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insegnamenti che porterò con me nel mio percorso futuro.

Ringrazio il Dr. Giorgio Pesenti per il prezioso aiuto fornito nello sviluppo
operativo di questo lavoro. Dal nostro continuo confronto ho avuto modo di im-
parare moltissimo. Un ringraziamento speciale anche a tutti ragazzi dell’ufficio
di Mission Analysis e Operations di TAS-I per avermi fatto sentire parte inte-
grante del gruppo sin dal primo giorno in azienda.
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Abstract

The increasing interest in large interplanetary missions, coupled with the need
for efficient propellant consumption to achieve substantial DeltaVs, has driven
the increasing adoption of electric propulsion systems. While these high specific
impulse and low-thrust technologies significantly enhance mission efficiency, they
also introduce substantial design challenges. These challenges necessitate the use
of more complex and costly trajectory optimization models and tools compared
to the traditional methods employed for impulsive maneuver mission analysis.

Within this thesis a flexible low-thrust interplanetary trajectory optimization
tool is proposed and developed, designed for seamless integration and implemen-
tation in industrial contexts, particularly for preliminary mission analysis studies.
To achieve this objective, an optimization approach using direct methods and
collocation techniques is adopted.

The mathematical model describing the optimal control problem for inter-
planetary low-thrust trajectories is presented, with a focus on the reduction
of the continuous problem to a finite-dimension nonlinear programming (NLP)
problem formulation through direct collocation transcription.

Experimental analyses of the problem are conducted. The model is imple-
mented employing Sequential Quadratic Programming (SQP) algorithms that
leverage the sparse structure of the large-scale problem at hand. An environ-
mental analysis is proposed to compare the performance of the WORHP solver
with theMatlab Optimization Toolbox, with a particular focus on the effectiveness
of exploiting sparsity in problems of this scale. This analysis aims to demonstrate
the importance and necessity of such specific tools in an industrial context to
effectively address the problem of low-thrust trajectories optimization.

The optimization tool developed for the low-thrust interplanetary rendezvous
maneuver problem is presented. The architecture and operation of the tool are
described, with a focus on the global optimum search through a multi-start
approach and a refinement of the optimal solution to enhance its accuracy.

Several case studies of interest are described and analyzed to test the de-
veloped tool, with a particular focus on missions to Mars and Apophis, either
accounting for constant allowable thrust models (e.g., nuclear electric propulsion)
or sun-distance-dependent thrust levels (e.g., solar electric propulsion).
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Chapter 1

Introduction

Interplanetary missions have always been of scientific interest, since they provide
invaluable insights, significantly enhancing our understanding of the solar system
and beyond. The key areas of interest related to these missions are summarized
below.

• The origin and evolution of the solar system: by examining various
celestial bodies, scientists can reconstruct the sequence of events that led
to the formation of the Sun and its planets. Missions that land on or
orbit these bodies allow for detailed analysis of their surface geology and
composition, providing insights into their geological history and potential
resources.

• Atmospheric composition and dynamics: investigating planetary at-
mospheres provides crucial information on their composition, temperature,
and dynamics, which is essential for scientific research and planning future
landings.

• Search for extraterrestrial life: many interplanetary missions aim to
detect signs of life or conditions that could support life, focusing on the
presence of water, organic molecules, and other potential indicators of past
or present life.

• Technological advancements: the advancement of technologies for in-
terplanetary missions frequently results in substantial progress in space
exploration and other disciplines. These innovations can have practical ap-
plications on Earth, such as advancements in solar power generation and
energy storage technologies.

The exploration of our solar system has been marked by significant milestones
(see Britannica, 2024[ 6]), including the first lunar landing by Apollo 11 in 1969,
the detailed exploration of Mars by Viking 1 in 1976, and the comprehensive
surveys of the outer planets by the Voyager missions. In more recent times,
missions such as the ESA’s Rosetta and NASA’s Dawn have yielded invaluable

1
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Propulsion
System

Specific Impulse
[s]

Thrust Level
[N]

Liquid Monopropellant (CP) 200-250 0.01-100
Liquid Bipropellant (CP) 300-450 0.01-107

Solid Propellant (CP) 200-300 1-106

Hybrid Propellant (CP) 250-350 1-106

Resistojets (EP) 200-350 0.2-0.3
Arcject (EP) 400-1000 0.2-1

Ion Thrusters (EP) 2000-5000 <0.2
Hall Thrusters (EP) 1500-2000 <2

Pulsed Plasma Thrusters (EP) 600-2000 <0.01
MPD Thrusters (EP) 2000-5000 <2

Table 1.1: Main characteristics of propulsion systems

insights into comets and asteroids, thereby enhancing our understanding of the
early solar system.

