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ABSTRACT 

Buildings account for more than one-third of total energy demand in many countries 

worldwide, positioning them as one of the major contributors to greenhouse gas emissions. 

Effective prediction of building energy demand is essential for optimizing electricity 

consumption and mitigating power shortages or waste. The importance of this task is 

increasing due to two significant transitions: the electrification of heating and transportation 

and the growing dependence on renewable energy sources. The former refers to the 

widespread adoption of electric vehicles and electric heating systems, such as heat pumps. 

The latter involves the expansion of renewable energy generation, which introduces 

challenges in balancing supply and demand, as electricity from sources like wind and solar is 

inherently intermittent and not always available when consumption peaks. 

The principal objective of this project, building further on previous work at KU Leuven 

University, Belgium, was to develop machine learning models to create building energy 

demand forecasts for the future (day-ahead time scale). It therefore focuses on establishing 

a complete procedure for energy demand prediction including preprocessing, forecasting, 

data analysis, time series feature extraction and model recommendation. A crucial task in 

time-series forecasting is the identification of the most suitable forecasting model. The 

challenges associated with energy demand forecasting arise from a wide range of predictive 

algorithms and models can be adapted through minor or significant modifications which is 

time intensive. Additionally, the diversity of buildings, each with distinct energy consumption 

patterns, further complicates the forecasting process. Consequently, the project first 

constructs a comprehensive dataset comprising buildings with diverse energy demand 

patterns to evaluate the performance of various forecasting models across these buildings. 

Then, based on this analysis, it designs a recommender system to identify and suggest the 

most suitable forecasting models for a newly encountered building. To implement this 

recommender system effectively, time series feature extraction is a crucial step. Feature 

extraction facilitates the summarization of long time-series data into a lower-dimensional set 

of key values or statistics, thereby reducing data complexity while preserving essential 

patterns and information.  
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Finally, based on the developed dataset comprising five distinct building energy demand 

profiles along with their extracted features and the performance evaluation of over thirty 

forecasting models on these buildings, the recommender system is designed to identify the 

most suitable forecasting models. When the features of a previously unseen building are input 

into the system, it recommends the forecasting models that best align with the specific 

characteristics of that building. The evaluation results indicate that the top-performing 

models outperformed the baseline methods by approximately 12%, demonstrating the 

advantage of advanced forecasting techniques and the recommender system achieved an 

accuracy of approximately 0.05 in terms of MAE, (the average discrepancy between the 

predicted and actual values), highlighting its capability to provide reliable model 

recommendations based on the extracted building features. 

 

Keywords: Building Energy Demand, Forecasting Model, Recommender System, Time-series 

Data, Machine learning.  
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1 INTRODUCTION 

The operations of buildings account for 30% of global final energy consumption and 26% of global 

energy-related emissions (8% being direct emissions in buildings and 18% indirect emissions from the 

production of electricity and heat used in buildings). (Tracking Clean Energy Progress 2023, n.d.) 

With increasing urbanization, the concentration of energy demand in buildings will further rise in the 

coming years. Thus, drastic steps will be required to ensure societal decarbonization. However, 

despite its importance, inefficient energy use in buildings remains a common challenge and frequently 

leads to unnecessarily high costs and greenhouse gas emissions. These challenges can be addressed, 

at least in part, through accurate energy demand prediction.  

Several studies have been conducted on forecasting. One paper proposes a methodology for building-

level energy forecasting by clustering weather data into distinct operational modes and comparing a 

baseline energy model with a cluster-based model, with the latter demonstrating superior 

performance (Desiree Arias-Requejo et al., n.d.). Another study utilized the ARIMA model to forecast 

electricity demand, leveraging historical data while accounting for seasonality and trends 

(Dr.S.Meenakshi et al., n.d.). Additionally, a study examines ten fundamental research questions that 

form the foundation of energy demand forecasting at both building and urban scales. The initial 

question highlights key applications of energy demand forecasting. Subsequent questions, investigate 

critical factors influencing the essential components of the forecasting process (Hussain Kazmi et al., 

n.d.-a). Furthermore, some studies have explored the selection of forecasting models. One particular 

study presents a general framework for forecast model selection utilizing meta-learning. This 

framework is assessed using time series data from the M1 and M3 competitions, covering annual, 

quarterly, and monthly models. A random forest is employed to determine the suitable forecasting 

method based on only two time series characteristics: the strength of seasonality and the strength of 

trend (Thiyanga S Talagala et al., n.d.-a). Moreover, many studies have investigated the time series 

features extraction. This study evaluates the effectiveness of various domain-informed and domain-

agnostic features using an extensive meta-analysis dataset of building energy demand (Ada Canaydin 

et al., n.d.-a). 

Forecasting is a key activity in any field for efficient operation. The rapid advances in computing 

technologies have enabled businesses to keep track of large numbers of time series. Hence, it is 

becoming increasingly common to have to regularly forecast many millions of time series. For 

example, large scale businesses may be interested in forecasting sales, cost, and demand for their 

thousands of products across various locations, warehouses, etc. Technology companies such as 

Google collect many millions of daily time series such as web-click logs, web search counts, queries, 
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revenues, number of users for different services, etc. Forecasting the energy demand of buildings 

benefits in grid, transition, renewable energy resources, greenhouse gas emission, etc. 

There exist a variety of machine learning models capable of predicting the energy demand of buildings. 

These models are categorized into five distinct groups, as outlined below (Five Machine Learning Types 

to Know, n.d.):  

1. Supervised machine learning: Supervised machine learning trains models on labelled datasets 

to predict target variables and is widely applied in risk assessment, image recognition, 

predictive analytics, and fraud detection. It comprises several algorithm types: regression 

algorithms for continuous value prediction (e.g., linear regression, random forest), 

classification algorithms for categorical labelling (e.g., logistic regression, SVMs), Naïve Bayes 

classifiers for large-scale classification, neural networks for complex pattern recognition, and 

random forest algorithms for enhanced predictive accuracy through decision tree 

aggregation. 

2. Unsupervised machine learning: Unsupervised machine learning derives insights from 

unlabelled data, supporting exploratory analysis, pattern recognition, and predictive 

modelling. Key methods include clustering algorithms (e.g., K-means for market 

segmentation, hierarchical clustering for iterative grouping, and probabilistic clustering for 

density estimation) and association algorithms for identifying relationships within large 

datasets. Techniques such as principal component analysis (PCA) facilitate dimensionality 

reduction, while unsupervised models underpin recommendation systems and anomaly 

detection. 

3. Self-supervised machine learning: Self-supervised learning (SSL) allows models to 

autonomously learn from unlabelled data, eliminating the need for extensive annotated 

datasets. Also referred to as predictive or pretext learning, SSL algorithms infer one portion 

of the input from another, effectively generating labels and converting unsupervised tasks 

into supervised ones. This approach is particularly advantageous in domains such as computer 

vision and natural language processing, where the demand for large-scale labelled data can 

be substantial and often impractical. 

4. Reinforcement learning: Reinforcement learning (RL), also known as reinforcement learning 

from human feedback (RLHF), is a dynamic programming approach that optimizes algorithms 

through a reward-based system. In this framework, an agent interacts with a defined 

environment, taking actions to achieve a specific objective. Based on a predefined metric, the 

agent receives rewards for desirable actions and penalties for suboptimal ones, reinforcing 
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effective strategies through iterative learning. RL is widely applied in video game development 

and is commonly used to train robots in replicating human tasks. 

5. Semi-supervised learning: The fifth category of machine learning represents a hybrid 

approach, integrating elements of both supervised and unsupervised learning. Semi-

supervised learning algorithms are trained using a small labelled dataset alongside a 

significantly larger unlabelled dataset, where the labelled data serves as a guide for learning 

patterns within the unlabelled data. These models often employ unsupervised learning to 

identify data clusters, followed by supervised learning to assign labels to those clusters. An 

example of semi-supervised learning is Generative Adversarial Networks (GANs), a deep 

learning framework that generates unlabelled data by training two competing neural 

networks. 

This project employs several supervised machine learning models to forecast energy demand. The 

models utilized include NaiveSeasonal, LinearRegression, LightGBM, RandomForest, and Prophet. 

These models are typically trained on historical data, learning seasonal patterns (such as daily and 

weekly trends) and leveraging these patterns to predict future demand. Despite their simplicity, these 

models are considered supervised since they rely on labelled training data, which consists of historical 

energy demand data with corresponding timestamps. 

To identify the most suitable forecasting models for an unknown building with a distinct energy 

demand pattern, a recommender system is designed. Generally, recommender systems are employed 

in various decision-making contexts, such as selecting products to purchase, choosing music to listen 

to, or determining which online news to read. These systems are widely used across different domains, 

with well-known applications including playlist generators for video and music streaming services, 

product recommendations for online retail platforms, and content suggestions for social media and 

web-based content providers (Recommender System, n.d.). In this context, the recommender system 

is utilized to suggest the most appropriate machine learning models for forecasting the energy 

demand of an unknown building, based on the features extracted from that building's data. 

