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Summary

In the context of financial markets, a constant element is the presence of risks,
which can make the management of financial instruments challenging. The com-
plexity may increase in the case of exotic derivatives, whose value may depend on
a variety of underlying variables and risk factors. In this framework, the present
work develops a strategy for the dynamic hedging of exotic derivatives through
stochastic optimization.

The main idea behind a hedging problem is to optimize the management of a
hedging portfolio designed to offset potential future liabilities arising from a posi-
tion in the exotic derivative. The term ’dynamic’, instead, refers to a multi-stage
decision process where multiple decisions can be made over time. To deal with
a dynamic hedging problem, the implemented strategy lies within the stochastic
optimization framework, formulating, at each decision stage, an optimization prob-
lem which reflects the underlying idea of an Asset-Liability-Management problem.
The optimization model accounts for a set of stochastic variables and leverages
scenario trees for a discrete representation of possible future outcomes. To accu-
rately approximate the space of future scenarios, two methods to simulate financial
instrument dynamics are employed: the Geometric Brownian Motion simulation
and the Moment Matching method.

After an initial development phase, the proposed approach is evaluated in terms
of effectiveness and efficiency: Monte Carlo simulation is leveraged to test the
implemented strategy over a set of simulated paths for the financial market dynam-
ics. Lastly, a comparative analysis is performed to assess the effectiveness of the
proposed strategy compared to traditional methods, such as Delta Hedging, and
more recent approaches, such as Deep Hedging.
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Chapter 1

Foundations and context of
hedging

Managing risks in financial markets is a nontrivial challenge, particularly when
dealing with complex financial instruments. The idea of a hedging problem is to
minimize, through the application of advanced mathematical techniques, the risk
exposure of financial market participants when trading instruments, thus reducing
potential future losses. The work described in this thesis focuses on hedging ex-
otic financial derivatives through a multi-stage stochastic optimization approach,
providing a hedging strategy which relies on an optimized portfolio management
under uncertainty.

In this chapter, the fundamentals to understand the hedging problem are pre-
sented. In a first phase, the concept of hedging is introduced, examining the
motivations to formulate a hedging problem and the approach to its resolution;
some well-known hedging strategies in the literature are then presented, namely
Delta Hedging and Deep Hedging: these strategies will be used in further chapters
to benchmark the hedging strategy through Stochastic Optimization proposed by
this work.

For a better comprehension of the general framework in which the hedging prob-
lem is formulated, following an introductory section, the financial framework is
established by describing the market setup along with its underlying dynamics, as
well as by defining the financial instruments considered in the hedging strategy,
along with their characteristics and mathematical formulations.
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Foundations and context of hedging

1.1 Introduction to the hedging problem
As mentioned above, when facing financial markets one recurring feature is the
presence of risk, which can manifest in various forms: potential losses may arise
by unfavorable price movements of any assets, incurring what is called market
risk; an asset may become difficult to trade due to bid-ask spread or low trading
volumes, leading to liquidity risk, or again a counterpart in a financial contract may
fail to meet its obligations, facing credit risk or counterpart risk, and many other
different risks can arise in financial markets. In the context of financial derivatives
trading, managing these risks is crucial and investors may need advanced models
and strategies to hedge against them.

In this work, the following risk scenario is considered: a short position in an
exotic derivative is taken, which may result in the obligation to close the financial
contract under adverse conditions if the derivative ends up in-the-money at ma-
turity. Thus, holding the short position implies dealing with the risk of possible
future losses depending on the market scenario that will occur. The framework
established in this work only focuses on option contracts, a specific set of financial
derivatives better detailed in section 1.2. The party holding the short position in
an option contract can possibly face unbounded losses (in extreme scenarios), in
contrast to the bounded loss of a long position; in addition, the short party cannot
avoid his obligation when the option is exercised by the counterpart: due to this
asymmetry in the contract, the short position is charged with an amount known
as the option premium. At this point, the hedging strategy comes into play: the
option premium received from the counterpart can be immediately reinvested to
construct a hedging portfolio; the latter consists of a portfolio of different assets,
denoted by hedging instruments, with the aim of replicating the exotic option’s
payoff. Once a replicating portfolio is constructed, the hedger is provided with an
instrument which ensures that, with high probability, the future loss deriving from
the target asset is offset by the portfolio: this concept is related to the minimization
of the hedging error, defined as the difference, at the target asset expiration date,
between the target payoff and the hedging portfolio value. The idea is that, by
differentiating our wealth in an optimized portfolio, the risk and uncertainty of the
unhedged position (one in which no hedging strategy is applied, leaving its value to
depend entirely on the target payoff) is mitigated, especially in terms of variance
of potential losses.

The strategy presented above applies both for static and dynamic approaches:
the difference between these two is better detailed in the following subsection.

2



Foundations and context of hedging

1.1.1 The concept of dynamic hedging
Static and dynamic hedging are two distinct approaches to the hedging problem:
their difference lies in the number of stages in which the hedger makes decisions.

Static Hedging involves a single decision stage in which the hedger optimizes
the strategy, constructing the hedging portfolio once and maintaining it unvaried
until the end of the hedging horizon, when its value is used to offset liabilities
which may be encountered. However, particularly for long-term hedging horizons,
this approach may not be effective in minimizing risks, due to market fluctuations
which might occur after the portfolio construction at the initial stage, leaving the
hedger exposed to unexpected risks.

Dynamic Hedging, on the other hand, involves a sequence of consecutive deci-
sion stages over the hedging horizon: at a first stage, the hedging portfolio is
constructed, while for subsequent stages its composition is adjusted according to
the financial market realizations; this strategy allows for a more effective hedg-
ing since the portfolio is rebalanced periodically and adapts to the new market
conditions, leveraging the additional knowledge acquired along the path up to
the current decision stage. Although dynamic hedging provides a more flexible
response to market fluctuations, it also requires a more active management of the
strategy, as well as addressing market frictions such as transaction costs, which
may erode the wealth invested in the portfolio if portfolio rebalancing is too frequent.

This thesis focuses solely on the implementation of a dynamic hedging strategy
due to its superior effectiveness, despite its higher complexity.

1.1.2 Hedging strategies in the literature
Many hedging strategies have been studied over the years, also with quite differ-
ent methodologies and applications, aiming to mitigate different financial risks:
most strategies are developed to hedge against assets’ volatility, but strategies
for interest-rate movement, credit risk, event and liquidity risks and others exist
too. In light of this, a brief overview of the key hedging strategies proposed in the
literature is given in this section.

A first classification of hedging strategies was already given in the previous section,
concerning the difference between static and dynamic hedging. A further distinction
among hedging strategies relies on the approach used to derive a hedging policy:
indeed, hedging strategies can be either model-based or data-driven. While the
formers rely on financial market assumptions, such as the Black-Scholes framework,
and derive analytical method to hedge a specific risk, data-driven approaches,

3



Foundations and context of hedging

like machine learning or reinforcement learning, leverage the knowledge contained
in historical or simulated data to learn a hedging policy that can be applied to
new unseen data. One approach for each category is presented in the following
sections and later used in subsequent chapters as a benchmark for our stochastic
programming method.

Delta Hedging

The Delta Hedging is one of the most well-known hedging strategies studied in the
financial literature; it belongs to a set of hedging approaches related to the concept
of Greeks, some risk measures which describe the variation of an option contract
value with respect to some risk factors. In particular, the delta (∆) of an option is
defined as the sensitivity of the option value to changes in the underlying value, or
better the rate of variation of the option price with respect to the change in its
underlying value. Denoting by Pt and St the option and the underlying prices at
time t, we have:

∆t = ∂Pt(St)
∂St

. (1.1)

Assuming to have a short position in an option contract, Delta Hedging is a risk
management strategy aimed at maintaining a delta-neutral portfolio, buying or
selling an amount of the underlying equal to the value of delta; in this way, for
small changes in the underlying price, there would be no changes in the portfolio
value as the option and the underlying’s changes in value offset each other. The
strategy may also include a risk-free asset to cover portfolio costs and guarantee a
self-financing condition. M.Villaverde formalizes in the paper "Hedging European
and Barrier options using stochastic optimization" [1] a Delta Hedging strategy
to hedge against a short position in an option with a portfolio composed of the
underlying stock and a risk-free asset; denoting by Bt the value of the risk-free
asset, St the value of the stock, Xt = (X0

t , X1
t ) the vector of assets’ holdings in

the portfolio, where X0
t refers to the risk-free asset and X1

t to the stock, and an
initial wealth for the portfolio construction W0, in absence of transaction costs,
Villaverde’s strategy for each decision stage would be:

X1
0 = ∆0, X0

0 = W0 − X1
0 S0

B0
,

X1
t = ∆t, X0

t = X0
t−1 + (X1

t−1 − X1
t )St

Bt

, ∀ t = 1, . . . , T − 1

and
X1

T = ∆T −1, X0
T = X0

T −1.

Just for reference, moving away from the delta but within the Greeks, we can
mention gamma Γ, which is a measure of delta sensitivity with respect to the
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Foundations and context of hedging

underlying price, but also measures against other risk factors, such as theta Θ,
(option price sensitivity to time), rho ρ, (sensitivity to interest rate r), and vega ν
(sensitivity to volatility σ); for each Greek (and also for combinations of them) a
hedging strategy can be constructed similarly to the Delta Hedging.

Deep hedging

In contrast to traditional hedging methods, the growing interest in machine learning
led to the development of machine learning algorithms applicable to the financial
hedging problem. The term Deep Hedging refers to the application of neural
networks (NN) to learn policies for portfolio construction and rebalancing aiming
at hedging a position in a target asset. Unlike most of other hedging strate-
gies, which are model-based, Deep Hedging is a data-driven, learning the optimal
hedging strategy by training the network over a large number of simulated scenarios.

Just to provide the reader with a first introduction to the topic, neural networks
are machine learning models widely used for their ability to learn complex and
non-linear relationships among data. They features a set of consecutive layers of
connected nodes (each with assigned weights) through which data is processed with
linear and non-linear functions, starting from the input layer, proceeding through
the intermediate ones (the hidden layers) up to the final one, the output layer. In
particular, a weight matrix Wi and a bias vector bi are assigned to each node i, by
means of which the following linear transformation is applied: Xi = Wi · xi + bi,
where xi is a matrix containing the outputs of the nodes from the previous layer.
To the term Xi is then applied a non-linear function, among which the most
well-known are the sigmoid function and the hyperbolic one; the result of these
two steps is then passed to nodes of the following layer.

Each sample of the data is processed through the NN resulting in an output
vector on which a performance measure is computed and the nodes’ weights and bi-
ases are then adjusted in order to optimize the performance measure over the whole
available dataset. Figure 1.1 shows an example of the structure of a neural network.

In the hedging framework, given a portfolio with multiple hedging assets, the
neural network takes as input the current state of the financial market and outputs
the optimal holdings of the hedging instruments to be held in the portfolio. The
ideal network for a multi-stage decision process turns out to be a recurrent neural
network (RNN), a specific type of NN where the input and the output are sequences
of dependent values rather than vectors: each layer of a RNN takes as input not
only the output of the previous layer but also its own output of the previous
time step, making the network well-suited for problems where there is temporal

5



Foundations and context of hedging

Input layer Hidden layers Output layer

Input vector

x =

x1

x2

x3

Output vector

= y
y1

y2

Figure 1.1: Example of a (fully connected feed forward) neural network with 2
hidden layers.

dependency in the data, as in the case of the consecutive decisions made in dynamic
hedging.

For the scope of this thesis, an example of Deep Hedging algorithm existing
in the literature is taken as a benchmark for our stochastic optimization model; in
particular, it is taken into account the long-short term memory RNN described
by Alexandre Carbonneau in the article "Deep Hedging of long-term financial
derivatives" [2]. For further details on the implementation, refer to chapter 6 (or
directly to the reference).

1.2 Market setup

This thesis develops a stochastic programming method applied to the risk manage-
ment in financial applications. Hence, it is essential to provide some fundamental
notions that will be used throughout the work for the full comprehension of the
topic. For this reason, this section outlines the financial market setup which serves
as the background framework for the hedging problem proposed. In particular, the
financial instruments available in the market are described, with a specific focus on
their characteristics and behavior.

The financial market is in discrete time, with a finite time horizon of length
T , equal to the target asset maturity, divided into K equal-length time intervals ∆t

6



Foundations and context of hedging

by the set of observation dates {tk}K
k=0, also denoted as time instants. In formula:

tk = k∆t ∀k ∈ {0, . . . , K}, where ∆t = T

K
.

Recall that hedging a short position in a financial derivative implies the construction
of a hedging portfolio. Contrary to what one might expect, also exotic derivatives
with complex payoff functions can be hedged using a finite number of simple
financial instruments: this strategy is based on the principle that exotic options
can be decomposed or replicated, at least partially, with combinations of simpler
assets. In light of this, the financial market will take into account a finite set of
basic financial assets for the construction of the hedging portfolio; specifically, the
following instruments will be considered:

• a bank account, denoted for the sake of simplicity by Cash position B, which
plays the role of the riskless asset, earning a risk-free rate of return;

• a set of stocks Si for i ∈ {1, . . . , m}, with each stock representing a risky
asset subject to stochastic price dynamics;

• vanilla European options (including both call and put options), which are
basic financial contracts written on the available stocks.

Since this work addresses not only vanilla options but also exotic ones, a brief
overview of financial derivatives should be provided.

Financial derivatives, or contingent claims, are instruments whose value depends
on the value of one or more other assets, called underlying assets; they play a key
role in financial markets, especially when dealing with hedging against risks or
speculating on future market movements. Among the most well-known derivatives
are listed options, futures and forward contracts. For the purpose of this work, the
focus will be on option contracts only.

European options

European options are financial contracts which give the holder the right, but not
the obligation, to buy or sell an underlying asset at a predetermined price, known
as the strike price K, and at a predetermined date, the option maturity T . In
contrast to the option holder, there is the option writer, who writes and sells the
contract on the market and who has the obligation to buy or sell the asset if the
holder exercises the right. Due to the asymmetry in the obligations of the two
counterparts, the writer requires a premium for the risk he assumes. For option
contracts, the writer is said to have a short position, while the holder has a long
position. There are two types of European options, classified by the payoff at
maturity: European call option and European put option.

7
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European call options. A European call option is a contract which gives the
holder the right to buy the underlying asset at the strike price K at maturity T .
For a call written on a stock whose price at time t is denoted by St, the payoff
function for the long position is defined by:

Payofflong = max (ST − K, 0) .

Given that the holder pays a premium p to enter the contract, the profit of the
long position as a function of the underlying price at maturity is:

Profitlong = max (ST − K, 0) − p.

Intuitively, the payoff and profit functions for the short position on a call option
are given by:

Payoffshort = − max (ST − K, 0) ,

Profitlong = − max (ST − K, 0) + p.

Figure 1.2 and Figure 1.3 show profits and payoffs of the two parties in a European
call option contract, respectively for the long and the short position.

Figure 1.2: Payoff and profit for a long position in a European call option.
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Figure 1.3: Payoff and profit for a short position in an European call option.

European put options. Opposed to a European call option, the European put
option is a contract that gives the holder the right to sell the underlying asset at
the strike price K at maturity T . Thus, payoff and profit formulas for the long
position in an European put option are:

Payofflong = max (K − ST , 0) ,

Profitlong = max (K − ST , 0) − p,

while formulas for the short position in an European put are:

Payoffshort = − max (K − ST , 0) ,

Profitshort = − max (K − ST , 0) + p.

Figure 1.4 and Figure 1.5 report the graphs of these functions, respectively for the
long and the short position.
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Figure 1.4: Payoff and profit for a long position in a European put option.

Figure 1.5: Payoff and profit for a short position in an European put option.
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Asian options

Asian options are financial derivatives similar to European options, except that
they can be written on multiple underlying assets and their payoff at maturity
depends on the average value of the underlyings over time. Asian options can be
both European and American style1, but we focus on European style options only,
thus options that can be exercised exclusively at expiration date T . For a long
Asian option, the payoff formulas are:

Payoffcall = max
1
S̄ − K, 0

2
,

Payoffput = max
1
K − S̄, 0

2
,

where S̄ is an average over a finite number of time instants during the contract
lifetime, that is:

S̄ = 1
n

nØ
k=1

A
1
m

mØ
i=1

Si,tk

B
,

with n representing the number of time instants and m the number of underlying
stocks. All remaining formulas for Asian options (calls and puts, in both short
and long positions) can be derived trivially by following the logic of the European
option formulas.

1.3 Market dynamics
In this section, the focus shifts to the dynamics that model the evolution of the
financial market. In particular, the stochastic processes that govern asset price
paths are explored, with particular attention given to the key role of Brownian
Motion and Geometric Brownian Motion in the context of this thesis, as well as
their relevance in the Black–Scholes–Merton pricing framework. For reference,
and without loss of generality, a stochastic process can be defined as a family of
time-dependent random variables {Xt}t∈T .

The discussion of this section will lay the basis for the simulations of the market
evolution developed in later chapters.

1American options are contracts in which the holder has the right to buy or sell the asset at
strike price K at any time, or at specific dates, during the contract lifetime, not necessarily only
at maturity.
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1.3.1 Brownian motion
Brownian motion is a continuous-time stochastic process which is well-known in
academic literature and widely used in financial applications.
Mathematically, a standard Brownian motion {Wt}t≥0 is nothing more than
the Wiener process; thus, before entering into details, it is appropriate to make
some reference to the latter.

Wiener process and drifted Brownian Motion

The Wiener process {Wt}t∈T is a continuous-time stochastic process with the
following properties:

• W0 = 0;

• independent and normally distributed increments; in particular:
Wt+s − Wt ∼ N (0, s);

• continuous sample path, that is W (t) is a continuous function of t.
As already mentioned, the standard Brownian motion process is another notation for
the Wiener process Wt. The process can be generalized to the drifted Brownian
motion {Bt}t∈T , defined as

Bt = x0 + µt + σWt,

where B0 = x0 is the initial value, µ is the drift term, σ is the diffusion term and
Wt is the Wiener process. The stochastic differential equation (SDE) under the
drifted Brownian motion is:

dBt = µdt + σdWt.

