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Summary

The exact response theory based on the Dissipation Function applies to general
dynamical systems. In recent years, it has offered excellent results in various
applications, from the field of non-equilibrium molecular dynamics to dynamical
systems relevant in biological context and beyond. In this thesis, we derive
its quantum translation. We first presented a brief summary of the most used
quantum response theories. In many quantum dynamics, it has not yet been
possible to overcome the perturbative approach, which is an approximation. Future
extensions of our work could prove important in this regard. Firstly, we applied
the quantization rule to the classical Dissipation Function. Then, we derived a
quantum expression for calculating the expectation value of the observables over
time, in a form analogous to that of the classical Dissipation Function response
theory. To do this, we worked in finite-dimensional Hilbert spaces, as in the rest
of the thesis. We tested the validity of the new formalism by applying it to qubit
systems, which are of fundamental importance in quantum mechanics and at the
basis of quantum computing. The dissipation operator used is not Hermitian. In
an attempt to make it so, we derived a second expression, equivalent to the first. In
addition to the Hermitian dissipation operator, the contribution of an antihermitian
operator also appears in this second expression. Next, we studied the role that
these dissipation operators have in the time evolution of the density operator. In
conclusion, we tried to exploit the new formalism to solve Lindblad equations,
which describe dissipative quantum dynamics, suggesting possible future extensions
for this work.

ii



Table of Contents

1 Response theories in statistical and quantum mechanics 1
1.1 Fundamentals of statistical and quantum mechanics . . . . . . . . . 3
1.2 Response theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.1 Quantum linear response theory . . . . . . . . . . . . . . . . 14
1.2.2 Beyond linear approximation . . . . . . . . . . . . . . . . . . 20
1.2.3 Fluctuation Theorems . . . . . . . . . . . . . . . . . . . . . 21
1.2.4 The classical Dissipation Function exact response theory . . 22

2 Quantum translation of the Dissipation Function response theory 27
2.1 Definition of the dissipation operator . . . . . . . . . . . . . . . . . 27
2.2 Derivation of the quantum exact response expression . . . . . . . . 33

3 Numerical tests for the quantum exact response expression 40
3.1 Applications to spin problems . . . . . . . . . . . . . . . . . . . . . 41
3.2 Qubits and Rabi oscillations . . . . . . . . . . . . . . . . . . . . . . 47

4 Generalizations and analysis of the dissipation operator 54
4.1 The Hermitian dissipation operator . . . . . . . . . . . . . . . . . . 54
4.2 Generic numerical tests . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Temporal evolution of ρ through the use of dissipation operators 66
5.1 Time evolution of the density operator ρ . . . . . . . . . . . . . . . 66
5.2 Time ordering and dissipation operator for the Von Neumann solution 69
5.3 Use of dissipation operators in time propagators . . . . . . . . . . . 76

6 Dissipation operator in dynamics of open quantum systems 81
6.1 Extension of the dissipation operator to Lindblad equations . . . . 83
6.2 Application to a Lindblad equation . . . . . . . . . . . . . . . . . . 87

7 Conclusion and future developments 93

A Matlab code for numerical tests 99

iii



B Matlab code: comparison with linear response 102

C Matlab code: application to the Lindblad equation 105

Bibliography 109

iv





Chapter 1

Response theories in
statistical and quantum
mechanics

Statistical mechanics is the branch of mathematical physics that uses statistics
and probability theory to study the mechanical and thermodynamic behaviour of
systems composed of a large number of particles. It was born at the end of the
XIX century thanks to the important contributions of its three founding fathers: L.
Boltzmann, J. C. Maxwell and J. W. Gibbs.
Nature is made up of different scales. Let us look at a drop of water, observing
more closely with the appropriate measurement systems, we discover a molecular
structure and then an atomic structure. Moving away, we can see a river, then the
earth and the solar system. Each scale has its own characteristics and a physical
theory that explains them. These theories are different from each other and, going
from large to small scales, we move from the theory of general relativity to classical
Hamiltonian mechanics to quantum mechanics. Keeping these considerations in
mind, we can understand the purpose for which statistical mechanics was born:
to provide an understanding of macroscopic, thermodynamic observables in terms
of the atoms at the microscopic scale, which obey the few fundamental laws of
mechanics. The revolutionary idea that led to its birth is to introduce the concept
of statistical ensemble, which is a large collection of virtual, independent copies of
the system in various microscopic states. In other words, the statistical ensemble
is a probability distribution over all possible microscopic states of the macroscopic
system. Measures of pressure, temperature, magnetic susceptibility always entail
an average of the sought quantity in macroscopic time intervals. If the system is at
thermodynamic equilibrium, the measurements of these macroscopic observables
are calculated with ensemble averages. The equivalence between these two types of
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Response theories in statistical and quantum mechanics

averages is guaranteed by the ergodic theory.
These are the initial foundations of statistical mechanics; from here numerous,
effective and beautiful extensions of the theory have been developed. However,
the theory of statistical physics in the years of its birth presented a series of
controversies, the predicted results were in disagreement with experimental data.
Subsequent discoveries in quantum physics resolved many of these controversies
and brought great improvements to the theory of statistical physics.

In the first quarter of the XX century, several experiments were carried out
which highlighted a series of inexplicable phenomena within the framework of
classical physics. Following experiments on black body radiation, Max Planck came
to state that the energy associated with electromagnetic radiation is transmitted
in discrete units, called ’Quanta’. The value E of an energy quantum depends
on the frequency ν of the radiation according to the formula E = hν, where h is
the Planck’s constant. Einstein managed to give a correct interpretation of the
photoelectric effect by explaining it with the use of quanta, later called photons.
The quantum nature of light was therefore revealed. Niels Bohr proposed an exact
atomic model including the energy quantization principle. These are just a few
important examples of experiments that confirmed the quantum nature of matter.
These new quantum ideas caused, however, a growing number of anomalies, so
a new physical theory capable of explaining the new phenomena with coherence
was needed. This necessity led to a new mathematical formalism in which quan-
tum ideas found their complete expression with the birth of quantum mechanics.
Some of the most important mathematicians and physicists who contributed to
the mathematical formulation of quantum mechanics are Heisenberg, Born, Dirac,
Schrödinger, Von Neumann and Einstein. Two different formulations were born,
’Matrix Mechanics’, formulated by Heisenberg, Jordan and Born in 1925 and ’Wave
Mechanics’ developed a few months later by Schrödinger. Only later, through
Dirac’s notation, their perfect equivalence will be discovered.

Quantum mechanics did not yet exist at the end of the XIX century, when
statistical physics was born. However, statistical mechanics theory has been de-
veloped of such generality that it was found to adapt easily to the later quantum
mechanics, leading in this way to the resolution of several open problems and
apparent inconsistencies. So the introduction of quantum mechanics to statistical
physics brought very important improvements in various applications, definitively
consecrating the power of the XIX century’s statistical formalism. Furthermore,
this mathematical framework is so powerful that this type of description can be
extended and adapted to any system far outside the fields of thermodynamics. The
tools of statistical physics apply to every complex system that can be thought of as
a ‘macroscopic’ entity made up of many ‘microscopic’ elements. Today, statistical
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mechanics finds applications in numerous very different areas: not only in the more
classical fields of physics, chemistry and information theory but also in neuroscience,
sociology, biology up to the newest applications in neuroscience, computer science
and artificial intelligence.

Statistical physics initially focused on the study of macroscopic systems at
thermodynamic equilibrium. However, the majority of systems of scientific interest
are not at equilibrium, it was immediate to recognize the potential of statistical
mechanics to describe them. Research in this direction led to the birth of non-
equilibrium statistical physics. In this thesis, we will work precisely in this field,
focusing on response theories, which study the behaviour of systems displaced from
equilibrium due to an external perturbation. We will see that response theories
can be of different types, in particular approximate or exact.

In this chapter, we will initially present the basic concepts and mathematical
foundations of statistical and quantum mechanics. We will then summarize the
developments of quantum response theory, starting from the older Kubo’s approach,
which is still valid and widely used even today, up to the most recent developments.
We will briefly introduce the fluctuation theorems and finally present a recent
classical exact response theory based on the Dissipation Function, highlighting its
characteristics and quickly showing an application. We will see that this theory was
born in the fields of Fluctuation Relations and molecular dynamics, but its validity
is more general, it will in fact be presented in the context of classical dynamical
systems. The main objective of this thesis is to develop the quantum translation of
this classical theory to build a quantum response theory based on the Dissipation
Function, and analyse its results, its characteristics, strengths and weaknesses and
the potential innovations it could bring.

1.1 Fundamentals of statistical and quantum me-
chanics

Statistical Mechanics

The Hamiltonian formulation is the basis of quantum and statistical mechanics [1].
A Hamiltonian system is any dynamical system whose equations of motion can be
derived from the Hamiltonian function H(qi, pi) asq̇k = ∂H

∂pk

ṗk = − ∂H
∂qk

(1.1)

qi and pi are called canonical variables.
These equations describe the evolution of the system in the 2N-dimensional phase
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space
M = (q1, ..., qN , p1, ..., pN).

However, the system (1.1) can be extremely complex, depending on the Hamiltonian
function and the number of variables involved. The classic example, the one that
was first treated in statistical mechanics, is the monoatomic ideal gas. One might
consider that each time trajectory of each atom of the gas is in principle the best
description one could hope. This description is well represented by (1.1). However,
the number of atoms is of the order of Avogadro Number, NA = 6,022 · 1023.
Thinking better, even if one could access 1023 trajectories, what is he supposed to
do with them? Also, one should know 1023 initial conditions, which is hardly an
information we have access to. The idea behind statistical mechanics is to move on
to a probabilistic treatment.

A physical observable is defined as any quantity that is in some way measurable
either directly, with the appropriate measuring instruments, or indirectly, with
calculation. Mathematically speaking, a generic observable A = A(qk, pk, t) ∈ R
is a real function of canonical coordinates and time. Our system can be thought
as a point Γ, called microstate, moving in time in the abstract 2N-dimensional
phase spaceM according to (1.1). By introducing a probability measure µt on the
phase space, one can calculate the expectation value of the macroscopic observables
exploiting the microscopic dynamics. This probability measure is defined by
thinking in terms of ensemble of systems ’suitably randomized’. If µ also admits a
density function f(qi, pi, t) ∈M, the expectation value of an observable A(qi, pi) is
calculated as:

⟨A⟩(t) =
Ú

M
A(qi, pi)f(qi, pi, t)dqidpi.

For the purposes of this thesis, we are not interested in how an ensemble measure
µt is constructed. It is sufficient for us to underline that, once the system has been
defined through the Hamiltonian H, a certain probability is assigned to each of its
microstates Γ, assigning zero probability to inadmissible ones.

Returning to the gas example, macroscopic measurements are quantities that
involve time averages on macroscopic timescale, At. At thermodynamical equi-
librium, an ideal gas is described by stationary ensembles f(Γ) (microcanonical,
canonical or grand-canonical), constant over time. The equivalence between the
ensemble averages and the temporal ones,

⟨A⟩ =
Ú

M
A(qi, pi)f(qi, pi)dqidpi = lim

t→∞

1
t

Ú t

0
A
1
q(s), p(s)

2
ds = A

t
,

is investigated by the ergodic theory. The latter still constitute an active and
complex research area today. In the case of a gas at thermodynamical equilibrium,
it is more than reasonable to take the limit t→∞, considering the separation of
the time scales. The time needed to take a measurement in the laboratory, very
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short for us, is infinitely long on the microscopic scale. The equivalence between
the two types of averages is valid.

The same reasoning is applicable to a very wide range of systems, even non-
equilibrium ones. Anyway, the ergodicity of the system should always be demon-
strated, which is a very difficult thing. Therefore, it is often simply assumed in
statistical physics and investigated only in the ergodic theory research field; also in
this thesis we will never deal with this question.

Let’s consider a general dynamic Γ̇ = G(Γ), Hamiltonian or not. The solution at
time t, starting from an initial condition Γ is represented by the map Φt :M→M:
Γ(t) = ΦtΓ. As the dynamics move the points of M , in a sense, it moves the sets
E ⊂M as well, therefore one may say that the measure of E is the measure of the
set of points that were somewhere else a time t earlier. This set is called preimage
of E under the transformation Φt, and is denoted by:

Φ−tE = {Γ ∈M : ΦtΓ ∈ E}.

A thermodynamic system can be described by an ensemble in phase space only if its
state is stationary and it is at thermodynamic equilibrium. However, if one forget
about this and hypothesize the validity of this type of description in more general
regimes, it is possible to draw important considerations [2]. One may imagine that
probability is conserved in time and is transported in phase spaceM, like the mass
of fluids in real space. The probability density f(Γ, t) evolves over time in the phase
space like a perfect fluid. Proceeding with this formal analogy, one can derive the
phase space continuity equation for f(Γ, t), which is called Liouville Equation,

∂f

∂t
= −∇Γ · (f Γ̇). (1.2)

Using the total derivative, one can write:
df

dt
= ∂f

∂t
+G(Γ) · ∇Γf = −f∇Γ ·G(Γ) = −fΛ.

The definition of the so-called phase space variation rate,

Λ ≡ ∇Γ ·G(Γ), (1.3)

allows one to rewrite the Liouville equation as d
dt
lnf = −Λ. Defining the Liouville

operator,

L = −i
1
∇Γ ·G(Γ) +G(Γ) · ∇Γ

B
,

the solution of the Liouville equation (if the Liouville operator is time independent)
can be formally written as

ft(Γ) = e−iLtf0(Γ). (1.4)
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For Hamiltonian systems, one has:

Λ(Γ) =
2NØ
i=1

[ ∂
∂qi

∂H

∂pi

− ∂

∂pi

∂H

∂qi

] = 0. (1.5)

Hamiltonian dynamics is thus a sufficient condition for the validity of the Liouville
Theorem, which states that df

dt
= 0.

Understanding how a physical system responds to an external perturbation is
an important question with great practical implications. The above considerations
may offer the solution to this problem. However, the abstract M phase space is
obviously immensely different from the familiar 3-dimensional space. On a practical
level, it is very difficult mathematically to find the solution of eq. (1.2); operator
(1.4) is often too complicated to handle. Furthermore, the perturbation could be
time-dependent, implying an even higher degree of complexity. The most used
techniques are therefore perturbative ones [3]. Assuming the perturbation is small,
perturbative response theories are developed. We will present these in detail in
the next section, for quantum systems. We will also see that, in classical physics,
this approximate method is starting to be overcome; in particular, an approach
based on the Dissipation Function is exploited to offer the solution of the Liouville
equation in a much more manageable form.

Quantum mechanics

In quantum mechanics the physical states of a system are described by wavefunctions
ψ(x, t) ∈ H [4], where t is the time variable and x the spatial one. The other
big difference from classical physics is that now observables are no longer scalar
functions but operators, eventually infinite-dimensional [5]. The evolution of ψ(x, t)
over time is governed by the Schrödinger equation,

iℏ
∂ψ(x, t)
∂t

= Hψ(x, t), ψ(x,0) = ψ0(x). (1.6)

ℏ is the Plank constant h divided by 2π. H is the Hamiltonian operator and the
wavefunction ψ(x, t) is an element of the Hilbert space L2(C) (in general it can
be an element of any Hilbert space, but the choice of L2(C) is more suitable for
understanding the introductory basics). ψ(x, t) has unitary norm and probabilistic
interpretation,

ψ(x, t) ∈ C, ∥ψ(x, t)∥2 = (ψ, ψ) = 1.

When the Hamiltonian is time independent the stationary solutions are in the form

ψ(x, t) = e− i
ℏEtψ(x),
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where ψ(x) is the eigenvector related to the eigenvalue problem Hψ(x) = Eψ(x),
E ∈ R is the corresponding energy eigenvalue. Linearity is a peculiar characteristic
of the quantum world, intimately linked to the principle of superposition. Therefore,
the most general solution of the Schrödinger problem is a linear superposition of
different energy eigenfunctions of the form

ψ(x, t) =
Ø

n

C(En)e− i
ℏEntψEn(x), ψ(x, t) =

Ú
D
dEC(E)e− i

ℏEtψE(x)

The first formula refers to Hamiltonians characterized by a discrete spectrum of
eigenvalues while the second one refers to Hamiltonians with a continuous spectrum.
The time dependence can be considered part of the coefficient. Therefore, in the
following, when not relevant for the purposes discussed, we will omit the type of
dependence of ψ.

Chosen a basis B for the L2(C) space,

B = {ϕk, k ∈ [1,∞]},

it is known that wave functions ψ and infinite-dimensional vectors |v⟩ are in one-
to-one correspondence, thanks to the functional analysis theorem of Fisher-Riesz
[6]:

ψ = ψv(x) =
Ø

k

vkϕk(x)⇒ |ψ⟩ = |v⟩ =
Ø

i

vi|i⟩ = [..., vin−1 , vin , ..]′.

For the sake of simplicity, we have considered a basis with a discrete index j even
if, in many situations, the index can be continuous. In this thesis, however, we
will deal exclusively with discrete-spectrum quantum problems. The Dirac picture
abandons the formalism based on the wave-function representation of physical
states to adopt the vector formalism suggested by the Fisher-Riesz theorem. In this
picture |ψ⟩ is called ket-vector and it is a column vector. It is usual to introduce
the corresponding bra-vector

⟨ψ| = [..., v∗
in−1 , v

∗
in
, ..],

which is a row vector. In this way, the scalar product between two vectors can be
represented as

(a, b) = ⟨a|b⟩ =
Ø

j

Ø
k

a∗
jbk⟨j|k⟩,

using an orthonormal basis |n⟩ (for which we have ⟨nj|nk⟩ = δjk) one finds

(a, b) = ⟨a|b⟩ =
Ø
nj

Ø
nk

a∗
nj
bnk
δjk =

Ø
n

a∗
nbn.
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The condition of unitary norm is preserved:

⟨ψ|ψ⟩ =
Ø

k

|vk|2 = 1,

|vk|2 is the probability to find the system in the state ϕk.

The adjoint of a generic operator A, is defined as the operator A† such that the
following equivalence holds:

(ψ,Aψ) = (A†ψ, ψ).

An operator A is Hermitian if A† = A. Physical observables are represented
by Hermitian operators. In the Dirac formalism, an arbitrary operator A thus
corresponds to a (infinite dimensional) matrix

Ai,j = (ϕi, Aϕj), A =
Ø

i

Ø
j

|i⟩Aij⟨j|,

and the condition of hermitianity translates into

A† = A ⇐⇒ Aij = A∗
ji ∀i, j.

In quantum mechanics we can only have information about expectation values
of physical observables. For an observable represented by the operator A, the
expectation value is given by:

⟨A⟩ = (ψ,Aψ) = ⟨ψ|A|ψ⟩.

The constraint on the Hermitianity of observable operators has a very specific reason.
The spectrum of the Hermitian operators is contained in R and the corresponding
expectation values are therefore real, ⟨A⟩ ∈ R. For a non-Hermitian operator C,
however, the spectrum may belong to C, consequently the corresponding expectation
value could be a complex number, ⟨C⟩ ∈ C. Expectation values represent the
quantities measured experimentally. They must be real numbers, the hermitianity
constraint guarantees this.

The measurement of operator A selecting the value λ within the eigenvalue set
of the relevant spectrum entails that the wavefunction of the system changes to
the corresponding eigenfunction |ψλ⟩.

The same physical state ψ can be equivalently represented using different basis.
A very used choice is the basis formed by the eigenstates relative to the Hamiltonian
operator,

Hψn(x) = Enψn(x)⇒ ψn(x)→ |En⟩.
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However, in general, the basis of any other Hermitian operator could be adopted,
for example, one can choose the momentum operator:

pϕk(x) = ℏkϕk(x)⇒ ϕk(x)→ |k⟩.

Representations of physical states relevant to two different basis are connected by
a unitary transformation. A matrix S is unitary if

S†S = SS† = Id.

Unitary transformations preserve the correct normalization of physical states that
ensures the probabilistic interpretation is maintained even if the basis is changed.

Quantum mechanics is formulated using two equivalent pictures: the Schrödinger
picture and the Heisenberg picture. In the Schrödinger formalism |ψ⟩ is a time
dependent vector, namely, its components cm are time-dependent. One has, in the
energy basis,

|ψ⟩ =
Ø
m

cm(t)|m⟩ =
Ø
m

cm(0)e− i
ℏ tEm|m⟩.

Operators are instead time independent in this representation. Anyway, their
expectation values are, in general, time-dependent:

⟨A⟩t =
Ø

r

Ø
s

c∗
r(0)cs(0)e i

ℏ t(Er−Es)Ars.

Based on the equation for the expectation value it is possible to define the Heisenberg
representation At for the evolution in time of a given operator A:

⟨A⟩t = (ψ(x, t), Aψ(x, t)) = (ψ0e
− i

ℏHt, Ae− i
ℏHtψ0) = (ψ0, e

+ i
ℏHtAe− i

ℏHtψ0).

Therefore, in the Heisenberg picture operators are time-dependent and defined as

At = e+ i
ℏHtAe− i

ℏHt, (1.7)

while quantum states |ψ⟩ are now fixed in time. In this picture, the commutator
plays an essential role, it is defined as:

[A,B] ≡ AB −BA.

An operator At satisfies the so-called Heisenberg equation,

d

dt
At = 1

iℏ
[At,H] + ∂tA. (1.8)

Despite the interpretative differences, the two pictures are equivalent as the expec-
tation values of any operator always coincide. The Heisenberg picture presents a
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strong similarity with classical mechanics through equation (1.8). Indeed, a basic
tool in Hamiltonian formulation (1.1) are the Poisson Brackets, defined as

{A,B} ≡
Ø

k

∂A

∂qk

∂B

∂pk

− ∂B

∂qk

∂A

∂pk

.

Thanks to the Poisson brackets one can express the evolution of a generic observable
A(qk, pk, t), in accordance with the dynamics (1.1) as

dA

dt
= {A,H}+ ∂tA. (1.9)

The similarity of the Heisenberg equation (1.8) with the latter plays a crucial role
in the quantization process of classical systems. It is the basis of the quantization
rule, a criterion for expressing the quantum analogue of classical mechanics physical
problems. Quantization rule states that the observables are replaced by their
corresponding operators and the Poisson brackets by the commutator as follows:

Classical system→ Quantum system
p, x, H, A → p̂, x̂, Ĥ, Â

{ · , · } → 1
iℏ

[ · , · ]
(1.10)

By applying this criterion to the classical equation (1.9) one exactly finds the
Heisenberg equation (1.8), but the real proof of the validity of this rule is due to
the incredible results it has offered over the years to date.

The density operator

In quantum mechanics, a system is completely determined by its state |ψ⟩ at
the initial time, then the Schrödinger equation (1.6) describes its deterministic
evolution over time. In statistical physics and whenever the state is not perfectly
known, an ensemble of states description is used. The ensemble of states {|ψj⟩, pj}
takes into account that the system is in state |ψj⟩ with probability pj. Now, it
becomes more convenient to describe the system by defining the density operator ρ
[7]:

ρ =
Ø

i

pi|ψi⟩⟨ψi|. (1.11)

It is a simple generalization of what has already been described previously: if the
system state is perfectly known the density operator is

ρ = |ψ⟩⟨ψ|, i.e. pk = 1, pj = 0 ∀j /= k,

and it is said that the system is in a ’pure state’, otherwise it is in a ’mixed state’.
The density operator ρ has three important properties:

10
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• it is Hermitian: ρ† = ρ;

• it has a unitary trace: Tr(ρ) = 1;

• it is semi-definite positive: ⟨ψ|ρ|ψ⟩ ≥ 0 ∀ψ ∈H .

These three properties are essential to associate the meaning of probability density
with this operator. In general, any matrix fulfilling these three properties can be
interpreted as a valid density matrix. The introduction of ρ enables one to express
⟨A⟩t much more simply, using the well known trace operator:

⟨A⟩ = Tr(ρA).

Therefore, the density operator ρ is a more general concept than that of state |ψ⟩
and allows one to describe both pure states and ensembles of states with a single
mathematical tool. It is now possible to treat mixed and pure states exactly in
the same way. However, it is always necessary to keep in mind the differences
in interpretation. Indeed, the probability density can play two different roles.
In quantum mechanics the knowledge of the state |ψ⟩ represents the maximum
information that can be had about the system. When ρ represents a pure state,
the knowledge about the system is maximum, the use of probability describes
the exclusively quantum indeterminacy on the measurement. When ρ represents
instead a mixed state the use of probability describes both classical and quantum
indeterminacy on the measurement. To understand whether an arbitrary density
matrix describes a pure state or a mixed one, the quantity Tr(ρ2) is analysed.
This quantity has an important property: if the Hilbert space of the system is of
dimension N then

1
N
≤ Tr(ρ2) ≤ 1

(and in an infinite dimensional space the latter becomes 0 ≤ Tr(ρ2) ≤ 1). This
quantity is important because it provides a measure of the degree of purity: ρ
describes a pure state if and only if Tr(ρ2) = 1; on the other hand, for Tr(ρ2) = 1

N

the ignorance about the system is maximum, the state is maximally mixed (this
corresponds to a maximum of entropy).

From the way ρ was defined, it is clear that it is independent of time in Heisenberg
picture. Instead, in Schrödinger picture it evolves over time according to Von
Neumann (Quantum Liouville) equation:

∂

∂t
ρt = 1

iℏ
[H, ρt]. (1.12)

In particular, if the Hamiltonian is time independent, its evolution over time can
be expressed as

ρt = e− it
ℏ Hρ0e

it
ℏ H. (1.13)
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The similarity with the operators observable in the Heisenberg picture is evident,
but it is important to underline a difference: the density operator ρ evolves ’in
reverse time’ (note the minus sign) compared to all the other operators. This is
not a surprising fact if we remember that the former evolves only in Schrödinger
pictures meanwhile operators only in Heisenberg picture. For convenience, the time
evolution operator U(t), also called time-propagator, is defined:

U(t) ≡ e− it
ℏ H, U †(t) = e+ it

ℏ H. (1.14)

Then, if the Hamiltonian is time independent, one can write

At = U †(t)AU(t), ρt = U(t)ρ0U
†(t). (1.15)

Instead, if the Hamiltonian is time-dependent the definition of these time propaga-
tors is different, we will clarify this case in chapter 5.

The equivalence of the two pictures in the calculation of the observables expec-
tation value ⟨A⟩t is now easily shown using the cyclic property of the trace:A

⟨A⟩t
B

H

= Tr(ρ0At) = Tr
1
ρ0U

†(t)AU(t)
2

=

Tr
1
U(t)ρ0U

†(t)A
2

= Tr(ρtA) =
A
⟨A⟩t

B
S

Subsequently, therefore, we will never specify the picture in which we are working,
since they are equivalent. We will highlight it only in particular cases to underline
relevant considerations.