1.1 PROBLEM STATEMENT 

Several studies have been conducted on forecasting energy demand within the building sector using 

machine learning techniques. These studies generally focus on a particular type of building or 

concentrate on a single machine learning prediction model. 

It is noteworthy that the application of machine learning models is often time-consuming. 

Consequently, applying multiple models in an effort to identify the best-performing one further 
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increases the time required. As the volume of data grows, the processing time expands as well. Thus, 

forecasting the energy demand of a building presents significant time challenges. 

Therefore, advancements are needed in this field to eliminate the need for repeatedly applying 

various forecasting models to new buildings in order to identify the most suitable model, a process 

that is time-consuming. 

1.2 THESIS GOAL 

This thesis aims to reduce the time required for forecasting models. Additionally, it seeks to develop 

a recommender system that automatically suggests the most suitable prediction model based on the 

features of a new, unknown building. This work is implemented within a Python environment using 

machine learning algorithms. The models are trained on time series data, and the results are evaluated 

using appropriate metrics. 

Therefore, this study will apply various prediction models to different building electricity demand 

patterns, storing their performance metrics to create a comprehensive dataset to avoid unnecessary 

expenditures of time and resources in future analyses. 

The availability of an infinite number of forecasting models highlights the need for a recommender 

system to avoid redundancy. This system analyses the features of a new, unknown building and then 

suggests the most suitable forecasting models for that specific building. 
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2 METHODOLOGY 

The buildings time series data are obtained from the Fluvius Open Data website which is an online 

platform provided by Fluvius, the Flemish distribution network operator, offering a wide range of 

energy-related datasets to the public (Consumption Profiles of Digital Electricity Meters, n.d.). The 

weather data are gained from Open-Meteo which is an open-source weather API offering free access 

to global weather forecasts (Historical Weather API, n.d.).  

The raw data are prepared and cleaned to be ready for models. The data is split such that 80% is used 

for training, while the remaining 20% is reserved for testing. A persistence model is established as a 

reference, and the performance of various forecasting models applied to the data is compared against 

this reference and evaluated accordingly. The performance of the models is then assessed using the 

evaluation metric, relative Mean Absolute Error (rMAE), as detailed in Section 2.1, which outlines its 

calculation. In the next step, the features of time series data are extracted to be used as indices in 

recommender system. This system offers the top forecasting models for an unknown building based 

on building data features. The accuracy of the recommender system is evaluated using Mean Absolute 

Error (MAE) and Root Mean Squared Error (RMSE), with the latter assigning greater weight to larger 

errors. 

In this chapter, the methodology and the tools employed are detailed. The chapter is organized into 

three main subsections. The first subsection presents the software and methods utilized in this 

research. The second subsection (2.2) provides an explanation of the evaluation metrics, the chosen 

metric for assessing forecasting performance, and how the metric is calculated. The third subsection 

(2.3) outlines the workflow and sequence of steps undertaken to achieve the objectives of this study. 

2.1 PYTHON AND MACHINE LEARNING 

Python is a powerful programming language for data science, scientific computing, and machine 

learning (Python, n.d.). It is highly flexible, easy to learn, and has a vast number of libraries. The key 

libraries used in this project include NumPy (NumPy, n.d.), Pandas (Pandas, n.d.), Matplotlib 

(Matplotlib, n.d.), and Darts (Darts, n.d.). Python is also a general-purpose programming language 

commonly used for numerical and engineering computations. Additionally, it has gained increasing 

popularity in scientific computing and machine learning applications. In recent years, numerous 

software packages designed for forecasting tasks have been made open-source. These include 

specialized forecasting libraries developed in widely used programming languages. Many of these 
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libraries offer high-level interfaces to various underlying algorithms, encompassing linear models, 

tree-based methods, and neural networks.  

Machine Learning (ML) is one of the fastest growing fields and have been booming in the recent years. 

It is a branch of artificial intelligence that focuses on how to program machines to learn from data. It 

is an approach to computer science that is primarily used for solving a wide range of problems in 

science, engineering, business and everyday life. Machine learning algorithms have become 

ubiquitous in data-driven fields, such as forecasting and natural language processing. These algorithms 

employ various techniques to identify patterns and make predictions, typically leveraging statistical 

and mathematical methods. Machine learning has long been a popular area of research, and scientific 

computing remains a crucial component of a data scientist's toolkit, particularly for managing complex 

and large datasets. This project will focus on forecasting through machine learning in Python, Jupyter 

notebook. 

 

2.2 EVALUATION METRICS 

Before generating forecasts, it is essential to establish a performance metric to assess the accuracy of 

the predictions. In practice, there are numerous error metrics to choose from. For regression tasks, 

such as forecasting energy demand or production, the following error metrics are commonly utilized: 

• Mean Error (ME) 

• Mean Absolute Error (MAE) 

• Relative MAE (rMAE) 

• Mean Absolute Percentage Error (MAPE) 

• Rˆ2 

• Mean Squared Error (MSE) 

• Root Mean Squared Error (RMSE) 

Most of these metrics evaluate the accuracy of forecasts by comparing the predicted values with the 

actual observed data. The distinction between squared and absolute errors is particularly relevant 

when higher errors need to be given greater or lesser weight. Unlike traditional error metrics, rMAE 

(relative Mean Absolute Error) is unique in that it compares the MAE of the forecasting model against 

a benchmark, in this case “NaiveSeasonal” (K=24). 
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Scikit-learn (Scikit-Learn, n.d.), a widely used Python library for machine learning in both industry and 

academia, provides various pre-implemented error metrics. These metrics can be readily applied in 

forecasting evaluations, with a particular focus on regression error metrics. 

Beyond these standard metrics, distribution-based error assessments are also employed in some 

cases. These include: 

• Tests for normality of residuals, using Q-Q plots (normal probability plots) for visual inspection 

and the Shapiro-Wilk test for statistical analysis. 

• Tests for autocorrelation in residuals, often conducted using the Durbin-Watson statistic. 

It is important to note that these error metrics are applicable only to point forecasts (also referred to 

as deterministic forecasts). When dealing with interval forecasts (or stochastic forecasts), alternative 

error metrics become more relevant, as they evaluate the full probability distribution of the forecasted 

variable. These include measures such as reliability, resolution, and uncertainty, which are sometimes 

aggregated into a single score (Kazmi Hussain & Balint Attila, n.d.). 

MAE is a measure of the average magnitude of errors in a set of predictions, without considering their 

direction (positive or negative). It is the average over all the test samples of the absolute differences 

between the predicted values and the actual values. MAE provides an idea of how close the 

predictions are to the actual outcomes. 

Mean Absolute Error Formula 

𝑀𝐴𝐸 =
1

n
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

 

Where: 

• n= number of data points in the test set 

• 𝑦𝑖= actual value for the i-th data point 

• 𝑦̂𝑖= predicted value for the i-th data point 

• |𝑦𝑖 − 𝑦̂𝑖|= absolute error for the i-th data point 

A lower MAE value indicates better model performance, as it means the predicted values are closer 

to the actual values.  

In practice, scenario forecasts are often preferred over purely probabilistic forecasts, as they provide 

concrete trajectories of possible future outcomes, which can be directly integrated into optimization 

frameworks. However, the focus here remains on rMAE (relative Mean Absolute Error). 
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Relative Mean Absolute Error Formula 

rMAE =
𝑀𝐴𝐸

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑀𝐴𝐸
 

Where: 

• Baseline MAE = MAE calculated using a baseline model (often using the mean of the target 

variable as the prediction for all data points). 

rMAE tells you how much the MAE of your model is relative to the MAE of the baseline model. A value 

of rMAE=1 means the model’s performance is equivalent to the baseline model. Thus, value less than 

1 means the model performs better than the baseline, and a value greater than 1 means the model 

performs worse than the baseline. 

On the other hand, the evaluation metrics used to assess the accuracy of the recommender system's 

performance are primarily MAE, followed by RMSE, which assigns greater weight to larger errors. The 

calculation of MAE has been explained earlier. The computation for RMSE is as follows: 

Root Mean Squared Error Formula 

𝑅𝑀𝑆𝐸 = √
1

n
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

 

 

Where: 

• n= number of data points (observations) 

• 𝑦𝑖= actual value of the target variable 

• 𝑦̂𝑖= predicted value from the model 

• (𝑦𝑖 − 𝑦̂𝑖)2 = squared error (the difference between the actual value and predicted value, 

squared) 

The sum of squared errors is averaged across all data points, and the square root of this average is 

then computed. Larger errors are given more weight due to the squaring component in the formula. 

RMSE is always non-negative, with lower values indicating better model performance. Additionally, 

RMSE maintains unit consistency, as it is expressed in the same units as the target variable (since it is 

the square root of squared differences). 
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2.3 IMPLEMENTATION 

This project gathered the data and employed four fundamental steps—data processing, forecasting, 

feature extraction, and the construction of a recommender system—to accomplish its objectives. The 

following flowchart scheme overall methodological process and the subsections are explaining the 

manner in detail.  

