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Abstract 
 

 

Bearings are essential components across a wide range of mechanical systems, facilitating 

smooth motion with minimal energy dissipation. Therefore, their maintenance and health 

monitoring are critical for ensuring system reliability and operational safety. With the increasing 

integration of advanced digital technologies into industrial processes, condition monitoring 

systems have become indispensable for the early detection of bearing wear and damage, 

allowing interconnected machines to gather vast amounts of data and convert it into actionable 

insights. While extensive datasets offer significant opportunities for analysis, they are often 

subject to noise, biases, and inconsistencies that complicate the development of accurate 

physical models, particularly in complex, dynamic systems. Machine learning has emerged as 

a powerful tool for extracting meaningful insights from large-scale datasets, enabling automated 

detection, classification, and prediction of bearing faults without the need for explicit 

programming, thereby reducing the necessity for human intervention.  

This thesis provides a thorough review of peer-reviewed scientific literature alongside currently 

available engineering solutions in the field of intelligent bearing fault diagnosis. In this context, 

it critically examines existing technologies in relation to the established body of knowledge, 

identifying and analysing any gaps that may exist between these domains. By investigating 

potential factors contributing to such disparities, this work offers informed projections for 

future developments in intelligent bearing fault diagnosis. 
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Chapter 1 

1 Introduction 
 

 

Bearings are fundamental components in a wide array of mechanical systems, serving to reduce 

friction and facilitate smooth rotational or linear motion. Their reliable operation is crucial for 

maintaining the efficiency and safety of these systems, as any degradation in bearing 

performance can lead to increased energy consumption, unexpected downtime, and even 

catastrophic failures. Consequently, the maintenance and continuous health monitoring of 

bearings have become indispensable practices in modern industry, particularly as mechanical 

systems become more complex and interconnected. With the rapid integration of advanced 

digital technologies, condition monitoring systems are increasingly equipped with capabilities 

to detect early signs of bearing wear and damage, enabling proactive maintenance strategies 

that reduce operational risks and costs.  

This critical role of bearings and the importance of early fault detection and diagnosis are 

discussed in detail in Section 2, including the challenges posed by the ongoing process of 

industrial digitalization. As interconnected machines and sensors become more prevalent, they 

generate vast amounts of operational data, which serve as a valuable resource for monitoring 

and diagnosing bearing health. However, this influx of data introduces new challenges, such as 

noise, biases, and inconsistencies, which complicate the development of accurate physical 

models, particularly within complex and dynamic systems. Traditional diagnostic approaches, 

as explored in Section 3, struggle to cope with these challenges, limiting their effectiveness in 

real-world applications and highlighting the need for more robust methods. To address these 

limitations, Section 4 explores the application of artificial intelligence (AI) as a transformative 

approach in bearing fault diagnosis. Through a decision tree framework developed to categorize 

and systematically label various publications, this section lays the groundwork for a structured 

discussion of AI-driven techniques in the field. This framework supports the literature review 

by organizing research findings and enabling a critical evaluation of emerging trends and 

innovations in intelligent fault diagnosis.  

Section 5 presents the findings of the literature review, based on approximately 150 selected 

articles. The analysis highlights recent advancements in the field and identifies emerging trends, 

providing a comprehensive overview of key developments and potential directions for future 
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research. To bridge the gap between theory and practice, Section 6 examines how leading 

companies utilize AI-based approaches for bearing fault diagnosis, leveraging insights from 

real-world applications while adhering to confidentiality boundaries. Finally, Section 7 brings 

the thesis to a close by synthesizing the key findings, comparing theoretical advancements 

against current industry practices, and highlighting disparities between research and 

implementation where they exist. This concluding section also acknowledges the study's 

limitations and proposes future research directions for developing more adaptive and resilient 

diagnostic solutions. 

By addressing these areas in a structured, comprehensive manner, this thesis provides a 

thorough understanding of current methodologies while establishing a foundation for advancing 

intelligent bearing fault diagnosis. It contributes to the field by highlighting actionable insights 

and fostering innovations to enhance diagnostic accuracy and predictive maintenance in 

complex industrial environments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 
 

Chapter 2 

2 Bearings: Critical Role and the Importance of Monitoring 
 

 

In mechanical systems, bearings play a crucial role in facilitating smooth rotational or linear 

motion, directly influencing overall efficiency and safety. These components operate by 

transferring the primary load through rolling contact elements rather than sliding contact, 

resulting in much lower friction compared to the starting friction typically observed in sleeve 

bearings. Bearing performance and service life depend not only on their design and materials 

but also on regular diagnostics and maintenance practices. Till this very day, skilled engineers 

are essential in almost all aspects of bearing diagnostics, from inspecting contact surfaces for 

wear to selecting critical diagnostic features and optimizing maintenance strategies. For larger 

bearings, such as those used in wind turbines, diagnostics become even more critical due to 

unique stresses and high remanufacturing potential. In these cases, engineers evaluate whether 

remanufacturing is a viable option, offering a sustainable solution that lowers costs, prolongs 

service life, and enhances reliability. However, accessing experienced bearing analysts remains 

a challenge due to the specialized knowledge required, which is often acquired over years of 

experience. 

 

2.1 Bearings in Mechanical Systems 

Bearings are designed to handle pure radial loads, pure thrust loads, or a combination of both. 

Depending on the type of load (static or dynamic) and other operational factors, such as friction, 

heat, corrosion resistance, kinematic issues, material properties, lubrication, machining 

tolerances, assembly, and usage; the designer selects a specific bearing configuration. Bearings 

can be broadly categorized into four main types based on structural design: Ball Bearings, 

Roller Bearings, Plain Bearings, and Magnetic and Fluid Bearings. Each type has unique 

characteristics suited to specific applications, load capacities, and motion requirements. 
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1. Ball bearings 

Using spherical balls as rolling elements, these provide smooth, low-friction rotation. They 

are primarily designed for radial loads, although some types can handle moderate axial 

loads, with certain designs specifically engineered for axial loads alone. 

a) Deep Groove: Designed with deep grooves to support both radial and moderate axial 

loads, commonly used in electric motors and pumps. 

b) Angular Contact: Featuring angled contact surfaces, these support both radial and 

higher axial loads, suitable for high-speed applications like turbines. 

c) Self-Aligning: The spherical outer raceway allows for slight misalignment, making 

them suitable for applications such as conveyor systems. 

d) Thrust: Exclusively for axial loads, making them unsuitable for radial loads, commonly 

used in applications like swivel chairs and turntables. 

Applications: Electric motors, fans, automotive components, and high-speed machinery that 

requires smooth, low-friction motion. 

2. Roller bearings 

Employing cylindrical, tapered, or barrel-shaped rollers, these bearings provide a larger 

contact area than spherical ball types. This design supports higher radial loads, making them 

ideal for heavy-duty applications. 

a) Cylindrical: Uses straight cylindrical rollers to support high radial loads, commonly 

found in gearboxes and heavy machinery. 

b) Tapered: With conical rollers, these support both radial and axial loads, frequently used 

in vehicle wheel hubs and gearboxes. 

c) Spherical: Barrel-shaped rollers offer self-alignment, suitable for heavy loads and 

applications with potential misalignment, such as mining equipment. 

d) Needle: Compact and using long, thin rollers, needle types are ideal for high-load 

capacities in space-limited applications like automotive transmissions. 

e) Thrust: Built to handle heavy axial loads, often found in crane hooks and industrial 

machinery. 

Applications: Heavy machinery, mining equipment, automotive transmissions, and 

industrial applications needing high load capacity. 
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3. Plain bearings (Sleeve Bearings) 

Also known as sleeve or journal bearings, these contain no rolling elements and rely on a 

sliding motion between two surfaces, typically lubricated to reduce friction. Simple and 

durable, they are highly effective in high-load, low-speed applications. Historically, this is 

one of the oldest bearing configurations. 

a) Sleeve: Cylindrical in shape, allowing a shaft to slide within the bearing surface, suitable 

for high-load, low-speed applications. 

b) Flange: Featuring a flange on one side to support axial positioning and prevent shaft 

movement, useful in applications requiring precise positioning. 

Applications: Agricultural machinery, heavy-duty equipment, hinges, and applications with 

continuous or heavy loads where low-speed operation is typical. 

4. Magnetic and fluid bearings 

Operating without direct contact, these advanced bearings provide virtually frictionless 

motion. Ideal for high-speed and high-precision applications where minimal friction and 

wear are crucial. 

a) Magnetic: Uses magnetic fields to suspend the load without physical contact, suitable 

for applications requiring extremely low friction and high-speed capabilities, such as 

turbines and compressors. 

b) Fluid: Employs a thin layer of liquid or gas to support the load, reducing friction and 

wear, especially in high-speed applications. 

Applications: High-speed turbines, compressors, precision instruments, and computer hard 

drives where frictionless motion is essential for optimal performance. 

Focusing hereafter on the first two categories, which are the most commonly employed families 

of bearings, we use a deep groove ball bearing, as illustrated in Figure 1 provided by [1], to 

show the nomenclature typically used, along with the essential components of these systems. 

These components include the outer ring, inner ring, balls or rolling elements, and the separator 

(or cage). In some lower-cost bearings, the separator may be omitted; however, it plays an 

important role in preventing rubbing contact by keeping the rolling elements separated. Each 

of these parts can degrade and ultimately fail, either individually or in combination with the 

other components, with each part exhibiting distinct failure modes. This underscores the 

complexity involved in analysing such a system. 
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2.2 Bearing Failure Modes and Causes 

As previously mentioned, during the design process, bearing specialists consider factors such 

as fatigue loading, friction, heat, corrosion resistance, kinematics, material properties, 

lubrication, machining tolerances, assembly, usage, and other elements that affect operational 

performance, all of which contribute to a relatively low failure rate. According to [2], an 

estimated 10 billion bearings are produced worldwide each year, of which only a small fraction 

fail. As shown in Figure 2, approximately 9.5% are replaced for preventive reasons, prior to 

failure, suggesting that only around 0.5% are replaced due to actual failure.  

 

 

 

 

  

 

  

To better understand these anomalies and support effective maintenance practices, the ISO 

15243-2017 standard (which aligns closely with SKF's classification) provides a structured 

Figure 1: Nomenclature of a ball bearing. 

Figure 2: Bearing life and failure estimate from SKF Groop. 
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framework for classifying bearing failure modes, specifically addressing failures that occur 

while the bearing is installed in the asset/machine and during its operational life. This 

classification excludes manufacturing defects, such as missing parts, focusing instead on 

failures arising from operational and environmental stresses. The ISO standard identifies six 

primary failure mode categories, each with specific subcategories for more detailed 

classification. These include: 

1. Rolling Contact Fatigue (RCF): Involves subsurface-initiated and surface-initiated cracks 

caused by cyclic loading, poor lubrication, or contamination. Both phenomena will be 

discussed in detail later. 

2. Wear: Divided into abrasive wear, caused by contaminants eroding surfaces, and adhesive 

wear, in which sliding contact transfers material, causing smearing or galling. 

3. Corrosion: Includes moisture corrosion from water entering the bearing, fretting corrosion 

due to micro-movements, and false brinelling from vibration causing localized wear.  

4. Electrical Erosion: Covers excessive current erosion from high-intensity currents melting 

surfaces, and current leakage erosion from low currents creating craters and surface wear. 

5. Plastic Deformation: Includes overload deformation from excessive static load or improper 

handling, causing indentations and scratches, and particle indentations from contaminants 

in the lubricant, potentially leading to surface-initiated fatigue. 

6. Cracking and Fracture: Includes fractures caused by excessive stress, fatigue fractures 

from repeated cyclic loading, and thermal cracking resulting from heat buildup leading to 

surface cracks. 

Each category provides a comprehensive framework, allowing for specific classification of the 

observed failure modes. This standardized approach aids in consistent identification and 

diagnosis across industries, providing a unified basis for analysing bearing performance and 

failure mechanisms. 

 

In general, according to SKF, bearing failure modes are distributed as follows: 

• 1/3 fail due to fatigue 

• 1/3 fail due to lubrication issues (e.g., incorrect lubricant, incorrect lubrication intervals) 

• 1/6 fail due to contamination (e.g., ineffective seals) 

• 1/6 fail for other reasons (e.g., improper handling and mounting, unexpected loading 

conditions, inadequate fits). 
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Whatever the reason for replacement, considerable costs are associated with such activities. 

Additionally, any degradation in bearing performance can increase energy consumption, lead 

to unexpected downtime, and in cases of failure, however rare, result in severe consequences, 

including damage to secondary components and, more importantly, pose a risk to human life 

[3]. The time from initial damage to a bearing becoming unserviceable varies significantly, 

taking just seconds in high-speed applications or extending to months in large, slow-rotating 

machines.  

Therefore, early detection through condition monitoring and regular inspection enables timely 

replacement during scheduled maintenance, helping to prevent costly unscheduled downtime 

and extensive damage. Recognizing these benefits, companies are increasingly investing in 

predictive maintenance strategies that leverage advanced analytics and artificial intelligence to 

improve bearing health predictions. These technologies allow for proactive maintenance 

decisions, enabling issues to be addressed before they escalate and thereby optimizing 

equipment reliability and lifespan. 

 

2.3 Condition Monitoring for Fault Detection, Diagnosis and Prognosis 

Condition monitoring refers to the continuous or periodic assessment of machinery to evaluate 

its operational state and performance, primarily aimed at gathering data on the current status of 

equipment without necessarily diagnosing specific faults. Advances in sensors (Figure 3 

illustrates an example of a “Smart Sensor”.), sensor networks, and computing systems have 

strengthened the appeal for data-driven approaches, establishing them as the foundation for 

predictive maintenance. 