Mathematical tools

Quantum systems are often treated in infinite dimension. In this thesis we will
work only in Hilbert spaces of finite dimension. For now, it is sufficient to highlight
that the only operators we will work with are matrices of finite dimension.

Considering the form of the time propagator (1.14), it is clear that it will be
very important to know how to work with exponential matrices [8], so we briefly
recall their main properties.
The exponential of a matrix A is defined as

eA ≡
∞Ø

k=0

Ak

k! .

This series is absolutely convergent for any operator A such that ∥A∥ ∈ R. From
this definition it follows that the exponential eD of a diagonal matrix D (Dii =
di ∈ C, Di,j = 0 ∀i /= j) is itself diagonal and its elements are the exponential

12
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of the diagonal elements of D (eD
ii = edi). Let B be a linear operator and Q an

invertible linear operator then it holds that

B = QAQ−1 ⇒ eB = QeAQ−1. (1.16)

This is a very important property that allows to easily calculate the exponential
of any matrix. If matrix B is diagonalizable then one can construct the unitary
passage matrix P using the eigenvectors of B, B = PDP−1. So it is necessary to
calculate only the exponential of the diagonal matrix D and then eB = PeDP−1. If
instead matrix B is not diagonalizable then it is possible to calculate eB similarly
using the Jordan block form [8], the process will only be a bit more complicated.
Furthermore, the typical properties of the exponential are no longer valid, for
example,

eA+B /= eAeB;

but one finds the validity again if the two operators commute,

[S, T ] = 0 ⇒ eT eS = eS+T .

For two arbitrary operators the expression eAeB can be also calculated with the
formula of Baker-Campbell-Hausdorff [9]:

eAeB = exp(A+B + 1
2[A,B] + 1

12[A, [A,B]] + 1
12[B, [B,A]] + ...).

This formula, thanks to the properties of commutators, can lead to great simplifi-
cations in expressing the solution Z of the equation eAeB = eZ .
The property (eS)−1 = e−S always continues to hold.

We have recalled all the concepts and tools that we will use in this thesis. In
the next chapters we will always maintain this notation.
We can now introduce response theories in the quantum context. We are going to
present an overview of the various quantum response theories used today.

1.2 Response theories
In this section we will provide a general summary of the most recent and used
quantum response theories. This is necessary to identify the main methods used
in the literature to deal with perturbed dynamics. We will analyse the domain of
validity, strengths and weaknesses of the different approaches. In this way it will
be possible to better identify the area of applicability of the quantum response
theory that we are going to formulate. Furthermore, this overview will allow us to
use the approaches present in the literature as a comparison to analyse the new

13
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approach of this thesis.
We point out that in this section we present brief summaries of some articles on
the topic. We will try to offer the most complete and general picture possible
without going into excessive details. We will therefore present only the essential
results of the various articles and will always maintain the notation used by the
authors. The numerous results presented in a short space may sometimes appear
unclear, we therefore reiterate that this is only a brief overview, to delve deeper into
the details of what is presented here the reader is invited to move to the cited articles.

The approach most used in quantum response theory is certainly the perturbative
one. We therefore begin with an overview of the quantum linear response theory.

1.2.1 Quantum linear response theory
Computing the response of an observable expectation value to a small time-
dependent perturbation is one of the most successful ways to relate physical
quantities to the underlying theoretical description of matter.
A very important article in this regard is that of Kubo [10]. He considers a Hamil-
tonian system H that was at thermodynamic equilibrium at infinite past, t = −∞.
An external force K(t) is then applied. Let ρ be the density matrix representing
the statistical ensemble, it will evolve over time according to the quantum Liouville
equation (1.12).
The perturbed Hamiltonian is

Ht = H− AK(t) = H +Hext(t), (1.17)

with A being the dynamical quantity conjugate to the applied force K. In quantum
mechanics the Liouville operators L, Lext and Lt are defined by the commutators
with the corresponding Hamiltonians (1.17). The initial condition for the Liouville
equation at time t = −∞ is ρ(−∞) = ρe, which indicates that the system was
described by the equilibrium ensemble density distribution ρe. The perturbation is
small therefore Kubo approximates the external effect on the density to the first
order:

ρ(t) ≃ ρe + ∆ρ(t) = ρe +
Ú t

−∞
dt′e(t−t′)LLext(t′)ρe.

The response of the system to the perturbation is observed with respect to the
change of some physical quantity B:

⟨∆B(t)⟩ = Tr
1
B∆ρ(t)

2
.

By using the cyclic property of trace, Kubo moves on to the form:

⟨∆B(t)⟩ =
Ú t

−∞
dt′K(t′)Tr

A
ρe

1
iℏ

[A,B(t− t′)]
B
,
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where B(t) = e
i
ℏHtBe− i

ℏHt is the operator evolved over time according to the
unperturbed Hamiltonian H. Therefore, he defined the response function as

ϕBA(t) ≡ Tr

A
ρe

1
iℏ

[A,B(t)]
B

= Tr

A
1
iℏ

[ρe, A]B(t)
B
. (1.18)

The response function represents the response of the system at the time t to an
impulsive force applied on the system at t = 0. The latter enables one to write the
linear response ⟨∆B(t)⟩ in a compact form, as superposition of delayed effects,

⟨∆B(t)⟩ =
Ú t

−∞
dsK(s)ϕBA(t− s). (1.19)

The exact same approach can be applied in classical statistical mechanics, simply
by replacing the quantum commutators with Poisson brackets, as in eq. (1.10), and
the trace operator with the phase space integration. In classical mechanics ϕBA(t)
is a correlation function between the two physical observables A and B; Kubo
demonstrates, by introducing the quantum canonical correlation function (2.14),
that this interpretation remains valid even in quantum mechanics. In general,
eq. (1.19) is a very important result: the response to a small perturbation is
determined by the equilibrium dynamics and by the time correlation function of the
perturbation and the observable of interest, computed with respect to the known
equilibrium ensemble.

The case of periodic force K = RK0e
iωt is of particular interest. In this case,

the response is expressed as

⟨∆B(t)⟩ = RχBA(ω)K0e
iωt; χBA(ω) =

Ú ∞

0
⟨[A(0), B(t)]⟩ee−iωtdt

χBA(ω) is called admittance and is a very important quantity to derive the
fluctuation-dissipation theorem from here. The latter states a general relationship
between the response of a given system to an external perturbation and the internal
fluctuation of the system in the absence of the disturbance. The linear response
theory is therefore a generalization of it.

Kubo linear response theory gives formulas to compute dynamical susceptibilities
for closed quantum systems “not far apart from thermal equilibrium”. The effect of
the environment is considered small and is completely neglected. The system is then
supposed to evolve isolated from the environment according to the Schrödinger
equation. In more recent times, there has been increasing interest in various
generalizations of Kubo response theory. Before presenting them, it is necessary to
introduce Lindbladian equations and quantum superoperators.

Master equations are a general class of equations used to describe the time
evolution of the probability density of a system that can be modelled as being
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in a probabilistic combination of states at any given time. Lindbladian (GKSL)
equations are the most used form of Markovian master equations in quantum
mechanics: they generalize the Schrödinger equation to open quantum systems [11].
Lindblad equation can be written as:

ρ̇ = − i
ℏ

[H, ρ] +
Ø

i

γi

1
LiρL

†
i −

1
2{L

†
iLi, ρ}

2
; (1.20)

the interaction between the environment and the system is expressed by operators
Li. We will review them in more detail in chapter 6.

Quantum superoperators [12] are mathematical tools widely used in the most
recent academic articles in this field. We won’t use them so we will only mention
them briefly to understand the notation of the next articles presented. They provide
a unifying framework applicable to quantum and classical systems. In this picture,
ρ(t) is a vector in Liouville space and not anymore an operator in Hilbert space.
The Lindblad equation can be written using the relative superoperator L simply as

ρ̇ = L[ρ].

The structure of L, for many specific cases, may allow for a simplified treatment, a
clearer physical meaning and an immediate classical analogue of the problem.

P. Zanardi and L. C. Venuti extend Kubo linear response theory to nonequi-
librium situations where the system’s evolution is described by a time-local mas-
ter equation [13], such as Lindblad equations. In this generalization, thermal
equilibrium states are replaced by nonequilibrium steady states, and dissipative
perturbations are considered in addition to the Hamiltonian ones. They express
the dynamics using the superoperator L(t) = L0 + ζ1(t)L1 and the evolution
operators E(t) formalism: the Heisenberg evolved A is A(t)=̇E∗

0 (t)(A). Then,
they consider the time-dependent expectation value of an observable A given by
a(t) = Tr[E(t)(ρ)A]:

δa(t)=̇a(t)− Tr[E0(t)(ρ)A] =
Ú ∞

0
dτχAB(t− τ); χAB(t)=̇iθ(t)Tr{[A(t), ρ]B}

The authors assume that the initial state ρ is a steady state of the unperturbed L0.
Introducing the scalar product ⟨A,B⟩ρ = Tr(ρA†B) over L(H), they can write the
linear dynamical susceptibility (LDS) in a compact form: χAB(t) = 2θIm⟨A(t), B⟩ρ.
If L0 is itself of Hamiltonian type, one recovers the standard results (1.19) for
closed quantum systems.
In open-systems is no longer possible to write χAB(t) as a correlation function.
Indeed, the LDS for unitary perturbations can at best be expressed as the difference
of two correlation functions associated with two different dynamical flows:

χAB(t) = −iθ(t)[⟨A(t), B⟩ρ − ⟨B#(t), A⟩ρ]
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( where symbol # is related to the Hermitian conjugated of L0, which requires
mathematical attention). When A = B, if E∗

0 (t) are Hermitian with respect to
the scalar product ⟨·, ·⟩ρ, one has χAA(t) = 0 ∀A = A†. This type of “diagonal”
no linear-response for all observables is a uniquely open-system phenomenon: any
nontrivial unitary dynamics gives rise to a nonvanishing χAA for some A.

An important object is the Fourier transform of the LDS:

χ̂A,L1(ω)=̇F [χA,L1 ](ω) =
Ú ∞

0
dteiωtTr[etL0L1(ρ)A] = iT r

A
1

ω − iL0 + iϵ
L1(ρ)A

B

The basic response relation in the ω domain reads δ̂a(ω) = ζ̂1(ω)χ̂AL1(ω). The
imaginary part of the complex susceptibility (admittance) is known to be related
to the dissipation of energy. This argument still holds in this generalized setting.

For a harmonic perturbation ζ1(t) = cos(Ωt), the value

Mhr(Ω)=̇∥ 1
Ω− iL0 + iϵ

L1(ρ)∥1,

called maximal harmonic response, sets an upper bound to the response of any
(normalized) observable to the perturbation: sup∥A∥1|δa(t)Ω| ≤MHR(Ω).

Considering a time-independent small perturbation λ, the system will relax to
the steady state of L(λ), ρ(λ). For a general observable A one has

⟨A⟩λ = Tr[ρ(λ)A] = Tr[ρ(0)A] + λχT
A,L1 +O(λ2).

The authors prove that

χ̂AL1(0)− χT
AL1 =

Ú ∞

0
dte−ϵtTr[P0L1(ρ0)B],

where P0 is the projector operator into the kernel of L0. They conclude that in the
case of non-degeneracy, for maps with a unique steady state, χAL1(0) = χT

AL1 are
equal, whereas it is well known that this is not the case for the unitary (closed) case.
The article also contains some applications of these results to Davies generators,
single qubits and an analysis of a dynamical phase transition.

This dynamical response theory focuses mainly on the Markovian case. Non
Markovian effect should be taken into account in many systems. For this purpose,
Shen et al. develop a linear response theory for an open quantum system by taking
the non-Markovian effect into account [14].

They assume that Hext(t) is turned on at t0 → −∞ and that the total system
is at thermal equilibrium in the absence of the external field (ρ0(0) = ρeq):

χµν(ω) =
Ú ∞

0
dteiωtχµν(0,−t) = i

ℏ

Ú ∞

0
dteiωtTr

î
B̂µe

− i
ℏ L̂0t[Âν , ρeq]

ï
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Authors define ζν(t) ≡ TrB

î
i
ℏe

− i
ℏ L̂0t[Âν , ρeq]

ï
to simplify the notation. In this

way, they obtain the expression χµν(ω) = TrS[B̂µζν(ω)]: in order to calculate the
susceptibility χµν(ω), it is enough to calculate ζν(ω), the Laplace transform of
ζν(t).

To derive a concrete equation, it is necessary to specify the environment. After a
long derivation, working on the interaction in weak-coupling assumption, they find a
general equation for ζν(t) which includes completely non-Markovian memory effects.
Matrix ζν(ω) contains important coefficients related to the interaction with the envi-
ronment. In conclusion, ζν(ω) plays a crucial role in determining the non-Markovian
effect of the environment on the susceptibility χνµ(ω) = q

n,m B̂ν,nmζν,nm(ω). This
formalism might open a new way to better understand the relations between the
response function and the non-Markovianity.

Linear response theory of quantum systems has been explored further in recent
years and achieved a more complete picture. Different formulations of the response
function and different points of view have indeed enriched the theory. M. Konopik
and E. Lutz derive three different forms of quantum response function [15]. All
these variants yield the same response. However, the existence of different types
of fluctuation-response theorem offers significant theoretical and experimental
advantages: one can choose the best one depending on the application. The
response of any observable A may then be calculated to linear order as

⟨A⟩ϵ(t) = ⟨A⟩+
Ú t

0
dsϵ(s)R(t− s); R(τ) = Tr{AeL0τL1π0}; ⟨·⟩=̇Tr[·π0]

This provides the basis for their quantum extension of the three equivalence
classes. The first response function is

R1(τ) = ⟨A(τ)B1⟩ = ⟨A(τ)(L1π0)
π0
⟩,

it is expressed as a correlation function with an observable B1 = (L1π0)/π0 . It
contains only state variables and no time derivatives. This form shows that for a
thermal stationary distribution π0 = exp(−βH0)/Z0 the quantum response vanishes
when [H0, H1] = 0 (this is not necessarily the case for a nonequilibrium steady
state). Its drawback is that the observable B1 involves the stationary distribution
π0, which is not always explicitly known in concrete situations.

The second response function is

R2(τ) = −Tr(A(τ)L0π1) = −dτ ⟨A(τ)π1/π0⟩.

In the limit of closed quantum systems at equilibrium it reduces to the Kubo
quantum response function (1.19).

18



Response theories in statistical and quantum mechanics

In order to bring R2(τ) in a form similar to the classical case, authors first introduce
a generalized Kubo transformation: ∂ϵ ln πϵ|0=̇

s 1
0 π

λ
0 (∂ϵ ln πϵ)|0π−λ

0 dλ. Introducing
the quantum analogue of the stochastic entropy Sϵ=̇∂ϵ ln πϵ|0, they find:

R2(τ) = −dτ ⟨A(τ)∂ϵSϵ|0⟩ = −⟨A(t)ds∂ϵSϵ(s)|0⟩.

This variant is the only one where the response function is given as a correlation
function with a time derivative of a state variable (∂ϵSϵ|0).
There is an alternative way of writing R2(τ) without using any correlation function:

R2(τ) = −dτ∂ϵ⟨A(τ)⟩ϵ|0,

which is the time derivative of the time-dependent susceptibility. This form often
enables a simple evaluation of the response function.

The third form is

R3(τ) = i

ℏ
Tr{π0[H1, A(τ)]} = −⟨L1A(τ)⟩.

It is the unique one that does not explicitly involve the stationary distribution.
Indeed, this response is given as an expectation value of operators that do not
explicitly depend on π0, π1 or πϵ. R3 vanishes when the time evolved observable
A(τ) commutes with the perturbation Hamiltonian H1.
Equilibrium response functions obey the detailed balance condition:⟨AB(t)⟩ =
⟨BA(t)⟩. By contrast, the non equilibrium steady-state response functions do not.
All these considerations underline the profound disparity between equilibrium and
nonequilibrium quantum response theories.

These theorems have been derived for finite-dimensional systems. However,
many relevant physical processes, especially in the field of quantum information
technologies, are described by systems of infinite dimension in the Gaussian regime.
Mehboudi et al. find a linear response theory for quantum Gaussian systems [16].
They consider processes described by Gaussian quantum channels and derive the
linear response of the covariance matrix. The characteristic function of a Gaussian
system has, by definition, the following form: χ(η) = e

1
2 ηT σΩη−dT Ωη. Gaussian

systems are fully described by their first and second moments. Thus, Gaussian
channelsM can be completely identified by their action on the displacement vector
d and on the covariance matrix σ:

M : d→ Xd+ f M : σ → XσXT + Y

Without loss of generality, one restricts to zero-mean Gaussian states and one-
parameter family of Gaussian quantum channels Mλ, where λ can represent the
strength of an external magnetic field or temperature. Authors assumeMλ =M0 +
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λM+O(λ2), σλ = σ0+λζ+O(λ2) and Markovian scenario: σ(t) =Mλ(t)...Mλ(1)σ0.
The aim is to characterize the linear response of σ(t) in terms of steady state
correlations, that is elements of steady state covariance matrix. They obtain:

σ(t) = σ0 +
tØ

s=1
λ(t− s)ϕ(s); ϕ(t) = −∆t(X t

0ζX
T t
0 )

δt→ 0 : σ(t) = σ0 +
Ú t

0
dsλ(t− s)ϕ(s) ; ϕ(t) = −∂t(X t

0ζX
T t
0 ).

In order to find the response function one simply needs to find the static linear
response ζ ≡ ∂λσλ|λ=0 and the time evolution of ζ under the unperturbed channel
X0. For any arbitrary Gaussian Lindbladian equation, these two objects can be
identified straightforwardly. When dealing with thermal states evolving under
unitary dynamics, one recovers Kubo’s linear response theory.

Now we have a clear and general picture of linear response theory in open quan-
tum systems. However, dynamical systems of physics feature nonlinear character
as well, moreover, the disturbance may not be assumed to be small. A good theory
that goes beyond the linear approximation is therefore of great importance.

1.2.2 Beyond linear approximation
Kubo’s approach and all the methods presented previously are often extended
taking higher-order terms in the expansion of the perturbation. This approach offers
greater precision but it is very cumbersome and expensive. In some situations it
can lead to a better approximation. However, there are problems related to the con-
vergence and uniqueness of the response; moreover, this is always an approximation
and it may not capture anomalous behaviour, such as phase transitions. A quantum
exact response theory does not yet exist but it would be of fundamental importance
for studying open quantum systems. We will see that for classical systems these
theories exist and are often derived from fluctuation theorems, the goal of this thesis
is to formulate their quantum analogue to lay the foundation for a quantum exact
response theory. However, a conceptually opposite approach also seems interesting:
the use of stochastic methods of classical physics in the study of quantum dynamics.

Recently, B. Mukherjee et al. introduced the stochastic reset technique in
the study of quantum systems [17]. V. Dubey et al. apply this approach to a
qubit system |ψ⟩ that is monitored continuously but with interactions with a
qubit-detector |χ⟩. The total Hamiltonian is

H = γ0σx ⊗ Id+
ò
γ

τ
π1 ⊗ σy,
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where σi are the Pauli matrices. Two phenomena are in competition: the Zeno
effect and Rabi oscillation. When γ0 → 0, there is a collapse of |ψ⟩ to state ψ0 or
ψ1 (Zeno effect); meanwhile, when γ = 0 the free evolution leads to well known
Rabi oscillation.

Every time a detector, always initialized to χ0, is measured to be in the state
χ1 corresponds to a ’click’. Nt is a Poisson process which counts the number of
clicks in [0, t]. The dynamics is described by a stochastic Schrödinger equation; the
authors, exploiting the representation of the Bloch sphere, manage to move to a
stochastic dynamics of classical nature:

dθt = Ω(θt)dt+ (π − θt−)dNt.
1
E[dNt] = α(θt)dt

2
This dynamics can be naturally interpreted as a resetting process, with a resetting
rate that depends on the instantaneous state. In this way they obtain analytic re-
sults for the distribution of number of detector events and the exact time-evolution
of the probability distribution. They also find dynamics transitions confirmed
experimentally. This method is promising but has the disadvantage of being ap-
plicable only to a narrow range of quantum systems, it is not always possible to
exploit technicalities to move on to the "classical" stochastic dynamics.

Quantizing a classical exact response theory could be the right way to acquire
much more generality in the typology of exactly describable open quantum systems.
In the following, we therefore set out to present the classical exact response theory
based on the Dissipation Function that we are going to quantize in this thesis; first
we will introduce the fluctuation theorems, the field from which the Dissipation
Function arises.

1.2.3 Fluctuation Theorems
Fluctuation theorems are fundamental generalizations of the second law of ther-
modynamics for small systems. While the entropy production Σ is a non-negative
deterministic quantity for macroscopic systems, it becomes random at the micro-
scopic scale owing to the presence of non-negligible thermal or quantum fluctuations.
Detailed fluctuation theorems quantify the probability of occurrence of negative
entropy production events via the relation

P (Σ)
P (−Σ) = exp(Σ).

Fluctuation relations were discovered in the ’90s and the main contributions are due
to Evans, Cohen, Searles, Gallavotti, Crooks and Jarzynski [18]. The generic valid-
ity of fluctuation theorems arbitrarily far from equilibrium makes them particularly
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useful in nonequilibrium physics. They can be a good basis for a quantum exact
response theory just as dissipation-fluctuation theorems underlie linear response
theory.

D. Andrieux and P. Gaspard derive a universal quantum work relation for
isolated time-dependent Hamiltonian systems in a magnetic field, which is a good
starting point for formulating a quantum response theory [19].
The system is described by a Hamiltonian operator H(t, B), with B magnetic field.
Authors consider an arbitrary time-independent observable A with a definite parity
under time reversal (ΘAΘ = ϵAA, ϵA = ±1). The Functional relation Theorem
states that

⟨e
s T

0 dtλ(t)AF (t)e−βHF (T )eβH(0)⟩F,B = e−β∆F ⟨eϵA

s T

0 dtλ(T −t)AR(t)⟩R,−B; (1.21)

∆F = F (T )−F (0) is the difference of the free energies, λ(t) is an arbitrary function.
This theorem allows them to recover the quantum Jarzynski equality as a special
case for λ = 0. e−βHF (T )eβH(0) can indeed be interpreted in the quantum setting in
terms of the work performed on the system during the forward process.
Authors highlight that one can obtain different correlation functions by taking
functional derivatives of (1.21) with respect λ(t). For example, using this approach,
they managed to obtain the well-known Green-Kubo formula. (1.21) unifies in a
common framework the work relations and the response theory, thereby opening
the possibility to obtain further general relations which are valid also in the far-
from-equilibrium regime.

However, this method, also in higher order version, is only an approximation
and it fails to predict the real behaviour in certain anomalous phenomena. One
can try to eliminate the approximation to get an exact response from a quantum
fluctuation theorem. Another valid path is to exploit classical exact responses
(obtained from fluctuation theorems in classical field) and quantize them, this is
precisely the path we will explore in this thesis.

1.2.4 The classical Dissipation Function exact response
theory

Even a small perturbation may result in a large modification of the state. Non-linear
effects, especially at the nanometric scale, can cause drastic changes of states, like
phase transitions. Linear response is not valid in these situations and also higher
order expansion, in addition to being very cumbersome, may not work. An exact
theory is instead expected to handle such situations.

Following the discovery of the fluctuation relations, response theory has been
generalized so that small systems as well as large drivings can be treated. A general
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exact response theory, also known as TTCF (transient time correlation function),
has been derived. The key ingredient of this theory is known as Dissipation Func-
tion, developed as the energy dissipation rate in Fluctuation Relations of classic
nature [20].

G. Jepps and L. Rondoni provide a dynamical-systems interpretation for the
Dissipation Function [2]. They consider a system whose microscopic phase Γ ∈M
evolves according to the equation of motion Γ̇ = G(Γ), whose solution at time t ∈ R
from initial condition Γ is represented by StΓ. Considering an arbitrary initial
distribution f0, its evolution under the dynamics is described by the generalized
Liouville equation, eq. (1.2),

∂ft

∂t
(Γ) = −∇Γ ·

1
ftG(Γ)

2
.

It is shown that the latter can be expressed as

∂ft

∂t
(Γ) = ftΩft(Γ); Ωft(Γ) ≡ −[Λ(Γ) +G(Γ) · ∇Γlnft(Γ)]. (1.22)

Ωft is called Dissipation Function, this quantity corresponds, in thermodynamic
systems, to generalized entropy production. Ωft can be used to describe the
evolution of the ensemble average ⟨O⟩ft in terms of averages with respect to the
initial distribution f0 as

⟨O⟩ft = ⟨O⟩f0 +
Ú t

0
⟨(O ◦ Ss)Ωf0⟩f0ds. (1.23)

This result allows expressing the system’s response to an external perturbation in
an exact, not approximate, way. It is an exact response formula. This expression
offers several advantages. Firstly, it keeps the probability fixed and makes the
observables to evolve over time. In general, ⟨O⟩t can be equivalently obtained
either evolving the microscopic observable or the probability density,

⟨O⟩t =
Ú

M
O(x)f0(S−tx)J−tdx =

Ú
M
O(Stx)f0(x)dx,

where J is the Jacobian of the coordinates change. It is therefore clear why evolving
only observables over time, as in eq. (1.23), is a great advantage: probability requires
the reversed dynamics, which is much more difficult to exploit. For eq. (1.23), the
dynamics are assumed to be only invertible, which does not mean that they have
to be time-reversal invariant, as often required in statistical mechanics.
Secondly, ⟨O⟩t is calculated as the correlation function, computed with respect
to the initial distribution f0, of the evolving observable with the dissipative flux,
represented by the Dissipation Function. This led to new physical interpretations
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in many molecular-dynamics applications.
Furthermore, this expression has allowed treating hard non- equilibrium problems,
at low drivings [21], drastically improving the signal-to-noise ratio, and providing a
superior method with respect to direct averaging for such calculations. Not only the
presence of the time integral, but above all the use of the equilibrium distribution,
has the advantage of smoothing the ⟨O⟩t signal and cleaning it from noise.
Moreover, Jepps and Rondoni provide a dynamical-system interpretation. They
offer new perspectives into second-law inequality, but interpreted in terms of relative
entropies, independent of any putative thermodynamic context. They also study
the role of the dissipation function to describe relaxations towards equilibrium.
T-mixing is a necessary condition for the Fluctuation Relations to hold in non
equilibrium steady states [20]. They find that the notion of T-mixing, through its
connection with the dissipation function (ΩT−mixing),

⟨Ωf0(O ◦ St)⟩f0 → ⟨Ωf0⟩f0⟨O ◦ St⟩f0 = 0 for t→∞,

provides an avenue for describing relaxation towards equilibrium, in terms of ob-
servable behaviour along the neighbourhood of a single phase space trajectory.

