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Summary

The aviation sector is at a pivotal point, facing the need to develop environmentally
sustainable and efficient engines while remaining lightweight. A critical factor to
consider during the design phase is the dynamic response of the engine, which, given
its construction from millions of components, presents challenges in correlating
experimental friction data with computational models. This Master Thesis aims
to overcome some of these challenges by using wave propagation to improve
the understanding of friction. Specifically, a numerical model in MATLAB that
simulates the propagation of solitary waves in granular crystals, incorporating
frictional effects, is developed. Like traditional ultrasonic waves, solitary waves are
used as tools for non-destructive evaluation. However, the innovation presented
here lies in using solitary waves to monitor friction, as unlike ultrasonic waves, they
have not been applied to this purpose before. After an initial section on the state
of the art and relevant literature, the project progresses to the development of a
MATLAB computational model for simulating the propagation of solitary waves
through a chain of granular crystals (modeled via Discrete Element Method, DEM)
and a metal block (modeled via Finite Element Method, FEM). This setup will
enable a series of physical insights by observing how friction alters the system. Once
validated, the model may be applied to analyze components affected by friction,
such as turbine-bladed disks with friction dampers. This project’s ultimate goal is
to first correlate changes in solitary wave propagation through a medium with the
friction properties of sliding contacts, thereby developing a novel tool that could
drive significant advancements in tribology and dynamics.
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Chapter 1

Introduction and literature
review

1.1 Motivations and experimental setup

Granular crystals are an artificial material composed of particles in contact with
one another. They can be classified based on how the constituent particles are
arranged within the material, allowing for the distinction of one-dimensional (1D),
two-dimensional (2D), or three-dimensional (3D) granular crystals. The uniqueness
of this type of material lies in its ability to study problems in nonlinear dynamics.
Nonlinearity in granular crystals arises from the Hertzian interaction that occurs
between adjacent particles [1].

The simplest way to create a 1D granular crystal is by arranging a chain of
spherical particles in contact with one another. Experimentally, nonlinear waves can
be generated through the impact of a striker, a vibrational exciter, or a piezoelectric
transducer. The nonlinear wave generated as a result of one of these stimuli is a
solitary wave. This type of wave can be used similarly to traditional ultrasonic
waves to better understand friction in components of interest, both in aeronautical
applications and beyond.

The experimental and computational setup of this work involves a chain of
spherical particles (granular crystal) in contact (considering friction) with a half-
space wall, which is subjected to a sinusoidal displacement. This setup allows for
the investigation of the behavior and relationship between friction and solitary
wave propagation, with the goal of developing a device for friction monitoring.
Such a device could be applied to components for which experimental campaigns
are challenging, thereby leveraging the potential of computational simulation.
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1.2 Thesis outline
In the following section the structure of the thesis is presented: In the following
section, the structure of the thesis is presented:

• Chapter 1: A brief introduction to the problem followed by a review of solitary
waves in granular crystals and their relation to friction.

• Chapter 2: The model and simulations related to the granular crystal composed
of N particles are presented, focusing on the initial impact generating the
formation of a solitary wave.

• Chapter 3: The model and simulations aimed at characterizing the metal block,
representing the component under investigation for solitary wave propagation,
are introduced.

• Chapter 4: The coupling mechanism of the two models is described, enabling
a comprehensive simulation.

• Chapter 5: The influence of friction is analyzed.

• Chapter 6: The conclusions of the thesis are presented, along with possible
future directions in this field of study.

1.3 Solitary waves in granular crystal
Granular crystals (GCs) are a type of artificial material composed of particles
(macroscopic or microscopic) in contact with each other. The term "crystal" is used
to distinguish these synthetic materials from natural granular materials such as
soil. As mentioned in 1.1, the uniqueness of these materials lies in their ability to
facilitate the generation and propagation of solitary waves, making them highly
interesting for the study of problems in nonlinear dynamics. This phenomenon
was demonstrated through the studies of Nesterenko, who theoretically [2] and
experimentally [3] proved the emergence of solitary waves in granular crystals. The
solitary wave within a granular crystal, which can be constructed as a chain of
spherical particles in contact with one another, arises and propagates according to
Hertzian laws [4].

1.3.1 Hertzian laws
For Hertz’s laws to be considered valid, certain assumptions must be made:

• The deformation of the particles in contact must remain within the elastic
limit.

2
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• The contact surface between the two particles must be much smaller than the
diameter of each particle.

• The wave frequency of the granular crystal must be much lower than the
oscillation frequency of each individual particle.

• Friction between particles is considered negligible.

The Hertzian contact law states that the force between two particles in contact
can be defined as follows [1]:

Fi,i+1 = Ai,i+1[δi,i+1]pi,i+1
+ (1.1)

where i and i+1 represent the indices of the two adjacent particles, A is a coefficient
that depends on the mechanical and geometric properties of the adjacent particles,
the exponent p varies according to the shape of the particles in contact [5], and δ
is the relative displacement between the two particles. In the case of interest, the
exponent p = 3

2 because the particles involved are spherical in shape. The exponent
p makes the force between two particles in Hertzian contact a nonlinear force.

Moreover, [·]+ indicates that the relative displacement equals itself when it is
greater than zero, meaning the particles are in actual contact, and it assumes a
value of zero otherwise. Thus, the Hertzian force arises only when there is contact
between the two particles, which is another factor contributing to the nonlinearity
of a granular crystal.