This process is typically associated with the log-transformation of the stocks price
process: given a stock St and an estimate of the its expected return and volatility
(µ and σ respectively), it is generally said that:

d(ln(St)) =
A

µ − σ2

2

B
dt + σdWt,

that is the equation of a drifted Brownian motion with drift term
1
µ − σ2

2

2
and

diffusion term σ; thus we have that, for any s < t,

ln(St) ∼ N
A

ln(Ss) +
A

µ − σ2

2

B
(t − s), σ2(t − s)

B
,

implying that St follows a log-normal distribution.

A further generalization is the definition of Geometric Brownian motion, which is
in fact a common choice for the stocks’ price process.

12



Foundations and context of hedging

1.3.2 Geometric Brownian motion
The stock price St follows the stochastic differential equation of the geometric
Brownian motion:

dSt = µStdt + σStdWt, (1.2)
where:

• µ is the expected return of the stock;

• σ is the standard deviation of the stock’s returns;

• Wt is the Wiener process.

The drift term of equation (1.2) is given by µSt, while the diffusion term is given
by σSt. Without entering into mathematical details, the solution to the SDE is
given by:

St = S0 · e

1
µ− σ2

2

2
t+σWt

. (1.3)
The Brownian Motion (and Geometric Brownian Motion) are not only important in
modeling stock price dynamics, but they also play a key role in the Black-Scholes-
Merton pricing formula for European-style options.

1.3.3 Black-Scholes-Merton pricing formulas
Black-Scholes-Merton formulas are among the most well-know pricing formulas in
financial applications. Despite their popularity, they rely on a set of assumptions
that simplify the complexity of financial markets and allow for the derivation of
a closed-form solution for the price of vanilla European-style options. The main
assumptions are the absence of arbitrage opportunities and frictions2 in the market
and log-normal asset price distribution (the price of the underlying asset follows a
Geometric Brownian Motion, implying that its log-return is normally distributed
with constant volatility.).

Given these conditions, it is possible to derive European option prices. In particular,
the European call option price is given by:

Ct = St · N(d1) − K · e−r(T −t) · N(d2), (1.4)

while the European put option price is:

Pt = K · e−r(T −t) · N(−d2) − St · N(−d1), (1.5)

2transaction costs or similar.
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where K is the option strike, St is the underlying price at time t, N(·) is the
cumulative distribution function (cdf) of a standard normal and the formulas for
d1 and d2 are:

d1 =
ln
3

St

K

4
+
3

r + 1
2σ2

4
(T − t)

σ
√

T − t
,

d2 = d1 − σ
√

T − t =
ln
3

St

K

4
+
3

r − 1
2σ2

4
(T − t)

σ
√

T − t
.

Given the Black-Scholes-Merton formulas for the price of vanilla European options,
it is trivial to compute their Delta applying Equation 1.1.
For a European call option:

∆call = N(d1),

while for a European put option the delta is given by:

∆put = N(d1) − 1.

Pricing Asian options

Black-Scholes-Merton formulas are specifically for vanilla European-style options;
European-style Asian options cannot be priced using the Black-Scholes-Merton
model. Asian options have payoffs that depend on the average of the underlying
assets prices over time, making their pricing more complex. In the context of this
thesis, Monte Carlo simulation is used to price these options: a high number of
stock price paths is simulated3 to estimate the expected payoff of the Asian option:

E[payoff] ≈ 1
|Ω|

Ø
ω∈Ω

payoff(ω);

the price of the Asian option is then computed as the discounted expected value of
the payoff:

Asian option price = e−rTE[payoff].

3Note that, from a theoretical point of view, the pricing framework should be done assuming a
risk neutral (hypothetical) world, that is: the simulation of stock prices evolution for the pricing
of Asian option is performed assuming that the expected return of the stocks is equal to the
risk-free rate r.
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Chapter 2

Multi-stage Stochastic
Optimization

The dynamic hedging problem can be viewed as a sequential decision-making
problem where the hedger periodically rebalances the hedging portfolio over the
time horizon, aiming to minimize the risk exposure related to possible future
liabilities. However, the process is subject to a set of stochastic variables whose
realizations are unknown in advance; therefore, decisions must be robust against a
wide set of possible future scenarios. The primary source of stochasticity in financial
applications, which will be the focus of our attention, is the evolution of asset prices.

In this chapter, the methodology applied for the development and implemen-
tation of the hedging strategy is presented. First, the mathematical formulation of
multi-stage stochastic decision models is introduced to better clarify how sequential
decision-making under uncertainty can be formalized using stochastic optimization
techniques.
Just after that, scenario trees will be introduced for a better understanding of how
the hedging problem will be faced in following chapters. Their role in modeling the
uncertainty about future market outcomes will be detailed, along with the underly-
ing dynamics modeling the generation of values in their discrete approximation of
market evolution. In this context, the Geometric Brownian Motion previously in-
troduced will play a key role, together with a method known as Moment Matching.
Lastly, some discussions will be made about different approaches to ensure the
absence of arbitrage opportunities in the simulated paths of scenario trees.
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2.1 Fundamentals of Stochastic Optimization
Stochastic Optimization is a framework of decision-making problems under uncer-
tainty: indeed, it is a family of optimization models whose objective function and
constraints may depend both on decision variables and on realizations of stochastic
variables that are encountered in the environment. For the sake of simplicity, it is
assumed that there is no stochasticity in the constraints but only in the objective
function (that is the case of our problem implementation).

Without loss of generality, a one-stage stochastic optimization problem can be
formulated as:

min
x

EΩ [f(x, ξ)]
s.t h(x) = 0

g(x) ≤ 0

where x is the vector of decision variables and ξ(ω) is the vector of stochastic
variables which depend on the scenario ω ∈ Ω.

A multi-stage stochastic optimization model is a SO problem in which differ-
ent decision-making stages follow each other, introducing a temporal dependence in
the model: at each stage, the decision is based on the information available up to
the current time. A finite time-horizon multi-stage SO problem can be formulated
as:

min
{xt}t=1...,T

EΩ

C
TØ

t=1
ft(xt, ξt)

D
s.t xt ∈ Xt(Ft−1) ∀ t = 1, . . . , T

(2.1)

where T is the number of decision stages, Ft is the σ-algebra1 representing the
information available up to time t and Xt(Ft−1) represents the feasibility set to
which xt belongs, indicating that decision variables may be constrained according
to the previous decision made and to the realizations of the stochastic variables
observed up to the current time t.

Concerning the hedging problem, the latter is in fact formulated as a multi-stage
stochastic optimization problem, despite some considerations which result in a
simplified version of Problem (2.1):

1Briefly, Ft is the set containing all the events happened and decisions made up to time t; it
can be seen as the history experienced before reaching time t.
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• although decision stages follow each other along the whole time horizon, the
objective of the hedging boils down to minimizing the hedging error at the
target maturity date; thus, the only contribution to the objective function is
given by

fT (FT ),

where fT will represent a function computing the hedging error and the
presence of FT indicates that the contribution to the objective function is
given by the whole history of decisions and realizations of stochastic variables
up to time T ;

• in order to have a consistent representation of the uncertainty about the
stochastic variables future realizations and to estimate the expectation in
Problem (2.1), Multi-stage Stochastic Optimization problems are often sup-
ported by the use of scenario trees, which help to model the evolution of
stochastic variables over time and to approximate the probability distribution
of possible future scenarios by providing a discretized version of it. This
discretization is achieved by dividing, at each stage, the possible future mar-
ket states into discrete branches, each representing a potential realization of
stochastic variables.

Considering a discrete set Ω̃ of possible future scenarios with cardinality |Ω̃| = n
(equipped with a probability density function π) given by a scenario tree, the
hedging problem follows the formulation:

min
{xt}t=1,...,T

1
n

nØ
i=1

1
fT (F (i)

T ) · π(ω̃i)
2

s.t xt ∈ Xt(Ft−1) ∀ t = 1, . . . , T

where F (i)
T includes all the realization of stochastic variables which led to the

scenario ω̃i and all the decisions made along the path. In this re-formulation of
Problem (2.1), the expectation EΩ[·] is replaced by the sample mean over the set
of simulated scenarios in the scenario tree. In order to ensure an effective and
accurate optimization problem, it is crucial to generate scenario trees in a care-
ful way, taking into account the expected dynamics of the random variables involved.

In light of this, the following section is dedicated to the description of scenario
tree generation in financial applications, with a particular focus on the dynamics
implemented for the purpose of this thesis.
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2.2 Scenario Tree Generation
As evidenced by M.Villaverde,

"The effectiveness of the stochastic optimization based hedging strategy
depends crucially on an accurate representation of the uncertainty and
thus on an accurate scenario tree" [1].

Scenario trees play a key role in stochastic optimization problems as they are the
means through which uncertainty is modeled over time: indeed, they are a graphical
representation of some possible future outcomes of any uncertain parameters in
the model.

Scenario trees have three main features:

• branching steps: the number of times the tree branches, i.e. the number of
stages in the decision process;

• length of time steps: the time interval between one node and its children.
Time steps are strictly related to scenario trees of time-dependent models,
that is the case of stochastic optimization models where there is a temporal
structure in the decision process;

• branching factors: the number of children nodes generated from each node
in the tree. The branching factors can be homogeneous (when the branching
factor is constant for all nodes), homogeneous by time step (when the branching
factor is constant within each time step but may vary across time steps) and
inhomogeneous (different for each node in the tree).

The number of final scenarios generated by the tree in case of branching factors
homogeneous by time step is trivially computed as the product of branching factors
(e.g. with branching factors [30, 10, 4] the number of scenarios is 30 · 10 · 4 = 1200).
Figure 2.1 shows a graphical example of a scenario tree.

An important aspect related to scenario trees concerns the underlying dynam-
ics determining the evolution of generated values for stochastic variables. In the
hedging framework, the stochastic variables correspond to assets’ prices (in particu-
lar, stocks’ prices) and the scenario tree should capture appropriately the properties
and the assumptions on the price dynamics of these assets.
In the implementation of the stochastic optimization hedging problem different ap-
proaches to scenario tree values generation are considered: the Geometric Brownian
Motion and the Moment Matching approach; while the first was already mentioned
before, the latter is briefly introduced in the following paragraph.
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t0 t1 t2 t3 Scenario

ω1

ω2

ω3

ω4

ω5

ω6

ω7

ω8

ω9

ω10

ω11

ω12

n0

n3

n9
n21

n20

n8
n19

n18

n2

n7
n17

n16

n6
n15

n14

n1

n5
n13

n12

n4
n11

n10

Figure 2.1: Example of scenario tree with 3 branching steps and branching factors
[3, 2, 2], with a total of 12 scenarios.

Moment Matching. The core idea of Moment Matching is to simulate stock
prices from a distribution that best approximates the distribution of some historical
data, where the approximation is achieved by matching moments and properties
of the two distributions (such as first and second moments, variance, correlation,
skewness, kurtosis and more); for the application of Moment Matching in this work,
the generation of values for a scenario tree is achieved by solving an optimization
problem where the properties of the generated scenario tree are forced to match
the correspondent properties of the historical data distribution.
Given a hint on the moment matching technique, the following sections provide a
brief overview of the implemented dynamics in scenario tree generation.
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Stocks Parameters Estimation. To better describe the simulation of stock
dynamics in scenario tree generation, this paragraph provides a brief reference to
the estimation of stock dynamics parameters.

By means of a set of available historical data, daily logarithmic returns of each
stock j = 1, . . . , m are computed as follows:

Yj(t) = ln
A

Sj(t)
Sj(t − 1)

B
,

where t denotes the time index in days.

The statistical moments and properties of stock dynamics are then inferred based
on these log-returns; the set of estimated parameters includes:

• drift µ̂ = [µ̂1, . . . , µ̂m],

• volatility σ̂ = [σ̂1, . . . , σ̂m],

• the correlation matrix ρ̂, with each entry ρ̂j,k corresponding to the correlation
between log-returns of stocks j and k;

• skewness γ̂ = [γ̂1, . . . , γ̂m]

• kurtosis ν̂ = [ν̂1, . . . , ν̂m].

After a first estimation from daily log-returns, parameters are annualized.

One aspect of particular interest concerns the drift µ̂, which is adjusted by adding
the term σ̂2/2, that is:

µ̂′
j = µ̂j +

σ̂2
j

2 ∀j = 1, . . . , m.

This choice is motivated by the fact that the drift is estimated, in a first phase,
directly from log-returns; however, to exploit GBM formulas with a coherent drift
term, this adjustment is necessary, leading to the term µ̂′ which corresponds to
the expected stocks return.

From now on, the notation µ̂ will refer to the adjusted drift term which incorporates
the correction σ̂2/2.
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2.2.1 Simulation through Geometric Brownian Motion
An initial approach to scenario tree generation involves modeling the stock dynamics
with the Geometric Brownian Motion; thus, the assumption of this methodology is
that the stocks’ prices process follows the SDE of Equation 1.2, which, as shown
above, features as solution the formula given by:

St = S0 · e

1
µ− σ2

2

2
t+σWt

.

The key aspects of this approach are outlined in the following steps :

• at each branching step, increments for log-returns of stocks are sampled from
a multivariate normal distribution with mean µ̂ and covariance matrix Σ̂;

• besides, a check to ensure the absence of arbitrage opportunities in the
generated stock prices is performed to guarantee a reliable simulation (see
subsection 2.2.3 for more details);

• for the computation of nodes’ probabilities while preserving the match with
the Brownian Motion moments, a Moment Matching problem is solved;

• lastly, options in the hedging portfolio are priced according to the generated
underlyings prices through the B&S formulas (Equation 1.4 and Equation 1.5).

Moment matching for probabilities computation

As anticipated, a Moment Matching problem is solved for the computation of
scenario tree node probabilities, matching some scenario tree properties with the
corresponding properties estimated from historical data.
To better clarify how scenario tree moments are computed, consider the case of
Figure 2.2, where a parent node n0 is followed by c children nodes {ni}i=1...,c.

n0

nc

...

n1

Figure 2.2: Branching step in a scenario tree from a parent node n0 to his children
nodes {ni}i=1,...,c.
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Given the following:

• the log-return of the jth stock price from parent node n0 to the child node ni

y
(ni)
j = ln

S
(ni)
j

S
(n0)
j

 ,

• the vector of log-returns of stock j from n0 to his children nodes

yj =
è
y

(n1)
j , . . . , y

(nc)
j

é
,

• the vector π, equal to the conditional probability of each children node given
the parent node, that is

π = [π1, . . . , πc] = [P(n1 | n0), . . . ,P(nc | n0)],

then, for each non-leaf node in the scenario tree a moment matching problem is
solved to compute children nodes probabilities, where the matched moments are:

1. the first moment of log-returns in scenario tree

E[yj ] = πT yj =
cØ

i=1
πi ln

S
(ni)
j

S
(n0)
j


with the first moment of the BM followed by log-returns

M1(j) =
A

µ̂j −
σ̂2

j

2

B
dt

for each stock j;

2. the second moment of log-returns in scenario tree

E[y2
j ] = πT y2

j =
cØ

i=1
πi

ln
S

(ni)
j

S
(n0)
j

2

with the second moment of the BM of log-returns

M2(j) = σ̂2
j dt +

CA
µ̂j −

σ̂2
j

2

B
dt

D2

for each stock j;
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3. and the expectation of the product between log-returns of two different stocks
j and k

E[yj · yk] = πT (yj · yk) =
cØ

i=1
πi

ln
S

(ni)
j

S
(n0)
j

 ·

ln
S

(ni)
l

S
(n0)
l


with the correspondent property of the BM

P1(j, k) = (σ̂jσ̂kdt) · ρ̂j,k +
A

µ̂j −
σ̂2

j

2

B
dt ·

A
µ̂k − σ̂2

k

2

B
dt

for each pair of stocks i, j.

The optimization problem solved for the computation of nodes probabilities is:

min
π

nØ
j=1

(M1(j) − E[yj ])2 +
1
M2(j) − E[y2

j ]
22

+
nØ

k=j+1
(P1(j, k) − E[yj · yk])2


s.t.

Ø
i

πi = 1,

πi ∈ [l, u] ∀ i,

where 0 < l ≪ u < 1 represent bounds on probabilities values (needed for numerical
stability in the implementation). Since the problem is formulated as a constrained
Quadratic Program (QP), it is solved using the solver Gurobi2.

Alternative formulation. Also an alternative formulation of the moment match-
ing problem is implemented for the probability computation, where the difference
lies in the third moment matched: indeed, the third property is replaced by the
correlation matrix ρ, matched with the historical correlation ρ̂. The pairwise
correlation between log-returns of stocks j and k in the scenario tree is computed
as:

ρj,k = πT [(yj − µj) · (yk − µk)]
σj · σk

,

where µj is the -already introduced- term E[yj], while

σj =
ñ

πT (yj − E[yj])2

(the same hold for µk and σk). The objective of this formulation is:

min
π

∥E[y] − M1∥2 + ∥E[y2] − M2∥2 + ∥ρ − ρ̂∥1,

2Gurobi is an optimization solver used to solve linear, integer and quadratic programming
problems under given constraints.
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with the same set of constraints of the previous formulation. The inclusion of the
correlation in the objective function leads to an optimization model that is not a
LP nor a QP, thus not resolvable with Gurobi solver: for this implementation of
Moment Matching, the Sequential Least Squares Programming (SLSQP) solver is
adopted.