The main objective of this thesis is to write the quantum translation of the
classical expression (1.23). It is interesting to understand its role and its domain
of applicability in quantum mechanics. The hope is that it can bring progress
also in quantum response theory, where we have seen that for many systems only
approximate and perturbative approaches can so far be used.
Now we are going to present an application of expression (1.23) to show the poten-
tial it could also have in quantum physics.

L. Rondoni et al. compare new exact theory (1.23) with linear response theory
[22] in an application on Kuramoto dynamics: a prototype of many particle systems
exhibiting synchronization, a phenomenon ubiquitous in physics and biology. In
this application the simplicity and great advantages that (1.23) offers, compared
to other approaches, will be immediately evident.

The Kuramoto dynamics can be written as

θ̇i = ωi +KR(θ)sin(Φ(θ)− θi), with θ = (θ1, ..., θN) ∈M.

θ is the phase vector and ωi are the natural frequencies. For their purpose authors
rewrite it as θ̇ = W + V (θ), where W is the equilibrium unperturbed dynamics
and V the non-equilibrium perturbation. They calculate the phase space volumes
variation rate (1.3),

Λ = ∇θ · V = K(1−NR2).
They consider St : M →M the flow determined by the ODE system θ̇ = V (θ)
and dµ0(θ) = f0(θ)dθ the probability measure on M. They assume µ0 invariant
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under the unperturbed dynamics W, at time t = 0 the dynamics is perturbed and
the perturbation V remains ∀t > 0. Equation (1.23) expresses the average ⟨O⟩t
in terms of a correlation function computed with respect to f0, the non-invariant
density, which is only invariant under the unperturbed dynamics. The full range of
applicability of this theory is still to be identified. However, it obviously applies to
smooth dynamics, such as the Kuramoto dynamics.

In this article authors focus on the case of identical oscillators: W = ω1. For
this Kuramoto dynamics, θ̇ = W + V (θ), one has:

f0 = (2π)−N ; Ωf0,V = K

N

NØ
i,j

cos(θj − θi)−K ∈ C∞.

A very interesting quantity for studying the convergence of the system is precisely
the observable O = Ωf0,V ; from (1.23) one has the response formula for ⟨Ωf0,V ⟩t.

It is well known that the solutions of this system converge, as t→∞, either to
a complete frequency synchronized state θi = φ ∀i, denoted by (N,0), or to a state
(N-1,1): θi = φ, θi∗ = φ+ π. The authors demonstrated by means of (1.23) that
(N − 1, 1) has 0-measure and that

limt→∞⟨Ωf0,V (Stθ)⟩ = K(N − 1) ∀θ /= (N − 1,1).

K(N − 1), maximum of Ωf0,V in T N , corresponds exactly to (N,0)-synchronization.
In conclusion, they compare the exact response formalism with the standard

linear response. With an expansion calculation in the variable ϵ they obtain a
generalized linear dissipation formula:

⟨O⟩t,ϵ = ⟨O⟩0 + ϵ
Ú t

0
⟨(O ◦ Sτ

0 )Ωf0,Vp⟩0dτ.

Comparing this with (1.23) they find that ∀ϵ > 0 the difference of the two responses
is small at small times, but it diverges linearly as time passes:

⟨Ωf0,Vϵ⟩t,ϵ = ⟨Ωf0,Vϵ⟩t,ϵ + o(ϵ2)t.

The exact response characterizes the synchronization transition, while the linear
response does not.

We can conclude that exact expressions are necessary, not only in the presence
of large perturbations, as obvious, but also for small perturbations, in the presence
of resonance phenomena. Furthermore, many theoretical results can be derived
from the exact expression before they can be numerically computed in simulations.
This theory holds in presence of arbitrarily large perturbations and applicable to
both Hamiltonian and dissipative deterministic particle systems. L. Rondoni and L.
Iannella also extended its validity to time-dependent stochastic perturbations [23].
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In the following, we will develop its quantum translation, we think this approach
could form a good basis for a quantum exact response theory. Then, we will analyse
the new formalism obtained from different points of view.
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Chapter 2

Quantum translation of the
Dissipation Function
response theory

In this chapter, we will develop the quantum translation of the classical exact
response theory (1.23). We will take the article [2] as a basis and will try to carry
some of the considerations offered in this article also into the quantum world.
First, we will apply the quantization rule to the Dissipation Function, defining
its corresponding operator. Then, we will derive the quantum exact response
expression, based on this new operator, in a form analogous to (1.23).

Here and throughout the rest of the thesis, we will work in finite-dimensional
Hilbert spaces: quantum operators are simple matrices. Usually, many quantum
systems are treated in infinite dimension, but our choice gives us several advantages
with respect to our purposes. It will allow us to focus on the construction of the
new formalism, avoiding complex technicalities of functional analysis. Furthermore,
we will have the possibility to easily test the validity of the results obtained through
numerical simulations. This choice is less limiting than it appears. Systems
expressible in finite-dimensional Hilbert spaces are very important research objects
today. Qubits, basic information units in quantum computing, belong precisely to
this class of systems.

2.1 Definition of the dissipation operator
The Dissipation Function can be used and defined in various different ways. An
important and very interesting result is its use in calculating the evolution of the
ensemble average ⟨O⟩t in terms of averages with respect to the initial (equilibrium)
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distribution f0 with the formula (1.23). Our principal aims are to find a good
definition in quantum mechanics for the Dissipation Function and then try to derive
an exact formula for observables expectation values ⟨O⟩t similar to the classical
one.
In this section, we will apply the quantization rule to the Dissipation Function. To
do this, we first recall its classical definition. In the previous chapter, we presented
the Dissipation Function in the context of dynamical systems [2]. Considering
a system whose microscopic phase Γ ∈ M evolves according to the equation of
motion Γ̇ = G(Γ), whose solution is represented by StΓ, the Dissipation Function
is defined as

Ωft(Γ) ≡ −[Λ(Γ) +G(Γ) · ∇Γlnft(Γ)].
In this form, it plays an important role in expressing the generalized Liouville
equation, as shown in eq. (1.22). However, the Dissipation Function arises in the
different context of fluctuation theorems. Its integral form is the one with the
greatest physical interpretability in non-equilibrium thermodynamics. The integral
in time, between t = 0 and t = s, of the Dissipation Function in this context is

Ωf0
0,s =

Ú s

0
Ω0(SuΓ)du ≡ ln

A
f0(Γ)
f0(SsΓ)

B
− Λ0,s(Γ) = ln

f0(Γ)
f−s(Γ); (2.1)

this definition form may be better than others for applying the quantization rule.

In classical mechanics and in the theory of dynamical systems, the Dissipation
Function is well-defined even for complex dynamics. To construct the quantum
analogue, however, it is appropriate to start from very simple dynamics and only
then generalize to more interesting dynamics. We will move in steps, we will
introduce a small generalization only after having ascertained the correctness and
coherence of what we discovered in the previous step. We start from a Hamiltonian
quantum dynamics which is time independent:

H = H0 + λHext. (2.2)

Then, the phase space expansion rate (1.3) is null, Λ = 0.
Let’s start with some correspondences between classical and quantum entities

observing (1.23). f0(Γ) is clearly in analogy with the initial density operator
ρ(Γ,0). Quantum densities depend on time and phase point Γ, but in a less explicit
way than in the classic case due to the equivalence between the Schrödinger and
Heisenberg pictures and being operators. To emphasize the quantistic nature of the
density operator ρ compared to a time-dependent scalar function in phase space,
we will not make explicit the dependence on Γ. Therefore, we have that f0(Γ) is
in correspondence with ρ0, O ◦ Ss with Os, the observable operator in Heisenberg
picture evolved over time, eq. (1.7). For the density matrix ρs, evolved over time
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according to the quantum Liouville equation (1.12), the problem is more delicate:
it should match with f(Γ, s), but with zero expansion rate could be in analogy
also with f(SsΓ,0). Furthermore, if we want to pull something quantum out of
equation (2.1), this last substitution seems immediate.

One of the main purposes of this thesis is to find a good definition for the
quantum operator relating to the Dissipation Function. In quantum mechanics,
the definition of a generic operator A is affected by the so-called ordering problem,
which is unsolved. For example, the same classical function x2

1p1 can be written in
three ways

x1p̂1x1 = x2
1p̂1 − iℏx1, x2

1p̂1, p̂1x
2
1 = x2

1p̂1 − 2iℏx1,

which are three different quantum operators. Writing symmetrized expressions (to
obtain Hermitian operators) does not solve the problem, since many symmetrized
equivalent forms are available. The validity of a definition can only be checked a
posteriori. To limit this type of problem as much as possible, we choose to start
the quantization process from equation (2.1). We could start from other classical
definitions that are more convenient and easier to quantize, such as

∂ft(Γ)
∂t

= Ωft(Γ)ft(Γ). (2.3)

However, the form (2.1) is the most used definition in the literature in classical
mechanics, as it is better physically interpretable. In the quantization operation it
is therefore appropriate to remain as faithful as possible to this definition, which
we could consider, in a certain sense, the "original one". In this way, we could
have more hope of obtaining an operator physically interpretable as dissipation.
However, in equation (2.1) there is a density that has evolved backwards in time,
f−s(Γ), in view of the next quantization operation it is better to rewrite it by taking
the value t = −s in Ω0,t, thus obtaining

Ωf0
0,−s = ln

f0(Γ)
fs(Γ) = lnf0(Γ)− lnfs(Γ).

Now we can apply the quantization rule to the latter. In conclusion, the quantum
analogue of definition (2.1), could be:

Ωρ0
0,−s = lnρ0 − lnρs. (2.4)

Here we note that in quantum mechanics the property of the logarithm is no longer
valid:

ln

A
A

B

B
/= ln(A)− ln(B);
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because, if it were valid, it would lead to a contradiction:

AB−1 /= B−1A⇒ ln(A)− ln(B) = ln(AB−1) /= ln(B−1A) = ln(A)− ln(B).

However, it is lawful to apply that logarithm property to the classical definition
first and apply the quantization rule later, like we just did. In this way, expression
(2.4) seems to be well justified. This ambiguity has similar roots to those of the
unsolved ordering problem. Indeed, as already mentioned previously, there are
many different ways to define this operator, for example, we could have chosen to
define the quantum analogue as

Ωρ0
0,−s = ln

1ρ0

ρs

2
.

A good definition will have good mathematical properties and will offer exact
physical predictions. We choose the quantum expression (2.4). Starting from this
point, to obtain the definition of the quantum dissipation function we can use the
fundamental theorem of integral calculus, taking the incremental limit for s→ 0,
we have:

Ω0 = lim
s→0

lnρ0 − lnρs

−s
= lim

s→0

lnρs − lnρ0

s
. (2.5)

Then we could write
Ω0 = d

dt
lnρt|t=0 = ρ−1

0
∂

∂t
ρ0. (2.6)

Perhaps we were not rigorous enough, but the result obtained coincides with
what is known in classical mechanics. Indeed, looking at equation (2.3) presented
previously, also in classical mechanics we have

Ωf0(Γ) = f−1
0 (Γ)∂f0(Γ)

∂t
.

Reassured by this analogy, we consider equation (2.6) valid. We can use the Von
Neumann equation (1.12) to express ∂tρ0, thus obtaining the final expression. We
therefore define the quantum dissipation operator as follows.

Definition 2.1.1. Let ρ0 be the initial density operator and H = H0 + λHext the
time-independent Hamiltonian operator. The non-hermitian dissipation operator
can bedefinedd as

Ω0 ≡ 1
iℏ
ρ−1

0 [H, ρ0]. (2.7)

This is the first definition found for the quantum analogue of the classical
Dissipation Function, to underline its quantum nature we will call it ’dissipation
operator’. For notational convenience, we have replaced the superscript ρ0 with 0.
It is necessary to emphasize once again that the definition of the quantum analogue
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of the Dissipation Function is not unique. We will see later that this definition is
good, as it will allow us to derive naturally an exact response formula that works
in physical applications.
However, better definitions could exist, as this one has two problems. Firstly,
dissipation operator (2.7) is not hermitian. The spectrum of a non-hermitian
operator belongs to the set of complex numbers C, consequently one has

⟨Ω0⟩ ∈ C.

With a non-Hermitian Ω0, the association with physical observables becomes much
more difficult. The first thing that comes to mind is to symmetrize it to make it
Hermitian. We will explore this approach in chapter 4.

The second problem concerns the invertibility of ρ0. Whenever ρ0 represents a
pure state, then it is not invertible. More generally, it is not invertible whenever it
is not of full rank (i.e. whenever it is not bijective). However, there are different
ways to deal with these cases. A first approach consists in reducing the dimension
of the Hilbert space. Another one is to assign very small probability pϵ to every
zero-probability state. ρ0 becomes invertible, in this way we can exploit Ω0 and
subsequently analyse the limit for pϵ → 0. In chapter 3, we will show that this last
approach still offers not bad numerical results.
We also highlight that this invertibility problem is well known to exist even in
classical mechanics. The equilibrium density f0 is not always invertible. Let us
consider, for example, the dynamic v̇ = −γv; this can describe, for instance, the
speed of a body dampened by friction. Whatever the initial probability distribution
in phase space, the equilibrium distribution is concentrated in the single fixed point
v = 0. Even in this classic case, there is therefore this problem of invertibility of
the equilibrium distribution f0.
This can be more simply seen as a delimitation of the validity regime: the dissipa-
tion operator formalism perfectly describes mixed states, while for pure states it is
better to adopt other methods.

In summary, with Λ = 0, we found:

Classical: Ωf0(Γ) = −G(Γ)∇Γlnft(Γ) → Quantum: Ω0 = 1
iℏ
ρ−1

0 [H, ρ0].

We have expressed the Hamiltonian as H = H0 + λHext; however the definition of
the dissipation operator and all the results we will find later are actually valid for
every time-independent Hamiltonian H of any kind, given any (invertible) initial
density ρ0.

Applicability in general : H, ρ(0) = ρ0. (2.8)
There is no mathematical necessity to distinguish H0 and Hext in H. The choice to
highlight this particular form, as in eq.(2.2), concerns exclusively the interpretation
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of the results and a better preparation for future extensions. Form (2.2) highlights
a perturbation. This, for simple mathematical convenience, should be thought of
as being turned on at the initial instant, t = 0, and kept constant over time, i.e.

H(t) = H0 + θ(t)λHext,

with θ(t) Heaviside function. H0 represents the equilibrium dynamics described by
the invariant ensemble density ρ0, equilibrium density operator with respect to H0:

[H0, ρ0] = 0.

Observables expectation values are therefore constant over time with respect to this
equilibrium dynamics H0. Hext introduces a perturbation: ρ0 is no longer invariant
and the observables expectation values will return to being time-dependent. In
classical physics, the achievement of a new steady state could be studied precisely
in relation to the relaxation to equilibrium of certain observables [2]. One can
think of carrying the same considerations for quantum systems; highlighting the
perturbation in H is a good starting point from this perspective.
Anyway, we will see that if we do not highlight this distinction between H0 and
Hext, considering the general dynamics (2.8), the new formalism will work in the
same way. In this more general context, Ω0 could be better associated with the
mathematical distance between ρ0 and ρeq, a measure of entropy. This result has
already been demonstrated for classical dynamical systems [2] and may have a
quantum analogue.

In summary, we highlight the disturbance as in (2.2) to reiterate that the ideal
location of our work is in the field of response theory. The new formalism we are
building can be a good basis for deriving in future an exact response formula for
time-dependent perturbations or open systems. This is a very ambitious expec-
tation since, as already noted previously, there is no exact response theory for
these cases yet. However, it is not just an unfounded hope since this type of ex-
act response based on the Dissipation Function already exists in classical mechanics.

We carry out some other considerations relating exclusively to the dissipation
operator just defined. Firstly, it is mathematically usable in practical applications,
meaning it is not an overly abstract operator. Secondly, in classical physics the
dissipative flux [24] is defined as

J(Γ) = −λ{Hext,H0};

applying the quantization rule to the latter we obtain

Ĵ = − λ
iℏ

[Hext,H0].
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Expression (2.7) should be proportional to Ĵ but, in general, this is not immediate.
Anyway, we can carry out this analysis for particular cases. For instance, if ρ0 is
the equilibrium canonical distribution for H0, one has

ρ0 = ρeq =
Ø

n

e−βE0
n

Z
|ψ0

n⟩⟨ψ0
n| =

e−βH0

Z
.

Obviously, ρ0 commutes withH0: [H0, ρ0] = 0. Taking advantage of these considera-
tions we can conclude that Ω0, in this particular case, presents some proportionality
with the dissipative flux Ĵ :

Ω0 = λ

iℏ

A
e−βH0

Z

B−1

[Hext,
e−βH0

Z
] = λ

iℏ
e+βH0 [Hext, e

−βH0 ] =

λ

iℏ
K(H0)[Hext, F (H0)] ∝ −

λ

iℏ
[Hext,H0] = Ĵ ⇒ Ω0 ∝ Ĵ .

K(H0) and F (H0) are two matrices dependent on H0. We have not investigated
the type of proportionality in detail. This is beyond the scope of our thesis and
can be a starting point for other research in this direction. In any case, some
proportionality seems to exist, this strengthens the possibility of associating the
dissipation observable with the operator Ω.

We limited ourselves to defining Ω at the initial instant t = 0. In chapter 5 we
will study its temporal evolution. However, we highlight here that thanks to the
maintained generality, remember (2.8), any instant t = t∗ can be considered as
initial of the quantum dynamics: the dissipation operator is therefore well-defined
at any time instant.

The main aim of this thesis is to study the role of the dissipation operator in
the exact calculation of ⟨O⟩t. Now we are going to use definition (2.7) to carry out
precisely this analysis.

2.2 Derivation of the quantum exact response
expression

In this section, we will exploit the dissipation operator (2.7) to derive the quantum
analogue of the classical expression (1.23) for the calculation of ⟨O⟩t . Before doing
this, however, let’s introduce a series of interesting properties of the dissipation
operator (2.7).

Proposition 2.2.1. The expectation value of the dissipation operator calculated
with respect to the density operator ρ0 is always null,

⟨Ω0⟩0 = 0.
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Proof.

⟨Ω0⟩0 = Tr

A
ρ0
1 i
ℏ
ρ−1

0 [H, ρ0]
2B

= i

ℏ
Tr(Id · [H, ρ0]),

now we can use first the linear property and then the cyclic property of the trace,
i

ℏ
Tr(Hρ0 − ρ0H) = i

ℏ
1
Tr(Hρ0)− Tr(ρ0H)

2
= i

ℏ
1
Tr(Hρ0)− Tr(Hρ0)

2
= 0

We conclude that ⟨Ω0⟩0 = 0.

Another important property is the following.
Proposition 2.2.2. The initial derivative of the dissipation operator expectation
value is always positive,

d

ds
⟨Ω0⟩s|s=0 ≥ 0

Proof. We can show this statement by making the incremental limit explicit in the
derivative operation.

d

ds
⟨Ω0⟩s|s=0 = lim

s→0

1
s

[⟨Ω0⟩s − ⟨Ω0⟩0] = lim
s→0

1
s

[Tr(ρsΩ0)− Tr(ρ0Ω0)] =

Tr
1

lim
s→0

ρs − ρ0

s
Ω0
2

= Tr
1∂ρ0

∂t
Ω0
2
.

Now we can use equation (2.6) to express ∂ρ0
∂t

in a much more convenient way,
∂ρ0

∂t
= ρ0Ω0, (2.9)

so the last expression becomes

Tr
1
ρ0Ω0Ω0

2
= ⟨(Ω0)2⟩0 ≥ 0.

For now, we consider these two propositions to be purely mathematical proper-
ties, but we will see later that they could be essential to offer interpretations of the
dissipation operator, in analogy to those of the classical dynamical systems [2]. In
fact, the classical Dissipation Function satisfies the same properties.

Now we derive one of the main results of this thesis.
Proposition 2.2.3. Let ρ0 be the initial density operator and H = H0 + λHext

the time-independent Hamiltonian operator. The expectation value at time t of a
generic observable O can be calculated using the non-Hermitian dissipation operator
(2.7) by means of the expression

⟨O⟩t = ⟨O⟩0 +
Ú t

0
⟨Ω0Os⟩0ds. (2.10)
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Proof. Let’s derive a useful expression for d
ds
⟨O⟩s:

d

ds
⟨O⟩s = lim

h→0

1
h

[⟨O⟩s+h − ⟨O⟩s] = lim
h→0

1
h

[Tr(Oρs+h)− Tr(Oρs)] =

lim
h→0

1
h

[Tr
1
OU(s+ h)ρ0U

†(s+ h)
2
− Tr

1
OU(s)ρ0U

†(s)
2
].

The usual cycling property of the trace comes to our aid once again, we have that
the latter is equal to

lim
h→0

1
h

[Tr
1
U †(s+ h)OU(s+ h)ρ0

2
− Tr

1
U †(s)OU(s)ρ0

2
]. (2.11)

We recall that, thanks to the group property of the operator U(t), we can write

U(s+ h) = U(h)U(s), U †(s+ h) = U †(s)U †(h).

Moreover, remembering that observables and density matrix evolve "at opposite
times", expression (2.11) is equal to

lim
h→0

1
h

[Tr
1
U †(h)OsU(h)ρ0

2
− Tr

1
Osρ0

2
] =

lim
h→0

1
h

[Tr
1
OsU(h)ρ0U

†(h)
2
− Tr

1
Osρ0

2
] =

Tr
1
Os lim

h→0

ρh − ρ0

h

2
= Tr

1
Os
∂ρ0

∂t

2
.

Now we can use, as already done previously, equation (2.9) to insert Ω0:

Tr
1
Os
∂ρ0

∂t

2
= Tr

1
Osρ0Ω0

2
= Tr

1
ρ0Ω0Os

2
= ⟨Ω0Os⟩0 (2.12)

In conclusion we have:
d

ds
⟨O⟩s = ⟨Ω0Os⟩0. (2.13)

This last equation is very important because enable us to write the exact formula
for the expectation value of an arbitrary observable at time t simply by integrating,
thanks to the fundamental theorem of integral calculus, we have

⟨O⟩t = ⟨O⟩0 +
Ú t

0

d

ds
⟨O⟩sds = ⟨O⟩0 +

Ú t

0
⟨Ω0Os⟩0ds

We highlight that, in proposition 2.2.3, H0 is considered the equilibrium dy-
namics, for which ρ0 is the corresponding invariant equilibrium distribution. λHext
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represents the Hamiltonian perturbation, which is arbitrarily large and time inde-
pendent. It should be considered as turned on at the initial instant. The reasons
for this distinction in H are the same as those stated previously, the validity of the
expression is however more general, as in (2.8).

Let us analyse this statement. First, we note the good similarity with the
analogous expression (1.23) in classical mechanics. Secondly, we highlight that
⟨O⟩t can be calculated simply using the Heisenberg or the Schrödinger picture,

⟨O⟩t = Tr(ρtO) = Tr(ρ0Ot) = Tr(ρ0e
it
ℏ HOe− it

ℏ H);

indeed, also our equation (2.10) requires the knowledge of the exponential Hamilto-
nian e it

ℏ H. Proposition 2.2.3 can be seen as a different way to rewrite what is already
known. This is true, but it does not mean that it is a trivial or irrelevant result. In
general, finding different formalisms to rewrite the same result is often a great way
to discover different points of view on a theory. The same problem can be very
complicated in a certain formalism and much simpler in another. Knowing different
formalisms gives more choice in which to use. Furthermore, finding a good, different
point of view can be an important first step towards new discoveries. A clear
example of this is represented by the equivalence of Heisenberg and Schrödinger
pictures. They are two exactly equivalent ways of formalizing quantum mechanics.
However, both are of essential importance, one never suppresses the other, they
coexist. The Heisenberg picture has proven to be decisive in numerous discoveries
thanks to its greater similarity to classical mechanics through the quantization
rule and is the basis, for example, of the second quantization field theory. On
the other hand, the Schrödinger picture is still important and used today as it
is more convenient in other applications, is the basis of probabilistic interpreta-
tion and offers a better point of view for theoretically understanding quantum states.

Obviously, it is not enough to rewrite an equation to discover something new, it
is necessary to find an original and promising way to do it. Equation (2.10) seems
to possess these qualities thanks to its analogy with the classical expression (1.23).
Let’s try to make some initial suggestions on the advantages it could bring.

The quantum exact response formula could offer simplifications in ensemble
problems. It is expressed in a very good form to fit, with the necessary extensions,
quantum dynamics more complicated than a simple time-independent Hamiltonian.
It can be a good starting point to adapt this discussion to time-dependent Hamil-
tonians and to more general dissipative dynamics. This could lead to revolutionary
results, as these types of dynamics in quantum mechanics are only treated approxi-
mately. However, this will require hard research work to be able to introduce these
extensions correctly.
Moreover, this formalism is based on the dissipation operator, in classical mechanics
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this is a physical observable linked to dissipation and is also widely studied from
other points of view. Properties (2.2.1) and (2.2.2) will allow us to offer some
interpretations of the dissipation operator in analogy with classical mechanics.
It is true that in quantum mechanics, for constant Hamiltonians, the advantage
typical of classical mechanics of evolving only the observables is lost. In fact, once
U(t) has been defined, one can indifferently make the observables or the density
evolve, as in eq.(1.15). However, in quantum dissipative dynamics, a way to evolve
only the observables, while maintaining the probability fixed, has not yet been
found. Extending expression (2.10), it might be possible. Finally, the classical
exact response based on the Dissipation Function is recent and still analysed today.
The quantum translation may suggest new discoveries for both the corresponding
classical theory and general quantum systems behaviours; or it could benefit from
future new results of the classical approach.

In classical physics, ⟨AB⟩0 is the correlation function of A and B calculated
with f0. In quantum mechanics, it can still be interpreted as a correlation function,
however, it is necessary to highlight important differences. In general, Ω0 and O
doesn’t commute and thus

⟨Ω0Os⟩0 /= ⟨OsΩ0⟩0.

There may seem to be something wrong in the exact formula (2.10): we know that
the expectation value is a real quantity only for hermitian observables; meanwhile
it is not clear in general if operator Ω0Os is Hermitian. However, if the proof is
correct, we have remained faithful to the rules of quantum mechanics and ⟨Ω0Os⟩0
will always turn out to be a real quantity. We will see in the next chapter that this
is also confirmed by several numerical tests. Therefore, we absolutely cannot use
⟨OsΩ0⟩0 in the equation (2.10) because it would destroy the entire construction by
providing incorrect results.

