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Summary

The focus of this thesis is to obtain the damping response for the structure of an
offshore wind turbine subjected to different frequencies, consistent with the most
probable sea conditions.

The simulations replicate a hypothetical testing facility, where a floating body is
in controlled motion and the dynamic response of the system is analyzed, treating
the water-body system as a mass-spring-damper.

The simulations are performed using the CFD software "Star CCM+", based on
the RANS model. The results will be compared to a linear BEM model obtained
from the software NEMOH, with corrections introduced to achieve higher-fidelity
data, while maintaining the simplicity and low computational cost of the linear
BEM simulations. All post-processing is carried out in Matlab, where the F(z)
report is transformed from the time domain to the frequency domain using FFT,
allowing the damping coefficient to be expressed as a function of frequency.

To test this approach, the first test case chosen is a simple sphere with a 1-meter
radius. Once the procedure is validated, it’s applied to a more realistic scenario,
simulating a reference floating substructure, the UMaine VolturnUS-S.
Offshore wind energy production is a complex sector in steady growth, and a valid
model that produces accurate results with a low computational cost is crucial in
the initial stages of design.

Given the high computational cost of each simulation, testing every specific
geometry would be impractical. The future goal, with sufficient data, is to propose
a generic correction model for the BEM, at least for similar geometries.

Another important step would be validating the results of the numerical simula-
tions with real experiments to ensure that the modeling accurately represents the
phenomenon.
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Sommario
L’obiettivo di questa tesi è ricavare lo smorzamento del sistema di una turbina
eolica galleggiante a varie frequenze, coerenti con le più probabili condizioni del
mare.

Le simulazioni replicano un ipotetico impianto di testing, dove una struttura
galleggiante è in movimento controllato per studiarne la risposta dinamica, trat-
tando il sistema acqua-corpo come un sistema massa-molla-smorzatore.

Le simulazioni sono eseguite utilizzando il software CFD "Star CCM+", basato
sul modello RANS. I risultati verranno confrontati con un modello a potenziale
BEM ottenuto dal software NEMOH, con l’obiettivo di introdurre correzioni per
ottenere dati di maggiore precisione, mantenendo comunque la semplicità e il basso
costo computazionale delle simulazioni BEM. Tutto il post-processing è effettuato
in Matlab, dove il report F(z) viene trasformato dal dominio del tempo al do-
minio delle frequenze utilizzando l’FFT, permettendo di esprimere il coefficiente di
smorzamento in funzione della frequenza.

Per testare questo approccio, il primo caso scelto è una semplice sfera con un
raggio di 1 metro. Una volta collaudata la procedura, viene applicata a uno
scenario più realistico, simulando una sottostruttura galleggiante di riferimento,
l’UMaine VolturnUS-S. La produzione di energia eolica offshore è un settore comp-
lesso in crescita costante, e un modello valido che produca risultati accurati con un
basso costo computazionale è cruciale nelle fasi iniziali del progetto.

Dato l’alto costo computazionale di ogni simulazione, testare ogni geometria speci-
fica sarebbe impraticabile. L’obiettivo futuro, con dati sufficienti, è proporre un
modello di correzione generico per il BEM, almeno per geometrie simili tra loro.

Un altro passo importante sarebbe la validazione dei risultati delle simulazioni
numeriche con esperimenti reali per garantire che le simulazioni riproducano accu-
ratamente il fenomeno reale.
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Chapter 1

Introduction

The worldwide goal of our generation is to leave our planet better than how we
found it, and one of the best ways of doing that is by shifting to more sustainable
ways to generate power.

The renewable sources based on solar and wind energy are already deployed. In
particular the focus of this thesis will be the eolic generation: wind turbines are
pretty common in windy areas where they often cause noise and visual pollution,
but by locating these structure in the sea, those mentioned problems would be
avoided, allowing to make the turbines bigger than the already gigantic onshore
structures .

Figure 1.1: wind energy penetration in the electric grid in the EU as reported by
Statista
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Introduction

As reported by the International Energy Agency, “In 2022, of the total 900
GW of wind capacity installed, 93% was in onshore sites, with the remaining 7%
in offshore wind farms. Onshore wind is a developed technology, present in 115
countries around the world, while offshore wind is at the early stage of expansion,
with capacity present in just 20 countries. Offshore reach is expected to increase in
the coming years as more countries are developing or planning to develop their first
offshore wind farms. In 2022, 18% of total wind capacity growth of 74 GW was
delivered by offshore technology” [1].

Some countries in the EU are already using their wind resources to an optimal
level, as reported in figure 1.1, 44% of Denmark’s energy demand is satisfied by
onshore and offshore turbines. The offshore wind park in Middelgrunden, just
3.5 km from Copenhagen, is a brilliant example of exploiting this resource to the
fullest.

In the latest years the market is rapidly increasing, led by the huge investments
of China. The global offshore wind market grew nearly 30% per year between 2010
and 2018. The article [1] also analyses the wind market possibilities, underlying
that the actual status is still far from reaching its maximum potential, especially
for the offshore wind parks, that could theoretically produce more than 420 000
TWh per year worldwide, this is more than 18 times global electricity demand
today.

Figure 1.2: IEA, Offshore wind technical potential and electricity demand, 2018,
IEA, Paris

The major advantages of OWE (offshore wind energy) plants over their onshore
counterparts are lower wind shear, less turbulence, higher wind speed and availability
of a larger continuous area. Water exhibits less surface roughness than land
(especially deeper water), so the average wind speed is usually higher above open
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Introduction

water. Offshore wind turbines are also less obtrusive than turbines on land, as their
apparent size and noise can be mitigated by distance, explaining why the biggest
wind turbines are all situated offshore. To have a reference the giant Goldwind
GWH252-16MW has a 252 m diameter and is the biggest in the world, producing
up to 384.1 megawatt hours (MWh) in one day. The biggest onshore one is the
EN-220/10MW with a diameter of 110 m , less than half of the former one. The
turbine achievable power can be evaluated as: P = 1

2ρV 3SCp, thus having a bigger
surface clearly increases the power available. As the reader could imagine, building
a 200 m rotating structure is already complex on mainland and in open water
things can only get harder. There are two possible ways to install those turbines:
installing the main structure directly into the seabed, or making it float, harboured
to the sea just to keep it in place and prevent it from travelling around the seven
seas. This second solution seems to be more promising, because the floaters can be
assembled in the harbour and then towed to the desired position. The downside to
consider is the more complex structural stress of these type of turbines which will
be better studied in the following chapter.

3



Chapter 2

Forces involved

2.1 Forces on the floating structures

In order to properly analyse all the loads on the structure, time domain models are
required. Eq. 2.1 represents all the forces acting on the system, without specifying
the way they interact. The reference is the paper [2], which refers to Wave Energy
Converters (WEC), but the forces are the same for the structure of a floating wind
turbine, with the precaution of considering the greater impact of wind, secondary
in WECs.