 

 

 

 

 

 

Figure 3: Sensor-integrated bearing unit for machine tool spindles, manufactured by NTN Corporation, equipped with 
three types of sensors for load, temperature, and vibration measurement. Additionally, the unit includes a built-in 
generator as an independent power source and a wireless module for wireless data transmission. 
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While fault detection, diagnosis, and prognosis all play critical roles in condition monitoring, 

they serve distinct but complementary purposes: 

• Fault Detection involves identifying whether a fault exists by monitoring machinery for 

deviations from expected operating conditions. It typically relies on recognizing unusual 

patterns or anomalies that may signal potential issues. A commonly used technique for fault 

detection is novelty detection, a method in machine learning and statistics designed to 

identify new or unusual data points that differ significantly from the normal data previously 

seen by a model. Novelty detection, also known as anomaly detection or outlier detection 

in some contexts, is particularly effective in fault detection because it flags any behaviour 

that deviates from the established "normal" patterns, allowing the system to identify 

potential faults as soon as they emerge. 

• Fault Diagnosis goes a step further by analysing these detected anomalies to determine the 

specific type, location, and severity of the fault. Diagnosis requires more detailed data and 

often combines multiple data sources to accurately classify and understand the root cause 

of the fault. 

• Prognosis focuses on predicting the remaining useful life (RUL) of machinery and 

estimating the time to failure for critical components. It involves analysing trends and 

historical data to anticipate when maintenance or replacements may be needed, supporting 

proactive decision-making and reducing the risk of unexpected breakdowns. 

Together, detection, diagnosis, and prognosis form a cohesive approach: fault detection 

provides early warnings through novelty detection techniques, diagnosis identifies and 

characterizes the specific fault to enable targeted maintenance actions, and prognosis ensures 

timely interventions by forecasting the progression of faults and their impact on equipment 

performance.  

 

2.3.1 Types of Data for Bearing Condition Monitoring 

The most common types of data gathered during bearing condition monitoring include:  

• Vibration data: Vibration analysis is one of the primary methods for monitoring bearing 

condition. Sensors measure vibrations to detect irregularities, and analysis of the vibration 

signature can reveal issues such as imbalance, misalignment, and bearing wear. Vibration 
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data serves both fault detection and diagnosis purposes, as deviations may indicate the 

presence of a fault, while deeper analysis helps classify the fault type. 

• Temperature data: Monitoring the temperature of bearings provides insights into 

operational health. Elevated temperatures may indicate issues like poor lubrication, 

excessive friction, or misalignment. However, temperature is generally sensitive only to 

severe failures, so other signals, such as vibration and acoustic signals, are preferable for 

fault diagnosis and prognostic analysis. Temperature data primarily assists in fault detection. 

• Lubrication and oil analysis data: Regular analysis of bearing lubricant is crucial for health 

monitoring. This includes assessing viscosity, contamination levels (e.g., water, dirt), and 

wear particles. Techniques such as spectrometry and particle counting are commonly used 

to evaluate oil quality and detect degradation. This data can support both detection and 

diagnosis by identifying early warning signs and revealing specific degradation patterns. 

• Acoustic emission data: Acoustic emission sensors capture sound waves generated by 

bearings during operation. Variations in these signals can indicate fault conditions such as 

surface wear or cracking. Acoustic emission data assists in both detection and diagnosis, 

helping identify and classify faults through sound patterns. 

• Current and power consumption data: Monitoring the electrical current and power 

consumption of the motor driving the bearings can provide insights into load and 

performance. Anomalies may suggest increased friction or other issues, supporting fault 

detection and contributing to a more accurate diagnosis when combined with other data 

sources. 

• Speed and load data: Tracking rotational speed and load on bearings is essential for 

understanding operating conditions. Deviations from normal values may signal potential 

issues and primarily serve for fault detection. 

• Operational environment data: Environmental factors such as humidity, temperature, and 

particulate matter can impact bearing performance. Monitoring these conditions helps 

assess risks to bearing health, providing contextual data that supports fault detection. 

• Historical performance data: Analysing historical data, including past maintenance records 

and operational performance, helps identify trends and guide monitoring strategies. 

Historical data can aid in both detection and diagnosis by revealing patterns that signify 

common fault progression over time. 
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2.3.2 Addressing Condition Monitoring Challenges  

In condition monitoring, various types of data are analysed either individually or in combination 

to create a comprehensive, multidimensional view of bearing health. This data provides 

valuable insights for detecting and diagnosing machine conditions, particularly in data-driven 

approaches such as AI applications.  

Handling large and complex datasets introduces challenges like sensor noise, biases, and 

inconsistencies. Publicly available datasets help address these issues by providing structured 

data that describe bearing behaviour under various operating conditions, including fault 

conditions. By leveraging such datasets, researchers can improve and develop machine learning 

models for fault detection and diagnostics. There are several publicly available datasets for 

rolling bearing research, each with distinct characteristics. The Case Western Reserve 

University (CWRU) dataset is a classic choice for fault diagnosis, offering vibration data from 

bearings with various faults in controlled lab conditions, though it lacks real-world variability. 

In contrast, the Paderborn University dataset expands on this with a diverse range of faults, 

including naturally occurring damage, making it more representative for classification tasks. 

For prognostics and degradation studies, the XJTU-SY dataset focuses on the full lifespan of 

bearings, recording vibration data until failure, making it ideal RUL predictions. Similarly, the 

PRONOSTIA dataset from the FEMTO-ST Institute emphasizes degradation under multiple 

loads, making it another strong choice for RUL tasks. The IMS dataset, collected during 

endurance tests, captures fault progression, although it is limited by its relatively uniform 

operating conditions. The SEU dataset provides insights into single-point damage under varying 

speeds, bridging the gap between controlled and diverse fault scenarios. Meanwhile, the C-

MAPSS dataset, though initially designed for turbofan engines, has been adapted for bearing 

prognostics due to its comprehensive time-series data. For benchmarking and competitions, the 

PHM 2012 Challenge dataset offers degradation data suitable for both fault diagnosis and life 

prediction tasks. For more sensor-rich environments, the Rotating Machinery Fault Dataset 

(RMFD) combines vibration and acoustic data for a holistic approach to fault analysis. Lastly, 

for applications in renewable energy, the Wind Turbine Bearing Data provides realistic 

operational data from large bearings, ideal for fault detection in slow-rotating systems. 

Public rolling bearing datasets have been pivotal in advancing research in fault detection, 

diagnostics, and prognostics. However, their application in AI-driven solutions faces several 
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challenges that can impact the development, training, and deployment of models, particularly 

in real-world industrial scenarios. 

Challenges of public bearing datasets include:  

• Not realistically representative: Many datasets, such as CWRU, Paderborn, and 

PRONOSTIA, are generated in controlled lab environments. Although this approach 

provides consistency, it does not reflect the complexity of industrial scenarios, including 

factors like environmental noise, uneven loading, and fluctuating operating conditions. 

Additionally, these datasets often focus on a single bearing type or size, limiting their 

generalizability to diverse designs or materials. 

• Limited operating conditions: Parameters like speeds, loads, and temperatures are often 

kept fixed in datasets such as IMS and XJTU-SY, which do not reflect the dynamic nature 

of industrial applications. This static nature hinders models from adapting to varying real-

world scenarios. 

• Imbalance and unrealistic fault representation: Fault data in datasets like CWRU and 

SEU is often skewed, with a heavy focus on healthy bearings or specific fault types, while 

rare or gradual faults are underrepresented. This imbalance limits the diversity needed for 

robust model training. Furthermore, many faults are introduced artificially (e.g., via 

electrical discharge machining), which may not accurately reflect naturally occurring fault 

patterns critical for real-world applicability. 

• Data quality and preprocessing issues: Public datasets often lack metadata, such as sensor 

calibration and environmental details, which reduces their effectiveness in diverse contexts. 

Preprocessing steps, such as filtering and normalization, are inconsistent, leading to 

difficulties when combining datasets. The presence of noise in datasets like IMS adds 

realism, but its absence in others can lead to overly optimistic model performance. 

• Volume and diversity constraints: Many datasets, including CWRU and Paderborn, are 

relatively small and focus primarily on vibration signals. This limits their suitability for 

large-scale AI models, particularly those requiring multi-sensor data (e.g., acoustic 

emissions or temperature). Such limitations restrict the ability of models to generalize to 

real-world variability. 

• Flexibility and transferability challenges: Models trained on a single dataset often overfit 

to its specific conditions and struggle to generalize to new datasets or real-world scenarios. 
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Differences in sensor placement, type, and experimental setups introduce inconsistencies 

and biases, further hindering transferability. 

• Ethical and practical limitations: Industrial datasets are often proprietary and not publicly 

available, limiting the development of AI models tailored for real-world applications. Public 

datasets fail to capture the full range of industrial scenarios, and there is a lack of 

standardized methodologies to adapt models effectively. 

• Benchmarking and validation gaps: Public datasets often fail to provide standardized 

evaluation metrics, making it difficult to benchmark and compare AI models across studies. 

Furthermore, cross-dataset validation is seldom performed, leaving the generalizability of 

models largely unexplored. Limited documentation on preprocessing methods and 

experimental conditions further complicates validation efforts, as it affects reproducibility 

and the ability to effectively evaluate models. 

Addressing these challenges will enable public rolling bearing datasets to support the 

development of robust, scalable AI models for fault detection, diagnostics, and prognostics in 

industrial applications. 
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Chapter 3 

3 Classical Approaches and Related Issues 
 

 

Accurate fault detection and diagnosis in bearings is critical for ensuring the reliability and 

optimal performance of rotating machinery. This chapter examines key classical approaches in 

the field, encompassing both empirical methods for estimating bearing life, highlighting the 

inherent complexity of predicting bearing behaviour under varying operating conditions, and 

traditional techniques for fault detection and diagnosis. These approaches are discussed along 

with their limitations, providing a foundation for understanding the challenges that drive the 

need for more advanced diagnostic solutions. 

 

3.1 Bearing Fatigue and Empirical Methods for Life Estimation 

The contact geometry and motion of rolling elements against the inner and outer raceways 

produce contact stresses and interactions that are too complex to be fully characterized by 

Hertz’s theory. These dynamic loading conditions give rise to the phenomenon of Rolling 

Contact Fatigue (RCF). Unlike classical structural fatigue, contact fatigue involves alternating 

subsurface shear stresses generated by the geometry and motion of the rolling elements. With 

increasing load cycles, surface and subsurface plastic strain accumulate, eventually leading to 

crack initiation. RCF is fundamentally a material failure caused by the repeated application of 

stresses to a small volume of material. Even under optimal operating conditions, when the 

bearing is kept clean, well-lubricated, properly mounted, effectively sealed against 

contaminants, and operated within moderate temperature ranges, failure ultimately occurs due 

to surface fatigue. 

Given the unique nature of Rolling Contact Fatigue, several critical differences from classical 

fatigue prevent the direct application of traditional fatigue principles. 
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The most important distinctions are as follows: 

• Complex, multiaxial stress state: The state of stress at contact points in RCF is complex 

and multiaxial, governed by Hertzian contact mechanics. Unlike most classical fatigue 

mechanisms, RCF typically involves multiaxial fatigue, necessitating the application of a 

multiaxial fatigue criterion. 

• Absence of an endurance limit: Contact fatigue lacks an endurance limit. While the fatigue 

lives of components under cyclic torsion or bending are limited, rolling contact fatigue 

lifespans are significantly greater, often spanning tens to hundreds of millions of cycles. 

• High Hydrostatic Stress Component: RCF involves a significant hydrostatic stress 

component, which is generally absent in classical fatigue under tension-compression or 

bending. 

• Localized Stress Volume: Fatigue damage in RCF occurs in a very small volume of stressed 

material, with typical bearing contact widths ranging from 200 to 1000 μm. 

• Non-Proportional Loading History: In contrast to classical fatigue, the loading history at 

a point below the surface in RCF is non-proportional; the stress components do not vary in 

a consistent ratio over time. Notably, the peaks of normal stresses do not align with the 

peaks of shear stress, resulting in a complete reversal of shear stress while normal stresses 

remain compressive. 

• Constantly changing principal axes: In non-conformal contacts, the principal stress axes 

change direction continuously throughout each stress cycle, causing the planes of maximum 

shear stress to shift as well. This complexity makes it challenging to identify the planes 

where maximum fatigue damage occurs. 

• Residual stresses: When the elastic limit is exceeded during the initial application of load, 

residual stresses are introduced. However, subsequent load cycles remain within the elastic 

limit, further complicating the fatigue behaviour. 

 

The two primary RCF mechanisms are subsurface-originated spalling and surface-originated 

pitting, both of which release particles from the race or rolling element in the load zone, creating 

craters that act as stress concentrators. These mechanisms often compete, with the dominant 

failure mode depending on several factors, including surface quality, lubricant cleanliness, and 

material integrity. 
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• Surface-originated pitting: This failure mode, as illustrated in Figures 4a and 4b (adapted 

from [4]), occurs when surface defects, such as dents or scratches, are present. Cracks 

initiate at surface stress concentrators and propagate at shallow angles (15–30 degrees) to 

the surface. The role of a lubricating fluid, which may be driven into the crack through 

hydraulic effects, is also significant. As the crack reaches a critical length or depth, it 

branches toward the surface, resulting in the detachment of a small volume of material and 

the formation of a pit, causing the bearing to become noisy and operate with increased 

roughness. This failure mechanism is commonly observed in gears, where substantial 

sliding occurs between contacting surfaces. 

