i = 1: size( Efficiency_grid_high_res , 1) -1
331 for j = 1: size( Efficiency_grid_high_res , 2) -1
332 eff22 = eff22 + if_else ((i == ind1) & (j == ind2),

Efficiency_grid_high_res (i+1, j+1) , 0);
333 end
334 end
335

336

337 eff_res = 1 / ((T2 - T1) * (w2 - w1)) * ...
338 (eff11 * (T2 - Tem) * (w2 - w_EM_rpm ) + ...
339 eff21 * (Tem - T1) * (w2 - w_EM_rpm ) + ...
340 eff12 * (T2 - Tem) * ( w_EM_rpm - w1) + ...
341 eff22 * (Tem - T1) * ( w_EM_rpm - w1));
342

343 eta_EM = eff_res ;
344

345 P_b = T_EM * w_EM /(( eta_EM * eta_inv )^sign(T_EM*w_EM)); % Battery
power

346 I_b = (Vbatt -sqrt (( Vbatt ^2) -4* Rbatt*P_b + eps))/(2* Rbatt); %
Battery current

347 SOC_dot = ( -1/( eta_c^sign(I_b)))*( I_b / Q_nom); % SOC derivative
348

349 % State Equations
350 p_veh_dot = v_veh;
351 v_veh_dot = a_veh;
352

353 % System dynamics
354 sys_dyn = [ SOC_dot ; p_veh_dot ; v_veh_dot ]; % System dynamics
355

356 f = Function (’f’,{states , controls }, { sys_dyn }); % vehicle
dynamics function

357

358 U = SX.sym(’U’,n_controls ,N); % Decision variables ( controls )
359 X = SX.sym(’X’,n_states ,(N+1)); % Vector that represents the

states over the optimization problem .
360 P = SX.sym(’P’,n_states + N*( n_states + n_controls )); % Parameters (

which include the initial state and the reference along the
361 % predicted trajectory ( reference states and reference controls ))
362

363 %% COST FUNCTION
364 cost = 0; % Cost function
365 g = []; % constraints vector
366

367 % Weights for the Cost function
368 lambda1 =1; % weight on P_EM
369 lambda2 =1000; % weight on SOC
370 lambda3 =3e4; % weight on Maximum distance
371 lambda4 =100; % weight on Speed
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372 lambda5 = 500; % weight on acceleration
373

374

375 st = X(: ,1); % initial state
376 g = [g;st -P(1:3) ]; % initial condition constraints
377

378 for k = 1:N
379 st = X(:,k); % state
380 con = U(:,k); % control
381

382 w_rpm =(X(3,k)* tau_gb /r_w);
383 Tem=U(:,k);
384 Pem=w_rpm*Tem;
385

386 cond_Pem =Pem >0;
387 cond_dist = P(( n_states + n_controls ) * k + 1) - st (2) >

Max_Distance_function (st (2));
388

389 cost = cost + if_else (cond_Pem , 1, 0)* lambda1 *( Pem ^2); % Cost
term on the Electric Power

390 cost = cost + lambda2 *( norm(P(( n_states + n_controls )*k) - st
(1)))^2; % Cost term on the SOC

391 cost = cost + if_else (cond_dist , 1, 0)* lambda3 *( norm(P((
n_states + n_controls ) * k + 1) - st (2) - Max_Distance_function
(st (2))))^2; % Cost term on the Maximum distance

392 cost = cost + lambda4 *( norm(P(( n_states + n_controls )*k+2) -st
(3)))^2 ; % Cost term on the Speed

393

394 st_next = X(:,k+1);
395 f_value = f(st ,con);
396 st_next_euler = st+ (Ts* f_value );
397 g = [g;st_next - st_next_euler ]; % compute constraints
398 end
399

400 % cost= cost + lambda5 *( norm(X(3,N+1) -P(( n_states + n_controls )*N+2)
))^2; % Cost term on speed at the end of prediction horizon

401

402 for k=1:N-1
403 cost = cost + lambda5 * (norm(X(3,k+1) - X(3,k))/Ts)^2; % Cost

term on comfort
404 end
405

406

407 for k=1:N
408 speed = X(3,k); % state
409 g = [g; P(( n_states + n_controls ) * k + 1) - X(2,k) -