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

  

 

 

 

 

DATA 

LOAD DATA + WEATHER DATA 

LOAD DATA 

DATA PROCESSING WEATHER DATA 

FEATURE ENGINEERING BASELINE 

BACKTESTING 

FORECASTING 

MODELS + WEATHER COVARIATES BASIC MODELS 

RECOMMENDER SYSTEM 

FEATURE EXTRACTION 

DOMAIN INFORMED DOMAIN AGNOSTIC 

BEST FORECASTING MODEL 

Figure 1 The flowchart of the entire methodological framework, systematically illustrating each step involved in the implementation of the 
proposed approach 
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2.3.1 Data Processing  

In this step the electricity demand and weather API are cleaned and ordered to align best with the 

purpose of the project. This dataset contains the individual consumption data of 500 anonymised 

digital electricity meters. The digital electricity meter for which the grid user has asked Fluvius to read 

the quarterly values and for which we have all quarterly values available for the entire year (no unused 

meters). The scope with solar panels is determined if an injection volume was registered in all 12 

months. The scope without solar panels are meters for which no injection volume was registered 

during the entire year. In this dataset, only EANs were retained that belonged to the residential 

contract category during the entire year. From this scope we extract 500 electricity meters as a 

sample, divided into the following categories: 

• With solar panels (100) 

• Without solar panels (100) 

• With heat pump and with solar panels (100) (Heat pumps without solar panels are not shown 

here because they are rare) 

• With solar panels and an electric vehicle charging at home (100) 

• Without solar panels and with an electric vehicle charging at home (100) 

Building Classification Based on Consumption Patterns. More details about the electricity time series 

data are provided in the table below. 

Attribute Details 

Themes Grid users and their consumption 

Timezone Europe/Brussels 

Territory Flemish region 

License Open data license - FLUVIUS 

Publisher Dataroom Fluvius 

Table 1 Electricity time series Data Information 

 

A unique case number is assigned to each category of buildings. This classification groups every 

hundred buildings (EAN_IDs) with similar consumption patterns into separate cases, ranging from 1 

to 5 as follows: 
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• Case 1: Including photo voltaic panels (PV) 

• Case 2: No specific consumption (None) 

• Case 3: Including photo voltaic panels and heat pumps (PV+HP) 

• Case 4: Including photo voltaic panels and electric vehicles (PV+EV) 

• Case 5: including electric vehicles (EV) 

The required Libraries (e.g. NumPy, pandas, matplotlib, Darts) and their packages (e.g. darts.metrics, 

matplotlib.pyplot, json)  are imported. The data are loaded and translated into english, all five cases 

combined into one DataFrame. The datetime column converted to a proper datetime format and the 

“Net_Volume_Purchase” is calculated as the target of forecasting.  

Then the acquisition points processed effectively downsamples to an hourly resolution while 

maintaining separate time series for each EAN_ID. Since resampling groups data into hourly intervals, 

we need to specify how to aggregate multiple values within each interval. So the “.mean()” function 

applied to compute the average of all observations that fall within the same hour. 

A random building ID is selected from the dataset. A time-series plot of electricity consumption 

(Volume_Purchase_kWh), electricity injection (Volume_Injection_kWh), and net purchase 

(Net_Volume_Purchase_kWh) from July 1 - July 14, 2022 is shown for clarification. X-axis corresponds 

to the datetime range, and the unit is day. The units on the Y-axis are in kilowatt-hours (kWh), which 

is the unit of electrical energy measurement. The net volume purchase is predominantly negative, 

indicating the presence of photovoltaic panels (Building_ID 1054- Case 3). 

 

Figure 2 Volume Purchase, Volume Injection and Net Volume Purchase (kWh) over datetime (14 days) 
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In the next step, the weather data is loaded and merged with electricity load data using 'datetime' as 

the key. Finally, a new column is created named “day_ahead_forecast”. It contains the Net Volume 

Purchase (kWh) values from the previous day (24 hours ago). This is essentially a "naive day-ahead 

forecast", where the predicted value for a given hour is simply the value from the same hour on the 

previous day. This creates a simple baseline forecast where today's value is assumed to be the same 

as yesterday's which can be used to compare against more advanced forecasting models. It 

particularly is useful for lag-based features in machine learning models. 

A time-series plot of actual energy consumption (Net_Volume_Purchase_kWh) and forecasted energy 

consumption (day_ahead_forecast) for the specific building ID (Building_id:1054) over a one week's 

worth of data (July 1 - July 7, 2022) is shown to visualize how well the day-ahead forecast compares 

to the actual energy usage. X-axis corresponds to the datetime range, and the unit is day. The units on 

the Y-axis are in kilowatt-hours (kWh), which is the unit of electrical energy measurement. 

 

Figure 3 Net Volume Purchase and Day-Ahead Forecast (kWh) over datetime (7 days) 

 

The visualization provides insights into the forecast accuracy, highlighting potential discrepancies 

between predicted and actual consumption. Almost close alignment suggests that the day-ahead 

forecast effectively captures the building's energy usage patterns.  
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2.3.2 Forecasting 

Energy use improvement in buildings has been an active area in research. A large variety of methods 

and approaches has been proposed to improve the energy use in buildings. The proposed system for 

the Electricity Demand Prediction project leverages advanced machine learning algorithms and 

historical consumption data to forecast future electricity demands accurately. By analysing patterns 

and external factors such as weather, holidays, and economic indicators, it aims to provide utilities 

with valuable insights to optimize power generation and distribution, ensuring a more efficient and 

reliable energy supply. This predictive system will help reduce energy wastage, lower costs, and 

contribute to a more sustainable energy infrastructure. 

To forecast the energy demand of buildings, both statistical and machine learning-based time series 

models, including NaïveSeasonal, LinearRegression, and Prophet (statistical models), as well as 

LightGBM, and RandomForest (machine learning models) are applied. The approach of the project is 

to collect and analyse the data related to electricity consumption, such as historical usage patterns, 

weather conditions, and other relevant factors, to make predictions about future demand. 

As buildings energy demands are different based on their facilities and consumption, this study uses 

supervised learning models on five different building cases for short-term energy demand forecasting, 

leveraging historical data to train statistical and machine learning models. The goal is to select the 

model that offers the best predictive performance. 

The forecasting approach in this project accomplish the steps outlined in the following. 

 

2.3.2.1  Feature Engineering 

Feature engineering is a very important step in machine learning. Feature engineering refers to the 

process of designing artificial features into an algorithm. These artificial features are then used by that 

algorithm in order to improve its performance, or in other words, reap better results (Feature 

Engineering, n.d.). This included renaming variables for clarity, creating new features such as heating 

and cooling degree days, normalizing continuous variables, and generating binary indicators. These 

transformations enhanced the model’s ability to learn patterns in energy demand. 
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Figure 4 Contribution of Feature Engineering to the forecasting models 

 

When feature engineering activities are done correctly, the resulting data set is optimal and contains 

all of the important factors that affect the problem. As a result of these data sets, the most accurate 

predictive models and the most useful insights are produced. 

 

Several feature engineering techniques are applied: 

• Renaming Columns: Makes variable names shorter and easier to use 

• Dropping Unnecessary Columns: Removes target variables and categorical indicators to keep 

only relevant numerical features. 

• Creating New Features: such as creating Binary indicator, converting percentage values to 

decimal, specifying threshold for Degree Days for Heating and Cooling, allowing the model to 

capture nonlinear effects by Squared versions 

• Feature Scaling (Min-Max Normalization): Scales selected numerical features to the range 

[0,1] using “MinMaxScaler”, making training more stable. 

Generally, the feature engineering leads to model interpretability improvement, model performance 

enhancement and Enables Nonlinear Relationships in forecasting. 

The forecasting models in this study incorporate the following features as future covariates: 
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No. Feature_Category Covariate_Name 

1 

Weather Variables 

Temperature (temperature_2m (°C)) 

2 Relative Humidity (relative_humidity_2m (%)) 

3 Rain (rain (mm)) 

4 Wind Speed (wind_speed_10m (km/h)) 

5 Soil Temperature (soil_temperature_0_to_7cm (°C)) 

6 Direct Radiation (direct_radiation (W/m²)) 

7 

Time-based Features 

is_day (Indicator for daytime) 

8 is_night (Created as the inverse of is_day) 

9 sunshine_duration (Converted from seconds to hours) 

10 

Degree Day Features 
(Heating & Cooling 

Demand Indicators): 

heating_degree_days = max (0, temperature - 18) 

11 cooling_degree_days = max (0, 18 - temperature) 

12 
Squared versions of these (heating_degree_days_2, 

cooling_degree_days_2) to capture non-linear effects 

Table 2 Features categories and future covariates used in forecasting models 

 

2.3.2.2 Baseline 

The most basic forecasting algorithm, which serves as a benchmark for any more advanced model, is 

the persistence model. This approach assumes that past values will repeat in the future with a specific 

periodicity. For instance, the demand at time step “n” is predicted to be the same as at time step 

“n+k”, where “k” represents the data's periodicity (e.g., daily, weekly, or yearly). Surprisingly, this 

simple method often performs well for periodic time series, such as electricity demand and solar PV 

production. Establishing a baseline is essential on any time series forecasting problem. A baseline in 

forecast performance provides a point of comparison. It is a point of reference for all other modeling 

techniques. The goal is to get a baseline performance on time series forecast problem as quickly as 

possible so that can get to work better understanding the dataset and developing more advanced 

models (How to Make Baseline Predictions for Time Series Forecasting with Python, n.d.). 