Figure 2.1: Possible configurations of offshore wind turbines. Sources: NREL,
Aqua-RET
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Forces involved

MX ′′(t) = f(Fg, FF K(t), Fdiff(t), Frad(t), Fvis(t), FPTO(t), Fmoor(t), Fadd(t)) (2.1)

• Fg is the gravity force.

• FF K is the Froude-Krylov force, the load introduced by the unsteady pressure
field generated by undisturbed waves. It is generally divided into static and
dynamic forces. The static part represents the relation between gravity and
buoyancy forces in a static situation with a still ocean, while the dynamic part
represents the force of the incident wave.

• Fdiff is the diffraction force, refers to the bending or spreading of waves as
they encounter an obstacle or aperture. In the context of floating structures
diffraction occurs when waves encounter the structure and are dispersed or
bent around it. This bending of waves around the structure can result in
changes to the wave pattern and distribution of wave energy, impacting the
forces acting on the structure.
Diffracted and Froude-Krylov forces combined are the force caused by an
incident wave on a steady body.

Figure 2.2: Visual representation of the pressure field of an incident wave on a
steady body

5



Forces involved

• Frad is the radiation force: when waves interact with a floating structure, they
induce motions in the structure, causing it to move and experience forces.
These forces arise due to the transfer of momentum from the waves to the
structure. Radiation forces include both the inertia forces resulting from the
acceleration of fluid particles around the structure and the added mass forces
due to the volume of fluid displaced by the structure.

Figure 2.3: Radiated wave

To simplify the analysis, in the simulation for this thesis a certain motion is imposed
on the floating body in steady water, causing radiated waves, in this way only the
radiated forces will be considered.

In summary The FK forces are caused by the pressure field of the undisturbed
waves, while radiation and diffraction consider the interaction with the submerged
structure; diffraction deals with the bending or spreading of waves as they interact
with a structure, affecting the distribution of wave energy, while radiation forces refer
to the forces exerted on the structure by waves due to the transfer of momentum
from the waves to the structure. These three phenomena are essential in the
analysis and design of floating structures in wave environments.

• Fvis, the viscous force, is often neglected in the traditional offshore industry, in
which hydrodynamic models have been mainly based on linear potential flow
theory. Viscous losses are considered relevant for structures that are small
compared to the wave amplitude. Since offshore structures are, in general,
relatively large (offshore oil and gas platforms or ships), viscous losses are
minor losses, except for localized effects, such as vortex shedding generation
in sharp edges. Depending on the dimensions of the floating structure this
effect could be relevant and is going to be analysed later in this thesis.

• FP T O is the force acting on the structure due to the power take off system,
depends on the energy generation system but is reasonably neglectable in
Eolic turbines.

6



Forces involved

Figure 2.4: Scheme of a PTO system

• Fmoor is the force due to the mooring lines, needed to keep the structure in its
desired position. The forces can be considered as linear if the mooring is tight,
but nonlinearities have to be taken into account for slacker structures [2].

• Fadd is the force corresponding to any other additional force, such as drift,
wind, tidal or other body-water interactions. The major effect is the wind
that can’t be ignored in wind turbines.

The safety of the floating structure and mooring system of floating wind turbines is
crucial. It is necessary to investigate the motion responses (e.g. surge, sway, heave,
roll, pitch and yaw) of the floating structure and mooring tension response.

7



Chapter 3

Fluid models and
computational approaches

In the field of floating structures, the choice of physical model largely depends
on the specific application. These models can generally be categorized into two
main theories: potential flow and RANS-based models (Reynolds Averaged Navier-
Stokes), each with its own advantages and limitations. Given the complexity of
the problem, fully analytical solutions are impractical, requiring the use of various
computational methods tailored to each physical model. This chapter provides a
brief overview of the principal approaches, highlighting the contexts in which they
are most effective.

3.1 Potential flow
The Potential flow model is valid for inviscid and irrotational flows, under these
hypotheses exists a potential of velocity, which respects the Laplace equation
∇2ϕ = 0, making the Green theorem applicable. The velocity of the flow is
described as the gradient of the velocity potential, which can be decomposed into
incident, diffracted, and radiated potentials.

Starting from the continuity equation:
Dρ

Dt
+ ρ∇ · V = 0 (3.1)

Known that for an incompressible flow:
∇ · V = 0 (3.2)

and putting that in the momentum equation,
dV
dt

+ V · ∇V = −1
ρ

∇p + µ∇2V + f (3.3)

8



Fluid models and computational approaches

The potential flow considers the FK forces, the radiation and diffraction forces,
underestimating the loads on the structure and ignoring the viscous forces, but has
a lower computational cost compared to other methods. A CFD simulation based
on the RANS, also considers the viscosity of the fluid, but the downside is the way
higher computational cost.

A good compromise, which will be pursued in this thesis, is using the CFD
simulation on particular cases: loading the structure at different frequencies and
studying its damping; based on the results of these simulations, they will be used
as corrections in the potential flow linearized model, keeping its low computational
cost, but with an higher fidelity.

3.1.1 BEM
The computational translation of the Potential Flow theory is the BEM (Boundary
Element Method), a numerical computational technique used for solving linear
partial differential equations that have been formulated as integral equations. In
the context of marine and offshore engineering, BEM is particularly well-suited
for analyzing the linear interactions between waves and floating structures. It
offers a good balance between accuracy and computational efficiency for small
to moderate wave interactions. It is used in various softwares such as WAMIT,
AQWA, NEMOH, HYDROSTAR, DIFFRAC and AQUADYN.

BEM transforms the problem into a boundary integral equation using Green’s
functions, or fundamental solutions of the Laplace equation, reducing the complexity
of solving fluid flow problems by focusing only on the boundary of the domain.
This reduction in dimensionality makes BEM highly efficient. The solution is then
determined by discretizing the boundary of the domain (the surface of the floating
structure and the free water surface) into small elements or panels.

This method is commonly used to model the hydrodynamic interactions in wave
energy converters (WECs) and other offshore structures where the linear wave
assumption holds.

BEMs struggle with highly nonlinear conditions such as large wave amplitudes
or breaking waves. They also do not inherently include viscous effects, which may
need to be added separately if significant.

3.2 RANS
In the Reynolds averaged Navier Stokes model, turbulence and viscosity are also
considered for a Newtonian, incompressible Fluid. In a turbulent flow there is a
continuous fluctuation of its variables, whose time average is zero, based on this
hypothesis the velocity can be divided in two contributes. The equation is given

9



Fluid models and computational approaches

by:
u(x, t) = U(x) + u′(x, t) (3.4)

Where u’ is the perturbation and U is the average value. Under these hypotheses,
the Reynolds Averaged Navier Stokes equations (reasonably neglecting the energy
equation for low velocities) become:

dUi

dxi

= 0 (3.5)

∂Ui

∂t
+ Uj

∂Ui

∂xj

+ u′
j

∂u′
i

∂xj

= f i − 1
ρ

∂p

∂xi

+ µ
∂2ui

∂xj∂xj

(3.6)

Where fi is a vector containing the external forces.
In Computational Fluid Dynamics, RANS are the most used for their simplicity,
competing with LES and DNS, more precise but with way higher computational
cost: what differs between this three approaches is how they consider turbulence.
In ascending order of computational cost:

• LES (large eddy simulation) equations resolve the turbulence only for eddies
above a certain filter dimension, while the smaller ones are handled introducing
subgrid terms.