1.3.2 State-of-the-art solitary waves
Solitary waves within granular crystals have been extensively studied and analyzed
in recent years. A study by Yang et al. [6] revealed that, when evaluating the
interaction between highly nonlinear solitary waves and thin large plates, the
reflected solitary wave exhibits delay and attenuation strongly influenced by the
boundary conditions of the plate. Specifically, these effects are attributed to the
inelasticity inherent to large plates, caused by the dispersion of elastic waves within
the plate. Additionally, the coupling behavior between the granular chain and
the plate is shown to depend on the boundary conditions within a certain critical
distance. This study further highlights the importance and potential of a 1D
granular crystal as a nondestructive evaluation tool for assessing the mechanical
properties of plate structures. Unlike conventional ultrasound techniques typically
used for this purpose, the granular crystal offers greater portability and energy
efficiency, making it an ideal candidate for nondestructive evaluation applications.

The study conducted by Carretero-Gonzàlez et Al. [7] presents a systematic
model for dissipation in granular crystals, incorporating a phenomenological term
based on the velocity difference between adjacent beads (a discrete Laplacian)

3
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raised to a common exponent. This augmentation of the standard Hertzian-
based dynamical model successfully captures dissipation effects, achieving optimal
agreement with experimental results across various materials, including steel, Teflon,
and brass. The dissipation prefactor was found to be material-dependent, with
Teflon exhibiting a significantly weaker prefactor compared to brass and steel. This
allowed the unambiguous observation of secondary waves for the first time. Future
directions include investigating the critical prefactor threshold for secondary wave
emergence, the interplay between dissipation and plasticity, and extending the
model to higher-dimensional systems.

The article presented by Jalali et Al. [8] presents a numerical study on a
nondestructive evaluation (NDE) method based on the propagation and detection
of solitary waves, focusing on detecting localized corrosion in steel structures. The
results show that the method is more sensitive to corrosion in thinner plates and
that its sensitivity improves with larger, heavier, and stiffer particles. The length
of the granular chain and the position of the sensor particle have minimal impact
on the reflected solitary waves. However, in high-temperature environments, longer
chains and distancing the sensor from the object help protect sensitive PZT wafers.
Additionally, using silicon nitride particles is advantageous due to their stiffness
and low thermal conductivity, offering protection in hot zones.

Another study conducted by Santibanez et Al. [9] experimentally investigates
the interaction between two solitary waves in a linear chain of spheres interacting
via the Hertz potential. When counterpropagating waves collide, they pass through
each other, introducing a phase shift due to the nonlinear interaction potential.
Numerical simulations accurately reproduce this behavior, showing that it is
independent of viscoelastic dissipation at bead contacts. For collisions of equal
amplitude, synchronized waves, two secondary solitary waves emerge from the
interaction region. The amplitude of these secondary waves is proportional to the
incident wave amplitude but is stronger when the collision occurs at the middle
contact of chains with an even number of beads. While numerical simulations
predict the existence of secondary waves, experiments reveal significantly larger
amplitudes than expected, attributed to rolling friction at bead contacts during
wave propagation.

1.4 Hysteresis Loop and Friction
The hysteresis loop is obtained by plotting the friction force against the relative
displacement generated between two oscillating surfaces in contact. From this plot,
it is possible to derive fundamental quantities such as the tangential contact stiffness,
the friction coefficient, and the dissipated energy (the area of the loop). Figure
1.1 shows a typical hysteresis loop measured using a friction rig [10] developed at
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Imperial College London and Politecnico di Torino. The following contact states
can be observed:

• 0 → 1: Initial loading

• 1 → 2, 4 → 5: Sticking regime
Since the tangential contact force is linearly related to the relative displacement,
the tangential contact stiffness is simply calculated from the slope of the curve.
This quantity can strongly influence the resonance frequencies of the system.

• 2 → 3, 5 → 6: Microslip
This occurs between the sticking regime and the gross slip regime and is
characterized by partial slip in some areas while other portions remain stuck.

• 3 → 4, 6 → 1: Gross slip
The entire contact surface is in full relative sliding motion. In this contact
state, the friction force is approximately constant and equal to the friction
limit µN . During this phase, energy is dissipated, which is an important
parameter for nonlinear dynamic analysis.

• Separation
This phase, not shown in Figure 1.1, occurs when the normal load becomes
zero, and no tangential contact force is transmitted.

Figure 1.1: A typical hysteresis loop [10]

The friction force is the resistance to the relative motion between surfaces or
substances moving past one another or attempting to move tangentially relative to

5
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each other. It is generally quantified as a force or as a dimensionless parameter,
such as the friction coefficient [11].

The first studies on friction were conducted in the 15th century by Leonardo
da Vinci [12], who observed that the friction force was proportional to the applied
normal load and independent of the nominal contact area. Subsequently, Bowden
and Tabor [13] made significant progress in understanding friction by demonstrating
that the tangential force required to slide a contact junction is proportional to the
junction area through a critical shear strength. This implies a linear relationship
between the friction force and the real contact area, explaining the origin of the
empirical friction law, provided there is proportionality between the real contact
area and the normal load. Howell [14] later generalized the friction laws, which are
typically described as follows:

• F = µR, where F is the limiting frictional force, and R is the normal reaction.

• The friction coefficient µ is independent of the apparent contact area.

These laws can be generalized by considering a law of the form:

F = aRn (1.2)

where n varies depending on the material considered, particularly ranging between
0.67 and 1 for metals.

Considering Equation 1.2, the following observations can be made:

• Amonton’s law F = µR is a special case of 1.2 where n = 1.

• F now depends on the apparent area and is independent only when n = 1.

• If roughening a surface creates valleys significantly larger than the spacing
between surface asperities, the available area for real contact decreases, leading
to a corresponding reduction in frictional force.

• The coefficient a is dimensional, except when n = 1.

