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Introduction 
 

Study context 

Mountain springs represent crucial nodes in the hydrological cycle, acting as interfaces 

between groundwater and surface systems. In alpine environments, these resources are 

particularly sensitive to climatic and anthropogenic variations, given their dependence on 

recharge processes linked to snowfall, glacier melt, and complex geological dynamics. 

However, understanding their dynamics remains a scientific challenge due to the limited 

accessibility of sites, data heterogeneity, and seasonal variability amplified by climate 

change. 

The hydrographic basin of the Aosta Valley, characterised by rugged orography and 

intense past glacial activity, hosts numerous spring systems of strategic interest for local 

water supply. Among these, the Entrebin spring stands out as an interesting case due to 

its geographical location, atypical hydrological regime, geological setting, and interaction 

with historical infrastructures. Located at 981 meters above sea level on the left side of 

the Dora Baltea, the spring is fed by an aquifer whose recharge is dominated by various 

components, including snowmelt and rainfall. Unlike conventional systems, which 

exhibit flow peaks in spring and lows in summer, Entrebin reaches maximum levels 

between August and September, with minimums between April and May. This "phase-

shifted" behaviour suggests delayed recharge mechanisms, likely linked to geological 

factors, climatic dynamics, and anthropogenic interventions. 

The alpine climatic context further amplifies the challenges related to hydrological data. 

Meteorological stations, such as the one in Roisan-Preyl (3 km from the spring under 

study), used in this research, suffer from instrumental limitations: non-heated rain gauges 

underestimate winter precipitation, while altimetric differences (50 m between the station 

and the spring) can still introduce minor variations in terms of local microclimates. At the 

same time, the water level data collected by the Politecnico di Torino between 2011 and 

2024 present temporal gaps (e.g., interruptions in 2014–2015) and instrumental noise. 

This study is part of a research effort aimed at bridging the gap between theoretical 

hydrogeological models and practical applications, highlighting how advanced data 
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analysis techniques can help overcome the limitations of existing spring monitoring 

systems. The use of advanced techniques—from the Kalman filter for noise reduction to 

Fourier functions for identifying seasonal patterns—reflects the need for innovative 

approaches in data-limited contexts. The choice of Entrebin as a case study is not 

coincidental: its hydrological anomaly offers a unique opportunity to test methodologies 

transferable to other mountain springs under climatic stress, thereby contributing to the 

resilience of water systems in an era of increasing environmental instability. 

 

Aims 

The study is structured around a dual scientific and operational axis, aiming on one hand 

to decipher the uncommon hydrological dynamics of the Entrebin spring and on the other 

to develop innovative analytical tools managing complex spring systems in mountainous 

contexts. 

Firstly, the research aims to address the challenges related to the quality and discontinuity 

of hydrological datasets. Through the application of the Kalman filter, it proposes to 

optimize the reliability of time series, mitigating instrumental noise and compensating for 

data gaps caused by technical failures or extreme climatic events. This approach not only 

ensures a solid informational foundation for subsequent analyses but also represents a 

replicable model for contexts with similar instrumental limitations. 

Secondly, the study aims to explore the relationships between meteorological inputs 

(precipitation, air temperature) and hydrological outputs (water level) through cross-

correlation analysis. Unfortunately, this type of approach proves to be non-functional for 

the case study in question. Instead, the identification of time delays in the spring's 

response to climatic events, combined with the modeling of seasonal components using 

Fourier functions, allows for the isolation of recurring patterns and delayed recharge 

mechanisms, often obscured by the geological complexity of the basin. 

Finally, the thesis aims to translate the analytical results into a predictive model capable 

of anticipating variations in water level and air temperature over multi-year time scales, 

using the calendar year 2024 as an example. This tool, calibrated on seasonal cyclicity 

and corrected for residual biases, not only attempts to validate the effectiveness of the 

adopted techniques but also seeks to provide, for instance, an operational framework for 
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the sustainable planning of water resources, particularly relevant in scenarios of 

increasing climatic variability. 

 

Thesis structure 

The thesis is organized into three main sections: 

In the first section, the hydrogeological principles of spring systems, monitoring 

techniques, and challenges related to data quality are examined, with references to 

previous studies and cases of interest. 

In the second section, the study site, the datasets used (level, precipitation, temperature), 

the data pre-processing phases (Kalman filter), and the application of mathematical 

(polynomials, Fourier functions) and statistical (cross-correlations) models are described. 

In the third section, the results of the analyses are presented, with a focus on the 

effectiveness of the Fourier model in predictions and the limitations of cross-correlations. 

Corrections to reduce bias in the forecasts and critical evaluations of the adopted 

approaches are included. 

The work concludes with a reflection on the limitations of the study, proposals for future 

research (e.g., the integration of machine learning), and practical implications for the 

management of water resources in mountainous environments. 
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Background and State of the Art 
 

Spring Systems and Their Hydrological Dynamics 

Spring systems are a crucial component of hydrology, acting as the points where 

groundwater emerges at the surface. The functioning of these systems is highly complex 

and influenced by geological, climatic, and hydrological variables. 

 

Recharge Processes 

The recharge of aquifers occurs primarily through precipitation infiltration. Rainwater 

and snowmelt penetrate the soil and, under the force of gravity, reach underground 

aquifers. This process is affected by:   

• Soil and Rock Type: Permeable soils, such as sand and gravel, promote 

infiltration, while clayey soils hinder it.   

• Vegetation: Vegetation enhances infiltration through root systems, which create 

preferential channels in the soil.   

 

Discharge Processes 

Aquifers discharge water when it rises to the surface through springs. This process can 

occur for various reasons:   

• Hydrostatic Pressure: When underground water pressure exceeds atmospheric 

pressure, water emerges at the surface.   

• Geological Features: Fractures or faults in the rock can facilitate the upward 

movement of water.   

 

Key Variables 

The main factors influencing the functioning of spring systems include:   
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• Precipitation: The amount and distribution of rainfall and snowfall directly impact 

aquifer recharge.   

• Temperature: Temperature fluctuations affect evaporation and transpiration, 

reducing the amount of water available for infiltration.   

• Geology: The composition and structure of the terrain determine its water storage 

capacity and the speed of groundwater movement. 

 

Monitoring of Levels, Precipitation, and Temperatures 

The monitoring of spring levels, precipitation, and temperature is essential for 

understanding hydrological dynamics and ensuring sustainable water resource 

management [Lo Russo et al., 2021]. 

 

Techniques and Tools   

• Water Level Measurement: Hydrometers measure water levels in springs and 

aquifers. Types include float-operated hydrometers and pressure-based devices.   

• Rain Gauges: Rain gauges measure precipitation over a given time period. They 

range from manual models to automated systems, varying in cost and precision.   

• Thermometers: Thermometers monitor air and water temperatures. These include 

traditional mercury thermometers as well as advanced digital sensors.   

 

Figure 2 - Hydrometeorological monitoring instrumentation. On the left, the OTT-CTD for measuring water 

level, water temperature and electrical conductivity (source: https://corr-tek.it/prodotti/livello-

idrometrico/ott-ctd/).  

Figure 2 - Hydrometeorological monitoring instrumentation. On the right, an example of rain gauge for 

precipitation measurement (source: https://www.cae.it/eng/products/rain-gauges/pg10-pg10r-rain-gauge-pd-

9.html). 

F
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Practical Limitations   

• Spatial Discrepancies: Monitoring stations are often unevenly distributed, leading 

to representational gaps [Piersanti et al., 2007]. For instance, a station in a valley 

might not accurately reflect conditions in nearby hilly regions.   

• Instrument Discrepancies: Instruments can differ in calibration and precision, 

leading to variations in collected data. Standardizing tools and methodologies are 

crucial to reduce inconsistencies.   

• Accessibility and Maintenance: Monitoring stations in remote or mountainous 

areas can be challenging to access. Regular maintenance is vital to ensure accurate 

and reliable data collection. 

 

Issues Related to Data Quality 

Hydrological datasets often present various challenges that affect the accuracy and 

validity of hydrological analyses [Mondani et al., 2022]. Identifying and addressing these 

issues is essential to ensure reliable and precise results [ISPRA Ambiente, 2013]. 

 

Instrumental Noise 

Instrumental noise is one of the main issues in hydrological datasets. Measurement tools 

can introduce errors due to several factors, such as malfunctions, environmental 

interference, and vibrations. For example, hydrometers may record unrepresentative 

water level variations due to electrical or mechanical interferences. This noise can distort 

data and negatively impact analyses.   

 

Missing Data 

Data gaps are a common problem in hydrological datasets. Missing data can result from 

instrument failures, extreme weather conditions preventing data collection, or inadequate 

maintenance. These gaps make temporal analysis challenging and may compromise 
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forecasting accuracy. Methods like interpolation or statistical modelling can be used to 

estimate missing data, but these solutions do not always guarantee precise results.   

 

 

 

 

Spatial Discrepancies 

The uneven distribution of monitoring stations can lead to spatial inconsistencies in the 

data. For instance, a station located in a valley may not accurately reflect hydrological 

conditions in adjacent hilly or mountainous areas. Addressing this issue requires 

improving monitoring networks and applying spatial interpolation techniques to estimate 

data in uncovered regions.   

 

Temporal Discrepancies 

Figure 3 - Water level over time at Entrebin Spring (Ao), 2013. Potential instrument noise is highlighted in 

red and missing data points are marked in orange. 
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Changes in data collection methods over time can result in temporal inconsistencies. For 

example, technological advancements or shifts in measurement practices may affect the 

consistency of historical data. Standardizing instruments and data collection 

methodologies is crucial to ensure consistent and reliable datasets.   

 

Instrument Calibration 

Different instruments may vary in precision and calibration, leading to discrepancies in 

collected data. Regular calibration of instruments is essential to minimize these 

differences and ensure accurate and reliable data. Calibration procedures should be 

standardized and rigorously followed to avoid systematic errors. 

 

Techniques for Analysis and Prediction in Hydrogeology 

Techniques for analysis and prediction in hydrogeology are vital for understanding and 

forecasting hydrological processes. These methods include statistical techniques, 

mathematical models, and machine learning algorithms, which enable the analysis of 

large datasets and the generation of accurate predictions. 

 

Kalman Filter 

The Kalman filter is a recursive algorithm used to estimate the state of a dynamic system 

in the presence of noise [Reid et al., 2001]. This method is valuable for predicting water 

levels, as it enhances forecast accuracy and reduces uncertainty. In hydrogeology, the 

Kalman filter can optimize the processing of historical data and provide more reliable 

estimates of hydrological parameters [Clark et al., 2008].   
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Mathematical Models 

Mathematical models are fundamental tools for simulating hydrological processes. These 

models can range from simple polynomial equations based on available data to advanced 

numerical simulations [Viero et al., 2014]. They help reduce noise and improve prediction 

accuracy. Applying these models allows for detailed examination of spring system 

behaviors and scenario-based forecasting, supporting sustainable water resource 

management.   

 

Cross-Correlation Techniques 

Cross-correlation techniques measure the relationship between two variables. For 

example, analysing the correlation between precipitation and runoff can identify time lags 

between rainfall events and surface water discharge. These techniques help detect patterns 

and trends in hydrological data, enhancing the understanding of spring system dynamics 

[Lo Russo et al., 2015].   

Figure 4 - How work Kalman filter. The filter iteratively predicts the system state through motion model 

and refines the prediction by incorporating noisy measurements. This process alternates between prediction 

(propagating state estimates) and correction (updating estimates with new data), continuously improving 

accuracy. 
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Machine Learning   

Machine learning techniques, such as neural networks and regression algorithms, are 

increasingly used in hydrogeology to analyse large datasets and make predictions [Pyo et 

al., 2023]. These methods improve hydrological forecast accuracy and identify complex 

patterns in the data that might not be apparent with traditional methods. Machine learning 

enables the development of robust predictive models that adapt to varying conditions and 

variables. 
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Materials and Methods 
 

Description of the Study Site 

The Entrebin spring, located in the municipality of Aosta, represents a significant example 

of a mountain water resource subject to seasonal variations. The geographical and 

hydrological context of the Entrebin spring makes it a valuable yet vulnerable resource. 

Understanding its hydrological and climatic characteristics is crucial for sustainably 

managing water supply, especially in the context of climate change. 

 

 

 

Figure 5 - Monitoring infrastructure housing the spring and associated instrumentation for hydrological 

data collection. 
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Geographical Location 

The Entrebin spring is situated at approximately 981 meters above sea level, in the village 

of Entrebin on the left orographic side of the Dora Baltea. It is easily accessible by 

following the Strada Statale 27 of the Gran San Bernardo and then taking the Strada 

Regionale 38 towards the Entrebin junction. 

Geographical coordinates: 

• Latitude: 45.754° N 

• Longitude: 7.316° E 

The geographical context of the area is essentially characterized by ablation and basal 

glacial deposits, which are difficult to differentiate due to the complex evolutionary 

history of the slope at the confluence of two valleys, the Buthier torrent valley and the 

central valley of the Dora Baltea, both influenced by the action of thick glacier tongues. 

 

Figure 6 - Geographic location of the Entrebin spring in Aosta Valley. Left: Satellite image of the area. 

Right: Topographic map to see the spring's position. 
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Hydrological and Climatic Characteristics 

 

Water Intake Structure  

The intake structure of the Entrebin spring plays a crucial role in collecting and making 

available the water from the hydrogeological system. The spring is captured through a 

drainage gallery made of concrete, buried at a depth of approximately 2.7 meters. The 

39.53 meters long gallery intercepts the groundwater through perforations in the masonry 

bricks, channelling the flow into longitudinal canals that lead to two accumulation tanks. 

This infrastructure represents an example of human intervention to optimize the 

availability of water from a spring characterized by good seasonal regularity, despite the 

influence of climatic factors such as precipitation and snowmelt. However, the geological 

complexity of the area, characterized by mixed glacial deposits and schists, affect the 

functioning of the intake, increasing the risk of clogging or structural inefficiencies. 
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Figure 7 - Drainage gallery at Entrebin. Left: Photograph of the gallery entrance. Right: Technical drawing 

of the gallery's cross-section, showing dimensions and structural details. 

 

Hydrological Regime 

The spring is fed by a porous unconfined aquifer, primarily recharged through snowmelt 

and atmospheric precipitation. The direction of groundwater flow is oriented from north 

to south, with a recharge elevation estimated at around 2350 meters above sea level.  

Seasonal variations include: 

• Minimums: Recorded in the spring months (May-June), when precipitation 

contributions are limited, and snowmelt is not yet sufficient. 