 

 

 

 

 

 

 

• Subsurface-originated spalling: This mechanism occurs when microcracks develop below 

the surface at material inhomogeneities, such as non-metallic inclusions, and propagate 

toward the surface to form a spall (Figure 5 adapted from [5]). These cracks typically initiate 

in the region of maximum subsurface shear stress. Factors that promote subsurface-

originated spalling include smooth bearing surfaces, the presence of non-metallic 

inclusions, and the absence of surface shear. This mechanism is particularly prevalent in 

rolling element bearings with smooth surfaces operating under Elasto-Hydrodynamic 

Lubrication (EHL) conditions. 

 
 

 

 

 

It is commonly understood that material fatigue is caused by dynamic stressing during cyclic 

loading. However, there is no general agreement on the parameters that best explain this 

phenomenon. Brändlein proposed three primary hypotheses: maximum shear stress, distortion 

Figure 5: Anatomy of a race spall in a ball bearing. 

Figure 4: Illustration of surface-initiated crack growth in a moving lubricated contact, showing the 
distribution of contact forces and the role of fluid pressure in crack propagation. 

 



17 
 

energy, and alternating shear stress. However, it should be noted that crack initiation and 

propagation result from the combined effect of the entire subsurface stress field, not from a 

single stress component. The field stresses are all proportional to one another, including the 

stresses mentioned above, meaning that any of these can serve as an indicator of the overall 

stress field magnitude. In this context, maximum surface pressure could also be considered 

relevant. In pursuit of a reliable formula for predicting bearing life, Lundberg and Palmgren 

assumed that a subsurface crack initiates at a particular depth when the maximum orthogonal 

shear stress occurs at a weak point in the material. They further assumed these weak points to 

be stochastically distributed within the material. By applying Weibull’s statistical strength 

theory to the stressed volume in the case of pure Hertzian contact, they derived the probability 

of survival for that volume against subsurface fatigue, emphasizing that failure was primarily 

governed by crack initiation. This work ultimately led to the well-known load-life equation 

(3.1), shown below: 

𝐿10 = (𝐶
𝑅⁄ )

𝑝
 (3.1) 

where 

− 𝐿10 is the basic rating life (in millions of revolutions) at 90% reliability, meaning that 

only 10% of bearings will fail before reaching a life 𝐿 < 𝐿10 

− C is the basic dynamic capacity, the load (R) that if applied results in a life of one million 

cycles with a 10% failure probability 
− P is the equivalent dynamic load 

− p is the load-life exponent  

The formula was later refined according to ISO 281/1 – 1997 and subsequently enhanced by 

SKF in its current version (3.2), which considers not only loads but also important factors such 

as reliability, lubrication conditions, contamination, and the fatigue load limit: 

𝐿𝑛𝑎 =  𝑎1 ∙ 𝑎𝑆𝐾𝐹 ∙ (
𝐶

𝑃
)

𝑝

 (3.2) 

where 

− 𝐿𝑛𝑎 represents the rating life in millions of cycles, calculated by assuming a damage 

probability equal to 𝑛 

− 𝑎1 is the life adjustment factor 

− 𝑎𝑆𝐾𝐹 is the SKF life modification factor 
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All the above-mentioned considerations and results are generally used during the design 

process, allowing the designer, with a certain margin of safety, to assess whether the selected 

bearing will meet the expected service life. 

However, this deterministic approach does not account for complex, real-world variables such 

as fluctuating operational conditions, environmental factors, and material wear, all of which 

influence bearing degradation. Consequently, the rating life equation is not typically integrated 

directly into machine learning models for predicting bearing failure. Integrating such 

deterministic models into neural networks could potentially enhance prediction accuracy and 

reliability. Nonetheless, there is currently a gap in the literature regarding the integration of the 

bearing rating life equation with neural network architectures for failure prediction. This 

presents an opportunity for future research to develop hybrid models that combine the strengths 

of physics-based equations and data-driven techniques, potentially leading to more robust and 

interpretable bearing failure predictions. 

 

3.2 Traditional Techniques for Fault Detection and Diagnosis 

During operating conditions, factors such as contamination, poor lubrication, misalignment, 

extreme temperatures, poor fitting, and shaft unbalance are leading causes of premature bearing 

failures, often resulting in increased vibration. In noise-sensitive applications, bearing vibration 

remains an essential factor as it correlates with quality; quiet operation reflects both the health 

and precision of the rolling contact surfaces. Consequently, bearing manufacturers have 

developed vibration monitoring methods as effective tools for assessing bearing quality and 

condition. 

As discussed earlier, vibration measurements acquired during condition monitoring serve three 

primary purposes in bearing analysis: detection, diagnosis, and prognosis. Each purpose plays 

a distinct role in addressing bearing health, from identifying early defects to diagnosing specific 

faults and predicting the remaining useful life of the bearing. To achieve these goals, various 

signal processing techniques, including broadband vibration analysis, frequency spectrum 

analysis, and envelope spectrum analysis, are applied to extract meaningful insights from 

vibration data. 
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• Detection: The most basic form of assessment, detection utilizes Overall Vibration Level 

Measurement to monitor general vibration levels across wide frequency ranges, such as 10–

1000 Hz or 10–10,000 Hz. By capturing overall vibration activity, this approach provides 

an initial indication of potential defects. In systems with minimal vibrations from sources 

other than bearings, parameters like the Crest Factor (peak-to-RMS ratio) can reveal early-

stage (incipient) defects, while high RMS levels often suggest more severe issues. Although 

this method offers limited diagnostic detail, it is highly valuable for trend analysis; by 

plotting vibration levels over time, operators can detect signs of deterioration, facilitating 

proactive maintenance scheduling. Additionally, these measurements can be compared to 

vibration standards for different equipment types to assess overall machine health. 

• Diagnosis: For a more precise identification of vibration sources and fault types, Frequency 

Spectrum Analysis is used. Unlike broadband measurements, frequency spectrum analysis 

isolates specific frequencies, enabling the detection of characteristic frequencies associated 

with particular bearing defects, such as inner or outer raceway faults or rolling element 

damage. By providing clearer identification of the fault’s origin, this technique distinguishes 

bearing-related issues from external sources like unbalance or misalignment. Frequency 

spectrum analysis enhances diagnostic accuracy, supporting targeted maintenance efforts 

and reducing downtime. 

• Prognosis: Prognosis aims to predict the bearing’s remaining useful life and anticipate 

possible failure modes, critical for optimizing maintenance schedules and preventing 

unexpected breakdowns. This phase often relies on Envelope Spectrum Analysis, an 

advanced technique that highlights high-frequency bursts in the vibration signal, which may 

otherwise be masked by lower frequencies or background noise. Envelope spectrum 

analysis is particularly useful for identifying early-stage defects through impulsive events 

associated with emerging faults. Prognosis may also incorporate both real-time data and 

historical records of similar bearing faults to estimate the optimal timing for intervention. 

By forecasting the bearing’s service life, prognosis supports effective maintenance 

planning, ensuring repairs or replacements are performed before failure occurs. 

To fully appreciate the diagnostic potential of vibration analysis, whether for detection, 

diagnosis, or prognosis, it is essential to explore the fundamental sources of vibration in rolling 

bearings. The following section examines the primary causes of vibration and the characteristic 

frequencies they produce, as outlined and illustrated in [6]. 
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3.2.1 Vibration Causes in Bearings 

Rolling contact bearings are complex dynamic systems, whose components i.e. rolling 

elements, inner raceway, outer raceway and separator interact to generate complex vibration 

signatures. As mentioned, multiple times, although rolling bearings are manufactured using 

high-precision machinery under strict cleanliness and quality controls, they will still have some 

degree of imperfection, which generates vibration as the surfaces interact through a 

combination of rolling and sliding. Nowadays, although the scale of surface imperfections are 

in the order of nanometres, significant vibrations can still be produced in the entire audible 

frequency range (20Hz - 20kHz). The level of the vibration will depend upon many factors 

including the energy of the impact, the point at which the vibration is measured and the 

construction of the bearing. 

The primary sources of bearing vibration are listed and explained below: 

• Variable compliance vibrations are caused by the changing load distribution among the 

rolling elements as the bearing rotates. This shifting load leads to elastic deformation at the 

contact points between the balls and raceways, resulting in periodic vibration with a base 

frequency determined by how often the balls pass through the load zone. Under radial load, 

these movements form a two-dimensional path (locus) in a radial plane, while under 

misalignment, they follow a three-dimensional path. This base frequency, along with 

additional higher-frequency vibrations, contributes to the overall bearing vibration. For 

example, in a single-row radial ball bearing with an inner ring speed of 1800 rev/min, a 

typical ball pass rate is 100 Hz, with higher-frequency vibrations reaching over 500 Hz. 

Variable compliance vibration is significantly influenced by the number of rolling elements 

supporting the load; the more balls that share the load, the less pronounced the vibration 

becomes. Moreover, variable compliance vibration levels can be higher than those produced 

by surface roughness and waviness. However, in applications where vibration control is 

critical, these vibrations can be reduced to a negligible level by using ball bearings with the 

appropriate level of axial preload. 

• Geometrical imperfections, inherent to the manufacturing process, are a significant source 

of vibration in bearings. These imperfections can be categorized into three distinct types, 

with the first two distinguished by comparing the wavelength to the width of the rolling 

element-raceway contacts. 
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− Surface roughness: Microscopic peaks and valleys (asperities) create high-frequency 

vibration, particularly when the lubricant film is insufficient, leading to increased wear, 

noise, and heat generation. Surface roughness, characterized by relatively short 

wavelengths, produces vibration predominantly at frequencies above 60 times the 

rotational speed of the bearing, causing the high-frequency part of the vibration 

spectrum to appear as a series of resonances.  

− Waviness: Larger-scale variations in the surface, appearing as waves, produce lower-

frequency vibration and can affect load distribution, contributing to premature wear 

and fatigue. Waviness, characterized by relatively long wavelengths, can produce 

vibration at frequencies up to approximately 300 times the rotational speed but is 

usually predominant at frequencies below 60 times the rotational speed.  

− Discrete defects: Individual flaws such as scratches, dents, or pits generate localized 

vibrations and significantly impact bearing performance, often leading to premature 

failure. Unlike surface roughness and waviness, which are inherent to the 

manufacturing process, these discrete defects result from external factors such as 

assembly errors, contamination, operation, mounting, or inadequate maintenance. 

Bearing manufacturers use simple vibration measurements on finished products to 

detect these defects, which typically produce impulsive vibrations with a high peak-to-

RMS ratio (Figure 6). In cases with multiple defects, individual peaks may be harder 

to distinguish, but the overall RMS vibration level is significantly higher than that of a 

bearing in good condition.  

 

 

 

 

 

  

 

 

 

Figure 6. Adapted from [6]. 
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3.2.2 Bearing Characteristic Frequencies 

Rolling bearings generate fundamental frequencies that can be derived from relatively simple 

formulas, yet these frequencies cover a wide frequency range and can interact to produce 

complex vibration signals. This complexity is often further increased by additional sources of 

vibration from mechanical, structural, or electromechanical components within the equipment. 

For a bearing with a fixed outer ring and rotating inner ring, from the bearing geometry the 

fundamental frequencies are derived as follows: 

   𝑓𝐶/𝑜 = 𝑓𝑟/2[1 − 𝑐𝑜𝑠𝛼 𝑑
𝐷⁄ ]       (3.3) 

    𝑓𝐶/𝑖 = 𝑓𝑟/2[1 + 𝑐𝑜𝑠𝛼 𝑑
𝐷⁄ ]       (3.4) 

                  𝑓𝑏/𝑜 = 𝑍 𝑓𝐶/𝑜                (3.5) 

                   𝑓𝑏/𝑖 = 𝑍 𝑓𝐶/𝑖                 (3.6) 

   𝑓𝑏 =
𝐷

2𝑑
𝑓𝑟 [1 − (𝑐𝑜𝑠𝛼 𝑑

𝐷⁄ )
2

]     (3.7) 

where 

𝑓𝑟 = 𝑖𝑛𝑛𝑒𝑟 𝑟𝑖𝑛𝑔 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 

𝑓𝐶/𝑜 = 𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙 𝑡𝑟𝑎𝑖𝑛 (𝑐𝑎𝑔𝑒) 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑡𝑜 𝑜𝑢𝑡𝑒𝑟 𝑟𝑎𝑐𝑒𝑤𝑎𝑦 

𝑓𝐶/𝑖 = 𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙 𝑡𝑟𝑎𝑖𝑛 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑡𝑜 𝑖𝑛𝑛𝑒𝑟 𝑟𝑎𝑐𝑒𝑤𝑎𝑦 

𝑓𝑏/𝑜 = 𝑏𝑎𝑙𝑙 𝑝𝑎𝑠𝑠 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑜𝑢𝑡𝑒𝑟 𝑟𝑎𝑐𝑒𝑤𝑎𝑦 

𝑓𝑏/𝑖 = 𝑏𝑎𝑙𝑙 𝑝𝑎𝑠𝑠 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑖𝑛𝑛𝑒𝑟 𝑟𝑎𝑐𝑒𝑤𝑎𝑦 

𝑓𝑏 = 𝑟𝑜𝑙𝑙𝑖𝑛𝑔 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑝𝑖𝑛 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 

𝐷 = 𝑝𝑖𝑡𝑐ℎ 𝑐𝑖𝑟𝑐𝑙𝑒 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 

𝑑 = 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑟𝑜𝑙𝑙𝑒𝑟 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 

𝑍 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑜𝑙𝑙𝑖𝑛𝑔 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 

𝛼 = 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑎𝑛𝑔𝑙𝑒 
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The previously introduced equations assume that no sliding occurs during rolling motion. 