Safety_Distance_function (speed)]; % Constraint on the minimum
distance between pos_veh and pos_ref

410 end
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411

412

413 % make the decision variable one column vector
414 OPT_variables = [ reshape (X ,3*(N+1) ,1); reshape (U,N ,1) ];
415

416 nlp_prob = struct (’f’, cost , ’x’, OPT_variables , ’g’, g, ’p’, P);
417

418 opts = struct ;
419 opts.ipopt. max_iter = 10000;
420 opts.ipopt. print_level =0;%0,3
421 opts. print_time = 0;
422 opts.ipopt. acceptable_tol =1e -8;
423 opts.ipopt. acceptable_obj_change_tol = 1e -6;
424

425 solver = nlpsol (’solver ’, ’ipopt ’, nlp_prob ,opts);
426

427 %% CONSTRAINTS
428 args = struct ;
429

430 % Constraint for the system to respect the vehicle dynamics
function

431 args.lbg (1:3*( N+1)) = 0; % -1e -20 % Equality constraints
432 args.ubg (1:3*( N+1)) = 0; % 1e -20 % Equality constraints
433

434 args.lbg (3*(N+1) +1:3*( N+1)+N) = 0; % Constraint on the minimum
distance

435 args.ubg (3*(N+1) +1:3*( N+1)+N) = inf; % Constraint on the minimum
distance

436

437 % Constraints on state variables
438 args.lbx (1:3:3*( N+1) ,1) = SOC_min ; % SOC lower bound
439 args.ubx (1:3:3*( N+1) ,1) = SOC_max ; % SOC upper bound
440 args.lbx (2:3:3*( N+1) ,1) = 0; % Position lower bound
441 args.ubx (2:3:3*( N+1) ,1) = inf; % Position upper bound
442 args.lbx (3:3:3*( N+1) ,1) = v_min; % Speed lower bound
443 args.ubx (3:3:3*( N+1) ,1) = v_max; % Speed upper bound
444

445 % Constraints on the control variable
446 args.lbx (3*(N+1) +1:1:3*( N+1)+N ,1) = T_EM_min ; % T_EM lower bound
447 args.ubx (3*(N+1) +1:1:3*( N+1)+N ,1) = T_EM_max ; % T_EM upper bound
448

449

450 % Interpolate WLTP speed profile to match simulation time
451 time_sim = linspace ( time_WLTP (1) , time_WLTP (end), t_sim / Ts); %

Create simulation time vector
452 speed_ref = interp1 (time_WLTP , speed_WLTP , time_sim , ’linear ’); %

Interpolate
453 pos_ref = interp1 (time_WLTP , pos_WLTP , time_sim , ’linear ’); %

Interpolate
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454 acc_ref = interp1 (time_WLTP , acc_WLTP , time_sim , ’linear ’); %
Interpolate

455 T_EM_ref = interp1 (time_WLTP , T_EM_WLTP , time_sim , ’linear ’); %
Interpolate

456 P_EM_ref = interp1 (time_WLTP , P_EM_WLTP , time_sim , ’linear ’); %
Interpolate

457

458 speed_ref (end:end+N)= speed_ref (end);
459 pos_ref (end:end+N)= pos_ref (end);
460 T_EM_ref (end:end+N)= T_EM_ref (end);
461

462 % ----------------------------------------------
463 % ALL OF THE ABOVE IS JUST A PROBLEM SET UP
464 %%
465

466 % THE SIMULATION LOOP STARTS FROM HERE
467 % -------------------------------------------
468 t0 = 0;
469 x0 = [SOC0 ; 0 ; 0]; % initial condition
470

471 xx (: ,1) = x0; % xx contains the history of states
472 t(1) = t0; % t contains the time
473

474 u0 = zeros(N ,1); % control inputs over the prediction time
475 X0 = repmat (x0 ,1,N+1) ’; % initialization of the states decision

variables
476

477 sim_tim = 1800; % Maximum simulation time
478

479 % Start MPC
480 iter_number = 0; % Iteration counter
481 xx1 = [];
482 u_cl =[]; % Control variable over the entire cycle
483

484 reference =zeros (4, sim_tim ); % reference vector initialization ( 4
= [SOC_ref , pos_ref , speed_ref , T_EM_ref ])

485 main_loop = tic;
486

487 % the main simulaton loop ... it works as long the number of NMPC
steps is less than its maximum value.