There are correlation functions with better properties (in the sense of closer
to those of classical mechanics) than the one used previously. Two widely used
correlation functions of this type are

Symmetric correlation ⟨A;B⟩0 = Tr

C
ρ0
1
AB +BA

21
2

D
,

Kubo canonical correlation ⟨A0;Bt⟩K0 = 1
β

Ú β

0
dλTr

è
ρ0e

λHA0e
−λHBt].

(2.14)

We would prefer to use them in equation (2.10) but we can’t just apply a brutal
substitution, this would destroy the entire derivation again. This substitution
requires a demonstration which could lead to a different form for the formula.
Indeed, eq. (2.13) may no longer hold for these new correlations keeping the
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Quantum translation of the Dissipation Function response theory

same definition for the dissipation operator. However, in this case, it is not very
important to look for a way to insert a different type of correlation into equation
(2.10). If equation (2.10) works well then it is reasonable to keep it in this form,
changing correlation type would not add anything significant. Anyway, it is worth
underlining that some improvements for the dissipation operator definition are
possible and a different type of correlation could be very useful in the attempt to
derive a formula for ⟨O⟩t using a different dissipation operator.

We also notice a very good behaviour with respect to the easiest observable of
all, the constant function. Choosing O = 1 we have that

⟨1⟩t = ⟨1⟩0 +
Ú t

0
⟨Ω01⟩0ds = 1 + 0t = 1,

where in the second equality we used proposition 2.2.1. This result can be interpreted
as a consistency condition: the probabilistic interpretation of the density operator
is preserved, indeed we have just shown that the trace of the density operator
remains constant over time using equation (2.10),

⟨1⟩t = Tr(1ρt) = 1.

In classical mechanics, the origin of the name Dissipation Function comes
from the fact that this quantity corresponds precisely to the generalised entropy
production: product of dissipative force and thermodynamic flux.
This is clear by comparing the classical expression (1.23) with those obtained using
the TTCF for the time evolution of ⟨O⟩t, from an initial distribution f0, for a
thermodynamic system under the influence of an external field Fext [2].

TTCF : ⟨O⟩ft = ⟨O⟩f0 −
V

kBT

Ú t

0
⟨(O ◦ Ss)J · Fext⟩f0ds. (2.15)

Through this comparison, one can make the phenomenological association between
Ω0, f0 and the energy dissipation due to the external field, whence the appellation
‘Dissipation Function’.

Another interesting interpretation is the one that Ω assumes in the more general
context of dynamical systems. In this context,

⟨Ωf0
0,s⟩f0 = ⟨ln(f0/f−s)⟩0 ≥ 0 (2.16)

is a relative entropy D(f0∥f−s), called also Kullback–Leibler divergence [2]. We
therefore recover in equation (2.16) the second-law inequality, but interpreted in
terms of relative entropies and independent of any thermodynamic context.
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The first interpretation (2.15) is interesting for assigning the physical meaning
of dissipation to Ω0 in quantum thermodynamic systems. For this type of systems
a good way to represent dissipation has not yet been found and therefore it is worth
investigating this first way further.

Furthermore, equation (2.10) is also applicable to quantum non-thermodynamic
systems. The second interpretation (2.16) could therefore make Ω0 an observable
with a very precise mathematical meaning. Thanks to properties 2.2.1 and 2.2.2
this second interpretation is still valid in quantum mechanics. In fact, combining
them, we have that

∃h > 0 : ⟨Ω0
0,s⟩0 ≥ 0 for 0 < s < h. (2.17)

Furthermore, the only density operators that are dissipation free, i.e. ⟨Ω0
0,s⟩0 = 0,

are those invariant with respect to the dynamics. A density operator ρ is invariant
under the dynamics if [H, ρ] = 0. In this sense, we can say that

ρ0 is dissipation free ⇐⇒ Ω0 = 0.

In summary, in this chapter we have applied the quantization rule to the
Dissipation Function, offering its possible quantum definition; we then used the
new operator to derive expression (2.10) for the calculation of ⟨O⟩t, in analogy to
the classic formula (1.23). We analysed the results obtained, highlighting their
potential and weak points. It is now necessary to numerically test the validity of
these results. This is what we are going to do in the next chapter, applying the
new formula to simple quantum systems.
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Chapter 3

Numerical tests for the
quantum exact response
expression

Even if we tried to remain rigorous in demonstrating the new formula (2.10), we
could have unknowingly stumbled upon some conceptual errors. For example, we
may not have well-defined the dissipation operator, or we may have used a property
that is valid in classical mechanics but not in quantum mechanics. The new formula
seems well demonstrated, but to fully ascertain its validity it is necessary to test
it on theoretically well-known physical systems. In this thesis, we only consider
finite-dimensional quantum operators. There are numerous quantum systems of
this type of fundamental importance. In this section, we will apply equation (2.10)
to quantum systems with only two energy levels, the simplest quantum systems
possible. We will always work in a two-dimensional Hilbert space, and we will
compare the results predicted by the new expression with those well known theo-
retically. Expression (2.10) has the advantage of being easily treatable numerically.
We can therefore write a simple Matlab code to study its behaviour and analyse
the predicted results.
In Appendix A, we report the final Matlab code used for the applications of this
chapter, it also contains the implementation of the expression with the Hermitian
dissipation operator that we will derive in the next chapter.

First, we recall the definition of Pauli matrices,

σx =
C
0 1
1 0

D
, σy =

C
0 −i
i 0

D
, σz =

C
1 0
0 −1

D
, (3.1)

which are of fundamental importance in quantum mechanics. The first physical
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Numerical tests for the quantum exact response expression

system to which we apply expression (2.10) is a spin particle in a magnetic field.
This is a very well known system in the theory of quantum mechanics. We will
therefore be able to compare the results predicted by the quantum exact response
formula with results that are well known theoretically and certainly valid.
For mathematical convenience, we will always set ℏ = 1 and treat all physical
quantities as dimensionless.

3.1 Applications to spin problems
Suppose that we initially have a spin 1

2 particle in a magnetic field Bz directed along
the z−axis. The dynamics of this physical system is described by the Hamiltonian

H0 = µBBzσz = ℏω0

2 σz.

The system has reached a steady state, which is described, for example due to our
partial ignorance of the system, by the following ensemble:

the particle is in spin up state | ↑⟩ = (1, 0)′ with probability p↑,

the particle is in spin down state | ↓⟩ = (0, 1)′ with probability p↓.

This is a quantum mixed state represented by the initial density matrix

ρ0 = p↑| ↑⟩⟨↑ |+ p↓| ↓⟩⟨↓ | =
C
p↑ 0
0 p↓

D
. (3.2)

This density operator is invariant because | ↑⟩ and | ↓⟩ are eigenfunctions of H0
and we have

[H0, ρ0] = 0.

Every observable in equilibrium dynamics H0 is constant over time. We can show
this result by remembering that [eiH0t, ρ0] = 0 since ρ0 commutes with H0. One
has

⟨O⟩t = Tr(U(t)ρ0U
†(t)O) = Tr(U(t)U †(t)ρ0O) = Tr(Idρ0O) = ⟨O⟩0.

By calculating this expectation value with equation (2.10), since Ω0 = 0, we always
obtain ⟨O⟩t = ⟨O⟩0. We also note here that for every perturbation of the type

H = H0 + λσz,

ρ0 is dissipation-free because Ω0 = 0 and therefore ⟨O⟩t = ⟨O⟩0 ∀O, which is in
perfect agreement with theoretically well-known results.
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Numerical tests for the quantum exact response expression

Let us now analyse more interesting perturbations. For example, we could turn
off the magnetic field along z and turn it on along x. This perturbation can be
represented by

Hext = ωx

2 σx −
ω0

2 σz, λ = 1,

then the final perturbed Hamiltonian is

H = H0 + λHext = ωx

2 σx. (3.3)

Now ρ0 is not anymore invariant for H. The solution of this problem is a well-known
result of quantum mechanics. One has, for example for the observables O = σi,
the following theoretical results:

⟨σx⟩t = 0; ⟨σy⟩t = (p↓ − p↑)sin(ωxt); ⟨σz⟩t = (p↑ − p↓)cos(ωxt). (3.4)

These results can be easily shown using the Heisenberg picture. Exploiting eq.
(1.16), one can derive the following identity for Pauli matrices:

eiασk = Id · cosα + iσksinα. (3.5)

This result can be used to calculate operators σi evolved at the time t. By taking as
example the observable O = σz, we can calculate the Heisenberg evolved operator
σz,t. For the perturbed Hamiltonian H we have

σz,t = ei ωx
2 σxtσze

−i ωx
2 σxt =C

cos(ωxt
2 ) isin(ωxt

2 )
isin(ωxt

2 ) cos(ωxt
2 )

D C
1 0
0 −1

D C
cos(ωxt

2 ) −isin(ωxt
2 )

−isin(ωxt
2 ) cos(ωxt

2 )

D
=C

cos(ωxt) −isin(ωxt)
+isin(ωxt) −cos(ωxt)

D
.

While for σz evolved according to the equilibrium Hamiltonian H0 we would have

σz,t = ei
ω0
2 σztσze

−i
ω0
2 σzt = σze

i
ω0
2 σzte−i

ω0
2 σzt = σz,

because [σz, e
i

ω0
2 σzt] = 0.

According to the Heisenberg picture, the expectation value of σz at time t is
simply ⟨σz⟩t = Tr(ρ0σz,t). Then, for the perturbed Hamiltonian dynamics we find

In H : ⟨σz⟩t = Tr

C cos(ωxt) −isin(ωxt)
+isin(ωxt) −cos(ωxt)

D C
p↑ 0
0 p↓.

D = (p↑ − p↓)cos(ωxt).

It is interesting to highlight the difference with the equilibrium dynamics:

In H0 : ⟨σz⟩H0
t = Tr(ρ0σz) = p↑ − p↓ = ⟨σz⟩H0

0 .
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With the same procedure we obtain the expressions for ⟨σx⟩t and ⟨σy⟩t reported
in (3.4).

We can therefore begin to study validity of the quantum exact response formula
(2.10) comparing its results with (3.4). We calculated ⟨σx⟩t, ⟨σy⟩t and ⟨σz⟩t for the
physical system H and initial density matrix ρ0 just defined, using new expression
(2.10). In figure 3.1 we plotted the predicted values for ⟨σy⟩t and ⟨σz⟩t as a function
of time, choosing p↓ = 0.1 and p↑ = 0.9; ⟨σx⟩t is constant over time and equal to
zero.
The results obtained coincide perfectly with the theoretical ones in (3.4).

Figure 3.1: ⟨σy⟩t and ⟨σz⟩t calculated with quantum exact response expression
(2.10). t ∈ [0,2π], Hamiltonian (3.3), p↑ = 0.9, p↓ = 0.1 in (3.2), ωx = 1.
Predictions are correct.

These results already constitute a very important confirmation of the validity of
expression (2.10) for the calculation of ⟨O⟩t using the non-Hermitian dissipation
operator Ω0 previously defined. If we had made some conceptual errors in the
derivation, the predicted results would certainly not have been so good. Since we
tested it on a single physical system, constructed in the simplest way possible, there
could still be something conceptually wrong, but the correctness of the predicted
results would then be a very unlikely coincidence. However, to remove any doubt it
is necessary to test expression (2.10) on other different physical systems and more
general cases. This is what we are going to do in the rest of this chapter, physically
interpreting the results, and at the end of chapter 4, in a much more general way
and from a purely mathematical point of view.

To carry out comparisons in the field of response theory we can always consider
the spin particle in a magnetic field but changing the type of perturbation. It
is interesting to compare the results obtained with those approximated by linear
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response theory. We keep the same Hamiltonians H0, Hext but we vary the value
of λ arbitrarily. In this way we obtain

H = H0 + λHext = ω0

2 σz + λ(ωx

2 σx −
ω0

2 σz) = (1− λ)ω0

2 σz + λ
ωx

2 σx. (3.6)

From a physical point of view, we are decreasing the z-direction component of
the magnetic field, Bz, and increasing the x-direction component Bx, which was
initially null. We will compare the results obtained with those predicted by the
linear response theory. This will offer good approximate results only for small
values of λ. For this purpose it is necessary to recall Kubo linear response formula
(1.19) [10]. Kubo considers a perturbed dynamics of the type

Ht = H−K(t)A,

where K(t) is a time dependent external force applied from the infinite past,
t = −∞, when the system was at thermal equilibrium, described by an equilibrium
density matrix ρe, i.e. ρ(−∞) = ρe. A is a dynamical quantity conjugate to the
applied force K. For this system Kubo derives the linear response formula

⟨B⟩t = ⟨B⟩ρe + ∆B(t), ∆B(t) =
Ú t

−∞
dt′K(t′)ϕBA(t− t′),

ϕBA(t) = 1
iℏ
⟨[A,B(t)]⟩ρe ;

where B is an arbitrary observable and B(t) = e
i
ℏHtBe− i

ℏHt is the Heisenberg-
evolved operator according to the unperturbed dynamics H (different from the
total dynamics Ht, H /= Ht). The dynamics we are considering in (3.6) is simpler
than the latter and therefore Kubo’s formula is certainly adaptable to our problem.
We are taking a constant disturbance over time, we can consider it absent before
time t = 0 and impulsively turned on at t = 0. We can rewrite Kubo formula with
our notation and taking into account the simplifications. In the following scheme
we have on the left Kubo’s problem notation and on the right our notation

Ht = H−K(t)A → H = H0 + λHext

A→ −Hext;
K(t)→ λ(t) = θ(t)λ

where θ(t) is the Heaviside function. Kubo’s formula can now be rewritten for our
problem and simplified:

∆B(t) =
Ú t

−∞
dt′θ(t′)λϕBHext(t− t′).
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Thanks to the Heaviside function, the lower limit of integration is 0, indicating
that our system is in equilibrium until time t = 0, the latter becomes

∆B(t) =
Ú t

0
dt′λϕBHext(t− t′).

Now it is convenient to change the integration variable, t∗ = t− t′, obtaining

∆B(t) = −
Ú 0

t
dt∗λϕBHext(t∗) =

Ú t

0
dt′λϕBHext(t′)

The response function in our notation is

ϕBHext(t′) = − 1
iℏ
⟨[Hext, e

i
ℏH0tBe− i

ℏH0t]⟩0 = − i
ℏ
⟨[U †

0(t)BU0(t),Hext]⟩0,

where we used the subscript 0 in U0(t) to distinguish the evolution operator relating
to the equilibrium dynamics H0 from U(t) of the total dynamic H: U †

0(t)OU0(t) /=
Ot = U †(t)OU(t). In conclusion, by setting ℏ = 1, we obtain

⟨O⟩t = ⟨O⟩0 − iλ
Ú t

0
⟨[U †

0(t)OU0(t),Hext]⟩0dt′. (3.7)

Furthermore, the theoretical results are well known, the problem is easily solved
in Heisenberg or Schrödinger picture,

⟨O⟩t = Tr(Otρ0) = Tr(U †(t)OU(t)ρ0). (3.8)

To express operator Ot we proceed as already shown in the derivation of results
(3.4). The only difference is that now, for the exponential of the Hamiltonian
operator U(t) = e−iHt, the previously used identity (3.5) is no longer valid because
H /= ασi. However, the exponential of the H operator can still be calculated as
shown in the introduction chapter.

Therefore, we have calculated ⟨σi⟩t using the three expressions: non-Hermitian
dissipation operator expression (2.10), Kubo linear expression (3.7) and Heisenberg
picture expression (3.8) (which is the one surely correct). The calculations were
carried out numerically with the Matlab code of Appendix B. We compared the
results for different values of λ, ρ0, time interval and observable O. In figures 3.2 and
3.3 we show some graphs that well capture the behaviours of the three formulas for
O = σy, with initial equilibrium density matrix ρ0 in the form (3.2). Qualitatively
very similar results (as λ varies) were found for any Hermitian observable, and any
initial density operator ρ0 (in general form, not necessarily diagonal as in (3.2)).
The qualitative analysis of the comparison remains the same.
In summary, for very small λ the linear approximation is good and the difference
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between linear and non-hermitian Ω0 formulas is indistinguishable to the eye. As
λ increases, the linear approximation becomes increasingly worse (as expected),
while the Ω0−response continues to offer results in agreement with those of the
Heisenberg picture. Furthermore, the results of the linear theory worsen over long
times, while the expression (2.10) does not have this defect.

Figure 3.2: Comparison between linear (blue), Heisenberg (red) and dissipation
(black) responses for ⟨σy⟩t. (Left panel) λ = 0.001; (Right panel) λ = 0.01.
t ∈ [0,15π], p↑ = 0.75, p↓ = 0.25. ωx = ω0 = 1. The three responses coincide
for λ = 0.001. For λ = 0.01 the difference begins to be noticed over long times.
Ω−expression (2.10) still coincides with the Heisenberg picture (the correct one),
the linear response differs slightly over long times.

The linear response theory has offered numerous very important results and will
continue to be a fundamental theory whenever the perturbation is excessively com-
plex and inexpressible exactly. However, as already noted, it has clear limitations.
With this comparison, we are absolutely not stating that the new theory is already
better than the linear response theory. The H dynamics considered is so simple
that it would not even make sense to study it with the linear approximation and
our formula has not yet been generalized to more complex perturbations. However,
expression (2.10) is a very good basis from which to extend this method to even
slightly more complicated dynamics. If it were possible to achieve this, then we
would obtain an exact response (certainly better than an approximate method)
in dynamics for which a perturbative approach is still one of the most effective today.

In the next section we will continue to test expression (2.10) but we will abandon
the formH = H0+λHext, characterizing response theories, to study the new formula
behaviour on qubits. Qubits are quantum systems which are gaining ever greater
importance with the progress of technology. The simplicity of this type of systems
will still allow us to work in a two-dimensional Hilbert space using the dissipation
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Figure 3.3: Comparison between linear (blue), Heisenberg (red) and dissipation
(black) responses for ⟨σy⟩t. (Left panel) λ = 0.5; (Right panel) λ = 5.
t ∈ [0,2π], p↑ = 0.75, p↓ = 0.25. ωx = ω0 = 1. Ω−expression (2.10) still coincides
with the correct Heisenberg picture (the two curves overlap), the linear response
does not.

operator method.

3.2 Qubits and Rabi oscillations
The previous system formed by the 1

2 spin particle in a magnetic field B is a
quantum system with 2 states, there are only two energy levels. Any quantum
2-state system is called qubit. They are systems of extraordinary importance as
they constitute the basic unit of quantum information. Therefore, in quantum
computing, a qubit is the quantum analogous of a classic bit. In this section we
present some properties of the qubits, and then we will apply the new expression
(2.10) to these types of systems.
A qubit admits two states: |0⟩ and |1⟩. According to the laws of quantum mechanics,
it can be in a quantum superposition of states |0⟩ and |1⟩ . It is a unitary vector
|ψ⟩ in the 2D Hilbert space H = |0⟩ ⊗ |1⟩,

|ψ⟩ = a(t)|0⟩+ b(t)|1⟩, a(t), b(t) ∈ C.

Qubits present a very interesting geometric representation: quantum states can
be visualised using the Bloch sphere [25]. This seems initially strange, indeed
probability amplitudes are complex quantities and 4 degrees of freedom would seem
necessary for a correct representation. However, two degrees of freedom can be
removed. The first is removed using the normalization constraint

|a(t)|2 + |b(t)|2 = 1.
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The second remembering that the global phase of the state has no physically
observable consequences, so one can arbitrarily choose a (or b) to be real. The
quantum state can be represented using only two real coordinates, θ(t) ∈ R and
ϕ(t) ∈ R:

a = cos
θ

2 , b = eiϕsin
θ

2 ,

eiϕ is the physically significant relative phase. The pure quantum state of a qubit
is therefore represented by a point on the surface of the Bloch sphere, which has
a unit radius. Once an axis passing through the centre is fixed, it identifies two
poles, one corresponds to state |0⟩ and the other to state |1⟩. The measurement
process destroys the coherent superposition state and the state collapses to one of
the two poles. Thus, when we measure a qubit, we can obtain |0⟩ with probability
|a|2 and |1⟩ with probability |b|2. Projectors are important observables relative to
probabilities |a(t)|2, |b(t)|2, they are defined as

π0 = |0⟩⟨0|, π1 = |1⟩⟨1|.

These are very important operators because their expectation value at time t gives
the probability of finding the system in state 0 or 1 respectively,

p0(t) = Tr(ρtπ0) = Tr(|ψ(t)⟩⟨ψ(t)||0⟩⟨0|) =
Tr(⟨0||ψ(t)⟩⟨ψ(t)||0⟩) = Tr(a(t)a∗(t)) = |a(t)|2.

So far in this summary description of qubits we have focused on pure states, but
even mixed states can be visualized on the Bloch sphere. The density operator ρ for
a qubit system is always a 2x2 matrix that can be written as a linear combination
of the identity and the Pauli matrices:

ρ = 1
2(Id+ a⃗ · σ⃗) = 1

2

A
Id+ a1σx + a2σy + a3σz

B
; |⃗a|2 ≤ 1

The coefficient a⃗ is named ’Bloch vector’. The norm of the Bloch vector contains
information about mixedness. If the system is in a pure state |a| = 1 while if it is
in a mixed state |a| < 1. Pure states are therefore points on the unit surface of the
Bloch sphere while mixed states lie inside the sphere. When the Bloch vector is
null, |⃗a| = 0, the system is in a totally mixed state ρ = 1

2Id.

A qubit system always evolves according to a Hermitian Hamiltonian

H = c⃗ · σ⃗4, where σ⃗4 = (Id, σx, σy, σz) and c⃗ = (c0, c1, c2, c3) ∈ R4. (3.9)

For example, we choose
H = γσx. (3.10)
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If states |1⟩ and |0⟩ are eigenstates of the Hamiltonian (3.10), which we denote with
| →⟩ and | ←⟩ the behaviour is not very interesting to analyse. The expectation
value of an arbitrary observable, and so also of the projectors π0 and π1 is constant
in time. We therefore choose to study, from a physical point of view, the state of the
system along the z-axis (up and down). In other words, the state |0⟩ corresponds to
the vector | ↑⟩ = (1,0) and the state |1⟩ to | ↓⟩ = (0,1), which are not eigenvectors
of the Hamiltonian (3.10). This system presents the so-called Rabi oscillations [26].
If the initial condition is the pure state |ψ(0)⟩ = |1⟩, the probability of finding the
qubit in the state |0⟩ at time t is

p1
0(t) = ⟨π0⟩t = sin2(γt), (3.11)

where the superscript 1 indicates that the system is in state |1⟩ at the initial time
and the subscript 0 that we are measuring the probability that the system is in state
|0⟩ at time t. One can show equation (3.11) working in Heisenberg representation,

⟨π0⟩t = Tr
1
ρ0e

iγσxt|0⟩⟨0|e−iγσxt
2
,

and now, using identity (3.5),

eiγσxt = Id · cos(γt) + iσxsin(γt), e−iγσxt = Id · cos(γt)− iσxsin(γt).

In conclusion,

⟨π0⟩t = Tr
3 C0 0

0 1

D C
cos(γt) isin(γt)
isin(γt) cos(γt)

D C
1 0
0 0

D C
cos(γt) −isin(γt)
−isin(γt) cos(γt)

D 4
=

Tr
3 C 0 0
isin(γt)cos(γt) −i2sin2(γt)

D 4
= sin2(γt).

If the qubit is in a mixed ensemble state at time 0,

|ψ(0)⟩ =
|0⟩ with probability e0

|1⟩ with probability e1
e0 + e1 = 1,

the amplitude of the oscillations will decrease but the reference value around
which it oscillates continues to be 1

2 . This can be shown by repeating the previous
calculation for the new density matrix

ρ0 = e0|0⟩⟨0|+ e1|1⟩⟨1| =
C
e0 0
0 e1

D
.

Alternatively, more simply, we can use the properties of probability theory. Combin-
ing the concept of statistical uncertainty and quantum uncertainty the expectation
value becomes

⟨π0⟩t = e1p
1
0(t) + e0p

0
0(t). (3.12)
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We just calculated p1
0(t). Thanks to the symmetry of the system it is then clear

that p0
0(t) coincides with p1

1(t), which is the complementary probability of p1
0(t). In

conclusion,
p0

0(t) = p1
1(t) = 1− p1

0(t)

and, substituting this in (3.12), we can write

⟨π0⟩t = e1p
1
0(t) + e0(1− p1

0(t)) = e0 + (e1 − e0)p1
0(t).

We note that, if the initial state is a totally mixed state

ρ0 = 1
2 |0⟩⟨0|+

1
2 |1⟩⟨1| =

1
2Id, (3.13)

then the density operator is invariant, because the identity commutes with any
operator, [ρ0,H] = 0. This last mixed state actually coincides with the maximum
uncertainty, we know nothing about the qubit, and therefore it could be in one of
the two states with equal probability, this initial uncertainty remains constant over
time due to the oscillating dynamics represented by Hamiltonian (3.10).

Now we can study the behaviour of the quantum exact response formula with
respect to Rabi-oscillations. This is a case where it is of no significance to distinguish
between the form H0 + λHext and H. We are not considering any perturbation,
the dynamics is non-dissipative, as already mentioned, however, the formula is
certainly still valid. If the system is in the totally mixed initial state (3.13), then
the density matrix is invariant and consequently the dissipation operator is null,

[ρ0,H] = 0⇒ Ω0 = 0.

For this system it makes no sense to talk about physical dissipation, but it could
make sense to talk about "dissipation" with respect to probability densities. We can
say that ρ0, as a purely mathematical entity, is dissipation-free in the sense that
the corresponding dissipation operator is zero. Formula (2.10) correctly predicts
the following result

p0(t) = ⟨π0⟩t = ⟨π0⟩0 = 1
2 .

We start analysing the case of initial density matrix in form (3.2). Every time that
e0 /= e1, we can say that the density operator ρ0 is dissipative, in the sense that
Ω0 /= 0. Ωt could measure in time the distance of ρt from a possible stationary
distribution. The probability density of this system will never reach a steady state,
the Schrödinger equation is deterministic and the probabilities continue to oscillate
infinitely over time. However, it is good to remember that a mathematical model
always has characteristic scales, outside which it can lose validity. If we let the
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system evolve for infinitely long times, the uncertainty on the qubit return to being
maximum. In this sense, the density matrix (3.2) with e0 = e1 = 0.5 would be the
stationary density ρeq and Ωt can be considered a measure of the ’mathematical
distance’ of ρt from ρeq. This consideration should be better formalized and studied
from a mathematical point of view, for now it is only an original and a little
imaginative attempt of interpretation.