The “NaiveSeasonal” model is a simple forecasting model that predicts based on the past seasonal 

patterns in the data. The parameter K=24 indicates that the model uses a daily seasonality (since a day 

has 24 hours, it assumes a repeating pattern every 24 hours). The model will predict future values by 
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assuming that the demand at a specific time will be similar to the demand at the same time in the 

previous day. Using “NaiveSeasonal” as a starting point, provide the opportunity to compare how well 

the other more complex models (e.g., LightGBM, RandomForest) perform relative to this simple 

baseline. For example, if a more complex model like LightGBM has a much lower MAE than 

NaiveSeasonal, it indicates that the model is doing better than the simple seasonal baseline. 

 

2.3.2.3 Backtesting 

Creating an approach to model creation and selection which is more structured. In machine learning, 

models are not evaluated just once; instead, cross-validation is implemented to assess their 

performance. Similarly, in time series forecasting, rather than making a single prediction for the entire 

test set, it's better to update predictions regularly based on the specific use case—this could be daily, 

hourly, or at another interval. To achieve this, a function is implemented that evaluates different 

models using backtesting. This method, commonly used in time series analysis, serves as an equivalent 

of cross-validation for time series data. Backtesting provides a more reliable estimate of a model's 

forecasting accuracy compared to fitting a single model to the full dataset. However, the trade-off is 

that it requires more computational resources. 

 

2.3.2.4 Forecasting Models 

forecasting is the process of making predictions of the future based on past and present data and most 

commonly by analysis of trends and usually needed to determine when an event will occur or a need 

arise, so that appropriate actions can be taken. 

In the proposed approach, various forecasting models are employed to predict the future energy 

demand of buildings. The models utilized in this study include NaïveSeasonal, LinearRegression, 

LightGBM, Prophet and RandomForest. 

These models were implemented with basic form and with some modifications as outlined below: 

1. Lag Size (lags) 

• lags=24: Uses the past 24 hours (1-day history). 

• lags=7 * 24 (168): Uses the past 7 days (1-week history). 

Larger lags give the model more context but increase complexity. 

2. Use of Future Covariates (lags_future_covariates) 
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• Models without future covariates rely only on past values. 

• Models with lags_future_covariates= [0] use future covariates only for the current time step 

(e.g., temperature, relative_humidity, direct_radiation, etc.). 

The models leverage weather conditions, temporal indicators (day/night), sunshine duration, and 

temperature-derived heating/cooling demand features to improve forecasting performance. 

Additionally, feature scaling ensures stability and comparability across different variables. 

3. Encoders (add_encoders) 

• Models without encoders use only raw time series data. 

• Models with encoders transform time-related features (e.g., cyclic encoding for hour, 

categorical encoding for dayofweek). 

4. Forecasting Method (output_chunk_length) 

• output_chunk_length=1: Recursive forecasting (one-step-ahead, then using predictions as 

new inputs). 

• output_chunk_length=30: Direct forecasting (predicts the next 30 steps all at once). 

Recursive forecasting is step-by-step, while direct forecasting is for long-horizon predictions. 

5. Multi-Step Approach (multi_models) 

• Default (multi_models=True): A single model is trained to predict multiple steps. 

• multi_models=False: A separate model is trained for each future step. 

Some of these modifications were applied incrementally, while others were implemented 

simultaneously across models. These adjustments were made to determine which models outperform 

others. 

The performance of the forecasting models is evaluated using the relative mean absolute error (rMAE) 

metric. This involves first calculating the mean absolute error (MAE) for each building's prediction. 

Subsequently, the relative mean absolute error (rMAE) is computed by comparing the results to the 

baseline model, which is the "NaiveSeasonal" model with a seasonal period of (k=24). This seasonal 

period of 24 corresponds to a 24-hour cycle, given that the data is hourly. Therefore, (k=24) indicates 

that the model assumes a seasonal pattern that repeats every 24 time steps, i.e., every 24 hours. 
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2.3.3 Feature Extraction 

Feature extraction is a technique used to reduce the complexity of long time series data by 

summarizing it into a lower-dimensional set of key values or statistics. This process helps to preserve 

the most significant information and patterns while simplifying the data. For instance, instead of 

retaining all individual timestamps in a power consumption series, feature extraction condenses it into 

a few key features that reflect the overall behavior of the time series. 

Once extracted, these features can be used for various tasks, such as: 

• Unsupervised learning: Grouping buildings with similar power consumption patterns through 

clustering. 

• Supervised learning: Using the extracted features in conjunction with known labels (e.g., 

building metadata) to train predictive models. 

Various algorithms have been developed to convert time series data into a smaller set of essential 

features, where the number of features is much smaller than the original time series data. These 

features capture important statistics like averages, variability, and peak values. In this study, two 

methods for extracting features from the aggregated power consumption data of 500 buildings in the 

Fluvius dataset are explored: 

1. Domain-Informed Feature Extraction: This method transforms each time series into a daily 

load profile and extracts relevant features such as statistical moments, peak observations, and 

their timings, which are critical factors for energy flexibility. The “IFEEL” package by Maomao 

Hu is used for this process. 

2. Domain-Agnostic Feature Extraction: This approach takes a more general perspective, 

analyzing the entire time series to capture long-term trends, seasonal patterns, 

autocorrelations, and spectral variations. It is designed to capture generic features like trends 

and seasonality, without assuming domain-specific knowledge. The “tsfeatures” package by 

Nixtla is used for this method. 

The features from both methods are combined into an aggregated feature vector, significantly 

reducing the data size and transforming the high-resolution time series into a lower-dimensional 

space. After feature extraction, clustering techniques will be applied to group buildings based on their 

power usage patterns, revealing clusters of buildings with similar behaviors (Hussain Kazmi & Ada 

Canaydin, n.d.). 

To begin, the necessary packages are installed, and the required libraries are loaded: 
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• tsfeatures: Used for domain-agnostic feature extraction, with custom modifications available 

in the src_nixtla folder. 

• ifeel_extraction and ifeel_transformation: Domain-informed features are derived using the 

IFEEL package, specifically designed for electricity load analysis. Custom modifications are 

made to the original IFEEL code. 

In this project, both domain-informed and domain-agnostic feature extraction techniques are applied 

using the respective IFEEL and Nixtla packages. 

Data Quality Check and Pre-processing 

Before proceeding with feature extraction, it is crucial to evaluate the quality of the time series data 

and address any inconsistencies. This is achieved through a set of data quality check and pre-

processing functions, which can be applied repeatedly by simply modifying the input time series. 

Overview of Functions:  

1. calculate_data_quality_metrics (df: pd.DataFrame) 

This function calculates three key metrics for each building and returns: 

• Missing Percentage: The percentage of missing values in the energy consumption data. 

• Null Percentage: The percentage of null values (0.00 kWh) in the energy consumption data. 

• Duration: The total number of days of data collection for each building. 

2. plot_quality_metrics (missing_perc: pd.Series, null_perc: pd.Series, duration: pd.Series, 

dataset_name: str) 

This function generates visualizations to assess the data quality: 

• Heatmap of Missing Data: A visual representation of missing data in the time series. 

• Top 25 Buildings with Highest Null Percentage: A bar chart showing buildings with the highest 

percentage of null values. 

• Measurement Duration Distribution: A histogram displaying the distribution of data collection 

durations. 

3. filter_buildings (df: pd.DataFrame, missing_perc: pd.Series, null_perc: pd.Series, duration: 

pd.Series, missing_threshold: float = 50, null_threshold: float = 50, duration_threshold: int 

=30) 

This function filters buildings based on specified thresholds for missing values, null values, 

and duration, returning a cleaned DataFrame. The thresholds are: 
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• Missing Threshold: Maximum allowable percentage of missing values. 

• Null Threshold: Maximum allowable percentage of null values. 

• Duration Threshold: Minimum required duration for data collection. 

4. check_constant_days (df: pd.DataFrame) 

Identifies days with constant energy values for each building, returning a summary 

DataFrame and printing details about unique IDs with constant values. 

5. remove_constant_days_from_buildings (df: pd.DataFrame) 

This function removes days with constant values and eliminates entire buildings with 

excessive constant days. 

