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Chapter 1

Introduction

1.1 Thesis objective

This thesis work is devoted to providing force traceability at microscale and

nanoscale level in the context of Atomic Force Microscopy. Although a pro-

cedure exists to ensure metrological traceability to SI units for nanoscale dis-

placements in the X and Y horizontal axes and the Z vertical axis, a method

has not yet been developed for ensuring accurate and traceable results for

nanoscale forces. To address this, an indirect approach is employed, which

derives nano-forces values from the spring constant of the cantilever [1].

For this purpose, Sader’s formula [2] was selected and its parameters that

contribute to the calculation of the spring constant where investigated along

with a detailed uncertainty analysis.

Experimental activities were conducted to measure the resonant frequency

and quality factor of several cantilevers, employing the micro Laser Doppler

Vibrometer and the Scanning Electron Microscope (SEM) available at INRiM.

Cantilevers of different types and geometries, used in AFM for biological

applications, were analyzed, with a thorough assessment of the associated un-

certainty budget. To ensure a comprehensive analysis, a type of cantilever

intended for mechanical applications was also considered in order to validate

the effectiveness of the method in different contexts.
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Chapter 1 - Introduction

1.2 Atomic force microscopy

Atomic Force Microscopy (AFM) originated as an advancement over Scanning

Tunneling Microscopy (STM). Unlike the latter, which is limited to the study

of conductive and semiconductive surfaces, AFM offers a wide range of appli-

cations due to its ability to analyze nonconductive materials such as polymers,

ceramics, composites, glass, and biological samples, among others.

AFM is extensively employed in material science for surface imaging, property

measurement, and nanoscale manipulation.

The atomic force microscope (AFM) has established itself as a highly effec-

tive instrument for the quantitative measurement of nano-Newton scale forces

across various systems but the necessity for precise calibration of AFM can-

tilevers, the core sensing components of the device, has grown alongside the

increasing utilization of AFM for assessing material properties [3].

The interaction forces between the probe tip (mounted on a flexible can-

tilever) and the sample induce deflections in the cantilever, which reveal the

topographical, morphological, or rheological properties of the sample [4].

Figure 1.1: AFM main components

The atomic force microscope (Figure 1.1) consists of four basic parts:

• a cantilever equipped with a probe that interacts with the sample,

• a diode laser whose beam is aimed at the back of the cantilever,
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Chapter 1 - Introduction

• a four-quadrant photodetector that detects the deflection of the can-

tilever during interaction with the sample surface,

• a piezoelectric scanner that allows the distance between the cantilever

and the sample along the z-axis to be adjusted via a feedback mecha-

nism, as well as controlling motion along the x- and y-axes through the

application of voltage ramps.

Depending on the interaction forces between the cantilever tip and the

analyzed surface, as well as the surface characteristics (material, shape, and

surface features), the Atomic Force Microscope (AFM) can operate in three

main modes. These modes differ in the relative motion between the cantilever

and the surface:

• Contact mode: the sample topography is provided by the deflection of

the cantilever which is proportional to the tip-sample interaction forces

(see Figure 1.2).

Figure 1.2: Contact mode between cantilever probe
and sample surface [5]

• Non contact mode: during measurements the cantilever the cantilever

is set into vibration by a piezoelectric actuator, as shown in Figure 1.3,

either with constant amplitude and variable frequency or with constant

frequency and variable amplitude.
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Chapter 1 - Introduction

Figure 1.3: Non-contact mode between cantilever probe
and sample surface [5]

• Intermitted contact mode or tapping: the cantilever oscillates, so that it

contacts the sample cyclically, as illustrated in Figure 1.4, and a force is

applied to detach the tip from the sample. As for the non-contact mode,

the cantilever is set into vibration by the piezoelectric actuator.

Figure 1.4: Tapping mode between cantilever probe
and sample surface [5]

The choice among the AFM’s three operating modes depends mainly on the

type of sample to be analyzed and the level of reliability required for the results.

The contact mode offers higher accuracy, but can damage soft surfaces due to

direct contact between the cantilever and the sample, making it more suitable

for rigid materials and hard surfaces.

In contrast, the non-contact mode is less invasive because the cantilever does

not make direct contact with the sample, but it tends to provide less accurate

measurements, especially on soft surfaces.

The tapping mode is frequently used for the analysis of biological samples,

as it balances the delicacy of contact with the sample and good resolution,

minimizing the risks of damaging the sample during scanning [6].
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Chapter 1 - Introduction

The interactions between the cantilever probe and the sample in the AFM vary

depending on the distance between the two, showing different types of forces

at play [7]:

• Long distances: electrostatic forces, due to surface charges, prevail;

• Nanometer distances: Van der Waals forces, related to interactions be-

tween molecular dipoles, come into play;

• Direct contact: interactions are mainly elastic, related to the mechanical

deformation of the sample.

In the intermediate case between the last two described, it is not easy to

determine the force of interaction between probe and sample because of the

simultaneous concurrence of attractive and repulsive forces given by molecular

probe-sample interactions.
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Chapter 1 - Introduction

1.3 AFM cantilevers’ structure and materials

The typical structure of an AFM cantilever sample consists of a sharp tip

placed at the free end of the microcantilever, which is supported at the other

end by a tip holder as shown in Figure 1.5. The interaction force between the

tip and sample deflects the cantilever.

Given the wide range of applications of AFM cantilevers, there are numerous

designs, the most common of which are triangular and rectangular geometries

as can be observed in Figure 1.6.

Figure 1.5: Typical structure of an AFM cantilever [8]

The cantilevers are made predominantly of silicon (Si) or silicon nitride

(Si3N4), while coatings may include gold, especially for biological applications,

or platinum or cobalt for other applications. Typical dimensions vary: length

ranges between 40 µm and 500 µm, width can be up to 50 µm, and thickness

varies between 0.5 µm and 8 µm.

(a) Rectangular cantilever [9] (b) Triangular cantilever [10]

Figure 1.6: Different cantilever geometries

The elastic constant (k) depends largely on the type of application and is

typically between 0.01 N/m and 50 N/m [11].

9
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Cantilevers used in AFM can be classified into two main categories based on

their elastic constant (k):

• Soft cantilevers: with an elastic constant typically less than 1 N/m, they

are mainly used in contact mode and tapping mode. These cantilevers,

being less invasive, reduce the risk of damaging delicate surfaces, such

as biological surfaces.

• Rigid cantilevers: with an elastic constant generally greater than 1 N/m,

they are suitable for non-contact mode applications due to their high

resonance frequencies.

This subdivision makes it possible to choose the most suitable cantilever ac-

cording to the nature of the sample and the mode of operation. Regarding

probes, most are pyramidal in shape with a triangular or square base (Figure

1.7) and an opening angle of about 70 degrees, not being overly sharp.

Figure 1.7: Pyramidal probe with square base [12]

However, for investigating samples with steep or deep walls, longer, thinner,

and more pointed probes, resembling a stinger (Figure 1.8), are used. These

are more suitable for reaching and analyzing intricate features on such surfaces

[12].
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Chapter 1 - Introduction

Figure 1.8: Sharper, thinner probe [12]

The spherical probe, shown in Figure 1.9, is less commonly used than the

two previously mentioned and is used in applications where the material in

contact with the probe is very soft or brittle.

Figure 1.9: Spherical probe [13]
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1.4 AFM applications

1.4.1 AFM for Investigating Cell Biophysical Proper-
ties

AFM has proven to be an exceptional technique for evaluating cell properties,

offering high-resolution images that provide a detailed topological view of the

cell. It is a powerful tool for cellular research, enabling nanoscale, non-invasive

imaging of cells at an atomic level [14].

This is due to the fact that it works by applying small forces by coming into

contact with the surface of the cell, as shown in Figure 1.10, and allows the

measurement of the mechanical properties of the cell such as elasticity and

stiffness.

Figure 1.10: Mechanical measurements of cells using AFM [15] with diamond
and spherical probes

Through this information, easily measured at different points of the cell

thanks to the ease of this method, it is possible to evaluate their variations to

identify diseased or potentially harmful cells [16].

AFM has been used, for example, to examine the mechanical properties of both

normal and cancerous human bladder cells by measuring their elasticity. This

is done by moving a sharp probe across the surface of the cells; when the probe

contacts the cell membrane, it applies a small, controlled force and the degree

to which the cell deforms under this force is recorded, allowing researchers to

determine the stiffness or elasticity of the cell, quantified by Young’s modulus.

Cancerous and normal bladder cells were examined and the data showed that

the cancerous cells were more deformable than normal cells.

More generally, it has been observed that the elastic constant varies between
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cancer cells and healthy cells. However, whether this constant is higher or lower

in cancer cells than in normal cells depends largely on the type of tumor.

Different neoplasms show distinct mechanical properties, with some cancer

cells exhibiting greater stiffness, while others are softer than their healthy

counterparts [17].

Not only in terms of elastic constant, but other mechanical characteristics of

cells, such as surface roughness, have also been observed to vary significantly

between malignant and healthy cells.

For example, a significant increase in surface roughness has been documented

in leukocytes from leukemia patients compared with healthy white blood cells.

Similarly, breast cancer cells showed a rougher surface than normal cells [14].

These findings suggest that AFM measurements could serve as a potential

marker for differentiating between normal and cancerous or malignant cells

[18].

1.4.2 AFM for investigating mechanical properties of
samples

AFM finds wide use in mechanical applications, particularly for the analy-

sis of surface properties. In the case of roughness evaluation, the microscope

enables nanometer-accurate reconstruction of sample topography by recording

displacement along the axis z, usually operating in contact mode to ensure con-

tinuous contact with the surface. In addition, surface analysis by AFM allows

other key parameters, such as homogeneity, to be determined and mechanical

properties, such as wear resistance, to be obtained indirectly.
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1.5 The role of metrological characterization

It is essential that an atomic force microscope is metrologically characterized to

ensure the acquisition of accurate and traceable results. Metrological traceabil-

ity, a cornerstone of modern measurement systems, ensures that instruments

produce data that are reliable and comparable to internationally recognized

standards. A reportable result, in fact, is intrinsically linked to such standards,

enabling comparison and reproducibility of measurements.

In the case of AFM, the relative positions between the cantilever tip and the

sample are metrologically characterized and thus referable to the International

System (SI). However, in order to metrologically determine the rheological

properties of materials, the nanoforces must be referable. Currently, these

forces do not possess a recognized referability system.

To fill this gap, we aim to establish the metrological referability of the elas-

tic constant of the cantilever, a crucial quantity to ensure the reliability of

nanomechanical measurements.

Accurate characterization of the elastic properties of these cantilevers is es-

sential for the realization of a functional metrological AFM, as it enhances

the reliability of quantitative data and experimental findings and is crucial

for numerous applications, particularly in the field of mechanical properties of

materials. For example, in sensitive imaging, the measurement of forces, that

is linked to the elastic constant, becomes essential to ensure that they are not

excessively high, as excessively high forces could deform soft materials, com-

promising the accuracy of the acquired topography and leading to erroneous

conclusions regarding the surface structure of the sample [6].