2.2.2 Simulation through Moment Matching
The second approach implemented for scenario tree generation involves the solution
of a Moment Matching problem for the computation of both node probabilities and
stock prices. Recalling the structure given by Figure 2.2, in this context decision
variables are represented by both π and yj (for each stock j) and the matched
moments are:

1. µj = E[yj ] with the first moment of log-returns µ̂j estimated from historical
data;

2. the standard deviation of log-returns in scenario tree

σj =
ñ

πT (yj − µj)2

with the standard deviation of log-returns σ̂j estimated from historical data;

3. the correlation among each pair of stocks

ρj,k = πT [(yj − µj) · (yk − µk)]
σj · σk

and the historical correlation ρ̂j,k;

4. the skewness
γj = πT

A
yj − µj

σj

B3

and the historical skewness γ̂j;

5. and the kurtosis
νj = πT

A
yj − µj

σj

B4

and the historical kurtosis ν̂j.
The optimization model ends up to be:

min
π,y

∥µ − µ̂∥2 + ∥σ − σ̂∥2 + ∥γ − γ̂∥2 + ∥ν − ν̂∥2 + ∥ρ − ρ̂∥1

s.t.
Ø

i

πi = 1,

πi ∈ [l, u] ∀ i,
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Due to its nature, the problem is solved using Sequential Least Squares Quadratic
Programming (SLSQP). In the same way as for the simulation with GBM, after the
scenario tree generation, a check to ensure the absence of arbitrage opportunities
is performed and finally options are priced.

This approach is quite flexible as it does not assume any particular underly-
ing dynamics for the stocks’ prices: the implication is the possibility to include
skewness and kurtosis in the matched moments (while for the GBM simulation
they could not be matched with the historical ones as for the Gaussian assumption
skewness and kurtosis are fixed in the generated values of the scenario tree).

2.2.3 Arbitrage-free scenarios
The generation of a scenario tree in financial applications is as useful as delicate:
during the generation of assets’ prices it must be guaranteed the condition on the
absence of arbitrage opportunities. Without entering into details, note that the
absence of arbitrage opportunities in our application can be achieved by checking
their absence in simulated stock prices, disregarding option prices (which are deter-
mined according to the stock prices).

An arbitrage opportunity is a strategy which does not require any initial investments
and allows to generate, in at least one future state, a positive cash flow, with a
non-negative cash flow in every other future state. Formally, it can be seen as a
portfolio h with value V h

t at time t for which it holds that, for a set Ω of possible
future scenarios at time t + 1:

V h
t = 0,

V h
t+1(ω) ≥ 0 ∀ω ∈ Ω,

EΩ[Vt+1] > 0.

Before analyzing how arbitrage opportunities can be avoided in scenario tree
generation, the definition of a dominant strategy should be introduced. The latter
is a strategy with a stronger condition with respect to the previous one: indeed, a
dominant strategy can be viewed as a portfolio h for which it holds that

V h
t = 0,

V h
t+1(ω) > 0 ∀ω ∈ Ω,

or, if there is a risk-free asset in the market,

V h
t < 0, (2.2)

V h
t+1(ω) ≥ 0 ∀ω ∈ Ω, (2.3)
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Let’s discuss first how to ensure the absence of dominant strategies in the generated
scenario tree. Recall again the case of Figure 2.2:

n0

nc

...

n1

Consider the following:

• the vector of cash and stocks prices at the parent node

p(n0) = [p(n0)
0 , . . . , p(n0)

m ];

• the vector of cash and stocks prices at the child node ni

p(ni) = [p(ni)
0 , . . . , p(ni)

m ];

• a portfolio h = [h0, . . . , hm], containing the holdings of the risk-free rate and
the m stocks, whose value at each node in the set {ni}i=0,...,c is given by

V h
ni

= hT p(ni).

The check on the absence of dominant strategies, according to Equation 2.2 and
Equation 2.3, is accomplished by studying the solution of the following LP problem:

min
h

hT p(n0)

s.t. hT p(ni) ≥ 0, ∀ i = 1, . . . , c

The dual of this problem is:

max
λ

0 (2.4)

s.t. λT pj = p
(n0)
j , ∀ asset j (2.5)

λ ≥ 0 (2.6)

where pj = [p(n1)
j , ..., p

(nc)
j ] indicates the vector of prices of asset j at children nodes

and λ is the vector of dual variables.
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Note that the dual is a feasibility problem, meaning that the objective function is
a constant value: the actual purpose of this problem is to verify the existence of
a solution λ∗ for which the condition of the constraints is met, disregarding the
minimization of an objective value. If such a solution exists, then the value at the
optimum of the objective function is zero both for the dual and the primal problem,
indicating that the generated prices for the children nodes allow for no dominant
strategy; additionally, it can be proven that if a stronger condition is met, that is
the solution λ∗ is strictly positive, then not only there are no dominant strategies,
but also arbitrage opportunities are avoided.
It can also be proven that if the problem has a feasible solution, then there exists
a probability measure q (obtained rescaling λ∗) under which the expected value of
the discounted price process is constant, that is:

Eq

5
pj

er∆t

6
= qT pj

er∆t
= p

(n0)
j . (2.7)

The reason behind these results lies in the concept of a martingale.

Martingale measure.

The concept of martingale is recurrent in financial literature since it is related to
the risk-neutral and arbitrage-free pricing of financial derivatives.
Without loss of generality, a stochastic process Mn is said to be a martingale if

E[Mn+1|Fn] = Mn. (2.8)

Here, the filtration Fn is formally defined as:

Fn = σ(M0, ..., Mn),

that is, the sigma-algebra generated by the process realizations up to time n, mean-
ing that it is the set containing all the events of the stochastic process observed up
to time n. Briefly, Fn represents the overall information about the process history
available up to time n. Equation 2.8 states that, conditioned on filtration Fn, the
expected future value of the process Mn+1 is equal to the current value Mn.

With the previous definition provided, let us now define a martingale measure.
Given a stochastic process Xn with a probability measure P (known as physical
or real-world measure), the equivalent martingale measure, also denoted as
risk-neutral measure, is a probability measure Q under which the stochastic process
Xn is a martingale. To better clarify, consider that for any stochastic processes
Equation 2.8 may not be satisfied, while there might exists a probability measure
Q under which it is satisfied. In formulae:

EP[Xn+1|Fn] /= Xn, EQ[Xn+1|Fn] = Xn.
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Returning back to our framework, it can be proven that the absence of arbitrage
in financial markets is strictly related to the existence of (at least3) one martingale
measure for the discounted price process. That is, denoting by Pt,j the price process
of an asset j, we are wondering whether there exists a probability measure Qt under
which

EQt

5
Pt+1,j

er∆t

---- Ft

6
= Pt,j.

This condition translates into Equation 2.7 related to the optimization problem
presented above and the existence of a solution π∗ to the problem corresponds to
the existence of a martingale measure which ensures the absence of arbitrage in
simulated scenarios of the tree.

Alternative approach to arbitrage-free scenarios.

M.Villaverde shows in [1] a different method to ensure absence of arbitrage in
simulated scenarios; in particular, in his methodology, the moment matching
method with a condition of absence of arbitrage are combined in the generation of
tree’s values. Based on his approach, the following problem is taken in consideration.
Recalling the structure with a parent node n0 and c children nodes {n1, . . . , nc},
after an initial generation of stocks’ prices {S̄

(ni)
j }, for each stock j the generated

values are modified according to the solution of:

min
{S

(ni)
j }

Ø
i

(S(ni)
j − S̄

(ni)
j )2 (2.9)

s.t.
Smax

j − S
(n0)
j

S
(n0)
j

≥ α (2.10)

Smin
j − S

(n0)
j

S
(n0)
j

≤ −α (2.11)

where α is a small positive number and the two terms Smax
j and Smin

j correspond to
the decision variables of the stock price respectively in the child node ni where the
generated stock price S̄

(ni)
j was the maximum and minimum. This optimization

problem should guarantee that at least one stock price among the children nodes
increased with respect to the previous price S

(n0)
j and, viceversa, at least one stock

price decreased.

3If such a martingale measure not only exists but it is also unique, the market is not only
arbitrage-free but also complete, meaning that there exists a replicating strategy for each derivative
in the market.
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Both strategies have been implemented in the project and tested: both resulted in
effective results in terms of performance, allowing to generate a scenario tree in
absence of arbitrage; moreover, despite the fact that the first method requires a
new generation of prices for children nodes for each time an arbitrage opportunity
is detected (resulting in a loop of values generation until an arbitrage-free scenario
is found), both method performed well in terms of computational time, with the
first approach faster in some cases and, viceversa, slower in other cases.
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Chapter 3

Optimization Model

The previous chapters provided some key concepts useful to understand the hedging
strategy proposed in this thesis. The first chapter introduced the topic and estab-
lished the financial market setup in which the strategy is implemented, detailing
the financial instruments and their assumed dynamics. The second chapter, instead,
presented the fundamentals of Stochastic Optimization and scenario tree generation,
which are leveraged to model the uncertainty about possible future outcomes and
are used to solve the hedging problem at each decision stage.

In this third chapter, the hedging strategy is formally presented. The mathe-
matical formulation of the optimization model solved at each decision stage of
the dynamic hedging process is discussed, specifying the decision variables, con-
straints and the objective function involved. Following this, various alternative
configurations of the hedging problem are introduced, each corresponding to a
specific choice for the strategy to implement. A discussion on different approaches
to portfolio financing will be provided, along with an analysis of how different levels
of risk aversion can be modeled. Lastly, the super-replication hedging problem is
introduced as it will be leveraged in later chapters to benchmark the performance
of the proposed strategy under higher levels of risk aversion.

Before analyzing the optimization problem, the Asset-Liability Management (ALM)
problem is introduced, as it provides a framework for structured approaches for
the management of a portfolio while ensuring that future liabilities are met: this
represents the general framework within which the hedging problem is situated.
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3.1 Conceptual Framework
As mentioned before, shorting a position in the target asset implies incurring a
future liability if the option is in-the-money at maturity; to hedge against the
potential liability, the premium received from selling the option contract can be
used to create a hedging portfolio which aims at replicating the option’s payoff; in
this way, the liability can be balanced by the cash flow generated by the hedging
portfolio. In this framework, a multi-stage stochastic programming based asset-
liability management (ALM) optimization model is proposed to address the hedging
problem.

At the initial time, a short position in the target asset is assumed: the option
premium gained is a cash flow available to be reinvested in the construction of a
hedging portfolio. The strategy is to rebalance the portfolio a finite number of times
before the option’s maturity, allowing the hedge to be calibrated according to the
market and assets dynamics. At each rebalancing time, the portfolio is optimized
according to an optimization problem presented in what follows (subsection 3.2.1).
To model the uncertainty in the market evolution, a scenario tree is simulated in
order to have a perspective of what the future possible outcomes of the financial
instruments are. According to the simulation, the model is solved trying to reach a
hedging portfolio whose final value does not deviate much from the target asset
payoff.

A relevant aspect to be considered is the presence of transaction costs (mar-
ket frictions known to work against hedging strategies) included in the model to
better reflect real financial market conditions.

3.1.1 The Asset-Liability Management problem
An Asset-Liability Management (ALM) problem is a financial optimization model
which aims at optimizing the allocation of a wealth over a portfolio of different
assets in view of meeting future liabilities over time, subject to various constraints.
Liabilities can be seen as expected cash outflows along the time horizon, while
assets in the hold portfolio may be seen as expected cash inflows: the objective
is to balance the two, minimizing the risk exposure associated with liabilities and
potential losses that may arise from them.
As expressed by Y.Romanyuk in [3], strategies for asset-liability management may
be modeled as single-period or multi-period problems and may be static rather
than stochastic. Concerning multi-period stochastic strategies, which is the case
of our hedging problem, these models allow both assets and liabilities to evolve
stochastically over time; investors, thus, should construct a portfolio at the initial
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stage and rebalance its composition along the time horizon in determined time
instants according to the evolution of assets and liabilities. The general idea of an
ALM model is represented graphically in Figure 3.1.

Wealth
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Figure 3.1: Flowchart for a three-stages stochastic asset-liability management
problem.

3.2 Mathematical formulation of the hedging prob-
lem

As introduced, the hedging problem is formulated as an asset-liability management
problem lying within the multi-stage stochastic optimization framework. The
following key points should be kept in mind:

• at maturity date, a liability may occur if the holder of the target asset exercises
it;

• after an initial portfolio construction at decision stage 0, portfolio rebalancing
occur at each stage up to the time-step before maturity: at maturity date, the
hedging portfolio is used to offset the potential liability without any further
rebalancing;

• possibly, intermediate cash outflows may occur before maturity due to inter-
mediate liabilities (think for example to coupons) and the optimization model
should be capable to take them into account;

• rebalancing operations occur with transaction costs proportional to the traded
volume of assets;

In what follows, the optimization problem and its characteristics are introduced.
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3.2.1 Definition of variables and parameters
Let the following indices represent the problem features:

• j ∈ {1, ..., n} be the index for hedging assets;

• i ∈ {0} ∪ N ∪ T be the index for nodes in the scenario tree, where:

– i = 0 corresponds to the root node;
– N is the set of non-leaf nodes, excluding the root node;
– T is the set of terminal nodes, i.e. leaf nodes.

Let’s define the following parameters:

• p
(i)
j : price of asset j at node i.

• Φ(i)
T : payoff of the target asset at the terminal node i ∈ T .

• π
(i)
T : probability of the terminal node i ∈ T , that is the probability of the

path from the root node to the leaf node i.

• W0: initial wealth available for the construction of the hedging portfolio;

• cj: transaction cost of asset j;

• a(i): index referring to the parent node of node i ∈ N ∪ T ;

• qj: previous quantity of asset j, taken to be the the quantity of holdings of
asset j held at the current stage before solving the problem. Note that for the
model solved at stage 0 (when the portfolio is still to be constructed) qj = 0 ∀j,
while for problems solved at further stages qj is equal to the holdings of asset
j found by solving the model at the previous stage;

and decision variables:

• x(i)
j : quantity of asset j bought at node i ∈ N ∪ {0}.

• y(i)
j : quantity of asset j sold at node i ∈ N ∪ {0}.

• z(i)
j : holdings of asset j at node i ∈ N ∪ {0}.

• e+
i , e−

i : positive and negative error terms at leaf node i ∈ T of the scenario
tree.
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3.2.2 Optimization model
The hedging optimization problem solved at decision stage 0 is formulated as follow
[1]:

min
Ø
i∈T

1
e+

i + e−
i

2
· π

(i)
T (3.1)

s.t. x(0)
j − y(0)

j + qj = z(0)
j , ∀j (3.2)

z(a(i))
j + x(i)

j − y(i)
j = z(i)

j , ∀i ∈ N , ∀j (3.3)

W0 +
nØ

j=1
(1 − cj) · p(0)

j · y(0)
j −

nØ
j=1

(1 + cj) · p(0)
j · x(0)

j = 0, (3.4)

nØ
j=1

(1 − cj) · p(i)
j · y(i)

j −
nØ

j=1
(1 + cj) · p(i)

j · x(i)
j = 0, ∀i ∈ N (3.5)

e+
i − e−

i =
Ø

j

p(i)
j · z(a(i))

j − Φ(i)
T , ∀i ∈ T . (3.6)

x(i)
j , y(i)

j ≥ 0, ∀i ∈ N ∪ {0}, ∀j (3.7)
e+

i , e−
i ≥ 0, ∀i ∈ T (3.8)

For problems solved at subsequent decision stages, only the constraint given by
Equation 3.4 changes and its formulation will depend on whether the strategy
is defined as self-financing or not: further details will be provided in subsection 3.3.1.

Let us look into details each component of the problem.

Objective Function.

Recalling the definition of the hedging error as the difference, at maturity, between
the target asset payoff and the value of the hedging portfolio, the goal of the
objective function (3.1) is to minimize the expected hedging error over the set of
simulated scenarios determined by the leaf nodes T of the scenario tree.
The hedging error is decomposed into its positive and negative parts e+

i and e−
i :

this decomposition allows for asymmetrical penalization of positive and negative
hedging errors: see subsection 3.3.2 for additional details.

Inventory Balance Constraints.

For each asset, constraints (3.2) and (3.3) ensure that holdings at each node are
consistent with the quantities bought, sold and already held:

• for the root node, given the equation

x(0)
j − y(0)

j + qj = z(0)
j ∀j,
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it holds that, for each asset j, the quantity bought minus the quantity sold,
plus the holding already held, is equal to the asset holding of the root node.
As mentioned above, it holds trivially that qj = 0 ∀j when solving the model
at stage 0;

• for all other non-leaf nodes i ∈ N it holds the equation

z(a(i))
j + x(i)

j − y(i)
j = z(i)

j ∀i ∈ N , ∀j,

according to which for each asset j the holding inherited from the parent node
plus the ones bought minus the ones sold is equal to the holding of the current
node.

At terminal nodes i ∈ T no portfolio rebalancing is allowed, thus for each leaf node
the holdings correspond to those of the parent node.

Cash balance constraints.

The model exhibits two cash balance constraints, specifically constraints (3.4) and
(3.5). The former, according to which

W0 +
nØ

j=1
(1 − cj) · p(0)

j · y(0)
j −

nØ
j=1

(1 + cj) · p(0)
j · x(0)

j = 0,

imposes that, for the root node of the tree, the total cost of purchase minus the
earnings from the sales should be equal to the initial wealth W0; this means that
the portfolio should be constructed by buying and selling asset holdings incurring
in a total cost that is equal to the given wealth. Different versions of Constraint
(?? will be provided in subsection 3.3.3, which discusses about the initial wealth
W0.
On the other hand, the second constraint, whose equation is

nØ
j=1

(1 − cj) · p(i)
j · y(i)

j −
nØ

j=1
(1 + cj) · p(i)

j · x(i)
j = 0, ∀i ∈ N

requires the portfolio to be self-financing at each non-leaf node (excluded the
root node), allowing for no cash flows from or to the outside: any changes in the
portfolio value must be financed through adjustments within the portfolio itself.
All cash flows listed in these constraints account for transaction costs cj (one for
each asset j); note that when selling holdings the transaction cost is applied with
the multiplicative factor (1 − cj), while when buying the factor (1 + cj) is used.

Possibly, intermediate liabilities Lt during the hedging horizon may occur: these are
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trivially managed by the optimization problem by adding a negative cash flow in
cash balance contstraints; indeed, constraints (3.4) and (3.5) would be respectively
restated as:

nØ
j=1

(1 − cj) · p(0)
j · y(0)

j −
nØ

j=1
(1 + cj) · p(0)

j · x(0)
j − L0 ≤ 0

and
nØ

j=1
(1 − cj) · p(i)

j · y(i)
j −

nØ
j=1

(1 + cj) · p(i)
j · x(i)

j − Lt(i) = 0, ∀i ∈ N ,

where t(i) refers to the time-step corresponding to node i of the scenario tree.