6. impute_missing_values_with_weekly_median (df: pd.DataFrame) 

Fills in missing values using the weekly median of daily usage profiles, returning the 

DataFrame with imputed values. 

Next, the overall data quality of the dataset is visualized to make informed decisions about the 

necessary pre-processing steps. 

 

 

Figure 5 Unique IDs over Time- Missing data in the time series 
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Figure 6 Unique IDs over Null percentage- Top 25 buildings with the highest percentage of null values 

 

 

Figure 7 Number of buildings over Duration- The measurement duration distribution across all buildings 

 

According to the graphs, the dataset contains no missing values, but one building (with unique ID 

89) has a significant number of null values compared to other buildings, roughly 6%. Several other 

buildings also have null values, but these are below 1%. On a positive note, the data collection 

duration is consistent across all buildings, with each having one full year of observations. Now the 

pre-processing stage can be proceeded to make ready the dataset for further analysis. 
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Data Quality Filtering: To ensure the dataset meets quality standards, buildings that don't meet 

certain criteria should be filtered out. By default, buildings with more than 50% null values, over 

50% missing values, or fewer than 30 days of data are removed. The thresholds code script is as 

follows: 

 

Figure 8 Predefined quality thresholds for missing values, null values and duration 

 

According to the predefined quality thresholds, there is no building with more than 50% null values, 

more than 50% missing values, or less than 30 days of readings to be excluded from the dataset. 

By completing these steps, the dataset is properly cleaned and prepared for feature extraction. 

 

Domain-agnostic feature extraction (Nixtla package) 

Initially, the domain-agnostic feature extraction method is applied using the Nixtla package, which 

provides a set of features that can be utilized across various domains without requiring domain-

specific expertise. In the Nixtla package, the “freq” parameter within the tsfeatures function defines 

the frequency of the time series data, representing the number of data points per unit of time. 

Adjusting this parameter to match the dataset's specific frequency is crucial for accurate feature 

extraction. In the case of the Fluvius dataset, where the data is recorded at 1-hour intervals, a total of 

24 data points are captured per day. Consequently, the freq parameter is set to 24 when applying the 

tsfeatures function to ensure precise extraction of relevant features. 

Missing values, as well as buildings (unique IDs) with missing feature values, are imputed using a K-

Nearest Neighbors (KNN) imputer to ensure data completeness.   

Additionally, features related to the time series length, including 'frequency,' 'series_length,' 

'seasonal_period,' and 'nperiods,' are removed to prevent potential data leakage in subsequent 

analysis tasks. 
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Domain-informed feature extraction (IFEEL package) 

The IFEEL package facilitates the extraction of specialized features for building energy demand analysis 

by leveraging domain-specific knowledge. Unlike general domain-agnostic feature extraction methods 

that analyze entire time series, IFEEL focuses on daily load profiles for each building. To capture key 

characteristics at the building level, summary statistics—including the minimum, maximum, median, 

mean, and standard deviation—are calculated for each extracted feature. 

This approach results in the generation of 21 distinct features: 

• 13 Global Features (GFs): Derived directly from raw time-series data. 

• 8 Peak-Period Features (PFs): Identified during peak consumption periods using the Symbolic 

Aggregate Approximation (SAX) technique, which converts daily load data into symbolic 

representations to detect recurring consumption patterns in smart meter data. 

Given this methodology, each building ultimately has 105 features (21 features × 5 summary 

statistics). The feature extraction process is carried out through three key functions: 

• process_site: Processes each building individually by cleaning, resampling, and formatting 

data to match IFEEL's requirements. It then extracts global and peak-period features from 

daily load profiles. 

• process_one_by_one: Iterates over all buildings in the dataset, applying process_site to each 

one. 

• merge_features: Combines individual feature files from each building into a single dataset, 

enabling a comprehensive overview of extracted features across all buildings. 

 

Adjustable Parameters 

• In the process_site function, parameters such as time_business_start, time_business_end, 

and alphabet_size can be adjusted to refine the analysis. The SAX alphabet size is set to 7 to 

balance interpretability and granularity. 

• In process_one_by_one, the freq parameter is set to "60T" to match the dataset's 1-hour 

sampling intervals.  

Following feature extraction, the features from all buildings are merged into a single dataset, with 

unique_id set as the index. To simplify data handling, bracketed lists in feature names—such as 

'Peak_all: time' and 'Peak_all: duration'—are reformatted by removing the brackets. A thorough check 



34 
 

for missing values is performed on the extracted features, and any missing values are imputed using 

a K-Nearest Neighbors (KNN) imputer to ensure data completeness. Unlike the domain-agnostic Nixtla 

features, which analyze entire time series, IFEEL features are aggregated at the building level. To 

achieve this, summary statistics—including the minimum, maximum, median, mean, and standard 

deviation—are computed for each extracted IFEEL feature. 

 

Clustering 

In this section, the feature matrix is utilized to cluster buildings with similar Distributed Energy 

Resource (DER) profiles. The approach involves reducing the dimensionality of the feature matrix to a 

two-dimensional space and applying an unsupervised clustering algorithm for effective grouping. 

Before clustering, a DataFrame is constructed, incorporating both the input features and the target 

variables. Initially, the two extracted feature sets, ifeel_features_df and nixtla_features_df, are 

merged to form the final feature matrix, which serves as the foundation for the analysis. 

Subsequently, a target variable, Class_Name, is generated from the metadata. This variable 

categorizes households based on the type of DERs they possess, such as solar panels (PV), electric 

vehicles (EV), and heat pumps (HP). The feature matrix is then combined with the target variable, 

ensuring a comprehensive dataset for clustering. To maintain data consistency, any rows containing 

NaN values are removed, as differences between the metadata and extracted features may arise due 

to preprocessing steps. To prepare for clustering, the numerical features are standardized to ensure 

equal contribution to the analysis. This prevents any feature from dominating the results due to scale 

differences. StandardScaler from the sklearn library is applied to transform the numerical data, 

ensuring a mean of 0 and a standard deviation of 1. Dimensionality reduction is then performed to 

facilitate visualization and identify patterns or clusters. t-distributed Stochastic Neighbor Embedding 

(t-SNE) is employed for this purpose, with a fixed random_state to ensure reproducibility. A 

DataFrame is subsequently created to store the t-SNE results alongside the corresponding class labels. 

The clustering process is carried out using K-Means, with the number of clusters set to five, as there 

are known distinct groups. The final step involves visualizing the clustering results by plotting the 

ground truth against the t-SNE components, along with the cluster boundaries. To delineate each 

cluster visually, convex hulls are used.  
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Figure 9 The scatter plot of projected high-dimensional data into a 2D space. Each colour corresponds to a different class, 
illustrating the distribution and separation of clusters. 

 

As it is depicted in the graph, each dot represents a unique building, while the grey lines illustrate how 

the buildings are grouped using the K-Means algorithm. 

 

2.3.4 Recommender System 

A recommender system, is a type of machine learning that leverages data to predict, filter, and identify 

the most relevant options for individuals from an ever-expanding pool of choices. 

A recommendation system is an algorithm, often tied to machine learning, that utilizes Big Data to 

suggest additional products or services to consumers. These suggestions are based on various factors 

and relevant data. Recommender systems are valuable tools as they enable users to discover products 

or services that they might not have discovered on their own or would have taken too much time to 

find. These systems are trained to analyze past behaviors and features to predict consumer interests 

and desires. They effectively guide consumers toward products or services that align with their 

preferences, ranging from books and videos to health classes and clothing (Recommendation System, 

n.d.). 
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In this project the recommender system is extended to suggest the best forecasting models for an 

unknown building. Thus, it is not necessary to run multiple time-consuming forecasting models to 

identify the best performance for a new building. Since several predictive models have already been 

applied to five hundred buildings with varying consumption patterns, a wealth of comprehensive data 

and results has already been collected. Additionally, the features of these buildings have already been 

extracted. Therefore, by inputting the time series features of a new unknown building, the 

recommender system can suggest the top forecasting models that are most suitable for that building. 

The following flowchart illustrates the overall framework of the recommender system. 

 

 

 

 

 

 

 

 

Operational Framework 

To construct this system within a Python environment, the necessary libraries are first imported. 

Subsequently, both domain-informed and domain-agnostic features, extracted in the previous step, 

are loaded alongside the forecasting performance metrics. At this stage, a comprehensive dataset is 

assembled, encompassing building IDs, extracted time series features, and prediction performance 

results. The extracted features serve as input data, while the forecasting models represent the target 

variable. The models are trained on 80% of the data. To enhance accuracy, training is conducted 

separately for each case, enabling the model to capture diverse consumption patterns. Finally, the 

trained models are tested on the remaining 20% of each building case, thereby constructing the 

necessary matrices for evaluation. 