However, in practice, this ideal motion is rarely achieved. Due to various factors, the rolling 

elements often experience a combination of rolling and sliding. Consequently, the actual 

characteristic defect frequencies may differ slightly from those predicted by the equations, 

depending significantly on the type of bearing, operating conditions, and fits. Typically, the 

characteristic frequencies of the bearing are not integer multiples of the inner ring’s rotational 

frequency, which helps to distinguish these frequencies from other sources of vibration. Since 

most vibration frequencies are directly proportional to rotational speed, it is essential to collect 

vibration data at consistent speeds when comparing vibration signatures. This aspect represents 

a significant challenge in AI applications, as extensively demonstrated and addressed in various 

publications, including [7]. Variations in speed can shift the frequency spectrum, leading to 

inaccuracies in both amplitude and frequency measurements. In variable-speed equipment, 

spectral orders are sometimes used, where all frequencies are normalized relative to the 

fundamental rotational speed. This process, known as order normalization, designates the 

fundamental rotational frequency as the first order. 

In addition to analysing spectral orders, the bearing speed ratio, a measure obtained by dividing 

the ball pass frequency by the shaft rotational frequency, serves as a valuable indicator of 

bearing performance. This ratio is influenced by bearing loads and clearances, providing 

insights into operating conditions. When the bearing speed ratio falls below expected values, it 

may signal insufficient loading, excessive lubrication, or inadequate radial internal clearance, 

all of which can lead to higher operating temperatures and potential premature failure. 

Conversely, a higher than anticipated bearing speed ratio may suggest excessive loading, too 

much radial internal clearance, or insufficient lubrication. 

An example of how the bearing speed ratio can help identify potential issues is illustrated in 

Figure 7 (Adapted from [6].), which displays the vibration acceleration spectrum measured 

axially on the end cap of a 250kW electric motor. In this case, type 6217 radial ball bearings 

were subjected to an unexpectedly high axial load. This excessive load occurred because the 

non-locating bearing could not slide within the housing, likely due to thermal expansion 

(thermal loading). For a nominal shaft speed of 3000 revolutions per minute (rev/min), the 

estimated outer raceway ball pass frequency (fb/o) was calculated to be 228.8 Hz, resulting in 

a predicted bearing speed ratio of 4.576. However, measurements revealed an actual outer 

raceway ball pass frequency of 233.5 Hz, resulting in a bearing speed ratio of 4.67; a 2% 
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increase from the expected value. This deviation indicates the presence of an additional axial 

load, which would not have been apparent without analysing the bearing speed ratio. 

 

 

 

 

 

 

 

 

 

Ball pass frequencies can be generated as a result of elastic properties of the raceway materials 

due to variable compliance or as the rolling elements pass over a defect on the raceways. The 

frequency generated at the outer and inner ring raceway can be estimated roughly as 40% and 

60% of the inner ring speed times the number of rolling elements respectively. 

Despite these estimates, bearing vibration signals are rarely straightforward due to the complex 

interactions among various bearing components. This complexity, however, can serve as a 

useful diagnostic tool for detecting surface deterioration or damage on the rolling elements. In 

particular, surface imperfections on raceways and rolling elements, often introduced during the 

manufacturing process, interact to produce additional discrete frequencies and sidebands, as 

summarized in Table 1. These imperfections combine, adding layers of complexity to the 

vibration spectrum, especially when multiple defects are present. 

Analysing these vibration signals is challenging because the characteristic frequencies 

generated by imperfections often blend with each other, and background noise or other sources 

of vibration can mask defect frequencies, particularly in the early stages of damage. 

Nonetheless, advancements in diagnostic algorithms have enabled more effective detection of 

bearing faults by analysing vibration signatures on the bearing housing.  

Figure 7. Axial vibration acceleration spectrum on end cap of a 250kW electric motor.  
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These methods leverage both the characteristic defect frequencies and the “ringing frequencies” 

(i.e. natural frequencies) of the bearing. 

 

  

The list below outlines the main types of bearing defects and other sources of vibration, 

detailing how each type influences the characteristic frequencies in bearing systems and 

contributes to the overall vibration profile. 

• Raceway defect: A discrete defect on the inner raceway generates high-energy pulses at the 

ball pass frequency, which vary in amplitude as the defect moves in and out of the load 

zone. This creates amplitude modulation at the inner ring's rotational frequency, resulting 

in sidebands around the carrier frequency in the frequency domain. As the defect grows, 

additional sidebands appear, potentially replacing the ball pass frequency with peaks spaced 

at the inner ring rotational frequency.  

In contrast, a discrete defect on the stationary outer raceway produces consistent pulse 

amplitudes, appearing as a single peak in the frequency domain. However, with an 

unbalanced rotor, the signal may also be modulated at the inner ring rotational frequency. If 

a defect is present on a rolling element, it moves in and out of the load zone at the 

fundamental train frequency, generating sidebands around the ball pass frequency. Inner 

Surface Defect Frequency 

Component Imperfection 

Inner raceway Eccentricity 

Waviness 

Discrete defect 

𝑓𝑟 

𝑛𝑍𝑓𝐶/𝑖 ± 𝑓𝑟 

𝑛𝑍𝑓𝐶/𝑖 ± 𝑓𝑟 

Outer raceway Waviness 

Discrete defects 

𝑛𝑍𝑓𝐶/𝑜 

𝑛𝑍𝑓𝐶/𝑜 ± 𝑓𝑟 

𝑛𝑍𝑓𝐶/𝑜 ± 𝑓𝐶/𝑜 

Rolling element Diameter Variation 

Waviness 

Discrete defect 

𝑍𝑓𝐶/𝑜 

2𝑛𝑓𝑏 ± 𝑓𝐶/𝑜 

2𝑛𝑓𝑏 ± 𝑓𝐶/𝑜 

Table 1. Frequencies related to surface imperfections. From [6] 
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raceway defects tend to produce lower amplitude signals than outer raceway defects due to 

a more complex transmission path from the defect to the sensor location, making outer 

raceway defects easier to detect. 

• Rolling element defect: Defects on rolling elements can generate vibrations at frequencies 

that are twice the ball spin frequency, along with its harmonics, as well as at the fundamental 

train frequency. When a defect strikes both the inner and outer raceways, it often generates 

a frequency twice the ball spin frequency. However, this frequency can be lower if the ball 

is outside the load zone or if energy is lost as the signal travels through structural parts. 

Defects oriented along the axis of the ball may be more challenging to detect, as they don’t 

always strike both raceways. When multiple rolling elements have defects, combined 

frequencies (sums of the ball spin frequencies) may occur, and larger defects may also 

produce vibrations at the fundamental train frequency. 

• Cage defect: Cages in bearings typically rotate at around 0.4 times the inner ring speed and, 

due to their low mass, generally produce minimal vibration unless there is a manufacturing 

defect. Unlike raceway defects, cage failures do not usually trigger specific ringing 

frequencies, making them harder to detect through envelope spectrum analysis. When cage 

wear or deformation begins, often from inadequate lubrication, random bursts of vibration 

and a wide range of frequencies can occur. As the cage deteriorates further, increased 

sideband activity may appear around other fundamental frequencies. Excessive clearance 

can also cause vibration at the fundamental train frequency (FTF), leading to impact forces 

between the rolling elements and cage pockets. 

• Other sources of vibration: Contamination is a common cause of bearing wear and 

premature failure, often due to foreign particles entering the bearing during handling or 

operation. This contamination generates vibrations that vary in intensity and may be hard 

to detect initially, depending on the type of particles. Contaminants damage rolling surfaces 

and produce vibrations across a wide frequency range. In early stages, the vibration signals 

crest factor may increase, though this is difficult to detect in the presence of other vibration 

sources. In grease-lubricated bearings, initial vibrations may be high as the grease is 

distributed throughout the bearing, but these vibrations generally degrade as the bearing 

continues to operate. Low-noise greases are often used in noise-sensitive applications. 
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3.2.3 Limitations of Vibration Analysis 

Despite its widespread application, vibration analysis has several limitations. The intricate 

vibration patterns encountered during condition monitoring often arise from the interaction of 

multiple vibration sources, making interpretation complex without skilled analysts. 

Experienced vibration analysts are typically required to accurately distinguish and assess the 

characteristic signatures of bearing defects, such as variations in the amplitude and frequency 

of fundamental vibration signals. Although vibration monitoring software can assist by 

demodulating signals and generating an envelope spectrum for early detection, it has 

limitations. Certain defect types, such as cage failures, may not excite specific natural 

frequencies, making them more difficult to detect. 

Furthermore, simple broadband vibration measurements, while useful for general monitoring, 

offer limited diagnostic capability and may not provide an early warning for incipient damage. 

This dependency on human expertise to interpret complex signals, identify subtle indicators of 

deterioration, and make informed maintenance decisions highlights the inherent challenges of 

relying solely on vibration analysis for fault detection. 
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Chapter 4  

4 AI in Bearing Fault Diagnosis: A Decision Tree Approach for 

Classification and Analysis 

 
 

The Industrial Internet of Things (IoT) and data-driven techniques have transformed the 

manufacturing landscape by enabling interconnected machines to gather vast amounts of data 

and turn it into actionable insights. While large data volumes offer valuable opportunities, they 

also introduce challenges such as noise, biases, and inconsistencies that hinder the development 

of accurate physical models, complicating the representation of complex, dynamic systems. 

Additionally, many physics-based models struggle to integrate online measured data, limiting 

their effectiveness and adaptability. Traditional diagnostic methods remain heavily dependent 

on human expertise, ranging from basic visual and auditory inspections to more advanced tasks 

like signal analysis. However, accessing experienced analysts can be difficult due to the 

specialized knowledge required, which is often developed over years of practice. Even when 

available, human analysts may find it challenging to process the vast, multidimensional datasets 

generated by modern acquisition systems. 

This chapter undertakes a detailed investigation into the application of Artificial Intelligence 

(AI) in bearing fault diagnosis, specifically through a decision tree framework designed to 

systematically categorize and label relevant research, as illustrated in Table 2. This structured 

framework supports a comprehensive literature review, enabling a critical evaluation of 

emerging trends and innovations in intelligent fault diagnosis. The following chapter is 

organized into four sections, each dedicated to a major branch of the decision tree, providing a 

detailed examination of AI-driven techniques and their contributions to bearing fault diagnosis. 

 

 

 

 

 



29 
 

 
 

Main Category 

 
 

Subcategory 

 
 

Classification Label 

 
 

Article reference 
from 2020 to 2024 

Machine 
Learning Path 

 

Supervised Learning SVM-based Bearing Fault Diagnosis  
Tree-based Bearing Fault Diagnosis  

k-NN-based Bearing Fault Diagnosis  
Ensemble-based Bearing Fault Diagnosis  

Regression-based Bearing Fault Diagnosis  
Supervised Generative Models in Bearing Fault Diagnosis  

Other ML-based Bearing Fault Diagnosis  
Unsupervised 

Learning 
Clustering in Bearing Fault Diagnosis  

Pattern Deviation Detection in Bearing Fault Diagnosis  
Dimensionality Reduction in Bearing Fault Diagnosis  

Unsupervised Generative Models in Bearing Fault Diagnosis.  
Semi-Supervised 

Learning 
Graph-Based Semi-Supervised Bearing Fault Diagnosis  
Self-Training Semi-Supervised Bearing Fault Diagnosis  
Generative Semi-Supervised Bearing Fault Diagnosis  
Semi-Supervised Generative Models in Bearing Fault 

Diagnosis. 
 

Deep Learning 
Path 

 

Traditional Neural 
Networks (NNs) 

Traditional NN-based Bearing Fault Diagnosis  

Advanced Deep 
Learning 

CNN-based Bearing Fault Diagnosis  
RNN-based Bearing Fault Diagnosis  

Autoencoder-based Bearing Fault Diagnosis  
Few-Shot Learning in Bearing Fault Diagnosis  
Transfer Learning in Bearing Fault Diagnosis  

Foundation Models in Bearing Fault Diagnosis  
Hybrid Methods 

Path 
 

ML/DL + Signal 
Processing 

Hybrid ML + Signal Processing in Bearing Fault Diagnosis  
Hybrid DL + Signal Processing in Bearing Fault Diagnosis  

ML/DL + 
Optimization 

Algorithms 

Hybrid ML + Optimization in Bearing Fault Diagnosis  
Hybrid DL + Optimization in Bearing Fault Diagnosis  

ML/DL + 
Reinforcement 

Learning 

Hybrid ML + Reinforcement Learning in Bearing Fault 
Diagnosis 

 

Hybrid DL + Reinforcement Learning in Bearing Fault 
Diagnosis 

 

ML/DL + Generative 
Models 

Hybrid ML + Generative Models in Bearing Fault Diagnosis  
Hybrid DL + Generative Models in Bearing Fault Diagnosis  

AI + Physics-based 
Models 

Hybrid AI + Physics-based Models in Bearing Fault Diagnosis  
Hybrid AI + Sensor Fusion in Bearing Fault Diagnosis  

Other AI 
Methods Path 

 

Fuzzy Logic Fuzzy Logic in Bearing Fault Diagnosis  
Expert Systems Expert Systems in Bearing Fault Diagnosis  

Bayesian Networks Bayesian Networks in Bearing Fault Diagnosis  
AI-Driven 

Maintenance 
Scheduling 

AI-Driven Maintenance in Bearing Fault Diagnosis  

Genetic 
Programming 

Genetic Programming in Bearing Fault Diagnosis  

Neuro-Fuzzy 
Systems 

Neuro-Fuzzy Systems in Bearing Fault Diagnosis  

 

 

 

 

Table 2. Literature review classification table. 
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4.1 Machine Learning Path in Bearing Fault Diagnosis 

Machine learning techniques are well suited for structured data and are effective for moderate-

sized datasets, making them versatile tools for bearing fault diagnosis. Models can be trained 

on labelled or unlabelled data, and these methods are typically interpretable, which is valuable 

in industrial applications where understanding the reasoning behind predictions is crucial for 

informed decision-making. Depending on the type and availability of data, a range of 

approaches are available. 