• Maximums: Observed between August and September, corresponding to the peak 

of snowmelt at high altitudes. 
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Figure 8 - Discharge over time at Entrebin Spring (Ao), 2010-2012. 

 

Climate and Seasonality 

The region's climate is alpine, characterised by cold, snowy winters and cool summers 

with moderate precipitation. Temperatures significantly influence the spring's 

hydrological cycle: 

• During the winter months, snowfall stores water in solid form, reducing the 

immediate inflow to the aquifer. 

• In the summer months, rising temperatures promote snowmelt, contributing to 

aquifer recharge. 
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Influencing Climatic Factors 

In addition to seasonality, extreme phenomena such as prolonged droughts or intense 

rainfall events can alter the spring's hydrological regime. For example: 

• Prolonged rainfall can temporarily increase the spring's flow but may reduce the 

efficiency of the capture system due to the increase in debris. 

• Drought periods can lead to a reduction in flow to critical levels, putting pressure 

on Aosta's water supply system. 

  

Figure 9 - Temperature over time at Entrebin Spring (Ao), 2021. 
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Datasets Used 

The analysis of the Entrebin spring was based on data collected and managed by the 

DIATI department of Politecnico di Torino. The main datasets include measurements 

related to water level, temperature, and electrical conductivity of the spring (output data). 

These were integrated with meteorological data (input) from the Roisan-Preyl weather 

station, located approximately 3 km in a straight air line from the spring. Both data 

collection areas are within the same watershed, ensuring suitable representation of the 

climatic phenomena affecting the spring. 

The collected data were used to study hydrological dynamics and verify the impact of 

climatic conditions on the spring's parameters. However, certain limitations in the datasets 

required the adoption of specific attention to ensure the quality and reliability of the 

analyses. 

 

 

 

Figure 10 - Digital Terrain Model (DTM) showing the spatial location of Entrebin and Roisan-Preyl. 
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Water Level Dataset (Output) 

The intake work of the Entrebin spring is closely related to monitoring the data on water 

level, temperature and electrical conductivity. The structure of the drainage gallery, 

through two channels, communicates with two tanks equipped with overflow pipes and 

weirs, ensuring a constant water flow. In one of these tanks, a measurement instrument, 

the OTT-CTD probe, was installed on October 18, 2010, and positioned 150 cm from the 

main triangular weir. The probe has an hourly acquisition system (one data point every 

60 minutes). The overflows and weirs minimize sudden variations that could compromise 

the quality of the measurements. 

 

 

 

Technical characteristics of the instrumentation  

Figure 11 - Monitoring setup at the spring, where it visible a basin equipped with a weir for flow 

measurement and the sensor installed. 
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The OTT-CTD probe measures: 

• Water level with an accuracy of ±0.05% of full scale, using a ceramic membrane 

sensor. 

• Water temperature with a resolution of 0.01°C and an accuracy of ±0.1°C. 

• Electrical conductivity in a range from 0.001 to 100 mS/cm, with an accuracy 

varying from ±0.5% to ±1.5% of the measured value. 

 

Initial dataset problems 

The dataset showed some initial critical issues: 

• Instrumental noise: In certain periods, anomalies in the data were observed, 

probably due to interference or the need for instrument calibration. 

• Data gaps: Temporary instrument failures (although extreme weather events 

cannot be ruled out) led to the loss of some recordings. Notably, there is a lack of 

data for approximately two years in 2014 and 2015. It was decided not to integrate 

the data using interpolation techniques, thus only original data were used. 

• Clogging in the drains: The old age of the gallery (built in 1930) and the presence 

of clogs in the drains are critical factors that can affect the accuracy of the 

collected data. The work requires constant maintenance to ensure the proper 

functioning of the instruments and the continuity of the measurements. 

 

Precipitation and Temperature Dataset (Input) 

The meteorological data used as input for the study comes from the Roisan-Preyl weather 

station, managed by the Centro Funzionale Regione Autonoma Valle d’Aosta. It is located 

at an altitude of 935 meters above sea level and approximately 3 km in a straight line from 

the Entrebin spring. Both areas are within the same water catchment area, specifically the 

Buthier stream basin, ensuring adequate representation of the climatic phenomena 

affecting the spring. 

Geographical coordinates: 



20 
 

• Latitude: 45.782° N 

• Longitude: 7.317° E 

 

Station Characteristics 

The Roisan-Preyl station is equipped to measure the following parameters with the 

following sensors: 

• Precipitation: Tipping bucket rain gauge (non-heated). 

• Temperature: Digital sensors for air monitoring. 

• Relative humidity, wind speed, and direction. 

These data are recorded by the station every ten minutes and then made accessible with 

hourly resolution. This ensures continuous and detailed monitoring of atmospheric 

variables. 

 

Figure 12 - Weather station of Roisan-Preyl equipped with a rain gauge for precipitation 

monitoring (on the left). 
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Limitations and Issues 

Despite the suitability of the position relative to the Entrebin spring, some limitations 

have been identified: 

• Non-heated rain gauge: As noted in the station's profile, the lack of heating in rain 

gauge poses problems during the winter months. Accumulated snow on the sensor 

can melt afterwards, causing precipitation records that do not correspond to the 

actual event. This phenomenon can distort precipitation data, especially during 

periods characterized by temperatures fluctuating around 0°C. 

• Winter period issues: During the winter months, particularly from late November 

to late February, recurring malfunctions of the measurement instruments at the 

weather station are observed. This issue is especially evident in the precipitation 

data, likely due to snow accumulation on the non-heated rain gauge, generating 

erroneous or delayed readings related to snowmelt during cold periods, but also 

due to the malfunction of the rain gauge itself. On the other hand, for the 

temperature dataset, anomalies are much more contained, limited to a few 

nighttime hours on specific winter days. 

• Spatial discrepancies: Although the station and the spring belong to the same 

hydrographic basin, local microclimates and altimetric differences (the station is 

located approximately 50 meters lower than the spring) could introduce variations 

compared to the actual meteorological conditions of the study site. 

• Temporal discrepancies in data: The availability of data presents significant 

temporal gaps. For meteorological input data, there are no usable recordings 

before 2014. For output data related to the spring, there is an interruption of 

approximately two years, corresponding to the years 2014 and 2015. Therefore, 

the first data usable for cross-correlation analysis are those starting from 2016. 

Considering that the analysis could have started in 2011, the absence of usable 

data for a period of five years resulted in the loss of almost 40% of the originally 

planned dataset, thus limiting the completeness and reliability of the analyses. 



22 
 

 

Data Usage 

The meteorological data were integrated with those related to the spring to analyze: 

• The correlation between precipitation and water levels, to evaluate the aquifer's 

response times to rainfall events. 

• The seasonal and annual variations in air temperature, in relation to water recharge 

and the behavior of the spring system. 

 

Sources and Data Quality 

The analysis of the Entrebin spring is based on data from two main sources: 

1. Output data: Provided by direct monitoring of the spring using the OTT-CTD 

probe, installed and managed by the Politecnico di Torino. 

2. Input data: Meteorological data collected from the Roisan-Preyl station, managed 

by the Region of Valle d’Aosta. 

These sources provide a detailed picture of the hydrological and climatic conditions of 

the spring. However, there are some limitations related to the quality, consistency, and 

temporal coverage of the data, which required specific methodological interventions to 

optimize the analyses. 

 

Data Quality 

• Output data: The measurements taken by the OTT-CTD probe show a reasonable 

level of accuracy for the main monitored parameters: water level, temperature, 

and electrical conductivity. However, some issues have emerged: 

o Presence of anomalous measurement series, attributed to temporary 

malfunctions of the probe or particularly adverse environmental 

conditions. 

o Need for regular calibration to maintain the reliability of the readings. 
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• Input data: The meteorological data from the Roisan-Preyl station suffer from 

instrumentation-related limitations: 

o The non-heated rain gauge results in measurement errors during the winter 

months, with delayed or overestimated precipitation readings due to 

snowmelt. 

o The air temperature sensors have shown high reliability, with very limited 

anomalies confined to nighttime hours on certain winter days. 

 

 

Figure 13 - Water temperature over time for the entire historical dataset at Entrebin. 
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Data Consistency 

• The consistency between input and output datasets was verified over specific 

periods. The distance between the two stations, about 3 km, could introduce 

discrepancies. 

• Any anomalies in the data were managed: 

o Correction using the Kalman filter for parameters of level, temperatures 

(water and air), and electrical conductivity. 

o Exclusion of incomplete or unreliable data, such as for the year 2014 in 

the output data. 

 

Temporal Coverage 

• Input data: Available from 2014, with occasional interruptions during the winter 

months due to the limitations of the rain gauge. 

• Output data: Significant temporal gap for the years 2014 and 2015. Consequently, 

the usable dataset was divided into two main periods: 

o 2011-2013 

Figure 14 - Precipitation over time from 2015 at Roisan-Preyl. 
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o 2016-2023 

This temporal fragmentation reduced the amount of data available for long-term analysis 

and cross-correlation studies between input and output. It also limited the ability to make 

reliable future forecasts based on an extensive time series. 

 

Observations 

Despite the described limitations, the collected datasets provide a solid foundation for 

studying the hydrological dynamics of the Entrebin spring. To improve the reliability and 

quality of future analyses, it may be useful to: 

• Update the meteorological instrumentation, for example by installing a heated rain 

gauge. 

• Integrate missing data using advanced modeling techniques that consider the 

correlations observed in complete periods. 
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Preprocessing and data cleaning 

The use of the Kalman filter represents a crucial step in data processing, as it allows for 

a more reliable representation of the studied phenomenon. This approach integrates 

perfectly with the data preparation work described below, as pretreated data provides a 

more solid foundation for the application of the filter. 

This is a recursive algorithm widely used to estimate the state of a dynamical system in 

the presence of noise. Its ability to combine noisy measurements with a predictive model 

makes it particularly suitable for processing temporal data, such as those for the water 

level of the source in question. 

The theoretical operation of the Kalman filter and how it has been applied to datasets to 

obtain filtered curves is explained. Next, the fundamental process of calibrating the 

parameters Q (process noise) and R (measurement noise), which are the keys to 

optimizing filter performance, is described. 

 

Data preparation 

The first thing to do was to import to MATLAB data from a text file (esempio: 

Livello_Entrebin) containing temporal measurements. The file was read using 

MATLAB's readtable function, specifying the delimiter (;) and column format: 

• The first column contains dates in dd/MM/yyyy format. 

• The second column contains the times in HH:mm:ss format. 

• The third column contains the measurement values. 
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This operation created a table (data) with three columns: date, time, and measurement 

value. 

The data preparation and cleaning phase was divided into three subphases: identification 

of non-working periods (No_work), identification of missing or incorrect measurements 

(No_meas), and removal of incorrect data. 

To identify periods when the instrumentation failed, a complete time vector (time_range) 

was created with one-hour intervals (time_interval) between the first and last available 

timestamps. Next, this vector was compared with the actual timestamps in the data. If 

missing timestamps were detected, they were printed on the screen, indicating periods of 

instrumentation inactivity, to allow the operator to verify the reasons why the 

instrumentation failed to measure and/or communicate data. 

To identify missing or incorrect measurements (in the case of waterlevel calculation, those 

measurements less than 0 are incorrect), a control column (Var4) was added to the data 

table. This column was set to 1 if the measurement value was NaN or negative. The data 

were then saved in a new text file (file2findOutlier) for further analysis, that is, to go in 

and remove rows with missing or incorrect data.  

Figure 15 - Example of the raw dataset. Screenshot of the text file opened showing some rows of data. 
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Finally, the data were filtered to remove rows with erroneous values (those with Var4 = 

1). Valid rows were saved in a new text file (fileNoOutlier). 

 

 

 

Figure 16 - Example of the dataset with control column, text file opened showing some rows of data. 

Figure 17 - Example of the dataset with only valid data, text file opened showing some rows of data. 
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All this step is essential to ensure the reliability of the data and the correctness of the 

conclusions drawn from the analysis. 

 

Kalman filter: theory and application 

The Kalman filter is a recursive algorithm used to estimate the state of a dynamic system 

in the presence of noise. It relies on a predictive model that combines information from a 

theoretical system model (process noise) with experimental observations (measurement 

noise). 

The algorithm operates in two main phases: prediction and correction. 

In the first phase, prediction, the system state is estimated using a dynamic model. In our 

case, the model is simple, with a transition matrix 𝐴 = 1, which assumes that the system 

state remains constant between one measurement and the next. The estimate of the 

prediction error covariance is updated by taking into account the process noise Q. 

In the correction phase, the predicted estimate is updated using the new measurement. 

The innovation, which is the difference between the observed measurement and the 

predicted estimate, is weighted based on the Kalman gain, which depends on the 

uncertainties of the model (Q) and the measurement (R). 

In the MATLAB script, the process begins by importing data from a text file 

(fileNoOutlier), which contains the preprocessed data. The data is organized into a table 

with three columns: date, time, and measurement. 

At this point, the data needs to be prepared. First, the date and time columns are converted 

into a single datetime vector (dateTimeArray). Next, a list of unique years present in the 

data is prepared. For the Entrebin data, the years 2014, 2015, and 2024 are excluded from 

the analysis because they are mostly incomplete and therefore not useful for the analysis 

being conducted. 

Now, the parameters of the Kalman filter for the iterations over each year are defined. In 

this phase, the state transition matrix A, the observation matrix H = 1 (this value is chosen 

because the measurements are assumed to be directly related to the state), the initial 

covariance estimate  (𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 =  10−6), the process noise 
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variance Q (related to the uncertainty of the model), and the measurement noise 

variance R (related to the uncertainty of the observations) are set. The chosen values for 

the latter two parameters are discussed in detail in the following section. 

The Kalman filter is then applied separately for each year. The last parameter that needs 

to be initialized for each year is set in this part, namely the initial state estimate 

(𝑠𝑡𝑎𝑡𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒). For this, the first valid measurement of the year under consideration 

is used. 

The next part of the code involves the actual application of 

the prediction and correction phases. Since this is the core of the Kalman filter, this part 

is explained in even greater detail. The prediction phase projects the state and its 

uncertainty into "what happens next" – we could define this as the future – while the 

correction phase updates these estimates using the new measurements. As a final result, 

a more accurate and reliable estimate of the input measurements is obtained, along with 

a quantification of the associated uncertainty. 