Error definition constraint.

The error definition is a key element in the optimization model as it helps shaping
the objective function to be minimized. The constraint given by Equation 3.6,
restated below,

e+
i − e−

i =
Ø

j

p(i)
j · z(a(i))

j − Φ(i)
T , ∀i ∈ T ,

defines the hedging error at each leaf node of the scenario tree as the difference
between the total portfolio value and the payoff of the target asset, whose position
is aimed to be hedged. The resulting error is then decomposed into its positive
and negative parts (e+ and e−); the reason behind this approach is to discriminate
between two types of errors:

• if the portfolio value falls short of the target payoff, i.e.Ø
j

p(i)
j · z(a(i))

j < Φ(i)
T ,

then e+
i = 0 and the total error ei at terminal node i is negative and equal in

absolute value to e−
i . This error is considered a shortfall, meaning that the

payoff replication has not been met and a loss has incurred in our hedging
strategy;

• on the other hand, if the portfolio value exceeds the target payoff, that is the
case when Ø

j

p(i)
j · z(a(i))

j > Φ(i)
T ,

then e−
i = 0 and the total error ei at leaf node i is positive and equal to

e+
i . Keeping in mind the purpose of the hedging problem (which involves
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requiring a payoff-replication condition), this error is considered a surplus,
meaning that the portfolio not only meets the target payoff but also exceeds
it. One may argue that this situation should not be penalized, as the payoff
is replicated and the portfolio ends up with a surplus value; however, it is
important to note that constructing a portfolio with a higher value requires a
greater investment, which leads to a higher cost of the hedging strategy.

This formulation allows the hedger to track the performance of the strategy by
analyzing both surplus and shortfall deviations of the portfolio value with respect
to the target asset’s payoff, while also allowing for the introduction of asymmetric
penalties in the objective function to better reflect the hedger’s risk aversion (as
will be discussed later in subsection 3.3.2).

3.3 Alternative formulations
Given the primal model formulation described above, some alternative formulations
are introduced to account for various aspects of the hedging strategy according to
the hedger’s preferences.

3.3.1 Financing strategies
Self-financing vs non-self-financing strategy

Given the following notation, according to which V h
t (τ) denotes the value at time

t of the held portfolio h constructed at time τ ≤ t, a self-financing strategy is a
portfolio rebalancing strategy according to which:

V h
t (t − ∆t) = V h

t (t).

In practice, the latter is a budget equation imposing that changes in the portfolio
composition between time instants t − ∆t and t should be completely financed by
the reallocation of existing wealth among the assets in the portfolio rather than by
financing the portfolio from the outside; thus, the rebalancing operation requires
no exogenous cash flow.

The optimization model at decision stages following the stage 0 can be formulated
with both a self-financing portfolio and a non-self-financing one, depending on the
hedger preference.
In the self-financing case, except for the problem at stage 0 where the portfolio
needs an initial investment to be constructed, constraint (3.4) should be substituted
with:

nØ
j=1

(1 − cj) · p(0)
j · y(0)

j −
nØ

j=1
(1 + cj) · p(0)

j · x(0)
j == 0,
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while in the non-self-financing case it should be substituted with:
nØ

j=1
(1 − cj) · p(0)

j · y(0)
j −

nØ
j=1

(1 + cj) · p(0)
j · x(0)

j <= 0.

Note that for the non-self-financing case, it is allowed only additional financing of
the portfolio: the possibility to withdraw part of the wealth previously invested in
the hedging portfolio is discussed in a following section.

To better understand this concept, some considerations are now made. The
distinction between self-financing and non-self-financing strategies is found in how
the wealth is managed along the hedging horizon. As anticipated, a self-financing
strategy requires that any changes in the portfolio’s composition is financed entirely
by the reallocation of existing wealth; thus, after the initial investment in the
portfolio construction, assets holdings are bought or sold without the need for
additional exogenous capital but only by redistributing the portfolio’s current
wealth. Mathematically, this constraint implies that negative cash flows due to
purchasing new assets are balanced by the positive flows from selling existing ones.
On the other hand, a non-self-financing strategy allows for external cash inflows,
meaning that the hedger can inject additional capital to adjust the portfolio compo-
sition. This flexibility may be advantageous in scenarios where market conditions
demand adjustments of the portfolio composition that cannot be financed entirely
by existing wealth. In light of this, in the applications it is expected that the
non-self-financing case will exhibit better performance in terms of hedging, as the
hedger can finance the portfolio at subsequent stages in the dynamic programming
process, leading to a more optimal strategy, hopefully reducing hedging errors and
enhancing the effectiveness of the risk management. However, it cannot be excluded
that the possibility of further financing the portfolio at intermediate stages may
introduce additional variance in the total loss.

Withdrawal possibility

One aspect to take into account before solving the model is the possibility to
withdraw money from the strategy along its lifetime. In practice, we are talking
about the possibility to rebalance the portfolio in such a way that a cash flow is
generated from the strategy to the outside, hence returning part of the wealth
originally invested in the portfolio construction to the hedger.
The withdrawal of wealth translates into the inequality:

nØ
j=1

(1 − cj) · p(0)
j · y(0)

j −
nØ

j=1
(1 + cj) · p(0)

j · x(0)
j ≥ 0,

that is, the cash balance of the rebalancing operation generates a cash flow which
is against the strategy but in favor of the hedger, who would receive back part of

38



Optimization Model

the initial capital invested. Indeed, the amount gained by the assets’ sale is set
greater than the amount invested in the current rebalancing operation, resulting
in a reduction of the portfolio value equal to the cash flow that returns to the hedger.

Some skepticism may arise around the withdrawal concept; in particular, let
us consider two aspects.

Why should money be withdrawn after an initial investment? Let’s make
an example: from the perspective of a bank, the latter may manage simultaneously
many different financial strategies, thus a wealth allocation among these strategies
should be optimized. If the hedging strategy of the target asset is proceeding
well (meaning that the initial wealth invested may exceed what is needed along
the hedging horizon for the rebalancing operations), the bank can decide to re-
allocate part of its wealth, withdrawing wealth from the hedging strategy and
invest it in another financial operation, be it currently active or still to be executed.
Thus, in this context, withdrawing wealth from the strategy may turn out to be
advantageous.
The same holds for any hedger who might use the model presented in this work.

How could the possibility of withdrawal enhance the performance? To
answer this question, it is useful to recall the objective of our model. The latter
aims at hedging against a short position in the target asset through a (constrained)
replication problem, where the object of replication is the target asset payoff (in
truth, it is not a strict replication, but rather a relaxed one, allowing for the
presence of a replication error term). Considering this, let us analyze the behavior
of the hedging strategy in a scenario where: at the beginning of the hedging
horizon, the target asset is in-the-money, while market deviations lead it to be
at-the-money/out-of-money when reaching the maturity date. This situation is
critical for the following reason: at stage 0 the hedging portfolio is constructed with
an initial investment according to the solution found by the stochastic optimization
model. Without withdraw possibility, as the hedging horizon proceeds and the
target asset loses value, the model will force the portfolio to track the target asset;
thus, the portfolio itself will lose part of its value1; this is motivated by the fact that
the model’s objective function penalizes not only shortfall values but also surplus
values. As a result, giving the model the possibility of withdrawal, situations like
the one mentioned do not let the portfolio to lose value, but rather it would allow

1This could be achieved by finding a portfolio rebalancing strategy focused on losing value,
thus betting on a portfolio composition which is not promising according to the scenario tree
generated.
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the hedger to withdraw the quantity of money in excess and invest it at a risk-free
rate of interest or in another financial strategy.

3.3.2 Risk-aversion parameter

In order to better reflect the risk aversion of the hedger, a risk aversion parameter
γ ∈ [0,1] is introduced in the objective function trading-off the weight of the
negative and positive part of the hedging error to minimize. The objective function
for this alternative formulation of the model becomes:

Ø
i∈T

1
γe+

i + e−
i

2
· π

(i)
T .

Recalling that the error decomposition allows the introduction of asymmetry in the
objective function penalization, the presence of γ reflects this asymmetry allowing
the model to trade-off between positive and negative hedging errors, reflecting
different risk-aversion levels: a lower γ leads the model to focus on minimizing
hedging shortfalls, while a higher γ leads for a more balanced penalization of the
two parts; indeed:

• with γ = 0 the objective function boils down to:
Ø
i∈T

e−
i · π

(i)
T .

This value of the parameter reflects a more conservative behavior: the whole
optimization problem focuses on meeting the target asset’s payoff, not minding
if there is a surplus in the value of the hedging portfolio; the only focus of our
objective lies in the minimization of the expected negative error: this case is
the closest to the idea of super-replication (although being different from it),
which will be analyzed in section 3.4;

• γ = 1, instead, reflects a more risk-neutral behavior: those who choose
this value for the parameter aim at minimizing the hedging error with no
distinction between surplus and shortfall values; what is expected is a solution
with hedging errors distributed (nearly) symmetrically around the value 0,
with the presence of both under-hedging and over-hedging scenarios;

• intermediate preferences are reflected by the choices of γ between 0 and 1,
that is the case when positive and negative hedging errors are penalized
asymmetrically, but with a moderate risk aversion.
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3.3.3 Initial wealth W0

An important aspect to take into account when dealing with the problem solved at
decision stage 0 is the management of the initial wealth invested in the hedging
strategy. As expressed by constraint (3.4), which is reported here for clarity

W0 +
nØ

j=1
(1 − cj) · p(0)

j · y(0)
j −

nØ
j=1

(1 + cj) · p(0)
j · x(0)

j == 0,

there is a strict constraint on the value of the initial portfolio investment, meaning
that the available wealth W0 is completely spent in the portfolio construction.
However, in some contexts, a relaxed version of this constraint might be preferred,
allowing to spend up to W0, but not strictly requiring it to be fully spent, that is:

nØ
j=1

(1 + cj) · p(0)
j · x(0)

j −
nØ

j=1
(1 − cj) · p(0)

j · y(0)
j ≤ W0.

A further generalization of this constraint is when the difference between the
amount gained from the sales and the one spent is required to be negative, meaning
that there should be an initial investment in the strategy, but without imposing a
constraint on its value. This reflects in the constraint:

nØ
j=1

(1 − cj) · p(0)
j · y(0)

j −
nØ

j=1
(1 + cj) · p(0)

j · x(0)
j ≤ 0. (3.9)

In this case, the solver finds a solution in terms of assets’ holdings to buy or
sell to compose the hedging portfolio and only at this point there is a hint of
the actual amount of investment required, given indirectly by the solution. It is
important to note that, if Equation 3.9 is used as cash balance constraint in the
root node of the problem at stage 0, there would be no restriction on the value of
the initial wealth W0 invested in the portfolio. This may lead to the conclusion that
the model can produce a solution that is not affordable in terms of the required
investment. However, this approach is based on the assumption that the model can
determine in autonomy an optimal investment for the hedging strategy, trading-off
the hedging performance and costs related to portfolio construction, rebalancing
and transactions2. An additional consideration can be made around the expected
initial investment: recalling that, in order to hedge against the short position in
the target asset, a target-payoff replication model is build and it is expected to
face an initial investment that is quite aligned with the price of the target to be
hedged; however, further analyses of the results are required to confirm whether
the initial wealth selected by the model is indeed close to the actual price of the
target asset or if the two deviate.

2The hypothesis of an effective trade-off between costs and performance is motivated by the
penalization of the surplus term e+

i in the objective function.
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3.4 Super-replication hedging problem
In addition to the optimization model discussed in the previous section, an alterna-
tive formulation based on the concept of super-replication is now introduced. The
latter is indicated for hedgers with a high level of risk aversion, willing to reach
a full hedge over the whole set of simulated scenarios (characteristic that makes
the super-replication more conservative and robust also against worst scenarios).
The model is presented since it can be useful to compare the behavior of a super-
replication model with that of the primal optimization model discussed when the
risk aversion parameter γ approaches 0.

The super-replication concept

The idea behind a super-replication problem is to guarantee a complete hedging in
every possible future scenario; in mathematical terms, for a discrete set of future
scenarios given by a scenario tree, this condition translates into the equation:Ø

j

p(i)
j · z(a(i))

j >= Φ(i)
T , ∀i ∈ T .

As a full coverage of the target payoff is strictly required, a super-replication model
does not require the decomposition of the error variable into the positive and
negative parts (e+

i and e−
i ) as presented in the previous model.

Managing to meet the condition imposed by this model may be very challenging
and often this reflects in an excessively elevated cost for the strategy: in order to
mitigate this aspect, it is usual to set the minimization of an objective function
represented by the total cost of the hedging. Assuming a self-financing strategy
without possibility to withdraw capital after an initial investment, the problem
solved at stage 0 can be formulated as:

min
nØ

j=1

è
(1 + cj) · p(0)

j · x(0)
j − (1 − cj) · p(0)

j · y(0)
j

é
(3.10)

s.t. x(0)
j − y(0)

j = z(0)
j , ∀j (3.11)

z(a(i))
j + x(i)

j − y(i)
j = z(i)

j , ∀i ∈ N , ∀j (3.12)
nØ

j=1
(1 − cj) · p(i)

j · y(i)
j −

nØ
j=1

(1 + cj) · p(i)
j · x(i)

j = 0, ∀i ∈ N (3.13)
Ø

j

p(i)
j · z(a(i))

j − Φ(i)
T >= 0, ∀i ∈ T . (3.14)

x(i)
j , y(i)

j ≥ 0, ∀i ∈ N ∪ {0}, ∀j (3.15)
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No further details will be given on problems solved at subsequent decision stages, as
for the purpose of this thesis only the problem at decision stage 0 will be considered.
Constraints (3.11)-(3.13) and (3.15) are the same as the previous model. What
differs is the objective function and the definition of the super-replication constraint.

Objective Function. In the super-replication hedging problem, the goal of the
objective function is to minimize the total cost of the hedging while ensuring the
super-replication of the target payoff at maturity as in Equation 3.14. Since the
strategy is assumed to be self-financing, the only cost faced corresponds to the
capital invested in the portfolio construction at the root node of the scenario tree;
thus, for all assets, the total amount of cash invested in buying asset holdings
minus the capital gained from asset sales is added to the objective function in order
to account for the wealth invested in the portfolio and impose its minimization.

Super-replication Constraint. The constraint given by Equation 3.14 imposes
that, for each leaf node i ∈ T in the scenario tree, the hedging portfolio’s value

Ø
j

p(i)
j · z(a(i))

j

must be at least equal to the target payoff Φ(i)
T . This constraint is the key of the

super-replication problem, ensuring that the portfolio’s value exceeds the liability
due to the target payoff in every simulated scenario.

Liquidity Fund and Replication Tolerance

As anticipated, meeting the super-replication constraint given by Equation 3.14
can be challenging. In particular, there might be scenarios within the simulated
paths with a high value for the target payoff, deviating from the average behavior;
to guarantee that the hedging portfolio achieves a future value sufficient to offset
the liability across all scenarios, the strategy may require an excessively high initial
investment for the portfolio construction. To deal with this issue, one choice may be
to allow for a higher degree of flexibility in meeting the super-replication condition:
in this context the liquidity fund plays a key role.

The liquidity fund, denoted as Lf , represents the hedger tolerance threshold with
respect to deviations of the hedging portfolio value from the derivative’s payoff,
meaning that the portfolio value is allowed to fall short of the target payoff by no
more than Lf . The incorporation of this term in the super-replication constraint
could mitigate the issue related to excessively high initial investments, leading to a
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more reliable solution. In light of what discussed, Equation 3.14 would become:Ø
j

p(i)
j · z(a(i))

j − Φ(i)
T + Lf >= 0, ∀i ∈ T .

The decision to include the liquidity fund in the constraint, as well as the choice of
its value, depends on the hedger, according to his available wealth.
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Chapter 4

Key aspects of the
implementation

Across the previous chapters and sections, some aspects of the practical imple-
mentation of the hedging strategy have already been examined. For example, the
generation of scenario trees has been discussed along with the different dynamics
assumed (one based on the Geometric Brownian Motion, the other employing the
Moment Matching method), as well as the two approaches tested to check the
absence of arbitrage opportunities in simulated scenario trees. The financial market
setup was also defined, specifying the implemented assets formulas, and the var-
ious alternative formulations considered for the hedging problem have been detailed.

Before moving on to the discussion about the performance of the proposed hedging
approach, in addition to what was previously described, some additional key aspects
of the implementation are of particular interest and will be detailed in the course
of this chapter. Particular attention will be given to the simulation process with its
specific implementation, outlining the role of Monte Carlo simulation and the struc-
ture given to the simulations of the test phase, which recalls the general paradigm of
Reinforcement Learning. Further considerations on the implementation will also be
provided, including the selection of model parameters by the user when interacting
with the developed code, a description of the UML diagram of financial instrument
classes and additional discussions on the two following topics: the management of
branching factors in scenario tree generation and the structure given to the cash
balance constraint in the optimization problem.

For reference, the project underlying the implementation of the hedging strat-
egy proposed in this thesis has been developed in Python programming language.
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4.1 Simulation process
A first discussion about implementation details concerns the mechanism under
which the developed hedging strategy is tested in the financial market environment.
This section will examine the methodology of the test phase for the hedging strategy,
highlighting the generation of simulated paths for the market evolution and how
the hedger interacts with the financial environment during his decision-making
process.

4.1.1 Monte Carlo Simulation
Monte Carlo simulation represents, more than just a method, a general paradigm
to simulate a wide range of stochastic dynamics, analyze the behavior of stochastic
variables of particular interest and estimate their statistical properties with high
accuracy.