• DNS (Direct Numerical Simulation) resolve the NS equations for each particle,
thus representing the most expensive option in terms of computational cost,
growing with the third power of the Re number; this means it is applicable only
to particular cases with a really low Reynolds, for example in the biomedic
field.

3.2.1 CFD
CFD (computational fluid dynamics) involves solving the numerical solution Navier-
Stokes equations to simulate the behavior of fluids. This method can handle complex,
turbulent flows and can model the free surface using techniques like Volume of
Fluid (VOF) or Level-Set methods. CFD provides detailed flow information,
including the effects of turbulence and viscosity, making it suitable for scenarios
where nonlinear effects and complex fluid interactions are important. It is widely
used in simulating WECs, especially in cases where accurate modeling of the free
surface and wave-body interaction is crucial. CFD is also beneficial in studying
wave breaking, slamming, and other highly nonlinear phenomena. The limitations
of these approach are that it is computationally expensive and time-consuming,
particularly for three-dimensional simulations and when high resolution is required.

10



Fluid models and computational approaches

3.2.2 SPH
Another way of computing the NS equations is the Smooth-particles hydrodynam-
ics. The SPH method is a purely Lagrangian meshless interpolation, that can
approximate continuously field quantities and their derivatives by using discrete
sample points, called smoothed particles. The fluid is represented by a collection
of particles. Each particle carries properties such as mass, velocity, pressure, and
position, and these properties move with the particles through space as the fluid
evolves. The fundamental equations governing the fluid motion (RANS) are dis-
cretized and solved using the SPH formulation. The differential operators (such as
gradient and divergence) are here replaced with interpolations over the particles
using a smoothing kernel function.

It was originally developed for astrophysics [3], but has been applied to di-
verse applications, it is highly adaptable to complex and dynamic environments,
such as breaking waves and highly nonlinear interactions, and can handle large
deformations and fragmentation without remeshing, making it perfect for extreme
event simulations (e.g., tsunamis, slamming). The disadvatage is that it is more
computationally expensive than BEM and CFD, and less accurate for simple, linear
problems. The method also suffers from pressure noise, which can be mitigated
but often at the cost of increased computational effort.

To sum up, all the methods presented in this chapter have their specific do-
mains of application, and the choice of it often depends on the balance between
computational resources, required accuracy, and the nature of the wave-structure
interaction problem being studied .
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Chapter 4

Software introduction and
simulation setup

4.1 Software introduction
The CFD software used is star-CCM+ (acronym of Simulation of Turbulent flow
in Arbitrary Regions - Computational Continuum Mechanics), it allows to simulate
the state or the evolution of a system, based on the RANS model.

The basic concept for space discretization is that the computational domain is
divided into control volumes (or cells), which form the grid or mesh. Considered the
complexity of this test case the mesh is unstructured, meaning that it is necessary
to store the connectivity matrix of each cell. A structured mesh permits a faster
computation but it’s compatible only with really simple geometries

The values of the variables (such as velocity, pressure, and temperature) are
stored at the center of each control volume. The FVM (Finite volume method)
used by Star works by integrating the governing equations (in this case the RANS)
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over each control volume, transforming them into algebraic equations.

d

dt

3Ú
V

U dV
4

= −
Ú

S
F̄ · n̄ dS +

Ú
V

q dV

Considering that in this case there are no sinks and sources, so the last integral
can be deleted. Defining Ū =

s
V

U dV

V
as the integral average of the variable U in

the cell, the previous equation becomes:

V
dŪ
dt

= −
Ú

S
F̄ · n̄ dS

In this way, known the fluxes, which are functions of the variables, the time
derivatives are calculated, varying with the time integration method chosen. The
flux method to apply deeply varies in function of the problem studied. The flux of
quantities (like mass, momentum, or energy) across the control volume boundaries
is calculated and then used in the next iteration to upload the values of the variables.
In our simulations the goal is to study the structure dynamic response at various
frequencies, this can be done generating waves and analysing the motion of the
floating body, or imposing directly on the body the displacement and evaluating
the radiated waves and forces; the second option is the one selected for this thesis.

4.2 Simulation setup
4.2.1 Geometry
The first step is importing or creating directly in STAR the needed geometry. The
goal of a simulation is to represent in the most accurate way the experimental test
conditions: for floating structure the testing facilities are huge tanks filled with
water, with the possibility to create or damp waves on the borders.

In this section all the parts (physical and not) used in the simulation are defined:
the body that could be a simple floating sphere or a complete wind turbine, the
offset created from the body (later used to create a moving mesh) and the volumetric
mesh refinements of the desired dimensions.

In geometry there is another subsection called operations: in this section it is
possible to unite, subtract, intersect, extrude the geometries and so on. The first
step is creating the offset from the moving body and then subtracting the same
body from it to get the holed sphere where the mesh will be built.

Another fundamental part of ‘operations’ is the meshing: selecting the regions
to be meshed, here the dimensions and the form of the cells are chosen. In this
type of simulation there are two meshes: the tank mesh and the overset mesh.

13



Software introduction and simulation setup

4.2.2 Tank Mesh
It involves all the computational domain, so it is important to choose a good
compromise between smaller cells that guarantee a more accurate solution and
bigger ones that reduce the computational cost. The basic idea is to have smaller
cells where the gradients are bigger, in these simulations this will be near the moving
body, and slowly increasing the size of the cells going to the tank boundaries. This
is achieved by adding volumetric meshes refinements with increasing mesh size.

Figure 4.1: Volumetric refinements

4.2.3 Overset Mesh
The overset mesh is the closest region to the moving body, so it must be the most
precise part of the Mesh. A polyhedral mesher is used instead of the trimmed used
for the tank, the size of the cells is smaller and to have a good representation of
the viscous effect of the body on the water a prism layer is added, its dimension
will be coherent with the studied phenomenon.

4.2.4 Continua
In this part the physics model used in the simulation are selected, if needed it’s
possible to select different models to associate with different regions, this feature is
not needed in this simulation so there will be only one model called Physics 1. In
the picture 4.4 are shown the models selected, most of them are selected by default
in Star so only a few of them will be briefly discussed.

14



Software introduction and simulation setup

Figure 4.2: Tank mesh example, in the actual simulation the mesh will be way
smaller and with more refinements.