In detail: 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑆𝑡𝑎𝑡𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 =  𝐴 ∗  𝑠𝑡𝑎𝑡𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 

The predicted state estimate at the next step (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑆𝑡𝑎𝑡𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒) is calculated as 

the product of the state transition matrix (𝐴), which, as mentioned earlier, assumes that 

the system state remains constant between one measurement and the next, and the current 

state estimate (𝑠𝑡𝑎𝑡𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒). 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 =  𝐴 ∗  𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ∗  𝐴′ +  𝑄 

At this point, the predicted covariance of the estimation error 

(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒) is computed. This takes into account the current 

estimation error covariance (𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒), which represents the uncertainty 

associated with the state estimate, and the process noise (𝑄), which represents the 

uncertainty associated with the dynamic model. This concludes the prediction phase. 

𝑖𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛 =  𝑦𝑒𝑎𝑟𝑉𝑎𝑙𝑢𝑒𝑠(𝑡)  −  𝐻 ∗  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑆𝑡𝑎𝑡𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 

In the correction phase, where the predicted estimate is updated using the actual observed 

measurements, the first step is to calculate the innovation (𝑖𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛), which is the 
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information the filter will use to correct the estimate. The innovation is the difference 

between the observed measurement at time t (𝑦𝑒𝑎𝑟𝑉𝑎𝑙𝑢𝑒𝑠(𝑡)) and the product of the 

observation matrix (𝐻), which assumes that the measurement is directly related to the 

state, and the predicted state estimate (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑆𝑡𝑎𝑡𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒). 

𝑖𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  𝐻 ∗  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ∗  𝐻′ +  𝑅 

Next, the covariance of the innovation is calculated. This combines the uncertainty of the 

predicted estimate, i.e., the predicted covariance of the estimation error 

(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒), and the measurement uncertainty, i.e., the 

measurement noise variance (𝑅), which represents the uncertainty associated with the 

observations. 

𝑘𝑎𝑙𝑚𝑎𝑛𝐺𝑎𝑖𝑛 =  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ∗  𝐻′ / 𝑖𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 

The Kalman gain (𝑘𝑎𝑙𝑚𝑎𝑛𝐺𝑎𝑖𝑛) is then computed, which determines how much weight 

to give to the innovation relative to the predicted estimate. Therefore, if the measurement 

uncertainty (𝑅) is much larger than the uncertainty of the predicted estimate, the Kalman 

gain will be small, and, as a direct consequence, the filter will give less weight to the new 

measurement. 

𝑠𝑡𝑎𝑡𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 =  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑆𝑡𝑎𝑡𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 +  𝑘𝑎𝑙𝑚𝑎𝑛𝐺𝑎𝑖𝑛 ∗  𝑖𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛 

Finally, the updated state estimate (𝑠𝑡𝑎𝑡𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒) is obtained by correcting the 

predicted estimate (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑆𝑡𝑎𝑡𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒) with the innovation (𝑖𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛), 

weighted by the Kalman gain (𝑘𝑎𝑙𝑚𝑎𝑛𝐺𝑎𝑖𝑛). 

𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 

=  (1 −  𝑘𝑎𝑙𝑚𝑎𝑛𝐺𝑎𝑖𝑛 ∗  𝐻)  ∗  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 

Consequently, the estimation error covariance (𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒) is also updated, 

representing the uncertainty associated with the new state estimate. In this calculation, 

the uncertainty (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒) is reduced based on the Kalman gain 

(𝑘𝑎𝑙𝑚𝑎𝑛𝐺𝑎𝑖𝑛) and the observation matrix (𝐻). 

Once the iteration over the entire dataset is completed, the results are visualized 

graphically, one plot for each year considered. This allows for a preliminary comparison 

between the original data and the data obtained through Kalman estimation. 
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Finally, the Kalman estimates are saved in a text file (processed). This becomes the new 

input dataset, cleaned of noise and outliers, for the evaluations that will be carried out in 

the continuation of the study. 

 

 

 

Parameters used for Q and R 

The choice of parameters related to the process noise (𝑄) and the measurement noise (𝑅) 

is crucial for the correct functioning of the Kalman filter. These parameters directly 

influence the behavior of the filter, determining the relative weight between the predictive 

model and the observed measurements. 

The process noise represents the uncertainty associated with the dynamic model of the 

system. In the case of water level, a very small value (𝑄 = 10−9) was chosen, as it is 

assumed that the water level varies slowly and that the predictive model is highly reliable. 

A small value of Q implies that the filter will give more weight to the observations than 

to the predictions of the model. 

Figure 18 - Example of the processed data after the use of Kalman filter, text file opened showing some 

rows of data. 



33 
 

The measurement noise represents the uncertainty associated with the measurements. In 

the case of water level, a value (𝑅 = 0.0012) was chosen, reflecting the precision of the 

OTT-CTD measuring instrument. A larger value of R would indicate greater uncertainty 

in the measurements, pushing the filter to give more weight to the predictive model. 

A calibration of Q and R was performed by testing different combinations of values to 

evaluate their effect on the filter's behaviour. The goal was to find a balance between the 

filter's ability to quickly follow variations in the signal, which we can define as 

its responsiveness, and the reduction of noisy signals, thus achieving stability. 

 

 

Figure 19 - Example of four Kalman filter models using unsuitable Q and R parameters, resulting in 

unstable and unacceptable solutions. 
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Figure 20 - Example for water level at Entrebin where Kalman filter uses acceptable Q and R parameters. 
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Mathematical Analysis 

At this point, the mathematical models developed to analyze the filtered data related to 

the water level (and, in general, the output data) are described. 

The objective is to use mathematical functions, such as polynomials and Fourier 

functions, to describe the behaviour of the data and apply these models to the filtered 

datasets, discussing the results obtained. 

In particular, the models were applied to the water level data, and the example images 

shown in this section focus exclusively on this application. 

 

Mathematical models for the Output datasets 

To describe the behaviour of the output data, after some initial testing, the fitting options 

available in MATLAB involving polynomials of degree n and Fourier functions were 

chosen. 

Polynomials were used in the analysis of data divided by solar year of interest. They were 

selected for their flexibility in modelling nonlinear relationships between variables. 

On the other hand, Fourier functions were chosen to derive a single equation for the entire 

dataset of interest (usable). These types of functions were employed to capture periodic 

components in the data, such as seasonal fluctuations. 

These initial analyses and models were applied to the water level data to identify trends 

and predict possible future behaviours, with the intention of testing them on future data 

to verify their validity. 

The MATLAB code used for the analysis begins by reading the filtered data from the 

previous tabular text file (processed), where the columns represent the dates and the 

associated water level values, respectively. The data is then organized into a datetime 

array to facilitate temporal manipulation. 

Subsequently, the script extracts the unique years present in the data and defines the y-

axis limits for the graphs. These limits are useful for achieving a good degree of 

uniformity in the output graphs and must be defined according to the type of dataset being 

used. Indeed, these limits can be manually adjusted based on the variable being analysed. 
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Application to Filtered data by solar Year 

As mentioned earlier, the analysis was initially divided into two main phases. In the first 

phase, an annual analysis was conducted. For each solar year, a polynomial fit of degree 

n was applied to the output data to define equations that describe the behavior of the 

variables over the course of the year. 

The choice of the polynomial degree for fitting is a crucial aspect. In this case, examples 

related to the analysis of water level data are presented. A polynomial of degree 5 was 

selected as the optimal model to describe the behaviour of the data, while polynomials of 

degree 3 and 7 were discarded as they were less suitable for capturing the characteristics 

of the data. Below, the reasoning behind this choice is explained in detail. 

The polynomial of degree 5 offers a good balance of flexibility and complexity. It is 

sufficiently complex to capture nonlinear variations in the water level data, such as 

seasonal peaks, but not excessively complex to cause what is known as overfitting, i.e., 

an excessive adaptation to the data, which reduces the model's predictive capability and 

goes against the goal of finding a general model. It is therefore very important to strike a 

balance between overfitting and what we might define as underfitting. 

 

 

Figure 21 - Fit on filtered water level data using a third-degree polynomial equation for Entrebin, calendar 

year 2016. 
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Figure 22 - Fit on filtered water level data using a fifth-degree polynomial equation for Entrebin, calendar 

year 2016. 

 

 

Figure 23 - Fit on filtered water level data using a seventh-degree polynomial equation for Entrebin, 

calendar year 2016. 

 



38 
 

From the first image, it can be observed that a polynomial of degree 3 is still too simple 

to describe the water level data. Indeed the cubic model may fail to adequately capture 

seasonal variations or the peaks observed in the data, leading to underfitting. 

From the third image, particularly in the first months of the analysed year, the polynomial 

of degree 7 appears too complex. While it fits the existing data very well, it risks capturing 

noise and random fluctuations, resulting in overfitting. This would reduce the model's 

ability to generalize and correctly predict future behaviour. 

In addition to the graphical analysis, a comparison was also made based on the values of 

the coefficient of determination 𝑅2 obtained during the tests. 𝑅2 measures how well the 

model fits the data, so a value close to 1 indicates an almost perfect fit. However, caution 

is required, as a very high value is not always indicative of a better model, especially if it 

comes at the disadvantage of the model's generalization capability. 

 

 

For the polynomial of degree 3 the 𝑅2 values are the lowest, which is due to the rigidity 

of the model. This model often fails to adequately describe the variations in the water 

Figure 24 - Values of coefficient of determination for the third-degree polynomial equations for Entrebin, 

considering all the calendar year available. 
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level data. In the years 2019 and 2023, the 𝑅2 value is low, indicating that the model is 

too simple, leading to a loss of important information. 

 

 

 

For the polynomial of degree 7 the 𝑅2 values are very high, and at first glance, they appear 

to be the most suitable. However, this comes with the risk of overfitting, as the model 

adapts excessively to the data and may even capture noise. 

Figure 25 - Values of coefficient of determination for the seventh-degree polynomial equations for Entrebin, 

considering all the calendar year available. 



40 
 

 

 

The 𝑅2 values for the polynomial of degree 5 are all above 0.85, which is very high. They 

are higher than those obtained with the polynomial of degree 3 and, on average, slightly 

lower than those of degree 7. The difference with the latter is minimal, and the degree 5 

polynomial offers a better balance between data fitting and predictive capability. This 

confirms that the polynomial of degree 5 is the most suitable model for describing the 

water level data, precisely due to its good generalisation ability. 

 

Application to the Completed filtered dataset starting from 2016 

In the second phase, the analysis focused on the complete time series. The available data 

starts from 2011 but considering that the years 2014 and 2015 lacked data, it was decided 

to begin from 2016. The goal was to identify a periodic pattern and attempt to predict the 

behaviour of the spring system, for example, in the following year. 

For this part, the Fourier function was tested using MATLAB's Curve Fitter tool, along 

with models based on the Sum of Sine of degree 3 and degree 6. In the end the latter were 

Figure 26 - Values of coefficient of determination for the fifth-degree polynomial equations for Entrebin, 

considering all the calendar year available. 
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discarded as they provided unsatisfactory results. Below are some of the reasons why the 

Fourier function was chosen as the preferred model. 

The Fourier function was selected as the ideal model for its ability to capture periodic 

components in the data, such as seasonal fluctuations, without encountering the issues 

observed with the Sum of Sine. Specifically, the chosen model is particularly suited for 

describing data with periodic components, such as the seasonal fluctuations present in the 

water level data. This makes it ideal for this type of data, which exhibits repetitive patterns 

over time. 

Additionally, the Fourier function uses a limited number of parameters to describe the 

data, making the model simpler and more interpretable compared to the Sum of Sine. 

Moreover, unlike the Sum of Sine, it tends not to create unrealistic oscillations, making it 

more suitable for future predictions due to its better generalization capability. Finally, the 

Fourier function is less sensitive to noise in the data compared to higher-degree Sum of 

Sine models, although this aspect is less critical in this case since the data has already 

been filtered. 

The type of fitting chosen for the function in MATLAB was a second-order Fourier model 

(fourier2), which is defined as follows: 

𝑓(𝑥) = 𝑎0 + 𝑎1𝑐𝑜𝑠(𝑥𝜔) + 𝑏1𝑠𝑖𝑛(𝑥𝜔) + 𝑎2𝑐𝑜𝑠(2𝑥𝜔) + 𝑏2𝑠𝑖𝑛(2𝑥𝜔) 

Where 𝑎0 is the constant term, representing the mean value around which the data 

oscillates. 

The terms 𝑎1, 𝑏1, 𝑎2, 𝑏2 are the coefficients of the harmonics. The first harmonic describes 

the periodic component in the data, such as a seasonal fluctuation, allowing the modelling 

of periodic variations with any phase. The second harmonic captures faster periodic 

variations due to its structure, characterized by a frequency double that of the first 

harmonic (2𝜔). This makes it useful for identifying semiannual fluctuations and other 

high-frequency components present in the dataset. 

The term 𝜔 is the fundamental frequency and determines the periodicity of the function. 

It is fundamentally linked to the period 𝑇 of the first harmonic through the relationship 

𝑇 =  
2𝜋

𝜔
. Considering that the value obtained for the water level data is 𝜔 =  0.017308, 

the period of the first harmonic is 𝑇 ≈  363 𝑑𝑎𝑦𝑠. This corresponds to an annual 
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fluctuation, typical of seasonal data. Therefore, the fundamental frequency defines the 

time scale of the periodic variations. 

 

 

Figure 27 - Fourier of second-order fit applied to the entire historical dataset of filtered water level data 

for Entrebin, from 2016. 

 

Table 1 - Coefficients of the second-order Fourier function estimated from the water level dataset for 

Entrebin. 

a0 a1 b1 a2 b2 w 

0.13195393 0.018048372 0.017595595 0.0052695933 0.0038053172 0.017308 

 

A residual analysis was conducted, which is a fundamental part of evaluating a 

mathematical model. Residuals represent the difference between the observed values in 

the data and the values predicted by the model. In other words, residuals measure the 

model's error for each data point. A thorough analysis of the residuals allows for assessing 

the goodness of fit and identifying potential issues, such as the presence of outliers or the 

failure to capture certain patterns in the data. 
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Figure 28 - Residuals from the difference between the model and the original data for the entire historical 

dataset of filtered water level data for Entrebin, from 2016. 

 

From the bar graph, it can be observed that most of the residuals fall within the range of 

±0.02 𝑚, indicating a good fit to the model. Of course, there are a couple of years where 

larger residuals are present, but they do not show a systematic pattern. 