A significant advancement in space exploration has been the development and
utilisation of electric propulsion systems, as reported in Jahn, 1968[ 21] and ESA
Science & Technology, 2019[ 14]. In contrast to conventional chemical propul-
sion (CP), electric propulsion (EP) provides a higher specific impulse, thereby
facilitating more efficient fuel utilization, accepting the trade-off of significantly
lower thrust levels. A comparative analysis of the principal characteristics of
chemical and electric propulsion systems is presented in Table 1.1. Several types
of electric thrusters have already been employed in the context of solar system
space missions. This overview examines the primary types of electric thrusters,
highlighting their strengths and weaknesses, and evaluates their suitability for
interplanetary missions.

• Electrothermal Thruster: Electrothermal thrusters employ electric en-
ergy to heat a propellant, which is subsequently expelled to generate thrust.
The aforementioned thrusters are further classified as resistojets and arc-
jets. Resistojets employ electric resistance heaters to heat the propellant,
whereas arcjets utilize an electric arc to achieve higher temperatures. The
principal advantages of electrothermal thrusters are their straightforward
design, their greater thrust output in comparison to other electric thrusters,
and their relatively low power requirements. However, they exhibit lower
efficiency and specific impulse values than ion and Hall effect thrusters.
Consequently, their suitability for interplanetary missions is limited, ren-
dering them more appropriate for short-duration missions or as auxiliary
propulsion.

• Gridded Ion Thruster (GIT): Gridded ion thrusters employ electric
fields to accelerate positive ions through a grid structure. These thrusters
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are distinguished by their high efficiency and specific impulse (Isp), render-
ing them particularly well-suited for long-duration missions. The principal
advantage of GITs is their capacity to attain high efficiency with minimal
propellant consumption, which is a vital consideration for interplanetary
travel. However, their low thrust output and the complexity of the grid sys-
tem represent significant drawbacks. Despite these challenges, GITs have
been successfully employed in missions such as NASA’s Dawn, thereby
demonstrating their viability for interplanetary exploration.

• Hall Effect Thruster (HET): Hall effect thrusters employ magnetic
fields to accelerate ions within an annular channel. They offer an optimal
balance between thrust and efficiency, and their robust design contributes
to their reliability. Hall effect thrusters (HETs) are distinguished by their
capacity to generate a higher thrust than ion thrusters while maintaining
a reasonable level of efficiency. The primary limitation of HETs is the
necessity for effective thermal management to prevent overheating. Their
balanced performance and reliability render them suitable for interplane-
tary missions, as evidenced by their deployment in the SMART-1 mission
by ESA.

• Pulsed Plasma Thruster (PPT): Pulsed plasma thrusters operate by
employing electric discharges to vaporize and accelerate propellant. These
thrusters are characterized by a simple and compact design, coupled with
low power consumption, rendering them well-suited for deployment on
small satellites and for facilitating minor orbital adjustments. However,
PPTs have relatively low efficiency and are susceptible to electrode wear,
which restricts their long-term viability. In light of these constraints, PPTs
are not typically deemed an optimal choice for primary propulsion in in-
terplanetary missions. However, they do offer a viable solution for precise
maneuvers.

• Magnetoplasmadynamic Thruster (MPD): Magnetoplasmadynamic
thrusters employ magnetic fields to accelerate plasma, resulting in high
thrust and the potential for high-power applications. MPDs are capable of
producing significant thrust, which is advantageous for missions requiring
rapid acceleration. However, they require substantial power and present
technical complexities that currently limit their practical use. While MPDs
hold promise for future interplanetary missions, further technological ad-
vancements are necessary to overcome their current limitations.