In the biological field, the ability to obtain consistent and repeatable results

would be critical in fostering wider use of AFM in clinical and medical applica-

tions. In the determination of cellular elasticity, an indicator of many biological

properties being studied in the biomedical field, AFM often provides highly

variable results.

This variability is mainly due to instrumental errors arising from inaccuracies

in the measurement of the elastic constant of the cantilever. Such inaccura-

cies can compromise data consistency, undermining the reliability of the AFM
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as a tool for quantitative biological assessments [16]. In this context, proper

metrological calibration of the elastic constant is therefore essential to ensure

reliable and reproducible measurements, avoiding errors that could affect the

validity of scientific observations.

Knowing the uncertainty associated with measuring the elastic constant of the

cantilever also allows to determine a range of variation of the measurement.

In this range, if repeated measurements are made, the results will not be able

to be adequately distinguished due to instrumental limitations or other un-

certainties. In other words, if two measurements fall within the defined range

of uncertainty, it is not possible to distinguish with certainty which is the

“true” value, since the observed difference may fall within the margins of error

established by the instrument used.
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State of the art

2.1 Overview of AFM Measurements

A functional metrological AFM is anticipated to deliver traceable and pre-

cise quantification of material properties at the nanoscale. As explored in

Section 1.5, metrological AFM facilitates the quantification of both in-plane

and out-of-plane topographical, dimensional, and morphological properties of

nanoparticles and nanostructures of various types, with sub-nanometer accu-

racy.

If the applications were not in nano-scale the solution to calculate the de-

flection would be simply through referred masses, but this becomes difficult in

nano-scale because the referability of the masses and their calculation becomes

quite complex and imprecise.

To address this shortfall, nanoscale forces are indirectly traced back from the

elastic properties of the cantilevers [1]. Determining the elastic constant of a

cantilever with accuracy and reportability represents a significant methodolog-

ical challenge.

Many approaches proposed for its calculation rely on parameters that are diffi-

cult to measure accurately, such as the geometric dimensions of the cantilever

(length, width and thickness), which are frequently involved in calculation for-

mulas in terms raised to the square or third power.

These parameters, which are essential for calculating the elastic constant, are

susceptible to measurement errors that compromise the accuracy of the re-

sults. In addition, some methods employ external objects-such as additional

masses-to indirectly calculate the elastic constant, but even these objects must

16



Chapter 2 - State of the art

be measured with high precision, introducing additional uncertainties.

These inherent difficulties greatly complicate obtaining a reliable and repeat-

able value of the elastic constant, which is essential to ensure correct measure-

ments in metrology applications conducted by AFM.

17
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2.2 Existing methods for the characterization

of cantilever beams

Numerous theoretical and experimental methods have been developed to cal-

ibrate AFM cantilevers, with a primary focus on determining the spring con-

stant. Although the term ”calibration” is widely used within the AFM com-

munity, it is not entirely appropriate when referring to the evaluation of these

elastic properties. A more accurate term would be ”metrological characteri-

zation.” Nevertheless, to maintain consistency with common practice, we will

continue to use ”calibration” as a synonim in this context.

The methodologies that have been explored in recent years can be categorized

into three main categories which will be explored in more detail in the next

sections.

It should be remembered, however, that the purpose of this thesis is not to

compare these methodologies, but rather to show the motivations that led to

the choice of Sader’s method rather than others and this will be explained

considering the limitations of each method.

2.2.1 Dimensional method

The first methodology for calibrating AFM cantilevers is known as the dimen-

sional method. This approach is based on the precise measurement of the

cantilever’s geometrical properties, such as its length, width, and thickness,

using advanced dimensional techniques.

By accurately determining these physical dimensions, it is possible to estimate

the cantilever’s spring constant, which plays a crucial role in its mechanical

response.

This method offers a straightforward and non-invasive means of calibration,

relying solely on the physical characteristics of the cantilever, without requir-

ing complex external forces or interactions.

Among the methods that rely most heavily on the dimensional characteris-

tics of the cantilever to determine the elastic constant, one of the best known

is the Euler beam equation (2.1) which is based on the assumption that the

18
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cantilever acts as an elastic beam subjected to an applied force:

k =
Et3w

4L3
(2.1)

where:

• E is the elastic modulus,

• t is the thickness of the cantilever,

• w is the cantilever’s width,

• L is the lenght of the cantilever.

Or in the case where the cross section of the cantilever is not rectangular, the

equation becomes:

k =
3EI

L3
(2.2)

where I the moment of inertia of the cantilever beam.

However, this method is accurate mainly for rigid cantilevers and does not

provide reliable results in the case of soft or very soft cantilevers, particularly

those with an elastic constant less than 0.1 N/m, where the deformations are

no longer well described by Euler’s approach [19].

19
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2.2.2 Static experimental methods

Static experimental method for calibrating the spring constant and effective

mass of AFM cantilevers rely on direct measurement of external reference prop-

erties such as known masses.

In particular, a well-known static method involves attaching known masses to

the cantilever tip and measuring the resulting changes in resonant frequency.

AFM cantilevers, typically V-shaped or rectangular in cross-section, can be

modeled as simple rectangular beams, with V-shaped cantilevers approximated

by two parallel rectangular beams [20]. This allows the system’s dynamics to

be described using relatively simple theoretical models.

However, while theoretically sound, this method may present limitations in

practice. It relies on several approximations, particularly in modeling can-

tilever geometry, and is sensitive to experimental inaccuracies in mass addition

and frequency measurement. Furthermore, attaching masses can alter the can-

tilever’s mechanical properties, introducing non-ideal effects that compromise

the precision of the spring constant determination.

Another significant limitation of this method is that, as in the case of nano

forces, the additional masses used do not possess nanometer-level traceability,

and therefore its accuracy is highly dependent on the precision with which

these masses are measured.

Since the method relies on this measurement to determine the elastic constant

of the cantilever, any uncertainty in the quantification of the masses introduces

a significant margin of error into the results.

Another static method used to determine the elastic constant of the cantilever,

which originated as a variation of the additional masses method, is to use a

focused ion beam (FIB) to remove a defined volume from the cantilever, thus

reducing the uncertainty introduced by the external masses [21]. Although

this approach can improve accuracy, it has limited applications. In fact, the

results are repeatable and reportable only if the cantilever is made of silicon

and possesses an elastic constant greater than 0.7 N/m.

This limitation makes the method of little use for metrological characterization

of very soft cantilevers, such as those used in biological applications, where the
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elastic constant is often less than this value.

In general, considering both the mass method and the method based on the

use of focused ion beam (FIB), both have significant limitations in terms of

accuracy and variety of application.

These methods are not ideal for comprehensive metrological characterization

across all types of cantilevers, as they can be difficult to implement, require

complex set-up, or are invasive, especially for soft cantilevers.
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2.2.3 Dynamic methods

Dynamic methods for calibrating the spring constant of AFM cantilevers are

grounded in analyzing the cantilever’s resonant response [6].

Unlike static methods, which often involve physical interaction with the can-

tilever, dynamic techniques offer a non-invasive approach by exploiting the

cantilever’s vibrational characteristics. This approach is particularly beneficial

for accurately determining cantilever properties without introducing external

forces or altering the cantilever’s natural behavior.

Among the dynamic methods, three key methods stand out for their effec-

tiveness and widespread use: the Cleveland method, the thermal noise method

and the Sader method.

The Cleveland method utilizes changes in resonant frequency to infer the

spring constant, offering a straightforward yet robust calibration approach [20].

Through this method the elastic constant is calculated with the formula:

k = 2π3wL3

(
ρ3lever
E

)1/2

f 3
R (2.3)

where:

• ρlever is the density of the cantilever;

• fR is the resonant frequency;

• w, L are the dimensional parameters;

• E is the Young Modulus of the cantilever.

The cantilever’s density and Young’s modulus are often nominal values, which

inevitably introduces uncertainties. In the thermal noise method, the average

energy of the cantilever is related to its thermal oscillation, this approach

therefore uses thermal fluctuations to determine the elastic constant without

applying external forces [22]:

k =
kB T

χ2
(2.4)
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where:

• kB is the Boltzmann constant,

• T is the temperature in Kelvin,

• χ is the thermal noise which is the area subtended by the resonance

frequency peak.

Sader’s method determines the elastic constant of the cantilever by considering

a combination of dimensional parameters, dynamic parameters of the cantilever

and hydrodynamic parameters of the surrounding fluid. The formula used will

be analyzed in more detail in Section 3.1.1.

These dynamic methods provide significant advantages in terms of accuracy

and non-invasiveness.

23
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2.2.4 Advantages in employing Sader’s method

Sader’s method is widely used for the metrological characterization of can-

tilevers because of its accuracy and repeatability.

It is also distinguished by the fact that it does not require the use of external

elements such as additional masses and is noninvasive.

The uncertainties associated with this method are generally lower than those

of the thermal noise method [23], and, by introducing an invariant term, the

formula does not depend on either the mass or the density of the cantilever,

as in Cleveland’s method, which are parameters difficult to determine with

metrological accuracy and traceability.

Sader’s method is also used for the calibration of cantilevers in the biological

field, including applications involving cantilevers immersed in different types

of hydrogels [16], in order to minimize errors associated with the calculation

of the elastic constant.

From the standpoint of determining the uncertainty budget, Sader’s formula-

tion also allows easy identification of the parameters that contribute most to

the final uncertainty of the cantilever, allowing these parameters to be refined

once identified. In particular, the determination of the quality factor that

appears in Sader’s formulation seems to be one of the most influential param-

eters, along with dimensional measures, in increasing the overall uncertainty.

Therefore, in this thesis, significant effort was also devoted to improving the

uncertainty related to these parameters, also with the help of use advanced

tools such as the Micro Laser Doppler Vibrometer and the Scanning Electron

Microscope (SEM) available at INRiM.
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Metrological characterization of
Cantilevers

3.1 Description of the method

3.1.1 Sader’s method

The Sader equation that will be used for this thesis, starts from the governing

equation for the dynamic deflection of a thin plate that has small deflections

[9]. Compared to the classic mass-spring system, a thin plate is a continuous

body, therefore the mass is not concentrated in a single point but is distributed

along its entire surface and for this reason, density rather than mass appears

in the formula.

D∇4w(x, y, t) + σ
∂2w(x, y, t)

∂t2
= q(x, t, t) (3.1)

where σ is the mass per unit area of the plate, q is the external transverse

loading per unit area and D represents the flexural rigidity:

D =
Eh3

[12(1− ν2)]
(3.2)

where E is Young’s modulus, ν is Poisson’s ratio, and h is the thickness of the

plate. The deflection and the external transverse load are in function of the

spatial coordinates x and y and of time t. This (PDE) is nothing more than

a more specific version of the Euler-Bernoulli equation. Sader solves eq 3.2

under appropriate boundary conditions, mentioned in [24], and with the aim

of finding first the resonance frequency, not the deflection function. To do this

Sader decides to use the effective mass Me, a quantity that is invariant under
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certain conditions which is the fraction of two quantities, λk and λω. This

concept derives from the Rayleigh method [25], which is often used in me-

chanical engineering; it reasons on the concept of total energy s conservation,

composed of kinetic energy and potential energy. Rayleigh therefore state that

the ratio between these two quantities must remain unchanged, consequently

obtaining the so-called Rayleigh quotient. With a similar reasoning Sader then

introduced the terms λk and λω:

λk =
α2k

D
(3.3)

λω = ωα2

√
σ

D
(3.4)

where α is the root square of the area of the plate, k is the elastic constant,

while the other quantities have already been described in the section above.