Figure 4.3: Detail of Boundary Layer

VOF

As mentioned in [2] of the main issue when modelling floating structures using CFD
is the presence of a free-surface. Specific free-surface modelling techniques have been
developed, which can be classified into two main categories: fitting methods (also
known as tracking methods) [4] and capturing methods [5] . The tracking method
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models the free surface as a sharp boundary, while the interface-capturing method
includes water and air in the mesh, adopting either the volume of fluid (VOF)
method [6] or the level-set formulation. The VOF is selected for this project. Every
cell is identified by a VOF vector with two values between 0 and 1: [0 1] meaning it
is just air and [1 0] only water, so a cell with half water and half air would be [0.5
0.5]. The phenomenon studied is time dependant so a 3D implicit, unsteady model
is chosen. The accuracy of VOF simulations is sensitive to the mesh resolution. A
finer mesh can more accurately capture the interface but increases computational
cost. Adaptive mesh refinement (AMR) is enabled in this simulations, which refines
the mesh only near the interface to optimize computational resources.

Turbulence Model: K-eps

The turbulence model used to close the RANS system is K-eps, one of the most
common turbulence models used in CFD, which consists in adding two transport
equations: one for K, the Kinetic energy of the fluctuations, and one for ε, the
dissipation caused by the turbulence. For more information see [7] pag.122.

Other model selected

In the continua section the reference values are left as default, but the initial
conditions need to be selected. In detail, the initial pressure field is the hydrostatic
one for flat waves, and the velocity is that of the flat wave 1 model. In VOF waves
it is initialized the height of the water surface at the beginning of the simulation.

4.2.5 Regions
In this section the desired parts are assigned to a region with the physical models
selected in Physics_1. In our simulation the regions are the Tank and the Overset.
Each part surface is here turned into a boundary.

Tank

The part assigned to this first region is the testing tank, creating a boundary for
each part surface. The bottom surface z=L- is defined as a no-slip wall, as it is far
enough from the water surface for being nearly irrelevant to the evolution of waves.
A symmetry plane is defined for the plane y=0, as the simulation is symmetrical:
in this way there will be half the cells of the complete simulation, obtaining the
results in the other half just by mirroring them, saving a lot of computational cost.

The upper surface of the tanks is set as a pressure outlet, with a constant volume
fraction of [0 1] (only air); the other specification needed is the pressure value,
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Figure 4.4: Section Continua

selected as ‘Hydrostatic Pressure of Heavy Fluid of Flat VOF Wave 1’, in this way
it will vary coherently with the waves evolving.

The remaining surrounding surfaces of the tank (x=L+, L- and y=L) are all
velocity inlets. The VOF selected is composite (both air and water). In the section
Physics values the velocity model is that of the flat wave, adding a damping effect
near the boundary from a selected length: that corresponds to viscous dampers
such as grids in the testing facility, needed to avoid the reflection of waves hitting
on the walls of the tank, because the goal is to reproduce the behaviour in the
open sea.

Overset

In the Overset region there are three boundaries: the external surface of the overset,
with type ‘Overset Mesh’, the symmetry surface and the surface of the body, with
type ‘wall’, condition no-slip.

It is necessary to create an interface between the two regions, this volume-
type interface provides coupling of solutions on the domains using automatically
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generated sets of acceptor cells on one mesh and donor cells on the other mesh.
Variable values at donor cells express variable values at acceptor cells through
interpolation.

4.2.6 Automations
In the subsection ‘Parameters’ it is possible to make the simulation easier to modify,
inserting here the various parameters used in the whole code, such as Base size of
the Mesh, reference height of the flat waves, time step used and so on. Remaining
under automations, another useful subsection is ‘Field Functions’, there is a huge
number of functions present by default, with the possibility of adding new ones
such as the Velocity of the body.

4.2.7 DFBI and Motion
The first step is creating a motion in the tools section: by default, the stationary
motions is already there so it is necessary to create a new one of type ‘DFBI
Rotation and Translation’, which needs to be selected in the motion specification
of the Overset region. In the DFBI (Dynamic fluid-body interaction) section the
process is DFBI > 6-DOF Bodies node and select New Body > 3D > Continuum
Body, which creates a body called ‘Body 1’. After renaming the body, the surfaces
of the overset are selected. In this section all the Inertial data of the body are
inserted: Mass, center of Mass and moments of Inertia. In the External Forces
‘Fluid force and Moment’ and Gravity Force are enabled.

The DOFs of the motion are Z translation (heave), X rotation (surge), Y rotation
(pitch).

4.2.8 Stopping Criterias and Solver
An implicit method is needed to avoid excessive limitations on the time step: an
explicit method is faster and more efficient but would require a way smaller time
step for stability reasons, so it is only used in simulations where the time step
is already really small, such as for resolving smaller scales of turbulence in the
DNS simulations. In this case the RANS are used for modelling turbulence, so the
‘implicit unsteady’ solver is selected, with a second order temporal discretization.
The stopping criteria are the inner iterations for each time-step and the physical
time to simulate. Both will be discussed in the next chapter, because there’s an
important trade-off between quality of the results (which increase with both) and
the computational cost which is basically directly proportional to them.
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Time-step

The maximum time step value is selected so that, for any time step, the overset
mesh moves by a distance smaller than half the height of the smallest cell in the
boundary layer of the Tank region. A finer mesh would require an even smaller
time step. In this example 4.5, considering a maximum velocity of 1 m/s, the time
step must be less than 0.62 seconds. The final mesh used will be way smaller than
the one in the picture, so the time step is parametrized in function of the dimension
of the Mesh. It is important to consider that the cells near the free surface will be
smaller than expected due to the AMR so it’s important to choose a conservative
value for dt.

Figure 4.5: Mesh detail close to the sea surface

4.2.9 Reports, monitor and plots
A report presents a computed summary of the current simulation or CPU data. A
node represents each report in the simulation tree, each with its own pop-up menu.
Report properties, however, vary by report type.

The report summaries are useful for post-processing, and enable reporting values
such as drag, lift, torque, or mass flows. They are also useful for computing
diagnostic quantities such as minimum cell volume or average wall y+, in this
example the monitor requested are Fz(t) and the displacement of the Center of mass
with respect to the origin, to follow this displacement another system of coordinates
called ‘managed’ is created in the tools section: the origin of this system o’ moves
together with the center of gravity Cg of the moving body, measuring the distance
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from the o’ and o (origin of the laboratory’s fixed system) the evolution of z(t) is
obtained and plotted. Another useful plot is the height of the water free surface at
a certain reference point: this plot is obtained plotting the intersection between
the isosurface VOF=0.5 (cells with half water and half air) and the plane x=0; this
type of plot can be confronted with the movement of a buoy in a fixed position
x,y in the testing facility to validate the results. The monitor saves and plots the
report data. Here are some examples plotted for a heaving sphere subjected to
a harmonic velocity with an amplitude of 0.1 m/s, excited at various frequencies.
The following plots are for explanatory purposes only, as they were obtained using
a simulation that is too coarse, which explains the oscillation of certain variables,
such as the z-position 4.6.