To approach this target, the K-Nearest Neighbors (KNN) model is used. KNN is a supervised learning 

algorithm that can be applied to both classification and regression tasks. The algorithm predicts the 

class or value of a given test instance by measuring its distance from all training data points. It then 

selects the K nearest neighbors—i.e., the K training points closest to the test instance. In classification, 

KNN assigns the test instance to the class with the highest probability, determined by the majority 
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Figure 10 The flowchart of the general structure of the recommender system 
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class among the selected K neighbors. In regression, the predicted value is computed as the mean of 

the target values of these K nearest neighbors (K-Nearest Neighbor, n.d.). 

The functioning of the K-Nearest Neighbors (K-NN) algorithm can be outlined as follows: 

• Determine the Number of Neighbors (K): Select an appropriate value for K, representing the 

number of nearest neighbors to consider. 

• Compute Distance Metrics: Calculate the Euclidean distance between the test data point and 

all training data points. 

• Identify the Nearest Neighbors: Select the K data points with the shortest Euclidean distances. 

• Classify the Test Instance: Count the occurrences of each category among the K nearest 

neighbors. 

• Assign a Category: Assign the test instance to the category with the highest frequency among 

the K neighbors. 

• Model Readiness: The classification or regression model is now prepared for making 

predictions. 

 

Accuracy Assessment 

To assess the accuracy of the system's recommendations, the evaluation process is carried out as 

follows:   

First, the closest training sample to each test sample is identified. Next, the optimal forecasting model 

and its corresponding rMAE value for the nearest training sample are determined. Once the optimal 

forecasting model for the training sample is identified, its corresponding performance value for the 

test sample is selected. Additionally, the best forecasting model, characterized by the lowest rMAE 

value, is identified for each test sample. The difference between these two evaluation values is then 

computed for each test instance. Finally, the Mean Absolute Error (MAE) is averaged across all test 

samples, providing a measure of the overall accuracy of the designed recommender system.   

Therefore, this system identifies the most appropriate forecasting models for building energy demand, 

tailored to the unique and unknown electricity consumption patterns of a building. 
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3 DATA ANALYSIS 

In this chapter, the dataset is initially examined to identify underlying patterns, noise levels, and 

correlations with weather-related covariates. To facilitate this analysis, the necessary libraries and 

packages are imported. Furthermore, both the dataset and performance results are loaded to support 

subsequent evaluations.  

3.1 ANALYSING TIME SERIES DATA 

Performance of Net Volume Purchase (NVP) over Datetime 

Generating a separate line plot for each EAN_ID in the dataset, showing how the net volume purchase 

(Net_Volume_Purchase_kWh) varies over time (Datetime). The following graphs illustrate a randomly 

selected building as a representative example for each building case. 

 

           

Figure 12 Plot of NVP over Time (1 year)- Case2 including No 
specific installation 

 

 

        

Figure 14 Plot of NVP over Time (1 year)- Case4 including 
PV+EV 

 

Figure 11 Plot of NVP over Time (1 year)- Case1 
including PV 

Figure 13 Plot of NVP over Time (1 year)- Case3 including 
PV+HP 
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Figure 15 Plot of NVP over Time (1 year)- Case5 including EV 

 

The graphs show the variation of Net Volume Purchase (kWh) over the year 2022 for the specific 

building of each case.  

The three graphs corresponding to buildings with EAN_IDs 51, 150, and 31 represent cases 1, 3, and 

4, respectively. These cases include photovoltaic (PV) panels, which are evident from the graphical 

representations. The presence of negative net volume purchase in these graphs indicates the amount 

of electricity generated by the PV panels. Furthermore, the graphs for cases 3 and 4 illustrate a 

reduction in electricity production, as these cases involve heat pumps (HP) and electric vehicle (EV) 

consumers, respectively. In contrast, the buildings with EAN_IDs 32 and 426 correspond to cases 2 

and 5, which do not incorporate PV panels. Consequently, no electricity production is observed in their 

respective graphs. 

 

Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) 

The Autocorrelation Function (ACF) plot is utilized to analyze the extent to which past values influence 

future values in a time series, while the Partial Autocorrelation Function (PACF) plot is employed to 

assess the direct relationship between a given time step and its preceding lags.  Both ACF and PACF 

measure how a time series is related to its past values (lags), but the key difference is ACF measures 

the total correlation between a time series and its lagged values, including both direct and indirect 

relationships. PACF measures only direct correlation, removing the effect of intermediate lags. 

These plots are particularly useful for identifying seasonality in time series data. The presence of 

significant spikes at specific lags in the ACF plot indicates the existence of seasonal or persistent 

patterns. The following graphs serve as illustrative examples for each case. 
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Figure 17 Partial Autocorrelation Function (PACF) for 50 
timestamp- Case1 including PV 

 

 

       

Figure 19 Partial Autocorrelation Function (PACF) for 50 
timestamp- Case2 including No specific installation 

 

 

     

Figure 21 Partial Autocorrelation Function (PACF) for 50 
timestamp- Case3 including PV+HP 

        

Figure 16 Autocorrelation Function (ACF) for 50 
timestamp- Case1 including PV 

Figure 18  Autocorrelation Function (ACF) for 50 
timestamp- Case2 including No specific installation 

Figure 20  Autocorrelation Function (ACF) for 50 
timestamp- Case3 including PV+HP 
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Figure 23 Partial Autocorrelation Function (PACF)- Case4 
including PV+EV 

 

       

Figure 25 Partial Autocorrelation Function (PACF) for 50 
timestamp- Case5 including EV 

 

In these graphs, the Y-axis in both the Autocorrelation Function (ACF) and Partial Autocorrelation 

Function (PACF) plots represent correlation values ranging from -1 to 1, indicating the strength of the 

relationship between the time series and its lagged values. The X-axis represents the lag values, where, 

given the hourly nature of the time series data, the numbers correspond to hours. The ACF plots 

exhibit high correlation values at lags 24 and 48, suggesting the presence of daily seasonality in the 

data. 

 

Correlation between Net Volume Purchase (NVP) and weather covariates 

Correlation is a key statistical concept that researchers employ to analyze connections within the data. 

It helps to Understand the relationship between variables. The connection between two or more 

variables is known as their correlation. Correlation refers to the degree to which the variables change 

together or co-vary. It looks at the simultaneous fluctuations in both or all variables measured. A high 

correlation indicates the variables tend to move in tandem. A low correlation means the variables are 

not closely associated with their fluctuations. Knowing the correlation helps discover important 

Figure 22  Autocorrelation Function (ACF) for 50 
timestamp- Case4 including PV+EV 

Figure 24  Autocorrelation Function (ACF) for 50 
timestamp- Case5 including EV 
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relationships between different factors. It provides insight into how changes in one variable may 

correlate with or predict changes in another. Values closer to 1 or -1 represent stronger positive or 

negative correlations, while those closer to 0 indicate little connection between the variables 

(Correlation in Machine Learning, n.d.). 

The following heatmap indicates correlation between weather covariates and target variable (Net 

Volume Purchase). 

 

Figure 26 The correlation heatmap of net volume purchase (kWh) and Covariates 

 

As observed, certain exogenous weather variables, such as temperature, direct radiation, and 

sunshine duration, exhibit a moderate negative correlation with the target variable, 

Net_Volume_Purchase. This indicates that an increase in temperature, direct radiation, and sunshine 

duration is associated with a decrease in Net_Volume_Purchase. 
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3.2 ANALYZING FORECASTING 

Here, the results are presented through visualizations to facilitate a more comprehensive analysis. The 

necessary libraries are imported, and both the dataset and performance metrics are loaded 

accordingly. 

To enhance clarity in visualization, the building cases are categorized based on their shape in certain 

plots. Additionally, the stored performance of various forecasting models is assessed using the rMAE 

metric, retrieved during this phase. 

 

Define Shape Labels 

The shape_labels dictionary maps specific marker shapes ("o", "^", "s", "P", "D") to corresponding 

building types: 

• "o" → PV (Photovoltaic) 

• "^" → None (No specific installation) 

• "s" → PV + HP (Photovoltaic + Heat Pump) 

• "P" → PV + EV (Photovoltaic + Electric Vehicle) 

• "D" → EV (Electric Vehicle) 

 

The data is recorded at an hourly frequency. A forecast for the following day is generated based on 

the “Net_Volume_Purchase_kWh” column. This code adds a new column that predicts the net volume 

purchase for the next day, using the current data as a reference. 

The following graph compares the forecast errors “dayaheadforecast” against energy consumption 

“Net_Volume_Purchase_kWh” while distinguishing different building types based on their energy 

configurations. 
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Figure 27 The scatter plot of day ahead forecast over net volume purchase (kWh) for building cases including PV, No specific 
installation, PV+HP, PV+EV and EV 

 

The performance of certain cases is not clearly distinguishable in this graph due to overlapping data 

points. Therefore, the day-ahead forecast for Net_Volume_Purchase is plotted separately for each 

case to enhance clarity. 