1. Supervised learning relies on labelled data to train models, allowing them to recognize and 

classify fault patterns in bearings by learning a mapping between inputs and their 

corresponding outputs. In the context of bearing fault diagnosis, supervised learning 

encompasses a variety of approaches: 

• Support Vector Machines (SVM): SVM models determine the optimal boundaries 

between classes, making them effective in distinguishing between different fault 

conditions. 

• Decision Trees/Random Forests: Decision Trees segment data into branches based on 

features, while Random Forests combine multiple decision trees to enhance prediction 

robustness and accuracy. 

• k-Nearest Neighbors (k-NN): A proximity-based method that classifies a new sample 

based on its closest data points (neighbours) in the dataset.  

• Ensemble Methods (e.g., AdaBoost, Gradient Boosting): These techniques combine 

multiple weak models, such as decision stumps or shallow trees, to form a stronger 

predictive model. Ensemble methods improve fault prediction accuracy and resilience 

to noise.  

• Regression Models (Logistic, Ridge, etc.): Regression models predict continuous or 

discrete outcomes, with logistic regression commonly used for binary classification in 

fault diagnosis. 

• Supervised Generative Models (e.g., GANs, VAEs, Conditional Variational 

Autoencoders (CVAEs)): These models use labelled data to generate synthetic data, 

aiding in fault classification and enhancing model training through synthetic data 

augmentation. 
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• Other algorithms: Includes supervised learning algorithms that do not fit within the 

categories above, such as probabilistic models like Naive Bayes. 

 

2. Unsupervised learning aims to uncover hidden patterns or groupings within unlabelled 

data, making it useful for anomaly detection by grouping similar fault conditions in bearing 

fault diagnosis. This category includes: 

• Clustering (e.g., K-Means, Hierarchical): Groups data into clusters based on similarity 

without any predefined labels, identifying potential fault patterns. 

• Pattern Deviation Detection (e.g., Isolation Forest, Outlier Detection): Detects 

abnormal or rare instances (outliers) in the data, assisting in early fault detection. 

• Dimensionality Reduction (e.g., PCA, t-SNE): Reduces the number of features in the 

data to improve model efficiency while preserving essential information. 

• Unsupervised Generative Models (e.g., GANs, VAEs, Gaussian Mixture Models): Use 

unlabelled data to detect patterns, create new data instances, or identify anomalies. 

 

3. Semi-supervised learning leverages both labelled and unlabelled data to improve model 

performance, particularly when labelled data is scarce, making it valuable for bearing fault 

diagnosis. 

• Graph-Based Methods (e.g., Label Propagation): Uses a graph structure to propagate 

labels from labelled to unlabelled data points, enhancing performance on sparse 

datasets. 

• Self-Training Models: Models that iteratively label their most confident predictions and 

retrain on this expanded labelled set, increasing adaptability. 

• Semi-Supervised Generative Models (e.g., GANs, VAEs, Ladder Networks): Utilize 

both labelled and unlabelled data for representation learning or synthetic data 

generation, improving fault diagnosis accuracy. 

 

4. Reinforcement Learning: A decision-making approach where agents learn optimal 

strategies by interacting with their environment and receiving feedback (rewards). It is 

applied in dynamic fault diagnosis, where maintenance decisions require continuous 

adaptation. 
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Machine learning based fault diagnosis methods rely heavily on human intervention for feature 

extraction. However, as frequently emphasized, signals are often non-stationary, and manually 

extracted fault features largely depend on expert experience and prior knowledge, making the 

feature extraction process challenging. Furthermore, machine learning models struggle to 

address these complexities effectively, limiting their diagnostic accuracy. Consequently, these 

models exhibit inadequate performance and fail to meet the modern requirements for fault 

diagnosis, which demand rapidity and high accuracy. 

 

4.2 Deep Learning Path in Bearing Fault Diagnosis 

Deep Learning involves complex neural networks with multiple layers that learn from large, 

unstructured datasets such as images, time-series data, or text. These models automatically 

extract relevant features, eliminating the need for manual feature engineering and improving 

their performance with increasing amounts of data. Deep learning is particularly powerful for 

recognizing patterns, making it ideal for applications like fault diagnosis, predictive 

maintenance, and anomaly detection. Although deep learning requires significant 

computational resources, advancements in hardware (e.g., GPUs) have made it more accessible 

and efficient. Common architectures include: 

1. Traditional Neural Networks form the basis for deep learning architectures and consist of 

layers of interconnected neurons. Each neuron evaluates input data using weights and an 

activation function to produce an output, which is then passed to the next layer. This 

structure enables the network to learn patterns and relationships within structured data, 

making it effective for tasks like classification and pattern recognition. 

• Multilayer Perceptrons (MLPs): Fully connected networks where neurons are 

organized into layers, with each neuron in one layer connected to all neurons in the next. 

MLPs are often used in bearing fault diagnosis to classify fault types and severity levels 

by learning patterns from vibration and acoustic signals. 

• Backpropagation Neural Networks (BPNNs): A neural network trained using the 

backpropagation algorithm, optimizing weights through error minimization. BPNNs are 

applied in bearing fault diagnosis for accurately identifying and classifying different 

fault conditions by training on historical fault data. 
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• Feedforward Neural Networks (FNNs): Neural network architecture where 

information flows in one direction, from input to output. FNNs are commonly used in 

bearing fault diagnosis to detect faults in a straightforward manner, processing 

structured data like vibration signals to identify anomalies. 

• Deep Belief Networks (DBNs): Probabilistic generative models with multiple layers of 

latent variables, often pre-trained layer by layer using Restricted Boltzmann Machines 

(RBMs). In bearing fault diagnosis, DBNs have been employed to detect complex fault 

patterns and enhance fault classification by modelling high dimensional feature spaces 

from sensor data. 

 

2. Advanced Deep Learning employs architectures like Convolutional Neural Networks 

(CNNs) and Recurrent Neural Networks (RNNs), which are suited for high dimensional 

data, such as images and time-series signals. These models are valuable for tasks like fault 

classification and anomaly detection in bearing fault diagnosis. 

• Convolutional Neural Networks: Suited for image or 2D data analysis, CNNs are used 

in bearing fault diagnosis to analyse images of bearing surfaces or spectral 

representations, detecting surface defects and patterns indicative of faults. 

• Recurrent Neural Networks (e.g., LSTMs): Good for sequential data like time series, 

RNNs are employed in bearing fault diagnosis to capture temporal patterns in vibration 

and acoustic signals, aiding in early fault detection and trend analysis. 

• Autoencoders/Stacked Autoencoders: Used for unsupervised tasks like learning 

simplified representations of data or reducing noise in signals, autoencoders help 

identify subtle anomalies in bearing signals, enhancing fault detection sensitivity. 

• Few-Shot Learning Algorithms: Leverages neural networks to generalize from limited 

data, making few-shot learning valuable for bearing fault diagnosis when labelled fault 

data is scarce. 

• Transfer Learning: Extends a model trained on one task to another related task, 

allowing pre-trained models on limited datasets to be adapted for bearing fault 

diagnosis. 

• Foundation Models: Large models pre-trained on massive datasets, which can be fine-

tuned for fault detection tasks in bearing diagnosis, benefiting from their broad feature 

representation abilities. 
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4.3 Hybrid Methods Path in Bearing Fault Diagnosis 

Hybrid methods combine machine learning or deep learning with other techniques, such as 

signal processing, optimization, reinforcement learning, or physics-based models, enhancing 

the model’s effectiveness for complex diagnostic tasks. These combinations enhance the 

diagnostic capabilities of AI models, making them more robust and adaptable to complex tasks 

where both data-driven insights and domain knowledge are essential. 

1. ML/DL + Signal Processing: Combines AI models with signal processing techniques to 

enhance feature extraction and data representation. 

• ML + Signal Processing: Combines traditional machine learning models with signal 

processing methods like Principal Component Analysis (PCA) or Fast Fourier 

Transform (FFT) to improve faut classification. 

• DL + Signal Processing: Combines deep learning architectures (e.g., CNNs) with signal 

processing techniques like Wavelet Transforms. 

 

2. ML/DL + Optimization Algorithms: Integrates AI models with optimization techniques to 

refine model parameters for improved accuracy. 

• ML + Optimization Algorithms: Combines traditional machine learning models with 

optimization techniques like Genetic Algorithms (GA) or Particle Swarm Optimization 

(PSO) to enhance predictive accuracy and model performance in fault diagnosis. 

• DL + Optimization Algorithms: Integrates deep learning models with optimization 

algorithms, such as GA or PSO, to optimize parameters and improve fault detection 

capabilities in complex tasks. 

 

3. ML/DL + Reinforcement Learning: Blends traditional ML/DL models with reinforcement 

learning for adaptive decision-making in real-time fault diagnosis. 

• ML + Reinforcement Learning: Pairs traditional machine learning models with 

reinforcement learning for tasks requiring dynamic optimization and decision-making, 

such as maintenance scheduling and adaptive fault response. 

• DL + Reinforcement Learning: Merges deep learning models with reinforcement 

learning to tackle complex decision-making processes, enhancing fault diagnosis 

capabilities through continuous learning and optimizing maintenance response time. 
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4. ML/DL + Generative Models: This approach combines machine learning or deep learning 

models with generative models, enhancing data quality and anomaly detection. 

• ML + Generative Models: Uses ML with generative models (e.g., GANs, Variational 

Autoencoders) to improve fault diagnosis through data augmentation or synthetic data 

generation. 

• DL + Generative Models: Combines DL with generative models to generate synthetic 

data or detect anomalies, improving model robustness and diagnostic accuracy. 

 

5. AI + Physics-based Models: This approach integrates AI models with physics-based 

diagnostic techniques, combining data-driven insights with theoretical knowledge to 

improve diagnostic accuracy. 

• AI + Physics-based Models: Uses physical principles alongside AI to provide diagnoses 

that align with known mechanical properties. Examples include Finite Element Analysis 

(FEA), widely used for simulating stress and strain in mechanical components to predict 

failure points, as well as for analysing other physical phenomena, and Physically 

Informed Neural Networks (PINNs), which leverage physical laws to guide the model's 

predictions, ensuring robustness and adherence to realistic mechanical behaviour. 

• AI + Sensor Fusion: Combines data from multiple sensors to enhance fault detection 

accuracy through a more comprehensive dataset. 

 

4.4 Other AI Methods Path 

This path encompasses AI methods that fall outside traditional machine learning and deep 

learning categories, including rule-based systems, fuzzy logic, expert systems, and probabilistic 

reasoning approaches. These techniques are particularly valuable when managing uncertainty, 

integrating expert knowledge, or ensuring interpretability is paramount. Unlike ML and DL, 

which often rely heavily on large datasets for training, these approaches typically use predefined 

rules, logical reasoning, or evolutionary strategies to model complex systems. This makes them 

especially well-suited for environments where data is scarce, incomplete, or where human 

interpretability and direct integration of domain expertise are critical for effective fault 

diagnosis. 
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1. Fuzzy logic systems: A rule-based approach that mimics human reasoning by handling 

uncertainty and ambiguity. This flexibility makes it particularly effective in fault diagnosis 

scenarios where precise thresholds for decision-making are impractical or difficult to define. 

2. Expert systems: These systems emulate human decision-making through predefined rules 

and logical structures derived from domain expertise, offering structured diagnostics based 

on human knowledge. Expert systems are particularly valuable in environments with scarce 

labelled data, as they rely on explicit knowledge representation rather than training. 

3. Bayesian Networks: Probabilistic graphical models like Bayesian Networks are designed 

to manage uncertainty in fault diagnosis by using statistical measures to model relationships 

between variables. These networks update their predictions dynamically as new data 

becomes available, making them suitable for real-time diagnostic applications. 

4. AI-Driven Maintenance Scheduling: This approach uses AI to optimize maintenance 

schedules based on fault detection and prediction. By analysing fault data and predicting 

potential failures, these systems enable proactive maintenance strategies, reducing 

downtime and maintenance costs. 

5. Genetic Programming: An evolutionary algorithm that evolves computer programs to 

optimize diagnostic performance. Genetic programming is especially beneficial in creating 

solutions for complex problems where traditional methods struggle, such as developing 

unique fault classification models tailored to specific systems. 

6. Neuro-Fuzzy Systems: Combining the adaptive learning capabilities of neural networks 

with the interpretability of fuzzy logic, neuro-fuzzy systems integrate human-like reasoning 

with machine learning to improve fault detection. This hybrid approach is particularly 

valuable when data uncertainty must be managed alongside automated learning. 
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Chapter 5 

5 Literature Review Results and Findings 
 

 

This chapter provides a comprehensive analysis of the literature reviewed, synthesizing 

findings from 150 articles that explore advancements in AI-driven bearing fault diagnosis. 

Using the decision tree framework for AI methods in bearing fault diagnosis introduced in the 

previous chapter, the selected studies are systematically categorized based on specific AI 

approaches. The provided labels offer a balanced level of precision, capturing key 

methodological distinctions without becoming overly complex or unmanageable. 