Figure 4.6: Z position of the heaving sphere

Figure 4.7: Buoy z position, located at 1 m from the sphere
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Figure 4.8: Wet surface of the Heaving sphere

Figure 4.9: Sea surface scene at 2 s with heaving sphere
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Chapter 5

Heaving sphere

The first comparison between the two methods is conducted on a simple system:
a sphere with a radius of 1 m and a mass of 1000 kg, using the simulation setup
shown in the previous chapter. NEMOH starts from the hypothesis of potential
flow (inviscid and irrotational). With CFD, turbulence (modeled using a RANS
model) and viscosity are also taken into account.

5.1 System model
The floating sphere system can be approximated by a mass-spring-damper system,
corrected by considering the effect of the added mass A(ω), the inertia added to a
system because an accelerating or decelerating body must move (or deflect) some
volume of surrounding fluid as it moves through it. A(ω) is a function of frequency,
and is often comparable to the real mass of the body, ignoring it could lead to
relevant errors in the calculation. The following equations are obtained starting
from the Cummins’ relations [8].

(m + A)ξ̈ + Bξ̇ + Kξ =
NØ

i=1
fext,i (5.1)

Each coefficient is a 6x6 Matrix, the DOFs are the translations on the three axis:

• X, surge

• Y, Sway

• Z, heave

and the corresponding rotations:

• RX, Roll
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• RY, Pitch

• RZ, Yaw
Considering only the heave DOF, the motion equation for the z axis becomes:

(m + A(ω))ẍ + cẋ + kx = Fhydro(t)

where m is the mass of the object, A is the third element on the diagonal of the 6x6
A matrix, c is the unknown term and k is the stiffness of the system, corresponding
to the ratio between the variation of the hydrostatic force with respect to the
displacement:

K = dFst

dξ
= ρ · g · dV

dξ
= g · ρ · Awp · dξ

dξ
= g · ρ · Awp (5.2)

Transitioning to the frequency domain and solving with respect to velocity. The
equation becomes:

iω(m + A(ω))Ẋ + cẊ + kẊ

iω
= Ffft

Where Ffft is the fast Fourier transform of the hydrodynamic force exported
from STAR, and Ẋ is the FFT of the velocity. The only unknown is the damping
value c(ω), obtained as:

c(ω) = ℜ
A

Ffft

Ẋ
− (m + A(ω))iω − k

iω

B
Considering that the second and third term are only imaginary, the equation can
be simplified as:

c(ω) = ℜ
3

Ffft

Ẋ

4
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5.2 Software implementation
The idea is to impose a sinusoidal motion and extracting the Force report from
STAR-CCM+ to obtain the damping. The only DOF considered in this case is the
translation in the z direction (Heave), the most complex case would be considering
all the 6 DOFs.

Imposed motion on the heaving sphere in these simulations:

Vz(t) = A
Ø

sin(ωit)

Imposing ẋ and deriving Fhydro from STAR, transitioning to the frequency domain
by performing the FFT, and solving with respect to velocity. The first optimistic
attempt was to combine more frequencies in group of 6 for simulation, ranging
from 1 to 85 Hz with A = 0.1 m/s and calculating the damping coefficient ’c’ at
those frequencies

Figure 5.1: "Damping" obtained combining various frequency in the same simula-
tion

Theoretically, CFD is a higher fidelity model compared to BEM, but it is
necessary to consider the very coarse mesh used for simulations and the sensitivity
of frequency analysis to the sampling method. The results shown in 5.1 are clearly
unphysical, a negative damping means that that the system is unstable, there are
various reason for these results:
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• These simulation have been run with a mesh too big to reach convergence as
shown by the plot of the residuals

Figure 5.2: Residuals with base size of 500

• Trying to simulate such high frequency excitations demands an higher sampling
frequency, needless to mention that in the context of waves reaching 1 Hz of
frequency is already enough. The sampling was performed at approximately
106 Hz, using the timestep imposed to respect the condition explained in
section 4.6, resulting in a dt= 0.009375 s.

• Combining too many frequencies in one simulation ruin the results, especially
with a low frequency resolution as the one obtained in the previous simulations.

The following simulations are therefore run with a single frequency imposed
motion, combining the results of each one during the post-processing phase to
obtain a plot of the damping in function of the frequency.

Vz(t) = A sin(ωit)

A = 0.5 m/s, and ωi corresponding to f = [0.125; 0.25; 0.5; 0.75; 1] Hz. To have a
proper time representation, at least one clean period is simulated for each frequency
avoiding the transitory at the start of the simulation and respecting the ’golden
rules of sampling’ :

Sampling a periodic function to build its Fast Fourier Transform (FFT) involves
adhering to several fundamental principles to ensure accurate representation and
analysis. These principles are primarily guided by the Nyquist-Shannon sampling
theorem and other considerations related to discrete signal processing.

Here are the rules used to post process the simulation results:

• To avoid aliasing, which is the misinterpretation of high-frequency signals
as lower frequencies, the sampling rate is always at least twice the highest
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Frequency present in the signal, fmax. This is known as the Nyquist rate:
fs ≥ 2fmax. If fs < 2fmax, aliasing will occur, distorting the frequency
components; anyway the time-step is imposed by the CFL condition explained
in chapter 4, so the sampling frequency used for these simulations is at least
200 Hz, way higher than the Nyquist rate.

• The total sampling time covers an integer number of periods of the periodic
function. This avoids discontinuities at the boundaries of the sampling window,
which can introduce spectral leakage. The number of samples is chosen such
that the sampling interval (the total time span of the samples) is an integer
multiple of the period of the function.

• The frequency resolution of the FFT is determined by the total sampling
time. Achieving higher resolution requires a longer sampling duration, as the
frequency bin width is given by ∆f = 1

T imeSimulated
. This creates a trade-off

between frequency resolution and computational cost.

The first noticeable result shown in 5.4 and 5.3 in all simulations is that viscous
forces are 3 orders of magnitude smaller than pressure forces, which are thus
potentially negligible. However, pressure forces differ between the two models used
by NEMOH and STAR, leading to different results in each case.

Figure 5.3: Shear Force for a 4Hz imposed motion
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Figure 5.4: Pressure Force for a 4 Hz imposed motion
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5.3 Comparison between the two models
As mentioned earlier, NEMOH is based on a lower fidelity method, relying on
potential flow theory. The advantage of this approach is its significantly lower
computational cost compared to the higher fidelity RANS model. In this section,
the two methods are compared.

Here 5.5 the damping coefficient obtained from the BEM model for the z-direction
of the sphere is plotted.

Figure 5.5: NEMOH damping from 0 to 4 Hz

The sphere no longer radiates for frequencies greater than 1.5 Hz, so the
comparison between the two models is done between 0 and 1 Hz.
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Linear wave theory

Considering the geometry of the simulated system, it is possible to verify if the
system is within the linear region using the graph in 5.6.