The core idea underlying a Monte Carlo simulation is inspired by the law of
large numbers: when a progressively larger number of samples is generated from
the same probability distribution, the sample mean converges to the true mean of
the distribution and the precision of the estimate progressively improves. Briefly,
let (X1, . . . , Xn) be independent and identically distributed random variables from
a distribution with mean µ and variance σ2: according to the law of large numbers,
as n approaches infinity, the sample mean X̄ converges almost surely to the true
mean µ and the variance of the estimator (that is, σ2(X̄)) decreases proportionally
to 1/

√
n, implying that the variance in the estimate decreases as the number of

Monte Carlo replications n increases.

Following the idea of the law of large numbers, the objective of Monte Carlo
simulation is to infer the expected behavior of a system by averaging over a large
number of simulated paths. Indeed, by generating a set of replications of the
stochastic variables’ evolution, when the average of some statistical properties
computed on the set of sampled paths converges to a stable value, the simulation
has, on average, approximated the true system behavior.

In the context of the present thesis, Monte Carlo simulation plays a key role
in evaluating the performance of the hedging strategy. A large number of repli-
cations of the financial market evolution is simulated and the hedging strategy is
applied to each of them; this methodology ensures that the estimate of the hedging
performance becomes progressively more reliable and accurately reflects the true
effectiveness of the proposed hedging strategy.

46



Key aspects of the implementation

4.1.2 Test with the Reinforcement Learning paradigm
The test of the hedging strategy in the financial market environment has been
implemented with a simulation process following the Reinforcement Learning (RL)
paradigm. For each Monte Carlo replication in which the hedging strategy is
applied, the following structure to the test process is given: at each decision stage,
the hedging agent observes the current market state and determines the optimal
portfolio rebalancing decision; the environment then makes a step forward to the
next market state according to the realization of stochastic variables. This iterative
process continues until the target asset’s maturity is reached.

To clarify the structure of Monte Carlo simulations, refer to Figure 4.1, where the
interaction between the hedging agent and the financial market environment is
illustrated as a pseudo-code.

Hedging strategy simulation following
the Reinforcement Learning paradigm

def run_simulation(env, HedgingAgent, branching_factors):
env.reset() reset the environment to start a new MC simulation
for rep in range(num_MonteCarlo_reps):

returns the market state at stage 0
state = env.restart()
while not done:

returns the branching factors for the current time step
bf = branching_factors(state)

the agent makes the portfolio rebalancing decision
action, cost = HedgingAgent.get_action(state, bf)

update the portfolio according to the agent’s decision
update_portfolio(env, action)

returns the market state at the following timestep
state = env.step()

Figure 4.1: Pseudo-code of the simulation process inspired by the Reinforcement
Learning paradigm.
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In order to give a hint on the mechanism under the get_action function, Figure 4.2
is provided, detailing the decision-making process of the agent after observing the
current market state.

HedgingAgent.get_action(state, branching_factors)

def get_action(state, branching_factors):
Generate a scenario tree to simulate assets prices paths
Tree = ScenarioTree(branching_factors, stoch_model,

current_asset_values)

Determine the optimal portfolio rebalancing strategy
Hedging = StochOptHedgingSolver(Tree, current_time,

target_asset, hedging_assets)

Store the portfolio holdings after rebalancing
portfolio_holdings = store_holdings(Hedging)

Extract the rebalancing cost
rebalancing_cost = Hedging.rebalancing_cost

Return the portfolio and rebalancing cost
return portfolio_holdings, rebalancing_cost

Figure 4.2: Pseudo-code of function get_action to determine the optimal hedging
strategy given the market state and a simulated scenario tree.

4.1.3 Out-of-sample paths generation
The assumption that the hedger’s decisions do not influence market transitions is
made: asset prices follow stochastic processes and the sequence of their realizations
is not affected by the transactions of the individual hedger, who, in fact, does not
have any impact on the financial market dynamics. This assumption, which is
quite common in financial applications (particularly for individual hedgers), allows
to simulate a set of asset price paths without requiring, in advance, knowledge
of the hedger’s decisions at each stage; this allows to separate the simulation
logic of the market evolution and the logic of the hedger decision-making process,
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facilitating the implementation of the whole test mechanism. However, an important
aspect to take into account is that the hedging strategy implemented must be
non-anticipative: despite the set of previously simulated price paths available, the
hedger should rebalance the portfolio at each time t based on the information given
by the filtration Ft and not having access to the realizations of future asset prices.

4.2 Additional considerations
Hedging configuration

The hedging strategy described in chapter 3 includes a multitude of variables
and parameters and, at the same time, admits different choices for the hedging
strategy configuration to implement. To better manage the configuration and the
parameters selection, an interactive interface has been implemented in order to
collect the user’s choices about the inputs of the problem, as shown in Figure 4.3.

Figure 4.3: Interactive interface for the selection of user inputs.

As shown, default values for all the parameters have been set in order to allow the
user to modify only the parameters of his interest. Among the others, the interface
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allow for customized choices for the hedging instruments to include in the strategy,
as well as the choice for the target option to hedge (with each option type featuring
its set of parameters). Further flexible choices are left for the number of Monte
Carlo replications, the branching-factors for scenario tree simulation, whether to
apply a self-financing strategy or not and the analysis to conduct (these will be
better described in the following chapter). Not-mentioned parameters and hedging
configurations might also be modified directly in the python file.

Branching factors updating strategy

When talking about scenario trees, one aspect of particular interest is the manage-
ment of branching factors along the hedging horizon: if at stage 0 the choice for
the branching factors falls, for instance, on the vector [25,3,3], one might wonder
how the branching factors should be chosen for the next time steps, that is, when
we move forward at subsequent stages in the dynamic decision process after the
first decision is made. Different approaches may be considered:

• implement a forward erosion updating strategy, according to which branching
factors for the sequence of the three decision stages would be:

stage 0 : [25,3,3] −→ stage 1 : [3,3] −→ stage 2 : [3].

This choice turns out to be not effective, since the choice of branching factors
should always prioritize the first branching steps with higher branching factors
for an effective performance (as it will be illustrated in section 5.5);

• implement a backward erosion updating strategy, according to which branching
factors would be:

[25,3,3] −→ [25,3] −→ [25].

Eroding the last entrance of the vector, at each decision stage a higher number
of final scenarios in the scenario tree is maintained with respect to the previous
strategy. This is the main approach adopted in the applications presented in
the following chapter;

• implement a fixed number of scenarios updating strategy, according to which
branching factors would be:

[25,3,3] −→ [75,3] −→ [225].

This updating strategy allows to maintain, at each decision stage, the same
number of leaf nodes as in the scenario tree generated at stage 0; a comparative
analysis of this strategy with respect to the previous one will be conducted, for
now it is sufficient to note that this is not the most frequently chosen approach
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in this work due to its higher computational burden and the fact that it does
not lead to significant improvements in terms of performance when the first
entry of the vector is already a high number (as in the considered case, where
from the root node 25 child nodes branch out).

Modeling dependencies among asset classes

In the project implementation, the development of asset classes follows an object-
oriented approach, resulting in a hierarchical structure that leverages the concepts
of inheritance and relationship. In fact, considering both assets in the hedging
portfolio and the target asset to be hedged, although each asset exhibits distinct
characteristics, they share some common attributes and methods and present some
reciprocal interactions.

The interdependencies among asset classes have been structured according to
the UML diagram shown in Figure 4.4. This diagram illustrates the relationships
between the considered asset classes, starting from the abstract Asset class, which
represents a parent class for other financial instruments, to its three primary sub-
classes: Cash, Stock and Option, each class modeling the correspondent financial
instrument. The Option class itself is also defined as an abstract class, further
implemented by the EuropeanOption and AsianOption subclasses (of both put and
call payoffs). In addition, a MultiStock class is taken into account, useful to link
all the stocks available in the market through their correlation matrix ρ. Through
this hierarchical structure, each subclass inherits attributes and methods from its
parent class, while also introducing its own attributes and methods specific to the
type of asset it models.

Cash Balance constraint: clarifications

In chapter 3, various alternatives for the hedging problem were introduced, each
employing a different portfolio financing strategy: recall, for instance, the choices
between a self-financing or a non-self-financing strategy, the possibility to allow (or
not allow) cash withdrawal from the hedging portfolio and the decision to set a
fixed initial wealth invested in the portfolio or to leave the solver the possibility to
choose the best suited initial wealth.

In light of these different alternatives, to better clarify the structure given to
the cash balance constraint of Equation 3.4, applied at the root node of a scenario
tree in the hedging problem, a Python pseudo-code of the practical implementation
of this constraint under different financing assumptions is shown in Figure 4.5.
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Asset

transaction cost: float

set_initial_price(): void

A

Option

strike: float
maturity: float
cash: Cash

A

AsianOption

multi_stock: MultiStock
rebalancing_times: int
rnd_state: random.Random

get_initial_price(): float
payoff_formula(): float
get_initial_price(): float
get_payoff(Spast, Scurrent): float
get_prices(t, dt): List<float>
MCPrice(S0, τ, reps, times, Spast): float
scenario_tree_payoffs(tree): Array

A

AsianPut

P0: float

get_initial_price(): float
payoff(mean): float

C

AsianCall

C0: float

get_initial_price(): float
payoff(mean): float

C

EuropeanOption

underlying: Stock
underlying_index: int

get_initial_price(): void
get_prices(): void
get_payoff(): void
d1&d2(St, τ): (float, float)
scenario_tree_payoffs(tree): void

A

EuropeanPut

P0: float

get_initial_price(): float
get_payoff(St): float
B&S_price(St, τ): float
get_prices(t, dt): List<float>
scenario_tree_payoffs(tree): Array

C

EuropeanCall

C0: float

get_initial_price(): float
get_payoff(St): float
B&S_price(St, τ): float
get_prices(t, dt): List<float>
scenario_tree_payoffs(tree): Array

C

Stock

issuer: str
S0: float
dynamics: str
µ: float
σ: float

C

Cash

B0: float
r: float

C

MultiStock

stock_list: List<Stock>

rho: Matrix

BM_increments(): Array

C

1

1
1

1...*

1

1

1
1

Figure 4.4: UML diagram of asset classes.
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1 # Root node of the scenario tree
2 if not withdraw_possibility : # No withdraw possibility
3 if current_rebalancing_time == 0:
4 # Cash balance at stage 0
5 if self. fixed_wealth : # Fixed wealth
6 model. addConstraint (
7 - purc_quantity @ purc_unitcost
8 + sold_quantity @ sold_unitcost
9 + target_asset_premium == 0)

10 else: # Non -fixed wealth
11 model. addConstraint (
12 - purc_quantity @ purc_unitcost
13 + sold_quantity @ sold_unitcost <= 0)
14 elif not self_financing :
15 # Not self - financing strategy or at the first stage
16 model. addConstraint (
17 - purc_quantity @ purc_unitcost
18 + sold_quantity @ sold_unitcost <= 0)
19 else:
20 # Self - financing strategy
21 model. addConstraint (
22 - purc_quantity @ purc_unitcost
23 + sold_quantity @ sold_unitcost == 0)
24 else:
25 # There is withdrawal possibility
26 if current_rebalancing_time == 0:
27 # Cash balance at stage 0
28 if self. fixed_wealth : # Fixed wealth
29 model. addConstraint (
30 - purc_quantity @ purc_unitcost
31 + sold_quantity @ sold_unitcost
32 + target_asset_premium == 0)
33 else: # Non -fixed wealth
34 model. addConstraint (
35 - purc_quantity @ purc_unitcost
36 + sold_quantity @ sold_unitcost <= 0)
37 elif self_financing :
38 # Subsequent stages with a self - financing strategy
39 model. addConstraint (
40 - purc_quantity @ purc_unitcost
41 + sold_quantity @ sold_unitcost >= 0)
42 else:
43 # Subsequent stages , not self - financing : no constraint
44 pass

Figure 4.5: Pseudo-code of the cash-balance constraint of the hedging optimization
problem under different financing assumptions.
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Performance analyses

In this chapter, the objective is to evaluate the overall performance of the proposed
stochastic optimization approach for the hedging strategy by analyzing its effective-
ness under multiple aspects, including computational burden, stability and, above
all, precision in risk minimization. To highlight the effectiveness of the method,
the different shades of the problem implementation presented in chapter 3 are
examined in what follows.

The analysis starts from a general consideration over a Monte Carlo simulation of
the stochastic optimization hedging; in this phase, a first analysis of the hedging
performance is inferred by testing the reliability of the hedging solver over a high
number of simulated paths for the financial marker evolution. Both European and
Asian options are considered as target assets, willing to compare the performance
and the efficiency of the strategy when facing different target option types.

The chapter proceeds then through analyses on the performance of the hedging
under different problem-configurations: these include comparing different portfolio
financing approaches, analyzing the impact of the risk-aversion parameter on the
solution of the hedging problem, analyses on branching factors sensitivity, which
shows the impact on the solution of the scenario tree generation and its discretiza-
tion of the future scenarios space, transaction costs sensitivity and the analysis of
the performance of the hedging strategy under different stochastic models used
in generating scenario trees. In a final step, a discussion about how the hedging
problem can be used to price financial derivatives is made.
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5.1 Performance evaluation metrics
Before entering into details of the hedging performance, some clarifications and
definitions should be made about the evaluation metrics that will be used.

Hedging Error and Profit&Loss

During the course of this chapter, two key evaluation metrics are considered for
the analysis of the hedging strategy: the Hedging Error (HE) and the Profit&Loss
(P&L). The former was already mentioned in previous chapters, while the latter is
still to be defined.

Recall that the hedging error is defined as the difference, at maturity T , between
the hedging portfolio value V h

T and the target asset payoff ΦT , that is

HE = V h
T − ΦT .

The Profit&Loss is a more comprehensive measure of the total balance of gains
and losses incurred throughout the hedging process.

Let us make an example of an hedging strategy with a specific focus on cash
flows: refer to the situation described by Figure 5.1. At the initial time, the

time0 T

Target asset premium P0

Initial investment W0

Portfolio value VT

Target Payoff ΦT

Figure 5.1: Example of - positive and negative - cash flows for a hedging strategy.

target asset premium is gained by shorting the position in the target asset, while a
negative cash flow is due to the portfolio construction; along the hedging horizon
various cash flows may occur: negative cash flows are due to further financing
operations of the portfolio, while positive cash flows are related to the withdrawal
of cash from the strategy. At maturity T , according to the market scenario that
occurs, a liability may be encountered due to the target payoff ΦT , while selling
the hedging portfolio generates a positive cash flow.
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In light of this general situation, the Profit&Loss (P&L) for a hedging strategy is
defined as the sum of all cash flows capitalized to maturity, that is:

P&L =
TØ

t=0
ct · er(T −t)

where ct is the cash flow at time t. Trivially, the P&L corresponds to the hedging
error for a self-financing strategy with an initial wealth equal to the target asset
premium and no possibility of withdrawal. However, in other situations, the two
may differ and the P&L should be preferred as the primal evaluation metric as it
includes additional information with respect to the hedging error.

What was just described is the evaluation framework for a hedged position;
trivially, for an unhedged position, the hedging error is formally not defined; the
P&L, instead, is the difference between the target asset premium received at the
initial time actualized at maturity T and the target payoff ΦT , that is:

P&Lunhedged = P0 · erT − ΦT

5.2 Monte Carlo simulation of the hedging
In this section, a first look at the performance of the Stochastic Optimization
hedging strategy described in previous chapters is given. The hedging strategy is
implemented for both vanilla put and call European options and put and call Asian
options, illustrating the effectiveness of the algorithm developed in minimizing
risks related to the the short position in each of the mentioned target option. In
particular, hedging error and Profit&Loss will be used as metrics to evaluate the
performances.

Regardless of the target option selected, the hedging framework for this section
will be configured with the following features:

• n = 5000 Monte Carlo replications;

• hedging horizon of T = 1 year with 4 time steps and 3 decision stages (no
portfolio rebalancing occurs at maturity date);

• branching factors [25,3,3], with the backward erosion strategy for their update
at subsequent stages (that is, branching factors [25,3,3] −→ [25,3] −→ [25] to
respectively generate scenario trees at stages 0, 1 and 2);

• the set of available stocks composed of the following tickers:
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– ENEL.MI, with initial price $102.05;
– MMM, with initial price $242.92;
– TSLA, with initial price $107.19;

• parameters for stocks’ dynamics (µ, σ, ρ, skew, kur) estimated from a set of
historical data in the range from 05/01/2022 to 05/01/2024;

• proportional transaction costs equal to 1% of the asset price for each risky
asset (transaction cost 0% for the risk-free asset);

• risk aversion parameter γ set to the value 1;

• the strategy configured as self-financing and without possibility to withdraw
money along the hedging horizon (thus, in this situation, the hedging error
correspond to the P&L);

• the initial wealth set equal to the target asset premium, thus each Monte
Carlo replication have the same initial budget for the portfolio construction;

• the annualized continuous risk-free rate assumed to be r = 0.0398.

Concerning the verification of absence of arbitrage opportunities in scenario trees,
the problem defined by Equation 2.9 is exploited, but this specific choice (between
the two approaches mentioned in subsection 2.2.3) was not driven by any specific
reason: indeed, preliminary tests pointed out that both methods effectively ensure
the absence of arbitrage opportunities, while featuring comparable computational
costs (in truth, one approach proved to be more efficient than the other in certain
cases and viceversa for other cases, thus there is no strict rule to justify the choice
of one method against the other one).
In addition to the given configurations, each target asset will then present specific
parameters that will be added to those already mentioned.

5.2.1 Hedging European options
Two Vanilla European option are selected for the implementation of the hedging
strategy, respectively one European call option with underlying ENEL.MI, strike
price K = 50 and one European put option with underlying TSLA and strike price
K = 300, both with maturity T = 1 year. When dealing with target European
options, the hedging portfolio is composed of the underlying stock and the risk-free
asset, denoted as Cash.
Figure 5.2 and Figure 5.3 show the empirical distribution of the Profit&Loss for
both the hedged and the unhedged position over the set of simulated Monte Carlo
replications, respectively, for the European call and the European put.
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Figure 5.2: Empirical distribution of P&L for an European call option.

Figure 5.3: Empirical distribution of P&L for an European put option.