This analysis has certainly confirmed that the chosen Fourier model fits the water level 

data well. The residuals are small and heterogeneously distributed, with no systematic 

patterns. The model therefore adequately identifies the periodic components of the data, 

such as seasonal fluctuations, and could be used for future predictions. However, it is 

always important to continue monitoring the residuals to identify any potential issues with 

the model and to make further improvements. 
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Hydrological Analysis and Cross-correlation for the Entrebin 

spring 

The Entrebin spring, located in a complex hydrogeological context and characterized by 

unconventional dynamics, certainly represents a case study of significant scientific 

interest. 

Different from what is typically expected in other hydrological basins, where the annual 

cycle follows well-defined seasonal patterns, with autumn recharge and summer 

recession, Entrebin shows a "phase-shifted" behaviour, in which the phases of spring level 

recession coincide temporally with periods traditionally associated with recharge. 

Also for this reason, the aim is to continue the analysis by attempting to understand the 

interaction mechanisms between climatic inputs (precipitation and air temperature) and 

the system's hydrological response (spring water level), as well as to define a 

methodological framework adaptable to other hydrological contexts. 

The study proceeds in two main phases, both implemented again in MATLAB. In the first 

phase, the dynamic identification of recession periods in the hydrological years is carried 

out, based on the analysis of level extremes rather than fixed temporal criteria. In the 

second phase, cross-correlation analysis is performed between time series of 

precipitation/air temperature (using data from the Roisan-Preyl station published by the 

Centro Funzionale Regione Autonoma Valle d'Aosta) and water level data of the Entrebin 

spring, with the intent to determine whether a statistically significant correlation exists 

and to quantify the time delays (lags) in the hydrological response. 

The final objective is double: on one hand, the aim is to identify cause-effect relationships 

between climatic variables and spring dynamics, with implications for the sustainable 

management of water resources in climate change scenarios. On the other hand, the results 

of this analysis are intended to be used to develop a method for predicting future values 

of air temperature and water levels, which would be crucial in studying future climate 

change scenarios related to water resources.  



45 
 

Identification of Recession periods in Hydrological years 

Unlike previous approaches, where data were analysed in terms of the calendar year, the 

definition of recession periods in hydrological years represents a fundamental step for the 

analysis of the dynamics of the Entrebin spring. 

This case study required a flexible and adaptive methodology for identifying the recession 

period, based on the analysis of level extremes. This choice was driven by the peculiarity 

of the system, which exhibits a "phase-shifted" behaviour compared to theoretical models, 

where the hydrological year traditionally runs from October 1st to September 30th. This 

anomaly suggests that delayed recharge mechanisms influence the spring, likely related 

to geological factors (e.g., low permeability of the terrain) or climatic factors (e.g., late 

snowmelt). 

In MATLAB, the process starts again from the processed text file, which is used to import 

the previously Kalman-filtered level data along with the corresponding dates and times 

of interest. 

The recession period, defined as the time interval between the maximum level of the 

current year and the minimum level of the following year, is of particular interest because 

it represents the phase during which the spring gradually loses its water reserve, 

transitioning from maximum to minimum level conditions. 
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Figure 29 - Recession period (2018–2019) at Entrebin. The graph illustrates the decline in water level, 

from maximum to minimum, over time during the recession phase. 

 

 

Figure 30 - Recession period (2019–2020) at Entrebin. The graph illustrates the decline in water level, 

from maximum to minimum, over time during the recession phase. 
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Cross-correlation analysis between Precipitation, Temperature and Water 

Level 

Cross-correlation analysis represents a powerful statistical tool for quantifying the 

temporal relationships between climatic variables (precipitation and temperature) and the 

hydrological response of the Entrebin spring. 

However, this approach has proven to be of limited utility, likely due to the specific 

context under examination, where aquifer dynamics are influenced by complex and not 

immediately apparent factors. Below, the research conducted is presented. 

Cross-correlation is a powerful statistical technique used to measure the similarity 

between two time series as a function of the time-lag applied to one of them. It is 

particularly useful in identifying the delay between cause and effect in temporal data. This 

method is employed to investigate the relationships between meteorological variables 

(such as precipitation and temperature) and hydrological responses (such as water levels). 

The cross-correlation function (CCF) quantifies the correlation between two time series 

at different lags. It is mathematically represented as follows: 

𝐶𝐶𝐹(τ) =
1

𝑁 − τ
∑ (

𝑥𝑡 − μ𝑥

σ𝑥
) (

𝑦𝑡+τ − μ𝑦

σ𝑦
)

𝑁−τ

𝑡=1

 

where: 

• ( 𝑥𝑡 ) and ( 𝑦𝑡 ) are the time series. 

• ( μ𝑥 ) and ( μ𝑦 ) are the means of the time series. 

• ( σ𝑥 ) and ( σ𝑦 ) are the standard deviations of the time series. 

• ( τ )  is the lag. 

• ( 𝑁 ) is the length of the time series. 

In practice, this means that for each possible time lag, we shift one time series relative to 

the other and compute the correlation coefficient. The lag that maximizes this coefficient 

indicates the delay between the input (e.g., precipitation) and the output (e.g., water level). 

This analysis should help us understand how quickly a system responds to changes in 

external conditions. 
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In the MATLAB, two separate analyses were conducted using two different inputs 

compared to the same output, that is the water level of the Entrebin spring. In the first 

case, the input used was the daily precipitation data (mm) from the Roisan-Preyl (Ao) 

station, while in the second case, the air temperature data from the Roisan-Preyl station 

was used. Below, only the procedure used for the daily precipitation input is analysed, as 

the one related to temperature is analogous. 

It is important to highlight that the water level dataset was adapted. Specifically, from the 

processed text file, the data were extracted, daily averages were calculated and saved in 

the processed_daily text file to allow comparison with the daily precipitation data 

published by the Centro Funzionale Regione Autonoma Valle d'Aosta. 

Therefore, the data used for the cross-correlation analysis include: the Precipitation input, 

measured daily and acquired from the text file, and the water level output, averaged daily 

and acquired from the text file. 

Before proceeding with the cross-correlation analysis, the datasets were normalized to 

remove any scale differences between the variables, as they are heterogeneous datasets. 

This step is crucial because we are comparing variables with different scales and orders 

of magnitude. Without this operation, the higher values would dominate the correlation 

calculation, making it difficult to identify significant relationships with variables on a 

smaller scale. Normalization was performed by subtracting the mean and dividing by the 

standard deviation, resulting in time series with zero mean and variance equal to 1. This 

guarantees more reliable and interpretable results for the subsequent phase. 

The cross-correlation was calculated using MATLAB's 𝑥𝑐𝑜𝑟𝑟 function, which quantifies 

the similarity between two time series as a function of the time delay (lag). The 

normalized option was used to obtain correlation coefficients ranging between -1 and 1, 

facilitating the interpretation of the results. 
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Figure 31 - Cross-correlation analysis of precipitation and water level at Entrebin, for recession period 

2018-2019. In the upper subplot, cross-correlation values versus lag time. In the lower subplot, dual-axis 

graph comparing precipitation (left y-axis) and water level (right y-axis) over time. 

 

 

Figure 32 - Cross-correlation analysis of precipitation and water level at Entrebin, for recession period 

2019-2020. In the upper subplot, cross-correlation values versus lag time. In the lower subplot, dual-axis 

graph comparing precipitation (left y-axis) and water level (right y-axis) over time. 

 

The analysis conducted on the relationship between precipitation and water level during 

the example recession periods, specifically those of 2018/2019 and 2019/2020, does not 
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yield statistically significant results. Although an attempt was made to identify a 

connection between the two variables through cross-correlation, the results suggest that 

the relationship is weak or non-existent and, most importantly, inconsistent across the 

years analysed. 

Looking at the first dataset, it can be observed that the maximum correlation between 

precipitation and water level occurs with a lag of 148 days and has a very low value 

(0.12847). This indicates a phenomenon that is difficult to interpret in physical terms. 

In the same image, in the lower graph, which shows the trend of precipitation and water 

level over time, a decreasing trend in the water level is highlighted, typical of a recession 

phase, with sporadic and generally low-intensity precipitation. However, no clear 

response of the water level to precipitation events is observed, partly due to the presence 

of some periods (two of which are very evident) where it was not possible to correlate the 

input data and hydrological output, as daily temperature data from the Roisan-Preyl 

station were missing. Other causes could depend on additional factors, such as infiltration 

processes or geological characteristics of the basin, which might have a more significant 

influence than precipitation itself. 

In the second example period, the results of the cross-correlation are different: the 

maximum correlation occurs at -125 days with a significantly higher value (0.23226), 

though still not particularly significant. The fact that the lag is negative implies that the 

water level precedes the precipitation, which lacks a physically coherent explanation in a 

natural system, unless very complex effects related to water accumulation and release 

dynamics in the subsurface or the inertia of the hydrological system are considered. 

The lower graph also shows a different situation compared to the previous year: 

precipitation is more frequent and abundant, but the water level exhibits a more gradual 

and less uniform decline. A small variation in the water level is observed in 

correspondence with precipitation events, but this link is not confirmed by the correlation 

evaluation between the two variables, which therefore remains, at the very least, 

uncertain. 

The fact that the cross-correlation results are so different in the two examples suggests 

that the relationship between precipitation and water level does not follow a stable and 

repeatable pattern over time. At least for this case study, this is a clear indication of the 
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low statistical significance of the analysis: if a robust relationship between the two 

variables existed, one would expect to find consistent results across the different periods 

analysed. 

In reality, the correlation values found are very low, and the identified lags cannot be 

interpreted in a physically plausible way. This leads to the conclusion that the water level 

during the recession period is likely influenced by a combination of more complex 

factors, such as basin morphology, soil permeability, and underground drainage 

dynamics, rather than recent precipitation. 

For completeness, the results related to the cross-correlation analysis using air 

temperature as input are also presented: 

 

Figure 33 - Cross-correlation analysis of air temperature and water level at Entrebin, for recession period 

2018-2019. In the upper subplot, cross-correlation values versus lag time. In the lower subplot, dual-axis 

graph comparing air temperature (left y-axis) and water level (right y-axis) over time. 
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Figure 34 - Cross-correlation analysis of air temperature and water level at Entrebin, for recession period 

2019-2020. In the upper subplot, cross-correlation values versus lag time. In the lower subplot, dual-axis 

graph comparing air temperature (left y-axis) and water level (right y-axis) over time. 

 

Despite a moderate correlation, reaching a value of 0.5, the lag is very long and difficult 

to interpret. It is likely that the water level is maybe primarily regulated by other 

phenomena, rather than by a simple thermal effect on water dynamics. In this case as well, 

no usable result is obtained for the purposes of the ongoing research. 

In conclusion, the results show that the cross-correlation analysis does not provide 

statistically robust evidence to directly link precipitation or air temperature with 

variations in water level during recession periods. This suggests that the approach that 

was structured does not work for this case study and does not aid in the hydrological 

analysis, likely because the analyzed water system is controlled by a combination of more 

complex processes that would require a more in-depth investigation, possibly considering 

other factors (e.g., groundwater recharge and geomorphology of the area). 
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Forecasting Water Level and Air Temperature using the Fourier 

model 

The lack of significance in the cross-correlation highlighted the difficulties in identifying 

direct relationships between environmental inputs (precipitation, air temperature) and 

output (spring level). This result, however, does not prevent moving forward with a 

different approach, based on Fourier analysis, which bypasses the challenges of direct 

relationships and focuses on the seasonal cyclicity observed in the earlier part of the study. 

The results obtained with the Fourier model would demonstrate that, even in complex 

systems, reliable predictions can be achieved through the analysis of periodic 

components. 

In this section, the focus is on the application of the Fourier model, previously discussed, 

for predicting the water level of the Entrebin spring and the air temperature. Historical 

data are used as a base to build a model capable of forecasting the future trends of these 

two variables. 

As mentioned, the model was developed using historical water level data measured at 

Entrebin (2016–2023), and in this chapter, the aim is to validate it using 2024 data, 

demonstrating its good predictive capability despite some limitations. This approach 

represents a step forward compared to the cross-correlation analyses of the previous 

chapter, which did not yield statistically significant results. 

 

Method and Implementation of the Predictive model 

The process continued with the development of the MATLAB script, where the first step 

was loading the two historical datasets previously filtered using the Kalman method, 

related to the water level of the Entrebin spring and the air temperature from the Roisan-

Preyl station. These data are organized in tables with two main columns: one for the date 

and time, and one for the measured values. 

Subsequently, it was necessary to align the data temporally to ensure that the time series 

were comparable and to avoid discrepancies due to different measurement times. 
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Next, the coefficients of the second-order Fourier model, which define its harmonic 

function, were loaded from a text file. These coefficients are 𝑎₀, 𝑎₁, 𝑏₁, 𝑎₂, 𝑏₂, 𝑎𝑛𝑑 𝜔. 

They had been calculated and saved in the text file during the earlier phase of model 

evaluation on the entire historical series. 

 

Table 2 - Coefficients of the second-order Fourier function estimated from the water level dataset for 

Entrebin. 

a0 a1 b1 a2 b2 w 
0.13195393 0.018048372 0.017595595 0.0052695933 0.0038053172 0.017308 

 

Before applying the Fourier model to forecast the year 2024, it was necessary to align the 

model itself with the historical data and the model for 2024. For this reason, a temporal 

shift was introduced for the water level, 𝑠𝐷_𝐿 =  157 𝑑𝑎𝑦𝑠. This value was obtained to 

ensure that the Fourier function for 2024 aligns with the model's signal on the historical 

series for the water level. As for the temporal shift for temperature, a different value was 

used, accounting for the fact that it is an input component and thus requires a greater lead 

time. Specifically, 𝑠𝐷_𝑇 =  190 𝑑𝑎𝑦𝑠. 

Therefore, the difference of 33 𝑑𝑎𝑦𝑠 reflects the fact that temperature requires a greater 

lead time compared to the water level, which is effectively expected considering air 

temperature as an input and water level as an output. 

At this point, the forecasts for the year 2024 are made using the Fourier function. 