488

489 while( iter_number < sim_tim /Ts) % Condition for ending the loop
490 current_time = iter_number ; % get the current time
491 %

----------------------------------------------------------------------

492 args.p(1:3) = x0; % initial condition of the state
493 for k = 1:N % set the reference to track
494 t_predict = current_time + k; % predicted time instant
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495

496 SOC_ref =SOC0; % our reference in terms of SOC is to keep
SOC equal to its initial value (0.8)

497 x_ref = pos_ref ( t_predict );
498 v_ref = speed_ref ( current_time +1); % The reference speed

remains constant at the starting value during the prediction
499 Tem_ref = T_EM_ref ( t_predict );
500

501 args.p(( n_states + n_controls )*k:( n_states + n_controls )*k+2)
= [SOC_ref , x_ref , v_ref ];

502 args.p(( n_states + n_controls )*k+ n_states ) = [ Tem_ref ];
503

504 reference (1, current_time +1)= SOC_ref ;
505 reference (2, current_time +1)=x_ref;
506 reference (3, current_time +1)=v_ref;
507 reference (4, current_time +1)= Tem_ref ;
508

509 end
510 %

----------------------------------------------------------------------

511 % initial value of the optimization variables
512 args.x0 = [ reshape (X0 ’ ,3*(N+1) ,1); reshape (u0 ’,N ,1) ];
513 sol = solver (’x0’, args.x0 , ’lbx ’, args.lbx , ’ubx ’, args.ubx

,...
514 ’lbg ’, args.lbg , ’ubg ’, args.ubg ,’p’,args.p);
515 u = reshape (full(sol.x(3*(N+1) +1: end)) ’,1,N) ’; % get controls

from the solution
516 xx1 (: ,1:3 , iter_number +1)= reshape (full(sol.x (1:3*( N+1))) ’,3,N

+1) ’; % get solution TRAJECTORY
517 u_cl= [u_cl ; u(1 ,:) ];
518 t( iter_number +1) = t0;
519 % Apply the control and shift the solution
520 [t0 , x0 , u0] = shift(Ts , t0 , x0 , u,f);
521 xx(:, iter_number +2) = x0;
522 X0 = reshape (full(sol.x (1:3*( N+1))) ’,3,N+1) ’; % get solution

TRAJECTORY
523 % Shift trajectory to initialize the next step
524 X0 = [X0 (2: end ,:);X0(end ,:) ];
525 iter_number
526 iter_number = iter_number + 1;
527 end;
528

529

530 main_loop_time = toc( main_loop );
531 average_mpc_time = main_loop_time /( iter_number +1)
532 SOC_final =xx(1, end)
533 %%
534 % Acceleration computation
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535 ref_speed = reference (3 ,1: sim_tim /Ts);
536 for j=1: length ( ref_speed ) -1
537 acc(j)=( ref_speed (j+1) -ref_speed (j))/( time_sim (j+1) -time_sim (j

)); % acceleration vector
538 end
539 acc_ref = [acc acc(end)]; % Extend to match length to match

dimensions
540

541 speed_vect =xx (3 ,1: sim_tim /Ts);
542 for j=1: length ( speed_vect ) -1
543 acc_vec (j)=( speed_vect (j+1) -speed_vect (j))/( time_sim (j+1) -

time_sim (j)); % acceleration vector
544 end
545 acc_vect = [ acc_vec acc_vec (end)]; % Extend to match length to

match dimensions
546 %%
547 % Total power provided by the battery
548 v_cl=xx (3 ,1:end -1);
549 w_cl =((( v_cl .* tau_gb ) ./ r_w)); % [rad/s]
550 T_EM_cl =u_cl ’;
551 P_EM_cl = T_EM_cl .* w_cl; % ./(( eta_EM .* eta_inv ).^ sign( T_EM_cl

.* w_rpm_cl ));
552

553 total_P_EM =trapz(time_sim , P_EM_cl );
554 disp ([’The total power provided by the EM is: ’ num2str ( total_P_EM

)]);
555 %%
556 for i=10: length ( time_sim )
557 if xx(2,i+1) >= reference (2,i)
558

