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A B S T R A C T

We consider the problem of tracking a benchmark target portfolio of financial securities in particular the S&P 500.
Linear integer programming models are developed that seeks to track a target portfolio using a strict subset of
securities from the benchmark portfolio. The models represent a clustering approach to select securities and also
include additional constraints that aim to control risk and transactions costs. Lagrangian and semi-Lagrangian
methods are developed to compute solutions to the tracking models. The computational results show the effec-
tiveness of the linear tracking models and the computational methods in tracking the S&P 500. Overall, the
models and methods presented can serve as the basis of the optimization module in an optimization-based de-
cision support for creating tracking portfolios.
1. Introduction

The proliferation and demand of exchange-traded funds (ETFs) where
the underlying asset is a market index such as the S&P 500 Index (SPDR)
is a reflection of the demand in investment in broad markets as opposed
to actively managed investments that try to beat the markets. There is
good reason for this, for example, the average return of 769 all-equity
actively managed funds was 2%–5% lower than the S&P 500 index
during the period 1983–1989 (Zenios, 2007) and more recent studies
have also found similar differences. ETFs allow a broader participation in
investment in major market indices since it is the ETF company that is
responsible for investing for replication of an index i.e. investing to
mimic the risk and return profile of a market index. Clearly, a key stra-
tegic decision of an ETF company is the construction of a portfolio that
mimics a given benchmarkmarket index. However, this is not necessarily
a straightforward process and is often referred to as index tracking. For
example, it has been found in (Valle et al., 2014) that many commercial
ETFs have higher variance than the underlying assets. For ETFs that aim
to replicate both the risk and return properties of an index as closely as
possible the task in not trivial. It should be noted that the models pre-
sented in this paper seek to track and not outperform the S&P 500 and so
this motivates replicating both risk and return of the index as close as
possible. This will also motivate the use of capitalization-style weightings
for the assets selected by the models.

Index tracking is an important passive investing strategy where one
seeks a portfolio of securities that emulates a given benchmark portfolio
such as the S&P 500. Full replication of a benchmark portfolio is an
July 2017; Accepted 20 July 2017
obvious strategy for tracking where all assets in the benchmark are held
in the quantities as specified by the weightings of the benchmark port-
folio, but full replication is not practical given the transaction costs this
would entail. For example, fully replicating the S&P 500 index would
require holding the 500 assets along with weightings for each asset. The
weightings are based onmarket capitalization and so as soon as the prices
of assets change the weights change as well. Constant rebalancing of the
tracking portfolio would result in a prohibitive amount of transactions.
An alternative strategy is to select a strict subset of assets from the
benchmark, however, this results in tracking portfolios that do not match
the benchmark as closely as in full replication. A well-known measure of
this discrepancy is called tracking error and is defined as the difference
between returns of the tracking portfolio and benchmark. In general,
there will be a trade-off between tracking error and transactions costs.
Models that seek to minimize tracking error have emerged as a popular
approach for constructing tracking portfolios (Jorion, 2003). Such
models exhibit non-linearity as it is the variance of tracking error that is
often minimized or constrained. A further complication is that in
enforcing only a strict subset of assets selected discrete variables must be
introduced. This constraint is called the cardinality constraint and re-
quires binary variables for its implementation. Incorporating this aspect
along with tracking error minimization into a model will result in a
non-linear integer optimization problem which can present substantial
challenges in computing optimal or near-optimal solutions. Furthermore,
most tracking models e.g. those minimizing tracking error require esti-
mates of the expected returns of assets. It is challenging to estimate these
quantities and the corresponding estimation errors can result in
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substantial bias in optimized portfolios. However, it should be noted that
there are models that minimize tracking error through linear objectives
see (Guastaroba and Speranza, 2012) and the references therein.

Many companies that offer ETFs to the open public are large financial
institutions that will invariably use portfolio management systems e.g.
computer-based decision support to assist in construction of (tracking)
portfolios (Xidonas et al., 2009). In particular, optimization-based deci-
sion support can be even more relevant for portfolio optimization where
in addition to database and statistical modules, an optimization module
is present that contains mathematical models and algorithms (Beraldi
et al., 2011). But a central challenge for any optimization-based decision
support is to have mathematical models that not only can track a given
benchmark well, but that can be solved within a reasonable amount of
time (Steuer et al., 2011). In this paper, we consider linear mixed integer
optimization models for tracking broad market indices such as the S&P
500. The models we consider represent a cluster-based approach for
tracking based on a model in (Cornuejols and Tutuncu, 2007). The
cluster-based approach seeks to partition the assets in a benchmark
portfolio into disjoint clusters such that a single (representative) asset is
selected from each cluster. The set of representatives constitutes the
tracking portfolio. The clusters are grouped to maximize similarity
among assets in a cluster. The number of clusters to generate is a user
controlled parameter and is implemented by a cardinality constraint that
explicitly restricts the number of representatives to equal the user spec-
ified number of assets to hold. The presence of a cardinality constraint in
a model makes the model more difficult to solve. However, it is a useful
construct by which asset managers can explicitly control the size of
portfolios. There are other approaches for limiting the size of portfolios
that do not rely on a cardinality constraint (Bruni et al., 2015) but may
require information related to returns of assets for which the proposed
models in this paper do not rely on.

Any quantity can be used to represent similarity as long as the simi-
larity of an asset with itself is 1 and the similarity of two different assets
are less than or equal to one where the similarity of two different assets
are larger (closer to 1) if they are more similar. Thus, a measure of
similarity can be represented by correlations between returns of pairs of
assets. There are many well established methods to estimate statistical
correlation andmakes it a practical choice as a measure of similarity. One
of the advantages of the cluster-based models is that they only require
information about similarity whereas most tracking models e.g. those
that use tracking error require information about expected returns in
addition to correlation estimations.

However, a tracking strategy based only on clustering may produce a
tracking portfolio that tracks a benchmark portfolio well in terms of re-
turn, but could produce an insufficiently diverse portfolio when tracking
a broad market index such as the S&P 500 thereby increasing the risk of
the tracking portfolio. A market index such as the S&P 500 consists of
approximately 500 large cap stocks from 10 different economic sectors
such as energy, information technology, consumer discretionary, con-
sumer staples, materials, financial, utilities, industrials, telecommunica-
tion and services, and health care. The sectors represent the broad and
diverse economy of the United States. A pure clustering solution may
result in concentration of assets into just a few sectors. As such, we
consider constraints to ensure that a tracking portfolio for the S&P 500
contains reasonable representation from each sector. We also consider
some additional important constraints that aim to control transaction
costs such as buy-in thresholds and turnover constraints see (Zenios,
2007). Buy-in threshold constraints ensure that assets selected will have
weights that are not unrealistically small and turnover constraints ensure
that the tracking portfolio does not deviate excessively from a current
tracking portfolio.

The main contribution of the paper is the development of a sector
constrained linear clustering approach for tracking the S&P 500 with
buy-in thresholds using the base model in (Cornuejols and Tutuncu,
2007). However, the addition of these elements is non-trivial as the
resulting models are more difficult to solve than the base model. A
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secondary contribution is the development of Lagrangian and
Semi-Lagrangian relaxation approaches for computing near optimal so-
lutions to these models. The models we propose are linear integer pro-
gramming models. Recently, there have emerged several mixed-integer
linear models related to tracking an index see (Guastaroba and Speranza,
2012), (Filippi et al., 2016), and (Mezali and Beasley, 2014) and related
to constructions of ETFs (Valle et al., 2015). The main differences in the
work in this paper are that (1) the use of the cluster-based approach will
not require asset return information directly in the models and (2) the
cluster-model has explicit additional (e.g. in addition to cardinality re-
strictions) diversification control through sector constraints. Also, the
solution approach is based on Lagrangian relaxation. We believe the
models proposed in this paper are the first constrained cluster-based
approaches for tracking an index portfolio.