Among the various types of electric thrusters, Gridded Ion Thrusters and Hall
Effect Thrusters are the most suitable for interplanetary missions. Their high
efficiency and low propellant consumption make them ideal for long-duration
operations and significant velocity changes (delta-v) required for interplanetary
travel. Below are several examples of electric thruster models used in various
interplanetary missions.
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The ion thrusters utilized in the NASA missions, namely the Deep Space 1
mission to Comet Borely and the Dawn mission to Ceres and Vesta, were of the
electrostatic gridded ion engine NSTAR type, exhibiting a thrust of 90 mN. A
Hall Plasma Thruster SPT-100 from SNECMA (100 mN thrust) was employed in
the Smart 1 mission to the Moon. An advanced gridded electrostatic ion thruster
(Figure 1.1) was employed on the Hayabusa1 and 2 missions to near-Earth as-
teroids. Finally, The BepiColombo spacecraft currently employs QinetiQ T6 ion
thrusters (Figure 1.2), representing the most powerful ion engine array ever op-
erated in space, with a combined thrust of up to 290 mN.

Figure 1.1: Artist’s impres-
sion of Hayabusa2 firing its ion
thrusters. Credits: NASA Sci-
ence, 2024[ 32]

Figure 1.2: Artist’s impression
of BepiColombo in Cruise Mode,
firing the T6 Thrusters. Cred-
its: ESA Science & Technology,
2024[ 13]

Nevertheless, the implementation of electric propulsion is not without its
inherent difficulties. The low thrust levels inherent to these systems require
longer mission durations to achieve the desired velocity changes. Furthermore,
the considerable power demands frequently necessitate the deployment of sizable
solar arrays or alternative energy sources. Additionally, the continuous thrust
provided by electric propulsion introduces additional complexity in trajectory
planning and optimization, necessitating the use of sophisticated algorithms and
extensive computational resources. The design process is based on modeling and
optimization methods related to space engineering applications (see Fasano and
Pintér, 2014[ 16]), by commencing with the formulation of an optimal control
problem, the objective of which is to minimize fuel consumption (or minimize
the time of flight) while meeting the mission constraints. This necessitates the
resolution of challenging problems, which account for the nonlinear dynamics of
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the spacecraft and thrust profile. For these reasons, the optimization of low-
thrust trajectories poses considerable computational challenges. The nonlinear
nature of the problem, when considered alongside the necessity for high precision
over extended mission durations, necessitates the utilisation of substantial com-
putational resources. It is imperative that algorithms be capable of efficiently
handling large-scale problems, which often involve thousands of variables and
constraints. To address these challenges, a variety of techniques, including di-
rect and indirect methods, as well as hybrid approaches, are employed. Despite
recent advances, the high sensitivity to initial conditions and the necessity for
iterative refinement can result in lengthy computation times and demand the use
of robust, high-performance algorithms.

In light of the aforementioned context, the objective of this thesis is to con-
duct an analysis of direct methods (see Chapter 2) for optimizing low-thrust
trajectories, with a particular focus on aligning these methods with the require-
ments of industry. The thesis is structured as follows.
Chapter 2 provides an overview of optimization theory and its applications in
space technology, with a particular emphasis on the application of these princi-
ples through mission analysis. The following sections of this chapter present an
overview of the general formulations of optimal control problems and the various
numerical techniques for their solution. Subsequently, the optimization approach
utilized in this thesis is delineated in detail.

Chapter 3 presents a detailed application of optimal control to the low-thrust
interplanetary trajectory problem. Initially, the chapter focuses on the dynamic
models that are specific to this problem. It then describes the problem statement
for trajectory optimization.

Chapter 4 presents the findings of a series of experimental analyses conducted
in an industrial environment to assess the performances of commercially avail-
able solvers for addressing such complex large-scale optimization problems. Sub-
sequently, the structure of the developed optimization tool is presented, followed
by a validation on an Earth-Mars trajectory problem that has already been an-
alyzed in literature (see Casanova-Álvarez, Navarro-Medina, and D.Tommasini,
2024[ 10]). The chapter concludes presenting the solution refinement process
performed on the optimal solutions found, by increasing the model fidelity in
order to decrease the approximation of the generated trajectories.

The tool is applied to new case studies of interest in Chapter 5, specifically
to generate and study high-precision low-thrust trajectories for Earth-Mars and
Earth-Apophis transfers. Indeed, the latter is of particular interest at the indus-
trial level in recent times due to the ongoing design process of missions to Apophis
(e.g., Ramses mission, see ESA Space & Safety, 2024[ 15]). This is because the
approach of this asteroid to Earth in the coming years will result in its flyby
around Earth in 2029. Consequently, space agencies and industries are engaged
in feasibility studies of electrically propelled trajectories for missions to approach
and observe the asteroid. The chapter then concludes outlining of the potential
future directions opened by the thesis work, focusing on the enhancement of the
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developed tool and its extension to more complex scenarios.
In conclusion, the Concluding Remarks section offers comments and conclu-

sions regarding the work completed, emphasizing the achievements and potential
opportunities associated with the techniques employed within the developed op-
timization tool.