For the water level prediction, the Fourier function is simply applied to the new time 

series for the year 2024 (𝑡_𝑓𝑢𝑡𝑢𝑟𝑒): 

𝑓𝑢𝑡𝑢𝑟𝑒_𝐿_𝑓𝑜𝑢𝑟𝑖𝑒𝑟 

=  𝑎0 +  𝑎1 ∗  𝑐𝑜𝑠(𝑤 ∗  (𝑡_𝑓𝑢𝑡𝑢𝑟𝑒 +  𝑠𝐷))  +  𝑏1 ∗  𝑠𝑖𝑛(𝑤 

∗  (𝑡_𝑓𝑢𝑡𝑢𝑟𝑒 +  𝑠𝐷))  +  𝑎2 ∗  𝑐𝑜𝑠(2 ∗  𝑤 ∗  (𝑡_𝑓𝑢𝑡𝑢𝑟𝑒 +  𝑠𝐷))  

+  𝑏2 ∗  𝑠𝑖𝑛(2 ∗  𝑤 ∗  (𝑡_𝑓𝑢𝑡𝑢𝑟𝑒 +  𝑠𝐷)) 

For the air temperature prediction, an additional preliminary step is required. To transform 

the water level forecast into a temperature forecast, two parameters are introduced: the 

scaling factor (k) and the offset (m). 
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A linear transformation was defined to convert the level to temperature, expressed as 

follows 

𝑇 =  𝑘 ∙  𝐿 +  𝑚 

The scaling factor (k) defines how much the temperature varies in relation to the water 

level; a higher value of 𝑘 indicates that small changes in level correspond to large changes 

in temperature, and vice versa. The offset (m) defines the temperature value when the 

water level is zero, so this parameter accounts for the "baseline" temperature. 

The value of k is calculated as the ratio between the standard deviation of temperature 

(𝑇_𝑠𝑡𝑑) and the standard deviation of the level (𝐿_𝑠𝑡𝑑). This ratio indicates how much 

the temperature varies relative to the level. If k is large, it means that the temperature is 

highly sensitive to level variations; if k is small, the temperature is less sensitive. 

The coefficient 𝑚 is obtained as the difference between the mean temperature (𝑇_𝑚𝑒𝑎𝑛) 

and the product of the scaling factor 𝑘 and the mean level (𝐿_𝑚𝑒𝑎𝑛). This parameter 

ensures that the linear transformation is correctly centered relative to the historical data. 

The mean and standard deviation of the historical datasets are chosen to perform the 

conversion from one variable to the other because they account for the variability of the 

data, thus ensuring that the linear transformation is suitable for the dispersion of the 

measurements. Additionally, they are robust, making the model less sensitive to any 

remaining outliers. 

The scaling factor 𝑘 describes the sensitivity of the temperature relative to the level and 

is calculated as 𝑘 ≈  360. This means that for an increase of 0.001 m in the water level, 

there is a corresponding increase of 0.36 °C. 

The linear transformation therefore becomes: 

𝑇 =  360 ∙  𝐿 –  36 

This type of transformation was chosen because it is extremely intuitive and simple. 

Indeed, it requires the use of two easily calculable parameters and the application of an 

ordinary linear equation, making it highly adaptable. Additionally, the parameters 𝑘 and 

𝑚 are easily interpretable, as they have a very clear physical meaning. 
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The assumptions made, however, come with some limitations. Specifically, a linear 

relationship between level and temperature is assumed, which could be challenged in 

more complex systems than the one examined. Also the risk of outliers in the datasets 

could propagate errors in the calculation of the two parameters of the equation, however 

this issue is significantly mitigated by the use of pre-filtered data using the Kalman 

method. 

Certainly, the use of only two variables (air temperature and water level) for the 

calculation of predictions is a limitation, considering how many other potential 

environmental variables could be included in this type of research, such as precipitation, 

humidity, and wind. 

Finally, it is worth noting that the datasets used do not come from the same site; the two 

sites are located within the same hydrological basin but are still positioned at a not 

completely negligible distance from each other. Having datasets measured at the same 

site would undoubtedly yield more reliable results. 

At this point, the linear transformation formula is applied in MATLAB software: 

𝑓𝑢𝑡𝑢𝑟𝑒_𝑇 =  𝑘 ∗  𝑓𝑢𝑡𝑢𝑟𝑒_𝐿_𝑓𝑜𝑢𝑟𝑖𝑒𝑟 +  𝑚 

The results were visualized on separate graphs and compared with historically measured 

values for the period 2016–2023 and for 2024. 

 

Visualization of results and corrections for Water level 

The model for the water level is as follows: 
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Figure 35 - Comparison of measured water level, Kalman-filtered data and the original forecasted model 

for Entrebin, 2024. 

 

By comparing it with the rest of the historical series: 

 

Figure 36 - Comparison of measured Kalman-filtered water level data and the original forecasted model 

for Entrebin, from 2016. 

 

It can be observed that there is an evident bias between the predictive model and the 

observations for 2024. 
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Therefore, the aim is to find a method to ensure that the model accounts for the observed 

discrepancy. To achieve this, it was decided to use the mean residual value, i.e., the 

difference between the model and the historical series, from the last 240 historical 

measurements of 2023, which correspond to the last 10 days of the year. 

The use of the residual is intended as a method to correct the bias. By leveraging it, an 

adjustment is made to align with the real conditions of the system at that moment, with 

the goal of improving the accuracy of the measurements for the year 2024. 

This type of approach, of course, has evident limitations. Specifically, the dependence on 

the most recent data from the reference series can become problematic: these data could 

turn out to be outliers, and in any case, they do not account for what happens in the rest 

of the reference series, potentially leading to incorrect corrections. Additionally, this 

method assumes stationarity, as the same correction value is consistently applied 

throughout the model, which is unlikely to be valid. 

Therefore, a more sophisticated method is employed, which still involves the use of 

residuals from the 2016–2023 series but considers all of them this time. A new second-

order Fourier model is used to attempt to interpret the trend of these residuals. At this 

point, the model is applied to the year 2024 as an additive term to correct the bias. 

Unfortunately, it will be seen that even this methodology does not correct the original 

model effectively. It is likely not the best approach, but it was attempted to give weight 

to the residuals of the series on which the general model is based. It is also important to 

emphasize that the second-order Fourier model used for the residuals does not provide a 

good fit but was chosen for continuity and because it is still one of the best models among 

those tested. 

The process continues with the use of the two methods involving residuals for model 

correction and a comparison with the uncorrected result. 
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Figure 37 - Comparison of measured water level, Kalman-filtered data, the original forecasted model and 

the two methods used to correct the bias for Entrebin, 2024. 

 

The use of the average residual from the last days of 2023 as a correction parameter is an 

approach that leads to a more accurate result compared to the original model. This method 

accounts for the observed discrepancy between the model and the real data at the end of 

the calibration period, improving the accuracy of the forecasts for 2024. However, it is 

important to consider the very evident limitations of this method and explore more 

advanced approaches for further improvements. 

Unfortunately, the curve derived from using a Fourier model on all the data from the 

historical series does not perform as well; the curve remains very similar to the original 

one. The (visible) advantages are only evident in the first month and a half of 2024, where 

the values are closer to those measured. For the rest of the period up to July, the predicted 

values from the two curves are practically identical. Then, until the end of the year, the 

corrected model overestimates the original model; unfortunately, it is not possible to 

determine whether this is beneficial or not, as the corresponding field-measured data for 

that period are not available. 
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Visualization of results and corrections for Air Temperature 

The forecast obtained for temperature is excellent, and the linear relationship with the 

water level is very strong. The model is able to reproduce the historical trend with very 

good accuracy, thus demonstrating the validity of the approach. 

 

Figure 38 - Comparison of measured air temperature (daily and hourly), Kalman-filtered data and the 

original forecasted model for Roisan-Preyl station, 2024. 

 

By comparing it with the rest of the historical series: 
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Figure 39 - Comparison of measured air temperature and the original forecasted model for Roisan-Preyl 

station, from 2016. 

 

The predictive model appears to capture the general trend of temperature very accurately, 

with a summer peak and a winter minimum. Overall, it seems well-structured and 

effective in identifying the seasonality of temperature, although limitations exist at the 

daily and weekly levels. 

The average trend of the prediction curve closely follows the historical temperature trend, 

demonstrating that the linear transformation based on water level was the correct choice. 

From the comparison between the historical temperature data filtered with Kalman and 

the forecast for 2024, it is evident that the distance between the two is very small in the 

central and final parts, i.e., from May to mid-November. In January and December, an 

overestimation of temperature is observed, but the largest discrepancy between the two 

curves occurs in the period from February to April (inclusive), where the forecast 

significantly underestimates the actual recorded values. 

The result regarding the underestimation in the February–April period is very interesting, 

as it closely mirrors what was observed in the previous section for the water level forecast. 

Unfortunately, this highlights that the model, at least for this period, did not perform as 

well as hoped. 
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For the rest, the temperature forecast results are very encouraging, demonstrating that the 

Fourier model, combined with a linear transformation based on water level, is capable of 

correctly reproducing the seasonal trend of temperature. However, there are some 

limitations, such as the dependence on linearity and the absence of other environmental 

variables. Certainly, the consideration of the latter could be interesting for future 

developments aimed at improving the model. 
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Conclusions 
The study conducted on the Entrebin spring has demonstrated how integrating advanced 

filtering and mathematical modelling techniques can aid in studying complex 

hydrological dynamics, even in contexts characterized by imperfect data and atypical 

behaviours. 

The application of the Kalman filter enabled the creation of more reliable time series, 

reducing instrumental noise and mitigating the impact of data gaps, while the use of 

second-order Fourier functions highlighted the possibility of developing reliable models 

to simulate the trends of the variables of interest. The water level and temperature 

forecasts, not without limitations, provided an operational tool to at least anticipate annual 

trends, highlighting the potential of models based on periodic components. 

The results obtained, even if preliminary, provide insights for the future management of 

water resources in alpine environments. The identification of delays in hydrological 

response would help better calibrate forecasting models and aquifer conservation 

measures. In an era of increasing climatic stress, approaches like the one proposed 

represent an interesting application of how what has been studied in a university context 

can be implemented in practice for the supervision of at-risk resources, in this case, aimed 

at the resilience of alpine water systems. 

 

Analysis of limits 

The research has highlighted some critical points, particularly concerning: 

• Data quality and completeness: Interruptions in the datasets (e.g., 2014–2015) and 

malfunctions in meteorological instrumentation (non-heated rain gauge) have 

limited the statistical robustness of the analyses, especially in cross-correlations. 

This led to the need to create daily datasets to better utilize the data in certain 

instances. The lack of study on snowmelt for alpine stations like Roisan-Preyl 

represents a significant limitation in the analysis of water input data in the 

hydrographic basin of interest. 

• Model simplifications: The assumption of linearity between water level and 

temperature, as well as the use of a second-order Fourier model, overlooked 
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nonlinear dynamics and multi-variable interactions (e.g., humidity, pressure). 

These aspects certainly play a role in these systems, and their inclusion would 

likely have led to more robust and precise results. 

• Scalability and generalizability: The geological specificity of Entrebin and the 

distance between the meteorological station and the spring may raise questions 

about the transferability of the method to other contexts without significant 

adaptations. The use of data from the same monitoring station or the integration 

of multiple stations within the same hydrographic basin would certainly have 

allowed for more interesting final solutions. 

• Dependence on manual corrections: The use of residuals to reduce bias in 

predictions introduces an element of arbitrariness, limiting the automation of the 

model. More notable would have been the identification of a more complex 

corrective model than those currently proposed. 

 

Future developments 

To overcome these limitations, future work could try to improve certain aspects of this 

study by focusing on: 

• Strengthening the monitoring network: The installation of additional sensors (e.g., 

soil moisture, interstitial pressure) and the upgrading of instrumentation (heated 

rain gauges) would enhance the spatial and temporal resolution of the data. Note, 

this may not be the only possibility; the implementation of new (or existing) 

methods to estimate snowmelt based on data related to snowfall/snow 

accumulation, temperatures, and other input data could prove very useful and 

interesting. Moreover, it is not always necessary to cover the entire territory with 

a dense network of sensors. In many cases, it may be sufficient to install the right 

devices in strategic points, enabling data collection even for areas not directly 

covered by sensors. Through post-processing techniques, such as triangulation, it 

is possible to derive information for areas without sensors by leveraging data 

collected from adjacent stations. This approach will allow for the optimization of 

resources and cost reduction while maintaining a high level of measurement 

accuracy. 
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• Temporal and geographical extension: Replicating the study on other alpine 

springs and over longer timeframes would validate the methodology and identify 

trends related to climate change. This study would be very interesting to apply to 

historical data series that, simply put, begin before 2016. Obviously, the 

implementation of these techniques in areas characterized by different behaviours 

would be equally interesting. 

• Coupled hydrogeological models: The inclusion of geomechanical parameters 

was not considered in this study, even though this spring alone is located in an 

area subject to DGPV (Deep Gravitational Slope Deformation) phenomena, an 

aspect that was not examined in the study. Additionally, subsurface permeability 

maps would allow for more accurate simulation of underground flow and offer 

possibilities for analysing results that are likely different from the current ones. 

• Integration of machine learning techniques: Utilizing algorithms based on, for 

example, recurrent neural networks (RNN) or Long Short-Term Memory (LSTM) 

models to analyse time series data from hydrological variables. 
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Appendix 
This appendix contains the MATLAB codes developed and used throughout the thesis for 

data analysis, model simulation and the implementation of algorithms described in the 

previous chapters. The codes are organized into phases, each corresponding to a specific 

functionality required for the work carried out. 

To execute the codes, MATLAB version R2022a (Update 5) on Windows was used. The 

Roisan-Preyl data files used as input are available on the website of the Centro Funzionale 

Regione Autonoma V.d.A [https://presidi2.regione.vda.it/str_dataview_download#]. The 

data to be used are saved and pre-processed in the folder named "Roisan" located within 

the scripts folder. 

 

List of Codes 

Phase A.m 

Description: Imports data from a text file, combines date and time columns, and checks 

for missing timestamps to identify periods when the instrumentation was not functioning. 

It then checks the values of the measured data column, flagging NaN or negative values 

(in the case of water level measurements) as invalid measurements. At the end, it filters 

the data by removing rows with invalid measurements and saves the results in new files. 