The rest of the paper is organized as follows: Section 2 briefly surveys
the literature on index tracking. In Section 3 we formulate the index
tracking models with sector limit and other practical constraints. In
Section 4 we develop the Lagrangian relaxation-based methods for the
models. In Section 5 computational results are given and we conclude the
paper in Section 6.

2. Literature review for index tracking

A common approach to the index tracking problem is to formulate it
as an integer optimization problem. One of the major challenges is to deal
with the cardinality constraint and a diversity of algorithmic methods
ranging from evolutionary heuristics to methods based on branch-and-
bound have been considered to solve models with cardinality re-
strictions. Beasley et al. (2003) consider a general non-linear tracking
model with transaction costs and cardinality constraint and solve it using
evolutionary heuristics in testing five major markets in the world. Bert-
simas et al. (1999) consider a mixed integer program to construct a
portfolio to track a given benchmark portfolio with the aim of having
fewer stocks with turnover and transaction costs. Coleman et al. (2006)
minimize tracking error in the index tracking problem with cardinality
constraints using a graduated non-convexity algorithm to satisfy the
cardinality restriction. Jansen and Van Dijk, 2002convert the cardinality
constraint into a continuous non-convex power function which results in
better portfolio weights with lower tracking errors through diversifying
the allocation into small stocks. Oh et al. (2005) consider genetic algo-
rithms to generate the optimal weights for selected stocks to track a
benchmark (where the tracking portfolio has strictly fewer assets) where
first stocks are distributed into the sectors with larger market capitali-
zation. Ruiz-Torrubiano and Su�arez (2009) apply a hybrid approach that
uses a genetic algorithm to select the assets that track different market
indices with fewer assets and use quadratic programming to determine
the weights of the assets; other practical constraints such as transaction
cost are not included in their model. Stoyan and Kwon (2010) consider a
two-stage stochastic mixed integer programming model with several
discrete choice constraints such as buy-in thresholds, cardinality con-
straints, as well as round lots to track the Toronto Stock Exchange (TSX).
Lejeune and Samatlõ-Paç, 2013 consider a chance constrained stochastic
programming formulation used for the risk averse indexing problemwith
cardinality constraints and develop an associated outer approximation
method. Cornuejols and Tutuncu (2007) consider an index tracking
model which maximizes similarity between selected assets and the assets
of the target index. The model represents a clustering-based approach for
constructing a tracking portfolio. Chen and Kwon (2012) consider a
robust version of the model in Cornuejols and Tutuncu (2007). Canakgoz
and Beasley (2009) consider an enhanced index tracking problem via a
mixed integer programwhere the objective is to allow outperformance of
a benchmark, the model includes transaction cost and is tested on eight
large market indices. Bruni et al. (2015) consider another approach for
enhanced indexation based on bi-objective linear programming and a
linear risk-return model where the number of securities is limited by
requiring that a portfolio have a certain level of return. This approach
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could easily be used for index tracking as well as enhanced indexation.
Chavez-Bedoya and Birge (2014) consider a multi-objective non-linear
programming approach applied for enhanced indexation that de-
composes the variance of the tracking error of the portfolio so that a
model is solved with fewer variables. Gaivoronski et al. (2005) consider
different types of risk measurement for index tracking ranging from
mean-variance and conditional value at risk (CVaR) models to track with
fewer assets.

Most models described above require estimates of expected price or
return of assets. In general, it is difficult to estimate expected returns
accurately and portfolio optimization models can be sensitive to esti-
mation errors of returns see (Chopra and Ziemba, 1993) and often they
maximize the errors found in estimates see (Michaud, 1989). In the next
section we develop models for index tracking which do not require ex-
pected return estimates, but only require information about similarity
e.g. correlation between the returns of assets.

3. Model formulations

3.1. Basic cluster-based index tracking model

We adopt and describe the basic index tracking model in (Cornuejols
and Tutuncu, 2007). Suppose the target portfolio has n securities. The
model seeks to partition the n securities of the target portfolio into q
disjoint groups (clusters) of securities where securities in a group are the
most “similar” to each other. Then, the model will select a “representa-
tive” from each group. The q representatives will constitute the
tracking portfolio.

Let ρij represent the correlation (similarity) between security i and
security j and let q denote the size of tracking portfolio where q < n. For
i; j ¼ 1;⋯; n let xij represent whether stock j is a representative of stock i
where xij is 1 if j is chosen as a representative for i or 0 otherwise. For j ¼
1;⋯; n let yj represent the selection of a security to be part of the tracking
portfolio where yj is 1 if security j is selected or 0 otherwise. Then, the
problem of creating a tracking portfolio can be formulated as follows:

max
Xn
i¼1

Xn
j¼1

ρijxij (1.1)

s:t:
Xn
j¼1

yj ¼ q (1.2)

Xn
j¼1

xij ¼ 1; ∀i ¼ 1;⋯; n (1.3)

xij � yj; ∀i ¼ 1;⋯; n; j ¼ 1;⋯; n (1.4)

xij; yj 2 f0; 1g (1.5)

The model above will be referred to as model (1). The objective is to
select securities so that total similarity of all groups is maximized. The
first constraint enforces that the tracking portfolio will have exactly q
securities and is called a cardinality constraint. The second constraint
ensures that each security has exactly one representative in the portfolio.
The third constraint prohibits a security to be a representative of any
security if it is not selected to be part of the tracking portfolio.

The model above only selects securities for the tracking portfolio, but
once the model is solved the investment weight for each selected security
expressed as proportion of total investment can be calculated. In partic-
ular, a weight wjcan be calculated for each selected asset j using total
market value of all securities in the group that security j represents
divided by the total market value of all securities in the target portfolio
(index), i.e.,wj ¼

P
iVixij=

P
iVi. For example, if stock 1 represents stock 2

and 3 in the portfolio, we sum the market values of stock 1, 2 and 3, and
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then divide the sum by the market value of the n securities in the target
portfolio. The weight for security 1 in the tracking portfolio would be
positive assuming that all securities have positive prices and the weights
for securities 2 and 3 would be set to 0 as they would not be in the
tracking portfolio. This follows the capitalization-based weighting that is
found in the S&P 500 and other major indices. It should be noted that the
models presented in this paper seek to track and not outperform the S&P
500 and so this motivates the use of capitalization-style weightings for
the assets selected by the models.

The clustering based model utilizes only linear constraints and
therefore is a pure 0–1 linear integer program. The quality of the tracking
portfolio generated by the model is measured ex-post i.e. tracking error
and metrics to measure closeness to the benchmark index portfolio are
computed after the tracking portfolio is generated. An alternative would
be to explicitly have tracking error minimized as the objective in a
tracking model. This has been a popular approach in the practice and
literature see (Jorion, 2003). However, this would create a non-linearity
in the objective as the variance of the difference of the returns of the
tracking and benchmark portfolios would need to be minimized and in
conjunction with cardinality constraint requirements would result in a
quadratic non-linear integer program which is known to be very chal-
lenging to solve see (Bertsimas and Shioda, 2009; Pardalos and Vava-
sis, 1991).

Model (1) has been shown in Chen and Kwon (2012) to track a
benchmark portfolio (S&P 100) well where the number of securities in
the benchmark portfolio is n ¼ 100. Instances of model (1) were able to
be solved adequately with exact methods. However, there are several
important practical elements that have not been considered. First, model
(1) above lacks transactions costs. It will be most likely in practice that
some tracking portfolio is already existing. It will be important to make
sure that a new tracking portfolio is not too different from the currently
existing one as substantial differences will result in higher turnover and
thus higher transactions costs. Model (1) will be extended to have turn-
over constraints that limit transaction costs. Further, tracking portfolios
with small positions are also limited by incorporating buy-in thresholds
in model (1).