1.5 Contact model
The previously mentioned models by Da Vinci, Amontons, and Coulomb are
classified as classical or quasi-static friction models. Another type of model is the
dynamic friction model, which considers friction as a velocity-dependent function
and introduces time-varying variables. Additionally, there is another class of
models known as hysteretic friction models, which originate from elasticity theory
to describe energy dissipation and deformation.[15]

6
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1.5.1 Quasi-Static Friction Models

The most well-known and widely used models are the Coulomb friction model [16],
characterized by a velocity-independent friction coefficient, and the viscous friction
model [17], which assumes a linear relationship between the friction force and the
relative velocity. By placing an elastic spring in series with a Coulomb element,
the Jenkins element [18] is obtained. This element is employed in Section 5 to plot
hysteresis curves.

1.5.2 Dynamic Friction Models

Dynamic models were developed to address issues in control engineering, where
accounting for friction is critical for control design. Examples of such models
include the Dahl model [19], which represents a stress-strain curve using a differ-
ential equation, and the LuGre model [20], which extended the Dahl model by
incorporating the Stribeck effect [21]. Further advancements were achieved with
the Leuven model [22].

1.5.3 Hysteretic Friction Models

The reference model for this class is the Masing model [23], which considers
effects arising from plastic and elastic deformation. It is composed of Jenkins
elements arranged in parallel with a spring. The strength of this model lies in its
generalizability, as it can be extended to a system consisting of several springs in
series with Coulomb elements. This configuration is known as the Iwan model [24].

7
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Figure 1.2: a) Coulomb model, b) Jenkins model, c) constant hysteresis model,
d) various dynamic/hysteresis models

8



Chapter 2

Model for the granular
crystal

2.1 Numerical modeling
The interaction between particles is described by the well-known Hertzian interac-
tion law, according to which the force is proportional to a δ

3
2 , where δ represents

the relative displacement between two contiguous particles. In a system composed
of N particles, the equation of motion for the n-th particle is described by [6]:

mün = An[un−1 − un]3/2
+ − An+1[un − un+1]3/2

+ + mg, n ∈ {1, . . . , N} (2.1)

An =

As = Es

√
D

3(1−ν2
s ) , n ∈ {1, . . . , N}

Ap = 2
3

√
2D

1
1−ν2

s

Es
+ 1−ν2

p

Ep

2−1
, n = N + 1

(2.2)

where m represents the mass of the n−th particle, and un is the displacement of the
n − th particle from its rest position (without applied load). It is important to note
that the contact force will only arise for a positive displacement δ, indicating that
penetration has occurred between the two particles. In fact, in the absence of contact
and thus penetration, a contact force can’t be generated. The governing equation
for the motion of the n − th particle expresses the 2nd law of dynamics, relating
the inertial force m · a to the contact force generated by the penetration between
particles in the granular chain. From a numerical perspective, the solitary wave
propagating within the granular crystal is modeled using a discrete element method
(DEM). For propagation within the plate, however, a spectral element method
(SEM) should be used, which represents an advanced form of the finite element
model designed to minimize numerical errors and computational costs. Focusing
on wave propagation within the chain of granular crystals, it becomes evident that
a system of ordinary differential equations (ODEs) must be solved. Considering a
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chain of N particles, this results in a system of N differential equations. Defining
u as the vector consisting of the displacements of the N particles

U =


u1
u2
...

uN

 (2.3)

and f(u) as the right-hand side of the differential equation, the solution can
be formulated as u′′ = f(u). Dealing with a second-order equation requires
transforming it into a system of first-order equations, given by

ż = F (z) =
C

U̇
f(U)

D
(2.4)

where U̇ is the time derivative of U and is equal to

U̇ = V =


v1
v2
...

vN

 (2.5)

This is the equation that will be solved using a MATLAB script. Solving this
equation yields both the velocity and displacement for each particle in the granular
crystal chain. With velocity and displacement data available, physical and/or
numerical considerations can then be made, which will be presented in the following
section.

The initial conditions for the problem are: zero initial velocities for all particles
except the first particle, which will have an initial velocity such that it acts as
the striker in the system, initiating the formation of the solitary wave; initial
displacements are zero throughout, meaning that the N spheres are spaced 2R
apart, in contact but without mutual penetration. Physical parameters such as
the radius, number of particles, elastic moduli, Poisson’s ratios, and densities of
both the spheres and the plate, along with particle masses, are provided. These
parameters allow the calculation of coefficients An and thus facilitate writing the
differential equation.

Using a solver implemented in MATLAB (e.g., ‘ode45‘ [25]), the system of
differential equations can be solved. Since in this initial phase only the propagation
of the solitary wave in the granular particle chain is being considered, further
iterations in the code are not necessary.

In Figure 2.1, a schematic representation of the system is shown: N spheres
representing the granular crystal are interconnected, with the last sphere colliding
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against a wall ideally assumed to have infinite stiffness. Initially, the wall serves as
a schematic representation of the FEM block, which will be introduced in Chapter
3.

Figure 2.1: Schematic representation of the system

2.2 Physical considerations

2.2.1 Displacement and velocities

By plotting displacement and velocity as a function of time, it is possible to observe
the interactions between the various particles. In the displacement-time graph, we
can see that initially the first particle moves in the positive x-direction, penetrates
a micrometric amount into the second particle, and then at a certain point moves
backward (showing negative displacement values). In the velocity-time graph,
we observe the propagation of the solitary wave. Specifically, if we examine the
moment when the motion begins (when the second particle has a non-zero velocity),
we can calculate the wave propagation speed as the distance traveled divided by
the measured time. At a certain instant (0.18 ms), an inversion of the velocity sign
of all N particles is observed. This can be attributed to the impact of the last
particle with the plate, which generates a reflection of the solitary wave.

11
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Figure 2.2: Displacement and velocities

2.2.2 Velocity of the solitary wave
Another important quantity to calculate is the velocity of the solitary wave.

2.2.3 Contact and inertial forces
It is possible to represent the inertial and contact forces acting on the n-th particle
to verify the validity of the second law of dynamics applied to the n-th particle,
according to which the inertial force must equal the sum of the forces acting on it.