 

5.1 Eligibility and Selection Criteria 

In this section, we outline the eligibility and selection criteria used to identify articles for the 

literature review. This discussion provides a transparent and systematic framework for selecting 

relevant studies, detailing the rationale behind the selection criteria and their alignment with 

the review's objectives. The scope of the research is limited to English-language articles 

published between 2020 and 2024. A minimum of 30 articles per year was selected, resulting 

in a total of 150 articles. Notably, China emerged as the most significant contributor to this 

field, as displayed in Figure 8. 

 

 

 

 

 

 

 

 

 
Figure 8. Top 10 countries by number of articles on bearing fault diagnosis. 
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The following digital databases were used for article selection: 

− Google Scholar 

− ScienceDirect and Scopus (academic research platforms developed by Elsevier) 

− MDPI Open Access Journals 

− IEEE Xplore 

− American Society of Mechanical Engineers (ASME)  

The search was conducted using the following keywords: "rolling bearing" OR "bearings" AND 

"fault diagnosis" AND ("artificial intelligence" OR "machine learning" OR "deep learning" OR 

"neural network" OR "transfer learning"). This strategy provided sufficient flexibility while 

maintaining relevance to the topic. Articles that focused on bearing fault diagnosis and detection 

without incorporating AI were excluded to ensure the review aligned with its technological 

focus. 

 

5.2 Presentation and Analysis of Results 

This section presents the findings of the literature review, organized using the decision tree 

framework. For visual clarity, the results are divided into two parts: Table 3 covers the Machine 

Learning Path and Deep Learning Path, while Table 4 addresses the Hybrid Methods Path and 

Other AI Methods Path. It is important to note that each label assigned to an article represents 

the understood focus or key innovation of the study, rather than the sole approach or method 

used to address the problem. This structured approach highlights key trends, innovative 

techniques, and the distribution of research across AI methodologies in bearing fault diagnosis. 

Before proceeding, it is important to emphasize that, generally speaking, all AI frameworks 

integrate multiple approaches and techniques. Consequently, the provided labels aim to strike a 

balance between precision and simplicity, capturing key methodological distinctions without 

becoming overly detailed or cumbersome. This premise is crucial for understanding why certain 

labels may not be accompanied by citations. 
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Main 
Category 

Subcategory Classification Label Article Reference from 2020 to 2024 
 

Machine 
Learning Path 

 

Supervised 
Learning 

SVM-based Bearing Fault 
Diagnosis 

[8] 

Tree-based Bearing Fault 
Diagnosis 

 

k-NN-based Bearing Fault 
Diagnosis 

 

Ensemble-based Bearing 
Fault Diagnosis 

[9], [10], [11] 

Regression-based 
Bearing Fault Diagnosis 

 

Supervised Generative 
Models in Bearing Fault 

Diagnosis 

 

Other ML-based Bearing 
Fault Diagnosis 

[12] 

Unsupervised 
Learning 

Clustering in Bearing 
Fault Diagnosis 

 

Pattern Deviation 
Detection in Bearing Fault 

Diagnosis 

 

Dimensionality Reduction 
in Bearing Fault Diagnosis 

 

Unsupervised Generative 
Models in Bearing Fault 

Diagnosis. 

[13] 

Semi-
Supervised 

Learning 

Graph-Based Semi-
Supervised Bearing Fault 

Diagnosis 

[14], [15], [16] 

Self-Training Semi-
Supervised Bearing Fault 

Diagnosis 

 

Semi-Supervised 
Generative Models in 

Bearing Fault Diagnosis. 

[17] 

Deep 
Learning Path 

 

Traditional 
Neural 

Networks (NNs) 

Traditional NN-based 
Bearing Fault Diagnosis 

[18], [19], [20], [21], [22], [23] 

Advanced Deep 
Learning 

CNN-based Bearing Fault 
Diagnosis 

[24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35], 
[36], [37], [38], [39], [40],  [7], [41], [42], [43], [44], [45], [46], 

[47], [48], [49], [50] 
RNN-based Bearing Fault 

Diagnosis 
[51],[52], [53] 

Autoencoder-based 
Bearing Fault Diagnosis 

[54], [55], [56], [57], [58] 

Few-Shot Learning in 
Bearing Fault Diagnosis 

[59] 

Transfer Learning in 
Bearing Fault Diagnosis 

[60], [61], [62], [63], [64], [65], [66], [67], [68], [69], [70], [71], 
[72], [73], [74], [75], [76], [77], [78], [79], [80], [81], [82], [83], 
[84], [85], [86], [87], [88], [89], [90], [91], [92], [93], [94], [95], 

[96], [97], [98], [99], [100], [101], [102], [103], [104], [105] 
,[106], [107] 

Foundation Models in 
Bearing Fault Diagnosis 

 

 

 

 

 

 

Table 3. 
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Main Category Subcategory Classification Label Article Reference from 2020 to 2024 
 

Hybrid 
Methods Path 

 

ML/DL + Signal 
Processing 

Hybrid ML + Signal 
Processing in Bearing Fault 

Diagnosis 

[108], [109], [110] 

Hybrid DL + Signal 
Processing in Bearing Fault 

Diagnosis 

[111], [112], [113], [114], [115], [116], [117], [118], [119], 
[120], [121], [122], [123], [124], [125], [126], [127], [128], 

[129], [130] 
ML/DL + 

Optimization 
Algorithms 

Hybrid ML + Optimization in 
Bearing Fault Diagnosis 

[131] 

Hybrid DL + Optimization in 
Bearing Fault Diagnosis 

[132], [133], [134], [135], [136], [137], [138], [139], [140], 
[141], [142], [143] 

ML/DL + 
Reinforcement 

Learning 

Hybrid ML + Reinforcement 
Learning in Bearing Fault 

Diagnosis 

 

Hybrid DL + Reinforcement 
Learning in Bearing Fault 

Diagnosis 

 

ML/DL + 
Generative 

Models 

Hybrid ML + Generative 
Models in Bearing Fault 

Diagnosis 

[144] 

Hybrid DL + Generative 
Models in Bearing Fault 

Diagnosis 

[145], [146], [147], [148] 

AI + Physics-
based Models 

Hybrid AI + Physics-based 
Models in Bearing Fault 

Diagnosis 

[149], [150], [151], [152], [153], [154] 

Hybrid AI + Sensor Fusion in 
Bearing Fault Diagnosis 

[155] 

Other AI 
Methods Path 

 

Fuzzy Logic Fuzzy Logic in Bearing Fault 
Diagnosis 

[156] 

Expert Systems Expert Systems in Bearing 
Fault Diagnosis 

 

Bayesian 
Networks 

Bayesian Networks in 
Bearing Fault Diagnosis 

 

AI-Driven 
Maintenance 

Scheduling 

AI-Driven Maintenance in 
Bearing Fault Diagnosis 

 

Genetic 
Programming 

Genetic Programming in 
Bearing Fault Diagnosis 

 

Neuro-Fuzzy 
Systems 

Neuro-Fuzzy Systems in 
Bearing Fault Diagnosis 

 

 

 

 

 

 

 

 

Table 4. 
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Transfer learning has undoubtedly emerged as the most researched topic in the field of 

intelligent fault diagnosis, as demonstrated by the analysis of 150 reviewed articles and depicted 

in the figure below. This trend is supported by other reviews on the topic conducted in the past 

five years, such as [157], [158] and [159], with the last citation going a step further by 

identifying this topic as a future prospect for promoting the applications of IFD in engineering 

scenarios in the coming years. 

  

 

Transfer learning is particularly effective in industrial scenarios with limited labelled data, 

where traditional ML and DL models struggle as it reduces reliance on large datasets and 

addresses distribution discrepancies commonly encountered in real-world applications. The 

lack of labelled data in industrial settings often arises from practical challenges, such as the 

risks of running machines in faulty conditions, the extended time required for machines to 

degrade before failure, and the wide range of operating conditions, including varying loads and 

speeds. These factors make it difficult to create comprehensive datasets, leading to poor 

performance of deep learning models trained on laboratory data due to significant differences 

in data distributions between training and testing environments. Unlike traditional learning 

processes that require building new models for each task and retraining them from scratch when 

data distributions change, transfer learning reuses pre-trained models. Figure 10 illustrates the 

basic layout of the standard transfer learning process. 

 

Figure 9: Research trend from 2020 to 2024. 
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By retraining an existing model with a new dataset, it applies knowledge gained from an initial 

source task or data to a new, related target task or data, enabling integration of insights from 

multiple datasets, often achieving better performance, faster training, and mitigating overfitting. 

This is particularly useful in cases where diagnostic knowledge obtained from controlled 

laboratory experiments can be reused in real-world engineering scenarios, enabling models 

trained on such datasets to diagnose faults effectively, despite insufficient or inconsistent 

labelled data. As an example, Kumar et al. [81] leveraged a pretrained ResNetV2 as the base 

model within a transfer learning framework to develop an efficient strategy for feature 

extraction and selection, enabling accurate detection of bearing faults. Just recently, Guo et al. 

[106]  proposed a lightweight residual network, ResNet-KTQD, specifically tailored for cross-

domain fault diagnosis, demonstrating the adaptability of transfer learning techniques in 

addressing domain discrepancies and ensuring effective fault detection. 

However, transfer learning has limitations. For optimal results, the source and target tasks 

should be similar, the data distributions between them should not differ significantly, and the 

same model type should be applicable to both tasks. Failure to meet these conditions can lead 

to negative transfer, which harms model performance. Addressing this requires careful 

evaluation of dataset similarities and techniques such as distant transfer to mitigate issues from 

dissimilar data distributions. To address the imbalance in the number of fault categories between 

the source and target domains, Li et al. [66] developed an adversarial transfer learning method 

based on a stacked autoencoder. He et al. [70] employed the CORrelation ALignment (CORAL) 

algorithm to minimize the marginal distribution discrepancy between the source and target 

domains. Similarly, Yang et al. [73] used the CORAL algorithm to align the data distributions 

Figure 10. Transfer learning idea. 
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of the source and target domains in their proposed approach. More recently, Li et al. [98] utilized 

Multi-Kernel Maximum Mean Discrepancy (MK-MMD), another domain adaptation 

technique, to narrow the distribution distance between the source and target domains, obtain 

domain-invariant features, and achieve the transfer diagnosis of rolling bearing faults across 

different devices. 

Many studies combine transfer learning with convolutional neural networks, leveraging CNN’s 

powerful feature extraction capabilities alongside transfer learning’s adaptability to varying 

environments. Combining CNNs with transfer learning addresses common challenges 

associated with CNNs, such as their reliance on large datasets during training and inclination 

to overfitting, resulting in a robust and efficient solution for fault diagnosis. Lu et al. [60] 

proposed a generic intelligent bearing fault diagnosis system coupling a convolutional neural 

network with transfer learning to automatically identify and classify different bearing faults. 

Transfer learning was used to avoid overfitting problem of deep network. In 2021, Shao et al. 

[77] proposed a modified transfer CNN driven by thermal images to diagnose faults in a rotor-

bearing system under varying working conditions, utilizing parameter transfer to enable the 

source-modified CNN to adapt to the target domain and address the challenge of limited 

available training data in the target domain. 

Based on the literature reviewed, CNNs emerge as the second most researched topic in bearing 

fault diagnosis, following transfer learning. Since their introduction in 2016 as a promising 

solution for fault diagnosis, CNNs have been extensively studied. Well-suited for image and 

2D data analysis, CNNs are employed in bearing fault diagnosis to analyse bearing surface 

images or spectral representations, effectively detecting surface defects and fault patterns.  

Zhao et al. [26], developed a normalized CNN for diagnosing rolling bearings under varying 

fault severities and configurations, addressing challenges such as data imbalance and variable 

working conditions. CNNs have demonstrated superior performance compared to traditional 

methods, particularly in identifying faults under complex conditions and at early development 

stages. Choudhary et al. [30], proved the superior performance of a LeNet-5-based CNN 

compared to both shallow and deep learning approaches incorporating artificial neural networks  

for bearing fault classification using thermal images. Kumar et al. [38] addressed the common 

challenge of identifying bearing defects from small samples in CNNs by enhancing the cost 

function with an additional sparsity term, which reduces unnecessary neuron activations in the 

hidden layers. 
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Another key observation from the review is the greater emphasis placed by academics on signal 

preprocessing over model optimization to address the issue of anti-noise. Preprocessing is a 

critical step in any data-driven approach, designed to remove noise and extract meaningful 

features from the data, ensuring that only relevant information is fed into the diagnostic system. 

This approach significantly enhances the system's resilience to noisy or low-quality input data. 

Chen et al. [111] utilized Cyclic Spectral Coherence (CSCoh) to preprocess vibration signals, 

resulting in superior discriminative feature representations of bearing health statuses across 

different operating conditions. More recently, Lin et al. [118] utilized the Modified Ensemble 

Empirical Mode Decomposition (MEEMD) scalar index to capture the condition of bearings. 

In many cases, signal processing techniques are used in combination with autoencoders to 

leverage their respective strengths and mitigate their limitations. Traditional signal processing 

effectively removes structured, well-understood noise, while autoencoders excel in handling 

complex, nonlinear noise patterns, making them a powerful hybrid solution. As an example, 

Yang et al. [117] proposed a novel feature extraction method that combines a statistical 

algorithm, wavelet scattering network, and stacked auto-encoder network. 
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Chapter 6 

6 Commercial Solutions: Overview and Analysis 
 

 

Commercially available solutions play a pivotal role in translating theoretical advancements 

into practical applications for bearing fault detection, diagnosis, and prognosis. This chapter 

provides an overview of such solutions, focusing on those that explicitly incorporate artificial 

intelligence technologies. Each solution is described in terms of its functionality, applications, 

and potential advantages in real-world settings, with information sourced from companies’ 

official websites and publicly disclosed documents to ensure accuracy and relevance. While 

this chapter focuses on AI-driven tools, it is important to acknowledge that many other solutions 

are available but are excluded here due to practical limitations rather than their significance. 