 

Figure 28 The scatter plot of day ahead forecast over net volume purchase (kWh)- Case1 including PV 
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Figure 29 The scatter plot of day ahead forecast over net volume purchase (kWh)- Case2 including No specific installation 

                 

 

 

 

Figure 30 The scatter plot of day ahead forecast over net volume purchase (kWh)- Case3 including PV+HP 
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Figure 31 The scatter plot of day ahead forecast over net volume purchase (kWh)- Case4 including PV+EV 

 

 

 

 

Figure 32 The scatter plot of day ahead forecast over net volume purchase (kWh)- Case5 including EV 
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As shown in the plot, most building cases exhibit a similar range of net volume purchase. However, 

buildings using Electric Vehicles (Case 5) and those with no specific installations (Case 2) show no 

injection volume, as there is no Photovoltaic (PV) system in these cases. On the other hand, the cases 

involving PV, PV+HP (Heat Pump), and PV+EV (Electric Vehicles) configurations display negative net 

volume purchase values, which is attributed to the energy produced by the PV systems. 
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4 RESULTS 

The objectives of this thesis are twofold: first, to evaluate the performance of various forecasting 

models across different electricity consumption patterns in residential buildings to construct a 

comprehensive dataset; and second, to develop a recommender system that identifies the most 

suitable forecasting model for each building based on the extracted features of the time series data. 

To achieve this goal, the four key steps—data processing, forecasting, feature extraction, and the 

implementation of a recommender system—were carried out as described in Chapter 2. The results 

are presented and discussed in the following subsections. 

4.1 FORECASTING PERFORMANCE 

In the context of forecasting, the performance of each model is assessed using the relative mean 

absolute error (rMAE). Thus, for each forecasting model, an evaluation metric is generated for each 

building. The values of Net_Volume_Purchase_kWh were aggregated to calculate the annual net 

electricity purchase volume for each building. Then, the rMAE is plotted against the yearly net 

purchase volume (kWh) for each forecasting model. Each building case is depicted using unique shapes 

and colors to highlight the performance of the models for each building, or more specifically, for each 

electricity consumption pattern. 

The following two plots illustrate the performance of forecasting models, both of which rank among 

the top ten. The remaining eight models are presented in the Appendix. 

 

Figure 33 Forecasting evaluation metric (rMAE) over annual net purchase volume (kWh)- RecursiveLinearRegression168 
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Figure 34 Forecasting evaluation metric (rMAE) over annual net purchase volume (kWh)- 
DirectLightGBMModel168EncodersFutureCov 

 

The scatter plots illustrate the performance of the prediction models. The y-axis represents rMAE, a 

forecast evaluation metric, while the x-axis corresponds to the annual net purchase volume. Each 

point in the graph represents a building. As observed, the majority of buildings exhibit an rMAE of less 

than 1, indicating that the forecasting models presented—LightGBMModel and LinearRegression—

outperform the baseline model and provide pretty accurate predictions. However, some outlier points 

are noticeable, mainly associated with buildings that include electric vehicle consumption. This 

observation supports the notion that electric vehicles contribute to significant variations in electricity 

consumption. 

As depicted in the bar chart below, the average rMAE values for each model across all buildings 

(EAN_IDs) have been computed. A horizontal bar chart is presented, where each bar represents the 
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average rMAE for a specific model. The y-axis displays the forecasting models’ names, while the x-axis 

represents the corresponding average rMAE values. 

 

 

Figure 35 Average forecasting evaluation metric (rMAE) for each forecasting model across 500 buildings 

 

As illustrated in the bar chart, almost all forecasting models outperform the baseline. The baseline 

model is "naiveseasonal24" and all other models are compared and evaluated against this persistence 

model. The results, shown in the bar chart, indicate that the baseline model has an average rMAE of 

1, while all other models, except for the naiveseasonal168, Prophet, and 

RecursiveRandomForestRegressor24, achieve a lower average rMAE, demonstrating better 

performance. 

 

To enhance visualization, a heatmap is generated and presented below. The y-axis represents the 

forecasting models, while the x-axis corresponds to five distinct building cases, each case comprising 

100 buildings (EAN_IDs). A color scale is incorporated to illustrate rMAE values, ranging from 0 to 4. 
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Figure 36 The heatmap of average forecasting evaluation metric (rMAE) for each forecasting model across building cases 
including PV, None (No specific installation), PV+HP, PV+EV and EV 

 

The darkest blue corresponds to the lowest rMAE, while the darkest red represents the highest rMAE. 

Therefore, cells that appear darker blue indicate that the corresponding model outperforms others 

for the respective building cases. 

 

In the subsequent step, the results are presented using a boxplot. A boxplot is a graphical 

representation that summarizes the distribution of a dataset by displaying its minimum, first quartile 

(Q1), median, third quartile (Q3), and maximum values. It also highlights any potential outliers in the 

data. The central box in the plot represents the interquartile range (IQR), which contains the middle 

50% of the data. The line inside the box indicates the median value, while the whiskers extending from 

the box show the range of the data within 1.5 times the IQR. Data points outside this range are 

considered outliers and are displayed individually. Boxplots provide a concise view of the data’s 

spread, skewness, and presence of outliers, making them a useful tool for visualizing the variation in 

rMAE values across different forecasting models. 
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Figure 37 The boxplot of forecasting evaluation metric (rMAE) for each forecasting model- Each colour represents a model 
group including basic and modified models 

 

In the boxplot, the x-axis represents rMAE values, while the y-axis corresponds to the different 

prediction models. Each boxplot represents the distribution of rMAE values for a specific forecasting 

model, highlighting the overall spread of errors. Additionally, certain individual data points fall outside 

the expected range and are classified as outliers. Outliers in a boxplot are conventionally identified as 

values that exceed 1.5 times the interquartile range (IQR). As observed, certain forecasting models 

exhibit a higher number of outliers compared to others, despite being applied to the same dataset. 

The presence of outliers in the boxplot can be attributed to several factors: 

• Model Sensitivity to Data Variability: Some models demonstrate a higher sensitivity to 

fluctuations in the dataset, resulting in greater deviations in their predictions. 

• Model Complexity and Overfitting: More complex models, particularly those incorporating 

encoders and future covariates, may overfit specific patterns within the data, leading to a 

broader distribution of errors. 
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• Prediction Stability: Certain models produce more stable forecasts, yielding a narrower error 

distribution and consequently fewer outliers. 

 

In the plot, different colors differentiate groups of models, including their basic and modified versions. 

Furthermore, the five best-performing models, identified based on the lowest rMAE values, are 

highlighted with a red rectangle. Notably, these top-performing models exhibit shorter boxplots with 

minimal outliers, which are not widely dispersed, indicating greater prediction stability. 

 

4.2 RECOMMENDER SYSTEM ACCURACY 

The recommender system is assessed using two evaluation metrics: Mean Absolute Error (MAE) and 

Root Mean Squared Error (RMSE). These metrics are employed to analyze the distribution of errors in 

the data by examining the relationship between the two metrics. 

Since MAE and RMSE are aggregated summary statistics that condense the overall error into single 

values, analyzing raw and squared errors provides a more comprehensive understanding of the full 

distribution of errors rather than relying solely on a single metric. Raw errors reveal absolute 

deviations before computing MAE, while squared errors highlight the extent to which large errors 

influence RMSE. This detailed examination offers deeper insights into the nature of the errors, 

allowing for a more informed interpretation before merely reporting MAE and RMSE. 

The histograms below depict the distribution of raw errors and squared errors, offering a visual 

representation of their dispersion and variability. Additionally, each plot includes a line over the bar 

chart, representing the Kernel Density Estimate (KDE) curve. The KDE curve serves as an estimate of 

the probability density function (PDF) of the data, smoothing the histogram to provide a continuous 

representation of the underlying distribution. The peaks in the KDE curve highlight regions where 

values are most concentrated, while the overall shape of the curve provides insights into the 

skewness, modality, and spread of the errors. 
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Figure 38 The bar plot of frequency over (Left graph) raw errors and (Right graph) squared errors- Representing the 
distribution of raw errors and squared errors respectively 

 

In the graphs, the y-axis represents frequency, how many times a particular error value (or a range of 

values) occurs in the dataset. The taller the bar, the more data points fall in that error range. The x-

axis displays raw error and squared error values separately. The red dashed line at zero indicates the 

ideal case where there is no error, and the line over the bar chart represents the Kernel Density 

Estimate (KDE) curve.  

In the left plot, the raw error histogram naturally contains both small and large errors, so its tail is 

more visible in its original form. The majority of errors are concentrated near zero, with a long tail 

extending to the right. This suggests that most predictions made by the recommender system are 

close to the optimal values, with only a few significant deviations caused by outliers. In the right plot, 

the frequency of squared errors near zero is higher, making the bar taller compared to raw errors. 

Since most errors are small (between 0 and 1), squaring them makes them even smaller and pushes 

them closer to zero. The right histogram bars indicate that squared errors for extreme values occur 

less frequently; however, when they do appear, they exhibit significantly higher magnitudes. 