Figure 1.3: Depiction of the ESA Ramses mission to Apophis. Credits: ESA
Space & Safety, 2024[ 15]



Chapter 2

Optimization Theory and Space
Applications

This thesis addresses complex optimization problems that are non-convex and
necessitate global optimization strategies. Based on Becerra, 2013[ 2], Betts,
2010[ 4], Bryson and Ho, 1969[ 7] and Morante, Rivo, and Soler, 2021[ 29] , this
chapter provides a brief overview of optimization, beginning with a brief intro-
duction to optimization problems and the various strategies currently employed.
It finally concludes with a detailed presentation of the strategies and methods
adopted in this research.

2.1 Introduction to the Optimization Theory

Optimization is a systematic process that seeks to identify the most optimal
solution, typically the highest or lowest value, for a given mathematical model
or function while adhering to specific constraints. The objective is to find out
the most advantageous values for variables that result in optimal outcomes, such
as maximizing profit, minimizing costs, improving efficiency, or achieving any
other desired objective.

Optimization problems are typically categorized based on several key char-
acteristics, including:

• Dimensionality: Problems may be classified as either finite-dimensional,
which involves a real or integer decision variables, or infinite-dimensional,
where decision variables are functions.

• Convexity: In convex problems, if a minimum (or maximum) exists it is
a global one, making them generally easier to solve. Non-convex optimiza-
tion problems are characterized by the presence of local minima, which
significantly complicate the search for the optimum (Figure 2.1). It is wor-
thy of note that the majority of space applications deal with non-convexity
issues, particularly in the context of trajectory optimization problems.

7
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Figure 2.1: Visualization of Convex and Non-Convex problems. Credits: Math-
Works.

• Single/Multiple objectives: Single-objective optimization is the process
of minimizing or maximizing a single objective function. In multi-objective
optimization, the objective is to balance conflicting objectives and identify
a set of solutions, known as the Pareto front, that represent the optimal
trade-off between the conflicting objectives. A solution is defined as Pareto
optimal if no other solution can be identified that improves one objective
without simultaneously worsening another.

• Type of cost function and constraints: The form of the cost function
and constraints must be defined. In linear programming (LP), the objec-
tive functions and constraints are linear. Nonlinear programming (NLP)
encompasses the inclusion of non-linear relationships within either the ob-
jective function or the constraints. Quadratic Programming (QP) addresses
quadratic objective functions and linear or quadratic constraints.

• Type of variables Variables may be real numbers, integers (as in In-
teger Programming, IP), or a combination of both (as in Mixed Integer
Programming, MIP).

2.2 The Optimal Control Problem

An optimal control problem is a mathematical approach focused on the best pos-
sible management of dynamic systems. These systems consist of interconnected
variables or states that change over time, influenced by control actions. The goal
of optimal control is to identify a control strategy (i.e. a set of guidelines or
methods for influencing the system) so that a specific performance measure is
optimized.

This performance measure is represented by an objective function, which
evaluates the efficiency of the system’s behavior. This could involve maximizing
or minimizing a particular outcome, considering the impact of control actions,
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system dynamics, and external factors. The optimal control problem usually
includes constraints on the system states, control actions, and other relevant
variables.

A widely used formalism for the problem statement is the Bolza formula-
tion. The function that needs to be minimized (or maximized) is known as the
objective function JB.

JB = φ
(
x(0)+ ,x1− , . . . ,x(p−1)+ ,xp− , t(0)+ , t1− , . . . , t(p−1)+ , tp−

)
+
∑
j

∫ tj−

t(j−1)+

ϕ[x(t),u(t), t] dt, j = 1, . . . , p

Where:

• x(t) is the state variable vector;

• u(t) is the control variable vector;

• t is the independent variable;

• (x0+ , x1−), . . . , (x(p−1)+ , xp−) are the trajectory arcs;

The state variables adhere to the state equations, which model the system
dynamics:

ẋ(t) = f [x(t),u(t), t]

The system is also subject to boundary conditions:

χ
(
x(j−1)+ ,xj− , t(j−1)+ , tj−

)
, j = 1, . . . , p

And possible additional constraints of the following type:

g[x(t),u(t), t] ≤ 0
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2.3 Main Numerical Optimization Methods

There are various ways to approach optimization problems and to solve them,
this section aims to introduce the main methods most commonly used, focusing
particularly on the optimal control problem for low-thrust trajectories.