Second, the tracking portfolio generated from model (1) may track a
benchmark well in terms of return, but the portfolio itself may be
insufficiently diversified as there is no constraints that limits portfolio
risk. This is an important issue when tracking market indices such as the
S&P 500 as any tracking portfolio should include securities across the 10
different sectors (Consumer Discretionary, Consumer Staples, Energy,
Financials, Health Care, Industrials, Information Technology, Materials,
Telecommunications Services, and Utilities) that comprise a market
index. Model (1) can be shown to produce tracking portfolios with se-
curities from only a few e.g. 2 or 3 sectors. This would be problematic for
most portfolio managers concerned about risk and diversification. To this
end, constraints that ensure sector diversification will be incorporated in
model (1).
3.2. Model with buy-in threshold and turnover constraints

We now consider the addition of buy-in threshold and turnover
constraints in model (1). The resulting model is given in the following
formulation:

max
Xn
i¼1

Xn
j¼1

ρijxij (2–1.1)

s:t:
Xn
j¼1

xij ¼ 1; ∀i ¼ 1;⋯; n Assignment (2–1.2)

xij � yj; ∀i; j ¼ 1;⋯; n (2–1.3)
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Xn
j¼1

yj ¼ q (2–1.4)

ljyj � wj � ujyj; ∀j ¼ 1;⋯; n Buy� in (2–1.5)

wj ¼
Xn
i¼1

Vixij
.X

i

Vi ∀j ¼ 1;⋯; n (2–1.6)

Xn
j¼1

���w0
j � wj

���α � γ Transaction� Cost (2–1.7)

xij; yj 2 f0; 1g; ∀i; j ¼ 1;⋯; n (2–1.8)

The model above will be referred to as model (2-1) and includes
decision variables and parameters of model (1), but now has the
following additional parameters: αis a proportional transaction cost, γis
the limit on transaction cost, Vi denotes the market capitalization of stock
i at current time, w0

j denotes the proportion of stock j in current portfolio.
In addition, model (2-1) has the variable wj denoting the proportion of
wealth invested in stock j for j ¼ 1, …,n.

The buy-in threshold constraints set the weight of a stock to beP
iVixij=

P
iVi which is the standardmarket capitalization based weight of

assets in indices such as the S&P 500 and is set to 0 if asset j is not
selected. If asset j is selected, then the weight for asset jmust be between
the prescribed lower and upper bounds lj and uj, respectively. The

transaction cost constraint,
���w0

j � wj

��� denotes the turnover of stock j from

buying or selling and the cost of turnover of an asset j is proportional to

the amount of turnover given by
���w0

j � wj

���α. The transaction constraint

limits the total proportional turnover (transaction) cost to γ.
The absolute value terms in transaction cost constraint can be

removed by introducing auxiliary variables zj, after which the model (2-
1) becomes equivalent to the following model which we refer to as
model (2):

max
Xn
i¼1

Xn
j¼1

ρijxij (2–2.1)

s:t: ð2� 1:2Þ � ð2� 1:6Þ; ð2� 1:8Þ (2–2.2)

Pn
j¼1

zj � γ

α

zj � w0
j � wj ∀j ¼ 1;⋯; n

zj � �
�
w0

j � wj

�
∀j ¼ 1;⋯; n

zj � 0 ∀j ¼ 1;⋯; n

9>>>>>>>>=
>>>>>>>>;
Transaction� Cost (2–2.3)

However, computational experiments in section 5 show that optimal
tracking portfolios from models (1) and (2) are often concentrated in a
few sectors which may result in high portfolio variance or lack of
diversification. Therefore, constraints that impose diversification in a
natural way are considered in section 3.3.
3.3. Basic model with sector limits

For simplicity of exposition, we first consider diversification (sector
limit) constraints for model (1) and then consider the addition of these
constraints to model (2). The idea is to classify assets in a tracking model
according to what sector an asset belongs to. For example, in the S&P 500
index the constituent assets are classified as belonging to one of 10 sec-
tors collectively representing the broad economy of the United States.
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In general, we assume that the benchmark index consists of K sectors.
Let xijk equal 1 if stock j represents stock i in sector k, 0 otherwise. yjk is
equal to 1 if stock j from sector k is selected to the tracking portfolio from,
0 otherwise. jKj is the number of sectors, and nk denotes the number of
assets (stocks) in sector k.

The idea of the sector constrained model is to ensure that there is
sufficient investment across all sectors by creating sub-portfolios for each
sector where each sub-portfolio is sought that maximizes similarity of the
sub-portfolio with respect to its sector. Let ρijk denote the similarity be-
tween assets i and j in sector k. Δkand ∇k denote the lower and upper
bounds on the cardinality of the sub-portfolio from sector k. In our
computation we set Δk and ∇k to 0 and the cardinality of the sector the
asset belongs to, respectively. qk denotes the sub-portfolio size of sector k
and q denotes total portfolio size. Then, model (1) modified for sector
constraints is as follows which we refer to as model (3):

max
XjKj
k¼1

Xnk
i¼1

Xnk
j¼1

ρijkxijk (3–1.1)

s:t:
Xnk
j¼1

yjk ¼ qk ∀k ¼ 1;…; jKj (3–1.2)

Δk � qk � ∇k ∀k ¼ 1;…; jKj (3–1.3)

XjKj
k¼1

qk ¼ q (3–1.4)

Xnk
j ¼1

xijk ¼ 1 ∀i ¼ 1;…; nk; ∀k ¼ 1;…; jKj (3–1.5)

xijk � yjk ∀i ¼ 1;…; nk ; ∀j ¼ 1;…; nk ; ∀k ¼ 1;…; jKj (3–1.6)

xijk ; yjk 2 f0; 1g ∀i ¼ 1;…; nk; ∀j ¼ 1;…; nk; ∀k ¼ 1;…; jKj (3–1.7)

3.4. The model with trading and sector diversification constraints

We now consider a comprehensive version of a cluster-based model
for tracking, calledmodel (4), that includes the buy-in thresholds, trading
constraints, and the sector diversification constraints as seen in models
(2) and (3).

max
XjKj
k¼1

Xnk
i¼1

Xnk
j¼1

ρijkxijk (4–1.1)

s:t:
Xnk
j¼1

xijk ¼ 1; ∀ i ¼ 1;…; nk; ∀ k ¼ 1;⋯; jKj Assignment (4–1.2)

Pnk
j¼1

yjk ¼ qk; ∀k ¼ 1;⋯; jKj
Δk � qk � ∇k ∀k ¼ 1;⋯; jKjPjKj
k¼1

qk ¼ q

9>>>>=
>>>>;
Cardinality (4–1.3)

xijk � yjk ∀i ¼ 1;⋯; nk; j ¼ 1;⋯; nk; k ¼ 1;⋯; jKj (4–1.4)

ljkyjk � wjk � ujkyjk; ∀j ¼ 1;⋯; nk; ∀k ¼ 1;…; jKj Buy� in (4–1.5)

wjk ¼
Xnk
i¼1

Vikxijk

,Xn
i¼1

Vi; ∀j ¼ 1;…; nk; ∀k ¼ 1;…; jKj (4–1.6)



Table 1
Applicability of different models.

Models Suitable problem

Model
(1)

Construct the tracking portfolio via maximizing the co-movement between
the target and its subset. Does not require an existing tracking portfolio.

Model
(2)

Control the transaction cost from rebalancing a current portfolio to the new
tracking portfolio from model (1). It can be used to restrict and reduce the
operational cost for rebalancing the existing portfolio.

Model
(3)

Force the allocation of tracking portfolio from model (1) to distribute into
different sectors so that portfolio risk can be reduced. It is an alternative tool
for a risk-averse investor.

Model
(4)

The portfolio aims to control both risk and transaction cost, therefore it is
suitable for rebalancing an existing tracking portfolio with a large number of
sectors.