Figure 5.6: Area of validity of the linear wave theory [2]

Where T is the period, H is the height of waves, d the depth of water and g the
gravitational constant. For the following simulations H

gT 2 < 10−2 and d
gT 2 ∼ 0.5 ,

thus the linear field assumption are respected.
To verify the validity of the linear wave theory, a simulation with f=0.5 Hz is

repeated with different values of ’A’, the amplitude of the imposed velocity, ranging
from 0.2 to 1.5 m/s.
In all the following simulations, the average force is 9.81 kN, corresponding to
the weight of the floating body; this value is subtracted from the plot to better
highlight the harmonic oscillations generated by the imposed motion.
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• A=1.5 m/s
The first simulation was run for an amplitude of A=1.5 m/s, resulting in a
maximum displacement of 47.7 cm. The BODE plot 5.7 clearly shows that
the only excited frequency is 0.5 Hz, as expected.

Figure 5.7: Plots for A=1.5 m/s f=0.5 Hz

The radiated waves have an amplitude of 16 cm, as they are proportional to
the motion of the body. The phase shift between the displacement (ore the
velocity) and the force is a useful tool to obtain the damping: if the phase is
the same, as is the damping at various amplitudes. For this case ϕ=1.798 rad
= 103.02°.
To ensure that the noise does not ruin the result, the phase is then calculated
for the fitted sinusoid (red dotted curve in red5.7), yielding the same result.

• A=0.5 m/s
The same procedure is repeated for A=0.5 m/s, resulting in a displacement of
15.9 cm that radiates waves of 5 cm.
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The phase is really similar to the previous case, obtaining now ϕ=1.807 rad =
103.5°, both for the actual force and its fitting. From here on, the fitted curve
will not be plotted as it does not provide additional information.

• A=0.25 m/s
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• A=0.2 m/s

The following table summarize the results of this section:

A [m/s] Az [m] Hwave [cm] ϕ [°]
1.5 47.7 16 1.798
0.5 15.9 5 1.807
0.25 6.37 3.3 1.804
0.2 7.96 3 1.812

Table 5.1: various amplitude for f=0.5 Hz

Simulations with A=0.5 m/s with various frequencies

Having shown that the damping does not depend on the amplitude of the imposed
motion in the previous section, its behavior across different frequencies is studied.
The easiest amplitude to analyze is A=0.5 m/s, as it strikes a balance: the radiated
waves are not too small (which would require a finer mesh and result in longer
computational times) nor too large (which could cause issues with damping at the
boundaries of the computational domain).
The chosen frequencies to accurately represent the frequency domain behavior of
’c’ are 0.125, 0.25, 0.5, 0.75, and 1 Hz.

The lower frequencies, up to 0.5 Hz, require longer simulated physical times
to capture several periods, but they are easier to identify, and the resulting plots
are nearly perfect sinusoids.
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For 0.75 Hz and 1 Hz, the resulting forces are smaller, and the noise becomes
increasingly significant, making it challenging to plot the results accurately.

The force at 1 Hz behaves unusually. Besides the noise, there is another excitation

33



Heaving sphere

at 2 Hz and its multiples. This could be due to two reasons:

• Such a high frequency is difficult to capture and would require a finer mesh.
However, repeating the simulation with the same mesh at 2 and 3 Hz produces

34



Heaving sphere

a better harmonic response, so this possibility can be excluded.

• Looking at the damping plot 5.8 ,there is a spike at 0.5 Hz. The system
dissipates the maximum energy at this frequency, suggesting that it could be
a natural mode of vibration. When the system parameters, such as stiffness or
damping, are modulated at a frequency close to twice the natural frequency,
parametric resonance (for more info [9]) can occur. This can cause energy to
transfer from the primary oscillation to higher harmonic modes, leading to
the spikes at 2 Hz and its multiples in the BODE plot.

Final Comparison

Combining the damping calculated for each of the previous simulations, the plot is
compared to the one obtained using NEMOH. The behaviour is really similar, but
the damping obtained through CFD is slightly larger, see 5.2.

Figure 5.8: Damping comparison between the two models
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Frequency [Hz] Nemoh Damping Star Damping
0.125 60.063 135.25
0.25 354.35 457.17
0.5 679.76 722.89
0.75 347.48 384.66

1 115.24 150.64

Table 5.2: Comparison of Nemoh and Star Damping across different frequencies
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Chapter 6

Convergence analysis

Before considering the results of this type of simulation as correct, it is essential to
validate them. The first step is to examine the residuals and ensure they are below
a reasonable limit. For normalized residuals, they should be smaller than ten, and
ideally less than one.

Figure 6.1: Residuals screen for A=0.5 m/s f=0.5 Hz

The second step in validating numerical simulations is to ensure they all converge
to the same values when the physical phenomenon remains consistent. In this
context, repeating the simulation with slightly different mesh sizes and confirming
they converge to the same results is a good approach. The same excitation was
applied to the sphere with the same mesh setup, changing only the base size, which
ranged from 800 to 100.

The mesh with a base size of 800 was so coarse that the simulation crashed due
to conflicts between donor and acceptor cells. The other simulations were run with
an imposed velocity of:

Vz = 0.5 (cos(0.5πt) + cos(πt) + cos(1.5πt))

This corresponds to frequencies of 0.25, 0.5, and 0.75 Hz. As the base size was
reduced, the noise became progressively less significant, converging to the yellow
curve (with a base size of 100) 6.2.
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Figure 6.2: Force plot for 0.25, 0.5 and 0.75 Hz combined

To have a more complete damping behaviour, the simulation with a b.s.=100
was repeated reducing the dimension of the cells in the sea surface refinement and
in the boundary layer, adding two cosines with the same amplitude at 0.25 and 1
Hz, resulting in the force plot 6.3.

Figure 6.3: Force plot for 0.125, 0.25, 0.5, 0.75 and 1 Hz combined
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Considering the difficulties to represent the 1 Hz frequency, as explained in the
previous chapter, the 1 Hz damping value is not considered valid, plotting the
results of all the previous simulations in 6.4, it is shown that the Star damping is
very close to the BEM prediction.

Figure 6.4: Various mixes compared

The damping coefficient obtained from the mix is expected to be identical to
the one obtained from the single frequencies. However, frequency analysis is highly
sensitive to even the smallest differences, so the slight discrepancies are reasonably
considered to be numerical errors, with the red curve being regarded as the valid
one.
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Figure 6.5: Damping comparison between mixed and single frequencies
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6.1 Richardson converge analysis
Knowing the exact solution of a certain variable U permits to calculate easily the
order of convergence of a CFD simulation: the error ’E’ is simply the difference
between the result of the simulation and the known exact solution.