The ratio between these two quantities gives:

Me =
λk

λω

=
k

mω2
(3.5)

Finally, Sader, studied the dependence between Me and the ratio L/b of the

cantilever, length and width respectively, and deduced that the effective mass

remains an almost invariable quantity for ratios of L/b as shown in Figure 3.1

that exceed approximately 4, and it is:

Me = 0, 2427 (3.6)

Figure 3.1: Effective mass in function of L/b ratio [9]
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and which is also an dimensionless quantity. Without delving into the

theoretical background of the analytical demonstration, the formula obtained

after numerous mathematical steps for the determination of the elastic constant

is:

k = MeρcbhLω
2
vac (3.7)

where ωvac is the fundamental resonant frequency of the cantilever in vacuum,

L, b and h are the length, width and thickness of the cantilever respectively,

ρc is its density and Me is the previously introduced effective mass term. Con-

sidering that the resonant frequency in vacuum can be written in relation to

the resonant frequency in fluid ωf introducing the hydrodynamic function Γ,

specifically its real part, and the density of the fluid ρf as:

ωvac = ωf

(
1 +

πρfb

4ρch
Γr(ωf )

)1/2

(3.8)

and considering that the term ρch can be substituted by:

ρch =
πρfb

4
[QfΓi(ωf )− Γr(ωf )] (3.9)

where Γi is the imaginary part of the same hydrodynamic function and Qf is

the quality factor in fluid. Combining these equations and using the resonant

frequency in Hertz fR instead of the angular resonant frequency in the formula

we obtain that the dynamic spring constant:

k = 7, 5246ρairb
2LΓi(Re)f 2

R (3.10)

which is our final equation.

3.1.2 Effective value of the dynamic spring constant

In many cases, the cantilever probe, which coincides with the position in which

the load is applied, is positioned not exactly at the tip of the cantilever but

10-15% back from it [9], a distance that is referred to as ∆L. For this reason,

the calculated spring constant, which assumes that the load is placed at the tip

of the cantilever, turns out to be lower than expected. To obtain the effective

27



Chapter 3 - Metrological characterization of Cantilevers

value of the spring constant of the cantilever, the following formula is used:

keff = k

{
L

L−∆L

}
(3.11)

3.1.3 Rasmussen’s model

To calculate the properties of the air that are included both directly in the

final formula and in the calculation of the Reynolds number from which the

hydrodynamic function is derived, the Rasmussen method was used, which is

the method that is currently being employed for the calibration of microphones

on an international standard [26]. According to Rasmussen’s model we can

calculate the air density from:

ρair = 3, 84349 · 10−3 ps
ZT

(1− 0, 378 · xw) (3.12)

and the air dynamic viscosity from:

µair = (a0 + a1T + (a2 + a3T )xw + a4T
2 + a5x

2
w) · 10−8 (3.13)

where the an terms are given in [26], xw is the molar fraction of water va-

por in air as a function of experimental relative humidity RH, static pressure

ps, enhancement factor f(ps, T ), and saturation water vapor pressure psv(T )

In this reference [26] , the formula for calculating the compressibility factor

Z(ps, T, xw), along with the definition of the associated terms, is also provided.

3.1.4 Hydrodynamic function

As mentioned in the previous Section, the Reynolds number is used as an inter-

mediate result to be able to calculate the imaginary part of the hydrodynamic

function that appears in the final Sader’s formula. For a beam with circular

cross section the formula for the hydrodynamic function Γcirc(ω) is [27]:

Γcirc(ω) = 1 +
4iK1(−i

√
iRe)√

iReK0(−i
√
iRe)

(3.14)

where K0 and K1 are the modified Bessel function of the third kind, in which

the variable is −i
√
iRe, where Re is the Reynold’s number, calculated as:

Re =
ρairω0b

2

4µair

(3.15)
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where ρair and µair have been calculated through Rasmussen’s model. To cal-

culate the hydrodynamic function for rectangular cantilevers, which is the one

needed for our case of study, a correction Ω(ω) is applied to the hydrody-

namic function of circular beams Γcirc(ω). The hydrodynamic function for the

rectangular beam Γrect(ω) can then be expressed as:

Γrect(ω) = Ω(ω) Γcirc(ω) (3.16)

This correction Ω(ω) is a complex number were both the real and the imaginary

part are a rational function of τ = log10Re.

Ωr(ω) =
6∑

n=0

(Anτ
n) (Bnτ

n)−1 , (3.17)

iΩi(ω) = i
6∑

n=0

(Cnτ
n) (Dnτ

n)−1 . (3.18)

Where the numerical coefficients of the fit regression An, Bn, Cn, Dn are

provided in explicit form in [27]. In Figure 3.2 the relationship of the various

terms and how they contribute to the final formula are depicted.

Figure 3.2: Flowchart of Sader’s parameters’ relationships
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3.2 Determination of uncertainties

An in-depth analysis of uncertainty budget is expected to provide useful infor-

mation with the aim to improve the measurement precision of AFM cantilever

spring constant, supporting the “provisional” force traceability at nanoscale.

For definitions of guidelines for evaluating measurement uncertainties in metrol-

ogy, reference is made to the Guide to the Expression of Uncertainty in Mea-

surement, also called GUM. It represents an international reference standard

to ensure uniformity in the definition of uncertainties in scientific results.

Each constituent parameter of Sader’s formula xi is associated with its uncer-

tainty u2(xi). The calculation of the standard uncertainties, u2(xi), depends

on their classification type [28]:

• type A uncertainties, that are associated with input quantities that ran-

domly vary, are calculated as the square of the experimental standard

deviation or as the square of half-width of the interval of variability.

• type B uncertainties, that are related to input quantities that have not

been obtained from repeated observations, are evaluated by scientific

judgment based on all the available information on the variability of the

input quantity.

Considering the parameters included in Sader’s formula and therefore the pa-

rameters that are used to obtain them in particular can be classified in the

following way:

• dimensional quantities such as b, L, ∆L and dynamic quantities such as

fR and Q, have related standard uncertainties of type A because of their

intrinsic variability;

• quantities related to the air properties, i.e. the surrounding fluid in

which the cantilever is immersed, are determined by propagating type B

uncertainties so air temperature (T ), relative humidity (RH), and static

atmospheric pressure (ps), are provided according the instruments proper

resolution.
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Finally, the extended uncertainty of the spring constant is derived, consider-

ing the combination of the standard uncertainties of the input estimates. The

GUM states [28]:”The standard uncertainty of y, where y is the estimate of the

measurand Y and thus the result of the measurement, is obtained by appropri-

ately combining the standard uncertainties of the input estimates x1, x2, ..., xN .

This combined standard uncertainty of the estimate y is denoted by uc(y)”. The

combined standard uncertainty uc(y) is the positive square root of the combined

variance u2
c(y), which is given by:

u2
c(y) =

N∑
i=1

(
∂f

∂xi

)2

u2(xi) (3.19)

The expanded uncertainty U(y) is then obtained by multiplying the combined

standard uncertainty uc(y) by a coverage factor kp which depends on a pre-

ferred level of confidence in percentage. For this study, a confidence level of

95 % was chosen and consequently a coverage factor of k = 2.
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3.3 Description of the measurand

Measurements were made on six different types of cantilevers and, where pos-

sible, at different points along the length of the cantilever itself.

MikroMasch CSC38

The HQ Series AFM probes are designed for use in soft-contact applications,

with three distinct cantilevers integrated onto a single carrier chip. These

probes are designed for versatility in a variety of scanning scenarios.

Key attributes of the HQ Series include a consistent AFM tip radius, opti-

mized cantilever reflectivity, and reliable quality factor. The probes are coated

with a 30 nm layer of gold over a 20 nm underlayer of chromium, provid-

ing both electrical conductivity and chemical inertness. This coating improves

laser reflectivity for improved performance in both air and liquid environments.

The coated tips maintain a radius of less than 35 nm, ensuring accuracy during

measurements.

The coating process may induce a slight flexure in the cantilever, with

flexures of up to 3°. However, this effect is controlled and does not significantly

impact their performance in typical applications.

Figure 3.3: Schematic of CSC38 cantilever
(all dimensions are nominal)
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(a) Cantilever A (b) Cantilever B (c) Cantilever C

Figure 3.4: CSC38 seen from the microscope lens

MikroMasch XSC11

The HQXSC11 series AFM probes feature four different cantilevers, two on

each side of the carrier chip, and are designed for a wide range of applications.

These probes provide high uniformity of AFM tip beam, cantilever reflec-

tivity, and quality factor.

The cantilevers feature a wear-resistant 20 nm diamond-like carbon (DLC)

coating on the tip side. This coating is chemically inert and more hydrophobic

than silicon with a natural oxide layer. On the reflective side, an aluminum

coating increases the laser reflectivity of the cantilevers by approximately 2.5

times, improving their efficiency.

Figure 3.5: Schematic of XSC11 cantilever
(all dimensions are nominal)

This cantilever was found to be particularly fragile, as all those of this type

showed at least two broken tips out of four, it was decided to analyze the intact

side of one of the cantilevers supplied, respectively tip A and tip B.
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Figure 3.6: XSC11 tip A and B seen from the microscope lens

Bruker NPG10

The Bruker NPG10 cantilever is made of silicon nitride, with a triangular

geometry and 4 cantilevers. Its structure has a nominal thickness of 0.6 µm,

with a variable thickness between 0.4 and 0.7 µm. The back surface is coated

with a reflective gold, while the top side is made of a Ti/Au layer with a

thickness ranging from 45 to 5 nm. This type of cantilever is designed for low

bending, with a bend specification of no more than 2 degrees. Precise cantilever

orientation is important to avoid excessive stress, and DNP is recommended

for bending less than 4 degrees, especially for Bruker Dimension SPMs.

Figure 3.7: Schematic of XSC11 cantilever
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(a) Cantilever A (b) Cantilever B

(c) Cantilever C (d) Cantilever D

Figure 3.8: CSC38 seen from the microscope lens

Nanosensors Atec ContAu-10

Nanosensor Atec ContAu cantilevers are particularly suitable for samples with

small pattern sizes and steep sample features, due to their small half-cone an-

gles. The AFM tip has a height ranging from 15 to 20 µm and has a high

mechanical Q-factor, which ensures higher sensitivity during measurements.