In this revised version, both raw errors and squared errors are presented within the same figure, 

enabling a direct comparison between their distributions. 
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Figure 39 The bar plot of frequency over error values- Blue colour represents the distribution of raw errors and Yellow colour 
represents the distribution of squared errors 

 

Raw errors are generally small (mostly less than 1), and when squared, the resulting squared errors 

tend to be even smaller. As a result, most squared errors are smaller in magnitude than their 

corresponding raw errors because squaring small numbers further reduces their values. However, 

large raw errors are infrequent in the dataset, so the squared errors for large raw errors are also rare. 

While the tail of the squared error distribution is influenced by these occasional larger squared values, 

it does not extend as far as the tail of the raw error distribution due to the infrequency of large raw 

errors. For small raw errors (less than 1), squaring them results in even smaller values, and since most 

raw errors are small, this further reduces their contribution to the overall error distribution. 

Consequently, the tail of the squared error KDE is shorter. 

Furthermore, a boxplot is provided to visualize the distribution of MAE and RMSE. The box represents 

the interquartile range (IQR), capturing the middle 50% of the data. 
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Figure 40 The boxplot of recommender system evaluation metrics- (Left boxplot) represents the distribution of mean 
absolute error (MAE) and (Right boxplot) represents the distribution of root mean squared error (RMSE) distribution 

 

As observed, both MAE and RMSE exhibit similar distributions. The median of RMSE is same as of MAE, 

indicating that prediction errors are small and relatively consistent, the squared errors in RMSE are 

very close to the absolute errors in MAE. This is common when there are no large outliers, or the 

dataset has low variance. The interquartile range (IQR) of both metrics indicates that the error 

distributions are relatively similar. As illustrated in Fig. 37, the errors are tightly clustered around zero 

with minimal dispersion, the squared values used for RMSE remain close to the absolute values used 

for MAE, resulting in a negligible difference between MAE and RMSE.  

Both MAE and RMSE exhibit a few outliers, represented by dots above the whiskers, indicating 

instances where the errors are considerably larger than usual. Notably, the most extreme outliers 

appear similar for both metrics. Since the errors are generally below 1, squaring them does not 

substantially amplify their magnitude, resulting in RMSE values that closely resemble those of MAE. If 

RMSE was strongly affected by large errors, its boxplot would appear noticeably higher than that of 

MAE. 
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To present the exact values of MAE and RMSE on average, the following plot is provided. 

 

 

Figure 41 The histogram of density over error values- Representing error distribution along with mean absolute error (MAE) 
and root mean squared error (RMSE) as reference lines. 

 

The histogram reveals a highly right-skewed distribution, indicating that while most errors are small, 

a few large errors are present. The green line (MAE = 0.05635) is positioned closer to zero, 

representing the average absolute error. In contrast, the red line (RMSE = 0.12872) is further to the 

right, reflecting the impact of squaring errors, which amplifies larger deviations and results in a higher 

average value for RMSE compared to MAE. (Both MAE (Mean Absolute Error) and RMSE (Root Mean 

Squared Error) measure the average discrepancy between predicted and actual values). 

 

4.3 DISCUSSION OF RESULTS 

Analyzing the data and results provides a clear understanding of the relationships within the dataset 

and how they contribute to the observed outcomes. By examining these connections, it becomes 

evident how specific patterns and characteristics in the data influence the resulting trends and 

distributions. This analysis not only clarifies the underlying factors driving the results but also 

enhances the interpretation of key findings, offering deeper insights into their implications. 
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• The bar chart (Figure 33) depicts forecasting models over average rMAE, nearly all forecasting 

models outperform the baseline models, achieving an improvement of approximately 12% in 

the best-case scenario. Among the applied models, the two top-performing ones are 

RecursiveLinearRegression168 and DirectLightGBMModel168EncodersFutureCov. 

• The scatter plots (Figure31, Figure 32) further validate the performance of these models. The 

majority of data points, each representing a building, are positioned below an rMAE of 1, 

indicating that the forecasting model outperforms the baseline (rMAE = 1). Additionally, some 

outliers are observed in these plots, most of which correspond to the building case-5, which 

includes buildings with electric vehicle consumption. 

• The heatmap (Figure 34) supports this conclusion. As indicated by the heatbar, where the 

best-performing models are represented in dark blue, the heatmap reveals that most cells are 

darker compared to those corresponding to the baseline forecasting models. Notably, the two 

forecasting models, RecursiveLinearRegression168 and 

DirectLightGBMModel168EncodersFutureCov, exhibit the darkest cells across all building 

cases, reinforcing their superior performance. 

• The boxplot (Figure 35) of forecasting models illustrates that, overall, the most rMAE values 

range approximately from 0.7 to 0.95. The presence of outliers indicates that some rMAE 

values are higher than most of the model’s results. However, for the two best-performing 

models, DirectLightGBMModel168EncodersFutureCov and RecursiveLinearRegression168, 

the outliers are not significantly higher compared to the majority of results. Moreover, the 

boxplots for these models are notably shorter than those of other forecasting models, 

suggesting more consistent and stable performance. 

• The recommender system was evaluated using two metrics, both of which demonstrated its 

strong performance. The average MAE of the suggested models compared to the actual best 

forecasting model for a building is 0.05635, while the average RMSE, which emphasizes the 

impact of larger errors, is 0.12872. These results highlight the accuracy of the recommender 

system in identifying the most suitable forecasting models for an unknown building. 
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5 CONCLUSION 

The main objective of this research was to develop machine learning models for forecasting building 

energy demand on a day-ahead timescale while addressing a fundamental challenge in time-series 

forecasting—identifying the most suitable predictive model for a given dataset. 

To achieve this, the study pursued two key phases: first, to construct an extensive dataset that 

captures the performance of various forecasting models across diverse building electricity 

consumption patterns; and second, to design a recommender system capable of identifying the most 

appropriate forecasting model for an unknown building based on extracted time-series features. 

Therefore, a comprehensive methodology was established, encompassing data preprocessing, feature 

extraction, forecasting, performance evaluation, and model recommendation. 

The dataset used in this research consists of electricity consumption data from 500 buildings in 

Brussels, obtained from the Fluvius platform, while weather-related covariates were retrieved from a 

weather API. To conduct the procedure, various machine learning algorithms were implemented 

within a Python-based analytical framework. The process began with data preprocessing, followed by 

the implementation of over thirty forecasting models, both in their standard forms and with specific 

modifications. This approach was further refined through extensive data analysis and the extraction 

of relevant time-series features, which were subsequently leveraged in developing the recommender 

system. 

Subsequently, the performance of the forecasting models was compared against persistence models 

across five building categories, including electricity demand patterns associated with photovoltaic 

panels, photovoltaic panels combined with heat pumps, photovoltaic panels with electric vehicles, 

standalone electric vehicles, and buildings without specific high-consumption appliances. The 

evaluation was carried out using the relative mean absolute error (rMAE). Nearly all models 

outperformed the baseline, with the best-case scenario achieving an improvement of approximately 

12%. The two top-performing models across all building cases were RecursiveLinearRegression168 

and DirectLightGBMModel168EncodersFutureCov. Furthermore, the recommender system 

successfully identified the most suitable forecasting model for a new building based on its time series 

features, achieving a mean absolute error (MAE) of 0.05. This low error value indicates a minimal 

discrepancy between the predicted and actual values, demonstrating the system's effectiveness in 

accurately selecting the optimal prediction model for an unseen building. 

In this study, a straightforward approach was adopted by employing relatively simple forecasting 

models and designing a basic recommender system. This forecasting framework resulted in the 
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creation of a comprehensive dataset, eliminating the need to perform many forecasting models for 

each new building individually. The recommender system subsequently suggests the most suitable 

forecasting model for buildings with unknown energy demand patterns, significantly reducing 

computational time while ensuring accurate model selection even in the absence of metadata.   

However, it is important to recognize that expanding the dataset by incorporating additional 

forecasting models and increasing the number of buildings would create a more extensive and 

comprehensive dataset, ultimately leading to cover more prediction models and more electricity 

demand patterns. This may involve implementing more advanced machine learning algorithms and 

models capable of capturing complex data patterns with higher accuracy, thereby achieving a more 

substantial performance improvement over the baseline models. Various sophisticated models 

account for nonlinear behaviour, and some include hyperparameters that can be fine-tuned to 

optimize performance. Additionally, incorporating a wider range of building energy demand patterns 

would enhance the recommender system’s ability to provide accurate model recommendations 

across diverse energy consumption profiles. However, it is important to acknowledge that such 

extensions go beyond the scope and objectives of the current study.  

Furthermore, the recommender system was designed to identify the most suitable forecasting model 

based on the time series characteristics of a building without prior specific information. To enhance 

the accuracy and reliability of this system, a more comprehensive dataset with higher precision is 

required, which can be achieved through the integration of additional methodologies. 
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APPENDICES 

Appendix 

This appendix presents the remaining eight plots depicting the forecasting evaluation metric (rMAE) 

over the annual net purchase volume (kWh) for the top ten forecasting models, further supporting 

the findings discussed in Chapter 4. 
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