559 disp ([’THERE IS A CRASH at instant ’ num2str (i)]);
560 end
561 end
562

563 %% MAX DISTANCE OVER THE SIMULATION
564 dist_max =0;
565 for i=1: length ( time_sim )
566 if reference (2,i)-xx(2,i) >= dist_max ;
567 dist_max = reference (2,i)-xx(2,i);
568 end
569 end
570 dist_max
571

572 %% RESULTS PLOT
573 folder =’C:\ Users\matti\ Desktop \ MAGISTRALE TORINO \ AUTONOMOUS

VEHICLE \TESI\ Result Plots\NMPC ’;
574

575 % Plotting the SOC of the vehicle
576 figure ()
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577 plot(time_sim , reference (1 ,1: sim_tim /Ts),’b’,time_sim ,xx (1 ,1:
sim_tim /Ts),’r’);

578 title(’SOC of the vehicle controlled by NMPC ’);
579 xlabel (’Time [s]’)
580 ylabel (’SOC [-]’)
581 legend (’Reference SOC ’,’SOC ’)
582 ylim ([0.7 ,0.82]) ;
583 grid on
584 saveas (gcf , fullfile (folder , ’SOC_NMPC .png ’));
585

586 % Plotting the position of the vehicle
587 figure ()
588 plot(time_sim , reference (2 ,1: sim_tim /Ts),’b’,time_sim ,xx (2 ,1:

sim_tim /Ts),’r’);
589 title(’Position of the two vehicles in NMPC simulation ’);
590 xlabel (’Time [s]’)
591 ylabel (’Position [m]’)
592 legend (’Reference Position ’,’Actual Position ’)
593 grid on
594 saveas (gcf , fullfile (folder , ’Position_NMPC .png ’));
595

596 % Plotting the speed of the vehicle
597 figure ()
598 plot(time_sim , reference (3 ,1: sim_tim /Ts),’b’,time_sim ,xx (3 ,1:

sim_tim /Ts),’r’);
599 title(’Speed of the two vehicles in NMPC simulation ’);
600 xlabel (’Time [s]’)
601 ylabel (’Speed [m/s]’)
602 legend (’Reference Speed ’,’Actual Speed ’)
603 grid on
604 saveas (gcf , fullfile (folder , ’Speed_NMPC .png ’));
605

606 % Plotting the acceleration of the vehicle
607 figure ()
608 plot(time_sim ,acc_ref ,’b’,time_sim ,acc_vect ,’r’);
609 title(’Acceleration of the two vehicles in NMPC simulation ’);
610 xlabel (’Time [s]’)
611 ylabel (’Acceleration [m/(s^2)]’)
612 legend (’Reference Acceleration ’,’Actual Acceleration ’)
613 grid on
614 saveas (gcf , fullfile (folder , ’Acceleration_NMPC .png ’));
615

616 u_cl=u_cl ’;
617 % Plotting the T_EM of the vehicle
618 figure ()
619 plot(time_sim , reference (4 ,1: sim_tim /Ts),’b’,time_sim ,u_cl (1 ,1:(

sim_tim /Ts)),’r’);
620 title(’EM Torque of the two vehicles in NMPC simulation ’);
621 xlabel (’Time [s]’)
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622 ylabel (’T_EM [Nm]’)
623 legend (’Reference EM Torque ’,’Commanded EM Torque ’)
624 grid on
625 saveas (gcf , fullfile (folder , ’TEM_NMPC .png ’));
626

627 % Plotting the P_EM of the vehicle
628 figure ()
629 plot(time_sim , P_EM_ref ,’b’,time_sim , P_EM_cl (: ,1: sim_tim /Ts),’r’)

;
630 title(’EM Power of the two vehicles in NMPC simulation ’);
631 xlabel (’Time [s]’)
632 ylabel (’P_EM ’)
633 legend (’EM Power of WLTP cycle ’,’EM Power provided by Vehicle ’)
634 grid on
635 saveas (gcf , fullfile (folder , ’PEM_NMPC .png ’));
636

637 %% RESULTS SAVING
638 folder =’C:\ Users\matti\ Desktop \ MAGISTRALE TORINO \ AUTONOMOUS