The gold coating consists of a double layer of chromium and gold, approxi-

mately 70 nm thick, applied to both sides of the cantilever. The coating on

the tip gives the cantilever better conductivity, allowing electrical contacts,

while the coating on the detector side increases the reflectivity of the laser

beam by approximately two times, while preventing light interference inside

the cantilever. The coating process is optimized to reduce stress and increase

wear resistance, resulting in the cantilever bending due to stress being less

than 2 degrees. The schematic in this case is not provided as it consists of a

single tip on the tip holder.
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Figure 3.9: Atec ContAu-10 seen from the microscope lens

Olympus Biolever

The BioLever is a cantilever designed for advanced AFM applications, ideal for

studying biomolecules and biological samples in liquid environments. With its

short length of about 40 micrometers, it offers greater sensitivity and a rapid

response to changes in the shape of biomolecules, reducing relaxation times.

Its geometry minimizes thermal noise and damping in water, allowing for fast

and precise scanning.

The double-layer silicon tip makes it ideal for detailed observations of DNA,

proteins and cells. In addition, the silicon nitride cantilever reduces auto-

fluorescence, making it compatible with AFM systems combined with fluores-

cence microscopes.

Designed specifically for use in liquid, the BioLever mini offers high reso-

nance, allowing for fast and precise acquisition even on complex samples, and

includes pre-separated chips for immediate and convenient installation. The

Biolever has very small dimensions compared to other cantilevers and this

allows it to have a very high resonant frequency despite having the lowest

Young’s modulus. The schematic in this case is not provided as it consists of

a single tip on the tip holder.

36



Chapter 3 - Metrological characterization of Cantilevers

Figure 3.10: Biolever seen from the microscope lens

ParkSystems PPP NCHR

The PPP-NCHR model, produced by Nanosensors, is a cantilever character-

ized by a high resonance frequency. This is the only sample among the studied

cantilevers to have a high stiffness and to be used mainly for mechanical ap-

plications, such as evaluating the roughness of the surface; it was therefore

decided to include thisdifferent type of cantilever among those used mainly for

biological applications to evaluate the validity of the method also in different

contexts. The tip has a typical length between 10 and 15 µm and a radius

less than 10 nm, making it suitable for high-precision measurements. With a

spring constant of about 42 N/m and a resonance frequency of about 330 kHz.

The schematic in this case is not provided as it consists of a single tip on the

tip holder.

Figure 3.11: PPP-NCHR seen from the microscope lens
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3.4 Description of the measurement system

The dynamic vibrational response, encompassing resonance and damping char-

acteristics, was evaluated using the micro-Laser Doppler Velocimetry (µ-LDV)

technique. These quantities are determined by measuring the resonance fre-

quency ω0 and the quality factor of the cantilever Q0, by using a µ-LDV,

namely a Polytec laser Doppler vibrometer based on VibroFlex Connect front

and VibroFlex Compact sensor, with integrated camera and VIB-A-20XLENS

microscope lens.

The power of the laser is 1 mV and the laser spot size is about 2 µm2.

Figure 3.12: µ-LDV (Polytec laser Doppler vibrometer)

The cantilever is fixed on a proper support opportunely designed and re-

alized, shown in Figure 3.13, the µ-LDV is placed on an active anti-vibration

table.
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Figure 3.13: Design of the support

The frequency analysis is carried out by using a NI PXIe-1071, with a

sensitivity of 2, 5 · 103 m/s2/V, and a bandwidth of 500 kHz.

Figure 3.14: Settings for signal acquisition

The configuration for the data processing is described below:

• Time per record: t = 100 ms;

• Minimum record length: N = 200000.

These settings have been chosen accordingly to the Nyquist-Shannon’s theorem

which states that, to correctly sample a signal without loss of information, the

sampling frequency must be at least twice the maximum frequency present in

the signal. Therefore we have a resolution of ∆f :

∆f =
1

t
= 10 Hz (3.20)

and a sampling frequency fc:

fc =
N

t
= 2 MHz (3.21)
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Dimensional analysis of the cantilevers was performed using a Hitachi

TM3000 benchtop scanning electron microscope (SEM). SEM micrograph pro-

cessing was performed using the MountainsSPIP Academic v10.0 and Moun-

tainsMap Premium v10.0 metrology software from Digital Surf.

Figure 3.15: Hitachi TM3000 benchtop SEM

As previously mentioned, the analyzed samples consisted of cantilevers with

varying geometries and resonance frequencies, as well as two reference samples:

a 2D grating and a segmented sample. Note that the Pelco 633 grating refer-

ence sample was calibrated in INRiM using a laser diffractometer, as reported

in certificate No. 23-0686-01 issued on 2023 09-11. According to the certifi-

cate, the grating pitch along the X and Y axes is 1000 nm with an expanded

uncertainty (k=2) of 0.2 nm. The measurement traceability chain starts from

the measurement of the wavelength of the He-Ne laser used to illuminate the

sample. The Pelco 685 piecewise reference sample was calibrated in INRiM

using the metrological AFM, as reported in the certificate No. 23-0486-01 is-

sued on 2023-06-07. The traits reported by the certificate have the following

reported in the Table 3.1.
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Nominal pitch
[µm]

Average measured pitch
[µm]

Uncertainty (k=2)
[µm]

10 10,000 35
5 5,006 8
0,5 0,4998 3,0

Table 3.1: Pelco 685 grating pitch

The measurement traceability chain starts from the national standard of

the meter (Winters 268), for comparison with which the laser interferometers

integrated into the metrological AFM microscope for the control of the XY

lateral scan were calibrated. The images of the cantilevers are measured by

SEM at different magnifications, namely 200x, 250x 300x, 400x, 500x, 800x,

1000x, 1500x.

Figure 3.16 shows the SEM micrograph of the Pelco 633 reference sample,

which was used to determine the pixel-to-physical-length conversion factor,

using the same measurement conditions (same focus, brightness and contrast),

as the ones used for measuring the cantilevers. This calibration ensures pre-

cise measurements of the cantilever dimensions, critical for the metrological

characterization presented in this study.

The calibration process involves imaging the Pelco 633 reference grid (Figure

3.16) and analyzing its features to extract a profile (Figure 3.17). From this

profile, the correction factor, expressed as [µm/pixel], for the X and Y axes is

calculated, as summarized in Table 3.2. This ratio is then applied to convert

SEM measurements of the cantilever dimensions from pixel units to microm-

eters. The calibration process involves imaging the Pelco 633 reference grid

(Figure 3.16) and analyzing its features to extract a profile (Figure 3.17).

From this profile, two reference points are selected to ensure an accurate cal-

ibration. These points correspond to the first vertical ”dark line” (labeled as

point ”0”) and the third to last vertical ”dark line” (labeled as point ”1”)

along the extracted profile. Their positions are determined by identifying the

first and penultimate local minima in the Gray Level (GL) intensity, as shown

in Figure 3.17.

The distance between these two points is measured in terms of pixel units,
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and their GL values are recorded to verify that the points are well-defined

and distinct. The resulting measurements are summarized in Table 3.2, which

reports the horizontal distance in pixels and the GL difference between the

selected points.

Finally, the measured pixel distance is compared to the known physical

distance between the grid lines, as specified by the Pelco 633 reference sample

specifications. This comparison provides the pixel-to-physical-length conver-

sion factor (µm/pixel), which is crucial for converting SEM measurements of

cantilever dimensions from pixel units to micrometers. This precise calibration

ensures that the dimensional measurements of the cantilevers, presented later

in this study, are accurate and reliable.

Figure 3.16: SEM micrograph of the Pelco 633 sample at 1500x magnification
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Figure 3.17: Profile extraction

Parameters 0-1 Unit

Horizontal distance 597 pixel
Height difference 0,277 GL

Table 3.2: Data from the profile extraction

It is important to underline how to calculate the various dimensions of the

Bruker cantilever sample, which has the peculiarity of having a V-shaped tip.

Figure 3.18: Dimensions in a V-shaped cantilever

As shown in Figure 3.18, in the case of a V-shaped cantilever, the width b
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considered in the formula, d in the Figure 3.18, is calculated from the base of

the cantilever rather than perpendicular to the lateral cantilever arms.
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3.5 Description of the measurement

This section will discuss the process of analyzing data obtained from the mea-

surands and measurement systems described in the previous sections.

In the first analysis, the data coming from the frequency analysis carried out

by using a NI PXIe-1071 were exported directly to Excel. In Excel, the value

of the resonance frequency is obtained first approximately, looking for the rel-

ative maximum by looking within the range of nominal values present in the

product specifications. In particular, this is done by looking for the value

of the abscissas (frequencies) corresponding to the relative maximum on the

ordinates (amplitudes). To obtain an approximate experimental value of the

quality factor Q, we start by dividing the value of the relative maximum of the

amplitude corresponding to the resonance frequency by
√
2. This is also called

the -3 dB method since going down by 3 decibels is equivalent to 103/20 ≃
√
2,

or the half power points method since the power dissipated in a system with

viscous damping is proportional to the square of the oscillation amplitude, this

implies that the points characterized by possessing half the maximum power

are identified in frequency [29].

Figure 3.19: Graphical representation of the -3 dB method [29]

This single value of the amplitudes identifies two frequency values, f1 and

f2, symmetrical with respect to the maximum, represented by the resonance

frequency. We then proceed graphically by identifying among the experimental

points present the one that is closest, both to the left and to the right of the

peak, to the value calculated by dividing the maximum amplitude by
√
2, as

shown in Figure 3.20. We retrieve the corresponding frequency values, which
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will represent respectively f1 (Ωa in Figure 3.20), and f2 (Ωb in Figure 3.20).

The quality factor Q is obtained from the following formula:

Q =
fR

f2 − f1
(3.22)

We then proceed using the MATLAB software to perform a fitting using the

Lorentzian curve. The Lorentzian curve takes the shape of the peak that occurs

during resonance phenomena. It is defined by the formula [30]:

L(x;x0; γ) =
1

π
· γ/2

(x− x0)2 + (γ/2)2
(3.23)

where:

• x0 is the position of the peak;

• γ is the Full Width at Half Maximum (FWHM) what measures the width

of the curve;

• L(x) that describes the intensity of the signal in function of x.

The MATLAB code uses the lorentzfit function which uses a derivation of the

described formula. The most general version used is:

F (x) =
p1

(x− p2)2 + p3
+ p4 (3.24)

where:

• p1 controls the height of the peak and is proportional to the resonant

amplitude;

• p2 represents the central position (x0 in the standard formula);

• p3 proportional to the width of the curve and therefore to γ/2;

• p4 is a constant offset.

The script then uses a 1, 2, 3 and 4 parameter version of the function.
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Figure 3.20: Matlab script

This is the function that is the basis of the fitting that is used in the script.