Table 2
Model test by Gurobi.

n q ¼ 10

Zmax

model (1) model (2) model (3) model (4)

100 52.0822 46.9684 44.3890 40.0673
300 125.9684 118.1528 119.8971 104.0347
500 215.8263 209.2602 Out of memory Out of memory
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XjKj
k¼1

Xnk
j¼1

�����w0
jk � wjk

�����α � γ Transaction� Cost (4–1.7)

xijk; yjk 2 f0; 1g ∀i ¼ 1;…; nk; ∀j ¼ 1;…; nk ; ∀k ¼ 1;…; jKj
(4–1.8)

The parameter w0
jk denotes the initial proportion of wealth invested in

stock j (from sector k) which is needed when considering transaction
costs (turnover) in the presence of sector constraints and the decision
variable wjk denotes the proportion of wealth invested in stock j (from
sector k). The absolute values that appear in the turnover constraints can
be removed by introducing auxiliary continuous variables zjk that rep-
resents the turnover amount for asset j (from sector k) and pk which
represents the aggregate turnover of assets in sector k to get the following
constraints for turnover:

Pnk
j¼1

zjk ¼ pk ∀k ¼ 1;⋯; jKj

PjKj
k¼1

pk � γ

α

zjk � w0
jk � wjk ; ∀j ¼ 1;⋯; nk; ∀k ¼ 1;⋯; jKj

zjk � �
�
w0

jk � wjk

�
; ∀j ¼ 1;⋯; nk ; ∀k ¼ 1;⋯; jKj

zjk � 0; ∀j ¼ 1;⋯; nk; ∀k ¼ 1;⋯; jKj

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

Transaction

� Cost

The applicability of the proposed models (1), (2), (3), and (4) can be
seen in Table 1.
3.5. Tractability of the cluster-based models

The size of model (2) is larger than models (1), (3), and (4) in terms of
the number of variables and constraints. However, computational results
indicate that it is the presence of the cardinality constraint that makes
computation of solutions most challenging.

We solve instances of each of these models using the commercial
solver Gurobi on a 1.58 GHz PC with 2GB of RAM. Random instances of
the tracking problems were generated where for each instance q assets
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will be selected from a benchmark portfolio of n assets where n is chosen
as 100, 200, and 500. We randomly generated multivariate normal dis-
tributions for different n through the mvnrnd function in MATLAB, and
calculated the associated correlations ρij. Computational results are pre-
sented in Table 2. Each row in Table 2 is for an instance of n assets.
Moving across each row from left to right we see that as more constraints
are incorporated into model (1), the objective values decreases. Moving
down each column we see that instances with larger n have better
objective values for each type of model. Gurobi cannot solve models (3)
and (4) when n ¼ 500. This motivates the development of algorithms for
model (4) so that quality solutions for instances with n ¼ 500 are
possible. Important and popular market indices such as the S&P 500 have
500 assets and so it will be critical to have methods to deal with indices of
this size.

4. Lagrangian Relaxation algorithms

We present both Lagrangian relaxation and Semi-Lagrangian relaxa-
tion methods for (4). Hard constraints of (4) are identified and relaxed by
putting these constraints in the objective. The resulting problem is called
the Lagrangian relaxation and represents an upper bound on the optimal
solution of (4) see (Cornuejols et al., 1977; Fisher, 1981; Geoffrion &
Bride, 1978; Geoffrion, 2010). In particular, two constraints in model (4)PjKj

k¼1qk ¼ q and
PjKj

k¼1pk � γ
α, can be put into the objective function by

using the Lagrange multipliers λ and μ, respectively. Then a Lagrangian
objective function can be derived as follows:

Lðx; y; z; λ; μÞ ¼ max
ðx;y;zÞ

XjKj
k¼1

Xnk
i¼1

Xnk
j¼1

ρijkxijk � λ

 XjKj
k¼1

qk � q

!
� μ

 XjKj
k¼1

pk

� γ

α

!

¼ max
ðx;y;zÞ

XjKj
k¼1

"Xnk
i¼1

Xnk
j¼1

ρijkxijk � λqk � μpk

#
þ λqþ μ

γ

α

¼
XjKj
k¼1

max
ðx;y;zÞ

"Xnk
i¼1

Xnk
j¼1

ρijkxijk � λqk � μpk

#
þ λqþ μ

γ

α

Then for any sector k, the associated kth Lagrangian sub-problem
(L) is:

max
ðx;y;qk ;pk Þ

Ok ¼
Xnk
i

Xnk
j

ρijkxijk � λqk � μpk (L.1)

s:t: ð4� 1:2Þ; ð4� 1:4Þ; ð4� 1:5Þ (L.2)

Pnk
j¼1

yjk ¼ qk ∀k ¼ 1;⋯; jKj
Δk � qk � ∇k ∀k ¼ 1;⋯; jKj

9=
;Cardinality (L.3)

wjk ¼
Xnk
i¼1

Vikxijk

,Xn
i¼1

Vi; ∀j ¼ 1;⋯; nk; ∀k ¼ 1;⋯; jKj
Pnk
j¼1

zjk ¼ pk ∀k ¼ 1;⋯; jKj
zjk � w0

jk � wjk; ∀j ¼ 1;⋯; nk; ∀k ¼ 1;⋯; jKj
zjk � �

�
w0

jk � wjk

�
; ∀j ¼ 1;⋯; nk; ∀k ¼ 1;⋯; jKj

9>>>>>>>=
>>>>>>>;

Transaction
cost

(L.4)

xijk ; yjk 2 f0; 1g; zjk � 0; ∀i; j ¼ 1;⋯; nk; ∀k ¼ 1;⋯; jKj (L.5)

Solving (L) is easier than solving problem (4) since the size of the sub-
problems is much smaller than the original problem and each of them can
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be solved to optimality by using a commercial solver. After obtaining all
optimal sub-objectives, we then simply calculate the Lagrangian function
by adding the fixed term λqþ μγ=α for the given λand μ.

Then, the Lagrangian dual problem is min
ðλ2R;μ�0Þ

Lðx; y; z; λ; μÞ, whose

optimal solution will provide the lowest upper bound for problem (4).
The Lagrangian dual will be solved with a sub-gradient method with
heuristics for feasibility. This forms the basis of the Lagrangian relaxation
algorithm for solving problem (4). We summarize the Lagrangian relax-
ation algorithm as follows:

In Step 1, Heuristic I is applied to obtain a initial solution. If the so-
lution is infeasible, a more sophisticated heuristic (Heuristic II) is applied
227
to satisfy the global constraints,
PjKj

k¼1qk ¼ q and
PjKj

k¼1pk � γ
α, and the

associated lower bound can be updated.
Let nðkÞ denote the size of sector k. Let Q ¼ fqk; k ¼ 1;⋯; jKjg be a

vector that satisfies the cardinality constraint in model (4) and let Q' ¼
fqk '; k ¼ 1;⋯; jKjg be another vector that also satisfies the cardinality
constraint in model (4), but different than Q, QLR ¼ fqLRk ; k ¼ 1;⋯; jKjg
be a vector satisfying the cardinality constraint in model (L). I, I ' and ILR

are the associated index sets of Q, Q' and QLR, respectively. We first
describe Heuristic I as follows:
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Step (0) in Heuristic I guarantees that a starting solution will satisfy
the transaction cost constraint by emphasizing the selection of assets with
larger market capitalization. For example, suppose V ¼
ð10000;100;10ÞT and associated w0

j ¼ ð0:9891;0:0099;0:0010ÞT , if the
first asset is not selected to the tracking portfolio, the turnover weight is
98.91% and is much larger than the maximal turnover weights of the
second and third assets, so the turnover constraint will be easily violated.
We then generate the neighborhood of points around Q in Step (1) by
choosing pairs of sectors as indexed by the subsets I1, I2 and I3and
swapping pair-wise.

The philosophy behind the swap rules is to generate only a small size
N of neighborhood points such that swaps attempt to distribute the assets
to more sectors so that the objective value becomes better. For our
computations, N was set to 3. In Step (1), we sort I3 in increasing order
according to fQjjj 2 I3g. If elements in fQjjj 2 I3g are equal, we then sort
I3 in descending order according to fnðjÞjj 2 I3g. We always select sectors
228
at the front position of the index sets I1; I2; I3, and switch 2 assets between
pairs of these three groups in Step (1). If no improvement occurs at the
current iteration, the sectors with different positions in the index sets are
selected in the next iteration. For example, parallel swapping
steps include:

� Pick 2 assets from ath sector in I2 and move into bth sector in I3, this
generates a Q';

� Or pick 2 assets from ath sector in I2 andmove into bth sector in I1, this
generates a Q';

� Or pick 2 assets from ath sector in I2, add 1 asset to bth sector in I3 and
1 asset to cth sector in I1, this generates a Q0;

� Or pick 1 asset from ath sector in I2 and 1 asset from bth sector in I3,
add them to cth sector in I1, this generates a Q0.