The importance of an initial analysis of the various techniques available is cru-
cial, as the choice of a certain approach to the problem determines its flexibility,
robustness, optimality and automation.

Historically, low-thrust trajectory optimization problems have been framed
as continuous optimal control problems (COCP). Generally, there are two main
types of approaches: analytical and numerical. Analytical methods yield closed-
form solutions for the optimal trajectory, but these solutions can be find only
in special cases, making them impractical for most spacecraft trajectory opti-
mization problems. Consequently, most researchers have focused on numerical
methods to tackle more complex and realistic problems. For this reason, this sec-
tion will focus on giving an overview of the state of the art of numerical methods
alone to solve the problem at hand.

2.3.1 Approaches

Numerical approaches can be divided into three well-established methods: indi-
rect methods and direct methods. These approaches can be described as follows:

• Indirect Methods: The indirect approach (see e.g., Casalino and Co-
lasurdo, 2013[ 9]) is employed in order to solve the multipoint boundary
value problem (MPBVP) that arises from the application of Pontryagin’s
Maximum Principle (PMP).The PMP outlines the first-order necessary
conditions that an optimal solution must meet. Its derivation necessitates
the determination of the states and costates (see Bryson and Ho, 1969[
7]), which must comply with the Euler-Lagrange equation. Significantly,
the minimum principle permits the continuous control to be expressed as a
function of the state and costate at each instant, either explicitly or numer-
ically. Moreover, a set of supplementary constraints, specifically those of
transversality and complementary conditions, must also be fulfilled. Fur-
thermore, Bellman’s dynamic programming method (see Bellman, 2013[
3]) is classified among the indirect methods. Originally developed for finite
problems, it was later extended to continuous problems under very strin-
gent assumptions. However, due to these stringent assumptions, it has seen
limited application in the field of trajectory optimization.

• Direct Methods: The core concept of direct methods is to convert the
COCP into a nonlinear programming problem (NLP), where the objective
function is optimized directly (see Becerra, 2013[ 2]). This conversion pro-
cess involves discretizing the control variables over a time grid. The objec-
tive of an NLP problem is to identify a vector of unknown decision variables
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that satisfy a set of nonlinear constraints,which include both equality and
inequality conditions. An optimal solution to the NLP must meet the first-
order necessary optimality conditions, known as the Karush-Kuhn-Tucker
(KKT) conditions (see M.Minoux, 1986[ 26]).

2.3.2 Techniques to Involve System Dynamics

As space trajectory optimization problems are typically addressed through indi-
rect or direct methods, the primary techniques through which the equations of
dynamics are applied within such methods are outlined below.

• Single Shooting: The trajectory is computed using numerical propa-
gation methods (Ordinary differential equations (ODEs) solution) starting
from t0 until the final time tf . In this scenario, the initial state are variables
that need to be determined and so optimized, with boundary constraints
applied at the conclusion of the integration.

• Multiple Shooting: The time interval [t0, tf ] is divided into N +1 subin-
tervals. The trajectory is propagated over each subinterval [ti, ti+1], with
the initial values of the state for each subinterval being unknowns that
must be determined. Additionally, continuity conditions must be enforced
at the boundaries between each subinterval, as well as boundary constraints
applied at the end of the entire trajectory.

• Collocation: The states are discretized along a predefined time grid,
meaning they are only known at specific discrete points. The system’s
governing equations are converted into discrete defect constraints (see Sec-
tion 2.4), which link the values at the start of each subinterval to those at
the end. In this case the ODEs are not propagated but approximated by
various types of quadrature rules.

2.3.3 Solving Methods

It is now necessary to define the manner in which these NLPs and MPBVPs
can be resolved in order to identify optimal solutions. The principal methods of
resolution are outlined below.