E = Uexact − Ucfd = Khp

Where K is a generic constant, h the characteristic dimension of the mesh and p is
the order of convergence which can be calculated as:

p =
ln
1

E1
E2

2
ln
1

h1
h2

2
So just two simulations would be enough to obtain the convergence order. Obviously
the exact solution is not known in this case so other options must be explored

6.1.1 Richardson with theoretical order
If the the theoretical order ’p’ of spatial convergence of the simulation, which
depends on the flux calculation method used, is known, the error can be estimated
starting from that. Two simulations are needed, one with base size h and the other
with base size r*h with r>1. Known that:E1 = Uh − Uexact = khp

E2 = Urh − Uexact = krphp

The unknown are k and the exact solution, which can be obtained solving the
system:

Uexact = rpUh − Urh

rp − 1
The error E is then estimated as

Eh = (Uexact − Uh) · GCI

where GCI is the Grid Convergence Index, which is often around 3 to be conservative.
Considering an order of spatial convergence p=1, this method is applied to the
Force ’Fz’ comparing every instant with the same time in the other simulation,
and then doing the time average of the Errors, involving all samples. Using as the
reference size ’h’ the simulation with 100, 200 and 400 as base size, here is the plot
of the error 6.6.
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Figure 6.6: Richardson with theoretical order of convergence p=1

The plotted error here is not multiplied for the GCI. Considering that the order
of magnitude of the Force is 104, the estimated relative error with the smallest base
size is less than 2%. As expected the error clearly decreases reducing the base size.

6.1.2 Richardson with effective order
The theoretical order of convergence could be unknown, and even if it is known
is only valid for really small meshes, so if two too coarse meshes are considered
in this analysis the convergence order will be different. The alternative for this
cases is adding a third simulation, with base sizes: h, h2=2*h h3=4*h. The same
system of the previous section is written but with a third equation, the effective
convergence index is then calculated as:

p =
ln
1

U4h−U2h

U2h−Uh

2
ln 2

and to estimate the exact solution:

Uexact = Uh − U2h − Uh

2p − 1
Using as reference sizes h=200 and 100 the effective orders equals to p(200)=0.57
and p(100)=0.897, so it’s converging to 1, the theoretical order of convergence.
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Convergence analysis

Repeating the same simulation with a base size of 50 would be useful to obtain a
third more precise value of ’p’, but its computational is prohibitive, so two values
will be enough.
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Chapter 7

Floating turbine

With the method now validated, it can be applied to a more realistic scenario: a
floating wind turbine. The chosen model is the IEA-15-240-RWT, a 15-megawatt
(MW) reference wind turbine ([10]) classified as a Class IB direct-drive machine. It
features a rotor diameter of 240 meters (m) and a hub height of 150 m (see 7.1).
This design is the result of a collaborative effort between the National Renewable
Energy Laboratory (NREL), funded by the U.S. Department of Energy, and the
Technical University of Denmark (DTU).

Reference wind turbines, such as this one, are open benchmarks with publicly
accessible design parameters, serving as standard baselines for research into new
technologies and design strategies. They promote collaboration between industry
and researchers while safeguarding intellectual property, and they also provide an
educational platform for newcomers to understand key design principles and sys-
tem trade-offs in wind energy. These qualities made it an ideal choice for this thesis.

The envisioned semisubmersible support for this turbine is the UMaine VolturnUS-S
Reference Platform ([11]), Designed to accommodate the IEA-15-240-RWT, the
system consists of a steel semisubmersible platform with four columns—three radial
and one central—and is anchored in place by a three-line chain catenary mooring
system. The catenary lines extend radially to anchors positioned 837.60 m from
the tower’s centerline. The tower is mounted on the central column of the platform,
positioning the rotor-nacelle assembly (RNA) at a hub height of 150 m above the
still water line (SWL). When installed, the platform has a draft of 20 m and a 15 m
freeboard to the upper deck of the columns. The fully assembled system displaces
20206 m3 of seawater, assuming a density of 1025 kg/m3.
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Floating turbine

Figure 7.1: General arrangement. Figure courtesy of the University of Maine
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Parameter Units Value
Turbine Rating MW 15
Hub Height m 150
Excursion (Length,
Width, Height) m 90.1, 102.1, 290.0

Platform Type - semisubmersible
Freeboard m 15
Draft m 20
Total System Mass t 20,093
Platform Mass t 17,839
Tower Mass t 1,263
RNA Mass t 991
Water Depth m 200
Mooring System - Three-line chain catenary

Table 7.1: General System Properties

7.0.1 Froude scaling
To maintain consistency with the simulation setup used for the sphere, the geometry
was scaled down by a factor of 1:70. This rescaling not only reduces computational
costs but also makes it possible to physically reproduce the experiment with
a prototype matching the size used in the CFD simulations, thereby enabling
validation of the numerical results.

To accurately replicate the phenomenon at scale, Froude similarity ([12]) is
preserved between the full-sized and scaled geometries. The Froude number (Fr)
is a dimensionless parameter employed in fluid dynamics to characterize the flow
regime around a body, particularly in open-channel flows and ship hydrodynamics.
It is defined as the ratio of inertial forces to gravitational forces in the fluid and
indicates whether the flow is dominated by inertia (high Fr) or gravity (low Fr).
The Froude number is given by:

Fr = U√
gL

(7.1)

While this approach—commonly used in wave studies—ensures dynamic sim-
ilarity, it does alter the Reynolds and Weber numbers, potentially introducing
differences from the full-scale system. However, in this case, these variations are
considered negligible. The scaled properties are reported in 7.2. To follow this
approach, the velocities corresponding to the real-size system must be scaled down
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Parameter Units Scaled Value
Hub Height m 2.14
Excursion (Length,
Width, Height) m 1.29, 1.46, 4.14

Freeboard m 0.21
Draft m 0.29
Total System Mass kg 58.6
Platform Mass kg 52.0
Tower Mass kg 3.68
RNA Mass kg 2.89
Water Depth m 2.86

Table 7.2: General System Properties (Scaled 1:70)

by
√

70. For example, an imposed velocity with an amplitude of A = 0.5 m/s in
the scaled model would represent a real-size amplitude of 15 km/h.

7.1 Comparison BEM-CFD damping
The BEM damping is calculated with NEMOH as done earlier for the sphere. For
this test case the damping was also available online ([11]) with another BEM based
software called WAMIT, providing the same results. Each simulation is run with a

(a) Nemoh Damping Coefficient vs Fre-
quency

(b) Wamit

Figure 7.2: Comparison of Heave damping coefficient

single frequency sinusoidal velocity, ranging from 0.1 to 3 Hz. At least two complete
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periods are considered to properly represent the forces in the frequency domain,
for example 8.4 is the 1 Hz simulation, the results of the other simulations are
available in the image appendix. Some noise is present, but it’s neglectable in the
frequencies domain, as seen in the FFT plot.

Figure 7.3: f=1 Hz for the substructure 1:70

To properly compare the results obtained from the scaled model to the real size
dumping, the scaled forces are multiplied for 703 and the velocities for

√
70, while

the frequencies need to be divided by
√

70. The damping obtained from the shown
simulations (from 8.1 to 8.9) is plotted in figure 7.4.
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Figure 7.4: Damping comparison for the turbine system

The first noticeable difference is the magnitude of the damping: for the sphere,
the geometry was very streamlined and did not produce much vorticity so the two
models were really similar. However, here, the arms of the substructure generate a
lot of vorticity, leading to an higher damping compared to the BEM. This increase
is due to the additional damping caused by the detached boundary layer, resulting
in damping that is more than double of the BEM model.