Figure 2.3: Contact force for the 19th particle

12
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Figure 2.4: Inertial force for the 19th particle

2.2.4 Energy

The time evolution of the energy within the system can be evaluated [26]. Since
there is no dissipation in this initial phase of the analysis, a constant trend of the
system’s mechanical energy (given by the sum of the mechanical energy of each
particle) is expected. This is obtained from the sum of kinetic and potential energy.
At the initial moment, the particles are in contact, but there is no penetration, so
the potential energy is zero, while there is a certain amount of kinetic energy due to
the initial motion of particle 1. The motion proceeds as the first particle penetrates
into the second, generating a component of potential energy and a corresponding
decrease in kinetic energy. The motion continues with the penetration of the second
particle into the third, and so on. The trend of the system’s total energy can be
observed to remain constant over time (aside from purely numerical errors).

13
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Figure 2.5: Energy of the system

2.2.5 Sensitivity Analysis

This section analyzes the effects of changing certain physical parameters (effects of
varying exponent, initial velocity, stiffness, mass, radius).
Exponent: The exponent in the Hertzian formulation 3

2 allows for a constant
coefficient Aj independent of the applied load, depending only on geometric pa-
rameters. This way, the contact force can be expressed as F = Aj δx3/2. If we were
to use the “standard” formulation F = kx, the dependency of k (contact stiffness)
on the applied load would need to be considered.

Figure 2.6: Normal load vs penetration
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Figure 2.7: Contact stiffness vs penetration

Figure 2.8: Contact stiffness vs normal load

It is observed that the solitary wave propagation speed does not depend on the
initial velocity when using the formulation F = kx, but there is a strong dependence
when using the 3/2 exponent formulation. Physically, using an exponent value of 1
transforms the system of N spheres into a continuous single-bar system. In this
case, the propagation speed corresponds to the speed of sound in this material.
Indeed, the speed of sound in a metal represents the phase between consecutive
particles. It is essential to distinguish between the wave propagation speed and
the individual particle velocity in the granular chain (these are two completely
different quantities). A smaller phase ϕ indicates particle movement in unison
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(ϕ = 0 ideally for a perfectly rigid body), whereas a value greater than zero for ϕ
indicates some elasticity in the contact between particles, with a certain “delay”
in penetration between two particles and consequent signal propagation (solitary
wave). The exponent varies and is different for each body under consideration: for
a bar, it is equal to 1, since the material is homogeneous; in a sphere, the contact
area increases as contact increases, resulting in a 3/2 exponent (greater than 1).

Stiffness: Stiffness represents the rigidity of the contact established between
consecutive particles. An increase in stiffness leads to a higher wave propagation
speed, as the “delay” time for the previous particle to penetrate the next is reduced,
thus accelerating the solitary wave’s travel.

Radius: The influence of the radius does not come into play, as in a DEM
model, each sphere is treated as a material point with a certain mass. While the
mass depends on the radius, it does not affect the equations, as the mass acts as a
common divisor across the system.

Radius mm Speed of propagating front m
s

10 365
30 365
100 365

Table 2.1: Dependence of the propagation velocity on the sphere radius

Initial velocity:

Figure 2.9: Initial velocity 0.05 m
s
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Figure 2.10: Initial velocity 0.5 m
s

Initial velocity m
s

Speed of propagating front m
s

0.5 578
0.05 365

Table 2.2: Dependence of the propagation velocity on the initial velocity of the
striker

Steady state: It would be possible to evaluate the existence of a steady state
by introducing a wall before the first particle. Using an autocorrelation algorithm,
a cyclic signal related to the individual particles could be sought.

2.2.6 Other quantities
Other quantities that can be evaluated are as follows:

• The maximum particle velocity attained during the solitary wave propagation
[27]:

v = 0.682 · v0 (2.6)

where v0 is the impulse velocity of the striker particle.

• The analytical contact time for the last particle of the chain on a semi-infinite
wall (which is our case) [6]:

Tc = m
2
5 · v− 1

5 · A
− 2

5
p τc (2.7)
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where Ap is given by 2.2 [28], v is the maximum particle velocity, and τc is
the dimensionless contact time, approximately equal to 3.22 for a semi-infinite
wall [29].

Figure 2.11: Analytical time of contact

• The analytical solitary wave speed in an uncompressed 1D monodisperse
chain [6]:

Vs = 0.641/5
A

2Es

ρsπ

B2/5

v
1/5
in (2.8)

Figure 2.12: Analytical solitary wave speed

18



Model for the granular crystal

Figure 2.13: Analytical solitary wave speed dependency

In figure 2.13, the behavior of the analytical solitary wave (see 2.2.6 for the
formulation) is shown as a function of E and ρ. The graph is intended as a
qualitative representation only.

2.3 Dissipation
In Section 2.1, a non-dissipative system was considered, i.e., an ideal system in
which the mechanical energy remains conserved over time. However, to consider a
more realistic case, it is necessary to include the dissipative effect in Equation 2.1.
This dissipation can be evaluated using the restitution coefficient [30]:

ϵ =
3

Un+1

Un

41/2
=
3

Fn+1

Fn

45/6
(2.9)

where Un is the Hertz potential, i.e., the work done by the Hertz force Fn at the
contact n. The dissipation mechanism arises from two primary processes:

• Internal viscoelasticity

• Solid friction of beads under their weight

• Solid friction between beads due to hindered rotations (this is not considered
here)

For a dissipative system, Equation 2.1 becomes [7]:

mün = An[un−1 − un]3/2
+ − An+1[un − un+1]3/2

+ + mg + γs∥δ̇n − δ̇n+1∥α (2.10)
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where δn = max{un−1 − un,0} for n ∈ {1, . . . , N}, δ1 = 0, δN+1 = max{un,0},
and s = sgn(δ̇n − δ̇n+1). The implementation in MATLAB is achievable using the
heaviside function.