In particular, initially in the script the experimental value of the resonant fre-

quency and quality factor obtained from the previous calculation is extracted

from Excel and also all the experimental values obtained from the NI PXIe-

1071. The vectors that will be used later are also now initialized. A windowing

is then done on the values of frequencies (x) and amplitudes (y) taken from Ex-

cel, centered in the value of the resonance frequency calculated in the Excel file

(”fres,actual” in Figure 3.21). It will depend on an integer variable t, which can

be varied depending on the peak considered. In particular, for each cantilever,

the t was chosen that not only visually best fitted the curve of the raw values,

the green curve in the graphs in Section 4.1, but also the one that produced the

results that were closest to the experimental values mathematically obtained

from the raw values. The procedure will be repeated through a while loop that

thanks to an index j will create three different windowings and therefore will

apply the Lorentzian fitting to the three different windowings obtained.
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Figure 3.21: Matlab script

We proceed by obtaining from each Lorentzian the value of the resonance

frequency, the values of the frequencies at -3 dB and therefore calculating the

value of the quality factor. We then calculate the average value of fR and

Q among the three obtained from the while loop and therefore the standard

uncertainties associated with them. The associated standard uncertainty with

uniform distribution is calculated using the following formulas:

ufR =
fR,max − fR,min√

12
(3.25)

uQ =
Qmax −Qmin√

12
(3.26)

These results will be used as input values in a different Excel file along with

the other input values:

• the dimensional parameters obtained from SEM (b, L, ∆L),

• quantities related to air properties (measured temperature, relative hu-

midity and static pressure).

The latter will specifically be used in the Rasmussen’s formulas described

in Section 3.1.3 and along with the width of the cantilever b and the res-

onant frequency fR will be used to determine the Reynolds number Re =

π ρair fR b2/(2 µair) and to it will be associated its combined uncertainty.

These two outputs will in turn be used as input terms in a further MATLAB

script in which the hydrodynamic function is calculated with the formulas out-

lined in Section 3.1.4. Lastly the obtained results are combined in the final

Sader’s formula and the propagation of uncertainties is calculated for each

factor of the formula to obtain the dynamic spring constant and its combined

uncertainty.
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Experimental results

4.1 Dynamic Results

The graphs below represent on the left the raw results obtained from the

cantilever analysis and reported on Excel, focusing on the first resonance peak

within the entire spectrum, on the right instead the processing of the raw data

on MATLAB.

In particular, in the MATLAB graph we find four curves: the green one

represents the raw data while the other three represent the three cycles of ap-

proximation with Lorentzians as explained in Section 3.5. In all the cantilevers

studied in this section, the point furthest from the base of the cantilever, i.e.

the tip, was considered as the investigation point, since it has a greater dy-

namic response and therefore clearer results are obtained.

The graphs compare the experimental data obtained from the raw results and

the data obtained from the MATLAB data analysis. In particular, two phe-

nomena can be noted from the graphs:

• Cantilevers with lower resonance frequencies 10-20 kHz, present raw data

with a lower density of sampled points, which leads to lower precision

in the representation of the signal and consequently the fitting of the

Lorentzians will be more unstable.

• At very high frequencies (300 kHz) a background noise occurred, proba-

bly due to the instrument used or to interference or disturbances in the

measurement environment or in the acquisition system, which introduced

distortions in the shape of the graph. This is particularly noticeable only
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in the Park tip since it has the highest resonance frequency.

4.1.1 MikroMasch CSC38 dynamic results

Tip A

(a) Tip A CSC raw data (b) Tip A CSC elaborated data

Figure 4.1: Comparison of Tip A CSC results

Parameter Experimental Analytical

Resonant frequency fR 22870 Hz 22860 Hz
Quality factor Q 46,67 51,32

Table 4.1: Comparison of Tip A CSC parameters

Tip B

(a) Tip B CSC raw data (b) Tip B CSC elaborated data

Figure 4.2: Comparison of Tip B CSC results
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Parameter Experimental Analytical

Resonant frequency fR 11930 Hz 11920,02 Hz
Quality factor Q 23,39 21,36

Table 4.2: Comparison of Tip B CSC parameters

Tip C

(a) Tip C CSC raw data (b) Tip C CSC elaborated data

Figure 4.3: Comparison of Tip C CSC results

Parameter Experimental Analytical

Resonant frequency fR 16200 Hz 16190,02 Hz
Quality factor Q 36 32,52

Table 4.3: Comparison of Tip C CSC parameters

4.1.2 MikroMasch XSC11 dynamic results

Tip A

(a) Tip A XSC raw data (b) Tip A XSC elaborated data

Figure 4.4: Comparison of Tip A XSC results
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Parameter Experimental Analytical

Resonant frequency fR 16450 Hz 16440 Hz
Quality factor Q 47 46,54

Table 4.4: Comparison of Tip A XSC parameters

Tip B

(a) Tip B XSC raw data (b) Tip B XSC elaborated data

Figure 4.5: Comparison of Tip B XSC results

Parameter Experimental Analytical

Resonant frequency fR 87500 Hz 87499,73 Hz
Quality factor Q 203,49 198,90

Table 4.5: Comparison of Tip B XSC parameters

4.1.3 Bruker NPG10 dynamic results

Tip A

(a) Tip A Bruker raw data (b) Tip A Bruker elaborated data

Figure 4.6: Comparison of Tip A Bruker results
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Parameter Experimental Analytical

Resonant frequency fR 61760 Hz 61750,38 Hz
Quality factor Q 85,78 85,90

Table 4.6: Comparison of Tip A Bruker parameters

Tip B

(a) Tip B Bruker raw data (b) Tip B Bruker elaborated data

Figure 4.7: Comparison of Tip B Bruker results

Parameter Experimental Analytical

Resonant frequency fR 21540 Hz 21530,05 Hz
Quality factor Q 46,83 45,07

Table 4.7: Comparison of Tip B Bruker parameters

Tip C

(a) Tip C Bruker raw data (b) Tip C Bruker elaborated data

Figure 4.8: Comparison of Tip C Bruker results
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Parameter Experimental Analytical

Resonant frequency fR 54310 Hz 54300,81 Hz
Quality factor Q 77,59 77,79

Table 4.8: Comparison of Tip C Bruker parameters

Tip D

(a) Tip D Bruker raw data (b) Tip D Bruker elaborated data

Figure 4.9: Comparison of Tip D Bruker results

Parameter Experimental Analytical

Resonant frequency fR 17530 Hz 17520,04 Hz
Quality factor Q 29,22 28,34

Table 4.9: Comparison of Tip D Bruker parameters

4.1.4 Nanosensors Atec ContAu-10 dynamic results

(a) Atec ContAu raw data (b) Atec ContAu elaborated data

Figure 4.10: Comparison of Atec ContAu results
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Parameter Experimental Analytical

Resonant frequency fR 11710 Hz 11700.02 Hz
Quality factor Q 55,76 43,19

Table 4.10: Comparison of Atec ContAu parameters

4.1.5 Olympus Biolever dynamic results

(a) Biolever raw data (b) Biolever elaborated data

Figure 4.11: Comparison of Biolever results

Parameter Experimental Analytical

Resonant frequency fR 99590 Hz 99584.52 Hz
Quality factor Q 38,45 35,94

Table 4.11: Comparison of Biolever parameters

4.1.6 ParkSystems PPP NCHR dynamic results

(a) Park Cantilever raw data (b) Park Cantilever elaborated data

Figure 4.12: Comparison of Park Cantilever results
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Parameter Experimental Analytical

Resonant frequency fR 295340 Hz 295330.80 Hz
Quality factor Q 434,32 435,58

Table 4.12: Comparison of Park Cantilever parameters

4.1.7 Standard uncertainty for resonant frequency and
quality factor

As described in Section 3.5, the results of the three Lorentzian curves are used

to obtain the values of the standard uncertainty of the resonance frequency

ufR and of the quality factor uQ.

For the resonance frequencies fR the uncertainties u(fR) assume very small

values for all cantilevers, thus indicating a high precision in the determination

of the latter.

The uncertainties of the quality factor Q, u(Q), are generally higher since

it is more difficult to obtain high precision and repeatability. This difference is

given by the fact that Q varies more with respect to the fitting that is chosen.

Cantilever u(fR) u(Q)

Atec ContAu 0,0033 2,81
MikroMasch CSC38

Cantilever A 0,0078 1,965
Cantilever B 0,00235 0,88
Cantilever C 0,0022 1,505
Bruker NPG10
Cantilever A 0,0040 1,38
Cantilever B 0,0061 2,17
Cantilever C 0,0067 1,285
Cantilever D 0,00376 1,057

MikroMasch XSC11
Cantilever A 0,00059 4,52
Cantilever B 0,0235 5,24

Olympus Biolever 0,0288 0,15
ParkSystems PPP NCHR 0,0031 7,41

Table 4.13: Results of uncertainties for resonant frequency and quality factor

It can be noted that, for all the analyzed tips, the standard uncertainty

associated with the resonance frequency is smaller than the resolution itself,

where the chosen resolution of NI PXIe-107 is ∆f = 10 Hz.
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In these particular cases, the value of the resolution represents the associated

standard uncertainty, as it is determined by the parameters used for the data

processing, specifically ∆f = 1/T , where T is the measurement duration.

This indicates that the resolution is not an intrinsic limit of the instrument,

but rather a function of the measurement time.
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4.2 Dimensional results

The length L, the cantilever tip-tip distance ∆L and the width b in pixels have

been extracted by analyzing the cantilecer images obtained with the scanning

electron microscope. Note that the standard deviation of L, ∆L and b is cal-

culated because multiple width and length profiles were extracted, as reported

in Figure 4.13 and Figure 4.14.

Figure 4.13: Extraction of dimensional parameters (a) length L, (b) length ∆L
and (c) width b for Bruker NPG V-shape cantilevers
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Figure 4.14: Extraction of dimensional parameters (a) length L, (b) length ∆L
and (c) width b for rectangular MikroMasch XSC11 cantilevers

Using the coefficients [µm/pixel] from the reference samples calibrated as

explained in Section 3.4, the length L, the length ∆L and the width b in µm

were calculated. The results of the dimensional measurements carried out on
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the cantilevers and referred to the International System (SI) are reported in

Table 4.25.

Cantilever
L

[µm]
σ(L)
[µm]

∆L
[µm]

σ (∆L)
[µm]

b
[µm]

σ(b)
[µm]

Atec ContAu 455,46 1,31 - - 51,44 1,00
MikroMasch

CSC38
Cantilever A 266,30 1,00 15,03 0,25 35,76 0,97
Cantilever B 366,97 1,21 15,38 0,16 35,75 0,96
Cantilever C 316,55 1,44 15,47 0,07 35,75 0,96

Bruker
NPG10

Cantilever A 115,44 0,41 3,85 0,12 30,88 0,01
Cantilever B 203,99 0,56 3,69 0,05 48,91 0,53
Cantilever C 115,03 0,43 3,66 0,14 24,97 0,79
Cantilever D 203,16 0,82 4,10 0,09 29,14 0,18
MikroMasch

XSC11
Cantilever A 521,50 2,88 10,32 0,22 36,72 0,96
Cantilever B 230,63 1,56 10,62 0,26 34,67 1,16

Olympus Biolever 41,40 0,06 3,87 0,06 17,49 0,13
ParkSystems
PPP NCHR

133,96 0,33 12,14 0,29 38,16 0,83

Table 4.14: Results of dimensional measurements carried out on the various
cantilevers and referred to the SI

In the case of the Atec ContAu it was not possible to obtain ∆L and

its related uncertainty and therefore it will not be possible to calculate the

effective value of the spring constant.
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4.3 Hydrodynamic function and Rasmussen’s

model results

Table 4.15 represent the measurements of the atmospheric static pressure ps,

temperature T and relative humidity RH. These parameters were recorded

at the time of measurement of each analyzed cantilever. It should also be

highlighted that the standard uncertainties associated with temperature T ,

pressure ps and humidity RH are of type B, and therefore depend on the ac-

curacy of the instrument used for the measurements. The latter are therefore

the same for all cantilevers, as they derive from the metrological characteriza-

tion of the measuring instruments and not from the specific characteristics of

the cantilevers themselves. In particular, the uncertainty on the temperature

is equal to 0.1°C, on the pressure is 50 Pa, while the uncertainty on the relative

humidity is set to 10% of its measured value.