• Deterministic Methods (Gradient-Based): In a gradient-based method,
an initial estimate is made for the unknown decision vector y. At the i-th
iteration, a search direction pi and a step length αi are determined. The
search direction indicates the direction along which to adjust the current
value yi, while the step length specifies the magnitude of this adjustment.
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The update from yi to yi+1 is given by: yi+1 = yi + αipi. Iterations con-
tinue until the Karush-Kuhn-Tucker (KKT) conditions are satisfied. To
compute the search direction, these methods require the user to provide
gradient information for the constraints (Jacobian Matrix ) and, if neces-
sary, the objective function. The most commonly used solving algorithms
are cassified as Sequential Quadratic Problems (SQP) or Interior Point
Methods (IP) and are implemented in widely known solvers such as Mat-
Lab Optimization Toolbox (see MathWorks, 2024[ 27]), SNOPT (see Gill,
Murray, and Saunders, 2005[ 18]) and WORHP (see Büskens and Wassel,
2013[ 8]).

• Heuristic Methods: The search is conducted using stochastic, meta-
heuristic or specific heuristic methods that do not rely on gradient infor-
mation. One of the most well-known types of heuristics is evolutionary
algorithms. These algorithms begin by creating a group of potential solu-
tions, known as a population. This population is then repeatedly altered
using a set of random rules until a stopping criterion is reached. The can-
didate with the lowest cost is considered the solution to the problem. Pop-
ular stochastic rules include genetic algorithms (GA), which mimic genetic
evolutionary processes, and particle swarm optimization (PSO), which is
inspired by the behavior of animal swarms.

• Hybrid Methods: Hybrid methods combine rules that leverage gradient
information with those based on heuristic searches to iteratively improve
a solution or a set of potential solutions. Gradient information is used
to meet the constraints, while heuristic rules are applied to efficiently ex-
plore huge design spaces or manage integer variables. These methods are
typically combined in a two-loop system. In the outer loop, the heuristic
solver adjusts a subset of decision variables, while in the inner loop, the re-
maining design parameters are optimized using the gradient-based method.

2.4 Focus on Adopted Optimization Methods

The indirect approach ensures the satisfaction of first-order optimality conditions
and provides theoretical insights into the problem’s physical and mathematical
characteristics. However, it requires explicit derivations of costate and control
equations. Additionally, the trajectory can be very sensitive to initial costate
guesses, which are not intuitive variables, and the need to reformulate the prob-
lem for different state variables, constraints, and dynamics can complicate its
application, especially in highly constrained or automated spacecraft trajectory
optimization problems.

On the other hand, direct methods do not require deriving first-order neces-
sary conditions and are easier to initialize due to a larger convergence domain
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Figure 2.2: Concept visualization of the collocation method

and the intuitive meaning of optimization variables. These methods can handle
complex control or state constraints and do not require prior knowledge of the se-
quence of free and constrained arcs. Nonlinear optimization problems resulting
from direct collocation methods can be very large, potentially involving hun-
dreds to tens of thousands of variables and constraints. However, this issue can
be handled by exploiting the sparsity structures of the Jacobian matrix of con-
straints and the objective function gradient of the associated NLP problem, and
the availability of efficient methods and software for their solution, as discussed
in Chapter 3. Although they may not consistently yield the optimal solution,
direct methods at least provide a suboptimal solution that can be extremely use-
ful in an industrial setting, particularly during the initial design phases of new
missions.

In view of the previous considerations, this thesis work was undertaken with
the objective of developing an industrially functional tool for an initial generation
of optimal high-fidelity trajectories for new interplanetary missions in a relatively
simple, robust, and effective manner. To this end, direct methods, in particular
through collocation techniques, were employed (see Becerra, 2013[ 2]).
These techniques are based on the discretization of the continuous time domain in
a grid of finite points, whereby polynomial functions are employed to approximate
the differential equations of dynamics, as shown in Figure 2.2.