Script: 

clear all 

close all 

clc 

 

%% DATA IMPORT 

 

filename = 'Livello_Entrebin'; 

data = readtable(filename, 'Delimiter', ';', 'Format', 

'%{dd/MM/yyyy}D%{HH:mm:ss}D%s'); 

 

%% DATA PREPARATION (nowork, nomeas, outlier) 

 

%% Trova No_work 

 

% Estrae le colonne di data e ora come unica colonna datetime 
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date_time = data.Var1 + timeofday(data.Var2); 

 

% Ordina i dati (con dati PoliTo non utile, lo faccio per sicurezza) 

date_time = sort(date_time); 

 

% Determina l'intervallo di tempo tra due righe successive 

time_interval = hours(1); 

 

% Crea una serie temporale completa tra il primo e l'ultimo timestamp 

time_range = (date_time(1):time_interval:date_time(end))'; 

 

% Confronta la serie temporale generata con i timestamp del file 

missing_times = setdiff(time_range, date_time); 

 

%% Stampa se tutto ok, se NON presenti NoWork 

 

% Visualizza i risultati 

if isempty(missing_times) 

    disp('Non ci sono date o orari mancanti.'); 

else 

    disp('Date e orari mancanti:'); 

    % Trova intervalli di periodi mancanti consecutivi 

    start_idx = 1; 

    for i = 2:length(missing_times) 

        % Se l'intervallo tra due timestamp mancanti consecutivi non è uguale 

a time_interval, crea un nuovo periodo 

        if missing_times(i) - missing_times(i-1) ~= time_interval 

            fprintf('Attenzione! La strumentazione non ha funzionato dal %s 

alle ore %s al %s alle ore %s.\n', ... 

                    datestr(missing_times(start_idx), 'dd/mm/yyyy'), 

datestr(missing_times(start_idx), 'HH:MM:ss'), ... 

                    datestr(missing_times(i-1), 'dd/mm/yyyy'), 

datestr(missing_times(i-1), 'HH:MM:ss')); 

            start_idx = i; 

        end 

    end 

     

    % Stampa ultimo intervallo 

    fprintf('Attenzione! La strumentazione non ha funzionato dal %s alle ore 

%s al %s alle ore %s.\n', ... 

            datestr(missing_times(start_idx), 'dd/mm/yyyy'), 

datestr(missing_times(start_idx), 'HH:MM:ss'), ... 

            datestr(missing_times(end), 'dd/mm/yyyy'), 

datestr(missing_times(end), 'HH:MM:ss')); 

end 

 

%% Individua No_meas 

 

data = readtable("Livello_Entrebin.txt"); 

 

% Aggiunge colonne di controllo 
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n = height(data); 

data.Var4 = zeros(n, 1); % Colonna di verifica per variable 

 

% Controlla i valori per ogni riga 

for i = 1:n 

    % Effettua controllo sulla colonna variable (colonna 3) 

    if isnan(data.Var3(i)) || data.Var3(i) < 0 

        data.Var4(i) = 1; % 1 se il valore è NaN o negativo 

    end 

end 

 

% Salva il nuovo file con le colonne aggiuntive 

output_filename = 'file2findOutlier.txt'; 

writetable(data, output_filename, 'Delimiter', 'tab'); 

 

disp('Elaborazione completata e file salvato.') 

 

 

%% Trova No_Meas 

 

% Carica il file generato precedentemente 

input_filename = 'file2findOutlier.txt'; 

data = readtable(input_filename, 'Delimiter', 'tab'); 

 

% Filtra solo le righe con colonna 4 uguale a 0 

filtered_data = data(data.Var4 == 0, :); 

 

% Salva il nuovo file con le righe filtrate 

filtered_filename = 'fileNoOutlier.txt'; 

writetable(filtered_data, filtered_filename, 'Delimiter', ';'); 

 

disp('Nuovo file con righe filtrate salvato.'); 

 

 

Phase B.m 

Description: Imports data from a text file, removes years with incomplete data, and 

applies a Kalman filter to estimate the trend of the data over time. For each considered 

year, it generates two plots: one comparing the original data with the Kalman filter 

estimate, and another showing the residuals (differences between the original data and the 

estimates). The results, including both processed data and plots, are saved in a dedicated 

folder and a text file. 

Script: 
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% NOTA: 

%       *  --> Valido per sorgente Entrebin 

%       ** --> Valido per dataset di Livello dell'acqua per la sorgente 

Entrebin 

 

filename = 'fileNoOutlier'; 

data = readtable(filename, 'Delimiter', ';', 'Format', '%s%s%f%f%f', 

'ReadVariableNames', true, 'HeaderLines', 0); 

 

% Divide la data e l'ora 

dateStr = data.Var1; 

timeStr = data.Var2; 

values = data.Var3; 

 

% Converte le stringhe della data in formato datetime 

dates = datetime(dateStr, 'InputFormat', 'dd/MM/yyyy'); 

times = datetime(timeStr, 'InputFormat', 'HH:mm:ss'); 

 

% Combina data e ora in un unico datetime array 

dateTimeArray = dates + timeofday(times); 

 

% Definisce gli anni unici 

uniqueYearsList = unique(year(dateTimeArray)); 

 

% Esclude gli anni 2014, 2015, 2024 (anni i cui dati sono incompleti o 

assenti)* 

excludeYears = [2014, 2015, 2024];  

uniqueYearsList = setdiff(uniqueYearsList, excludeYears); 

 

% % Prealloca la matrice uniqueYears  

% uniqueYears = zeros(length(uniqueYearsList), 3); 

 

% Definisce i limiti dell'asse delle ordinate ** 

yMin = 0.08; 

yMax = 0.19; 

 

% Crea una nuova cartella per salvare i grafici 

outputFolder = 'Grafici Annuali (post-Kalman)'; 

if ~exist(outputFolder, 'dir') 

    mkdir(outputFolder); 

end 

 

% Parametri del filtro di Kalman 

A = 1;  % Matrice di transizione dello stato 

H = 1;  % Matrice di osservazione 

Q = 1e-9;  % Varianza del rumore di processo ** 

R = 0.001^2;  % Varianza del rumore di misura ** 

initialCovarianceEstimate = 0.001^2;  % Stima iniziale della covarianza ** 

 

% Crea e apre il file processed.txt in modalità scrittura 

processed = fopen('processed.txt', 'w'); 
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fprintf(processed, 'Var1\tVar2\n'); 

 

% Calcola filtro di Kalman & crea figura per ogni anno solare 

for i = 1:length(uniqueYearsList) 

    currentYear = uniqueYearsList(i); 

     

    % Filtra i dati per l'anno corrente 

    yearIdx = year(dateTimeArray) == currentYear; 

    yearData = dateTimeArray(yearIdx); 

    yearValues = values(yearIdx); 

 

    % Stima iniziale dello stato 

    initialStateEstimate = yearValues(1,1); % Stima iniziale dello stato 

 

    % Inizializza il filtro di Kalman 

    stateEstimate = initialStateEstimate; 

    covarianceEstimate = initialCovarianceEstimate; 

    kalmanEstimates = zeros(length(yearValues), 1); 

    covarianceEstimates = zeros(length(yearValues), 1);  

     

    % Applica il filtro di Kalman 

    for t = 1:length(yearValues) 

        % Previsione 

        predictedStateEstimate = A * stateEstimate; 

        predictedCovarianceEstimate = A * covarianceEstimate * A' + Q; 

         

        % Aggiornamento 

        innovation = yearValues(t) - H * predictedStateEstimate; 

        innovationCovariance = H * predictedCovarianceEstimate * H' + R; 

        kalmanGain = predictedCovarianceEstimate * H' / innovationCovariance; 

        stateEstimate = predictedStateEstimate + kalmanGain * innovation; 

        covarianceEstimate = (1 - kalmanGain * H) * 

predictedCovarianceEstimate; 

         

        % Salva la stima del fenomeno 

        kalmanEstimates(t) = stateEstimate; 

        covarianceEstimates(t) = covarianceEstimate; 

 

        % Scrive i dati nel file 

        fprintf(processed, '%s\t%f\n', datestr(yearData(t), 'dd-mmm-yyyy 

HH:MM:SS'), kalmanEstimates(t)); 

    end 

 

    % Crea una nuova figura (dati originali vs modello kalman) 

    figure; 

    plot(yearData, yearValues, 'b.', 'DisplayName', 'Dati Originali'); % Dati 

originali in blu 

    hold on; 

    plot(yearData, kalmanEstimates, 'r.', 'DisplayName', 'Stima Kalman'); % 

Stima Kalman in rosso 
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    hold off; 

     

    xlabel('Data'); 

    ylabel('Livello Acqua (m)'); 

    title(['Anno: ', num2str(currentYear)]) 

    legend('Location', 'best'); 

    ylim([yMin yMax]);   

     

    % Salva la figura nella cartella 

    saveas(gcf, fullfile(outputFolder, ['Grafico ' num2str(currentYear) 

'.fig'])); 

    close; 

 

 

    % Crea una nuova figura per viasualizzare l'incertezza 

    figure; 

    bar(yearData, (kalmanEstimates-yearValues), 'k', 'DisplayName', 

'Residui'); % Stima Kalman in nero 

    hold on; 

    % Aggiunge barre di errore per rappresentare l'incertezza di stima 

    errorbar(yearData, kalmanEstimates, (kalmanEstimates-yearValues), 'r', 

'LineStyle', 'none', 'DisplayName', 'Incertezza Stima'); % Barre di errore in 

rosso 

    hold off; 

    xlabel('Data'); 

    ylabel('Resisui (m)'); 

    title(['Incertezza di stima anno: ', num2str(currentYear)]) 

    legend('Location', 'best');  

     

    % Salva la figura nella cartella 

    saveas(gcf, fullfile(outputFolder, ['Incertezza anno ' 

num2str(currentYear) '.fig'])); 

    close; 

 

end 

 

% Chiude il file 

fclose(processed); 

 

disp('File processed.txt creato con successo!'); 

 

Phase C.m  

(to be used with the auxiliary function fitFourier.m) 

Description: Imports and analyses a time series dataset, applying two different modelling 

approaches: a fifth-degree polynomial fit for each calendar year and a second order 
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Fourier fit for the complete series. In the first case, for each year, it calculates a 

polynomial that approximates the data, evaluates the goodness of fit using the coefficient 

of determination 𝑅2 and saves the polynomial coefficients. In the second case, it defines 

the starting year and applies a Fourier model using a function defined via Curve Fitter. 

Graphical and textual results are saved in a dedicated folder. At the end, it calculates and 

visualizes the residuals of the Fourier fit and analyzes their mean and standard deviation 

for bias adjustments in Phase F. 

Script: 

% NOTA: 

%       ** --> Valido per dataset di Livello dell'acqua per la sorgente 

Entrebin 

 

filename = 'processed'; 

data = readtable(filename, 'Delimiter', '\t', 'ReadVariableNames', true); 

 

% Combina data e ora in un unico datetime array 

dateTimeArray = data.Var1; 

values = data.Var2; 

 

% Individua gli anni unici 

uniqueYearsList = unique(year(dateTimeArray)); 

 

% % Definisci i limiti dell'asse y (SE prima non si è eseguita faseB ==> de-

commentare) 

% yMin = 0.08; 

% yMax = 0.19; 

 

% Crea una nuova cartella 

outputFolder = 'Grafici con modelli'; 

if ~exist(outputFolder, 'dir') 

    mkdir(outputFolder); 

end 

 

% Prealloca la tabella per i valori di R2post (coefficiente di 

determinazione) 

R2Tablepost = table('Size', [0 2], 'VariableTypes', {'double', 

'double'},'VariableNames', {'Year', 'R2post'}); 

 

% Prealloca la tabella per i coefficienti dei polinomi 

coeff_pol = table('Size', [0 10], 'VariableTypes', {'double', 'double', 

'double', 'double', 'double', 'double', 'double', 'double', 'double', 

'double'}, 'VariableNames', {'Year', 'five', 'four', 'three', 'two', 'one', 

'zero', 'S', 'mu1', 'mu2'}); 
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% Crea una figura per ciascun anno e calcola media, deviazione standard e 

polinomio 

for i = 1:length(uniqueYearsList) 

    currentYear = uniqueYearsList(i); 

     

    % Filtra i dati per l'anno corrente 

    yearIdx = year(dateTimeArray) == currentYear; 

    yearData = dateTimeArray(yearIdx); 

    yearValues = values(yearIdx); 

 

    % Regola l'asse delle ascisse per il polinomio 

    x = datenum(yearData);  % converte date in numeri seriali 

     

    % Fit polinomiale (grado 5 in questo esempio, puoi cambiare il grado) 

    [p, S, mu] = polyfit(x, yearValues, 5);  % coefficienti del polinomio 

    % con delta = standard error 

    [yFit, delta] = polyval(p, x, S, mu);  % valori del polinomio per l'asse 

x 

 

    % Aggiungi i coefficienti e i valori dei coefficienti delle equazioni 

sulla tabella 

    coeff_pol = [coeff_pol; {currentYear, p(1), p(2), p(3), p(4), p(5), p(6), 

S.normr, mu(1), mu(2)}]; 

 

    % Calcolo dei residui 

        residuals = yearValues - yFit; 

        residMean = mean(residuals); 

        residStd = std(residuals); 

 

    % Aggiungi i coefficienti e i valori di R2 alla tabella 

        rsq = 1 - sum(residuals.^2) / sum((yearValues - 

mean(yearValues)).^2); 

        R2Tablepost = [R2Tablepost; {currentYear, rsq}]; 

     

    % Equazione del polinomio come stringa 

    eqn = sprintf('y = %.2fx^5 + %.2fx^4 + %.2fx^3 + %.2fx^2 + %.2fx + %.2f', 

p(1), p(2), p(3), p(4), p(5), p(6)); 

 

    %%  

    % Crea una nuova figura 

    figure; 

    plot(yearData, yearValues, '.'); 

    hold on; 

    % Aggiungi il fit polinomiale 

    plot(yearData, yFit, 'g-', 'LineWidth', 1.5); 

    hold off; 

     

    xlabel('Month'); 

    ylabel('Water level (m)'); 

    title(['Entrebin spring (Ao), year: ', num2str(currentYear)]) 

    % Aggiungi l'equazione del polinomio sul grafico 
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    text(yearData(ceil(end/2)), yMin + (yMax - yMin) * 0.1, eqn, 'Color', 

'g'); 

    legend({'Values', 'Polyfit'}, 'Location', 'best'); 

    ylim([yMin yMax]);  % Imposta i limiti dell'asse y 

    xlim([datetime(currentYear,1,1) datetime(currentYear,12,31)]); % Imposta 

i limiti dell'asse x 

     

    % Salva la figura nella cartella 

    saveas(gcf, fullfile(outputFolder, ['Grafico ' num2str(currentYear) 

'.fig'])); 

    close; 

     

end 

 

% Salva la tabella R2 

writetable(R2Tablepost, fullfile(outputFolder, 'R2tablepost.txt'), 

'Delimiter', '\t'); 

disp('R2 post values salvato in R2tablepost.txt'); 

 