Here the indices a, b, and c are generally set as small values since
switching other indices may be inefficient in improving the objective, e.g.
a, b, c are set no more than 2 in our computation.
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If the TC cannot be satisfied in Step (3) in Heuristic II, we adjust the
portfolio by capital weights in the same sector, and then adjust the
portfolio between the sectors in Step (4) if necessary. We selected the
sectors with large and small stocks because so as to not lose too much
objective value. Like in Heuristic I, we always go back to the assets that
have larger capital weights to adjust the constructed portfolio. It is a
trade-off between the Cardinality and Transaction Cost constraints. To
exchange the assets between sectors in Step (4) we adopt the Variable
Neighborhood Search (VNS) approach (Hansen and Mladenovi�c, 2001).
We describe the steps that we implemented: Step (1) Shaking - randomly

perturb some assets between θðvÞik ←0;∀k;∀i and minðQLRÞ from current
229
solution; Step (2) Local search - search the selected neighborhood region,
i.e. Q' vectors. Step (3) Move or not – if an improved solution obtained.
Our computational observation is that in most instances Step (3) and (4)
are needed to achieve a feasible solution for transaction cost constraints,
which indicates that the cardinality and TC constraints are a computa-
tional challenge to satisfy as they run in opposing directions.

In Step 2 in the LR algorithm, the step size is updated by the bi-section
method. The bi-section method for one dimensional searches in the sub-
gradient method has been widely used in LR algorithm see (Fisher, 1981;
A. M. Geoffrion, 2010). The details of the bi-section method that we used
for calculating the step size in Step 2 of LR algorithm are pre-
sented below.
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The step size is reduced by half in each iteration since the dual var-
iables can be quickly updated, so we embed bi-section search into the LR
algorithms. The initial σ we set as 20 in our calculation. The norm is step
(2) is a Euclidean norm of the vector consisting of the two sub-gradients.

The LR method cannot always produce small gaps, but with the
heuristics above always generate a feasible solution. One possible
extension of the LR algorithm to generate tighter bounds is Semi-
Lagrangian Relaxation (SLR), a LR approach that considers stricter
feasible regions and therefore gives the opportunity to obtain tighter
bounds. Due to the decomposition requirement in the main LR algorithm
structure, the global constraints cannot be returned into the constraint
set. However, other types of constraint can be relaxed and then returned
to the constraint set to partially satisfy the SLR framework. This pro-
cedure is called partial SLR see (Beltran et al., 2006) and suitable for our
problem. In particular, in addition to relaxing the assignment constraint,
we put the assignment constraint back and formulate the (partial SLR)
Lagrangian function as follows:
Lðx; y; z; λ; μ; θÞ ¼ max
ðx;y;z;qk ;pkÞ

XjKj
k¼1

Xnk
i¼1

Xnk
j¼1

ρijkxijk � λ

 XjKj
k¼1

qk � q

!
� μ

 XjKj
k¼1

¼
XjKj
k¼1

max
ðx;y;z;qk ;pk Þ
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Xnk
j¼1
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þ λqþ
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þ λ
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where Pijk ¼ ρijk � θik.
Then the associated kth Lagrangian sub-problem can be formu-

lated by

max
ðx;y;z;qk ;pkÞ

Ok ¼
Xnk
i

Xnk
j

Pijkxijk � λqk � μpk þ
Xnk
i¼1

θik (SL.1)

s:t: ð4� 1:4Þ; ð4� 1:5Þ; ðL:3Þ; ðL:4Þ; ðL:5Þ (SL.2)

Xnk
j¼1

xijk � 1; ∀i ¼ 1;⋯; nk; ∀k ¼ 1;⋯; jKj Relaxed Assignment (SL.3)

And the dual problem becomes min
ðλ2R;μ�0;θ�0Þ

Lðx; y; z; λ; μ; θÞ. Then, the LR

framework can be applied to the partial SLR construct. We present the
Semi-Lagrangian-based Algorithm as follows:
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The feasible lower bound is generated by the same heuristics as in the
LR algorithm. In Step 2, the sub-gradient method with bi-section search
was applied to calculate the dual variables ðλðvþ1Þ; μðvþ1Þ; θðvþ1ÞÞT for the
SLR algorithm. The computation is terminated if an optimal solution is
obtained in Step 1 or gap tolerance or maximum iteration number
reached in Step 3. As observed in (Beltran et al., 2006), partial SLR
cannot guarantee a tighter bound or small duality gaps. However, with
the embedded heuristics SLR generates a feasible solution and returns a
better bound than LR in some instances in our computation. We compare
the solutions resulting from LR and SLR methods in next section.

5. Computational results: tracking the S&P500

In this section we give the computational results from using the LR
and SLR methods to solve model (4). The S&P 500 index is used as the
target benchmark.
5.1. Parameter estimation

To generate the correlationmatrix ρij, we collected the historical price
information of all components of S&P500, and calculated the daily
returns by rit ¼ ðPit � Pi;t�1Þ=Pi;t�1, where Pit ;Pi;t�1 are the adjusted
231
closing prices at time t and t � 1. Then daily returns were used to
calculate the mean returns of assets and covariance matrix between
different assets:

ri ¼ 1
T

XT

t¼1
rit; covij ¼ 1

T

XT

t¼1
ðrit � riÞ

�
rjt � rj

�
Here we use one year's daily return (T ¼ 252) to generate the cor-

relation matrix, i.e. ρij ¼ covij=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
covii*covjj

p
, for all models, and we

calculate the correlation matrices by using data from 4 time intervals
which were [2006 2007], [2007 2008], [2008 2009] and [2010 2011]
respectively. Some stocks in the S&P500 index may be replaced by some
other stocks outside of the index since they do not satisfy the selection
criteria of S&P500 in the designed time period, we retrieved the stocks
that were moved out into the designed intervals and the associated price
information. For example, ABK was replaced by LO in June 10, 2008, and
then we used the price of ABK rather than that of LO to calculate rit before
2008. Usually this replacement is rare and the components of S&P500 are
stable. We note that we use non-log returns in our computations whereas
most finance studies use log returns. It is reasonable in our setting to use
non-log returns as we are dealing with returns of the S&P which are often
negatively skewed whereas log returns are positively skewed.

According to Global Industry Classification Standard (GICS) Sector
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criterion, the components of S&P500 index are selected from 10 main
sectors in US market and we indicate sector 1–10 represent Consumer
Discretionary, Consumer Staples, Energy, Financials, Health Care, In-
dustrials, Information Technology, Materials, Telecommunications Ser-
vices, and Utilities in this research. The vector of sector sizes n(k) ¼ [82
41 41 81 51 62 70 29 8 35]T at the time of this research. We adjusted
the number of stocks I n each sector over the intervals if necessary and
computed the associated correlation matrix ρijk for the models.