Figure 2.14: Energy and momentum

In Figure 2.14, it can be observed how dissipation reduces the system’s mechanical
energy. By adding the dissipated energy to the mechanical energy, a constant trend
is obtained, indicating the validity of the simulation.
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Chapter 3

Model for the block of metal

3.1 Relevance of the block
The metallic block represents the component under investigation for the propagation
of solitary waves. This block is made of stainless steel with an elastic modulus of
E = 210 GPa and a density of ρ = 8352 kg

m3 . The block dimensions are (48.5 ×
56 × 40) mm, chosen to ensure that the block can be considered as a half-space
wall while also being easily manufacturable for experimental analyses.

3.2 Numerical Modeling
To study the effects and propagation of a solitary wave through this block, it
is necessary to solve a structural dynamics problem. This requires solving the
following equation:

[M ]{Ü} + [C]{U̇} + [K]{U} = {F (t)}, (3.1)

where F represents the vector of forces and moments applied to the nodes, K
is the global stiffness matrix, U is the unknown vector of nodal translations and
rotations, C is the damping matrix, and M is the mass matrix of the system.
This system can be solved using computational software such as Abaqus [31], or
analytically via a custom script implemented in MatLab.

3.2.1 Abaqus
Abaqus is a finite element method (FEM) simulation software used for advanced
engineering analysis. Developed by Dassault Systèmes, it is known for its versatility
in solving complex problems across various fields, including structural mechanics,
thermal analysis, fluid dynamics, and multi-physics interactions. The use of Abaqus
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is crucial not only to obtain the displacements for each degree of freedom of the
structure but also to extract the global stiffness matrix K and the mass matrix
M . In fact, the mass matrix will be essential for conducting a dynamic analysis,
where the load varies over time. To extract the matrices of interest, a frequency
analysis is performed. This analysis consists of a series of steps that need to be
carried out in order. First, the reference geometry is created, a rectangular prism
with the following dimensions:

• height h = 48.5 mm

• long side l1 = 56 mm

• short side l2 = 40 mm

Figure 3.1: CD20R element

Mechanical properties must then be applied to this geometry. Specifically, the
elastic modulus and density are assigned as described in 3.1, with a Poisson’s ratio
ν = 0.30.

The next step is to discretize the structure into parts or finite elements, a process
known as meshing. This operation must be carried out with certain considerations
[32]. First, the individual finite elements must have a shape compatible with
their type. Furthermore, the finite elements should not be excessively distorted or
contain singularities within them. The chosen element is the CD20R (see figure
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3.1), a general-purpose quadratic brick element, with reduced integration (2x2x2
integration points). This element is suitable for a wide variety of situations and
performs well even for isochoric materials.

Figure 3.2: CD20R integration scheme

The resulting test mesh is presented in figure 3.3. It can be noted that the
elements are of the CD20R type by the fact that each side of the mesh is formed
by such elements.

To perform a frequency analysis to extract the matrices to be used in MatLab,
boundary conditions must be applied to the block, corresponding to a clamping
near the face opposite to the one that will come into contact with the granular
crystal. The clamping restricts all degrees of freedom of the nodes in question.
The frequency analysis provides the modes and natural frequencies of oscillation of
the structure, which are essential for comparing the results obtained in MatLab.
To extract the K and M matrices (see in detail A), the appropriate command is
inserted into the .inp file generated by Abaqus, which is then re-executed from the
command window. Abaqus is also useful for understanding which node, and thus
the corresponding degree of freedom, will come into contact with the last particle
of the granular crystal. To do this, a static analysis is performed, which consists of
defining a static load and applying it at the central point of the face opposite the
clamped one. Using a procedure similar to the matrix extraction, the load matrix
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and the corresponding loaded degree of freedom are extracted. Moreover, from
the static analysis, the displacement field of the structure is obtained, which is the
essential starting point for the coupling between the DEM and FEM models, as
discussed in chapter 4.

Figure 3.3: Mesh

3.2.2 MatLab
MatLab is used to implement a script that solves the system 3.1. This is done
using ode15s [33]. It is chosen because it solves stiff differential equations. In
particular, it is useful for solving systems of ordinary differential equations (ODEs)
that exhibit stiffness, which means they have rapidly changing solution in some
regions and slowly changing solutions in others. Indeed, it is expected that the
solution will vary more rapidly near the node where the force is applied, while it
will vary more slowly at the boundaries of the computational domain.

The mass and stiffness matrices are imported into MatLab and used for this
purpose. Some fundamental quantities are defined to solve the problem. We define
the vector of displacements and rotations for the degrees of freedom of the structure
as

U =


u1
u2
...

udof

 (3.2)

and the vector of linear and rotational velocities of the degrees of freedom as

V =


v1
v2
...

vdof

 = U̇ (3.3)
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In this way, the system 3.1 can be expressed as:

{Ü} = f(U) = {F (t)} − [C]{U̇} − [K]{U}
[M ] (3.4)

By combining the vector U with the vector V , we obtain

Z =



u1
u2
...

udof

v1
v2
...

vdof


=
C
U
V

D
(3.5)

Thus, the system 3.1 can be written as

Ż = F (Z) =
C

V
f(U)

D
(3.6)

This equation can be solved, as mentioned earlier, using a solver implemented in
MatLab and optimized for this purpose, called ode15s. During this analysis, the
vector F (t) is constructed as follows:

F (t) =



01
02
...

0n−1
Fn

0n+1
...