We have already noticed that our expression (2.10) has bad behaviour compared
to pure states. The density matrix ρ0 is not invertible. A somewhat hasty but
effective way of dealing with this problem is to simply solve it by replacing the pure
initial state |1⟩ with an ensemble having very high probability weight for state |1⟩:

ρ0 = e0|0⟩⟨0|+ e1|1⟩⟨1| with e1 ≫ e0.

Using the quantum exact response formula with this initial density matrix we find
classical Rabi oscillations with height A ≃ 1. If instead we change the probability
weights e0, e1 in (3.2), increasing e0 and decreasing e1 the amplitude predicted by
the formula will gradually decrease until it vanishes for e0 = e1 = 1

2 . The height
increase again by continuing to increase e0 and will reach its maximum (A ≃ 1) for
e0 ≫ e1, indeed the problem is symmetric with respect to the two states. In figure
3.4 we have plotted the graph in time of Rabi oscillations predicted by expression
(2.10), the amplitude and the frequency of the probability oscillations is perfectly
captured. Our formula offers excellent results for qubit systems.

Figure 3.4: ⟨π0⟩t calculated with the exact quantum response expression (2.10).
Left panel: ρ0 quasi-pure state density matrix: e0 = 0.005 and e1 = 0.995. Right
panel: ρ0 mixed-state density matrix, e0 = 0.45 and e1 = 0.55. t ∈ [0,14], γ = 0.5.
Amplitude changes, frequency does not.
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To conclude the analysis on qubits we choose an arbitrary Hamiltonian in the
form (3.9), for example choosing c⃗ = (1,−0.5, 3, 1.2). The system can initially be
in any state in the Bloch sphere, it is not necessarily an ensemble only of |0⟩ and
|1⟩ states. Then we also randomly take the initial density matrix ρ0, represented
for instance by the point in the Bloch sphere identified by the Bloch vector
a⃗ = (0.43,−0.31,−0.111). We numerically compare the probability oscillation
p1(t) = ⟨π1⟩t predicted by the new expression (2.10) with the correct value,

p1(t) = ⟨π1⟩t = Tr(e−iHtρ0e
+iHtπ1)

In figure 3.5 we plot the two corresponding graphs.

Figure 3.5: ⟨π1⟩t calculated: with dissipation operator formula (2.10) (in blue)
and using the Heisenberg picture (in red). The two curves overlap and so the results
are correct. t ∈ [0,2π]; ρ0−Bloch vector a⃗ = (0.43,−0.31,−0.111); Hamiltonian
defined by c⃗ = (1,−0.5, 3, 1.2).

The predicted results are correct and therefore the new expression (2.10) is
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Numerical tests for the quantum exact response expression

certainly valid. However, a problem remains, the dissipation operator Ω0 is non-
Hemitian. We would like to choose it as observable, O = Ω0, calculate its expecta-
tion value ⟨Ω0⟩t with the new corresponding approach and associate this value with
the physical observable of dissipation. Unfortunately, it is in general a complex
number,

⟨Ω0⟩t ∈ C,

and becomes very complicated to associate dissipation with this quantity. A possi-
ble choice is to associate the dissipation only with the real or imaginary part. This
is a possible option but it is clear that, without further analysis, it is a hasty and
unjustified choice.

A good way to solve this interpretative problem is to define a Hermitian dissipa-
tion operator, in this way it would certainly be a physical observable. In the next
chapter, we are going to define such a Hermitian dissipation operator.
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Chapter 4

Generalizations and analysis
of the dissipation operator

Defining the dissipation operator in a Hermitian way would make the association
with a physical observable more immediate, since its expectation value would
always be a real quantity. In this chapter we will define a Hermitian dissipation
operator. Then, we will use it to derive an exact response expression for calculating
⟨O⟩t. In this expression, however, it will not be possible to use only the new
Hermitian dissipation operator, an antihermitian operator will naturally appear in
the attempt to derive the formula. We will compare the new expression with that
of chapter 2, eq. (2.10); finally, we will carry out other numerical tests focusing on
the mathematical aspects in the applications of the two formulas.

4.1 The Hermitian dissipation operator
The classic procedure for making a non-Hermitian operator A self-adjoint is to
symmetrize it in the following way,

A→ Ã = 1
2(A+ A†)⇒ Ã = Ã†.

Thus, it is immediate to try this approach with the non-hermitian dissipation
operator (2.7). Then we could redefine Ω0 as

Ω0 → Ω̃0 = 1
2(Ω0 + (Ω0)†). (4.1)

It is therefore necessary to calculate the adjoint of Ω0.
Proposition 4.1.1. The adjoint of the non-Hermitian dissipation operator Ω0 is

(Ω0)† = 1
iℏ

[H, ρ0]ρ−1
0 .
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Proof. Before using the properties of the adjoint operation it is best to make the
commutator explicit to switch to a more convenient form for our purposes,

(Ω0)† =
1 1
iℏ
ρ−1

0 [H, ρ0]
2†

=1 1
iℏ
ρ−1

0 (Hρ0 − ρ0H)
2†

=
1 1
iℏ
ρ−1

0 Hρ0 −
1
iℏ
H
2†
.

The adjoint operation, for two arbitrary operators A, B and a complex number
λ ∈ C, has the following properties [6]

(A+B)† = A† +B†, (λA)† = λ∗A†, (AB)† = B†A†, (A−1)† = (A†)−1.

Therefore, for the dissipation operator we have

(Ω0)† = − 1
iℏ

(ρ−1
0 Hρ0)† + 1

iℏ
(H)† = − 1

iℏ
(ρ0Hρ−1

0 −H).

In the last equality we used the Hermitianity property of operators H = H† and
ρ0 = ρ†

0. Moreover, if ρ0 is hermitian also its inverse ρ−1
0 must be hermitian.

We can rewrite the latter in a more convenient form,

− 1
iℏ

(ρ0Hρ−1
0 −H) = − 1

iℏ
[ρ0,H]ρ−1

0 = 1
iℏ

[H, ρ0]ρ−1
0 .

In conclusion, we obtain
(Ω0)† = 1

iℏ
[H, ρ0]ρ−1

0 .

Knowing the adjoint operator of Ω0 allows us to redefine the dissipation operator
to make it Hermitian, the application of rule (4.1) leads to the following definition.

Definition 4.1.2. We define the hermitian dissipation operator as

Ω̃0 ≡ 1
2(Ω0 + (Ω0)†). (4.2)

Operator Ω̃0, defined in this way, can be expressed in different forms, all
equivalent, for example as

Ω̃0 = 1
2iℏ{ρ

−1
0 , [H, ρ0]},

where we used the anticommutator to obtain a compact form. We remind here
that the anticommutator is defined as

{A,B} ≡ AB +BA.
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Equivalently, after some calculations, we can write Ω̃0 in the form

Ω̃0 = 1
2iℏ(ρ−1

0 Hρ0 − ρ0Hρ−1
0 ).

Now we want to study again the properties already demonstrated for the
non-Hermitian dissipation operator, the ideal would be to find exactly the same
properties as the non-Hermitian operator. In fact, we have seen previously that
these acquire an important role in the classic case.

Proposition 4.1.3. The expectation value of the Hermitian dissipation operator
calculated with respect to the density operator ρ0 is always null,

⟨Ω̃0⟩0 = 0. (4.3)

Proof. Thanks to analogous proposition (2.2.1), we just need to calculate the
expectation value of (Ω0)†, indeed we simply have

⟨Ω̃0⟩0 = 1
2⟨Ω

0⟩0 + 1
2⟨(Ω

0)†⟩0 =

0 + 1
2iℏTr([H, ρ0]ρ−1

0 ρ0) =
1

2iℏTr(Hρ0 − ρ0H) = 1
2iℏ

1
Tr(Hρ0)− Tr(Hρ0)

2
= 0

A key passage in the derivations of chapter 2 was the equality (2.9), which
allows us to insert the dissipation operator in place of the time derivative of the
initial density operator. Now we can use the Von Neumann equation to compare
the (non hermitian) dissipation operator and its adjoint:

Ω0 = 1
iℏ
ρ−1

0 [H, ρ0] = ρ−1
0
∂ρ0

∂t

(Ω0)† = 1
iℏ

[H, ρ0]ρ−1
0 = ∂ρ0

∂t
ρ−1

0 .

Therefore, we can replace ∂ρ0
∂t

in two ways, we highlight this by recalling that

∂ρ0

∂t
= ρ0Ω0,

∂ρ0

∂t
= (Ω0)†ρ0.

(4.4)
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This observation will prove essential in the following demonstrations.

We were unable to prove d
ds
⟨Ω̃0⟩s|s=0 ≥ 0, but in trying to do so we obtained an

equality that comes very close to this goal.

Proposition 4.1.4. The initial derivative of the hermitian dissipation operator
expectation value satisfies the following equality

d

ds
⟨Ω̃0⟩s|s=0 = 1

4
1
⟨(Ω0)2⟩0 + ⟨(Ω0†)2⟩0

2
+ n(H, ρ0);

n(H, ρ0) = 1
2ℏ2

1
Tr(H2ρ0)− Tr(Hρ2

0Hρ−1
0 )

2 (4.5)

Proof. If we repeat the passages of proposition (2.2.2) we obtain
d

ds
⟨Ω̃0⟩s|s=0 = Tr(Ω̃0∂ρ0

∂t
),

now it is immediate to use both forms of equation (4.4), the latter becomes
1
2Tr((Ω

0 + (Ω0)†)1
2(ρ0Ω0 + (Ω0)†ρ0)) =

1
4Tr((Ω

0)2ρ0 + (Ω0†)2ρ0 + Ω0(Ω0)†ρ0 + (Ω0)†Ω0ρ0) =
1
4(⟨(Ω0)2⟩0 + ⟨(Ω0†)2⟩0 + 2Tr(ρ0Ω0(Ω0)†).

Moreover, the last term can be rewritten in a form such that it would be negligible
in many applications:

Tr(ρ0Ω0(Ω0)†) = − 1
ℏ2Tr(ρ0ρ

−1
0 [H, ρ0][H, ρ0]ρ−1

0 ) =
1
ℏ2Tr

1
(Hρ0 − ρ0H)(Hρ0 − ρ0H)ρ−1

0

2
=

1
ℏ2Tr

1
(Hρ0Hρ0 −Hρ2

0H− ρ0H2ρ0 + ρ0Hρ0H)ρ−1
0

2
.

Using the cyclic property of the trace and the identity ρ0ρ
−1
0 = ρ−1

0 ρ0 = Id we have
1
ℏ2 (Tr(H2ρ0)− Tr(Hρ2

0Hρ−1
0 )− Tr(ρ0H2) + Tr(H2ρ0)) =
1
ℏ2 (Tr(H2ρ0)− Tr(Hρ2

0Hρ−1
0 )).

In conclusion, we find
d

ds
⟨Ω̃0⟩s|s=0 = 1

4
1
⟨(Ω0)2⟩0 + ⟨(Ω0†)2⟩0

2
+ 1

2ℏ2

1
Tr(H2ρ0)− Tr(Hρ2

0Hρ−1
0 )

2
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This equality can be exploited to demonstrate the positivity of d
ds
⟨Ω̃0⟩s|s=0; it is

reasonable to assume, considering its form, that n(H, ρ0) is negligible compared to
the other two terms, both certainly positive. We do not exclude that it is possible
to demonstrate that n(H, ρ0) = 0, if it were not, one can calculate the value of n in
every application. Whenever d

ds
⟨Ω̃0⟩s|s=0 ≥ 0 is found, we would get (2.17) and the

analogy with the relative entropy D(f0∥f−s) (Kullback-Leibler divergence) could
be maintained.

Now we want to rewrite the exact response formula derivation using the new
Hermitian operator. Clearly, it is not enough to replace the new operator in the
previous expression (2.10), this would destroy the good derivation. So the new
expression will inevitably be in a different form, but the hope is that, eventually by
using a different type of correlation (2.14), the analogy with the classic formula will
remain unchanged. The goal is thus to express ⟨O⟩t as a function only of ρ0, Ot

and Ω̃0. This would allow us, in analogy to classical mechanics, to interpret the
Hermitian operator Ω̃0 as the physical observable of dissipation. Unfortunately, we
are not able to do this: a new operator appears in the expression for ⟨O⟩t.

Proposition 4.1.5. Let ρ0 be the initial density operator and H = H0 + λHext

the time-independent Hamiltonian operator. The expectation value at time t of a
generic observable O can be calculated using the Hermitian dissipation operator
(4.2) by means of the expression

⟨O⟩t = ⟨O⟩0 +
Ú t

0

A
⟨Ω̃0;Os⟩0 + 1

2⟨[Ω
0,Os]⟩0

B
ds, (4.6)

where Ω0 is the antihermitian operator Ω0 ≡ 1
2

1
Ω0 − (Ω0)†

2
.

Proof. From the proof of (2.10) we have

d

ds
⟨O⟩s = Tr(Os

∂ρ0

∂t
),

indeed, in all the previous passages we don’t mention the dissipation operator. At
this point, we would like to insert the (new) Hermitian dissipation operator Ω̃0. A
good way to do this is to use both forms for ∂ρ0

∂t
in equations (4.4).

Tr(Os
∂ρ0

∂t
) = 1

2Tr(Os
∂ρ0

∂t
) + 1

2Tr(Os
∂ρ0

∂t
) =

1
2Tr(Osρ0Ω0) + 1

2Tr(Os(Ω0)†ρ0) =
1
2Tr(Ω

0Osρ0 + (Ω0)†ρ0Os).

(4.7)
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We can rewrite this last expression in several different ways. An interesting form
for our purposes could be

Tr(Ω0Osρ0 + (Ω0)†ρ0Os) = Tr
1
Ω0Osρ0 + (Ω0)†(Osρ0 + [ρ0,Os])

2
=

Tr
1
(Ω0 + (Ω0)†)Osρ0

2
+ Tr

1
(Ω0)†[ρ0,Os]

2
.

(4.8)

Now we can simply use definition (4.2) to insert the hermitian dissipation operator
in the equation, obtaining

2Tr
1
Ω̃0Osρ0

2
+ Tr

1
(Ω0)†[ρ0,Os]

2
, (4.9)

this was precisely our aim. Due to the presence of (Ω0)†, the last expression still
remains in a form that is not at all elegant. A good idea is therefore to repeat the
same calculations done in (4.8) but using the commutator property for the first
term in the trace:

Tr(Ω0Osρ0 + (Ω0)†ρ0Os) = Tr
1
Ω0ρ0Os + Ω0[Os, ρ0] + (Ω0)†ρ0Os

2
.

With analogous passages to the previous ones we can arrive at the form

2Tr
1
Ω̃0ρ0Os

2
+ Tr

1
Ω0[Os, ρ0]

2
(4.10)

Now we want to combine equations (4.9) and (4.10), the hope is to express Tr(Os
∂ρ0
∂t

)
using only the hermitian dissipation operator Ω̃0 and eliminate with calculations the
presence of any other type of dissipation operator, such as Ω0 and (Ω0)†. Starting
from equation (4.7) we could write

Tr(Os
∂ρ0

∂t
) = 1

4(Tr(Ω0Osρ0 + (Ω0)†ρ0Os) + Tr(Ω0Osρ0 + (Ω0)†ρ0Os)).

Now we can use equation (4.9) in place of the first trace operation and equation
(4.10) in place of the second one, obtaining

1
4
1
2Tr

1
Ω̃0Osρ0

2
+ Tr

1
(Ω0)†[ρ0,Os]

2
+ 2Tr

1
Ω̃0ρ0Os

2
+ Tr

1
Ω0[Os, ρ0]

22
=

1
2Tr

1
Ω̃0Osρ0

2
+ 1

2Tr
1
Ω̃0ρ0Os

2
+ 1

4
1
Tr
1
(Ω0)†[ρ0,Os] + Ω0[Os, ρ0]

22
=

1
2Tr

1
Ω̃0Osρ0

2
+ 1

2Tr
1
OsΩ̃0ρ0

2
+ 1

4
1
Tr
1
(Ω0 − (Ω0)†)[Os, ρ0]

22
.

We can clearly use the symmetric correlation for terms with Ω̃0 but we are unable
to completely replace Ω0 and (Ω0)† with the hermitian Ω̃0. However, we could still
have arrived at an interesting form. Indeed, we can observe that Ω0 − (Ω0)† is an
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antihermitian operator. More precisely, we could define the antihermitian part of
Ω0 as

Ω0 ≡ 1
2
1
Ω0 − (Ω0)†

2
.

In conclusion, we obtain

d

ds
⟨O⟩s = ⟨Ω̃0;Os⟩0 + 1

2Tr
1
Ω0[Os, ρ0]

2
which can be rewritten as

d

ds
⟨O⟩s = ⟨Ω̃0;Os⟩0 + 1

2(⟨Ω0Os⟩0 −
e
OsΩ0⟩0)

or, equivalently, as
d

ds
⟨O⟩s = ⟨Ω̃0;Os⟩0 + 1

2⟨[Ω
0,Os]⟩0.

This last form seems the best of these. Integrating as already done previously we
obtain

⟨O⟩t = ⟨O⟩0 +
Ú t

0

A
⟨Ω̃0;Os⟩0 + 1

2⟨[Ω
0,Os]⟩0

B
ds

This new expression is perfectly equivalent to the previous one in the calculation
of ⟨O⟩t for a generic observable O. The real step forward is the Hermitianity
property of Ω̃0. Now its expectation value is a real quantity

⟨Ω̃0⟩t ∈ R.

Now Ω̃0 can be better interpreted physically as it is real. It could be associated with
dissipation but the issue is delicate. The expression (4.6) is no longer in precise
correspondence with the classical one (1.23). The classical Dissipation Function
appears to have split into two components in the quantum analogue. It could
be interesting to study the distinction between the two components and try to
understand their role. We must not make the mistake of focusing a priori on the
meaning of Ω̃0 and not caring about the commutator part [Ω0

,Os].
However, the expression constructed with the Hermitian operator (4.6) offers

exactly the same results as the one with the non-Hermitian operator (2.10). So we
could have simply calculated ⟨Ω̃0⟩t using the non-Hermitian formula.
In fact, we will see that the result is coincident. On the one hand, this is a good
thing because the results of the previous expression (2.10) were correct, therefore
this new expression (4.6) is also valid. On the other hand, we realize that the new
expression is a decomposition of the previous one and may not add anything rele-
vant. Anyway, we presented both, future works will be able to further investigate
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the differences and possible interpretations.

By analysing proposition 4.1.5 a posteriori, it could be better clarified what
happens by deriving expression (4.6). Any operator A can be decomposed into the
sum of a Hermitian and an antihermitian operator,

A = A+ 1
2A

† − 1
2A

† = 1
2(A+ A†) + 1

2(A− A†) = Ã+ A. (4.11)

Applying this decomposition to Ω0, after some calculations, we should arrive at the
same equation (4.6) we just found. This way seems simpler, but we did not take it
into consideration initially because our goal was to obtain a final formula containing
only the Hermitian operator Ω̃0. Starting the derivation with decomposition (4.11)
would have meant taking a step in the opposite direction to our aim, as we would
have immediately introduced an unwanted operator (Ω0). With the procedure
used, instead, we hoped to combine the Hermitian operator Ω̃0, the initial density
operator ρ0 and the observable Ot, cutting out any other dependencies through a
good use of the properties of all the operators involved and the choice of appropriate
correlations. We were unable to do so, and we also realize a posteriori that it is
probably easier to demonstrate that it is impossible to exclude the antihermitian
part, as it would somehow mean destroying the property of unitary evolution of ρt.
To better understand this last statement, it is useful to analyse the time evolution
of ρ according to the Von Neumann equation (1.12) and compare it with that of
the dissipation operator (4.4). In the next chapter we carry out this analysis.
Here, it is interesting to highlight that all the dissipation operators derived so far
can be expressed in a more compact form by defining the operator ω0 as

ω0 ≡ ρ−1
0 Hρ0 (4.12)

Indeed we have, by exploiting the decomposition (4.11),

Ω0 = 1
iℏ

(ω0 −H); (Ω0)† = 1
iℏ

(H− ω0†);

Ω̃0 = 1
iℏ
ω0; Ω0 = 1

iℏ
(ω̃0 −H).

(4.13)

We will see in the next chapter that the introduction of the hermitian operator ω̃0

will allow us to rewrite the time propagator U(t) using exclusively these dissipation
operators.

To conclude this chapter, we show numerical applications of the two expressions
for ⟨O⟩t derived so far;
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4.2 Generic numerical tests
It is necessary to verify also from a numerical point of view that the new expres-
sion with Hermitian and antihermitian dissipation operators, equation (4.6), is
equivalent to the previous equation (2.10) with only a non-Hermitian dissipation
operator. In this section we will test this equivalence by applying the two formulas
to physical problems, and we will also always compare the results obtained with
the certainly correct ones, predicted in the Schrödinger/Heisenberg picture. In
this section, we will continue to work with qubit systems but we will try to be
as general as possible. Previously we had only dealt with simple observables,
consisting of the three Pauli matrices σi and the 2 projectors πi. Considering the
linearity characterizing quantum mechanics, this is already a very good proof, since
a generic Hermitian observable is a linear combination of the Pauli matrices and
the identity. Anyway, now we are going to show the equivalence of the results
predicted by the three approaches maintaining the maximum possible generality for
a quantum problem in a 2-dimensional Hilbert space. To do this, we will consider
each application from a purely mathematical point of view, never dwelling on the
physical meaning of the results obtained. This comparison is implemented with
the Matlab code reported in Appendix A.

All possible physical observables (Hermitian matrices in the 2D Hilbert space)
are represented by the linear combination of the identity and Pauli matrices; the
density operator from the Bloch vector. We have:

H = c⃗ · σ⃗4, O = q⃗ · σ⃗4; c⃗, q⃗ ∈ R4.

ρ = 1
2(Id+ a⃗ · σ⃗), a⃗ ∈ R3, |⃗a| ≤ 1.

(4.14)

Firstly, we verify that the new expressions obtained, the one with non-Hermitian
dissipation operator, eq. (2.10), and the one with Hermitian operator and antihermi-
tian part, eq. (4.6), give the same correct results. We arbitrarily chose vectors a⃗, c⃗
and q⃗ and then we numerically simulated the obtained problem. We repeated the
process for several different combinations of Hamiltonian, initial density, observable
and time interval. In all cases, the two expressions offer perfectly equivalent results
coinciding with the correct ones. Two examples of these numerous tests are shown
in figure 4.1.

In numerous classical problems we have seen that it is very useful to evaluate the
observable Ω. One of the main reasons for this formalism is indeed the possibility
of being able to associate the dissipation operator with a physical observable.
Furthermore, the second formula, eq (4.6), was introduced precisely in an attempt
to associate a real value with ⟨Ω̃0⟩t. We therefore choose the new operator as
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Figure 4.1: Two different tests. On the left: a⃗ = (0.3,0.3,−0.3); c⃗ = (4,0.8,0.5,3);
q⃗ = (1,0.2,3,1.5); t ∈ [0,2π]. On the right: a⃗ = (0,0.1,−0.5); c⃗ = (10−3,10−3,2 ∗
10−3,0); q⃗ = (−0.1,−0.2,0,−0.5); t ∈ [0,800]. In green Ω̃0-expression, in blue
Ω0-expression, in blue Heisenberg-expression. The colours are indistinguishable as
the three curves always overlap. Results are correct.

observable, O = Ω̃0. Figure 4.2 shows the results obtained by calculating ⟨Ω̃0⟩t
and ⟨Ω0⟩t. We realize that once the Hermitian dissipation operator was defined we
could also calculate its expectation value with the first expression (2.10), without
deriving a second one. Moreover, comparing these results with the ⟨Ω0⟩t calculation,
we obtain the following confirmation:

ℜ[⟨Ω0⟩t] = ⟨Ω̃0⟩t ∈ R; −iℑ[⟨Ω0⟩t] = ⟨Ω0⟩t ∈ C, (4.15)

and, by construction, ⟨Ω0⟩t is always a pure imaginary number.
It is natural to ask what difference there is between equation (2.10) and (4.6).

Which of these two is the best form? First, we underline that it is a good thing
that they give the exact same results for ⟨O⟩t, as they are confirmed results in
the Heisenberg picture. However, it is not at all clear which of the two is better.
Considering equivalence (4.15), the first form (2.10) seems better. It is much
more similar to the classical expression (1.23). Furthermore, if it were possible to
associate a physical meaning only with Ω̃ or Ω, it would be sufficient to calculate
the latter as real imaginary part of Ω. Anyway, the second form (4.6) is not to be
thrown away at all. It can become very interesting if one wish to use the symmetric
correlation, which is much more similar to the classical one in that ⟨A;B⟩ = ⟨B;A⟩.
Furthermore, a physical meaning could be associated, for example, not with Ω but
only with its commutator [Ω,O]. Finally, this form could be more convenient for
introducing non-Hamiltonian dynamics in future extensions.
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It might seem to be more interesting to calculate other quantities, such as
⟨Ωt⟩, however we saw in chapter 1, that in the classical application to Kuramoto
dynamics [22], the quantity ⟨Ω0⟩t is the one used to obtain all the information. As
regards the calculation of ⟨Ωt⟩t, we know that it is equal to 0 for the proposition
2.2.1: any instant can be considered as initial.

Figure 4.2: On the left: ⟨Ω̃0⟩t (Hermitian dissipation operator). On the right:
Im[⟨Ω0⟩t] (antihermitian dissipation operator). They correspond respectively with
the real and imaginary parts of ⟨Ω0⟩t. a⃗ = (−0.2,−0.1,0.4); c⃗ = (3,−0.1,0.2,−0.3);
t ∈ [0,2π].

With this numerical analysis we also noticed a curious property of the observable
(Ω0)2. In all tests carried out in 2D, this operator always appears in the following
form

(Ω0)2 =
C
p 0
0 p

D
= p ∗ Id, with p ∈ R, p ≥ 0;

this is a very particular mathematical property, whose origin is not yet understand-
able. However, it is only a conjecture, if it were useful to exploit it, it should first
be rigorously demonstrated. From this form follows that (Ω0)2 would be a constant
of motion: the identity commutes with any operator, therefore,

[(Ω0)2,H] = p[Id,H] = 0⇒ d

dt
(Ω0)2 = 0.

Indeed, calculating its expectation value numerically, we find that

⟨(Ω0)2⟩t = ⟨(Ω0)2⟩0 ∀t

Moreover, a proportionality seems to emerge in relation to the eigenvalues of the
Hamiltonian H:

⟨(Ω0)2⟩0 ∝ |E1(H)− E0(H)|.
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It seems also have a proportionality with respect to non-diagonal elements in ρ0:
their presence greatly increases the value of ⟨(Ω0)2⟩0. We could state that

⟨(Ω0)2⟩0 ∝ "Some kind of disorder between ρ0 and H".