Cantilever
ps
[Pa]

T
[◦C]

RH
[%]

Atec ContAu 98200 23,6 52,5
MikroMasch CSC38

Cantilever A 97900 23,7 52,9
Cantilever B 97900 23,7 52,9
Cantilever C 97900 23,7 52,9
Bruker NPG10
Cantilever A 97900 23,7 52,9
Cantilever B 97900 23,7 52,9
Cantilever C 99800 24 52,9
Cantilever D 99800 24 52,9

MikroMasch XSC11
Cantilever A 98000 23,8 49,9
Cantilever B 98000 23,8 49,9

Olympus Biolever 97900 23,8 49,8
ParkSystems PPP NCHR 98000 23,8 49,9

Table 4.15: Environmental conditions (Pressure, Temperature and Humidity)
measured for different cantilevers

Table 4.16 shows the results of the physical properties of air and the as-

sociated combined uncertainties, calculated for different cantilevers using the

Rasmussen model. The columns show the values of the air density (ρair),

with the respective combined uncertainty (u(ρair)), and of the dynamic vis-
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cosity of air (µair), with the associated uncertainty (u(µair)) for each analyzed

cantilever. The combined uncertainties of these results, as suggested by the

used formulas, arise both from uncertainties due to the measuring instruments

of static pressure, relative humidity and temperature, and from calculation

uncertainties arising from the Rasmussen model.

Cantilever
ρair

[kg/m3]
u(ρair)

µair

[Pa · s] u(µair)

Atec ContAu 1,15 5, 6 · 10−4 1, 83 · 10−5 3, 2 · 10−9

MikroMasch CSC38
Cantilever A 1,14 5, 7 · 10−4 1, 83 · 10−5 3, 2 · 10−9

Cantilever B 1,14 5, 7 · 10−4 1, 83 · 10−5 3, 2 · 10−9

Cantilever C 1,14 5, 7 · 10−4 1, 83 · 10−5 3, 2 · 10−9

Bruker NPG10
Cantilever A 1,14 5, 7 · 10−4 1, 83 · 10−5 3, 2 · 10−9

Cantilever B 1,14 5, 7 · 10−4 1, 83 · 10−5 3, 2 · 10−9

Cantilever C 1,16 5, 7 · 10−4 1, 83 · 10−5 3, 2 · 10−9

Cantilever D 1,16 5, 7 · 10−4 1, 83 · 10−5 3, 2 · 10−9

MikroMasch XSC11
Cantilever A 1,14 5, 5 · 10−4 1, 83 · 10−5 3, 2 · 10−9

Cantilever B 1,14 5, 5 · 10−4 1, 83 · 10−5 3, 2 · 10−9

Olympus Biolever 1,14 5, 5 · 10−4 1, 83 · 10−5 3, 2 · 10−9

ParkSystems PPP NCHR 1,14 5, 5 · 10−4 1, 83 · 10−5 3, 2 · 10−9

Table 4.16: Air properties results and their standard uncertainty for different
cantilevers

The uncertainties of the experimental parameter are then exploited to eval-

uate the uncertainty of the Reynold’s number, and consequently, to propagate

the uncertainties into the imaginary part of the hydrodynamic function for

the rectangular beams, calculated according to the equations in Section 3.1.4.

Values are reported in Table 4.17.
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Cantilever Re u(Re) Γi,rect(ω) u(Γi,rect)

Atec ContAu 3,05 0,12 2,12 3.162 · 10−1

MikroMasch CSC38
Cantilever A 2,87 0,16 2,195 1.21 · 10−2

Cantilever B 1,49 0,08 3,27 3.19 · 10−2

Cantilever C 2,03 0,11 2,71 3.43 · 10−2

Bruker NPG10
Cantilever A 5,775 0,005 1,455 4.79 · 10−3

Cantilever B 5,05 0,11 1,57 7.28 · 10−3

Cantilever C 3,38 0,21 1,455 4.79 · 10−3

Cantilever D 1,485 0,018 1,57 2.34 · 10−3

MikroMasch XSC11
Cantilever A 2,18 0,114 2,59 1.05 · 10−2

Cantilever B 11,58 0,73 0,98 2.69 · 10−2

Olympus Biolever 2,99 0,044 2,14 9.43 · 10−4

ParkSystems PPP NCHR 42,21 1,84 0,48 6.71 · 10−2

Table 4.17: Reynold’s number and imaginary part of the hydrodynamic func-
tion results and standard uncertainties
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4.4 Uncertainties’ propagation

Considering the two final formulas that serve to derive the dynamic elastic

constant k and the effective elastic constant keff (3.10) (3.11), the standard

uncertainties and therefore the variances of each parameter of the equations

are reported in the following tables for each cantilever.

The table is divided into three columns:

• the first (u2(xi)) reports the uncertainties associated with the input pa-

rameters,

• the second (
∂keff
∂xi

) lists the partial derivatives of the parameter keff with

respect to the input parameters,

• the third (u2(y)) represents the total contribution of each parameter to

the combined uncertainty on the final result.

An uncertainty budget serves to evaluate the sources of uncertainty and

quantify among the parameters that most contribute to the final composite

uncertainty.

This gives an idea of the accuracy and reliability of the results both as indi-

vidual contributions and on the final result.

The uncertainties related to the parameters in the Sader formula that con-

tribute to the uncertainty of k were analyzed first, followed by the uncertainties

associated with the parameters used to calculate keff.

Note that the total contribution of the uncertainty on k is then propagated

as associated uncertainty as an input parameter in the second formula, and

that the associated uncertainty of L is the same in the two formulas, but the

total contribution changes because its partial derivative with respect to the

output parameter changes.
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4.4.1 MikroMasch CSC38 uncertainty budget

Tip A

Parameter u2(xi)
(

∂kS
∂xi

)
u2
c(y)

b 9, 4 · 10−13 9, 6 · 103 8, 7 · 10−5

L 1, 0 · 10−12 6, 5 · 102 4, 2 · 10−7

ρair 3, 2 · 10−7 1, 5 · 10−1 7, 3 · 10−9

fR 1, 0 · 102 1, 5 · 10−5 2, 3 · 10−8

Q 3, 9 3, 4 · 10−3 4, 4 · 10−5

Γi 1, 47 · 10−4 7, 9 · 10−2 9, 0 · 10−7

k 1, 3 · 10−4

k 1, 3 · 10−4 1, 2 1, 9 · 10−4

L 1, 0 · 10−12 −1, 4 · 10+2 1, 9 · 10−8

∆L 6, 3 · 10−14 2, 4 · 10+3 3, 8 · 10−7

keff 1, 9 · 10−4

Table 4.18: Results of uncertainty Budget for Cantilever A (CSC)

Tip B

Parameter u2(xi)
(

∂kS
∂xi

)
u2
c(y)

b 9, 4 · 10−13 2, 2 · 103 4, 7 · 10−6

L 1, 5 · 10−12 1, 1 · 102 1, 7 · 10−8

ρair 3, 2 · 10−7 3, 5 · 10−2 3, 9 · 10−10

fR 1, 0 · 102 6, 7 · 10−6 4, 5 · 10−9

Q 7, 8 · 10−1 1, 9 · 10−3 2, 7 · 10−6

Γi 1, 02 · 10−4 1, 2 · 10−2 1, 5 · 10−8

k 7, 5 · 10−6

k 7, 5 · 10−6 1, 1 · 10+0 9, 7 · 10−6

L 1, 5 · 10−12 −1, 6 · 10+1 3, 9 · 10−10

∆L 2, 6 · 10−14 3, 9 · 10+2 3, 9 · 10−9

keff 9, 7 · 10−6

Table 4.19: Results of uncertainty Budget for Cantilever B (CSC)
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Tip C

Parameter u2(xi)
(

∂kS
∂xi

)
u2
c(y)

b 9, 2 · 10−13 4, 5 · 103 1, 9 · 10−5

L 2, 1 · 10−12 2, 5 · 102 1, 3 · 10−7

ρair 3, 2 · 10−7 7, 0 · 10−2 1, 6 · 10−9

fR 1, 0 · 102 9, 9 · 10−6 9, 8 · 10−9

Q 2, 3 · 100 2, 5 · 10−3 1, 4 · 10−5

Γi 1, 18 · 10−4 3, 0 · 10−2 1, 0 · 10−7

k 3, 3 · 10−5

k 3, 3 · 10−5 1, 2 · 10+0 4, 4 · 10−5

L 2, 1 · 10−12 −4, 5 · 10+1 4, 3 · 10−9

∆L 4, 9 · 10−15 9, 3 · 10+2 4, 2 · 10−9

keff 4, 4 · 10−5

Table 4.20: Results of uncertainty Budget for Cantilever C (CSC)

4.4.2 MikroMasch XSC11 uncertainty budget

Parameter
Cantilever A Cantilever B

u2(xi)
(
∂kS
∂xi

)
u2c(y) u2(xi)

(
∂kS
∂xi

)
u2c(y)

b 9, 2 · 10−13 1, 1 · 104 1, 1 · 10−4 1, 3 · 10−12 2, 2 · 105 6, 3 · 10−2

L 8, 3 · 10−12 3, 8 · 102 1, 2 · 10−6 2, 4 · 10−12 1, 7 · 104 7, 2 · 10−4

ρair 3, 1 · 10−7 1, 7 · 10−1 9, 1 · 10−9 3, 1 · 10−7 3, 5 3, 7 · 10−6

fR 1, 0 · 102 2, 4 · 10−5 5, 8 · 10−8 1, 0 · 102 9, 1 · 10−5 8, 3 · 10−7

Q 2, 0 · 101 4, 2 · 10−3 3, 7 · 10−4 2, 7 · 101 2, 0 · 10−2 1, 1 · 10−2

Γi,rect(ω) 1, 1 · 10−4 7, 6 · 10−2 6, 4 · 10−7 7, 21 · 10−4 4, 1 1, 2 · 10−2

k 4, 8 · 10−4 8, 7 · 10−2

k 4, 8 · 10−4 1, 1 5, 4 · 10−4 8, 7 · 10−2 1, 1 1, 1 · 10−1

L 8, 3 · 10−12 −2, 4 · 101 4, 9 · 10−9 2, 4 · 10−12 −2, 8 · 103 1, 9 · 10−5

∆L 4, 8 · 10−14 1, 2 · 103 7, 3 · 10−8 4, 8 · 10−14 6, 2 · 104 1, 9 · 10−4

keff 5, 4 · 10−4 1, 1 · 10−1

Table 4.21: Results of uncertainty budget MikroMasch XSC11
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4.4.3 Bruker NPG10 uncertainty budget