We normalized the market value of each component to calculate the
component weight, and used these weights as previous proportion, i.e.
w0
j , for transaction cost constraint in model (2) and (4). All necessary data

were obtained from the Financial Research and Trading Lab at University
of Toronto. All tracking models were solved by Gurobi 4.5.1 with a
MATLAB interface. We initialize the Lagrangian multipliers ðλ0; μ0Þ0 ¼
ð1; 0Þ0 for LR and ðλ0; μ0; θÞ0 ¼ ð1; 0;0Þ0 for SLR, and set α ¼ 0.001,
γ ¼ 0.05, Δk ¼ 0, ∇k equals the maximum stock number of sector k,
ljk ¼ 0.001, ujk ¼ 1 and w0

jk set as normalized market capitalization of
component of S&P500 at sector k.
5.2. LR versus SLR

We computed solutions for model (4) over portfolio sizes ranging
from 10 to 350 in increments of 10 assets, the upper bound (UB)
decreased and the lower bound (LB) increased iteratively in the LR al-
gorithm. Fig. 1 depicts the computational comparison of the LR and
partial SLR methods, where the maximal gaps between the lower and
upper bound were 2.37% and 4.59%, respectively. Most of the gaps were
under 0.5%, especially in the interval, [50 200]. In some cases, SLR
returned a better bound and a smaller gap than LR (see q¼ 20, 80), and in
other cases SLR was worse than LR (see q ¼ 250). Therefore, we use a
partial SLR algorithm to approximate the optimal solution in the next
section since it returned better solutions compared with those by LR
method in the region q 2 ½10; 200�.
5.3. Comparison of different tracking models

We now solve the models (1), (2), (3), and (4) over various portfolio
sizes q and compare the associated portfolios by different models. The
experiments in this section are static in that experiments are done in-
sample and out-of-sample but at relatively few out-of-sample points
andwith no re-balancing and no periodic rolling updates of parameters in
the out-of-sample horizon. This type of out-of-sample experiment is
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relevant for construction of portfolios that are infrequently re-balanced
due to say avoidance of excessive transaction costs. Interesting results
include: (1) The computational results for all period intervals demon-
strate that without the sector limit constraint, the portfolio allocation are
concentrated in fewer sectors (see q ¼ 10, 30). This sector diversification
can explain the reason why the portfolio with sector limit has a lower
variance in the next section. (2) The model with sector limit generates
solutions that have constant sector weights regardless of size q of the
tracking portfolio. Although the investment in different sectors is limited
(Bertsimas and Shioda, 2009), the authors have not explored how to
decide the best sector investments. In this paper, our numerical results
shown that the optimal sector weights were consistent with the sector
weights of the target index.

Fig. 2 shows the norm value of the difference in the sector weights
between the tracking portfolios and target S&P500. “TC” in all figures
represents transaction cost and turnover constraints in model (2), and
“sector” in all figures refers to the sector limit constraints in model (3). It
is clear that when the sector limit constraint is considered, i.e. models (3)
and (4), the sector weight of the constructed portfolios was closer to the
S&P500 than the model without the sector limit constraint, i.e. model (1)
and (2). Fig. 2 was generated based on all computational results under
different q values from 10 to 100.

Fig. 3 illustrates the sector diversification process. Sizes q equal 10,
30, and 100 represent the low, medium and high density portfolios. For
a small portfolio size (q ¼ 10), the stocks only distribute in 5 sectors
when the sector limit constraint was not incorporated (models (1) and
(2)) while the stocks are distributed in 10 sectors if we considered sector
limits (model (3) and (4)). One major advantage of the sector limit
constraint is that the diversification in sectors can reduce the portfolio
risk. The sector limit constraint can induce the investment allocation
across 10 sectors, i.e. the maximal sector fraction without sector limit is
constantly larger than the fractions with sector limit. For instance,
people will invest 59.27% of budget using model (1) and 47.23% by
using model (2), the largest weight of their budget, to the sector of fi-
nancials if only transaction costs and buy-in threshold constraints were
incorporated. In contrast, the maximum sector weight is only 17.47%
for the sector of Information Technology by model (3-1) and 18.39% by
model (4-1).

5.3.1. Comparison of Performance across portfolio metrics
In this section we compare the performance of the portfolios con-

structed by the different tracking models. The performance metrics
include optimal objective values, portfolio return, portfolio variance,
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portfolio Sharpe ratio and tracking ratio. Intuitively, the objective
value is the first consideration of the comparison between different
models since it denotes the similarity of the constructed portfolio with
the original index that is tracked. The portfolio return is an important
aspect of the performance of the generated tracking portfolios, and the
portfolio variance is a prevalent risk measurement of the constructed
portfolios. The Sharpe ratio (Sharpe, 1994), or the information ratio,
which measures the risk/return efficiency of excess return is the third
comparison because it can describe the trade-off between the excess
return to the market and the associated portfolio risk. Finally, the
tracking ratio was used to compare the tracking quality of the portfolio
during different out-of-sample period under different restrictions.
Figs. 4–8 show the numerical results with respect to different portfolio
sizes q from 10 to 100 per 10 units for different time periods.

5.3.2. Comparison of tracking portfolio similarity
As shown in Fig. 4, the optimal objective value increased with

respect to portfolio size q. Model (1) gives the greatest objective value
while model (4) presents the smallest value, which is reasonable since
model (4) is the most constrained. The objective value of models with
sector limits are less than that without sector limits. For example, for
any specific q, the value of model (1) is larger than that of the model (3)
and the value of model (2) is larger than that of model (4). This is
obvious as more strict constraints are added into the underlying model.
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Compared with models (2) and (3), we can see that the sector limit
constraints affected the objective value more significantly than the
transaction costs and buy-in threshold constraints, i.e. the value of
model (3) decreased faster than value of model (2). One explanation is
that the sector limit constraint is a global restriction which dominates
the local constraints such as transaction costs. When the local con-
straints were incorporated, the objective value changed progressively
see Fig. 4. In contrast, the objective value changed dramatically with the
impact of the global constraint.

5.3.3. Comparison of tracking portfolio return
Fig. 5 illustrates the portfolio returns achieved by the different

models over different portfolio sizes. The straight line in each plot in
Fig. 5 indicates the yearly return of the S&P500. The main goal of the
tracking portfolio is to match the return and risk of the market index,
as can be seen from Fig. 5, the portfolio returns under different models
tend to mode closer to the return of the target when the portfolio size
became larger. For example, the returns with q ¼ 10 deviated further
from the straight line more than the returns when q ¼ 100 in 2008.
The reason is that when more stocks were allowed in the tracking
portfolio full replication could be closer to be achieved. In general, it is
seen from Fig. 5 that portfolios generated from model (3) with sector
limits and transaction costs generally performed very well e.g. domi-
nated or were close to returns from other portfolios for cardinality
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values 30 to 70. The exception was for the 2007 results where model
(3) was competitive with other models e.g. not too far below the return
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from other portfolios for cardinality sizes 30 to 50, but worse from 50
to 70. For cardinality values larger than 70 portfolios from model (2)
with transaction costs but no sector limit constraints generally domi-
nated other portfolios. An interesting observation is that the path of
model (2) matches the path of model (1) in every sub-figure, while the
lines of model (3) did not follow that of model (1). As mentioned, the
local constraints such as transaction costs may gradually affect the
solution structure with the changes in the portfolio size, so the path of
model (2) was close to path of the underlying model (1). On the other
hand, the global constraint such as sector limit may lead to a totally
different solution, which created different portfolio returns compared
with the returns from model (1).

5.3.4. Comparison of tracking portfolio variance
The portfolio variance under different models with respect to the

portfolio size is plotted in Fig. 6. The straight line indicates the yearly
variance of the S&P500. The smaller the value of the variance, the better.
Model (1) and (3) produced the upper bound and lower bound of the
variance plots. It can been seen from Fig. 6 that the variance of portfolios
from model (1) was 3–7 times higher than the variance values by the
model (3). It is also apparent from Fig. 6 that the portfolio variance from
portfolios generated by models with the sector limit constraint was less
than the variance from models without the sector limit constraint. In
summary, the sector constraints impose diversification by distributing
the limited number of the stocks into different independent sectors and
thereby reduces portfolio risk.

The portfolios generated by model (2) tended to perform worse than
the portfolios by model (3) in terms of the portfolio risk. It is not hard to
see that the portfolio variance can decrease when the sector limit
constraint is incorporated into model (2), i.e. the line of model (2) moved
down to the line of model (4) in 2008, 2009, and 2011.

Interestingly, the portfolio variance increased if the transaction costs
and buy-in threshold constraints were added into model (3). The reason
is that the solution structure of each sector sub-problem became worse
due to costly sector transactions that prevent more investments that
would reduce risk as the local constraints were incorporated, which in
the end results in the higher portfolio variance, i.e. the line of model (3)
moved up to the line of mode (4) for every sub-figure in Fig. 6.