Frequency [Hz] Nemoh Damping Star Damping
0.011952 11173 1.4288e+06
0.047809 4722.9 6.2513e+06
0.095618 3.1144e+06 5.1109e+06
0.11952 3.1115e+06 7.8688e+06
0.14343 1.4346e+06 9.4792e+06
0.16733 2.6986e+06 1.0645e+07
0.19124 1.0193e+06 1.338e+07
0.21514 4.6333e+05 1.2141e+07
0.23905 1.4974e+05 1.5033e+07

Table 7.3: Comparison of Nemoh and Star Damping across different frequencies
for the Substructure

For frequencies lower than 0.1 Hz, the BEM model predicts no damping because
the structure is designed not to radiate near its natural mode of vibration, which,
in this case, is 0.049 Hz for heave. The corresponding frequency to 0.049 Hz in the
scaled simulation is around 0.4 Hz (8.2) , that explains the presence of overtones
for this test case (spikes in the FFT magnitude for the multiples of the natural
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mode), due to the parametric resonance already discussed for the sphere in the
previous chapter [9].

Figure 7.5: f=0.4 Hz for the substructure 1:70

The damping for f<0.05 is produced solely by the vorticity, which explains why
the CFD model shows non-zero damping for these low frequencies. In fact, the
BEM doesn’t work well for plain structures with sharp edges such as the arms of
the substructure, the scenes from 7.6 to 7.8 show the chaotic flow field around the
structure, while in the same scenes for the sphere 7.9 and 7.10 the flow doesn’t
produce much vorticity, explaining why the BEM and CFD results are really close.

Figure 7.6: Streamlines for the substructure with f=0.1 Hz, A=0.1 m/s after
10.1s
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Figure 7.7: Velocity distribution on a plane parallel to the arm for the substructure
with f=0.1 Hz, A=0.1 m/s after 10.1s

Figure 7.8: Velocity distribution on the plane y=0 for the substructure with f=0.1
Hz, A=0.1 m/s after 10.1s

Figure 7.9: velocity field on plane y=0 for the sphere with A=0.5 m/s f=0.5 Hz
at t=6 s

Figure 7.10: velocity field on plane y=0 for the sphere with A=0.5 m/s f=0.5 Hz
at t=6 s
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The best way to represent the vorticity of a flow field is by analyzing the
turbulent kinetic energy (TKE), commonly denoted as k. TKE quantifies the
energy contained in turbulent eddies and is expressed as:

k = 1
2
1
u′2 + v′2 + w′2

2
(7.2)

Here, u′2, v′2, and w′2 are the time-averaged fluctuations of the velocity compo-
nents in the x-, y-, and z-directions, respectively. Plotted with the same logarithmic
scene for both geometries, it’s evident that the substructure field 7.11 has a way
higher turbulent kinetic energy and in a bigger area with respect to the sphere 7.12,
that shows TKE different from zero only in the close proximity of the boundary
layer.

Figure 7.11: TKE scene for the substructure

Figure 7.12: TKE scene for the substructure
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7.2 Convergence analysis
For this structure, the combined frequencies do not exhibit the same damping
behavior as the individual ones, highlighting the system’s nonlinearity, as shown in
7.13 . The damping coefficient is higher for the simulation with multiple frequencies,
beginning to decay after 0.15 Hz, whereas for the single frequencies, this decay
occurs at higher frequencies.

Figure 7.13: Turbine damping comparison for mixed and single frequencies

To analyze grid convergence, the same simulation with an imposed velocity
A cos(ω1t + ω2t + ω3t + ω4t + ω5t) with A=0.5 m/s was repeated, adjusting the
target mesh size, with the smallest case corresponding to u=0.001 m. To reduce
computational costs in simulations with base sizes of 2u and u, the region of wave
refinement was reduced, which led to poorer outcomes: noise oscillations became
significantly more prominent in these two cases, suggesting that the actual radiated
wave matches the refinement scale used in the 4u simulation.
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Figure 7.14: Turbine radiated force with target size 8u and 4u

Figure 7.15: Turbine radiated force, underlying the worse results for the last two
simulations

As expected, this limited the ability to perform a Richardson convergence
analysis, resulting in a negative order of convergence. The logical following step
would be repeating the simulations for 2u and u with a larger refinement area.
However, the computational time required was prohibitive given the available
resources, so this was not pursued, as it fell outside the primary focus of this
dissertation.
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Chapter 8

Conclusions

To summarize what has been studied in this thesis, the system composed of a
floating body is modeled as a mass-spring-damper system, and its heave motion is
analyzed. Initially, the damping is obtained based on the potential flow hypothesis,
using a computational approach called BEM, with the software NEMOH used
for this purpose. The second step involves imposing a sinusoidal velocity in the
z-direction on the body and running a RANS simulation in STAR-CCM+. For
each imposed frequency, the damping is calculated in the frequency domain as the
real part of the ratio of the force and velocity FFTs, where the force is generated
by the radiated waves from the floating body.

The comparison was first applied to a simple geometry, a sphere with a 1-meter
radius. The two damping values were quite close, with the CFD result being slightly
larger.

Once the method was validated, it was applied to study the frequency response of
the reference floating substructure UMaine VolturnUS-S, a structure composed of a
four-column, three-radial and one central, designed to support the IEA-15-240-RWT
wind turbine. In this case, the results were significantly different: the damping
obtained via CFD was at least double that of the BEM model. Previous studies
([13]) have shown that drag caused by flow separation constitutes a significant
portion of the overall hydrodynamic damping for a floating offshore wind turbine’s
semisubmersible platform. However, this additional damping effect is not captured
by the potential flow model, making it the likely main source of the differences
between the damping results from CFD and BEM.

To properly validate the results obtained in this thesis, experimental tests
should be conducted for both cases. The goal would have been to introduce a direct
correction to the BEM model to account for the overdamping caused by vorticity
in the viscous fluid, but more simulations on additional geometries are needed to
develop a general correction law.
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What can be confidently concluded is that the potential flow model underesti-
mates the damping, and the difference from the real damping increases with the
complexity of the structure. The sphere produced little flow separation, so the low
computational cost of the BEM approach justifies its use. For the substructure,
however, the results were entirely different, indicating that for complex geometries
like this, the BEM model is not valid, and a higher fidelity model, such as CFD or
experimental data, is required.
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8.1 Images appendix

Figure 8.1: f=0.1 Hz for the substructure 1:70

Figure 8.2: f=0.4 Hz for the substructure 1:70

Figure 8.3: f=0.8 Hz for the substructure 1:70
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Figure 8.4: f=1 Hz for the substructure 1:70

Figure 8.5: f=1.2 Hz for the substructure 1:70

Figure 8.6: f=1.4 Hz for the substructure 1:70
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Figure 8.7: f=1.6 Hz for the substructure 1:70

Figure 8.8: f=1.8 Hz for the substructure 1:70

Figure 8.9: f=2 Hz for the substructure 1:70
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