% Salva la tabella coeff polinomi 

writetable(coeff_pol, fullfile(outputFolder, 'coeffpol.txt'), 'Delimiter', 

'\t'); 

disp('Equations coefficients salvato in coeffpol.txt'); 

 

 

%% ANALISI CON FOURIER 

% Filtra i dati per il periodo post-2015 

post2015Dates = dateTimeArray(year(dateTimeArray) > 2015); 

post2015Values = values(year(dateTimeArray) > 2015); 

x_post2015 = datenum(post2015Dates);  % converte le date in numeri seriali 

 

% Richiama la funzione di fitting (fitFourier.m) 

[fitresult_post2015, gof_post2015] = fitFourier(x_post2015, post2015Values); 

 

% Calcola i valori del fit per la serie temporale post-2015 

post2015YearRange = 

datetime(2016,1,1,0,0,0):hours(1):datetime(max(year(post2015Dates)),12,31,23,

59,59); 

x_post2015_full = datenum(post2015YearRange);  % converte le date in numeri 

seriali 

yFit_post2015 = feval(fitresult_post2015, x_post2015_full); 

 

% Crea una nuova figura per il fit Fourier della serie temporale post-2015 

figure; 

plot(post2015Dates, post2015Values, '.', 'DisplayName', 'Values'); 

hold on; 

plot(post2015YearRange, yFit_post2015, 'g.', 'LineWidth', 1.5, 'DisplayName', 

'Fourier Fit'); 

 

xlabel('Date'); 

ylabel('Livello Acqua (m)'); 
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title('Fit Fourier per la serie temporale post-2015'); 

legend('Location', 'best'); 

grid on; 

hold off; 

 

% Salva la figura nella cartella 

saveas(gcf, fullfile(outputFolder, 'Grafico serie completa post-2015.fig')); 

close; 

 

% Salva i coefficienti del fit Fourier per la serie temporale post-2015 

coeff_names = {'a0', 'a1', 'b1', 'a2', 'b2', 'w'}; %fourier secondo ordine 

coeff_values_post2015 = coeffvalues(fitresult_post2015); 

coeff_post2015 = array2table(coeff_values_post2015, 'VariableNames', 

coeff_names); 

writetable(coeff_post2015, fullfile(outputFolder, 

'coeff_post2015_Fourier.txt'), 'Delimiter', '\t'); 

disp('Coefficienti del modello Fourier salvati in 

coeff_post2015_Fourier.txt'); 

 

% Calcola i residui 

residui = post2015Values - feval(fitresult_post2015, x_post2015); 

 

% Crea una nuova figura per i residui 

figure; 

bar(post2015Dates, residui, 'DisplayName', 'Residui'); 

xlabel('Date'); 

ylabel('Residui (m)'); 

title('Residui del Fit Fourier per la Serie Temporale Post-2015'); 

legend('Location', 'best'); 

grid on; 

ylim([-0.05 0.05]);  % Imposta i limiti dell'asse y ** 

hold off; 

 

% Salva la figura nella cartella 

saveas(gcf, fullfile(outputFolder, 'Residui_SeriePost2015_Fourier.fig')); 

close; 

 

%% Per aggiustamento BIAS (risultati ultima parte) 

% Trova l'ultimo valore del residuo 

ultimo_residuo = residui(end); 

ultimo_residuo1 = residui(mean(end-240:end)); 

 

media_residuo = mean(residui); 

std_residuo = std(residui); 
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Phase D.m 

Description: Analyses a time series dataset by dividing it into hydrological years, defined 

as the period between the annual maximum and the maximum of the following year. For 

each hydrological year, it generates a plot of the data and saves it in a dedicated folder. In 

addition, it identifies and analyses the recession period, defined as the interval between 

the annual maximum and the minimum of the following year, creating separate plots for 

this phase. The results are saved in two distinct folders: one for complete hydrological 

years and one for recession periods. 

Script: 

% NOTA: 

%       ** --> Valido per dataset di Livello dell'acqua per la sorgente 

Entrebin 

 

% clear all 

% close all 

% clc 

 

%% 

% Legge i dati dal file processed.txt oppure da processed_daily.txt 

data = readtable('processed.txt', 'Delimiter', '\t', 'Format', '%{dd-MMM-yyyy 

HH:mm:ss}D%f', 'ReadVariableNames', true); % SE uso dati orari 

% data = readtable('processed_daily.txt', 'Delimiter', '\t', 'Format', '%{dd-

MMM-yyyy HH:mm:ss}D%f', 'ReadVariableNames', true); % SE uso dati giornalieri 

 

% Prealloca matrici per gli intervalli anni idrologici 

hydrologicYearIntervals = []; 

countDays = []; 

hydrologicYearIntervals2 = []; %% 

countDays2 = []; %% 

 

% Definisce i limiti dell'asse delle ordinate ** 

yMin = 0.08; 

yMax = 0.19; 

 

for currentYear = 2016:(max(year(data.Var1)) - 1) 

 

    yearIdx = year(data.Var1) == currentYear; 

    yearValues = data.Var2(yearIdx); 

    [~, maxIdx] = max(yearValues); 

 

    % Trova il massimo dell'anno successivo 

    nextYearIdx = year(data.Var1) == currentYear + 1; 

    nextYearValues = data.Var2(nextYearIdx); 

    [~, nextMaxIdx] = max(nextYearValues); 
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    [~, nextMinIdx] = min(nextYearValues); %% 

     

    % Definisci inizio e fine dell'anno idrologico (il 2 per definire il solo 

periodo di recessione 

    startDate = data.Var1(find(yearIdx, 1) + maxIdx - 1); 

    endDate = data.Var1(find(nextYearIdx, 1) + nextMaxIdx - 1); 

    endDate2 = data.Var1(find(nextYearIdx, 1) + nextMinIdx - 1); %% 

 

    % Calcola la durata in giorni tra startDate e endDate 

    durationDays = days(endDate - startDate); 

    durationDays2 = days(endDate2 - startDate); %% 

     

    % Aggiungi i valori alla matrice degli anni idrologici 

    hydrologicYearIntervals = [hydrologicYearIntervals; startDate, endDate]; 

    countDays = [countDays; durationDays]; 

    hydrologicYearIntervals2 = [hydrologicYearIntervals2; startDate, 

endDate2]; %% 

    countDays2 = [countDays2; durationDays2]; %% 

end 

 

 

%% 

% Crea una nuova cartella per salvare i grafici anni idrologici 

outputHydrologicFolder = 'Grafici Idrologici anni'; 

if ~exist(outputHydrologicFolder, 'dir') 

    mkdir(outputHydrologicFolder); 

end 

 

% Genera grafici per ciascun intervallo idrologico 

for i = 1:size(hydrologicYearIntervals, 1) 

    startDate = hydrologicYearIntervals(i, 1); 

    endDate = hydrologicYearIntervals(i, 2); 

     

    % Filtra i dati per l'intervallo corrente 

    intervalIdx = data.Var1 >= startDate & data.Var1 <= endDate; 

    intervalData = data.Var1(intervalIdx); 

    intervalValues = data.Var2(intervalIdx); 

     

    % Crea una nuova figura per l'intervallo idrologico 

    figure; 

    plot(intervalData, intervalValues, 'b.', 'DisplayName', 'Valori'); % Dati 

in blu 

    xlabel('Data'); 

    ylabel('Livello acqua (m)'); 

    title(['Anno Idrologico: ', datestr(startDate, 'yyyy'), '/', 

datestr(endDate, 'yyyy')]) 

    legend('Location', 'best'); 

     

    % Salva la figura nella cartella 

    saveas(gcf, fullfile(outputHydrologicFolder, ['Idrologico ', 

datestr(startDate, 'yyyy'), '_', datestr(endDate, 'yyyy'), '.fig'])); 
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    close; 

end 

 

disp('Grafici degli anni idrologici creati con successo!'); 

 

 

%% 

% Crea una nuova cartella per salvare i grafici perido recessione (da Massimo 

a.corrente a Minimo a.successivo) 

outputHydrologicFolder2 = 'Grafici Periodo recessione'; 

if ~exist(outputHydrologicFolder2, 'dir') 

    mkdir(outputHydrologicFolder2); 

end 

 

% Genera grafici per ciascun intervallo idrologico di recessione 

for j = 1:size(hydrologicYearIntervals2, 1) 

    startDate = hydrologicYearIntervals2(j, 1); 

    endDate2 = hydrologicYearIntervals2(j, 2); 

     

    % Filtra i dati per l'intervallo corrente 

    intervalIdx2 = data.Var1 >= startDate & data.Var1 <= endDate2; 

    intervalData2 = data.Var1(intervalIdx2); 

    intervalValues2 = data.Var2(intervalIdx2); 

     

    % Crea una nuova figura per l'intervallo idrologico di recessione 

    figure; 

    plot(intervalData2, intervalValues2, 'b.', 'DisplayName', 'Valori'); % 

Dati in blu 

    xlabel('Data'); 

    ylabel('Livello acqua (m)'); 

    title(['Periodo recessione - anno idrologico: ', datestr(startDate, 

'yyyy'), '/', datestr(endDate2, 'yyyy')]) 

    legend('Location', 'best'); 

    ylim([yMin yMax]);  

     

    % Salva la figura nella cartella 

    saveas(gcf, fullfile(outputHydrologicFolder2, ['Recessione - Idrologico 

', datestr(startDate, 'yyyy'), '_', datestr(endDate2, 'yyyy'), '.fig'])); 

    close; 

end 

 

disp('Grafici della fase recessione degli anni idrologici creati con 

successo!'); 
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Phase E_Precipitation.m 

Phase E_Temperature.m 

Description: Analyses the relationship between input and output during hydrological 

recession periods, as defined in Phase D. It filters the input and output data within the 

recession interval, normalizes the data, and calculates the cross-correlation between the 

two datasets to identify time lags and correlation coefficients. The results are visualized 

in plots showing both the temporal trends of the two variables and the cross-correlation, 

saved in a dedicated folder. For precipitation, the code works with daily data, while for 

temperature, it uses hourly datasets. 

Script (Precipitation): 

% Importa input 

filename = fullfile('Roisan/', 'processedPRd.txt'); 

data3 = readtable(filename, 'Delimiter', '\t', 'ReadVariableNames', true); 

 

% Combina data e ora in un unico datetime array 

dateTimeArrayP = data3.Var1; 

valuesP = data3.Var2; 

 

% Importa output 

filename = 'processed_daily'; 

data4 = readtable(filename, 'Delimiter', '\t', 'ReadVariableNames', true); 

 

% Combina data e ora in un unico datetime array 

dateTimeArrayLd = data4.Var1; 

valuesLd = data4.Var2; 

 

% Crea una nuova cartella per salvare i grafici 

outputFolder = 'Grafici Periodo recessione - Precipitazione 

(CrossCorrelation)'; 

if ~exist(outputFolder, 'dir') 

    mkdir(outputFolder); 

end 

 

% Inizializza i dati filtrati 

filteredDataP = []; 

filteredValuesP = []; 

filteredDataLd = []; 

filteredValuesLd = []; 

 

% Esclude anni specifici 

yearsToExclude = [2011 2012 2013]; 
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% Ciclo for attraverso gli intervalli di anni idrologici, considerando i soli 

periodi recessione 

for i = 1:size(hydrologicYearIntervals2, 1) 

 

% Imposta le variabili inizio e fine data per l'anno idrologico corrente 

startDate = hydrologicYearIntervals2(i, 1); 

endDate2 = hydrologicYearIntervals2(i, 2); 

 

% Converte le date da stringa a formato datetime 

startYear = datetime(startDate, 'InputFormat', 'dd-MMM-yyyy HH:mm:ss'); 

currentYear = year(startYear); 

 

% Filtra i dati all'interno dell'intervallo dell'anno idrologico corrente, 

escludendo gli anni specificati 

 

currentFilteredDataP = dateTimeArrayP(dateTimeArrayP >= startDate & 

dateTimeArrayP <= endDate2 & ~ismember(year(dateTimeArrayP), 

yearsToExclude)); 

currentFilteredValuesP = valuesP(dateTimeArrayP >= startDate & dateTimeArrayP 

<= endDate2 & ~ismember(year(dateTimeArrayP), yearsToExclude)); 

 

currentFilteredDataLd = dateTimeArrayLd(dateTimeArrayLd >= startDate & 

dateTimeArrayLd <= endDate2 & ~ismember(year(dateTimeArrayLd), 

yearsToExclude)); 

currentFilteredValuesLd = valuesLd(dateTimeArrayLd >= startDate & 

dateTimeArrayLd <= endDate2 & ~ismember(year(dateTimeArrayLd), 

yearsToExclude)); 

 

% Aggiunge i dati filtrati agli array finali 

 

filteredDataP = [filteredDataP; currentFilteredDataP]; 

filteredValuesP = [filteredValuesP; currentFilteredValuesP]; 

 

filteredDataLd = [filteredDataLd; currentFilteredDataLd]; 

filteredValuesLd = [filteredValuesLd; currentFilteredValuesLd]; 

 

% Imposta i dati per l'anno corrente 

 

yearDataP = filteredDataP; 

yearValuesP = filteredValuesP; 

 

yearDataLd = filteredDataLd; 

yearValuesLd = filteredValuesLd; 

 

%% (PROVA: Rimuove tutti i valori minori di 10 mm tra le precipitazioni) 

 

% % Imposta a 0 tutti i valori di precipitazioni minori di 10 mm 

% yearValuesP(yearValuesP < 10) = 0; 

 

%% 

% Rimuove i valori NaN dai dati comuni 
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validIdx = ~isnan(yearValuesP) & ~isnan(yearValuesLd); 

valoriP = yearValuesP(validIdx); 

valoriLd = yearValuesLd(validIdx); 

ascisse_comuni = yearDataP(validIdx); 

 

% Normalizza i valori comuni 

valoriP_norm = (valoriP - mean(valoriP)) / std(valoriP); 

valoriLd_norm = (valoriLd - mean(valoriLd)) / std(valoriLd); 

 

% Calcola la cross-correlazione 

[c, lags] = xcorr(valoriP_norm, valoriLd_norm, 'normalized'); 

 

% Trova il massimo valore di correlazione 

[max_corr, idx] = max(abs(c)); 

lag_max = lags(idx); 

 

% Visualizza i risultati 

figure; 

subplot(2, 1, 1); 

yyaxis left 

bar(yearDataP, yearValuesP, 'm', 'DisplayName', 'PR'); 

ylabel('Precipitazioni (mm)'); 

ylim([0 60]); 