This result becomes less surprising if we remember proposition 2.2.2: the quantity
⟨(Ω0)2⟩0 coincides with the initial derivative of the dissipation operator expectation
value. Consistently with what has been demonstrated, even in tests it is always
positive or equal to 0. The association with disorder is linked precisely to the
attempts, in classical systems, to relate Ω with forms of entropy. In conclusion,
(Ω0)2 might be an observable to analyse better.

An important observable is the Hamiltonian, whose expectation value represents
the energy of the system. The two new expressions provide consistent results: we
always find also numerically that the Hamiltonian is a constant of motion,

E = ⟨H⟩t = ⟨H⟩0. (4.16)

By this we are not saying that the energy of the system always remains unchanged,
before and after the perturbation. Let’s clarify this point: the energy of the system
before the perturbation is

E0 = ⟨H0⟩0
After the perturbation, the system is described by the new Hamiltonian H =
H0 + λHext. Result (4.16) means that the energy E, after the perturbation, is a
constant of motion. We can highlight this by writing

E0 = ⟨H0⟩0 /= ⟨H⟩0 = E.

Furthermore, to strengthen our arguments developed in proposition 4.1.4, we
have numerically calculated in many different applications (4.14) the quantity
Tr(Ω̃0 ∂ρ0

∂t
) (which coincides with d

ds
⟨Ω̃0⟩s|s=0). In all cases this value has been

shown to be positive or null,
d

ds
⟨Ω̃0⟩s|s=0 ≥ 0 (numerically).

In the next chapter we are going to investigate the role that dissipation operators
(4.13) have in the time evolution of the density operator. This will help us
understand why we were unable to derive an expression for the calculation of ⟨O⟩t
containing only the Hermitian dissipation operator. Furthermore, the next study
will suggest possible extensions of this quantum response theory.
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Chapter 5

Temporal evolution of ρ
through the use of
dissipation operators

In this chapter we study the role that the dissipation operators play in the time
evolution of the density operator ρt. Firstly, we will review the derivation of the
Von Neumann equation and of the solution expressed in the form with time propa-
gators. We will present in detail all the properties of these time evolution operators.
Secondly, we will analyse the solution ρt in the case of time dependent Hamiltonian
H(t). To this end, we will introduce the time ordering operators. These will then
be exploited to obtain the solution of the quantum Liouville equation written in a
different form, through the use of the dissipation operator. Finally, we will use some
of the dissipation operators, presented in (4.13), to rewrite the time propagators.

We start with a detailed review of the Von Neumann equation and time propa-
gators in the case of constant Hamiltonian H.

5.1 Time evolution of the density operator ρ

In quantum mechanics the density matrix evolves according to the Liouville Von-
Neumann equation (1.12)

iℏ
∂ρ

∂t
= [H, ρ],
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Temporal evolution of ρ through the use of dissipation operators

we are now considering the Hamiltonian constant over time. This equation is
derived starting from the Schrödinger equation both for |ψn⟩ and for ⟨ψn|,

iℏ
∂|ψn⟩
∂t

= H|ψn⟩, iℏ
∂⟨ψn|
∂t

= −⟨ψn|H.

These two expressions are then used to calculate iℏ∂ρ
∂t

as follows

iℏ
∂ρ

∂t
= iℏ

∂

∂t

AØ
n

pn|ψn⟩⟨ψn|
B

=
Ø

n

pn

A
iℏ
∂

∂t
|ψn⟩⟨ψn|+ |ψn⟩iℏ

∂

∂t
⟨ψn|

B
=Ø

n

pn

1
H|ψn⟩⟨ψn| − |ψn⟩⟨ψn|H

2
= Hρ− ρH = [H, ρ].

The procedure leads precisely to the Liouville-Von Neumann equation, the quantum
analogue of the classical Liouville equation (1.2), which expresses the conservation
of the probability density in phase space.

To derive time propagators (1.14), that describe the temporal evolution of
a quantum system, one can reason in the following way. Assuming constant
Hamiltonian H, the wavefunction evolves in time according to the Schrödinger
equation, one can define the evolution operator U(t) as the operator that maps
ψ(0) in ψ(t):

ψ(t) = U(t)ψ(0).
The equation that U(t) must fulfil is

iℏ
∂ψ(t)
∂t

= Hψ(t)⇒ iℏ
∂

∂t

1
U(t)ψ(0)

2
= HU(t)ψ(0)

⇒
A
iℏ
dU(t)
dt
−HU(t)

B
ψ(0) = 0.

(5.1)

The initial condition is derived from ψ(0) = U(0)ψ(0) which implies U(0) = Id. In
conclusion,

dU(t)
dt

= − i
ℏ
HU(t), U(0) = Id;

the solution of this problem is

U(t) = e− i
ℏHt.

This can be shown also by substitution, making the definition of the exponential
operator explicit,

dU(t)
dt

= 0− i

ℏ
H +

1
− i

ℏ
22
H2t+ 1

2
1
− i

ℏ
23
H3t2 + ... =

− i
ℏ
H
A
Id+ (− i

ℏ
2
Ht+ 1

2
1
− i

ℏ
22
H2t2 + ...

B
= − i

ℏ
HU(t).
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Temporal evolution of ρ through the use of dissipation operators

In the same way one can find

U †(t) = e+ i
ℏHt,

in perfect coherence with the adjoint operation. As already mentioned in the
introduction, these operators are used to evolve both the density matrix in the
Schrödinger picture and the observables in the Heisenberg picture.

It is interesting, for our purposes, to better analyse the properties of time
propagators. The time propagator is a one-parameter unitary group [5], this means
that it fulfils the following four properties:

1. U(t) is unitary ∀t ∈ R:

U(t)U †(t) = U †(t)U(t) = Id.

2. U(t) satisfy the group property:

U(t+ s) = U(t)U(s), ∀t ∈ R.

3. At the initial instant t = 0 coincides with the identity operator

U(0) = Id.

4. It satisfies the following strong continuity property:

⟨v|
1
U(t)− Id

2
|v⟩ → 0 if t→ 0.

These properties are essential for evolving correctly the density operator ρ over
time while preserving its mathematical meaning of probability density. The first
property can be rewritten to highlight that the inverse of the time propagator
coincides with its adjoint,

U−1(t) = U †(t), (5.2)
this is precisely the definition of unitary matrix (operator). Unitary matrices
represent bijections that preserve the hermitian product, property necessary to
keep the norm of the wave function |ψ⟩ constant over time and equal to 1, i.e.
Tr(ρ) = 1, and thus to preserve the probabilistic interpretation. Let’s take an
arbitrary operator A, we want to study the necessary properties that the operator
A must satisfy so that eA is a unitary operator. The adjoint of the exponential
operator (eA)† is equal to the exponential of the adjoint operator A†, eA† , indeed,

(eA)† =
A ∞Ø

n=0

1
n!A

n

B†

=
∞Ø

n=0

1
n! (A

†)n = eA†
.
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Operators A and −A commute, [A,−A] = 0, so one has that

eAe−A = e−AeA = eA−A = Id⇒
1
eA
2−1

= e−A

By definition eA is unitary if it respects the property (5.2), then

(eA)−1 = (eA)† ⇐⇒ e−A = eA† ⇐⇒ −A = A†. (5.3)

In conclusion, eA is a unitary operator if and only if A is an antihermitian operator.
Equivalently, highlighting the imaginary unit i and remembering that i† = −i, one
finds that eiS is a unitary operator if and only if the operator S is Hermitian.

At any time t the solution of the Liouville equation can be seen as a unitary
transformation in the phase space of the initial density operator ρ0, in fact it is
written as

ρt = e− it
ℏ Hρ0e

it
ℏ H = U(t)ρ0U

†(t). (5.4)

The dynamics of type H = H0 + λHext studied so far, can be considered constant
over time since the perturbation Hext is assumed to be activated at the initial
instant and kept constant over time.

We want also analyse the case of time-dependent Hamiltonian H(t), both for
future extensions and to analyse how to calculate the integral over time of a time-
dependent operator. This is what we will present initially in the next section. Then,
we will exploit the time ordering operators to write the Von Neumann solution via
the dissipation operator. Furthermore, we will derive the time evolution of Ωt in
the case of constant Hamiltonian H.

5.2 Time ordering and dissipation operator for
the Von Neumann solution

Considering a time dependent Hamiltonian, Liouville’s equation becomes iℏ∂tρt =
[H(t), ρt]. The new time evolution operator U(t) that determines the solution can
be obtained by reasoning as previously in (5.1). In presenting this derivation we
refer to the text [27]. One finds

dU(t)
dt

= − i
ℏ
H(t)U(t); U(0) = Id.

H(t) is now a time-dependent operator and therefore, in general, it does not
commute valued in different time instants of the integration domain, [H(t1),H(t2)] /=
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0. The solution can be obtained by iteration in a complicated form:

U(t) = 1− i

ℏ

Ú t1

0
dt1H(t1) +

A
− i

ℏ

B2 Ú t

0
dt1

Ú t1

0
dt2H(t1)H(t2)+

+
A
− i

ℏ

B3 Ú t

0
dt1

Ú t1

0
dt2

Ú t3

0
dt3H(t1)H(t2)H(t3) + ...

It is proven that this series of nested time integrals, called Neumann series, can be
rewritten using the time ordering operator TL as

U(t) = TL

expA− i

ℏ

Ú t

0
H(s)ds

B for t > 0 (5.5)

Operator TL orders the operators according to their times from later times to earlier
times:

TL

1
A(t1)B(t2)...Z(tn)

2
= B(t2)D(t4)A(t1)...Z(tn) if t2 > t4 > t1 > tn

The operator that does exactly the opposite operation is the anti-time ordering
operator TR:

TR

1
A(t1)B(t2)...Z(tn)

2
= B(t2)A(t1)...Z(tn) if t2 < t1 < tn

The names ’time ordering’ and ’anti-time ordering’ seem counterintuitive thinking
about the time axis, however it is enough to remember that operators at previous
moments act first on a |ψ⟩ vector, C(2)B(1)A(0)|ψ⟩, it is therefore clear that TL

gives us the natural order and TR the inverse one.
The explicit form of operator (5.5) is represented by the Dyson series,

U(t) = 1− i

ℏ

Ú t1

0
dt1H(t1) + 1

2

A
− i

ℏ

B2 Ú t

0
dt1

Ú t

0
dt2TL

C
H(t1)H(t2)

D
+

+1
6

A
− i

ℏ

B3 Ú t

0
dt1

Ú t

0
dt2

Ú t

0
dt3TL

C
H(t1)H(t2)H(t3)

D
+ ...

which is proven to be equivalent to Neumann series.
We also highlight that in the previous sections we had already calculated integrals
of operators. However, the time ordering problem did not exist as the trace operator
was always involved, the result of the integral was therefore always a scalar number
and never an operator.
Instead, the adjoint of (5.5) is

U †(t) = TR

expA i
ℏ

Ú t

0
H(s)ds

B for t > 0
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In the following we will denote the exponential constructed with time ordering
operator TL and anti-time ordering operator TR respectively with e

I(t)
L and e

I(t)
R .

The solution of the quantum Liouville equation in this case can be expressed as

ρt = U(t)ρ0U †(t) (5.6)

and the new time propagators still form a one-parameter unitary group.

In the case of constant Hamiltonian, time ordering operators are useless because
H(t) = H(s) = H ∀t, s ∈ R and so operators at different times always commute,
[H(t),H(s)] = 0. Then, the Liouville solution (5.6) returns to the usual form

ρt = e− i
ℏHtρ0e

i
ℏHt.

It is possible to obtain the solution in a different form using the dissipation
operator. Let’s see this for the non-Hermitian dissipation operator. Ω0 expresses
the variation over time of the density operator at the initial instant t = 0,

∂ρ0

∂t
= ρ0Ω0,

this equation does not give us any information about the density operator ρt at an
arbitrary time t ∈ R. However, we can consider any time t∗ as the initial instant of
the dynamics, and therefore define

Ωt∗ = 1
iℏ
ρ−1

t∗ [H, ρt∗ ] (5.7)

Once this consideration has been highlighted, it is clear that we can write
∂ρt

∂t
= ρtΩt

ρ(0) = ρ0.
(5.8)

Now, it is necessary to note that, in general, working with operators, two types of
equations exist:

(i) dV (t)
dt

= A(t)V (t); (ii) dV (t)
dt

= V (t)A(t). (5.9)

The initial condition is always V (0) = V0. It is demonstrated that for t > 0 the
time ordering operator solves equation (i) while the anti-time ordering operator
solves equation (ii) [27]:

(i) V (t) = TL

C
exp

AÚ t

0
A(s)ds

BD
V0; (ii) V (t) = V0TR

C
exp

AÚ t

0
A(s)ds

BD
. (5.10)
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The time ordering operators are reversed for t < 0.
Equation (5.8) is expressed in the form (ii), therefore the solution is

ρt = ρ0TR

C
e
s t

0 Ωsds

D
(5.11)

This is formally correct but it is not yet clear how Ω evolves over time. The
definition of Ωs, which is (5.7), contains ρs and therefore it is appropriate to find
an alternative way to express Ωs and be able to calculate the integral without using
explicitly ρs. The ordering operator in (5.11) is necessary to clearly define the
solution in this form through the use of the exponential, however, if the Hamiltonian
is constant over time, it is therefore possible to use time propagators (1.14) (defined
without any time ordering operator) to make Ωs evolve over time. We thus find an
interesting fact.

Proposition 5.2.1. If the Hamiltonian H is time independent, then the dissipation
operator defined at time s, Ωs, coincides with the initial dissipation operator Ω0

evolved backward in time,
Ωs = U(s)Ω0U †(s). (5.12)

Proof. By definition we have

Ωs = 1
iℏ
ρ−1

s [H, ρs].

We can express ρt using time propagators,

Ωs = 1
iℏ

(U(s)ρ0U
†(s))−1[H, U(s)ρ0U

†(s)].

Let’s remember now that for three arbitrary invertible operators A, B, C, we have
(ABC)−1 = C−1B−1A−1, applying this rule we can write

Ωs = 1
iℏ

(U †(s))−1ρ−1
0 U−1(s)[H, U(s)ρ0U

†(s)].

Evolution operator are unitary operators and so, by applying equation (5.2), the
latter becomes

Ωs = 1
iℏ
U(s)ρ−1

0 U †(s)
A
HU(s)ρ0U

†(s)− U(s)ρ0U
†(s)H

B
=

1
iℏ
U(s)ρ−1

0 U †(s)HU(s)ρ0U
†(s)− 1

iℏ
U(s)ρ−1

0 U †(s)U(s)ρ0U
†(s)H;

the second term can be easily simplified by noting that

U(s)ρ−1
0 U †(s)U(s)ρ0U

†(s) = Id.
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Moreover, the evolution operators and the Hamiltonian commute,

U †(s)HU(s) = HU †(s)U(s) = H,

thus we can write

Ωs = 1
iℏ
U(s)ρ−1

0 Hρ0U
†(s)− 1

iℏ
U(s)U †(s)HU(s)U †(s) =

1
iℏ
U(s)

A
ρ−1

0 Hρ0 − U †(s)HU(s)
B
U †(s) =

1
iℏ
U(s)

A
ρ−1

0 Hρ0 −H
B
U †(s) =

U(s)
A

1
iℏ
ρ−1

0 [H, ρ0]
B
U †(s) = U(s)Ω0U †(s).

It is important to underline that the dissipation operator does not evolve over
time like any observable in the Heisenberg representation, U †(t)OU(t). It instead
evolves back in time, as a density operator, Ωt = U(t)Ω0U †(t). This feature could
complicate the association of Ω0 with a physical observable. It is a counterintuitive
fact which is worth exploring further. This type of inverse-time evolution is not
due to the order of the operators in the definition. For example, trying to redefine
the dissipation operator as

Ω0
new = 1

iℏ
ρ−1

0 [ρ0,H] or as Ω0
new = 1

iℏ
[H, ρ0]ρ−1

0 ,

(or in any other form obtained by exchanging the order of H, ρ0 and ρ−1
0 ) the

dissipation operator would still evolve in the same way, in reversed time as in
proposition 5.2.1. The true foundation of this type of evolution lies in the presence
of the operators involved, H and ρ. The Hamiltonian operator H, in the simple
case we are examining for now, commutes with time propagators:

U(t) = e− i
ℏHt ⇒ [H, U(t)] = [H, U †(t)] = 0 ∀t ∈ R+

while ρ and ρ−1 evolves at reversed times. Consequently, a dissipation operator
defined in our way evolves in accordance with ρt, at reverse times. If we necessarily
wanted a dissipation operator that evolves like any physical observable, then we
would have to completely change the definition, avoiding the use of ρ.

This result generates ambiguity in the calculation of the expectation value of Ω:
⟨Ω0⟩t and ⟨Ωt⟩0 do not coincide. However, proposition 5.2.1 may not turn out to
be bad; indeed, it preserves the equivalence between Heisenberg and Schrödinger
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pictures for all the other ’usual’ observables. In the derivation of expression (2.10),
we found

d

ds
⟨O⟩s = Tr(Os

∂ρ0

∂t
), (5.13)

which is clearly a representation in the Heisenberg picture since we make the
observable evolve over time. However, we could have remained in the Schrödinger
picture by writing

d

ds
⟨O⟩s = Tr(O∂ρs

∂s
) (5.14)

The two are equivalent thanks to proposition 5.2.1:3
d

ds
⟨O⟩s

4S

= Tr(O∂ρs

∂s
) = Tr(OρsΩs) = Tr(OU(s)ρ0U

†(s)U(s)Ω0U †(s)) =

Tr(U †(s)OU(s)ρ0Ω0) = Tr(Osρ0Ω0) = Tr(Os
∂ρ0

∂t
) =

3
d

ds
⟨O⟩s

4H

.

If Ω0 evolved as an observable we would lose this equivalence, which is fundamental
in quantum mechanics, the only way to recover it would be to express ∂ρt

∂t
in a

completely different way from ρtΩt. Moreover, proposition 5.2.1 guarantees an
excellent result of consistency with proposition 2.2.1:

⟨Ωt⟩t = Tr
1
U(t)Ω0U †(t)U(t)ρ0U

†(t)
2

= ⟨Ω0⟩0 = 0.

Every moment can be considered the initial one. If proposition 5.2.1 were not valid
then this property of zero-mean would be lost, resulting in a serious contradiction.

Thanks to proposition 5.2.1, the solution can be expressed in the form (5.11).
This solution was correct already previously but only formally because we did not
know the dynamics of Ωs and it may therefore have seemed of dubious validity,
useless or excessively abstract. Now, instead, it is clear that the Liouville solution
can be written as

ρt = ρ0e
Ω0

0,t

R , Ω0
0,t =

Ú t

0
U(s)Ω0U †(s)ds. (5.15)

To strengthen our argument and the validity of solution (5.15) we can show by
substitution that ρt = ρ0e

Ω0
0,t

R satisfies the Liouville equation. To do this, we first
use proposition 5.2.1 to demonstrate that the Liouville equation written with the
dissipation operator is truly equivalent to the usual Von Neumann form. Indeed,
we have that

∂ρt

∂t
= ρtΩt = U(t)ρ0U

†(t)U(t)Ω0U †(t) = U(t)ρ0Ω0U †(t) =

1
iℏ
U(t)[H, ρ0]U †(t) = 1

iℏ

A
HU(t)ρ0U

†(t)− U(t)ρ0U
†(t)H

B
= 1
iℏ

[H, ρt].
(5.16)
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The equivalence between these two equations was actually already evident from
the definition of Ωt; with these steps we also showed it differently, finding further
confirmation of the validity of proposition 5.2.1. Therefore, it is now clear that
replacing the expression (5.15) in the Von Neumann problem is equivalent to
replacing it in the equation (5.8). Let’s proceed by substitution,

∂ρt

∂t
= ∂

∂t
(ρ0e

Ω0
0,t

R ) = ρ0
∂

∂t
(eΩ0

0,t

R ) = ρ0e
Ω0

0,t

R

∂

∂t
(Ω0

0,t).

Now we can use the first fundamental theorem of integral calculus,

Ω0
0,t =

Ú t

0
U(s)Ω0U †(s)ds =

Ú t

0
Ωsds⇒ ∂

∂t
(Ω0

0,t) = Ωt.

Then we have
∂ρt

∂t
= ρ0e

Ω0
0,t

R Ωt = ρtΩt = 1
iℏ

[H, ρt],

where in the last equality we have used equation (5.16). Furthermore, the initial
condition is satisfied,

ρ(0) = ρ0e
Ω0

0,0
R = ρ0e

0 = ρ0

We may not have been formal enough, the property ∂
∂t
eA(t) = eA(t) ∂

∂t
A(t) used pre-

viously has ambiguous validity due to the presence of time ordering TR. However,
even without showing it by substitution, it is proven that (5.15) is a solution of
equation (5.8), which is perfectly equivalent to the Von Neumann equation.

In conclusion, expression (5.15) is a solution to the Von Neumann-Liouville
problem. With this sentence we are not claiming that Liouville’s problem always
admits more than one valid solution. We have instead shown that the solution
of the Von Neumann equation, ρt, can be expressed in different forms, not only
through the well-known form U(t)ρ0U

†(t), but also in other ways, for example as
in expression (5.15). The uniqueness of the Liouville problem’s solution depends
on the Hamiltonian operator H. This uniqueness can therefore only be studied
after having defined the Hamiltonian operator. If H is sufficiently regular then the
solution is unique and consequently expression (5.15) is equivalent to the usual
solution (5.4), they are just two different ways of writing the same thing; similarly,
every different form that we will find below will in reality be perfectly equivalent
to these two. If instead Liouville’s problem could admit more than one solution
then expression (5.4) and expression (5.15) could be a priori equivalent as well as
different.

The same reasoning can be carried out for the adjoint of the non-Hermitian
dissipation operator, (Ω0)†, the only difference is in the order in which the operators
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are multiplied. In this case we actually have

∂ρt

∂t
= (Ωt)†ρt

This equation is of type (i) in (5.9). Therefore, the solution is

ρt = e
Ω0†

0,t

L ρ0, Ω0†
0,t =

Ú t

0
U(s)(Ω0)†U †(s)ds. (5.17)

In the case of constant Hamiltonians, it is not convenient to express ρ in form
(5.15) or (5.17). They involve time ordering operators, which are very complicated
in practical uses. The usual form (5.4) is far more manageable. We thus highlight
that time propagators U(t) and U †(t) are in no way replaced by the operators eΩ0

s,t

R

and eΩ0†
s,t

L . U(t) and U †(t) remain essential for evolving the observables and density
operators. Furthermore, they are used to evolve the dissipation operator Ω0 over
time, and so they are also fundamental to use this new formalism in Hamiltonian
dynamics.

However, the 2 new forms (5.15) and (5.17) indicate that the dissipation operator
has a precise role in the temporal evolution of ρt. From these results we begin to
understand why it was not possible to insert only the Hermitian dissipation operator
in the expression (4.6). The antihermitian part is as important as the Hermitian
in the temporal evolution of a quantum system. Neither can be easily cut off.
However, we do not completely exclude the possibility that, with more advanced
mathematical techniques or by defining the dissipation operator differently, one
can arrive at a formula similar to the classical (1.23), involving only a Hermitian
dissipation operator.

In view of possible extensions of this new formalism, it could be very interesting
to exploit the dissipation operators to construct some temporal propagation operator
Û(t), which allows ρ to evolve in the usual form, ρt = Û(t)ρ0Û †(t). To get this
form, we tried to somehow combine the two previous solutions (5.15) and (5.17),
but without obtaining good results. A different kind of approach is developed in
the next section.

5.3 Use of dissipation operators in time propaga-
tors

We wish to use dissipation operators to evolve ρt in a form more similar to that of
time propagators (5.4). we would like to get something similar to

ρt = e
−iΩ̂0,t

L ρ0e
iΩ̂0,t

R = Û(t)ρ0Û †(t). (5.18)
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This result would be good for the new formalism we are building, it would allow
us to express the evolution of probability over time using a dissipation operator
in a form completely similar to the one commonly used in quantum mechanics.
There are problems where time propagators cannot be defined, for example for
open, non-unitary dynamics. If it were possible to extend the dissipation operator
to these dynamics, then, thanks to form (5.18), we could also directly obtain the
corresponding extension of time propagator.

The dissipation operator formalism aims to describe more complex dynamics.
However, if well derived, it must also be valid for constant Hamiltonian dynamics.
It must therefore be unitary in the Hamiltonian case. We recall that if we want a
unitary operator Û(t) in eq. (5.18), then Ω̂ must necessarily be Hermitian.

For our purpose, Stone’s theorem [28] is of fundamental importance.

Theorem 5.3.1. Consider a constant-Hamiltonian dynamics. Let U(t) be a unitary
group of the Hilbert space

1
V, ⟨ · | · ⟩

2
. Then, there exists a unique hermitian

operator H such that:
U(t) = e

i
ℏHt.

For constant Hamiltonians, therefore, U(t) and Û(t) must necessarily coincide,
due to consistency. For time-dependent Hamiltonians H(t) we have already shown
that the time propagators are defined as

U †(t) = TR

expA+ i

ℏ

Ú t

0
H(s)ds

B
U(t) = TL

expA− i

ℏ

Ú t

0
H(s)ds

B
ρt = U(t)ρ0U †(t).

(5.19)

In the case in which the dynamics is described by a Hamiltonian constant over time
these operators become the usual time propagators (1.14), in perfect agreement
with Stones’ Theorem. Expressing H(t) as a function of the dissipation operators
defined so far is a good way to derive form (5.18) while remaining faithful to what
is already known and to Stone’s theorem. Following this procedure allows us to
state the following proposition.

Proposition 5.3.2. The density operator ρt at time t ∈ R can be expressed in the
form

ρt = e
−iΩ̂0,t

L ρ0e
+iΩ̂0,t

R ,

77



Temporal evolution of ρ through the use of dissipation operators

where Ω̂0,t is the integral between instants 0 and t of the new Hermitian operator
Ω̂s, which is defined as

Ω̂s ≡ ω̃s

ℏ
− iΩs. (5.20)

Proof. Observing the compact forms (4.13), it is clear that we can express the
Hamiltonian operator H(s) using the two Hermitian operators ω̃s and iΩs,

H(s) = ω̃s − ℏiΩs.

Replacing the latter in (5.19) we find

U(t) = TL

C
exp

A
− i

Ú t

0

ω̃s

ℏ
− iΩsds

BD

We therefore define the dissipative evolution operator as

Ω̂s ≡ ω̃s

ℏ
− iΩs.