0dof


(3.7)

In this way, the force is applied at a single degree of freedom in the system,
corresponding to the n-th degree of freedom, which is located at the center of the
face opposite the clamped face. To verify that the model developed in MatLab is
correct, a preliminary static analysis is performed, thus solving

[K]{U} = {F} (3.8)

where F is constant and has a chosen value. The result of this simulation gives
the unknown vector of translations and rotations of the nodes. This vector is
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then used as the initial condition to solve the system 3.6, with the same force
F (t) value chosen in the previous simulation. In this way, it is expected that the
block, subjected to a force corresponding to a displacement field given as the initial
condition, will not undergo any changes over time, and thus the vector U will
remain unchanged. This allows for a simple verification of the MatLab script used.

3.2.3 Newmark’s method
The system of equations 3.1 could rigorously be solved by applying the Newmark
method [34]. This is a direct integration method that discretizes a continuous
problem. Given the initial conditions, the goal is to satisfy equation 3.1 at each
discrete point in time. Being a direct method, it assumes a specific variation of
displacements, velocities, and accelerations within each time interval considered,
where the equilibrium equation 3.1 is satisfied at each time step. In particular, this
method leverages the mean value theorem and, combined with a standard Taylor’s
series, approximates the displacement and velocity at the next time instant, tn+1.
Applying the mean value theorem, equation 3.1 can be rewritten to derive an
expression for the second derivative [35]:

ün+1 = M−1 (f(un+1) − Cu̇n+1 − Kun+1) (3.9)

This equation is solved iteratively, updating un+1 and u̇n+1 using the formulas de-
rived earlier from Taylor’s series expansion. The method introduces the parameters
β and γ. It has been shown that the method is unconditionally stable for γ = 1

2 and
β = 1

4 [36], and under these conditions, it is referred to as the average acceleration
method.

Figure 3.4: Displacement DOF - 182 - system not in equilibrium
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Figure 3.5: Displacement DOF - All - system not in equilibrium

In figures 3.4 and 3.5, the behavior of the DOFs is shown when subjected to a
force such that the initial displacement condition is not satisfied. When a force
that does not match the equilibrium condition is applied to a system, the system
will experience a displacement from its initial state. This causes the system to
start vibrating as it attempts to restore equilibrium. The imbalance between the
applied force and the internal forces leads to oscillations, as the system continually
reacts to the disturbance. Over time, depending on the system’s properties, these
vibrations may either stabilize, reaching a new equilibrium, or continue oscillating
indefinitely. In some cases, the system may gradually lose energy, damping the
oscillations, while in other cases, the system may exhibit more complex dynamic
behavior.

3.3 Physical considerations

The analysis is conducted using ode15s, as this is crucial for connecting the
simulation presented in 2.
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Figure 3.6: Displacement DOF - 182 - system in equilibrium

Figure 3.7: Displacement DOF - All - system in equilibrium

Figures 3.6 and 3.7 show the displacement trend of the degrees of freedom of
the FEM block, imposing as the initial condition that derived from the analysis
in 3.8 and applying a load equal to F . Therefore, it is expected that the system
remains in equilibrium under the action of the load F , and this is confirmed by the
MatLab code.
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Chapter 4

The coupling between DEM
and FEM

This chapter presents the mechanism by which the DEM and FEM simulations are
coupled.

4.0.1 Implementation

To solve the system of equations governing the system consisting of N spheres,
which make up the granular crystal, and the metallic block, it is necessary to
solve equations 2.1 and 3.1 simultaneously. To do this, one can construct a vector
containing the displacements of each FEM node and each particle of the granular
crystal:

U =



u1
u2
...

uN

uN+1
...

uN+dof


(4.1)
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and a vector containing the time derivative of U :

U̇ = V



v1
v2
...

vN

vN+1
...

vN+dof


(4.2)

Define a vector consisting of U and V :

Z =



u1
u2
...

uN

uN+1
...

uN+dof

v1
v2
...

vN

vN+1
...

vN+dof



(4.3)

In this way, the system 2.1 + 3.1
mün = An[un−1 − un]3/2

+ − An+1[un − un+1]3/2
+ + mg, n ∈ {1, . . . , N}

[M ]{Ü} + [C]{U̇} + [K]{U} = {F (t)}, n ∈ {N + 1, . . . , N + dof}
(4.4)

can be rewritten as
Ż = F (Z) =

C
V

f(U)

D
(4.5)

Being a system of differential equations, initial conditions U0 and V0 must be
provided. Specifically, V0 will be a vector containing N + dof − 1 zero elements
and a single non-zero element (the first one) representing the velocity of the first
particle, which acts as the striker for the system. Instead of using a striker and
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thus assigning a non-zero initial velocity to the first particle, one could consider
assigning an initial displacement to the first particle, which corresponds to a certain
initial Hertzian force that sets the particle system in motion. As for the vector
U0, it will be constructed such that the part of the block has displacement values
corresponding to the static force applied to the last particle. Therefore, as the first
step, the system of equations 3.8 is solved, and the obtained displacement field is
used as the initial condition. By doing this, the displacement corresponding to the
contact node between the block and the last sphere must be added to each sphere
so that, initially, spheres and the block remain in contact and there are no gaps.
Thus,

U01...N
= Un (4.6)

where n is the degree of freedom related to the contact point between the block
and the granular crystal. Furthermore, since a force is applied to the last sphere, in
order to observe the effects of introducing friction into the system, it is necessary
to first include this force in the equation for the last particle. To ensure that the
simulation proceeds correctly, it is important to consider an initial penetration
between the sphere under this force and the block. This penetration, through
a Hertzian force, will balance the force applied to the last particle. This initial
penetration is given by

U0N
=
1Load

AN+1

2 2
3 (4.7)

This value is added to the other spheres to maintain initial contact. After the
simulation, some checks are performed to confirm the validity of the results. In
particular, the stiffness of the FEM node and the last particle is calculated:

kfem = Load

u0N+n

= 10343 N

µm
(4.8)

kN = Load

u0N − u0N+n

= 8.3289 N

µm
(4.9)

Thus, we expect a displacement that is 10343
8.3289 = 125 times greater for the last sphere

compared to the FEM node, which can be observed in the following figures:
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Figure 4.1: FEM node displacement vs time

Figure 4.2: Last particle displacement vs time
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Figure 4.3: FEM nodes displacement vs time

Figure 4.4 shows, similarly to figure 2.2, the displacement and velocity trends
of the N spherical particles. It can be seen that, unlike figure 2.2, by applying a
preload to the last particle, it will experience an oscillatory motion back and forth
along the horizontal axis of the reference system.