 

yyaxis right 

plot(yearDataLd, yearValuesLd, 'r.', 'DisplayName', 'LE', 'MarkerSize', 5); 

ylabel('Livello acqua (m)'); 

ylim([0.08 0.19]); 

 

xlabel('Data e Ora'); 

title(['Confronto tra PR e LE - Anno ', num2str(currentYear)]); 

legend('show', 'Location', 'best'); 

grid on; 

 

subplot(2,1,2); 

plot(lags, c, 'g'); 

hold on; 

plot(lag_max, c(idx), 'ro', 'MarkerSize', 10, 'LineWidth', 2); 

title(['Cross-Correlazione (Massima correlazione = ', num2str(max_corr), 

')']); 

xlabel('Lag'); 

ylabel('Correlazione'); 

ylim([-1 1]); 

grid on; 

yline(0, 'k--');  % Aggiunge una linea di riferimento a 0 

hold off; 

 

% Salva la figura nella cartella 

saveas(gcf, fullfile(outputFolder, ['Cross-correlation (precipititazione-

livello acqua) ' num2str(currentYear) '.fig'])); 

close; 
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        % Inizializza i dati filtrati 

        filteredDataP = []; 

        filteredValuesP = []; 

        filteredDataLd = []; 

        filteredValuesLd = []; 

end 

 

Script (Temperature): 

% Importa input 

filename = fullfile('Roisan/', 'processedTR2.txt'); 

data1 = readtable(filename, 'Delimiter', '\t', 'ReadVariableNames', true); 

 

% Combina data e ora in un unico datetime array 

dateTimeArrayT = data1.Var1; 

valuesT = data1.Var2; 

 

% Importa output 

filename = 'processed'; 

data2 = readtable(filename, 'Delimiter', '\t', 'ReadVariableNames', true); 

 

% Combina data e ora in un unico datetime array 

dateTimeArrayL = data2.Var1; 

valuesL = data2.Var2; 

 

% Crea una nuova cartella per salvare i grafici 

outputFolder = 'Grafici Periodo recessione - Temperatura (CrossCorrelation)'; 

if ~exist(outputFolder, 'dir') 

    mkdir(outputFolder); 

end 

 

% Inizializza i dati filtrati 

filteredDataL = []; 

filteredValuesL = []; 

filteredDataT = []; 

filteredValuesT = []; 

 

% Esclude anni specifici 

yearsToExclude = [2011 2012 2013]; 

 

% Ciclo for attraverso gli intervalli di anni idrologici, considerando i soli 

periodi di recessione 

for i = 1:size(hydrologicYearIntervals2, 1) 

 

% Imposta le variabili inizio e fine data per l'anno idrologico corrente 

startDate = hydrologicYearIntervals2(i, 1); 

endDate2 = hydrologicYearIntervals2(i, 2); 

 



86 
 

% Converte le date da stringa a formato datetime 

startYear = datetime(startDate, 'InputFormat', 'dd-MMM-yyyy HH:mm:ss'); 

currentYear = year(startYear); 

 

% Filtra i dati all'interno dell'intervallo dell'anno idrologico corrente, 

escludendo gli anni specificati 

currentFilteredDataL = dateTimeArrayL(dateTimeArrayL >= startDate & 

dateTimeArrayL <= endDate2 & ~ismember(year(dateTimeArrayL), 

yearsToExclude)); 

currentFilteredValuesL = valuesL(dateTimeArrayL >= startDate & dateTimeArrayL 

<= endDate2 & ~ismember(year(dateTimeArrayL), yearsToExclude)); 

 

currentFilteredDataT = dateTimeArrayT(dateTimeArrayT >= startDate & 

dateTimeArrayT <= endDate2 & ~ismember(year(dateTimeArrayT), 

yearsToExclude)); 

currentFilteredValuesT = valuesT(dateTimeArrayT >= startDate & dateTimeArrayT 

<= endDate2 & ~ismember(year(dateTimeArrayT), yearsToExclude)); 

 

% Aggiunge i dati filtrati agli array finali 

filteredDataL = [filteredDataL; currentFilteredDataL]; 

filteredValuesL = [filteredValuesL; currentFilteredValuesL]; 

 

filteredDataT = [filteredDataT; currentFilteredDataT]; 

filteredValuesT = [filteredValuesT; currentFilteredValuesT]; 

 

% Imposta i dati per l'anno corrente 

yearDataL = filteredDataL; 

yearValuesL = filteredValuesL; 

 

yearDataT = filteredDataT; 

yearValuesT = filteredValuesT; 

 

%% 

% Calcola e visualizza la cross-correlazione 

yearDatai = yearDataT; 

yearValuesi = yearValuesT; 

 

% Trova gli indici comuni tra yearDatai e yearDataL 

[~, idxT, idxL] = intersect(yearDatai, yearDataL); 

 

% Considera solo i valori in comune 

ascisse_comuni = yearDatai(idxT); 

valoriT_comuni = yearValuesi(idxT); 

valoriL_comuni = yearValuesL(idxL); 

 

% Normalizza i valori comuni 

valoriT_comuni_norm = (valoriT_comuni - mean(valoriT_comuni)) / 

std(valoriT_comuni); 

valoriL_comuni_norm = (valoriL_comuni - mean(valoriL_comuni)) / 

std(valoriL_comuni); 
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% Calcola la cross-correlazione sui valori normalizzati in comune 

[c, lags] = xcorr(valoriT_comuni_norm, valoriL_comuni_norm, 'normalized'); 

 

% Trova il massimo valore di correlazione 

[max_corr, idx] = max(abs(c)); 

lag_max = lags(idx); 

 

% Visualizza i risultati 

figure; 

subplot(2, 1, 1); 

yyaxis left 

plot(yearDataT, yearValuesT, 'k.', 'DisplayName', 'TR', 'MarkerSize', 5); 

ylabel('Temperatura Aria (°C)'); 

ylim([-10 35]); 

 

yyaxis right 

plot(yearDataL, yearValuesL, 'r.', 'DisplayName', 'LE', 'MarkerSize', 5); 

ylabel('Livello (m)'); 

ylim([0.08 0.19]); 

 

xlabel('Data e Ora'); 

title(['Confronto tra TR e LE - Anno ', num2str(currentYear)]); 

legend('show', 'Location', 'best'); 

grid on; 

 

subplot(2,1,2); 

plot(lags, c, 'g'); 

hold on; 

plot(lag_max, c(idx), 'ro', 'MarkerSize', 10, 'LineWidth', 2); % Evidenzia il 

punto di massima correlazione 

title(['Cross-Correlazione (Massima correlazione = ', num2str(max_corr), ' al 

lag ', num2str(lag_max), ')']); 

xlabel('Lag'); 

ylabel('Correlazione'); 

ylim([-1 1]); 

grid on; 

yline(0, 'k--');  % Aggiunge una linea di riferimento a 0 

hold off; 

 

% Salva la figura nella cartella 

saveas(gcf, fullfile(outputFolder, ['Cross-correlation (precipititazione-

temperatura) ' num2str(currentYear) '.fig'])); 

close; 

 

        % Inizializza i dati filtrati 

        filteredDataL = []; 

        filteredValuesL = []; 

        filteredDataT = []; 

        filteredValuesT = []; 

end 
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Phase F.m 

Description: Performs future predictions for water level and temperature using a model 

based on the Fourier function estimated in Phase C and a linear relationship between 

input and output. It imports historical data, aligns them temporally, and applies the model 

with a 33-day shift between water level and temperature. It generates plots comparing 

historical data with future predictions and saves them in a dedicated folder. Additionally, 

it compares the predictions with real 2024 data to evaluate their accuracy. 

Script: 

% Carica i dati 

filename = 'processed'; 

data1 = readtable(filename, 'Delimiter', '\t', 'ReadVariableNames', true); 

dateTimeArrayL = data1.Var1; % Data e ora per il livello dell'acqua 

valuesL = data1.Var2;       % Valori del livello dell'acqua 

 

filename = fullfile('Roisan/', 'processedTR2.txt'); 

data2 = readtable(filename, 'Delimiter', '\t', 'ReadVariableNames', true); 

dateTimeArrayT = data2.Var1; % Data e ora per la temperatura 

valuesT = data2.Var2;        % Valori della temperatura 

 

% Crea una nuova cartella per salvare i grafici 

outputFolder = 'Previsioni future'; 

if ~exist(outputFolder, 'dir') 

    mkdir(outputFolder); 

end 

 

% Carica i coefficienti della funzione di Fourier per il livello dell'acqua 

filename = fullfile('Grafici con modelli/', 'coeff_post2015_Fourier.txt'); 

coeff = readtable(filename, 'Delimiter', '\t', 'ReadVariableNames', true); 

a0 = coeff.a0; 

a1 = coeff.a1; 

b1 = coeff.b1; 

a2 = coeff.a2; 

b2 = coeff.b2; 

w = coeff.w; 

 

% Allinea i dati (assicurati che L e T abbiano la stessa lunghezza e tempi 

comuni) 

[commonTimes, idxL, idxT] = intersect(dateTimeArrayL, dateTimeArrayT); 

valuesL = valuesL(idxL); 

valuesT = valuesT(idxT); 
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% Definisce lo shift temporale (157 giorni TOP x livello, 190 giorni TOP x 

temperatura) 

sD = 157; % Shift di giorni su asse x 

 

% Calcola la componente di Fourier per il livello dell'acqua (con shift) 

t = (1:length(valuesL))'; % Tempo (indice numerico) 

 

% Calcola media e deviazione standard 

L_mean = mean(valuesL); 

L_std = std(valuesL); 

T_mean = mean(valuesT); 

T_std = std(valuesT); 

 

% Calcola k e m 

k = T_std / L_std; % Fattore di scala 

m = T_mean - k * L_mean; % Offset 

 

% Definisci le date per il 2024 

startDate = datetime(2024, 1, 1); % Data di inizio: 1 gennaio 2024 

endDate = datetime(2025, 1, 1); % Data di fine: 31 dicembre 2024 (devo 

scrivere 1 gennaio 2025)  

futureDates = startDate:endDate; % Array di date per il 2024 

 

% Converte le date future in un indice numerico (giorni dall'inizio) 

t_start = datenum(startDate); 

t_future = datenum(futureDates) - t_start + 1; % Tempo in giorni dall'inizio 

del 2024 

 

% Calcola la componente di Fourier per il livello futuro (con shift) 

future_L_fourier = a0 + a1 * cos(w * (t_future + sD)) + b1 * sin(w * 

(t_future + sD)) + a2 * cos(2 * w * (t_future + sD)) + b2 * sin(2 * w * 

(t_future + sD)); % Componente di Fourier 

 

% Previsioni del livello dell'acqua 

future_L = future_L_fourier; % Previsioni del livello dell'acqua (risultato 

originale) 

%future_L = future_L_fourier + ultimo_residuo; % Previsioni del livello 

dell'acqua (correzione fissa del bias) 

 

% Calcola la componente di Fourier per il livello futuro (con shift MA 

sD=190) 

sD = 190; 

future_L_fourier = a0 + a1 * cos(w * (t_future + sD)) + b1 * sin(w * 

(t_future + sD)) + a2 * cos(2 * w * (t_future + sD)) + b2 * sin(2 * w * 

(t_future + sD)); % Componente di Fourier 

 

 % Previsioni della temperatura 

future_T = k * future_L_fourier + m; % Previsioni della temperatura 

 

% Grafico delle previsioni 
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figure; 

 

% Livello dell'acqua 

subplot(2, 1, 1); 

plot(commonTimes, valuesL, 'b', 'DisplayName', 'Data from Kalman'); 

hold on; 

plot(futureDates, future_L, 'r', 'DisplayName', 'Forecast data'); 

xlabel('Date'); 

ylabel('Water Level (m)'); 

legend; 

grid on; 

title('Water Level:'); 

 

% Temperatura 

subplot(2, 1, 2); 

plot(commonTimes, valuesT, 'g', 'DisplayName', 'Original data'); 

hold on; 

plot(futureDates, future_T, 'm', 'DisplayName', 'Forecast data'); 

xlabel('Date'); 

ylabel('Temperature (°C)'); 

legend; 

grid on; 

title('Temperature:'); 

 

% Salva la figura nella cartella 

saveas(gcf, fullfile(outputFolder, ['Modelli di previsione per Livello e 

Temperatura.fig'])); 

close; 

 

%% LIVELLO 2024 (usando sD = 157) 

 

filename = fullfile('Roisan/', '2024L'); 

data = readtable(filename, 'Delimiter', 'space', 'Format', '%s%s%f', 

'ReadVariableNames', true, 'HeaderLines', 0); 

 

% Divide la data e l'ora 

dateStr = data.Var1; 

timeStr = data.Var2; 

values = data.Var3; 

 

% Converte le stringhe della data in formato datetime 

dates = datetime(dateStr, 'InputFormat', 'dd/MM/yyyy'); 

times = datetime(timeStr, 'InputFormat', 'HH:mm:ss'); 

 

% Combina data e ora in un unico datetime array 

dateTimeArray = dates + timeofday(times); 

 

figure 

plot(dateTimeArray, values, "."); 

hold on; 
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plot(futureDates, future_L, 'r', 'DisplayName', 'Livello previsto 

(shiftato)'); 

ylim ([0.08 0.19]); 

xlabel('Date'); 

ylabel('Water Level (m)'); 

legend; 

grid on; 

title('Water Level - 2024'); 

 

% Salva la figura nella cartella 

saveas(gcf, fullfile(outputFolder, ['Previsione Livello dell acqua (Entrebin, 

2024).fig'])); 

close; 

 

%% TEMPERATURA 2024 (usando sD = 190) 

 

% Carica i dati 

filename = fullfile('Roisan/', '2024T'); 

data1 = readtable(filename, 'Delimiter', '\t', 'ReadVariableNames', true); 

dateTimeArrayL = data1.Var1; % Data e ora per il livello dell'acqua 

valuesL = data1.Var2;       % Valori del livello dell'acqua 

 

figure 

plot(dateTimeArrayL, valuesL); 

hold on; 

plot(futureDates, future_T, 'm', 'DisplayName', 'Temperatura prevista 

(shiftata)'); 

xlabel('Date'); 

ylabel('Temperature (°C)'); 

legend; 

grid on; 

title('Temperature - 2024'); 

 

% Salva la figura nella cartella 

saveas(gcf, fullfile(outputFolder, ['Previsione Temperatura (Roisan-Preyl, 

2024).fig'])); 

close; 

 

 