It is consistently Hermitian since1
Ω̂s
2†

= 1
ℏ
1
ω̃s
2†
−
1
iΩs

2†
= 1

ℏ
ω̃s + i(Ωs)† = ω̃s

ℏ
− iΩs = Ω̂s.

Moreover, explicitly calculating the adjoint, we find1
Û(t)

2†
=
1
e

−iΩ̂0,t

L

2†
= e

(−iΩ̂0,t)†

R = e
+iΩ̂0,t

R .

In conclusion, we can write

ρt = e
−iΩ̂0,t

L ρ0e
+iΩ̂0,t

R .

We can therefore define

Û(t) ≡ e
−iΩ̂0,t

L ; Û †(t) = e
+iΩ̂0,t

R = Û−1(t). (5.21)

With this method the ’new’ evolution operator Û(t) is actually exactly coincident,
by construction, with the time propagator (5.5): Û(t) = U(t). We simply rewrote
H(s) as H(s) = ω̃s − iℏΩs. In this way, we are already sure that Û(t) forms a
one-parameter unitary group. The unitary trace property is certainly preserved
over time. The definition of Û(t) is consistent with Stone’s theorem by construction.
These are all necessary features for any new, well-defined time evolution operator
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Ũ(t). However, it is clear that Û(t), defined as in (5.21), does not seem to really
bring anything new. The advantage is that, if one could extend the definition of
the dissipation operator Ω0 to general dissipative (non-Hamiltonian) dynamics,
then Û(t) could remain a time propagator.

It is interesting to understand if it is possible to find a valid evolution operator
that is truly different from time propagator (5.5). However, this does not seem
possible. We consider a time-dependent Hamiltonian dynamics H(s) and suppose
there exists an evolution operator in the form

Ũ(t) = TL

C
exp

AÚ t

0
A(s)ds

BD
, with A(s) /= − i

ℏ
H(s). (5.22)

We suppose further that also Ũ(t) forms a one parameter unitary group.
Let’s consider the particular case of constant Hamiltonian, H(t) = H ∀t, then, by
Stone’s theorem, one must necessarily have

TL

C
exp

AÚ t

0
A(s)ds

BD
= TL

C
exp

A
−
Ú t

0

i

ℏ
Hds

BD
= e− i

ℏHt.

Furthermore, this must be valid for any instant in time, in conclusion we must have

TL

C
exp

A
−
Ú t

0

i

ℏ
H(s)ds

BD
= TL

C
exp

AÚ t

0
A(s)ds

BD
, ∀t ∈ R

and then Ú t

0
− i
ℏ
H(s)− A(s)ds = 0 ∀t ∈ R.

But this is not possible having assumed A(s) /= − i
ℏH(s). We therefore conclude that

the only way to construct a good time evolution operator is precisely the one used
in proposition 5.3.2, i.e. to express H(s) as a function of some dissipation operators.

It is important to highlight why we chose the form (5.20) and not other different
ones. Looking at (4.13), we could for example have chosen to express H as

H(s) = ωs − iℏΩs,

the corresponding operator inside the integral would have been Ω̂s
b = ωs

ℏ − iΩ
s.

This last operator is certainly also Hermitian by construction, since the operator
H(s) is Hermitian. However, if we calculate the adjoint of Ω̂s

b, without exploiting
the equivalence with the operator i

ℏH(s), we obtain
1
Ω̂s

b

2†
=
1ωs

ℏ
− iΩs

2†
= 1

ℏ
(ωs)† + i(Ωs)†.
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Operators ωs and Ωs are neither Hermitian nor antihermitian. Therefore, Ω̂s
b

is Hermitian for H(s)-dynamics but may no longer be so for generalizations to
non-Hamiltonian dynamics. Instead, operators iΩs and 1

ℏ ω̃
s are hermitians by

definition. Therefore, with the choice (5.20), operator Ω̂s could remain Hermitian
for some generalizations to non-Hamiltonian dynamics and so the time evolution
operator Û(t) would remain unitary when possible.

The real advantage of being able to write the solution to the Liouville problem
as ρt = Û(t)ρ0Û †(t) is that this form allows us to switch, also using this new
formalism, from the Heisenberg representation to the Schrödinger representation
and vice versa simply by using the cyclic property of the traceA

⟨O⟩t
BS

= Tr
1
Oe−iΩ̂0,t

L ρ0e
iΩ̂0,t

R

2
= Tr

1
e

iΩ̂0,t

R Oe−iΩ̂0,t

L ρ0
2

=
A
⟨O⟩t

BH

In other words, to calculate the expectation values ⟨O⟩t it could be possible even
in very complex dissipative dynamics to evolve the observables like

Ot ≡ e
iΩ̂0,t

R Oe−iΩ̂0,t

L , (5.23)

and keep the probability density operator fixed at the initial instant t = 0. This
may not be achievable in this form, but may only be possible by means of the new
expression (2.10). In the next chapter we will see that keeping the probability fixed
and evolving only the observables over time can also bring advantages in quantum
mechanics, as regards dissipative dynamics. We will exploit idea (5.23) to extend
our expression (2.10) to the Lindblad equations.
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Chapter 6

Dissipation operator in
dynamics of open quantum
systems

Previously we studied some qubit systems, units of information at the basis of
quantum computation. Quantum computing constitutes one of the greatest scien-
tific revolutions of the XXI century. It uses hardware and algorithms that exploit
quantum mechanics to solve complex problems that classical supercomputers cannot
solve or cannot solve quickly enough. Today quantum computing already finds
applications in the fields of information technology, financial services and cyberse-
curity. We are only at the beginning, the true potential of quantum computing
has yet to be discovered. However, the road towards a real revolution is still very
long. The promises of quantum computation have turned out to be hard to keep,
since the fragile quantum coherence, necessary for quantum computation to work,
usually rapidly decays. In presenting this process, called decoherence, and the
related Lindblad equations that describe it, we will refer to the first chapter of the
text [11].

Decoherence is induced by the presence of reservoirs that can significantly alter
the true quantum dynamics. However, the coupling between a quantum system
and a structured non-equilibrium environment may prove to be an opportunity:
the smallest quantum systems can also be seen as nanomachines that exchange
energy and matter with their surroundings. From a thermodynamic viewpoint,
such nanomachines are coupled to an environment that is out of equilibrium and
might thus be able to perform useful tasks such as generating electrical current
from a heat gradient. Alternatively, they could function as heating or cooling
devices. The effect of non-equilibrium environments on a quantum system is a
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topic that deserves to be thoroughly understood.
So far we have dealt exclusively with isolated quantum systems. However, we

have now said that realistic quantum systems can usually not be regarded as closed.
They are not perfectly isolated from their environment (composed of thermal
reservoirs, detectors, and other things). The naive approach of simply simulating
the evolution of both the system and its environment is complitely impossible: the
number of degrees of freedom is of the order of 1023. With our limited abilities we
should therefore be content with a theory that describes only a small part of our
universe, conventionally called system. When we treated cases of time-dependent
Hamiltonians in the previous chapter we were already considering open systems:
changing the parameters of the Hamiltonian normally requires an interaction with
the outside world. However, in this restricted subspace called system, the dynamics
may no longer be expected to be unitary. That is, a simple time dependence of
external parameters in the Hamiltonian cannot account for the observed dynamics,
which the Schrödinger equation will fail to predict.

It is therefore necessary to generalize the dynamics but also to maintain the
probabilistic interpretation underlying quantum mechanics. For this purpose, the
Kraus map was introduced. A Kraus map is the most general evolution preserving
all the nice properties of a density matrix. This map is defined as

ρ(t+ ∆t) =
Ø

α

Kα(t,∆t)ρ(t)K†
α(t,∆t),

with Kα(t,∆t) s.t.
Ø

α

K†
α(t,∆t)Kα(t,∆t) = 1.

If we constrain ourselves to master equations that are local in time and have constant
coefficients, the most general evolution that preserves trace, self-adjointness, and
positivity of the density matrix ρ is given by a Lindblad form

ρ̇ = 1
iℏ

[H, ρ] +
N2−1Ø
α,β=1

γα,β

1
AαρA

†
β −

1
2{A

†
βAα, ρ}

2
.

The commutator term accounts for the unitary evolution, whereas the remaining
terms describe the dissipative part of the evolution. γαβ is the dampening matrix and
it is hermitian and positive semidfenite. H is the effective Hamiltonian operator.
It should be noted that when derived from a microscopic model, the effective
Hamiltonian need not coincide with the system Hamiltonian. This demonstrates
that the interaction with a reservoir may also change the unitary part of the
evolution. It can be rewritten in a simpler form by diagonalizing γ and absorbing
its eigenvalues into the Lindblad operators:

ρ̇ = 1
iℏ

[H, ρ] +
Ø

α

A
LαρL

†
α −

1
2{L

†
αLα, ρ}

B
. (6.1)
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These equations are very useful and powerful for describing decoherence and dissi-
pation phenomena in open quantum systems. However, they have some limitations.
Their validity is restricted to thermally balanced environments, where interactions
are linearly dissipative. In other environments, for example in non-Markovian cases
(where the environment has a memory of the past), Lindblad equations may not
correctly capture the system behavior. Moreover, when many energy states are
involved, calculating the solution becomes very computationally intensive. Another
problem concerns the positivity of ρ(t).

The preservation of the positivity of ρ for the master Lindblad equation is
demonstrated by discretizing the time derivative and transforming the differential
equation into an iteration equation of the form ρ(t+ ∆t) = L(t)[ρ(t)]. For details
of this proof one can look, for example, at subsection 1.5.2 of text [11]. What
we are interested in highlighting here is that the limit ∆t→ 0 is taken in such a
way that "the violation of positivity vanishes faster than the discretization width".
This demonstration is affected, already at a theoretical level, by this question of
the limit. This problem is further amplified when the solution is calculated with
numerical methods: numerical solutions of the Lindblad master equation (6.1)
using a forward-time discretization may yield negative probabilities if the time step
∆t is chosen too large. This is a problem in many applications, we certainly want
to avoid working with negative probabilities but this can often be computationally
prohibitive. The formalism built in this thesis seems to be a good starting point for
avoiding this problem. Using the quantum exact response formula (2.10) we could
in fact keep the density operator fixed in time, precisely at the initial instant where
it is certainly well defined, and calculate the expectation values of the observables
by evolving the corresponding operators over time. This seems like a good idea
but to put it into practice we must first extend the definition of the dissipation
operator to dynamics (6.1) and then find a correct way to express Ot in the form
(5.23). Finally, if it were possible to exploit this theory based on the dissipation
operator to deal with Lindblad problems, we do not exclude that this could lead to
improvements to other limits of the Lindblad equations.

6.1 Extension of the dissipation operator to Lind-
blad equations

There are several ways to extend the definition of the dissipation operator to include
in it the dissipative part of dynamics (6.1). It can be very useful to rewrite the
terms in the summation:

LαρL
†
α −

1
2{L

†
αLα, ρ} = LαρL

†
α −

1
2L

†
αLαρ−

1
2ρL

†
αLα.
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Operator L†
αLα multiply to the right of ρ in the last term and to the left in the

second, a natural intuition is to include them respectively in Ω0 and (Ω0)†. The
first term, however, cannot be included naturally in either of the two, being ρ in
the middle of Lα and L†

α. We can try to use a trick similar to the one already used
in the second chapter: multiply by ρ−1. Motivated by these considerations we can
define an operator that will be very useful for including this part in Ω0:

Dα ≡ ρ−1LαρL
†
α − L†

αLα.

Definition 6.1.1. In the case of Lindblad equations the definition of the dissipation
operator can be extended by including the Lindblad operators as follows

Ω0
L ≡ Ω0 +

Ø
α

D0
α; (6.2)

where the superscript 0 in Dα indicates that the density matrix within its
definition is the initial one, ρ0.

Proposition 6.1.2. The Lindblad equations (6.1) can be expressed in the form

∂ρ

∂t
= 1

2
1
ρΩt

L + (Ωt
L)†ρ

2
. (6.3)

Proof. First of all, we calculate the addition of Dα:

D†
α =

1
ρ−1LαρL

†
α

2†
−
1
L†

αLα

2†
=
1
ρL†

α

2†1
ρ−1Lα

2†
−
1
Lα

2†1
L†

α

2†
=1

L†
α

2†
ρ†L†

α

1
ρ−1

2†
− L†

αLα = LαρL
†
αρ

−1 − L†
αLα.

Thanks to the good linearity property we certainly also have:AØ
α

Dα

B†

=
Ø

α

D†
α.

Now it is sufficient to show by explaining the calculations that the equation in form
(6.3) is equivalent to the Lindblad ones.

∂ρ

∂t
= 1

2
1
ρΩt

L + (Ωt
L)†ρ

2
=

1
2
1
ρΩt + (Ωt)†ρ

2
+ 1

2
Ø

α

1
LαρL

†
α − ρL†

αLα + LαρL
†
α − L†

αLαρ
2

=

1
iℏ

[H, ρ] +
Ø

α

A
LαρL

†
α −

1
2{L

†
αLα, ρ}

B
.
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We emphasize that there are other ways to include Lindblad operators in Ω. We
chose (6.2) because it seemed like the most natural way. However, we are building
this new formalism now, we don’t know what the truly best path is. For example,
we could have included them simply by multiplying by ρ−1 first on one side and
then on the other:

ΩL = ρ−1L[ρ]; Ω†
L = L[ρ]ρ−1; (6.4)

where L[·] denotes the Lindblad equations. However, this seems to be an unproduc-
tive path, in the sense that it is unlikely to lead to future simplifications. Anyway,
more interesting choices than (6.2) could be found.

It is necessary to underline that previously, for Hamiltonian dynamics, we could
express the Von Neumann equation as a linear combination of Ω and Ω†,

∂ρ

∂t
= a(Ω)†ρ+ bρΩ with a, b ∈ R s.t. a+ b = 1. (6.5)

However, by extending this formalism to the Lindblad equations using (6.2), this
last combination is no longer possible: constraint a = b = 1/2 is added and the only
admissible form is eq. (6.3). This result is consistent, if the Lindblad operators
were null then we would find the Von Neumann equation in the form (6.5) (with
a = b = 1/2).

It is also interesting to understand if and how the time propagator can be
extended to the Lindblad case. Previously we had

ρt = e
−iΩ̂0,t

L ρ0e
+iΩ̂0,t

R ; with Ω̂s ≡ ω̃s

ℏ
− iΩs.

The definition of Ωs
L follows in a constrained way from that of ΩL, we necessarily

have
ΩL ≡

1
2(ΩL − Ω†

L) = Ω + 1
2

AØ
α

[ρ−1, LαρL
†
α]
B

= Ωt +K(t)

Instead, ω̃ was specially defined to express H as H = ω̃ − ℏiΩ, we therefore have
freedom on how to extend it, but the extension must necessarily be consistent. In
general, we can write:

ω̃t
L = ω̃t +BL(t).

We would like to use this freedom to build Ω̂L in such a way that

ρt = UL(t)ρ0U
†
L(t) ≡ e

−iΩ̂0,t

L ρ0e
+iΩ̂0,t

R ; Ω̂0,t =
Ú t

0
dsΩ̂s

L (6.6)

is a solution of the Lindblad equations.
This is the idea from which we take inspiration. However, it is very difficult

to put into practice. First of all, we don’t know if, for Lindblad problems, such
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propagation operators UL(t) really exist. Secondly, assuming their existence, we do
not know the form of BL. Finally, even obtaining Ω̂L, we would then have to know
its time evolution to calculate the integral and express UL. Knowing the temporal
evolution of Ω̂t

L could be very complex, given that ρt is present inside it, which we
are not aware of.

All these problems prevent us from an exact mathematical derivation. So we will
move differently, we will combine the exact results obtained so far with hypotheses
suggested by the previous considerations.

Given a Lindblad problem in form (6.1), we assume that we can still write:

d

ds
⟨O⟩s = Tr

A
O∗

s

∂ρ0

∂t

B
.

We emphasize that with this, we are assuming that the infinitesimal temporal
variation of the expectation value of an observable O can be expressed relative to
the initial density derivative, provided that the observable is made to evolve over
time in an appropriate manner to make this possible, O∗

s . For now, we are not
assuming anything about the form of O∗

s , it could be very complicated and not
expressible via two time propagators.

This assumption allows us to exploit the dissipation operator (6.2). With steps
similar to those already carried out for derivation of eq. (2.10), we obtain

⟨O⟩t = ⟨O⟩0 + 1
2

Ú t

0

A
⟨Ω0

LO∗
s⟩0 + ⟨O∗

s(Ω0
L)†⟩0

B
ds. (6.7)

Not knowing O∗
s , to exploit this expression, we must make another hypothesis. To

do this, we draw inspiration from the considerations of the previous chapter, in
particular from eq. (5.23). We therefore hypothesize that, using this expression,
the observables can evolve as

O∗
t = U×

L (t)OUL(t) = e
i
ℏ (H+C×)tOe− i

ℏ (H+C)t. (6.8)

In this case, we are not assuming that UL is a "real" time propagator, in the sense
that it would extend the Heisenberg representation, ⟨O⟩t = Tr(U×

L (t)OUL(t)ρ0).
We are stating that such operators work like evolution operators when combined
with expression (6.7). The symbol ’×’ indicates that the two evolution operators
need not necessarily be adjoints of each other. It would be preferable, but for
now we want to have as much freedom as possible to investigate the form of O∗

t ,
therefore we take the liberty of using a C× similar but possibly a little different
from C†.

Assumption (6.8) is reasonable, we have in fact

Ω̂t
L = ω̃t

ℏ
+BL(t)− i(Ωt +K(t)) = H

ℏ
+BL(t)− iK(t).
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The freedom we have on BL(t) allows us to express the entire second part with
a single arbitrary operator C(t) = ℏ(BL(t) − iK(t)). It is also reasonable to
hypothesize the temporal independence of C. Just as the two time-dependent
operators Ωt and ω̃t reduce to the constant Hamiltonian H, the same could happen
for BL(t) and K(t), also because all the Lindblad operators are time-independent
in equation (6.1). We would therefore have Ω̂t

L = ℏ−1(H + C), from which,
remembering eq. (6.6), hypothesis (6.8) follows.

We don’t know C (and C×), the idea is to apply the expression (6.7) to a
particular case of Lindblad equations, whose analytical solution is known. We will
try to construct C by inspection for the given Lindblad problem. Once found, the
process can be repeated for various particular Lindblad equations. If the procedure
works for several particular cases then one can try to extrapolate a general form
for C and C× (and thus for UL(t) and U×

L (t)). After having defined a good general
expression, assumption (6.8) can be justified by reasoning a posteriori.

6.2 Application to a Lindblad equation
Now we begin the study of expression (6.7) by choosing a particular Lindblad
equation in simple form. We consider the following particular case,

∂ρ

∂t
= −i[ωσz, ρ] + γ

A
σ−ρσ+ − 1

2{σ
+σ−, ρ}

B
; σ± ≡ 1

2(σx ± iσy). (6.9)

This equation dictates the evolution of a (|0⟩, |1⟩) qubit open system. It is already in
form (6.1), we just need to highlight the correspondence with the general notation,

α = 1; H = ωσz; L = √γσ−; L† = √γσ+.

Expressing eq. (6.9) in single components one finds

ρ̇00 = −γρ00; ρ̇01 =
1
−γ2−2iω

2
ρ01; ρ̇10 =

1
−γ2 +2iω

2
ρ10; ρ̇11 = +γρ00; ρ(0) = ρ0.

The analytical solution is easily calculable:

ρ(t) =
C

ρ0
00e

−γt ρ0
01e

−(0.5γ+2iω)t

ρ0
10e

−(0.5γ−2iω)t ρ0
11 + ρ0

00(1− e−γt)

D
.

Therefore, the expectation value of the observables can be obtained as

⟨O⟩t = Tr(ρ(t)O). (6.10)

We want to use expression (6.7) to calculate ⟨O⟩t. By comparing the results
obtained with the analytical solution, we may be able to define operators C and
C× for this particular case. To do this, we used the matlab code in Appendix C.
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We were unable to achieve this goal, however we found an interesting result in
this regard. If we restrict the field of observables to diagonal operators,

O =
C
a 0
0 b

D
, a, b ∈ R, (6.11)

then the expression (6.7) offers exact results for a suitable O∗
s .

In particular, defining

C ≡ −iγσ+σ−, C× ≡ +iγσ−σ+, (6.12)

formula (6.7) offers results coinciding with the known ones (6.10), for any initial
condition ρ(0) and for all real frequencies ω, γ. In particular, in figure 6.1, we
show the numerical results obtained for the two projectors π0 (a = 1, b = 0) and
π1 (a = 0, b = 1); all the diagonal observables can be obtained as their linear
combination.

Figure 6.1: Comparison of the results offered by expression (6.7) (solid blue line)
with those known theoretically (dashed red line) for the problem (6.9). On the
left ⟨π0⟩t, on the right ⟨π1⟩t. In both panels: ω = 0.5, γ = 3, initial condition ρ0
identified by the Bloch vector a⃗ = (0.2; 0.3;−0.4). The curves overlap: the results
offered by (6.7) are correct.

We underline that C× is slightly different from the adjoint of C, C† = iγσ+σ−,
the two operators used, UL and U×

L , do not form a unitary group; this question
should be further investigated but for the moment we don’t deal with it. Of course
we tried using C† instead of C×, but the results weren’t great. Anyway, this
result is not strange, dissipative dynamics are non-unitary, it is reasonable to use
propagation operators which themselves are not unitary and without the constraint
of necessarily having to be one the adjoint of the other.
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The class of diagonal operators already represents an important category of
observables, however, we would like to be able to calculate the expectation value of
any Hermitian operator with expression (6.7). What we found suggests investigating
expression (6.7) for the complementary class of operators,

O =
C

0 c+ id
c− id 0

D
; c, d ∈ R. (6.13)

If we could find a correct form for O∗
t also in this case, we could then combine the

results obtained and find a valid expression for any Hermitian operator, combination
of these two classes of operators. By inspection, with numerical attempts on matlab,
we have found the form for O∗

t that offers exact results for this second case. We
can define the evolution of the observables for this second case as

O∗
t = e

i
ℏ (H+M×)tOe− i

ℏ (H+M)t; M = − i4γId = −M×. (6.14)

This form, combined with the usual expression (6.7), offers exact results for all
observables belonging to this second class, which we will call second diagonal-class.
In figure 6.2, we show the numerical results obtained for two arbitrary cases.

Figure 6.2: Comparison of the results offered by expression (6.7) (solid blue line)
with those known theoretically (dashed red line) for the problem (6.9), second-
diagonal class O2. On the left, c = 1, d = 1, ω = 1, γ = 1, ρ0-Bloch vector
a⃗ = (0.3, 0.3, −0.4). On the right, c = −3, d = −1, ω = 2.5, γ = 1.3. ρ0-Bloch
vector a⃗ = (0.2, −0.1, 0.6). The curves always overlap: the results offered by (6.7)
are correct.

In summary, the new expression (6.7) offers exact results for the expectation
value of any Hermitian operator O. However, we must pay attention to how to
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make this observable evolve over time. An Hermitian observable O in dimension 2
can always be expressed as a linear combination of the two classes (6.11), which
we denote by O1, and (6.13), by O2:

O = O1 +O2.

To use expression (6.7), the observable must evolve as

O∗
t = e

i
ℏ (H+C×)tO1e− i

ℏ (H+C)t + e
i
ℏ (H+M×)tO2e− i

ℏ (H+M)t;

C = −iγσ+σ−, C× = iγσ−σ+; M = − i4γId = −M×.

With a view to extrapolating a form for generic Lindblad equations, it is appropriate
to point out some properties of this particular case. C, C×, M, M× all commute
with the Hamiltonian operator H. Therefore the usual exponential property holds
and we can equivalently write:

O∗
t = e

i
ℏC×tO1

H(t)e− i
ℏCt + e

i
ℏM×tO2

H(t)e− i
ℏMt (6.15)

(where the subscript ’H’ indicates evolution in simple Heisenberg picture).
We also note that M× is the adjoint of M , M † = M×. Furthermore, for class
(6.11), [O1,H] = 0, so writing O1

t = e
i
ℏC×tO1e− i

ℏCt is also valid, without using
Heisenberg time propagators. It may also seem strange to use the identity at the
exponential in a general form. In this particular case, we have

Id = {σ−, σ+} = σ−σ+ + σ+σ−.

Therefore it is possible that in other cases the M operator is defined via the
anticommutator of Lindblad operators.

In conclusion, we realize a posteriori that we can also simply write,

Diag 1: ⟨O1⟩t = ⟨O1⟩0 + 1
2

Ú t

0
e−γs

A
⟨Ω0

LO1
H(s)⟩0 + ⟨O1

H(s)(Ω0
L)†⟩0

B
ds.

Diag 2: ⟨O2⟩t = ⟨O2⟩0 + 1
2

Ú t

0
e− 1

2 γs

A
⟨Ω0

LO2
H(s)⟩0 + ⟨O2

H(s)(Ω0
L)†⟩0

B
ds.

⟨O⟩t = ⟨O1⟩t + ⟨O2⟩t.

In this case the exponentials e−γs and e− 1
2 γs are simple scalar functions. Previously,

this temporal dependence was expressed by incorporating it into the evolution of
the observables taking the exponential of the M and C operators, as shown in
(6.15). However, it could be justified in other ways, for example by taking it as a
temporal dependence of Ω0

L,

HP : (diag 1) Ω0
L(t) = e−γtΩ0

L; (diag 2) Ω0
L(t) = e− 1

2 γtΩ0
L. (6.16)

90



Dissipation operator in dynamics of open quantum systems

We are at the beginning, we cannot know which is the best approach. Anyway,
for now, we think it is better to keep the dissipation operator fixed at the initial
instant. Ω0

L allows us to use only the equilibrium density operator ρ0, which has
many advantages, imposing a time dependence might not be convenient.
We therefore prefer the way (6.15), which includes this temporal dependence in
the evolution of the observables via specific time propagators. Furthermore, we do
not exclude that it is possible to express it by defining C and M in different ways.
In general, we must not exclude any path a priori, only future studies will be able
to reveal the best choice.

We have shown that the expression (6.7) based on the dissipation operator works
perfectly for this particular Lindblad equation (6.9). The goal is to find a generally
valid expression for any Lindblad equation. To achieve this, it is necessary to apply
this formalism to many different Lindblad equations, in order to reach an always
valid formula. This first application seems to suggest using the expression (6.7),
evolving the observables as in (6.15), defining

M = − i4{Lα, L
†
α} = −M×; C = −iL†

αLα; C× = iLαL
†
α.