The strategy managed to hedge the short position in both vanilla options. The
P&L of the hedged position features an empirical distribution highly concentrated
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around the mean, with the latter assuming values close to 0 for both the call and
put options, against the high variance of the unhedged position.

5.2.2 Hedging Asian options
The Asian options implemented to test the strategy are written on the whole set of
available stocks introduced before, the Asian put option with strike price K = 250,
while the Asian call with strike K = 50, both with maturity T = 1 year. Strategies
for both options include the following hedging assets in the portfolio: the risk-free
asset (cash position), the set of underlying stocks and both call and put vanilla
options on the underlyings (one call and one put for each stock); in particular,
Table 5.1 summarizes the strike prices for each vanilla option on the underlyings.

stocks

target asset vanilla option ENEL.MI MMM TSLA

Asian call
European put 130 260 120

European call 70 200 90

Asian put
European put 170 300 200

European call 100 200 90

Table 5.1: Strike prices for vanilla options on the available stocks.

Figure 5.4 and Figure 5.5 show the empirical distribution of Profit&Loss over the
set of simulated Monte Carlo scenarios for, respectively, the Asian call and the
Asian put. Similarly to what was obtained for European options, the effectiveness
of the hedging is confirmed by the lower variance in the P&L distribution of both
Asian call and Asian put with respect to the variance in the unhedged positions,
with mean values for the P&L close to 0.
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Figure 5.4: Empirical distribution of P&L for an Asian call option.

Figure 5.5: Empirical distribution of P&L for an Asian put option.
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5.2.3 Comparative analysis of different target option types
Table 5.2 summarizes the performance obtained from the first analysis conducted
for European and Asian options.

mean P&L std P&L std unhedged computational time

European call 0.93 0.98 24.48 1232.20 s

European put -0.02 0.41 53.79 1084.82 s

Asian call 0.74 5.32 20.79 5647.03 s

Asian put 1.37 5.30 20.55 4328.54 s

Table 5.2: Summary of statistics for European and Asian options hedging for a
MC simulation over 5000 replications.

Statistics from this first analysis point out that the hedging strategy is capable
of managing both vanilla options, as the European ones, and exotic options, such
as the Asian ones; mean values for the P&L obtained are similar for the two
different option types, while a slight difference appears in the values of standard
deviation, with exotic options featuring higher values compared to the European
ones. Moreover, the computational time required to complete the Monte Carlo
simulation over 5000 replications shows a difference from this comparative analysis;
however, both increases in standard deviation and computational time for Asian
options may be due to the presence of a wider range of hedging assets in the
portfolio, increasing the complexity of the optimization problem solved at each
decision step.

Another aspect of interest in the comparative analysis between European and
Asian options concerns the effectiveness of the target replication step by step. In
P&L distributions previously provided, the attention is focused only at maturity
date, comparing the unhedged position against the hedged one at the end of the
hedging horizon. Willing to analyze the hedging behavior also at intermediate
time steps, step-by-step replication plots are now provided to show the behavior
of the hedging strategy for both European and Asian options along the hedging
horizon. Figure 5.6 shows the replication of the target asset at each decision stage;
in particular, for each time step, the following are provided:

• the hedging portfolio value;

• the value of the unhedged position, representing the value of the target asset:
this is represented by the option price, except for the final stage (corresponding
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to the maturity) where the payoff is provided instead; this value is changed in
sign as a short position in the target asset is assumed;

• the value of the hedged position, representing the sum of the first two terms
mentioned.

Figure 5.6: Step-by-step replication of an European call option in 1 Monte Carlo
simulation.

The figure shows how precisely the hedging portfolio tracks the European option
value, resulting in a hedged position whose value is kept around 0 along the whole
hedging horizon.

Concerning the hedging of Asian options, Figure 5.7 provides the same plot for an
Asian put option. The concept is the same for the previous case with an European
option, although a less accurate replication is encountered in some intermediate
stages, probably due to the higher complexity in managing an exotic option. This
discrepancy between the target asset value and the hedging portfolio value is more
evident for the plot of Figure 5.8, which again illustrates the replication of the same
Asian put option, but for a different Monte Carlo simulation. It is clear from this
latter figure that a less effective step-by-step replication of the target option value
is obtained compared to the previous case; however, an accurate hedging of the
target payoff at maturity is achieved, which is the main objective of our strategy.
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Figure 5.7: Step-by-step replication of an Asian put option in one Monte Carlo
replication.

Figure 5.8: Another example of step-by-step replication of an Asian put option
in one Monte Carlo replication.
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Marginal Consideration. Concerning what was just discussed, it should be
recalled that the optimization model solved at each step aims to hedge the payoff
at maturity; any perfect replication along the hedging horizon results from effective
intermediate rebalancings. Obtaining a step-by-step replication of the target asset is
promising, as it indicates that the hedging strategy is proceeding well and facilitates
perfect replication at maturity; however, these intermediate replications are not
explicitly required by the optimization and their absence does not compromise the
success of the strategy.

5.3 Risk aversion analysis
In this section, an analysis of the impact of the risk-aversion parameter γ on the
hedging performance is conducted. In particular, for different values of γ ∈ [0,1] a
Monte Carlo simulation of the hedging is performed and an estimate of the profit
and loss (P&L) is computed for each γ.

Experimental Setup. The chosen values for γ belong to the set:

γ ∈ {0, 10−13, 10−12, 10−11, · · · , 10−3, 10−2, 10−1, 1}.

This choice aims at showing different responses of the hedging strategy with respect
to a increasing risk-neutrality condition, starting from the value γ = 0, reflecting the
most risk-averse scenario in which only hedging shortfalls are penalized, and reaching
progressively the value γ = 1, under which there is a symmetrical penalization of
positive and negative hedging errors.
For each value of the parameter γ, a Monte Carlo simulation of the hedging over
n = 103 replications is performed and an estimate for the P&L is computed by
averaging over the number of replications. The hedging is configured as a self-
financing strategy with an initial wealth fixed to the target asset premium and
without possibility of withdrawal; thus, in this situation, the P&L corresponds to
the hedging error.

Results. Figure 5.9 shows mean and standard deviation values of the empirical
distribution of P&L over the simulated Monte Carlo replications for each value of
the risk-aversion parameter. Additionally, a hint on the value of the skewness for
these distributions is given by the asymmetry of the standard deviation around
the value given by the mean. As expected, the figure highlights a positive drift
in P&L as γ approaches 0. However, it is not the behavior of the mean which is
of greater interest, as it increases slowly, but rather the progressive increase in
standard deviation and skewness, which points out that the P&L distributions
exhibit heavier upper tails as γ decreases: thus, for small values of the risk-aversion
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Figure 5.9: Mean and standard deviation of P&L empirical distribution over 103

simulated paths for each different value of the risk-aversion parameter.

parameter, P&L distributions are asymmetrical and shifted towards higher values
(as mentioned before, this behavior is due to the minor importance given to surplus
values in the hedging error).
Table 5.3 reports the values of the mentioned statistics for some values of the risk
aversion parameter, confirming the increasing trend in standard deviation and
skewness observed in the figure.

γ values: 1 10−2 10−4 10−6 10−8 10−10 10−12 0

mean -0,79 -0,22 -0,09 -0,27 2,06 5,82 5,93 5,95

P&L std 4,55 6,86 8,79 13,33 14,46 16,89 18,06 20,76

skew -4,47 0,99 2,36 5,84 4,48 2,56 4,52 6,60

Table 5.3: Mean, standard deviation and skewness of P&L empirical distribution
for different values of the risk aversion parameter γ.

Another interesting aspect related to γ concerns the initial wealth W0: knowing
that for small values of γ the hedging strategy almost ignores positive hedging
errors focusing primarily on covering negative hedging errors, it could result in a
surprisingly high initial investment required, if the latter is not fixed; in fact, if
the surplus at the maturity date is not penalized, the model finances the portfolio
with a higher initial wealth in order to ensure that negative errors are covered to a
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significant degree. To visualize this, another Monte Carlo simulation is conducted
over n = 103 simulated paths for each value of γ; the strategy is similar to the one
described before, except for the absence of a fixed initial wealth. Figure 5.10 shows
the results of this simulation, pointing out, for different values of γ, the mean and
standard deviation (along with a hint on the skewness) of the empirical distribution
of initial investment over the simulated replications. The figure confirms the

Figure 5.10: Mean and standard deviation of the empirical distribution of W0
over 103 simulated paths for different values of the risk-aversion parameter. The
mean super-replication price for the same MC simulations is also provided.

expectation: when there is an asymmetrical penalization of surplus and shortfall
errors, the initial investment is shown to be higher, both in terms of mean value and
standard deviation. For γ close to 1, the initial investment required by the hedging
strategy reflects quite accurately the initial price of the target asset, while for γ
approaching 0 the mean initial wealth progressively increases and its distribution
features heavier upper tails. To provide a reference, in the figure is also shown
the super-replication price (corresponding to corresponds to $111.91) computed by
averaging over the simulated MC scenarios the initial wealth required by solving
a super-replication hedging problem; it can be seen that for an asymmetrical
penalization of the positive and negative part of the hedging error, the mean
value for the wealth W0 gets close to the super-replication price (recall that the
super-replication problem ensures a perfect hedging against negative hedging errors
in simulated scenarios, disregarding positive hedging errors, while minimizing the
total cost of the hedging). For a better understanding of this behavior, Table 5.4 is
also provided, showing mean, standard deviation and skewness of the empirical
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distribution of initial investment for different γ values.

γ values: 1 10−2 10−4 10−6 10−8 10−10 10−12 0

mean 92,54 92,76 92,79 92,50 97,31 111,17 110,72 109,91

W0 std 2,57 2,88 2,62 2,81 4,17 6,18 7,81 4,40

skew 0,01 -0,39 0,27 -0,09 0,66 2,11 8,21 0,83

Table 5.4: Mean, standard deviation and skewness of the empirical distribution of
initial wealth W0 required by the strategy for different values of the risk aversion
parameter γ.

5.4 Financing analysis
As introduced in chapter 3, the hedging strategy may be either self-financing or not
and may admit the possibility to withdraw an amount of capital from the portfolio.
These conditions influences not only how the portfolio is financed but also the
hedging performance. In this section, an analysis of the impact of the financing
strategy on the hedging performance is conducted, in order to give a hint on the
possible configurations of the hedging strategy and their effectiveness.

Experimental Setup. A Monte Carlo simulation is performed for each com-
bination of parameters self-financing ∈ {True, False} and withdrawal-possibility
∈ {True, False}. The key implementation points of this analysis include an Asian
put option as the target asset (the one described in section 5.2), n = 103 Monte
Carlo replications for each financing configuration, initial wealth fixed and equal
to the target asset premium, 4 decision stages along the hedging horizon and
branching factors equal to [6,4,3,2] (with the fixed number of scenarios updating
strategy, thus with a fixed total of 144 scenarios also for scenario trees generated
at later stages).

The self-financing strategy without possibility to withdraw cash has already been
implemented and studied in section 5.2; in what follows, performances of other
combinations of self-financing and withdrawal possibility will be detailed.

Results. For a non-self-financing strategy without possibility to withdraw, after
an initial investment used to construct the hedging portfolio, further financing
is allowed at following decision stages along the hedging horizon. Cash flows for
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additional financing are assumed to be negative, indicating that the hedger loses
an amount of available cash which is invested in the portfolio. Figure 5.11 shows
the empirical distribution of P&L for this configuration, while Table 5.5 shows
mean and standard deviation of cash flows at intermediate stages; these statistics
are also provided for the total cash flow, the latter representing the sum over
decision stages of the cash flows. Additionally, the rebalancing frequency for each
stage is provided, computed as the number of Monte Carlo simulations in which
an additional financing happened at that specific stage over the total number of
simulations. Note that decision stages at time 0 and T have trivially cash flows
equal to zero, as the initial wealth corresponds to the target asset premium (thus
they offset each other) and at maturity date no rebalancing operation is planned;
thus these stages are not reported in the table.

Figure 5.11: Empirical distribution of P&L for a non-self-financing strategy
without withdrawal possibility.

Results for this implementation of the hedging problem shows good performances
in terms of hedging error (which features a mean equal to -0,001 with a standard
deviation of 0,0323, pointing out that the replication of the target payoff was
achieved), but the additional financing during intermediate stages lead to a higher
variance in P&L distribution (as shown in the figure); thus, the non-self-financing
condition makes the hedging more accurate but with an increased variability in
P&L compared to the self-financing strategy.
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decision stages

stage 1 stage 2 stage 3 total

mean cash flow: -3,793 -1,797 -0,602 -6,192

std of cash flows: 5,020 2,917 1,836 6,512

financing frequency: 66,9% 53,3% 45,6%

Table 5.5: Statistics of cash flows at intermediate stages for a non-self-financing
strategy without withdrawal possibility.

On the other hand, for a self-financing strategy with possibility to withdraw,
after an initial investment used to construct the hedging portfolio, money can be
withdrawn from the portfolio at subsequent decision stages; cash flows for this
setting are assumed to be positive, indicating that the hedger gains an amount
of money which is withdrawn from the the hedging strategy. As for the previous
configuration, Figure 5.12 shows the P&L distribution for this strategy, while
Table 5.6 shows mean and standard deviation of cash flows at intermediate stages,
along with the frequency at which cash withdrawal operations happen.
Also for this financing configuration, the hedging error distribution is satisfactory
(mean equal to -2,046 with standard deviation 6,382), but the impact of withdrawing
cash from the strategy at rebalancing stages lead to a higher variance in the P&L
distribution, making this financing strategy less effective than the already mentioned
ones.

decision stages

stage 1 stage 2 stage 3 total

mean cash flow: 3,083 0,945 0,466 4,495

std of cash flows: 5,263 2,527 2,233 6,487

withdrawal frequency: 52,33% 30,97% 16,70%

Table 5.6: Statistics of cash flows at intermediate stages for a self-financing
strategy with possibility to withdraw.
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Figure 5.12: Empirical distribution of P&L for a self-financing strategy with
possibility to withdraw money.

Lastly, the non-self-financing strategy with possibility to withdraw cash from the
hedging portfolio is the strategy which combines the characteristics of the two
previous approaches, allowing both positive and negative cash flows at intermediate
stages. Table 5.7 is provided with statistics about cash flows at intermediate stages.

decision stages

stage 1 stage 2 stage 3 total

mean cash flow: -3,238 -3,158 -0769 -6,993

std of cash flows: 9,586 7,536 4,576 12,641

cash flows frequency: 100% 100% 100%

Table 5.7: Statistics of cash flows at intermediate stages for a non-self-financing
strategy with possibility to withdraw money.

On average, the solver requires additional cash to finance the strategy rather than
allowing to withdraw part of the portfolio wealth; one aspect of particular interest
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is the cash flows frequency: indeed, for this configuration it turns out that in
every intermediate stage (of all MC replications) occur a cash flow, thus there is a
frequency of cash flows equal to 100% for each intermediate stage.
This configuration, like the others, performed well in terms of hedging error (mean:
0.002; std: 0.248), but it was the least effective in terms of P&L (whose distribution
features mean: -7.95; std: 14.40).

Discussion. It is clear from the different configurations implemented that, when
cash flows occur, they are most likely to happen during the first rebalancing
stages, while as the maturity date approaches cash flows become less frequent
and involve smaller amounts of money. Results also show that intermediate cash
flows, whether positive or negative, make the strategy less effective, leading to
improvements in the hedging error distribution but not significant enough to offset
the increase in variance of the P&L distribution (recalling that P&L is what the
hedger is more interested in). To better visualize this (also with the reference
of the self-financing strategy without withdrawal possibility implemented in a
previous section), Table 5.8 summarizes the statistics for hedging error and P&L
distributions for all the financing configurations.

HE P&L

mean std mean std

self-financing: T, withdrawal: F 1,37 5,30 1,37 5,30

self-financing: F, withdrawal: F -0,001 0,03 -6,35 6,68

self-financing: T, withdrawal: T -2,05 6,38 2,48 9,22

self-financing: F, withdrawal: T 0,002 0,248 -7,95 14,40

Table 5.8: Summary of statistics for hedging error (HE) and Profit&Loss (P&L)
for different financing strategies.
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5.5 Branching factors sensitivity
In this section, an analysis of sensitivity of the hedging performance with respect to
the choice of branching factors (denoted as bf for simplicity) is conducted; through
this, a discussion is made about how different scenario tree configurations impact
on both solution quality and computational time. A Monte Carlo simulation of
the hedging with n = 103 replications for each selected configuration of branching
factors is performed in order to give a first hint on the best choice of branching
factors. The hedging configuration corresponds to the one described in section 5.2
for a target Asian put option, except for not fixing the initial wealth, letting the
hedging solver choose the best-suited one.

One aspect of particular interest is the management of out-of-sample test sce-
narios, which are generated a-priori; considering that, for a fixed configuration of
the hedging strategy, the length dt of time-steps is generally computed as

dt = target option maturity
number of decision stages = T

length(branching factors) ,

to generate out-of-sample scenarios that are the same for all the bf configurations,
the length dt is chosen to be the least common multiple (l.c.m) among the lengths
of time-steps individuated by the bf configuration tested; each hedging strategy
then exploits the value of dt corresponding to the actual time step individuated by
its branching factors (e.g. the hedging configuration with [10,5,4] uses dt = T

3 ).