Parameter
Cantilever A Cantilever B

u2(xi)
(
∂kS
∂xi

)
u2c(y) u2(xi)

(
∂kS
∂xi

)
u2c(y)

b 1.0 · 10−16 2.9 · 104 8.5 · 10−8 2.8 · 10−13 5.6 · 103 8.9 · 10−6

L 1.7 · 10−13 3.9 · 103 2.6 · 10−6 3.1 · 10−13 6.8 · 102 1.4 · 10−7

ρair 3.2 · 10−7 3.9 · 10−1 5.0 · 10−8 3.2 · 10−7 1.2 · 10−1 4.7 · 10−9

fR 1.0 · 102 1.5 · 10−1 2.1 · 10−8 1.0 · 102 1.3 · 10−5 1.6 · 10−8

Q 1.9 5.2 · 10−3 5.2 · 10−5 4.7 3.1 · 10−3 4.4 · 10−5

Γi,rect(ω) 2.3 · 10−5 3.1 · 10−1 2.2 · 10−6 5.48 · 10−6 8.8 · 10−2 4.2 · 10−8

k 5.7 · 10−5 5, 3 · 10−5

k 5, 7 · 10−5 1, 1 · 10+0 7, 0 · 10−5 5, 3 · 10−5 1, 1 · 10+0 5, 9 · 10−5

L 1, 7 · 10−13 −4, 5 · 10+2 3, 4 · 10−8 3, 1 · 10−13 −3, 9 · 10+1 4, 9 · 10−10

∆L 1, 4 · 10−14 1, 3 · 10+4 2, 6 · 10−6 2, 5 · 10−15 2, 2 · 10+3 1, 2 · 10−8

keff 7, 3 · 10−5 5, 9 · 10−5

Parameter
Cantilever C Cantilever D

u2(xi)
(
∂kS
∂xi

)
u2c(y) u2(xi)

(
∂kS
∂xi

)
u2c(y)

b 6, 2 · 10−13 1, 7 · 104 1, 8 · 10−4 3, 2 · 10−14 1, 4 · 103 6, 5 · 10−8

L 1, 8 · 10−13 1, 8 · 103 6, 1 · 10−7 6, 7 · 10−13 1, 0 · 102 7, 0 · 10−9

ρair 3, 3 · 10−7 1, 8 · 10−1 1, 1 · 10−8 3, 3 · 10−7 1, 8 · 10−2 1, 0 · 10−10

fR 1, 0 · 102 7, 7 · 10−6 6, 0 · 10−9 1, 0 · 102 2, 4 · 10−6 5, 6 · 10−10

Q 1, 7 2, 7 · 10−3 1, 2 · 10−5 1, 1 7, 3 · 10−4 5, 95 · 10−7

Γi,rect(ω) 2, 3 · 10−5 1, 4 · 10−1 4, 8 · 10−7 5, 48 · 10−6 1, 3 · 10−2 9, 5 · 10−10

k 1, 9 · 10−4 6, 7 · 10−7

k 1, 9 · 10−4 1, 1 2, 3 · 10−4 6, 7 · 10−7 1, 1 7, 5 · 10−7

L 1, 8 · 10−13 −2 · 102 7, 2 · 10−9 6, 7 · 10−13 −6, 7 3, 0 · 10−11

∆L 2 · 10−14 6, 2 · 103 7, 6 · 10−7 8, 1 · 10−15 3, 3 · 102 8, 9 · 10−10

keff 2, 3 · 10−4 7, 5 · 10−7

Table 4.22: Results of uncertainty budget Bruker NPG10

4.4.4 Nanosensors Atec ContAu-10 uncertainty budget

Parameter u2(xi)
(

∂kS
∂xi

)
u2
c(y)

b 1.0 · 10−12 5.1 · 10+3 2.6 · 10−5

L 1.7 · 10−12 2.9 · 10+2 1.4 · 10−7

ρair 3.2 · 10−7 1.1 · 10−1 4.1 · 10−9

fR 1.0 · 10+2 2.2 · 10−5 4.9 · 10−8

Q 7.9 · 10+0 3.0 · 10−3 7.2 · 10−5

Γi,rect(ω) 2.9 · 10−3 6.1 · 10−2 1.1 · 10−5

k 1.1 · 10−4

Table 4.23: Results of uncertainty budget Atec ContAu
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4.4.5 Olympus Biolever uncertainty budget

Parameter u2(xi)
(

∂kS
∂xi

)
u2
c(y)

b 1, 7 · 10−14 9, 5 · 10+3 1, 5 · 10−6

L 3, 6 · 10−15 2, 0 · 10+3 1, 5 · 10−8

ρair 3, 1 · 10−7 7, 3 · 10−2 1, 6 · 10−9

fR 1, 0 · 10+2 1, 7 · 10−6 2, 8 · 10−10

Q 2, 2 · 10−2 2, 3 · 10−3 1, 2 · 10−7

Γi,rect(ω) 8, 87 · 10−7 3, 9 · 10−2 1, 3 · 10−9

k 1, 7 · 10−6

k 1, 7 · 10−6 1, 3 · 10+0 3, 0 · 10−6

L 3, 6 · 10−15 −8, 3 · 10+2 2, 5 · 10−9

∆L 3, 6 · 10−15 8, 9 · 10+3 2, 9 · 10−7

keff 3, 3 · 10−6

Table 4.24: Results of uncertainty budget Biolever

4.4.6 ParkSystems PPP NCHR uncertainty budget

Parameter u2(xi)
(

∂kS
∂xi

)
u2
c(y)

b 6, 9 · 10−13 1, 6 · 10+6 1, 8
L 1, 1 · 10−13 2, 3 · 10+5 5, 6 · 10−3

ρair 3, 1 · 10−7 2, 7 · 10+1 2, 2 · 10−4

fR 1, 0 · 10+2 2, 1 · 10−4 4, 2 · 10−6

Q 5, 5 · 10+1 7, 0 · 10−2 2, 7 · 10−1

Γi,rect(ω) 4, 49 · 10−4 6, 4 · 10+1 1, 8
k 3, 9

k 3, 9 1, 3 6, 8
L 1, 1 · 10−13 −9, 0 · 104 8, 9 · 10−4

∆L 8, 4 · 10−14 1, 0 · 106 8, 4 · 10−2

keff 6,9

Table 4.25: Results of uncertainty budget Park

4.4.7 Considerations on the results in propagation of
uncertainties

Analyzing the results, it becomes clear that the parameters that most influence

the value of the elastic constant k are the dimensional parameters b and L,

with b having a greater impact as it appears squared in Sader’s formula. The

quality factor Q also significantly affects the result, as it strongly depends on

the chosen windowing and is difficult to determine with high precision.
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Regarding the uncertainty of keff , it can be observed that, since the uncer-

tainty of k is propagated, it is equal to or of the same order of magnitude as k,

therefore the uncertainties associated with ∆L and L contribute to the overall

uncertainty, but their impact remains relatively small.
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4.5 Elastic constant in dynamic conditions re-

sults

The final values for the parameters k and keff, derived from the analyses con-

ducted in this study, are presented in Table 4.26. In addition, Table 4.27 is

contains a detailed summary of the uncertainties associated with keff, includ-

ing both the combined standard uncertainty and the expanded uncertainty,

calculated in accordance with the methodologies described in Section 3.1.2.

Cantilever keff k Unit

Atec ContAu - 0,13 N/m
MikroMasch CSC38 N/m

Cantilever A 0,21 0,17 N/m
Cantilever B 0,05 0,04 N/m
Cantilever C 0,09 0,08 N/m
Bruker NPG10 N/m
Cantilever A 0,50 0,45 N/m
Cantilever B 0,15 0,14 N/m
Cantilever C 0,23 0,21 N/m
Cantilever D 0,022 0,021 N/m

MikroMasch XSC11 N/m
Cantilever A 0,21 0,20 N/m
Cantilever B 4,57 3,98 N/m

Olympus Biolever 0,11 0,08 N/m
ParkSystems PPP NCHR 40,47 30,44 N/m

Table 4.26: Comparison of effective and normal spring constant results

The spring constants, both normal and effective, for cantilevers used in

biomedical applications are found to be less than 1 N/m, with the exception of

the Park cantilever, used in mechanical applications, which has a significantly

higher spring constant, reflecting its greater stiffness.
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Cantilever u(keff ) U(keff )

Atec ContAu - -
MikroMasch CSC38

Cantilever A 1, 4 · 10−2 0,028
Cantilever B 3, 1 · 10−3 0,006
Cantilever C 6, 6 · 10−3 0,014
Bruker NPG10
Cantilever A 8, 5 · 10−3 0,017
Cantilever B 7, 7 · 10−3 0,016
Cantilever C 1, 5 · 10−2 0,031
Cantilever D 8, 7 · 10−4 0,002

MikroMasch XSC11
Cantilever A 2, 3 · 10−2 0,047
Cantilever B 3, 4 · 10−1 0,691

Olympus Biolever 1, 8 · 10−3 0,004
ParkSystems PPP NCHR 2, 6 5,4

Table 4.27: Standard and expantended uncertainty of effective spring constant

Another relevant observation concerns uncertainties: it is observed that, as

the stiffness of the cantilever increases, the standard and extended uncertainty

tend to increase. This behavior is further highlighted in Section 4.4, relat-

ing to the propagation of uncertainties. The greater stiffness of cantilevers

implies a greater sensitivity with respect to dimensional uncertainties, which

significantly influence the final uncertainty. The deflections in the stiffer can-

tilevers are in fact reduced, but small inaccuracies in the length and thickness

measurements are more influential, amplifying the overall uncertainty.
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4.6 Elastic constant in static conditions results

The elastic constant calculated up to now refers to the dynamic modulus, i.e.

considering the cantilever’s response to loads that vary over time, as in the

case of oscillations caused by air. The cantilever is therefore subjected to

vibrations and therefore produces a dynamic response. In static conditions,

however, the cantilever is subjected to constant loads (stress) over time and

produces a proportional deformation (strain) from which the static elastic con-

stant of the cantilever is obtained. This cannot automatically be assumed to

be equal to the dynamic one since we are not in a condition of pure shear

stress, which if isothermal is also reversible and therefore isentropic. In com-

pression and traction, if a process is isothermal, it cannot also be assumed to

be isentropic and consequently the two elastic moduli, static (isentropic) and

dynamic (isothermal), differ [31]:

kst =
kdyn

1 + Tα2

9 ρ cP
kdyn

L
bh

(4.1)

where:

• T is the temperature at which the cantilever is analyzed in Kelvin;

• ρ is the density of the cantilever’s material, cP its specific heat capacity

at constant pressure and α is the coefficient of thermal expansivity;

• L, b, h are the dimensional parameters of the cantilever.

Silicon Nitride (Si3N4) was considered as a reference material for mechanical

properties, since all analyzed cantilevers have a core made of silicon or silicon

nitride. The latter, however, does not show significant differences compared

to silicon in terms of mechanical and thermal property values.