Observations and insights on the reviewed solutions will be provided at the end of the chapter 

to synthesize key takeaways and future directions. This chapter serves as a starting point for 

understanding the current state of AI-driven tools in the industry and lays the groundwork for 

discussions in the concluding chapter on their implementation, effectiveness, and the gap 

between commercial practices and theoretical advancements. 

 

6.1 Commercial Solutions from the Industry 

This section presents a carefully selected range of commercially available AI-driven solutions 

for bearing fault detection, diagnosis, and prognosis. Each tool or system is described in terms 

of its functionality and applications, illustrating the diverse ways artificial intelligence is 

being applied in real-world industrial settings to drive innovation. 

 

6.1.1 ABB Ability™ Smart Sensor 

ABB is a global leader in electrification, robotics, automation, and motion, offering innovative 

solutions aimed at enhancing industrial productivity and energy efficiency. Among ABB's 

solutions is the ABB Ability™ Smart Sensor, a wireless device designed to monitor the health 

of bearings and other rotating equipment. It provides insights into equipment performance and 
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maintenance needs through a user-friendly interface, enabling informed decision-making and 

proactive maintenance.  

The solution includes both hardware and software, described as follows: 

• ABB Ability™ Smart Sensor (shown in Figure 11a): A battery-operated device capable of 

recording signal data such as temperature, vibrations, magnetic field measurements, and 

ultrasonic sounds. 

• The acquired data is transmitted to the Cloud-based ABB Ability™ platform, where it can 

be accessed in three ways, as listed below and schematically shown in Figure 11b: 

1) ABB Ability™ Smart Sensor App, 

2) ABB Ability™ Digital Powertrain portal, 

3) Customer cloud and network system  

 

Although ABB publicly declares the use of AI in its solutions, including its Genix suite and its 

collaboration with Microsoft to enhance AI functionalities, there is no publicly disclosed 

information on how AI is utilized to process the acquired data in the ABB Ability™ Smart 

Sensor, as the methodologies remain proprietary. 

 

6.1.2 Amazon Monitron and Amazon Lookout for Vision 

Amazon, a multinational technology company, is renowned for its e-commerce platform and 

advanced cloud computing services, including AI-powered industrial solutions. Among its 

industrial AI offerings, Amazon provides Amazon Monitron and Amazon Lookout for Vision, 

Figure 11. Adapted from ABB.com. 
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two innovative solutions designed to enhance predictive maintenance and quality control in 

industrial settings.  

• Amazon Monitron is an end-to-end machine learning-based condition monitoring solution 

designed to detect abnormal conditions in industrial rotating equipment. It enables the 

implementation of predictive maintenance programs to reduce unplanned downtime. 

Amazon Monitron includes purpose-built sensors for capturing vibration and temperature 

data, gateways that automatically transfer data to the AWS Cloud, and an application for 

system setup, analytics, and notifications to track equipment condition. The solution 

employs a ML model to monitor equipment vibrations, detecting changes in vibration 

patterns that may indicate potential faults. The ML approach is refined over time using 

feedback provided by technicians, enhancing its ability to predict similar abnormalities in 

the future. This ML model is complemented by an ISO threshold model, which analyses 

vibration magnitude to assess machine health. Figure 12 (adapted from Amazon.com) 

illustrates a sensor reading of an unhealthy asset.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By integrating these advanced methods, Amazon Monitron delivers effective predictive 

maintenance solutions to optimize equipment reliability and reduce operational disruptions. 

 

Figure 12. 
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• Amazon Lookout for Vision is a computer vision-based service designed to streamline 

defect detection and maintain high standards in industrial manufacturing. It detects 

defects such as scratches, dents, and missing components, improves production quality 

through real-time issue identification, and enhances operational efficiency by reducing 

reliance on manual inspections and enabling better analysis of defect trends. 

This solution identifies anomalies in images using two types of machine learning 

models, which users can select based on their specific needs: 

− Image Classification Model: Determines whether an image contains an anomaly or 

not, providing a binary classification (normal or anomalous) along with a confidence 

score. 

− Image Segmentation Model: Identifies the location of anomalies within an image, 

highlighting defective areas with color-coded masks according to the type of defect. 

 

Once that the model has been selected Amazon Lookout for Vision follows a structured 

workflow for defect detection. Users first prepare labelled datasets of normal and 

defective components, uploading data from local storage, Amazon S3, or Amazon 

SageMaker Ground Truth manifest files. The system then automatically selects the most 

appropriate algorithms to train the model, evaluating its performance using metrics such 

as Precision, Recall, and F1 score. During inference, the trained model analyses input 

images to identify anomalies. Classification models return a binary prediction indicating 

whether the image is normal or defective, while segmentation models provide detailed 

anomaly masks, highlighting defect locations and types. Once trained, models can be 

deployed on AWS IoT Greengrass-compatible edge devices, enabling on-site anomaly 

detection without continuous cloud connectivity, reducing bandwidth costs and 

supporting real-time analysis. 

Although Amazon Lookout for Vision specializes in anomaly detection, it can be 

integrated with Amazon Rekognition Custom Labels for more detailed, multi-class 

defect classification. This integration enables users to identify specific defect types 

beyond binary classification and gain detailed insights into production quality issues, 

enhancing corrective action planning. Combining Lookout for Vision’s anomaly 

detection capabilities with Rekognition’s advanced image analysis and defect 

categorization delivers robust solutions for industrial manufacturing. 
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6.1.3 IBM 𝐌𝐚𝐱𝐢𝐦𝐨® Application Suite 

IBM is a technology and consulting company renowned for its pioneering advancements in AI, 

cloud computing, and analytics to drive business transformation. IBM Maximo® Application 

Suite (MAS) is an integrated lifecycle management solution designed to streamline the 

maintenance, inspection, and reliability of critical equipment like bearings by leveraging 

generative AI, advanced analytics, and the Internet of Things. 

Within the IBM Maximo® Application Suite, Maximo Health and Maximo Predict are 

complementary tools that enable comprehensive equipment management by addressing distinct 

aspects of equipment performance and maintenance: 

• IBM Maximo Health: Consolidates data from various sources, including third-party IoT 

sensors, to monitor the current condition of equipment. It provides insights into equipment 

health, facilitating condition-based maintenance strategies. 

• IBM Maximo Predict: Utilizes machine learning to analyse historical and real-time data, 

predicting potential future failures and optimizing maintenance schedules. 

By integrating IoT sensor data (e.g., vibration and temperature readings) from bearings, MAS 

monitors real-time conditions. Machine learning models detect anomalies or patterns indicative 

of wear or failure, and predictive analytics forecast the remaining useful life of bearings, 

enabling timely maintenance and preventing unexpected downtimes. 

 

6.1.4 NSK Bearing Doctor 

NSK is a leading manufacturer of bearings and precision machinery, offering innovative 

solutions to enhance the performance and reliability of industrial equipment. The NSK Bearing 

Doctor is a software-based diagnostic tool, enhanced with AI capabilities, designed to assist 

users, such as engineers, maintenance professionals, and designers, in managing bearings 

effectively throughout their lifecycle.  

Its key aspects include: 

• Optimized Bearing Selection: Assisting users in selecting the most suitable bearings based 

on specific operational parameters such as load, speed, and temperature, while providing 

access to NSK’s comprehensive catalogue of bearing products tailored for diverse industrial 

applications. 
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• Diagnostic and Prediction: The system collects and analyses operational data, such as 

vibration, noise, and temperature, to identify anomalies and diagnose issues like excess heat 

or noise. It provides actionable recommendations for corrective actions, including guidance 

on proper lubrication intervals and suitable lubricants to prolong bearing life. Using 

advanced predictive analytics, the system forecasts potential failures and tracks 

performance trends in real time, enabling condition-based maintenance and alerting users 

to necessary interventions before critical failures occur. Enhancing this capability, the NB-

4 Compact Bearing Monitor (shown in Figure 13) evaluates bearing conditions using 

vibration and acceleration measurements across multiple axes through its integrated sensor. 

The monitor assesses key parameters such as frequency, amplitude, and time-domain trends 

to identify irregularities. Its compact design, which includes a dedicated vibration sensor, 

allows for precise real-time monitoring, even in space-constrained setups, ensuring reliable 

condition assessments. 

• Accessible Tools and Interface: The user-friendly interface, accessible on mobile devices, 

ensures quick navigation and ease of use for on-site bearing management. Additionally, 

users benefit from comprehensive educational resources, including manuals and technical 

articles, as well as seamless integration with other NSK tools for a comprehensive 

equipment management approach. 

 

 

 

 

 

 

 

 

 

 
Figure 13. Adapted from NSK.com. 
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6.1.5 NTN Corporation 

NTN is a global leader in precision machinery and components, renowned for its innovative 

bearings and advanced condition monitoring solutions. By integrating state of the art sensing 

technologies with machine learning, AI, and IoT, NTN delivers comprehensive tools for 

condition monitoring, fault detection, and predictive maintenance across a range of industries. 

Sophisticated algorithms like vibration spectrum analysis, random forest classification and 

outlier detection contribute to high-precision defect identification and remaining useful life 

predictions, even in complex environments. Through seamless compatibility with industrial IoT 

platforms, NTN enables centralized monitoring, big data analysis, and data-driven decision-

making, ensuring optimized operations and enhanced reliability.  

NTN offers customers a variety of products and services, including:  

• Sensor Integrated Bearings: NTN’s Sensor Integrated Bearing Units (as shown in Figure 

3) incorporate advanced sensors to monitor load, temperature, and vibration directly from 

the bearing’s raceway surface, ensuring high accuracy and early anomaly detection. These 

units also feature a built-in generator for independent power supply and wireless modules 

for seamless data transmission, simplifying integration into IoT environments. The 

technology supports both real-time condition monitoring and machine control, enabling 

predictive maintenance and reduced downtime. Data from these units can be directly 

integrated with industrial IoT platforms like Edgecross™, facilitating comprehensive data 

analysis and storage for big data applications. 

• Talking Bearings™: Similar to Sensor Integrated Bearings, Talking Bearings™ include 

vibration, temperature, and rotation sensors along with wireless communication and 

independent power systems. These innovative bearings continuously transmit condition 

data, enabling remote and continuous monitoring without additional sensing equipment. 

• Portable Vibroscopes: For on-site maintenance, NTN offers portable devices that interface 

with tablets or smartphones. These tools quickly measure and record vibration data, 

providing rapid diagnostics to detect bearing abnormalities based on predefined criteria. 
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• WindDoctor™: WindDoctor™ is NTN’s specialized condition monitoring system for wind 

turbines. It processes vibration and operational data to provide real-time diagnostics and 

remote monitoring, enabling early detection of anomalies and efficient maintenance 

scheduling. This system (Figure 14 adapted from [160]) tailored to reduce maintenance 

costs and improve equipment availability for power generation companies by integrating 

fault detection and remaining life estimation algorithms.  

 

 

 

 

 

Among the publicly disclosed documents, in the recent 89th NTN Technical review 2022-2023 

where the company highlights the latest technological advancements, product developments, 

and research findings, there are some explicit references to some of the approaches used in 

condition monitoring and bearing diagnosis: 

• Signal processing techniques: 

− Noise Filtering: Removes unwanted noise using statistical filters to improve signal 

clarity. 

− Ultrasonic Echo Analysis: Utilized for detecting periodic changes in ultrasonic 

reflection intensity (URI) for early fault diagnosis. 

− Autocorrelation Analysis: Applied to time-domain ultrasonic data for identifying 

consistent rolling patterns and grease conditions. 

− Adaptive Signal Enhancement: Improves the signal to noise ratio (S/N) for diagnosing 

low dN (speed-diameter product) environments. 

− Bandpass Filtering: Filters specific frequency bands to extract key vibration signal 

features for analysis. 

− Statistical Feature Extraction for AI Models: Time-Domain Features (RMS, maximum 

value, peak factor), Frequency-Domain Features (Spectral kurtosis, skewness), 

Cepstral-Domain Features (Envelope-processed RMS and other quantitative metrics). 

 

Figure 14. Wind doctor system configuration. 
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• AI-Based Algorithms: 

• Machine learning – Regression methods: 

o Kernel Ridge Regression (KR): A regression technique that uses kernel functions to 

model nonlinear relationships between features and outputs. 

o Random Forest Regression (RF): Ensemble-based regression method that 

aggregates multiple decision trees for accurate predictions. 

• Deep Learning Models: 

o Deep Neural Networks (DNNs): Employs architectures with multiple hidden layers 

(e.g., 4-layer DNN) for regression and classification tasks. 

o Convolutional Neural Networks: Converts vibration acceleration spectrograms into 

image-like representations for feature extraction and classification. 

o Feature Fusion Network (FFN): Combines multimodal data (vibration, acoustic, 

temperature) into a single predictive framework, enhancing diagnostic accuracy and 

RUL prediction 

 

6.1.6 Schaeffler Group 

The Schaeffler Group specializes in precision components for automotive, industrial, and 

aerospace applications, including bearings, with a focus on reliability and efficiency. Schaeffler 

also offers a comprehensive solution for both condition monitoring and smart lubrication: the 

OPTIME Ecosystem. The OPTIME Ecosystem (schematically shown in Figure 15, adapted 

from Schaeffler.com) comprises various elements that work together to minimize unplanned 

downtime. The Schaeffler OPTIME solution is a scalable system that integrates wireless 

sensors (provided by Schaffler), a cellular gateway, and digital services powered by proprietary 

Schaeffler algorithms. The wireless sensors monitor key parameters, such as vibration and 

temperature, on machines and devices. The collected data is transmitted to the Schaeffler Cloud 

via the gateway, where it is analysed using advanced algorithms. Actionable insights and error 

diagnoses are then provided to users through intuitive mobile and web-based interfaces, 

enabling effective and clear machine condition monitoring. 
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6.1.7 SKF 

SKF is a global leader in bearing technology and services, offering solutions for rotating 

equipment performance and predictive maintenance. SKF provides hardware and software 

systems to support condition monitoring practices, enabling the detection and diagnosis of 

issues as they occur.  