Table 5.9 illustrates the results of this analysis. In particular, for each choice

bf nodes time HE cost P&L
mean std mean std mean std

[10,5,4] 260 111.6 −1.69 16.00 93.41 2.06 −2.78 16.08
[25,6,5] 925 804.4 −0.62 5.67 93.22 0.50 −1.51 5.70
[25,15] 400 74.42 0.07 5.54 93.89 0.56 −1.52 5.56
[3,3] 12 3.79 −13.10 150 85.37 33.69 −5.82 151.56

[4,4,4,4] 340 197.36 −0.34 72.16 94.13 7.42 −2.17 72.28
[25,5,5,5] 3900 13540.67 −0.711 6.92 106.25 25.35 −15.93 27.05
[25,5,4,3] 2150 8039.81 −1.01 7.14 92.12 4.06 −0.71 8.32

Table 5.9: Summary of statistics for the branching factor analysis, pointing out
the sensitivity of the hedging performance to the choice of branching factors.

of bf, the following are reported: the total number of nodes in the scenario tree
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(corresponding to the number of nodes for the tree at decision stage 0, while trees
at subsequent stages will have progressively less nodes since the backward erosion
strategy is assumed), the computational time of the MC simulation and values of
mean and standard deviation for: hedging error (HE), cost of the hedging strategy
and Profit&Loss; these statistics are computed by averaging over the set of MC
replications. In order to provide a reference, the unhedged position features for
this set of MC simulations a P&L empirical distribution with mean −4.281 and
standard deviation 21.56; this is true for all the branching factor configurations, as
the simulated out-of-sample scenarios are the same for every bf.

Results discussion. The results from the table lead to some considerations of
particular interest:

1. for a more effective hedging, configurations with higher branching factors for
the first stages, while progressively decreasing for subsequent stages, should be
preferred to configurations with homogeneous branching factors. The evidence
lies in the behavior of the two configurations [4,4,4,4] and [10,5,4]: the former
has homogeneous branching factors, while the latter has branching factors
homogeneous by time-step and higher for the first stage. Even if [4,4,4,4]
features a higher number of nodes and time-steps, configuration [10,5,4]
achieves the best accuracy, particularly for values of standard deviation in
P&L distribution;

2. for the bf updating strategy with backward erosion, that is for example

[6,5,4,3] −→ [6,5,4] −→ [6,5] −→ [6],

choosing a small value for the branching factor at the first stage is not
convenient: in that case, the scenario tree generated at the last decision
stage would not generate enough scenarios to approximate properly the final
outcomes space; for those configurations, it is better to choose a higher value
for the first entrance of the bf vector, that is for example

[20,5,4,3] −→ [20,5,4] −→ [20,5] −→ [20],

or rather implement the fixed number of scenarios updating strategy, according
to which trees for all decision stages have the same number of leaf nodes; this
latter strategy would be:

[6,5,4,3,2] −→ [12,5,4,3] −→ [36,5,4] −→ [144,5] −→ [720];

3. when comparing the configurations [25,5,4,3] with [25,5,5,5], it can be observed
that the latter has a higher computational time which is not justified by the
improvement in results; the former configuration requires less computational
burden while ensuring a satisfactory result.
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Minor considerations might also be done. The results shown in the table indicate
that, as expected, for higher values of branching factors a heavier computational
burden is encountered: this highlights the growth in complexity when generating
trees with higher number of nodes. For example, branching factors [25,5,5,5], which
feature a number of nodes equal to 3900, are those with the highest computational
time to complete the MC simulation, that is 13540.67 s; on the other hand, the
scenario tree with branching factors [3,3], which features only 12 nodes, requires
3.789 s to complete simulation of the hedging.

In terms of hedging error and P&L, the configuration [25,15] achieves the best
performance with a moderate computational time (74.42 s): for this configuration
there is an effective trade-off between hedging accuracy and computational time
required; the configuration [3,3], instead, points out that too simplistic choices of
bf fail to provide a reliable solution to the hedging problem. If the performances
for the two configurations are compared, it can be concluded that the not-reliable
solution of [3,3] is not due to the low number of rebalancing stages, but rather to
the limited number of tree nodes, as already commented.

Lastly, concerning the hedging cost (equal, for this analysis, to the initial portfolio
construction, as a self-financing strategy is assumed), given that the Monte Carlo
price of the target put option is 92.367, almost all configurations of branching
factors present satisfactory results, with few exceptions: this means that almost all
configurations required an initial wealth close to the target asset initial price. The
only exceptions are:

• configuration [3,3], which underestimated the target asset premium, probably
due to the scenario tree being too small to efficiently approximate the space
of possible future outcomes;

• the [25,5,5,5] configuration, which, on the other hand, overestimated the target
asset premium; this overestimation is directly reflected in the poor-quality
results in terms of P&L empirical distribution, which is worse compared to
the other cases.

A further analysis involves studying the behavior of different branching factors
configuration with the fixed number of scenarios updating strategy, that is, main-
taining a fixed the number of leaf nodes for scenario trees at different stages. A
total of n = 103 Monte Carlo replications are performed for the branching factors
[25,3,3] and [10,5,3] in order to analyze this updating strategy and benchmark
the results against those previously obtained, as reported in Table 5.10. For this
implementation, a constant initial wealth (equal to the target asset premium) is
considered, thus hedging error and profit and loss coincide. Contrary to what
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Number of leaf nodes time P&L

1st stage 2nd stage 3rd stage mean std

[10,5,3]
150 50 10 100.66 s −0.712 6.57

150 150 150 168.48 s −1.008 3.36

[25,3,3]
225 75 25 236.09 s −0.885 4.59

225 225 225 433.67 s −0.873 3.38

Table 5.10: Comparative analysis between the backward erosion updating strategy
for branching factors (gray) and the approach with a constant number of leaf nodes
in scenario trees (blue).

was expected, the reported table shows that the updating strategy with a fixed
number of leaf nodes in scenario trees has not led to significant improvements in
P&L distribution; rather, the only notable difference with respect to the previous
approach regards its computational time, which is trivially increased due to the
higher complexity of scenario trees at subsequent stages. The fact that this ap-
proach has not led to enough improvements to justify its increased computational
time may limit its practical implementation in favor of the previous strategy.

5.6 Transaction costs analysis
As anticipated in previous chapters, the Stochastic Optimization approach imple-
mented for the hedging problem may take into account the presence of transaction
costs when trading financial instruments, allowing to formulate a framework of
asset-trading which is more consistent with real-world financial markets. In this
thesis, proportional transaction costs are assumed, that is, denoting by xj the
quantity of asset j traded at price pj, the cost for trading asset j is:

• (1 − cj)xjpj if the asset is purchased;

• (1 + cj)xjpj if the asset is sold.

In this section, an analysis of the impact of transaction costs on the hedging
performance is conducted, pointing out how the hedging solver responds to different
configurations of transaction costs. The optimization setting is the same as the one
depicted in section 5.2 (Asian put option with strike 250, maturity 1 and a strategy
which is self-financing with fixed initial wealth and no withdrawals allowed).
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The tested values of proportional transaction costs belong to the set:

{0,10−10, 10−8, 10−6, 10−4, 10−2, 10−1}.

It is assumed that every asset shares the same value of transaction cost, except
for the risk-free asset, which is assumed to be traded without any additional costs.
The results of this analysis are analyzed in term of P&L empirical distribution,
as shown in Figure 5.13; in particular, the mean and standard deviation of P&L
over the simulated MC replications are given. Surprisingly, the figure points out

Figure 5.13: Analysis of sensitivity of the hedging performance (in terms of mean
and standard deviation of P&L empirical distribution) with respect to different
values of proportional transaction costs incurred in assets trading.

that the implemented hedging solver seems not to be influenced by the choice of
transaction costs, achieving a good quality solution in term of P&L regardless of
the transaction costs applied to trading operations. Indeed, all the P&L show a
mean close to 0 with a low and stable value of standard deviation, thus ensuring an
effective reduction in risk exposure even for cases with high transaction costs (such
as, 10%). Additionally, transaction costs proved to have neither impact on the
computational time required to solve the hedging problem: this result highlights
the strength of the hedging problem solved through the stochastic optimization
approach proposed.
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5.7 Scenario tree generation: GBM vs MM
In subsection 2.2.1 and subsection 2.2.2 two different approaches for scenario tree
generation were introduced: the simulation via Geometric Brownian Motion and
the simulation via Moment Matching. In this section, a brief comparative analysis
is conducted in order to evaluate their effectiveness, both for computational time
and hedging performance.

The hedging configuration of this analysis exploits an Asian put option with strike
K = 250 and T = 1 year to test the performance of the three approaches to scenario
tree generations; the hedging strategy is assumed to be self-financing, without
withdrawal possibility and with an initial wealth fixed to the target option premium.

Figure 5.14, Figure 5.15 and Figure 5.16 show the hedged P&L empirical dis-
tribution for, respectively, the implementation of the Geometric Brownian Motion
with SLSQP, the Geometric Brownian Motion with Gurobi and the Moment Match-
ing approach; to provide a reference, the unhedged position for these simulations
features a standard deviation of 11.26.

Figure 5.14: Profit&Loss empirical distribution for the implementation of GBM
− SLSQP in scenario tree generation.
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Figure 5.15: Profit&Loss empirical distribution for the implementation of GBM
− Gurobi in scenario tree generation.

The figures evidence that all three implementations lead to satisfactory results,
hedging the position in the target asset and improving the variability of the un-
hedged position (which is recalled to have a standard deviation of 11.26).

Despite the good performance of all the stochastic models, further discussion
can be provided. Concerning the computational time, the Moment Matching
turned out to be the most time-consuming, with a total of 4423.73 s required to
complete the hedging simulation, against the 746.18 s of the implementation of
GBM with SLSQP and the 277.85 s of the GBM implementation with Gurobi. Thus,
GBM with Gurobi turned out to be the approach with the lowest computational
time, outperforming the SLSQP alternative, although the feature a comparable
P&L distribution.

However, despite being the slowest approach, the Moment Matching has some key
advantages: including the 3rd and 4th moments in the set of matched properties,
it proved to lead to some improvements in the hedging accuracy even in hedging
configurations which are not so promising, as when using branching factors [15,5,4],
which features a limited number of branches in scenario trees.
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Figure 5.16: Profit&Loss empirical distribution for the implementation of Moment
Matching in scenario tree generation.

Summarizing, Table 5.11 reports the discussed performances of the three ap-
proaches to scenario tree generation.

P&L time

mean std

GBM - Gurobi −0.50 4.05 277.85 s

GBM - SLSQP −0.66 3.75 746.18 s

Moment Matching −0.42 1.46 4423.73 s

Table 5.11: Summary of performance statistics for different approaches to scenario
tree generation.

This analysis highlighted the effectiveness of all the implemented approaches in
modeling scenario trees while also showing some of their strengths and weaknesses
related to hedging accuracy and computational burden. Clearly, based on the
analysis conducted, none of these approaches should be excluded a priori: the
choice should be left to the hedger.
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5.8 Pricing through hedging
As introduced in section 5.5, when the initial wealth to be allocated in the hedging
portfolio is not fixed a priori, the hedging solver implemented in this work provides
an estimate, over the Monte Carlo replications of the hedging, of the initial wealth
invested in the portfolio construction in order to guarantee an effective hedging.
From various test conducted, most of the times this estimate proved to be close
to the initial price of the target asset: this is reasonable, since the hedging solver
recognizes that, to hedge a short position in the asset, a reliable value for the initial
wealth should match the target asset’s price quite accurately. Indeed, a lower value
could result in under-hedging solutions, with potential losses, while a higher value
could lead to over-hedging, accurately replicating the target payoff but with an
excessive cost for the strategy, again resulting in potential losses.

In this section, a deeper analysis is provided by comparing the initial wealth
required by the hedging strategy with the given price of the target asset. In
particular, for target European options the reference price is computed by means
of Black-Scholes-Merton formulas, while for Asian options it is estimated through
a Monte Carlo simulation by averaging the discounted payoff over 104 replications.
The key point of this test lies in not fixing the initial wealth of the hedging strategy
and analyzing the distribution (over the set of MC replications) of the initial wealth
that the solver exploits to construct the hedging portfolio. The number of MC
replications considered is n = 1000 and the hedging strategy applied is self-financing
and without the possibility to withdraw capital.

Figure 5.17a shows the distribution of the the initial wealth required by the
solver to hedge against a European call option whose B&S price at the initial time
of the hedging horizon is $26.013. Similarly, Figure 5.17b shows the distribution of
prices estimated via the hedging solver for an Asian put option with a reference
price of $92.362.
In the figures, the initial wealth of the various MC replications is denoted, for the
sake of simplicity, by ’price’. The red vertical line indicates the reference price of
the options (B&S price for the European target, Monte Carlo price for the Asian
target), while the gray lines delimit a symmetric neighborhood of radius 1 around
the reference price, to which belong 86.50% of the prices found by the hedging
solver for the case of the European option and 30.40% of prices for the Asian
option.
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(a) European call

(b) Asian put

Figure 5.17: Distributions of the initial wealth required by the solver across
multiple MC replications for hedging European and Asian options. The distributions
are compared to the reference price of the target option.
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If the mean of the initial wealth can be considered an estimator for the option
(theoretical) price, this test confirmed that for European options the hedging solver
returns a quite accurate estimate (the distribution mean is 26.68, close to the B&S
price of $26.01, with a low standard deviation, that is 0.29).

Also for the Asian option, despite providing a less accurate estimator, the hedging
solver returns a price distribution whose mean is close to the reference price (92.752
against a reference value of 92.362, with a standard deviation of 2.587, which is
higher than the previous case but still acceptable).

To summarize, Table 5.12 reports the results discussed for the two tests con-
ducted; in this table, the target option reference price is denoted by premium.

target asset price estimator % of prices

type premium mean std within $1

European call 26.01 26.68 0.29 86.50%

Asian put 92.362 92.752 2.587 30.40%

Table 5.12: Target option prices estimated through the hedging solver compared
with the reference price.
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Chapter 6

Benchmarking stochastic
optimization

Following the performance analysis chapter, where the effectiveness of the hedging
methodology via Stochastic Optimization was evaluated by deeply analyzing its
sensitivity to different shades of the hedging configuration, this chapter presents a
comparative analysis with two well-known approaches in the hedging literature to
benchmark the proposed strategy. As previously mentioned, the Delta Hedging
and Deep Hedging approaches will be considered.

6.1 Deep Hedging
As discussed in the introductory section 1.1.2, a Deep Hedging strategy known
in the literature is used as a benchmark for the proposed strategy of dynamic
hedging through stochastic optimization. In particular, the Deep Hedging strategy
considered is the one implemented by A.Carbonneau in the paper Deep hedging of
long-term financial derivatives [2]. In the following section, the main implementation
aspects of the Deep Hedging approach are outlined, with a focus on the network
architecture and its working mechanism.

6.1.1 Long-Short Term Memory networks
The network architecture chosen for the implementation of the Deep Hedging
strategy is a Long-Short Term Memory Neural Network as the one implemented
by Carbonneau. A LSTM is a specific type of Recurrent Neural Networks, i.e. a
class of NNs which maps input sequences x = [x1, · · · , xT ] to output sequences
y = [y1, · · · , yT ] and presents self-connections in the network layers; more precisely,
RNN layers are functions not only of an input from the current time-step t but
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also depend on their own output from the previous time-step t − 1; this is the key
feature of RNNs responsible for their ability to capture time dependence in input
sequences. Figure 6.1 briefly shows the structure of a RNN with self-connections of
layers; the input sequence is processed by the RNN timestep by timestep, that is,
various processing steps follow each other, progressively taking as input the t-th
component of the input sequence (that is, xt) and outputs the t-th component of
the output sequence (that is, yt), for t = 1, ..., T .

Input

RNN Layers

Output

x

L1

...

Ln

y

Unfold

xt

L1,t

...

Ln,t

yt

xt+1

L1,t+1

...

Ln,t+1

yt+1

Figure 6.1: Structure of a recurrent neural network with self-connections of layers.

A LSTM network expands the idea of a RNN by precisely structuring the information
stored from a time-step and used to influence the following time-step through the
self-connection of layers (which, for the LSTM NN, are called cells). In particular,
this type of networks feature a hidden state ht and a cell state ct; the former denotes
a short-term memory and represents the output of the cell at time-step t, which is
passed to the following cell, if there is one, in the sequence of layers and it is also
passed to the cell itself through a self-connection. The latter, instead, is responsible
for storing the long-term memory of the past time-steps: indeed, ct contains (part
of) the past information of all the previous times-steps. The information storage in
the cell state happens through a set of gates, specifically the input, the output and
the forget gates (it, ot, ft), which are responsible for choosing the information to
store and the one to forget. Going deeper into details:

• the input gate it decides how much information from the current time-step
should be added to the cell state ct;

• the forget gate ft decides how much information from the previous step
(represented by ct−1) should be discarded when generating the cell state ct;
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• the output gate ot decides how much of the cell state information is passed to
the hidden state ht.

Denoting by j ∈ J = {1, . . . , H} the index for cells in the sequence of the network
layers and with t ∈ {1, . . . , T} the index for time-steps, the structure of the jth

LSTM cell is represented by Figure 6.2.
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Figure 6.2: General structure of a LSTM cell.

For the sake of clarity, note that:
• inputs h

(j)
t−1 and c

(j)
t−1 for a cell correspond to the outputs of the cell itself at

the previous time-step; thus, this values are passed from time-step t − 1 to
time-step t by means of the self-connection of the cell;

• for the first cell (that is, j = 1), it holds that the input h
(j−1)
t is the input of

the network at time-step t, that is xt;

• the output h
(H)
t of the last cell is processed through an additional layer, known

as the output layer, where a linear transformation is applied to h
(H)
t by means

of a weight matrix Wy and a bias term by to compute the output of the network
at time-step t, that is yt:

yt = Wy h
(H)
t + by;

• for every other cell (that is, j = 2, . . . , H − 1), the input h
(j−1)
t corresponds to

the output of the previous cell at the current time-step t and the output h
(j)
t

is passed to the following cell.
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To further clarify, the formulas of the LSTM network components are provided
below:
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where:

• σ(·) and tanh(·) are respectively the sigmoid and hyperbolic activation func-
tions;

• h
(0)
t corresponds to the input vector xt;

• h
(H)
t corresponds to the output of the layers, through which yt is computed by

the linear transformation mentioned before;

• the parameters in the set {W
(j)
i , W

(j)
f , W (j)

o , W (j)
c } ∪ {b

(j)
i , b

(j)
f , b(j)

o , b(j)
c }, along

with the previously mentioned Wy and by, denote the cell weights and biases;
these are the parameters whose optimal value is aimed to learn through the
network training phase (see subsection 6.1.2).

• ⊙ denotes the scalar product.