5.3.5. Comparison of tracking portfolio Sharpe Ratio
The Sharpe ratio was calculated for portfolios generated from the four

models. The higher Sharpe ratio value, the better performance of a
portfolio. The straight line indicates the yearly Sharpe ratio of the
S&P500. From Fig. 7, we can see that the difference of the Sharpe Ratios
between model (3) and model (1) was larger than the difference of the
Sharpe Ratios betweenmodel (2) andmodel (1), which indicated that the
presence of the sector limit constraint improved the Sharp Ratios more
than the presence of the transaction costs and buy-in threshold con-
straints for the same underlying model. For example, for q ¼ 20 in 2007,
the Sharpe Ratio difference between model (3) and model (1) was 0.8,
but the Sharpe Ratio difference between model (2) and model (1) was
�0.5, which means the sector limit constraint increased the Sharp Ratio
of model (1) but the transaction costs and buy-in threshold constraints
decreased the Sharp Ratio more than the increase. All the Sharpe Ratio
values were negative in 2009when the financial market dropped sharply.
The Sharpe Ratio value of model (1) was close to the Sharpe Ratio value
of the target, and the model (3) returned most negative value. Overall,
from the Sharpe Ratio perspective the portfolios with the sector limit
constraint had out-performed the portfolios without the sector limit
constraint.

Next we calculate the Sharpe Ratio out-of-sample and compare the
difference between Sharpe ratios from in-samples and out-of-samples.
The periods of in-samples are the intervals of [2006 2007] and [2010
2011] and the associated out-of-samples are the daily returns in in-
tervals of 2007.01–2008.01 and 2011.01–2011.06. The numerical re-
sults are given in the following Tables 3 and 4 with respect to the
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portfolio size. The ‘diff’ columns are the difference of Sharpe ratios
between out-of-sample and in-sample values (Fig. 7), a positive number
indicates a portfolio that maintained good performance during the out-
of-sample periods, and a negative value means the portfolio constructed
had relative underperformance in the associated period without any
rebalancing.

From Table 3, we see that the Sharpe ratio values for out-of-sample by
models (3) and (4) are generally larger than those from models (1) and
(2). In terms of robustness of the Sharpe ratio testing, portfolios from
model (3) decreased the most (�0.9435 averagely) while those from
model (4) increased 14.64% on average. Overall, portfolios from model
(4) had the best performance for both in-sample and out-of-
samples testing.

Table 4 lists the Sharpe ratios from out-of-sample testing during the
2011.01–2011.06. We see that the average Sharpe ratio of portfolios
from model (4) and (2) are close to each other, but better than the
average values from model (3). Meanwhile the difference between
Sharpe ratio values of model (1) and (3) are negative, and model (3) has
the largest average difference. Here we point out that for some particular
data instances, transaction cost and turnover constraints can generate a
portfolio with good average performance (see model (2) performance in
Table 4) while for some other instances, models with sector limit con-
straints generate a better portfolio, e.g. the model (3) in Table 3. Model
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(4) generally had good out-of-sample performance as seen in Table 3 to
Table 4 since it incorporates both transaction cost and sector limit
constraint sets.

5.3.6. Comparison of tracking portfolio tracking ratio
Similar to the definition in (Cornuejols and Tutuncu, 2007), we

calculated the tracking ratio by following for-

mula:R0t ¼
Pn

i¼1
VitPn

i¼1
Vi0
=

Pq

j¼1
wjVjtPq

j¼1
wjVj0

; t ¼ 1;⋯;T, where
Pn

i¼1Vit=
Pn

i¼1Vi0 in-

dicates the target index's movement after investment,Pq
j¼1wjVjt=

Pq
j¼1wjVj0 denotes the portfolio's performance during the

out-of-sample period. The ideal tracking ratio,R0t, is 1, a higher value
over than 1 means underperformance with respect to the target index,
and a lower value less than 1 indicates excessive return. The straight line
indicates the portfolio perfectly tracked the market index, S&P500. The
out-of-sample periods were tested where the durations are 6 months and
12 months respectively, there was no rebalancing during the tracking
period after investment.

Fig. 8 (a) and Fig. 8 (b) displayed the out-of-sample tracking ratios for
four periods. As shown in Fig. 8 (a), the tracking portfolios might have
better tracking performance in the near future (6 months) than the longer
future (12 months). For example, all portfolios were superior to the
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market index during 2007.1–2007.6, i.e. all R0,6 < 1, while some port-
folios had under-performed the market during 2007.1–2007.12, i.e. all
R0,12 > 1. Another observation was that the models with the sector limit
constraint had a more stable performance than the models without sector
limit constraint.

5.3.7. Summary of static computational results
Taken together, the analysis from Figs. 4–8 provides important in-

sights into the portfolio performance under different restrictions under
static conditions i.e. in-sample and out-of-sample experiments with no re-
balancing and no periodic rolling updates of parameters in the out of
sample horizon. In particular, the sector limit constraint, as a global re-
striction, can induce generation of tracking portfolios that have better
variance and Sharpe ratios than portfolios generated without these extra
global constraints and can match the sector market capital weights of
indices more closely.

As can be seen, model (4) has minimal objective value as it includes
all local and global constraints. Model (1) achieved the best portfolio
returns, but it also has the worst portfolio variance. Model (2) gener-
ally had poor portfolio returns and variances, while model (3) and (4)
achieved good returns and variances, which indicates that the sector
limit constraint can improve the portfolio risk but without sacrificing
too much return. Model (3) had the best in-samples Sharpe ratios and
model (4) had the best Sharpe ratio in (non-rolling horizon) out-of-
236
sample testing. Model (1) and (2) have poor Sharpe ratios for both
in-sample and out of sample testing. With respect to the tracking ratio,
we rank the absolute difference between the value in bracket and 1
with the smaller the absolute value the better. We cannot determine
which model is the best since different sizes have different ranking
under different periods. Finally, it is clear that model (4) and (3) can
match the sector market capital weights better than the model (1)
and (2).
5.4. Rolling window out-of-sample experiments

Next, we change the static framework of the experimental setup to
study the relative performance of the different models over an extended
timeframe. The investment horizon for this experiment ranges from 2007
to 2011 for a total of five years. The portfolios are rebalanced on a
monthly basis, re-estimating the parameters at the start of each one-
month investment period. As before, we use the daily returns to esti-
mate the correlation matrix corresponding to the previous twelve months
before the start of each investment period.

The five year investment horizon introduced the additional
complexity of accounting for yearly changes to the constituents list of the
S&P 500 index. This was resolved by only including assets which
belonged to the S&P 500 during the entire investment horizon, reducing
the list of constituents to 380 stocks. Although this introduces a



Fig. 6. Comparison of Performance –portfolio variance.
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Fig. 7. Comparison of performance – Sharpe ratio.
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Fig. 8. (a): Comparison of Performance – Tracking Ratio of out-of-sample period (2007, 2008). (b): Comparison of Performance – Tracking Ratio of out-of-sample period (2009, 2011).
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Table 3
Sharpe ratio for out-of-sample period 2007.01–2008.01.

q Model (1) diff Model (2) diff Model (3) diff Model (4) Diff

10 �0.0250 �0.7426 0.3918 0.0661 0.5313 �0.7192 0.6134 �0.0018
20 0.2774 �0.5298 0.0885 �0.3244 0.2845 �1.1435 0.2849 �0.2021
30 0.4229 �0.3665 0.3495 0.0298 0.5334 �1.0802 0.6320 0.1325
40 0.4448 �0.3566 0.2209 �0.0858 0.4309 �1.1776 0.5143 0.1034
50 0.4548 �0.3350 0.0952 �0.1789 0.5605 �1.0033 0.5156 0.0960
60 0.1035 �0.6733 0.1558 �0.0871 0.5134 �0.8991 0.6108 0.3383
70 0.0656 �0.6649 0.1160 �0.1012 0.5741 �0.7875 0.4562 0.2166
80 0.0504 �0.6702 0.1373 �0.1493 0.4573 �0.9863 0.5284 0.1433
90 0.0612 �0.6650 0.2083 �0.0841 0.4384 �0.8436 0.6103 0.2578
100 0.1295 �0.6611 0.1722 �0.1163 0.4708 �0.7944 0.6494 0.3797
Average 0.1985 �0.5665 0.1935 �0.1031 0.4795 �0.9435 0.5415 0.1464