Figure 4.4: Displacement and velocity trend

Another check that can be done is to evaluate the Hertzian force between the
last sphere and the FEM node, which should equal the preload force applied to the
last sphere. We indeed get that

FHertz = AN+1(u0N
− u0N+n

) 3
2 = Fpreload (4.10)
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4.1 FEM Mesh Selection

The block mesh performed using Abaqus is a very important procedure as described
by [37]. To accurately analyze the problem, it is necessary to choose a reference size
for the FEM elements. Each element is chosen to be of a size such that its area is
smaller than the contact area between the sphere and the block. To calculate this
value, it is first necessary to evaluate the equivalent Young’s modulus of elasticity
[4]:

1
E∗ = 1 − ν2

1
E1

+ 1 − ν2
2

E2
(4.11)

where 1 and 2 refer to the respective body 1 and body 2 in question. The contact
area between the two bodies is given by [38]:

a =
13NR

4E∗

2 1
3 (4.12)

where R is the radius of the sphere and N is the normal load.

4.2 Representation of the Granular Crystal - FEM
Block System

Looking at what physically happens in the system, it is noticed that the solitary
wave, formed from the initial impact at velocity v0 of the first spherical particle
against the second, propagates along the granular chain through the Hertzian
penetration mechanism between spheres. Once the solitary wave reaches the FEM
block, it reacts by deforming at the node that connects it to the granular crystal,
and consequently to the nearby nodes, following the reference equation of motion
3.1.
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Figure 4.5: System at the initial time

In figure 4.5, we can finally observe the schematic of the system. It can be seen
that, at the initial instant, the last sphere is already in penetration with the FEM
block. This is due to the reasons mentioned in 4.0.1.

Figure 4.6: System at a generic time instant

Taking a time step subsequent to the initial one, it can be observed (see figure
4.6) how the solitary wave is propagating, as the penetration phase of one sphere
into another is visible, followed by a depenetration phase between the two, allowing
space for a new penetration with the next sphere. In this way, the solitary wave
propagates.
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Figure 4.7: System at the instant when the last sphere penetrates into the FEM
block

At this time step, the penetration of the last sphere into the FEM block is
observed. Through a multiplicative factor, it is possible to see this penetration and
the subsequent relaxation due to the inversion of the motion of the last particle.
From the displacement-time graphs in figure 4.4, it is noted that this particle begins
to oscillate once the wave has passed through it for the second time. This could
experimentally cause stability issues in the test system. To try to attenuate this
oscillation, one could consider applying a preload to the first particle in the chain
(chosen for simplicity, but any other sphere could theoretically be used), in a similar
manner to what was done with the last particle. This leads to a reduction in the
oscillation, which can be qualitatively observed in figure 4.8
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Figure 4.8: Displacement and velocity trend - preload applied to the first particle
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Chapter 5

Friction

In this chapter, the procedure for considering friction in the model is presented. In
particular, friction is introduced between the last sphere of the granular crystal
and the metal block in order to plot the hysteresis curve.

5.1 Jenkins Element
In order to plot the hysteresis cycle, it is necessary to choose a contact model and
thus an element to simulate the behavior of the component subjected to friction.
In particular, a Jenkins element [39] is chosen, which is based on Coulomb’s law as
shown in 5.1.

Figure 5.1: Jenkins element model

The peculiarity of this model is that it describes the gross slip regime of the
hysteresis loop without considering the microslip regime (i.e., the regime where a
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portion of the contact surface slips while the remaining part of the surface is stuck).
This element, also known as the friction slider, is composed of several components:

• Elastic spring

• Coulomb element

In particular, the elastic spring is in series with the Coulomb element, as shown in
5.1. The elastic spring, which is essentially a tangential contact stiffness kt, relates
the force linearly to the displacement:

T = kt · x (5.1)

While the Coulomb element follows the Amontons-Coulomb law:

T = µ · N (5.2)

where N is the normal force applied to the contact surface. Thanks to the use of
a Jenkins element, it is possible to generate a hysteresis loop (such as the one in
figure 5.2), but without the ability to describe the microslip regime. However, the
potential of this contact model lies in the fact that by modeling the contact surface
with enough FE nodes coupled by different Jenkins elements, some nodes will be
in the slip regime and others in the stick regime, thus representing the microslip
regime.

Figure 5.2: Hysteresis loop

To solve the system formed by equations 5.1 and 5.2, a numerical method must
be implemented, which is described in section 5.2.
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5.2 Numerical Method
The numerical method to solve a hysteresis loop problem consists of several phases:

• Normal force acquisition: the normal force exchanged between the granular
crystal and the metal block.

• Definition of sinusoidal horizontal displacement: the displacement imposed on
the block.

• Prediction of the motion regime: a certain condition between stick and slip is
predicted (in our case, it was chosen to predict being in the stick phase by
evaluating the value of the tangential contact force using 5.1).

• Verification of the prediction: if the condition is verified, the process continues;
otherwise, the tangential contact force is reevaluated using 5.2.