VEHICLE \TESI\ Platoon results ’;
639

640 % Saving WLTP results for plotting
641 time_wltp = time_sim ;
642 soc_wltp = reference (1 ,1: sim_tim /Ts);
643 position_wltp = reference (2 ,1: sim_tim /Ts);
644 vel_wltp = reference (3 ,1: sim_tim /Ts);
645 accel_wltp = acc_ref ;
646 tem_wltp = reference (4 ,1: sim_tim /Ts);
647 pem_wltp = P_EM_ref ;
648

649 save( fullfile (folder , ’WLTP_ref .mat ’), ’time_wltp ’, ’soc_wltp ’, ’
position_wltp ’, ’vel_wltp ’, ’accel_wltp ’, ’tem_wltp ’, ’pem_wltp
’);

650

651 % Saving vehicle results for plotting
652 time= time_sim ;
653 soc=xx (1 ,1: sim_tim /Ts);
654 position =xx (2 ,1: sim_tim /Ts);
655 vel=xx (3 ,1: sim_tim /Ts);
656 accel= acc_vect ;
657 tem=u_cl (1 ,1:( sim_tim /Ts));
658 pem= P_EM_cl (: ,1: sim_tim /Ts);
659 soc_final = SOC_final ;
660 pem_total = total_P_EM ;
661

662 save( fullfile (folder , ’veh1.mat ’), ’time ’, ’soc ’, ’position ’, ’vel
’, ’accel ’, ’tem ’, ’pem ’, ’soc_final ’,’pem_total ’);

663

664 %%
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665 folder =’C:\ Users\matti\ Desktop \ MAGISTRALE TORINO \ AUTONOMOUS
VEHICLE \TESI\ Result Plots\NMPC ’;

666

667 addpath (" CTG ");
668 final_SOC_CTG =load (" CTG\ final_SOC_CTG .mat ");
669 total_PEM_CTG =load (" CTG\ total_PEM_CTG .mat ");
670 final_SOC_CTG = final_SOC_CTG . SOC_final ;
671 total_PEM_CTG = total_PEM_CTG . P_EM_tot_ego ;
672

673 final_SOC_vect =[ final_SOC_CTG ; SOC_final ];
674 % Plotting the final value of SOC
675 figure ;
676 hold on;
677 num = size( final_SOC_vect , 1);
678 colors = [1 0 0; % red
679 0 0 1]; % blue
680 b = gobjects (num ,1);
681 for i = 1: num
682 b(i) = bar(i, final_SOC_vect (i), ’FaceColor ’, colors (i ,:) , ’

EdgeColor ’, ’k’);
683 end
684 title(’Comparison on the final SOC value ’);
685 xticks (1:2);
686 xticklabels ({’CTG ’, ’NMPC ’});
687 ylabel (’SOC [-]’);
688 ylim ([0.6 , 0.8]);
689 grid on;
690 saveas (gcf , fullfile (folder , ’SOC_final .png ’));
691 %%
692 total_PEM_vect =[ total_PEM_CTG ; total_P_EM ];
693 % Plotting the total value of P_EM
694 figure ;
695 hold on;
696 num_ = size( total_PEM_vect , 1);
697 colors = [1 0 0; % red
698 0 0 1]; % blue
699 b = gobjects (num_ ,1);
700 for i = 1: num_
701 b(i) = bar(i, total_PEM_vect (i), ’FaceColor ’, colors (i ,:) , ’

EdgeColor ’, ’k’);
702 end
703 title ({’Comparison on the total value of Power ’},{’\bf provided by

EM during the whole simulation ’});
704 xticks (1:2);
705 xticklabels ({’CTG ’, ’NMPC ’});
706 ylabel (’P_{EM} [W]’);
707 ylim ([0, 5e7])
708 grid on;
709 % saveas (gcf , fullfile (folder , ’total_PEM .png ’));
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710

711

712 %%
713 % SHIFT FUNCTION
714 function [t0 , x0 , u0] = shift(Ts , t0 , x0 , u,f)
715 st = x0;
716 con = u(1 ,:) ’;
717 f_value = f(st ,con);
718 st = st+ (Ts* f_value );
719 x0 = full(st);
720

721 t0 = t0 + Ts;
722 u0 = [u(2: size(u ,1) ,:);u(size(u ,1) ,:)];
723 end
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