However, we have seen that this simple case has several properties. It may be
possible to find other, even very different, ways of defining these operators and
obtaining equivalent exact results. Furthermore, other ways can be explored, study-
ing the temporal dependence of ΩL could be a valid alternative, as shown in (6.16).
It is also interesting to understand what happens in dimension 3 or higher, where
the decomposition into the two diagonals no longer covers all possible Hermitian
observables. In general, one could also try to arrive at a single expression, which
does not require such a decomposition. It is certainly worth carrying out studies of
other Lindblad applications in future developments of this work to clarify all these
questions.

If it were possible to define a general expression based on the dissipation
operator then this could resolve some defects and suggest numerous interesting
lines of research. First of all, it would be a good starting point to avoid the grain
of negative probabilities. Secondly, one could try, with the necessary mathematical
care, to define Ω0, not through the initial condition ρ0, but with more clever choices.
This could for example significantly improve the computational problems related
to these equations, or provide new physical interpretations.
Determining exactly which operators are appropriate for a given system is not
always clear and requires complex theoretical work. In many cases, choosing Lk

operators can be an ambiguous or approximate process. If expression (6.7) turns
out to be excellent in the future, it is not a bad idea to try to mathematically
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describe the dissipation and decoherence with the opposite approach: not through
Lk operators but directly by studying Ω operator.

The Lindblad equations are intimately linked to the concept of quantum entropy
[29], [30]. This is an advanced question, for now certainly very far from being
investigated using the dissipation operator method. However, since this response
theory is in an initial state, we do not exclude that future extensions of this work
may be relevant in studies on these directions. We need to proceed step by step,
the first thing is to understand if there is a general expression valid for solving
any Lindblad equation, not just a particular case. If it were possible, even only
partially, then one could really think about studying quantum entropy and other
questions, linked to Lindblad equations, using this approach. The theory is in an
embryonic state, so there are still many things to discover, as well as potential.
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Chapter 7

Conclusion and future
developments

The linear quantum response theory is the most used today to deal with equilibrium-
perturbed quantum systems. The response to a small perturbation is determined by
the equilibrium dynamics and by the time correlation function of the perturbation
and the observable of interest, computed with respect to the known equilibrium
density operator. This approximate approach has reached an excellent degree
of completeness. It is applicable not only to closed systems but also to open
dissipative systems, the equilibrium of which is a stationary state of the Lindblad
equations. Non-Markov effects can also be taken into account. This method has
allowed the study of non-equilibrium quantum systems, offering important results
and bringing progress in various scientific sectors. It will continue to be important
in the future, as it is easily applicable whenever other more precise approaches
cannot be exploited. However, linear response theory has limitations. Firstly, it
requires that the perturbation can be assumed to be small, obviously in many cases
this is not possible. Secondly, in the presence of non-linearity or anomalies, even a
small initial perturbation can generate drastic changes, for example it can lead to a
phase transition. The linear response may fail to capture these behaviours. Linear
response theories can be extended taking higher-order terms in the expansion of
the perturbation. This approach offers greater precision, but it is very cumbersome.
Above all, it remains an approximate method, presenting the same problems as the
linear approach.
There is therefore a strong need to develop a quantum exact response theory. This
would lead to important new discoveries. Research has recently begun to be carried
out in this direction and some promising approaches have been developed. However,
we are at the beginning: an exact, valid and general method does not yet exist in
quantum mechanics. In this thesis, we attempted to lay the foundations for an
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exact method inspired by the Dissipation Function.

The Dissipation Function arises in the field of Fluctuation Theorems of "classical"
(non-quantum) nature. It was initially developed as the energy dissipation rate in
these Fluctuation Relations. A dynamical-systems interpretation has been provided
for the Dissipation Function. In this context, it is defined as

Ωft(Γ) ≡ −[Λ(Γ) +G(Γ) · ∇Γlnft(Γ)].

This is the basis for a general exact response theory. It can be used to describe the
exact evolution of the ensemble average as

⟨O⟩ft = ⟨O⟩f0 +
Ú t

0
⟨(O ◦ Ss)Ωf0⟩f0ds.

This exact response formula has several advantages. It keeps the probability fixed:
evolving observables over time is easier than evolving the density, which requires
reversed dynamics. The response is calculated as a correlation function with an
important physical observable, Ω, and this has enabled new physical interpretations.
It offered new perspectives into second-law inequality, but interpreted in terms
of relative entropies, independent of any putative thermodynamic context; it can
also provide necessary and sufficient conditions for relaxation towards equilibrium,
in terms of observable behaviour, through the notion of ΩT-mixing. Moreover,
this form has the advantage of smoothing the ⟨O⟩t signal and cleaning it from noise.

To build a quantum exact response theory, the idea exploited for this thesis is to
develop the quantum translation of this classical theory based on the Dissipation
Function. Working in finite dimensional Hilbert spaces, we initially assumed a
Hamiltonian dynamics of the typeH = H0+λHext. H0 is considered the equilibrium
dynamics, the corresponding invariant density operator ρ0 represents the quantum
system at the initial stationary equilibrium. The perturbation is of the type λHext,
with lambda (and so the perturbation) arbitrarily large. It is turned on at the
initial instant and then kept constant over time. Under these assumptions, we
defined the dissipation operator as

Ω0 ≡ 1
iℏ
ρ−1

0 [H, ρ0].

Exploiting the latter, we derived an exact response expression,

⟨O⟩t = ⟨O⟩0 +
Ú t

0
⟨Ω0Os⟩0ds,

where Os is the evolved observable in Heisenberg picture according to the total
(exact) dynamics H. This method has more general validity, it is applicable to any
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constant Hamiltonian H and any initial density operator ρ0.

By applying this expression to qubit systems, we numerically tested its validity.
We also compared the results with those offered by the linear response theory: for
small perturbations they coincide, while for large perturbations the linear theory
fails while the new formula (2.10) continues to be correct.
However, we underline that for the analysed problems the results can be calculated
exactly as ⟨O⟩t = Tr(U(t)ρ0U

†(t)O), the linear response is not used for these
simple cases. In this sense, we can say that the new expression (2.10) is, for now,
just a different formalism for calculating ⟨O⟩t, equivalent to the Heisenberg and
Schrödinger pictures. Anyway, finding different formalisms to rewrite the same
result is often a great way to discover different points of view on a theory, and
to move an important first step towards new discoveries. Expression (2.10) is
already an exact response formula for arbitrarily large constant perturbations. In
future developments one can try to extend it to time-dependent perturbations, or
dissipative, non-Hamiltonian perturbations. This would offer an exact response
theory in fields where an approximate approach is the only one that can be used
today: it would constitute an extraordinary result. Succeeding in this goal is not
easy, it certainly requires hard work. We don’t know if this is possible, but the
analogous classical theory works well for this type of perturbations, so we think it
is worth investigating the question also in the quantum world, through the new
expression.

Moreover, thanks to its analogy to classical theory, also other advantages offered
by the classical expression (1.23) could be transferred to the quantum field. In this
regard, we have demonstrated two properties of the dissipation operator,

⟨Ω0⟩0 = 0 and d

ds
⟨Ω0⟩s|s=0 ≥ 0.

By combining them, it seems possible to maintain the association of ⟨Ω0,s⟩0 ≥ 0
with the relative entropy measure D(f0∥f−s), finding a sort of second law inequal-
ity, independent of any thermodynamic context, as already done for dynamical
systems. Furthermore, classical theory suggests the possibility of associating to
operator Ω, even in quantum mechanics, the physical observable of dissipation
(more precisely, of generalised entropy production). The latter is a quantity that
can be measured in the laboratory, and it may be interesting to understand if
a quantum equivalent exists. These last two considerations are interesting to
explore further, but they are also delicate because operator Ω is not Hermitian, and
this can cause problems in the attempt to associate it with real physical observables.

We have defined a Hermitian dissipation operator Ω̃. By exploiting it to derive
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the exact response expression, however, an antihermitian operator also appears,

⟨O⟩t = ⟨O⟩0 +
Ú t

0

A
⟨Ω̃0;Os⟩0 + 1

2⟨[Ω
0,Os]⟩0

B
ds.

Ω̃ and Ω are nothing other than the Hermitian and antihermitian parts of Ω, and
this expression deviates from the analogy with the classical one. Today, we consider
the previous form (eq. (2.10)) better, as it is simpler. However, they offer equivalent
and exact results, we also present this second one, as it may prove more useful in
future studies on this topic and in possible extensions.

We reiterate that we have built this formalism from scratch, the choice of new
operators and expressions is free, as long as it offers exact results. We don’t even
know what is the best way to define the dissipation operator and build the theory.
We have presented the best results found by us. However, there is no definitive
rule, there may be better ways to define the dissipation operator on which to base
the theory; further research into different ways of doing this may be very productive.

We analysed the Von Neumann equation in more detail, focusing on the role
that the dissipation operators defined so far assume in expressing its solution.
These results may seem impractical, but they help to understand possible ways for
extending the theory to more complicated dynamics. We found that, for constant
Hamiltonian dynamics, the dissipation operator evolves in ’reversed time’ with
respect to the observables, like a probability, Ωt = U(t)Ω0U †(t). This seems initially
inconvenient, but in reality it guarantees excellent consistency results for this theory.
Still considering Hamiltonian H(t) dynamics, time propagators can be written as

Û(t) = e
−iΩ̂0,t

L ; Û †(t) = e
+iΩ̂0,t

R .

According to Stones’ theorem, these coincide exactly with the usual ones, eq.(5.5).
This is not a new result, but it suggests an interesting fact: exploiting the new for-
malism for dissipative (non-Hamiltonian) dynamics, it may be possible to continue
evolving the observables as

Ot = e
iΩ̂0,t

R Oe−iΩ̂0,t

L .

This conjecture can prove very interesting in extending the new formalism to these
open quantum dynamics.

Quantum dissipative dynamics are described by the Lindblad equations, only
the probability evolves over time, the observables are kept fixed. This approach
has some problems, for example, the solution can result in negative probabilities.
Extending the quantum response theory based on the Dissipation Function to
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this type of problems could therefore bring important advantages. We therefore
investigated this approach. We have extended the definition of the dissipation
operator to this case: Ω0

L = Ω0 +q
α D

0
α. Making some hypotheses suggested by

the previous results, we constructed the expression

⟨O⟩t = ⟨O⟩0 + 1
2

Ú t

0

A
⟨Ω0

LO∗
s⟩0 + ⟨O∗

s(Ω0
L)†⟩0

B
ds.

The general form of O∗
t is not known. By applying this expression to many particular

cases it could be possible to arrive at a general definition for O∗
t . We therefore

studied a particular case, eq. (6.9). By applying a decomposition to O in the two
diagonals, exact results are obtained with the choice

O∗
t = e

i
ℏC×tO1

H(t)e− i
ℏCt + e

i
ℏM×tO2

H(t)e− i
ℏMt.

M = − i4{Lα, L
†
α} = −M×; C = −iL†

αLα; C× = iLαL
†
α.

We have also seen that these exact results can also be justified in different ways, for
example, by defining M and C in other ways, hypothesizing a temporal dependence
of Ω0

L or in even different ways. We are building this theory from scratch, so there is
a lot of freedom and this can be considered an advantage, imagination and intuition
can be fully exploited.

Future developments certainly concern the application to other different Lind-
blad equations. Through these we could obtain a generally valid expression. It is
then interesting to study whether it is possible to avoid the decomposition into
the two diagonals and investigate the cases of dimension 3 and higher, where this
decomposition does not cover all the Hermitian observables. Even in this case,
it may be profitable to investigate other ways to define Ω0

L. One can also try to
obtain a more compact form for the expression (6.7).
Furthermore, to define Ω0

L, we have always used ρ0 considered as initial conditions
for the Lindblad equations. Through some adjustments and care, one could think
of defining ΩL by choosing more convenient density operators. Understanding
what is meant by ’convenient’ from this perspective can again be the subject of
future studies. We suggest experimenting with choices that can speed up the
computational calculation or lead to physical interpretations.
If this method proves to work well, then one can think of using this basis to solve
problems related to Lindblad eq., not only that of negative probability but, for
example, also the description of dissipation, often complicated and approximate
via operators Lk. One could also use this method to study other questions related
to open quantum systems, such as quantum entropy. These are just some of the
future perspectives that come to mind. In general, since the theory is in an initial
state, several original research can be undertaken on this basis, many of which we

97



Conclusion and future developments

still cannot predict.

All the results of this thesis are valid in finite-dimensional Hilbert spaces. This
is a limitation, but we remember that one of the most promising areas of quantum
physics, quantum computing, is based entirely on qubits, systems described precisely
in finite-dimensional Hilbert spaces. Future research can extend the validity of this
theory to infinite dimensional Hilbert spaces through the appropriate techniques and
hard work. In our opinion, this extension should be feasible for infinite dimensional
operators with a discrete spectrum. Conceptually it is possible to think of these
operators as an infinite concatenation of finite matrices, certainly realizing this
idea is a very difficult task, but with the right advanced techniques of functional
analysis it should be possible. The case of continuous spectrum operators should be
more delicate. This second question should however be analyzed only after having
found the extension to compact operators.

This thesis is to be considered a first approach to the construction of an exact
quantum response theory, based on the Dissipation Function. We are at the
beginning, we have found some interesting results, however we cannot know how
profitable this type of approach may be in the future. We believe it is a new and
original method that can offer a different point of view on quantum response theory.
It is an approach still in its embryonic state. However, it seems promising given the
first results found, and given the similarity to the classical exact response theory,
which is robust and general. We think it is worth carrying out further mathematical
and physical research in this direction to obtain new discoveries.
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Appendix A

Matlab code for numerical
tests

1 %Pauli matrices
2 s1 =[0 1
3 1 0];
4 s2 =[0 -1i
5 1i 0];
6 s3 =[1 0
7 0 -1];
8
9 % density operator

10 % CONSTRAINT : a1 ^2+ a2 ^2+ a3^2<1
11 a1 =0; %real non - diagonal elements
12 a2 =0.1; % imaginary non - diagonal elements
13 a3 = -0.5; % diagonal elements (<0 weight on e1 , >0 on e0)
14 rz =0.5*( eye (2)+a1*s1+a2*s2+a3*s3)
15
16
17 % Hamiltonian (real coeeficients c_i)
18 c0 =0.1;
19 c1 =0.1;
20 c2 =0.2;
21 c3 =3;
22 H=c0*eye (2)+c1*s1+c2*s2+c3*s3
23
24 % Observable (real coefficients o_i)
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25 o0 = -0.1;
26 o1 = -0.2;
27 o2 =0;
28 o3 = -0.5;
29 oss=o0*eye (2)+ o1*s1+o2*s2+o3*s3
30 % ------------------------------------------
31
32 % dissipation operator
33 comm=H*rz -rz*H;
34 omz =(-1i*inv(rz)*comm);
35
36 % hermitian and antihermitian
37 omzc =(-1i*comm*inv(rz));
38 omzS =0.5*( omz+omzc);
39 omzA =0.5*( omz -omzc);
40
41 %oss=omz %(to choose particular observables )
42
43 % time propagators
44 [C,D]= eig(H);
45 expp =@(t) C*diag(exp(diag (1i*t*D)))*inv(C); %U^+(t)
46 expm =@(t) C*diag(exp(diag (-1i*t*D)))*inv(C); %U(t)
47
48 %time interval : [shift ,t+shift+long]
49 t=2* pi;
50 shift =0; %for convenience
51 long =0; %for convenience
52 dim =10000; %number of points in time interval

discretization
53 time= linspace (shift , shift + t +long , dim);
54
55 % calculation of the response :
56 % Heisenberg formalism
57 Heisenberg =zeros(dim ,1);
58
59 % Dissipation operator formalism
60 dissipationOp =zeros(dim ,1);
61 dissipationResponse =zeros(dim ,1);
62
63 % Hermitian dissipation operator formalism
64 HermitianDissip =zeros(dim ,1);
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65 HDissResponse =zeros(dim ,1);
66
67 for k=1: dim
68 % calculation of the dissipation opeator formula
69 r1t=omz*expp(time(k))*oss*expm(time(k)); %Omega*Oss
70 dissipationOp (k)=sum(diag(rz*r1t)); %<Omega*Oss >_0
71 dissipationResponse (k)=trapz(time , dissipationOp );
72 % integral over time
73
74 % calculation of the Heisenberg formula
75 heis=expp(time(k))*oss*expm(time(k));
76 Heisenberg (k)=sum(diag(rz*heis));
77
78 % calculation of the hermitian dissipation formula
79 osstempo =expp(time(k))*oss *expm(time(k));
80 corrS =0.5*( omzS* osstempo + osstempo *omzS); %Herm part
81 commA=omzA*osstempo - osstempo *omzA; %antiH part
82 HermitianDissip (k)=sum(diag(rz*corrS))+0.5* sum(diag(

rz*commA));
83 HDissResponse (k)=trapz(time , HermitianDissip );
84 % integral over time
85
86 end
87 %<O>_t=<O>_0+ Response
88 osszero =sum(diag(rz*oss)); %<O>_0
89 HDissResponse = osszero + HDissResponse ;
90 dissipationResponse = osszero + dissipationResponse ;
91 % -----------------------------------------------
92 % graphic plot
93 hold on;
94 plot(time , HDissResponse ,'-g')
95 plot(time ,Heisenberg ,'-r')
96 plot(time , dissipationResponse ,'-b')
97 xlabel('time ')
98 ylabel('\langle O \ rangle_t ')
99 title('comparison of the three expressions for \langle O

\ rangle_t ')
100 legend('Hermitian \Omega ^0 ','Heisenberg ','n-h\Omega ^0')
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Appendix B

Matlab code: comparison
with linear response

1 s1 =[0 1
2 1 0];
3 s2 =[0 -1i
4 1i 0];
5 s3 =[1 0
6 0 -1];
7 % a1 ^2+ a2 ^2+ a3^2<1
8 a1 =0;
9 a2 =0;

10 a3 =0.5;
11 rz =0.5*( eye (2)+a1*s1+a2*s2+a3*s3)
12
13 frZero =1;
14 frX =1;
15 Hzero =0.5* frZero*s3;
16 Hex =0.5* frX*s1 -0.5* frZero*s3;
17 lambda =5;
18
19 H=Hzero+lambda*Hex;
20
21 or =0; %real number
22 oi =1; %real number
23 oss=diag ([0 0])+ or*s1+oi*s2;
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Matlab code: comparison with linear response

24
25 % exactResponse with Omega
26 comm=H*rz -rz*H;
27 omz=-1i*inv(rz)*comm;
28
29 osszero =sum(diag(rz*oss)); %<O>_0
30
31 % Omega/ Heisenberg time propagator : exact dynamics H
32 [C,D]= eig(H);
33 expp =@(t) C*diag(exp(diag (1i*t*D)))*inv(C);
34 expm =@(t) C*diag(exp(diag (-1i*t*D)))*inv(C);
35
36 %Linear Resp. time propagator : equilibrium dynamics H0
37 [Cl ,Dl]= eig(Hzero);
38 exppl =@(t) Cl*diag(exp(diag (1i*t*Dl)))*inv(Cl);
39 expml =@(t) Cl*diag(exp(diag (-1i*t*Dl)))*inv(Cl);
40
41 %time domain [0,t]
42 t=2* pi;
43 dim =1000;
44 time= linspace (0, t, dim);
45
46 % Response calculation
47 responseHeisnberg =zeros(dim ,1);
48 responseLinear =zeros(dim ,1);
49 graphicResponseLinear =zeros(dim ,1);
50 responseOmega =zeros(dim ,1);
51 graphicResponseOmega =zeros(dim ,1);
52
53 for k=1: dim
54 %Linear response :
55 osstl=exppl(time(k))*oss *expml(time(k));
56 responseLinear (k)=1i*sum(diag(rz*( osstl*Hex -Hex*

osstl)));
57 graphicResponseLinear (k)=trapz(time , responseLinear );
58
59 % Heisenberg picture , exact response :
60 heisenberg =expp(time(k))*oss*expm(time(k));
61 responseHeisnberg (k)=sum(diag(rz* heisenberg ));
62
63 % Dissipation operator quantum exact response :
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Matlab code: comparison with linear response

64 r1t=omz*expp(time(k))*oss*expm(time(k));
65 responseOmega (k)=sum(diag(rz*r1t));
66 graphicResponseOmega (k)=trapz(time , responseOmega );
67 end
68
69 graphicResponseLinear =osszero -lambda *(

graphicResponseLinear );
70 graphicResponseOmega = osszero + graphicResponseOmega ;
71 hold on;
72 plot(time , graphicResponseOmega ,'-k')
73 plot(time , responseHeisnberg ,'--r')
74 plot(time , graphicResponseLinear ,'-b')
75 xlabel('time ')
76 ylabel('\langle\ sigma_y \ rangle_t ')
77 title('\lambda =0.001 , comparison for \langle \ sigma_y \

rangle_t ')
78 legend('\Omega ^0 ', 'Heisenberg ','Linear ')
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Appendix C

Matlab code: application to
the Lindblad equation

1 s1 =[0 1
2 1 0];
3 s2 =[0 -1i
4 1i 0];
5 s3 =[1 0
6 0 -1];
7
8 % CONSTRAINT : a1 ^2+ a2 ^2+ a3^2<1
9 a1 =0.2;

10 a2 =0.6;
11 a3 = -0.1;
12 rz =0.5*( eye (2)+a1*s1+a2*s2+a3*s3)
13
14 % Observable
15 a=1; %real numbers
16 b=0;
17 ossd1 =[a 0
18 0 b];
19 c=1; %real numbers
20 d=1;
21 ossd2 =[0 +c-d*1i
22 +c+d*1i 0]; %diag2
23 % ---------------------------------------------
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Matlab code: application to the Lindblad equation

24 % Lindblad equations
25 sp =0.5*( s1+1i*s2); % Lindblad operator dagger L^+
26 sm =0.5*(s1 -1i*s2); % Lindblad operator L
27 frGamma =1;
28 frOmega =1;
29 H= frOmega *s3;
30 % analytical solution (e=|0 >; g=|1 >)
31 rhoee =@(t) rz (1 ,1)* exp(- frGamma *t);
32 rhogg =@(t) rz (2 ,2)+rz (1 ,1) *(1- exp(- frGamma *t));
33 rhoeg= @(t) rz (1 ,2)*exp ( -(0.5* frGamma +2*1i* frOmega )*t);
34 rhoge= @(t) rz (2 ,1)*exp ( -(0.5* frGamma -2*1i* frOmega )*t);
35 rhoesatta =@(t) [rhoee(t) rhoeg(t)
36 rhoge(t) rhogg(t)];
37
38 %time interval :
39 t=6* pi;
40 dim =1000; %number of points in the discretization
41 time= linspace (0,t, dim);
42
43 % Dissipation operator expression
44 rzm=inv(rz);
45 omz=-1i*rzm*comm(H,rz);
46 omzc =-1i*comm(H,rz)*rzm;
47 omLz=omz+ frGamma *( rzm*sm*rz*sp -sp*sm); % Omega_L
48 omLzc=omzc+ frGamma *(sm*rz*sp*rzm -sp*sm); % Omega_L ^+
49
50 % ------------------------------------------
51
52 %time propagator in Lindblad case
53 P=- frGamma *1i*sp*sm;
54 Pc= frGamma *1i*sm*sp;
55 evol=P+H; %diag 1
56 evolC =+Pc+H;
57
58 M=H -0.25*1 i* frGamma *eye (2); % H+M %diag 2
59 MC=H +0.25*1 i* frGamma *eye (2); % H+M
60
61 % eigenvalues eigenvectors to build up the exponential
62
63 [C1 ,D1]= eig(evol);
64 [C1c ,D1c ]= eig(evolC);
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Matlab code: application to the Lindblad equation

65
66 [C2 ,D2]= eig(M);
67 [C2c ,D2c ]= eig(MC);
68
69 %diag 1
70 p1expm =@(t) C1*diag(exp(diag (-1i*t*D1)))*inv(C1); %U(t)
71 p1expp =@(t) C1c*diag(exp(diag (1i*t*D1c)))*inv(C1c);
72
73 %diag 2
74 p3expm =@(t) C2*diag(exp(diag (-1i*t*D2)))*inv(C2);%U_L(t)
75 p3expp =@(t) C2c*diag(exp(diag (1i*t*D2c)))*inv(C2c);
76
77 % Response calculation
78 exactResponseD2 =zeros(dim ,1); % analytical
79 exactResponseD1 =zeros(dim ,1);
80
81 OmegaDissDiag =zeros(dim ,1); %Dissip. op , diag 1
82 OmegaDResponse =zeros(dim ,1);
83
84 OmegaDissDiag2 =zeros(dim ,1); %Dissip op , diag 2
85 OmegaD2Response =zeros(dim ,1);
86
87 for k=1: dim
88 %diag 1 dissipation operator
89 rpt =0.5*( omLz*p1expp(time(k))*ossd1*p1expm(time(k))+

p1expp(time(k))*...
90 ossd1*p1expm(time(k))*omLzc);
91 OmegaDissDiag (k)=sum(diag(rz*rpt));
92 OmegaDResponse (k)=trapz(time , OmegaDissDiag );
93
94 %diag 2 dissipation operator
95 r2t =0.5*( omLz*p3expp(time(k))*ossd2*p3expm(time(k))+

p3expp(time(k))*...
96 ossd2*p3expm(time(k))*omLzc);
97 OmegaDissDiag2 (k)=sum(diag(rz*r2t));
98 OmegaD2Response (k)=trapz(time , OmegaDissDiag2 ); %diag

2
99

100 % analytical results
101 exactResponseD1 (k)=sum(diag( rhoesatta (time(k))*ossd1

)); %diag 1
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Matlab code: application to the Lindblad equation

102 exactResponseD2 (k)=sum(diag( rhoesatta (time(k))*ossd2
)); %diag 2

103 end
104 %<O>_t=<O>_0+ Response
105 osszero2 =sum(diag(rz*ossd2)); %<O>_0
106 osszero1 =sum(diag(rz*ossd1));
107 OmegaD2Response = osszero2 + OmegaD2Response ;
108 OmegaDResponse = osszero1 + OmegaDResponse ;
109
110 %plot diag 1
111 hold on
112 plot(time , OmegaDResponse , 'b')
113 hold on
114 plot(time , exactResponseD1 , 'r--')
115 xlabel('time ')
116 ylabel('\langle \pi_1 \ rangle_t ')
117 title('Lindblad ')
118 legend( '\Omega expression ','analytical ')
119
120 %plot diag 2
121 figure;
122 hold on
123 plot(time , OmegaD2Response , 'b')
124 hold on
125 plot(time , exactResponseD2 , 'r--')
126 xlabel('time ')
127 ylabel('\langle O \ rangle_t ')
128 title('Lindblad ')
129 legend('\Omega - expression ','analytical ')
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