Parameter Value Unit

Specific heat (cp) 0.673 J/(g·K)
Thermal expansion coefficient (α) 3.3 10−6K−1

Density (ρ) 2330 kg/m³

Table 4.28: Material properties of silicon nitride
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It has also been shown by Sader in [9], that the coating of the cantilever,

which is often gold, does not affect the result of the elastic constant in any

way, so it will not be accounted for.

Cantilever kst/kdyn

Atec ContAu 1,000
MikroMasch CSC38

Cantilever A 1,000
Cantilever B 1,000
Cantilever C 1,000
Bruker NPG10
Cantilever A 1,000
Cantilever B 1,000
Cantilever C 1,000
Cantilever D 1,000

MikroMasch XSC11
Cantilever A 1,000
Cantilever B 1,000

Olympus Biolever 1,000
ParkSystems PPP NCHR 1,000

Table 4.29: Ratio between static and dynamic spring constant results

The results obtained and shown in Table 4.29 indicate that the calculated

values for the static elastic modulus and the dynamic elastic modulus are sub-

stantially congruent, even considering a high number of decimal places. In

the table, however, for reasons of practicality, only the first decimal places

are reported. This congruence is found indiscriminately both in cantilevers

characterized by a lower stiffness and in those with a higher stiffness. The

results also do not change significantly even when considering another mate-

rial, different compositions or insertions of alloying elements in the materials.

It is important to note, however, that the calculation performed is more ap-

proximate than others used in this study since the nominal values relating to

the material were used and therefore the propagation of uncertainties was not

carried out.
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4.7 Study of the dynamic response in different

analysis points along the cantilever

As mentioned in Section 4.1, the cantilever analysis was conducted at the point

furthest from the cantilever base, so the laser was positioned at the tip of the

cantilever. An analysis was then conducted to evaluate the variations in the

dynamic response of the cantilever as a function of the analysis point along its

length.

In particular, the Atec ContAu cantilever and the MikroMasch CSC38 tip B

cantilever were selected, as they have the longest length among the available

cantilevers. This feature makes them particularly suitable for highlighting the

differences between the different investigation points, ensuring greater sensitiv-

ity in the study of the dynamic variations along the cantilever axis. Resonance

frequency and quality factor values were obtained by applying a Lorentzian fit-

ting to the raw data.

Figure 4.15: Comparison of Atec ContAu dynamic response in different points

Parameter Tip Center

Resonant frequency fR 11700 Hz 11700 Hz
Quality factor Q 48,8 45

Table 4.30: Comparison of Atec ContAu results in different points
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Figure 4.16: Comparison of CSC38 tip B dynamic response in different points

Parameter Tip Center

Resonant frequency fR 11920 Hz 11940 Hz
Quality factor Q 23,00 6,00

Table 4.31: Comparison of MikroMasch CSC38 tip B parameters

As highlighted by the results reported in the tables, the resonance frequency

does not show significant variations between the values measured at the tip

and the center of the cantilever. On the contrary, the quality factor shows a

marked dependence on the analysis point, with the difference becoming more

pronounced as the measurement moves further from the tip along the length

of the cantilever. In the case of the Atec ContAu cantilever, the measurements

were taken at points relatively close to the tip, and the quality factor does not

vary significantly, as can be seen from Table 4.30. In contrast, in the case of the

MikroMasch CSC38 cantilever, measurements were taken at two points much

farther apart along the length of the cantilever, and the quality factor changes

dramatically (Table 4.31). The peak amplitude increases proportionally as the

measurement is taken near the tip of the cantilever, as expected for a beam

with free and locked end conditions.
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4.8 Torsional characterization of an AFM can-

tilever

To accurately determine the value of the friction forces between the cantilever

tip and the surfaces, it is necessary to calculate the lateral forces. The latter are

obtained from the torsional spring constant of the cantilever, which represents

a fundamental parameter for a correct evaluation of the lateral mechanical

interactions.

In Figure 4.17, are shown the flexural deflection ∆z of a cantilever due to

applied normal force N (a) and (b) the torsional deflection ∆ϕ of a cantilever

due to applied torque T .

Figure 4.17: Flexural deflection (a) and the torsional deflection (b) [10]

The torsional elastic constant of the cantilever is very difficult to calcu-

late accurately, and many researchers get around this difficulty by making

measurements of relative friction by scanning different surfaces with the same

cantilever. However, this approach requires that all measurements be made at

the same time and very accurately without changing the laser alignment.

To bypass this problem, it would be better to determine the torsional elastic

constants of the cantilevers individually [32]. To determine the torsional spring

constant we use the formula provided by Sader which is a derivation of the

original Sader formula mentioned in Section 3.1.1:

kϕ = 0, 1592ρair b
4 L Qt ω

2
t Γt

i(ωt) (4.2)

where kϕ, expressed in N·m, is the torsional spring constant of the cantilever,
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ωt is the torsional frequency, Γ
t
i(ωt) is the imaginary part of the hydrodynamic

function calculated based on the torsional frequency, Qt is the quality factor

calculated for the torsional case and the other parameters are outlined in Sec-

tion 3.1.1.

While the already existing parameters in the original Sader’s formula 3.10 can

be reutilized in this new formula, additional calculations for Qt, ωt and Γt
i(ωt)

need to be performed.

The adopted equations (4.3), (4.4), (4.5) are used for a preliminary estimate

of the torsional resonance frequency of the cantilever. However, the result is

approximate for two main reasons.

First, there is no precise measurement of the thickness h of the cantilever,

which is a fundamental parameter for the calculations. Second, in the final

formula there is a term dependent on the hydrodynamic response function,

which is expressed as a function of the torsional frequency itself, which is the

object of our analysis.

Therefore, the value calculated through these approximate equations does

not represent the final result but serves to identify a plausible interval in which

the torsional resonance peak is located. This interval is subsequently examined

in the experimental spectrum, allowing to precisely identify the actual torsional

resonance frequency.

Figure 4.18: Spectrum of Bruker NPG10 tip B showing flexural and torsional
resonant frequencies
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To obtain the torsional resonance frequency ωt needed to apply the formula,

we must start from the flexural frequency in vacuum ωf
vac which is function of

the flexural frequency ωf with the following equation:

ωf
vac = ωf

(
1 +

πρairb

4ρch
Γr(ωf )

)1/2

(4.3)

where ρair is the air density, b is the width of the cantilever, h is the thickness

of the cantilever, Γr(ωf ) is the real part of the hydrodynamic function, ρc is

the density of the cantilever and therefore depends on its material.

Subsequently, a correlation is established between the flexural resonance fre-

quency in vacuum and the corresponding torsional frequency, also determined

in vacuum conditions as a function of the dimensional parameters and the

Poisson’s coefficient ν.

ωt
vac

ωf
vac

= 2, 1886
L

b

√
1

1 + ν
(4.4)

And through Formula (4.5), ωt is retrieved from its value in vacuum conditions.

ωt
vac = ωt

(
1 +

3πρb

2ρch
Γt
r(ωt)

)1/2

(4.5)

Once the approximate value of the torsional resonance frequency has been

identified and the corresponding effective value has been determined through

spectrum analysis, the same method described in Section 3.5 is applied. This

approach allows obtaining all the parameters necessary for the formulation and

accurate calculation of the torsional spring constant of the cantilever. Among

the results obtained for the twelve cantilevers analyzed, it was observed that

the cantilevers with the highest torsional resonance did not show it in the

spectrum. This phenomenon could be attributed to the selected bandwidth or

to the background noise detected at high frequencies, as discussed in Section

4.1. These factors could have significantly distorted or hidden the resonance

peak.

For this reason, the results related to the torsional spring constant of three

representative cantilevers will be reported and analyzed in the following.
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Cantilever kϕ [Nm] u(kϕ)

MikroMasch CSC38
Cantilever A 2.018 · 10−8 2.3 · 10−9

Cantilever C 1.962 · 10−8 2.2 · 10−9

Bruker NPG10
Cantilever B 1.072 · 10−8 5.5 · 10−10

Table 4.32: Torsional spring constant and standard uncertainty results for
selected cantilevers

The values of the torsional spring constant obtained are particularly low,

as anticipated by Sader’s papers.

As for the standard uncertainties, the propagation was carried out in the same

way as in Section 4.4 for the flexural case. Also in this case the main factors

contributing to the uncertainty are related to the dimensional measures and

to the quality factor. It should be emphasized that this study, related to the

calculation of the torsional spring constant and especially to its metrological

characterization, is still in its preliminary stages. In fact, the proposed method

is based on several initial approximations that need further verification and op-

timization. Therefore, the results obtained should be considered as a starting

point for future more in-depth investigations and for the improvement of the

precision and reliability of the measurement techniques.
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Conclusions

5.1 Conclusions and future developments

The metrological characterization of cantilevers by Atomic Force Microscopy

is a crucial aspect of ensuring the accuracy and traceability of measurements,

which are essential for determining the rheological and mechanical properties

of reference samples, particularly in the biological field. Among many exist-

ing methods for metrological calibration of cantilevers, Sader’s method was

chosen because it provides greater accuracy than others and facilitates the

identification of the parameters that most contribute to uncertainty.

The use of the Micro Laser Doppler Vibrometer and the Scanning Electron

Microscope available at INRiM allowed to obtain reportable and repeatable

values of the resonance frequency and dimensional parameters of the cantilever.

In addition, through the use of Lorentzian fitting, it was possible to determine

the value of the quality factor with very low uncertainties, thus contributing

to a more accurate and reliable calibration.

Twelve tips from six different manufacturers were analyzed, with varia-

tions in size and shape. Of these, eleven were soft cantilevers, intended for

biological applications, with elastic constants of less than 1 N/m, while one

intended for mechanical applications, characterized by a significantly higher

elastic constant.

The results obtained for the elastic constant and effective elastic constant

were compared with the nominal values, showing good agreement, with an un-

certainty of less than 10 percent. In addition, a comparison was made between

the dynamic and static elastic constant, showing that the values obtained co-
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incide up to a significant number of decimal places.

A comparison of the values of the cantilever elastic constant was also made by

shifting the positioning of the measuring point, concluding that this variation

affects the result of the quality factor, but not the resonant frequency, which

proved to be the parameter with the highest accuracy in determination.

The parameters that contribute most to uncertainty are dimensional parame-

ters, particularly the width, and quality factor. However, the accuracy in mea-

suring the quality factor was greatly improved through the use of Lorentzian

fitting. Finally, torsional metrological characterization was introduced, which

provided results in line with nominal results.

The importance of torsional metrological characterization lies in the fact that

in order to accurately determine the friction forces between the cantilever tip

and surfaces, it is necessary to calculate the lateral forces derived from the

torsional elastic constant of the cantilever. However, obtaining this value with

accuracy and repeatability remains a challenge, since many involved parame-

ters do not yet possess metrological reportability.

Although accurate values have been provided in this thesis, they are still not

fully metrologically referable, as they are based on a number of approxima-

tions.

Therefore, it will be critical to focus on metrologically determining each term

in the formula in order to obtain a complete metrological characterization of

the cantilevers, both flexural and torsional.
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