6.1.2 Implementation
Inspired by the work of A.Carbonneau, in this section the implementation of
the Deep Hedging approach as a benchmark for the hedging strategy based on
Stochastic Optimization will be examined.

Similarly to the SO hedging framework, the market is in discrete time and the
hedging strategy consists of two phases: at first, the hedging portfolio is constructed,
then, at subsequent stages, the latter is rebalanced. The hedging strategy is denoted
by the sequence δ = {δt}T

t=1, where each component δt represents the vector of
holdings in the hedging assets j ∈ [1, . . . , n] held in the time interval [t − 1, t]:

δt = [δ(1)
t , . . . , δ

(n)
t ].
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The LSTM network plays the role of approximating the hedging strategy: indeed,
for each input sequence x = {xt}T

t=1, the network outputs the sequence δ = {δt}T
t=1.

Each component xt of the input sequence is a vector containing the prices of the
assets (following the denotation under which x

(j)
t denotes the price of the jth asset

at time t) and the value of the hedging portfolio at time t (normalized by its initial
value), that is:

xt =
C
x

(0)
t , . . . , x

(n)
t ,

V h
t

V h
0

D
;

the last component is included into xt as it is shown by [2] that this additional
information enhances the training process of the network.
The chosen configuration for the LSTM network features H = 2 cells (layers), for
a total of three layers if the output layer is included (note that the output layer
corresponds to the linear transformation applied to h

(H)
t for the computation of δt).

Since the Deep Hedging method is data-driven, the generation of a training,
validation and test set is required1; these sets of simulated paths for the financial
market are generated in the same way as for the SO hedging; in particular, the
simulated dataset includes 50000 (MC) replications of the market evolution. The
model is trained over 35000 of those simulated paths, while additional 7500 are
used as a validation set; the remaining 7500 out-of-sample paths are used to test
the performance of the Deep Hedging algorithm. During the training phase, the
network learns the optimal parameters by minimizing a risk measure represented
by a loss function L(·) applied to the hedging error; recalling that the latter is the
difference between the target asset payoff at maturity ΦT and the hedging portfolio
value at the same date V h

T (δ), the Deep Hedging objective is:

min
δ

E
è
L(ΦT − V h

T (δ))
é

.

The chosen loss function is the Semi-Mean Square Error (SMSE), defined as

L(x) = x21{x>0},

as shown by Carbonneau to lead to better results compared to its symmetric
counterpart (the MSE function).

During the training phase, the network parameters θ (including weights and

1This structure is typical of data-driven methods, in which the optimal model parameters are
learned through the data in the training set, while the validation set is used to select the best
choices for the model hyper-parameters. After the training procedure, data in the test set are
used to test the optimized model configuration and to provide performance statistics.
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biases of every LSTM cell, as well as those of the output layer) are optimized by
means of the stochastic gradient descent (SGD) algorithm. The latter is an opti-
mization algorithm inspired by the Gradient Descent algorithm, despite updating
the parameters according to a random subset of the data, rather than exploiting
the entire dataset. Denoting by J(θ) the objective function to minimize, that is

J(θ) = E
è
L(ΦT − V h

T (δθ))
é

,

the (well-known) Gradient Descent algorithm would update iteratively the network
parameters through the formula given by:

θj+1 = θj + ηj∇J(θj),

where ηj is known as learning rate; the idea under the SDG is to approximate, at
each training step j, the gradient of the objective function by an estimate ∇Ĵ(θj)
computed over a random subset B (denoted as batch) with cardinality N of the
available data:

θj+1 = θj + ηj∇Ĵ(θj), (6.6)

where
Ĵ(θj) = 1

N

Ø
i∈B

L
1
ΦT,i − V h

T,i(δθj
)
2

.

The chosen batch size for the implementation of the LSTM in this work is N = 500,
with 150 training steps (formally denoted as epochs) in which the SGD updating
rule of Equation 6.6 is applied. For the specific implementation considered, the
validation set is not exploited to choose the best configuration of the model hy-
perparameters (e.g. number of cells, number of neurons per cell and more) but
rather to select the optimal configuration of the model parameters θ∗ out of the
150 training epochs2.

Without entering into specific details, the LSTM is trained by combining SGD with
the Adam optimizer and the Backpropagation Through Time (BPTT) algorithm.
The former is responsible for updating the learning rate ηj between the training
steps j and j + 1, leveraging the first and second moments of the gradient; the
adaptive learning rates of the Adam optimizer result in a faster convergence of the
training phase. The latter, instead, is an alternative to the classic backpropagation
method commonly used in applications involving recurrent neural networks.

2This choice is motivated by Carbonneau by the fact that different choices for the model
hyper-parameters have minor impact on the hedging performance.
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6.1.3 Hedging setup
To benchmark the proposed hedging strategy via Stochastic Optimization with the
Deep Hedging approach, the following configuration is considered:

• the target asset to be hedged is an Asian put option with the following features:

– underlying stocks in the set {ENEL.MI, MMM, TSLA} with initial prices
[102.05, 242.92,107.19],

– strike price K = 250,
– maturity T = 1 year;

• hedging assets including the underlying stocks, the risk-free asset and one
European put option for each available stock, with strike prices [170,300,200],
respectively for the mentioned stocks, and all with maturity 1 year;

• the number of Monte Carlo replications to test the strategy is n = 7500. The
Deep Hedging strategy, as mentioned above, is trained over 35000 simulated
paths, with additional 7500 samples for the validation set;

• both hedging strategies have been implemented according to their best per-
forming setups (trading-off the hedging performance and the computational
time required):

– the SO hedging strategy involves 3 decision stages with scenario trees
generated at each stage according to the branching factors [25,3,3], with
backward erosion approach;

– the Deep Hedging strategy is implemented with monthly decision stages,
incurring thus in 12 decision stages.

6.1.4 Results
Figure 6.3 and Figure 6.4 show the empirical Profit&Loss distributions for the
training and test sets, respectively, of the Deep Hedging strategy, while Figure 6.5
presents the same for the strategy proposed in this work. Before discussing the
comparative analysis of the two different strategies, one aspect of the Deep Hedging
performance deserves particular attention. Indeed, as shown in Table 6.1, which
summarizes the statistics obtained for the P&L of both the DH training and test
sets, it turns out that the hedging performance is very similar for these two sets:
this highlights a minimal impact of the generalization error and demonstrates the
absence of overfitting during the training phase.
Having observed this behavior of the Deep Hedging, the focus now shifts to compar-
ing the results of the two different methodologies. For this analysis, only the test
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Figure 6.3: Deep Hedging - PnL distribution of the training set.

Figure 6.4: Deep Hedging - PnL distribution of the test set.

90



Benchmarking stochastic optimization

Figure 6.5: Performance of the Stochastic Optimization hedging in the compara-
tive analysis with the Deep Hedging approach.

Hedged P&L Unhedged P&L

set mean std mean std

Training 0.02 1.11 −2.69 21.16

Test 0.00 1.07 −2.44 20.99

Table 6.1: Statistics of the performance of the Deep Hedging training and test
sets.

set of the Deep Hedging approach is considered, willing to analyze the performance
of the DH strategy in new scenarios that were not involved in the network training
phase.

Based on a first observation of the provided figures, the conclusion would be
clear: both Deep Hedging and Stochastic Optimization hedging successfully hedged
against the liability related to the target payoff, decreasing the standard deviation
of the unhedged position and with a hedged P&L which is quite accurately centered
at zero. Going deeper into the analysis, a discussion can be made around some
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discrepancies in the method’s behavior. Indeed, the difference in the mean values
for the P&L distributions is negligible (0 for the DH approach against −1.16 for
the SO hedging, both reasonable values), but the DH approach proves to have
a higher stability in the hedging strategy, with a lower value for the standard
deviation of the P&L distribution with respect the the SO strategy (1.07 against
5.80); this reflects the heavier upper and lower tails in the SO distribution. Indeed,
the following are true:

• the SO approach leads to a distribution that counts the highest number of
replications where the P&L (in this case equal to the hedging error) is exactly
zero or a value close enough to zero to be approximated as such, indicating a
perfect hedged situation; specifically, out of the 7500 MC replications, more
than 5000 have a P&L with value zero (or close). Despite that, the tails of its
distribution reveal that some worse cases, where the P&L deviates from zero,
may occur, although they remain isolated cases of lower frequency and with
P&L values still acceptable;

• on the other hand, the DH distribution counts a lower number of replications
exactly within a small neighborhood of the value zero (specifically, around
2750 out of the 7500 MC replications), but its standard deviation remains low
due to the fact that even those values that are not exactly zero still lie around
it, with a lower number of outlier behaviors: this reflects in thinner tails for
the distribution.

Concerning computational time requirements, the Deep Hedging strategy turns out
to be more time-consuming, with a total time for the network optimization phase
(including both training and validation) of approximately 2 hours and 37 minutes;
once the optimal network parameters are learned, the test phase is quite immediate,
adding no significant burden to the total amount of time required. On the other
hand, the Stochastic Optimization strategy is somewhat less time-consuming, with
a total requirement of 1 hour and 49 minutes to apply the hedging strategy to
the set of test scenarios. Both strategies are not immediate and necessitate for an
amount of time that is not negligible, but SO hedging demonstrates a better time
efficiency; despite that, the higher computational cost of the DH strategy may be
acceptable given the (slight) improvement in P&L performance.

Table 6.2 summarizes the statistics computed for this comparative analysis between
the Deep Hedging and the Stochastic Optimization hedging approaches. In the
table compares an additional risk measure for the P&L distribution, that is the
Conditional Value at Risk (CV@Rα(L)), which is a defined as:

CV@Rα(L) = E [L|L < V@Rα(L)]
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method P&L time

mean std CV@R0.05

Stoch. Opt. Hedging −1.16 5.80 −20.25 1h 49min

Deep Hedging 0.00 1.07 −2.78 2h 37min

Table 6.2: Summary of statistics from the comparative analysis between the
Deep hedging approach and the hedging strategy implemented through Stochastic
Optimization.

where V@Rα is defined as:

V@Rα(L) = inf{x ∈ R : P(L ≤ x) ≥ α}
= inf{x ∈ R : FL(x) ≥ α}.

To better clarify, if the distribution of L is continuous, then V@Rα would be the
quantile of level α.

6.2 Delta Hedging
The second benchmark assessed for the hedging strategy proposed in this work
is Delta Hedging, briefly introduced in section 1.1.2. For the sake of simplicity,
only target asset with a single underlying are considered for the Delta hedging
implementation3. Assuming a short position in a target option and recalling the
Delta is defined as the rate of variation of the option price with respect to variations
in the underlying price, the Delta Hedging aims at maintaining a delta-neutral
portfolio in order to minimize the risk exposure due to changes in the underlying
price, preserving the initial portfolio value. This is accomplished by trading the
underlying at each rebalancing date in order to hold an amount of the latter equal
to the delta of the option.

The Delta Hedging strategy implemented is the one described by M.Villaverde in
[1]. In contrast to what was introduced in section 1.1.2, the Delta Hedging strategy
may be applied in an asset-trading framework that accounts for transaction costs.
Denoting by:

• Bt the value of the risk-free asset at time t,

3For more complex options, there may not be an analytical derivation of the Delta Hedging
strategy, but also in cases where it exists, its implementation may not be trivial.
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• St the price of the underlying stock at time t,

• Xt = (X0
t , X1

t ) the vector of assets’ holdings in the portfolio at time t, where
X0

t refers to the risk-free asset and X1
t to the stock and

• W0 the initial wealth invested in the portfolio construction,

according to Villaverde’s strategy, if a proportional transaction cost c for the stock
is taken into account, the holdings of the assets in the hedging portfolio should be:

X1
0 = ∆0, X0

0 = W0 − X1
0 S0(1 + c)
B0

,

X1
t = ∆t, X0

t = X0
t−1 + (X1

t−1 − X1
t )St − |X1

t − X1
t−1|Stc

Bt

∀ t = 1, . . . , T − 1

and
X1

T = ∆T −1, X0
T = X0

T −1

The comparative framework implemented for this benchmark involves hedging a
European put option with strike K = 300, maturity T = 1 year and underlying stock
corresponding to the ticker TSLA with a self-financing strategy. Transaction costs
are set different from zero for both strategies in order to assess the results in a more
general framework, even if the Delta Hedging is derived under the B&S assumptions,
which require no market frictions. One key aspect of the implementation concerns
the use of branching factor 2 for each rebalancing stage of the SO hedging, that is,
the branching factors typical of the binomial model.

Analysis on a high number of decision stages

An initial comparative analysis focuses on the implementation of both strategies for
a dynamic hedging involving several decision stages. In particular, 9 rebalancing
stages are considered, with an initial scenario tree for the Stochastic optimization
approach which features 29 simulated scenarios. Figure 6.6 shows the P&L for the
SO hedging, while the Delta Hedging P&L is reported in Figure 6.7.
Delta Hedging exhibits a smaller standard deviation, suggesting a (slightly) more
stable outcome, but in general the results obtained for this first analysis are
promising for both strategies, highlighting their effectiveness.
In terms of computational time required, there is a significant difference when
comparing stochastic optimization and Delta Hedging: the computational time
for the former amounts to 2219.05 s for the simulation tested, while the latter
requires only 0.003 s. This discrepancy is motivated by the two methods complexity:
Stochastic optimization is an advanced technique for which various optimization
problems are solved at each decision stage and relies on advanced techniques
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Figure 6.6: Profit and Loss of the stochastic optimization hedging for a European
vanilla put option with strike K = 300 and maturity T = 1 year, with 9 decision
stages.

Figure 6.7: Profit and Loss of the Delta Hedging of a European vanilla put option
with strike K = 300 and maturity T = 1 year, with 9 decision stages.
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(among the others, scenario trees to model uncertainty), naturally increasing the
computational burden. Delta Hedging, instead, is a straightforward strategy that
simply adjusts portfolio holdings at each decision stage based on current values of
the hedging assets, following deterministic formulas. In light of this, Delta Hedging
requires minimal computational effort.
However, another aspect to take into account is the methods adaptability, for which
the stochastic optimization approach outperforms Delta Hedging: indeed, the latter
relies on a specific pricing model for the target option to be hedged based on strict
assumptions; on the other hand, the SO hedging is flexible to various hedging
settings, leaving the door open to a variety of assumptions about the financial
market and its dynamics.

Analysis on a fewer number of decision stages

The previous test could potentially advantage Delta Hedging due to the many
rebalancing steps: in fact, for a higher choice of branching factors, the SO approach
could have required an excessive computational time considering the 9 decision
stages, while the choice of branching factors equal to 2 could lead to a not-so-precise
approximation of possible future outcomes. A further test is conducted willing to
analyze the behavior of the two strategies with a different choice for the number of
decision stages (and branching factors), that is, 3 stages (with branching factors
for the SO hedging represented by the vector [25,3,3]). Figure 6.8 and Figure 6.9
show the P&L empirical distributions of the two methods under the mentioned
conditions. Even with a smaller number of rebalancing stages, both strategies
provide a good quality solution in terms of P&L distribution, with a slightly better
performance for the stochastic optimization approach, which features both the
mean and standard deviation very close to zero.

A further consideration to keep in mind is that Delta Hedging formulas derive from
a first-order approximation, making the delta an effective method to hedge only
against small price movements in the underlying asset. For stress tests in which
the underlying price features higher variability and may also encounters jumps,
Delta Hedging could potentially fail to hedge the position in the target asset, while
the stochastic optimization approach would be more robust due to its ability to
model and take into consideration possible future outcomes.
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Figure 6.8: Profit and Loss resulting from stochastic optimization for a European
vanilla put option with strike K = 300 and maturity T = 1 year, with 4 decision
stages.

Figure 6.9: Profit and Loss resulting from Delta Hedging for a European vanilla
put option with strike K = 300 and maturity T = 1 year, with 4 decision stages.
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Chapter 7

Conclusion

This thesis has presented and developed a Stochastic Optimization approach for the
dynamic hedging of exotic derivatives. The study began with an introduction to
the topic, highlighting the motivation behind a hedging strategy and its objective
of risk management. The theory of financial markets provided the foundation to
establish the framework of the proposed hedging strategy: the financial instruments
involved in the hedging process were defined along with their characteristics and
dynamics. The assumed stochastic process governing stock prices evolution is
the Geometric Brownian Motion, implying a log-normal distribution for stock
prices. Derived from this assumption on stock dynamics, the Black-Scholes-Merton
model was employed for pricing European options, while for exotic derivatives,
such as Asian options, the price was estimated through Monte Carlo simulations.
The dynamic hedging strategy was then examined: a detailed description of the
implemented approach was given, analyzing the stochastic optimization problem
solved at each decision stage to find the optimal portfolio composition, along
with the generation of scenario trees, leveraged to tackle the issue related to the
uncertainty about possible future outcomes in the financial market. Different
approaches to scenario tree generation were proposed, involving the simulation
of prices evolution through the Geometric Brownian Motion and the simulation
through the moment matching method: the results showed that all the proposed
strategies to scenario tree generation resulted in good quality results, confirming
their effectiveness. Following the definition of the optimization problem, some
performance analyses were conducted leveraging Monte Carlo simulation to assess
the effectiveness of the hedging strategy in minimizing the risk exposure related to
the short position in the target asset. Results obtained showed that the proposed
approach leads to satisfactory performances, highlighting its effectiveness. Key
findings from this testing phase include that the self-financing strategy with fixed
initial wealth equal to the target asset premium proved to be the optimal hedging
configuration, transaction costs demonstrated to have not a significant impact on
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the hedging performance, pointing out the robustness of the proposed strategy
across various scenarios simulating real financial markets, and, additionally, that the
hedging strategy may also be leveraged to provide a reliable estimate of the price of
exotic derivatives. In the final phase, to benchmark the hedging strategy developed
in this thesis, the Deep Hedging and Delta Hedging approaches were considered.
The results from this comparative analysis showed that the hedging approach via
stochastic optimization performs well among the benchmark alternatives, with
each strategy presenting its own strengths and weaknesses, but overall exhibiting
comparable results.
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