Portable monitoring devices include the SKF QuickCollect sensor, a Bluetooth-enabled 

handheld device designed to collect vibration and temperature data. It is user-friendly and 

connects to apps like SKF QuickCollect, which quickly evaluates machine health by setting 

alarm thresholds and assessing machine condition according to industry standards. 

Alternatively, it integrates with the SKF Enlight ProCollect app, offering a comprehensive suite 

for in-depth condition monitoring, including data collection, analysis, and management within 

maintenance workflows. For a more comprehensive vibration data collection and analysis, SKF 

offers the SKF Microlog Analyzer dBX. This system allows simultaneous tri-axial 

measurements and employs SKF’s fastest vibration analysis method, Multi-Point Acquisition 

(MPA). The system effectively interfaces with SKF's condition monitoring software, such as 

SKF @ptitude Analyst and SKF @ptitude Observer, enabling in-depth data analysis and 

efficient management. 

• SKF @ptitude Observer focuses on real-time monitoring and diagnostics with advanced 

vibration analysis tools like FFT and Power Cepstrum. It employs Protean Diagnosis 

(diagnostic tool developed by SKF) for automatic fault detection, statistical alarm 

calculations, and adaptive alarming to reduce false positives. The platform excels in 

transient analysis with specialized graphing tools like Bode and Nyquist plots, enabling 

Figure 15. 
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detailed evaluation during machine startup and shutdown. Additionally, it offers historical 

trend analysis and multi-layer alarms for comprehensive machine condition monitoring. 

• SKF @ptitude Analyst specializes in advanced diagnostics and post-processing, featuring 

tools like acceleration enveloping (gE) for bearing fault detection, Harmonic Activity 

Locator (HAL) for prioritizing fault likelihoods, and Cyclic Time Average (CTA) for gear 

fault diagnostics. It leverages Digital Signal Processing (DSP) for in-depth spectral analysis, 

including waterfall plots and derived points for virtual data modelling. With event capture 

capabilities, statistical alarm calculations, and transient data integration, it enables 

predictive maintenance and detailed root cause analysis. 

 

For continuous monitoring, SKF Axios offers a simple, wireless, and scalable end-to-end 

predictive maintenance solution. Developed in collaboration with Amazon Web Services 

(AWS), SKF Axios combines SKF’s expertise in rotating machinery and predictive 

maintenance with AWS’ industrial AI services to provide a cost-effective, cloud-based 

condition monitoring system. SKF Axios includes its own sensors capable of collecting and 

analysing 3-axis vibration and temperature data to detect equipment anomalies and notify users 

of abnormal conditions, with detailed information displayed through a dedicated app. When 

such conditions are detected, users receive alerts to take timely maintenance actions, preventing 

potential failures. Historical trend data forms the foundation of its machine learning algorithms, 

enabling smarter and more accurate anomaly detection as more data is gathered. 

Moving to computer vision solutions, according to Evolution Technology Magazine from SKF, 

SKF has developed an AI-powered computer vision system to evaluate bearing damage 

automatically aiding in diagnostics and extending component life. The system uses a neural 

network image-recognition algorithm trained on thousands of images from SKF’s archives. 

Unlike traditional machine-vision methods, it operates effectively in real-world conditions, 

handling imperfect angles and cluttered backgrounds. The AI tool identifies areas of interest, 

classifies damage type and severity, and focuses on failure modes that account for 80% of 

service issues, as defined by ISO 15243:2017. Figure 16 illustrates examples of input images 

containing bearing damage (left) and the resulting output (right), where the AI tool displays the 

detected damage in the form of bounding boxes with their corresponding ISO failure mode 

classification. 
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Training involved tagging images with failure modes and testing the algorithm against expert 

evaluations to refine its accuracy. Since its deployment, it has begun assisting customer support 

teams and remanufacturing personnel, with the system continually learning alongside 

experienced staff. Future plans include offering the tool as cloud-based software, allowing users 

to upload bearing images for instant analysis and decision-making on remanufacture suitability. 

SKF is also exploring integration with condition monitoring and machine control systems to 

automate root-cause analysis and address reliability challenges more effectively. 

 

6.1.8 STMicroelectronics 

STMicroelectronics is a global semiconductor company that designs and produces innovative 

electronic solutions for embedded systems. It offers a comprehensive solution for motor fault 

detection and classification, focusing on predictive maintenance. Using STM32 

microcontrollers and NanoEdge AI Studio software, users can develop machine learning 

models to detect and classify motor faults, including bearing issues, enabling real-time 

monitoring and early detection of potential failures to enhance equipment reliability and reduce 

downtime. The solution integrates a 3-axis accelerometer featured on the STEVAL-PROTEUS1 

wireless smart sensor evaluation board and NanoEdge AI Studio, which processes the sensor 

data to provide real-time analysis and decision-making in embedded systems. NanoEdge AI 

Studio allows developers to create optimized tinyML libraries for anomaly detection, outlier 

detection, classification, and regression with minimal data and no advanced AI expertise, 

enabling flexibility in edge AI applications. NanoEdge AI Studio performs both learning and 

inference directly on STM32 microcontrollers, streamlining the development process, reducing 

time and cost, and supporting various sensors and physical inputs such as acceleration, pressure, 

and temperature.  

Figure 16. Adapted from Evolution Technology Magazine from SKF. 
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Key features include: 

• Custom Library Generation: Create libraries optimized for accuracy, confidence, inference 

time, and memory footprint. 

• Integrated Tools: Includes sampling finders, dataloggers, emulators, and tools for 

performance validation and testing. 

• Scalability: Compatible with STM32 microcontrollers, including Cortex-M0-based 

devices, with native support for STM32 boards. 

By combining STMicroelectronics’ hardware and software innovations, NanoEdge AI Studio 

provides a robust platform for developing advanced predictive maintenance solutions in 

embedded systems. 

 

6.2 Observations and Insights on Commercial Solutions 

Since companies do not publicly disclose the specifics of their AI implementations, 

understanding the extent and manner of its use in the discussed solutions remains challenging. 

Commercial solutions for bearing fault monitoring increasingly leverage artificial intelligence 

to enhance functionality and improve accuracy. Machine learning algorithms are central to these 

systems, offering capabilities such as automated fault detection, anomaly detection, fault 

classification, and Remaining Useful Life prediction. By analysing operational data such as 

vibrations, temperature, acoustic emissions, and visual inputs, these systems enable predictive 

maintenance strategies and help optimize equipment performance. A notable feature of these 

ML-based approaches is their ability to improve over time through feedback mechanisms. 

Technicians provide insights into detected anomalies, which refine the ML models, enhancing 

their ability to predict similar abnormalities in the future. In parallel, these ML models can be 

complemented by an ISO threshold model that evaluates vibration magnitude to assess machine 

health, offering an additional layer of analysis independent of technician input. This 

combination of approaches strengthens the system’s ability to facilitate proactive maintenance 

and health monitoring. Often integrated into embedded or edge devices, ML models enable 

real-time monitoring, which supports timely anomaly detection and equipment health 

assessments. 

Despite the effectiveness of these systems, their implementation often faces challenges such as 

integration complexity, cost issues, and computational demands. Many tools rely on predefined 
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fault libraries and statistical models to generate actionable insights. While useful in standard 

conditions, these approaches can struggle to adapt to novel or complex fault scenarios. 

Advanced methods such as convolutional neural networks (CNNs) are occasionally applied for 

tasks like identifying damage patterns through visual analysis, but their adoption remains rare 

due to computational and data requirements. Techniques like transfer learning and domain 

adaptation are gaining significant attention for their potential to improve model robustness 

across diverse operating conditions but are not yet widely implemented. Access to diverse and 

realistic datasets is also crucial for advancing ML models. Companies manufacturing condition 

monitoring systems, particularly bearing manufacturers, often possess proprietary datasets 

collected under varied and realistic operating conditions. These datasets provide a competitive 

edge by enabling more refined and context-specific AI models, but restricted access limits 

broader research advancements and inhibits collaboration between academia and industry. 

To strengthen their capabilities further and align more closely with academic advancements, 

commercial solutions could focus on: 

• Model Interpretability: AI-generated insights must be clear, actionable, and easily 

understood by non-expert users. Incorporating explainable AI techniques can help achieve 

this, fostering trust and usability in industrial applications. 

• Integration and Standardization: Seamless integration of AI systems into existing 

maintenance workflows, coupled with adherence to established industrial standards, is 

essential for enabling broader adoption and compatibility across diverse operational 

environments. 

• Scalability and Affordability: Designing solutions that are adaptable to diverse industrial 

scales and budget friendly. 

• Advancing AI Methods: Incorporating techniques like transfer learning, domain adaptation, 

and deep learning to enhance performance across variable conditions and data 

environments. 

By addressing these areas, commercial solutions have the potential to become more robust, 

adaptable, and aligned with both practical industrial requirements and cutting-edge academic 

innovations. 
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Chapter 7 

7 Conclusions 
 

 

In this thesis, we reviewed the applications of artificial intelligence in bearing fault detection, 

diagnosis, and prognosis, along with commercial engineering solutions in the field. After 

reviewing around 150 articles and examining some of the most prominent commercial solutions 

that explicitly mention the use of AI, two major aspects emerged: a general lack of labelled data 

from real industrial settings, and a noticeable gap between academically proposed solutions and 

the actual AI implementations in industrial practice, partly due to companies not publicly 

disclosing the specifics of their AI methodologies. 

The lack of labelled data from real industrial settings arises from practical constraints such as 

the risks associated with running machines in faulty conditions, the extended time required for 

degradation, and the variability in operating conditions. These challenges hinder the creation of 

representative datasets and lead to poor performance of deep learning models trained on 

laboratory data, as distribution discrepancies often arise between training and testing 

environments. Proprietary datasets collected under real-world operating conditions provide a 

competitive edge, though restricted access limits broader research progress. While public 

datasets are widely used to advance research, they face issues such as limited realism, imbalance 

in fault representation, quality inconsistencies, and insufficient diversity and transferability. 

Addressing these data limitations is essential for the development of robust, scalable AI models 

capable of supporting industrial fault diagnostics. 

Regarding the gap between academic and industrial solutions, a review of the literature 

shows that deep learning and hybrid approaches are widely employed in bearing fault 

monitoring. Transfer learning has emerged as a particularly effective solution in scenarios with 

limited labelled data, addressing distribution discrepancies between controlled experiments and 

real-world applications. Notably, this technique has become a focal point of research, as it 

allows pre-trained models to adapt to new domains, proving invaluable when operational data 

is imbalanced or scarce. However, while transfer learning shows great promise for improving 

model robustness across diverse operating conditions, it appears to be not explicitly mentioned 

in industrial solutions. Convolutional Neural Networks, often paired with transfer learning, 
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have demonstrated high effectiveness in the research context of bearing fault diagnosis. This 

combination addresses CNNs reliance on large datasets and mitigates the risk of overfitting, 

creating robust and efficient solutions. CNNs, which excel at analysing images and 2D data, 

have been employed for examining bearing surface images and spectral representations, 

effectively identifying surface defects and fault patterns. Their role in image segmentation 

further demonstrates their versatility, as they can extract spatial and hierarchical features critical 

for fault analysis. For example, the 89th NTN Technical Review (2022–2023) explicitly 

highlighted CNNs applications in this context, underscoring their relevance in both academic 

and industrial advancements. Despite their potential, CNNs and other advanced methods remain 

limited in industrial solutions. Based on publicly disclosed information, these systems seem to 

primarily rely on classic machine learning algorithms, rather than advanced methods such as 

CNNs, for tasks like anomaly detection, fault classification, and Remaining Useful Life (RUL) 

prediction. These approaches are effective under standard conditions but often struggle to adapt 

to novel or complex fault scenarios. Additionally, many systems rely on predefined fault 

libraries and statistical models to generate actionable insights, often requiring human feedback 

and intervention for tasks like data interpretation, system tuning, and decision-making in 

complex scenarios. To further enhance their robustness and adaptability, commercial solutions 

could focus on improving model interpretability, standardization, scalability, and integration 

into existing workflows. Explainable AI techniques, for instance, can facilitate understanding 

of AI-generated insights, fostering trust and usability.  

In conclusion, transfer learning and CNN-based methodologies have emerged as indispensable 

tools for advancing intelligent fault diagnosis. While transfer learning has primarily been 

explored in academic research, its potential indicates promising applications in industrial 

settings, particularly for adapting AI models to diverse operating conditions and improving their 

robustness. Advancing the application of these methodologies, along with other deep learning 

techniques, is crucial for addressing data-related limitations and enhancing performance across 

variable environments. Additionally, the sharing of industrial datasets could significantly 

strengthen data-driven applications, enabling the creation of more efficient, accurate, and 

flexible condition monitoring solutions. Bridging the gap between academic and industrial 

solutions requires further investigation into the development of scalable, easily integrable, and 

interpretable AI-driven approaches, which would ultimately enhance the reliability and safety 

of mechanical systems.  
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