Table 4
Sharpe ratio for out-of-samples 2011.01–2011.06.

q Model (1) diff Model (2) diff Model (3) diff Model (4) diff

10 0.7713 0.0471 1.1298 0.6921 0.4465 �1.5184 0.9845 0.2717
20 0.8116 0.0914 1.1298 0.8110 0.5405 �1.3674 0.9125 0.3467
30 0.7792 0.1156 0.6981 0.3241 0.6030 �1.2403 0.6983 0.2933
40 0.5514 �0.1996 0.8016 0.3052 0.4781 �1.7064 0.7322 0.2561
50 0.8077 0.0491 0.7605 0.3598 0.4650 �1.5620 0.7193 0.2033
60 0.6495 �0.0487 0.6087 0.0183 0.7241 �1.1084 0.6824 0.1689
70 0.6209 �0.1324 0.5740 0.0173 0.9563 �0.9827 0.9863 0.5382
80 0.6763 �0.0793 0.6740 0.1751 0.6803 �1.1866 0.6926 0.2706
90 0.6638 �0.1852 0.6674 0.1392 0.6685 �1.3072 0.6651 0.1645
100 0.6988 �0.1445 0.6934 0.1597 0.6958 �1.3081 0.7062 0.2426
Average 0.7030 �0.0487 0.7737 0.3002 0.6258 �1.3288 0.7779 0.2756

Table 5
Average yearly returns.

q Yearly Returns

S&P 500 Model (1) Model (2) Model (3) Model (4)

30 �0.032 �0.0367 �0.0332 �0.037 �0.0259
40 �0.032 �0.0388 �0.0273 �0.0269 �0.0176
50 �0.032 �0.012 �0.012 �0.034 �0.0116
60 �0.032 �0.0157 �0.0169 �0.0114 �0.0131
70 �0.032 �0.0119 �0.0198 �0.0189 �0.0145
80 �0.032 �0.0132 �0.0145 �0.0095 �0.0105
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survivorship bias to the experiment, we expect the bias to have a similar
effect on all the models under consideration. This, in turn, should still
provide valuable relative results.

The portfolio metrics were computed as before but with the addi-
tional dimension of time. Thus, the experiment was performed with a
reduced set of cardinality values, ranging only from 30 to 80, to avoid
overwhelming the reader with results. Similar to the previous experi-
ment, the portfolio metrics consist of portfolio return, portfolio standard
deviation, Sharpe ratio, tracking error and tracking ratio.

Table 5 gives the average yearly return of the S&P 500 and all models.
It can be seen that model (4) has the best returns for cardinality sizes 30
to 50 and model (4) is the only model that outperforms the S&P 500
across all cardinality sizes.

The yearly Sharpe ratios as seen in Fig. 9 indicate that models (1) thru
(4) generally had better yearly Shape ratios than the S&P 500 during the
financial crisis of 2007–2008 and all models were very competitive with
the S&P 500 during the aftermath (recovery) from 2009 to 2011, but
there was no clear model or strategy including the S&P 500 that domi-
nated all others on a yearly basis.

The results in Table 6 show that model (4) has better Sharpe ratios
over the entire 5 year period than most other models at the various
cardinalities and dominated the S&P 500 over all specified cardinalities.

Table 7 shows that the average daily standard deviations of all models
were higher than the S&P 500 which is not surprising considering that all
models had at most 80 assets, but there is no one model that dominates
240
other models.
All models give larger tracking error during the time of the financial

crisis e.g. 2008–2009. As seen in Fig. 10. Model (4) exhibits less vari-
ability in tracking error while model (3) exhibits more variability for
cardinalities 30 to 60. For larger cardinalities, model (1) exhibits more
variability than other models. This highlights that it may be insufficient
to just have larger cardinality in portfolios to reduce tracking error and
that sector constraints are helpful in reducing tracking errors.

Table 8 shows that the average daily tracking errors of the models are
small and that as more assets are allowed tracking error improves across
all models.

Table 9 shows that all models have average tracking ratios near 1
indicating that all models are generating portfolios with value similar to
that of the S&P 500.

5.4.1. Summary of dynamic computational experiments
From Tables 5–9 and Figs. 9 and 10 it is seen that models with the

sector constraint, especially model (4), performed well over the various
performance metrics. These models had good Sharpe Ratio performance
although they could not dominate the S&P at every instance but gener-
ally had higher returns than the S&P 500 but with higher volatility. All
models had small tracking errors and tracking ratios near 1. In summary,
the models with sector constraints exhibited similar advantages as in the
static case in section 5.3.

6. Conclusions

In this work we have investigated portfolio tracking models that are
linear mixed integer optimization problems that represent a constrained
clustering approach for tracking a benchmark index, in particular the
S&P 500. Motivated by real investment cases transaction costs and sector
limits constraints were added to a base clustering model. We then
developed both a Lagrangian Relaxation (LR) algorithm and the partial
Semi-Lagrangian Relaxation (SLR) algorithm to solve the tracking
problem with constraints. Numerical results have shown that both of the
methods can achieve high quality solutions. Through the computational
results we observe: (1) the sector limit constraint can diversify stocks into



Fig. 9. Yearly Sharpe ratios.

Table 6
Sharpe Ratios for single 5 year period from 2007–2011.

q Sharpe Ratio

S&P 500 Model (1) Model (2) Model (3) Model (4)

30 �0.0057 �0.00606 �0.00531 �0.00598 �0.00373
40 �0.0057 �0.00662 �0.00408 �0.00383 �0.00209
50 �0.0057 �0.00079 �0.00091 �0.00567 �0.0008
60 �0.0057 �0.00176 �0.00193 �0.00079 �0.00114
70 �0.0057 �0.00089 �0.00266 �0.00242 �0.00138
80 �0.0057 �0.00123 �0.00154 �0.00031 �0.00057

Table 7
Average standard deviation of daily returns over 2007–2011 horizon.

q Portfolio Standard Deviation

S&P 500 Model (1) Model (2) Model (3) Model (4)

30 0.01673 0.01964 0.01965 0.01981 0.01957
40 0.01673 0.01923 0.01905 0.0194 0.01931
50 0.01673 0.01904 0.01887 0.01923 0.01898
60 0.01673 0.01898 0.01871 0.01919 0.01866
70 0.01673 0.01881 0.01855 0.01888 0.01858
80 0.01673 0.01878 0.01816 0.01868 0.0184
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Fig. 10. Monthly tracking error.
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Table 8
Average daily tracking error over 2007–2011 period.

Q Average Tracking Error

Model (1) Model (2) Model (3) Model (4)

30 0.00474 0.00473 0.00487 0.00467
40 0.00429 0.00406 0.00443 0.0043
50 0.00402 0.00379 0.00422 0.00394
60 0.00393 0.0036 0.00409 0.00356
70 0.00373 0.00344 0.00373 0.00333
80 0.00368 0.00303 0.00345 0.00312

Table 9
Average monthly tracking ratios.

q Average Tracking Ratio

Model (1) Model (2) Model (3) Model (4)

30 1.00071 1.00036 1.00065 1.0000
40 1.00072 0.99955 0.99976 0.99893
50 0.99866 0.99856 1.00035 0.99858
60 0.9988 0.9990 0.99848 0.99868
70 0.99854 0.99928 0.9990 0.99897
80 0.99858 0.99864 0.99862 0.99867
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different sectors; (2) the optimal sector weights are consistent to the
sector weights of the target index if the sector limit constraint is incor-
porated; and (3) models with sector constraints achieved good out-of-
sample Sharpe Ratios and small tracking error.
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