5.3 Discussion
The hysteresis graph obtained is shown in figure 5.3.

Figure 5.3: Hysteresis loop

It can be observed that, unlike the graph in figure 1.1, which presents the shape
of a parallelogram due to the two stick and slip regimes, there is an "oscillation"
during the slip phase. This is due to the solitary wave impacting the FEM block.
Specifically, the solitary wave, when it hits and passes through the FEM block,
generates a ∆NormalLoad, which manifests physically as seen in figure 5.3. The
increase in friction force is due to the fact that, following the increase in normal
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force, the Coulomb limit µN increases, leading to a sticking phase. It is also
interesting to observe the right side of figure 5.3, as it shows the behavior of the
normal load and how it changes after about 0.0005 seconds. This is the time it takes
for the wave to reach the FEM block. For this analysis, the friction mechanism was
considered decoupled from the transfer of normal load between the two elements
considered.
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Chapter 6

Conclusion and future
developments

6.1 Conclusion
In this Master Thesis, a MATLAB code was developed to simulate solitary wave
propagation within a granular crystal (modeled using DEM) and its interaction
with a metallic block (modeled using FEM). Particular attention was given to the
friction mechanism and how it can be evaluated through variations in a hysteresis
loop. The key findings include:

• Wave propagation: The solitary wave within the granular crystal follows
Hertzian contact laws, while its interaction with the FEM block induces
localized deformations and oscillatory responses.

• Contact mechanics: The choice of FEM mesh size, based on the contact
area, enables an accurate representation of stresses and displacements at the
sphere-block interface.

• Friction modeling: By implementing the Jenkins element, which allows
the reproduction of a hysteresis loop, it is possible to evaluate the energy
dissipated during the process.

This Master Thesis contributes to a broader understanding of coupled granular-
FEM systems, with potential applications in advanced materials design, energy
dissipation systems, and wave propagation studies. Therefore, it can be regarded
as an initial step toward future investigations in this field, which remains rich with
opportunities for discovery.
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6.2 Future Developments
The topic addressed in this Master Thesis remains an area of ongoing research
among leading research groups worldwide. To summarize, some potential areas for
future developments include:

• Considering Macroslip Regimes: Introducing a more refined contact
model that can capture this regime within the hysteresis loop. This could be
achieved by implementing a distributed Jenkins element across multiple FEM
elements or by employing alternative contact models, such as the Mindlin
model.

• Incorporation of Nonlinearities: Enhancing the FEM block model by
including nonlinearities to allow for plastic or viscoelastic deformations.

• Multiphysics Coupling: Introducing thermal and electromagnetic effects,
which could alter the mechanical properties of both the granular crystal and
the FEM block.

• Experimental Validation: This component is fundamental for validating
a numerical code. In this regard, Dr. Fantetti’s research group is currently
working on conducting laboratory experiments for the system simulated so
far.
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Appendix A

Matrix Extraction from
Abaqus

A.1 Mass and Stiffness
The procedure for obtaining the mass matrix and the stiffness matrix involves
performing a frequency analysis of the structure under consideration. To be as
comprehensive as possible, the steps to follow are listed below:

1. Geometry Creation: This is done using the part module.

2. Material Definition: The material is defined using the property module by
specifying the values for density, Poisson’s ratio, and elastic modulus.

3. Section Creation and Assignment: The section is assigned to the part created
earlier through the appropriate command.

4. Assembly: The instance is created in the assembly module.

5. Step: A step is created using "Linear perturbation → frequency," requesting
10 eigenvalues.

6. Boundary Conditions: Boundary conditions are applied in the previously
created step.

7. Mesh: The part is meshed.

8. Job Creation: A job is created, and the input file is written.

9. Input File Modification: The .inp file is modified by adding the following code
string between the material definition and the step:
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*STEP, NAME=export matrix
*MATRIX GENERATE, STIFFNESS, MASS
*MATRIX OUTPUT, STIFFNESS, MASS, FORMAT=COORDINATE
*END STEP

10. Run the Job: The modified .inp file is run through PowerShell by typing:
abaqus j = job - 1 int where job-1 is the name of the .inp file, for example.
Note: The .inp file must be in the same directory.

The matrices are now available. To be used, they must be converted into .txt files
so that they can be read in MATLAB using the read matrix command.

A.2 Force
In order to perform the static and dynamic analysis of the FEM block, it is necessary
to know on which DOF the force will be applied. This DOF corresponds to the
degree of freedom in the direction equal to the direction of the force applied to the
central node of the face opposite to the fixed face. The steps to obtain this matrix
involve a static analysis and are listed below:

1. Geometry Creation: This is done using the part module.

2. Material Definition: The material is defined using the property module by
specifying the values for density, Poisson’s ratio, and elastic modulus.

3. Section Creation and Assignment: The section is assigned to the part created
earlier through the appropriate command.

4. Assembly: The instance is created in the assembly module.

5. Step: A step is created using "General → static, general"

6. Boundary conditions and load: The boundary conditions and the load applied
at the node of interest are defined.

7. Mesh: The part is meshed.

8. Job Creation: A job is created, and the input file is written.

9. Input File Modification: The .inp file is modified by adding the following code
string at the end of the code:
*STEP
*MATRIX GENERATE, STIFFNESS, LOAD
*MATRIX OUTPUT, STIFFNESS, LOAD, FORMAT=COORDINATE
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**
** LOADS
**
...
**
*END STEP

10. Modification of the Loads Section: Instead of ..., the corresponding load
already present in the input file must be inserted by copying and pasting it.

The force matrix consists of a number corresponding to the DOF on which the
force is applied, and the force itself. Simply put, the DOF is used in MATLAB to
perform the static analysis prior to the simulation with granular crystal in order to
apply the correct initial conditions.
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