In general, the dynamical equations can be written as a set of ordinary dif-
ferential equations (ODEs), expressed as:

x(t) = F [x(t),u(t),p, t], t ∈ [t0, tf ]

ẋ(t) = f [x(t),u(t),p, t]
(2.1)

where x : [t0, tf ] → Rnx is the state vector function, u : [t0, tf ] → Rnu is the
control vector function, p ∈ Rnp is a vector of static parameters which are in-
dependent of t, and t ∈ [t0, tf ] ⊂ R is an independent variable, which is usually
time.
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In particular, we firstly focus on the utilization of the trapezoidal method for
the initial search for optimal solutions, since it is the easiest and computationally
fastest collocation method. It is based on a quadratic interpolation polynomial x̃,
of degree M = 2 over each discretized interval [tk, tk+1], j = 0, ..., N−1 such that:

x̃(t) = a
(k)
0 + a

(k)
1 (t− tk) + a

(k)
2 (t− tk)

2 (2.2)

With the coefficients a
(k)
0 , ...,a

(k)
2 chosen to match the function at the beginning

and the end of the k-th interval:

x̃(tk) = x(tk)

x̃(tk+1) = x(tk+1)
(2.3)

Also the time derivatives must match at tk and tk+1:

dx̃(tk)

dt
= f [x(tk),u(tk),p, tk]

dx̃(tk+1)

dt
= f [x(tk+1),u(tk+1),p, tk+1]

(2.4)

By putting together Eq.2.2, Eq.2.3 and Eq.2.4, and evaluating them at tk and
tk+1, it yields:

x̃(tk+1) = x(tk) + fk(tk+1 − tk) +
1

2
(fk+1 − fk)(tk+1 − tk)

= x(tk) +
1

2
(fk + fk+1)(tk+1 − tk)

(2.5)

Since x̃(tk+1) = x(tk+1), then Eq.2.5 can be expressed as follows:

z(tk) = x(tk+1)− x(tk)− hk
1

2
(fk + fk+1) = 0, (2.6)

where hk = tk+1 − tk and z(tk) = 0 is the differential defect constraint at node
tk associated with the trapezoidal method. Allowing j = 0, . . . , N − 1, Eq.2.6
generates Nnx differential defect constraints. It is important to note that the
trapezoidal method is 2-stage Runge-Kutta method.

The described approximation method prioritizes computational efficiency;
however, it suffers from reduced accuracy when the number of discretization
intervals is insufficient. Consequently, following an initial coarse search for the
optimal trajectory utilizing a limited number of mesh nodes and the trapezoidal
method, subsequent solution refinement is necessary to achieve a high-fidelity
trajectory. This refinement process, as analyzed and tested in the case stud-
ies presented in Chapter 5 and Chapter 5.3, involves progressively increasing
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the number of nodes while concurrently increasing the polynomial degree, thus
leveraging the Hermite-Simpson collocation technique.

The Hermite–Simpson method is based on a cubic interpolating polynomial,
such that Eq. (2.23) becomes:

x̃(t) = a
(k)
0 + a

(k)
1 (t− tk) + a

(k)
2 (t− tk)

2 + a
(k)
3 (t− tk)

3. (2.7)

Evaluating the time derivative of the interpolant at the beginning tk, end
tk+1, and midpoint t̄k = tk+tk+1

2
of the interval, and matching them with the

corresponding in Eq.2.1, results in the following expressions:

dx̃(tk)

dt
= a

(k)
1 = fk, (2.8)

dx̃(tk+1)

dt
= a

(k)
1 + 2a

(k)
2 hk + 3a

(k)
3 h2

k = fk+1, (2.9)

dx̃(t̄k)

dt
= a

(k)
1 + 2a

(k)
2 h̄k + 3a

(k)
3 h̄2

k = f̄k (2.10)

Note that f̄k depends on the interpolated state at the midpoint of the interval
x̃(t̄k), and on the control also at the midpoint u(t̄k). Equations 2.8 and 2.9 result
in the following interpolating polynomial:

x̃(t) =x(tk) + fk(t− tk) +
(4f̄k − fk+1 − 3fk)

2hk

(t− tk)
2

+
(fk + fk+1 − 2f̄k)

3h2
k

(t− tk)
3.

(2.11)

Evaluating Eq. 2.11 at the end of the interval gives:

x̃(tk+1) = x(tk) +
hk

6
(fk + 4f̄k + fk+1). (2.12)

But from the collocation condition x̃(tk+1) = x(tk+1), then Eq.2.12 can be ex-
pressed as follows:

z(tk) = x(tk+1)− x(tk)−
hk

6
(fk + 4f̄k + fk+1) = 0, (2.13)

where z(tk) = 0 is the differential defect constraint at node tk associated with the
Hermite–Simpson method. Evaluating Eq. 2.11 at the midpoint of the interval:

x̃(t̄k) = x(tk) +
hk

24
(5fk + 8f̄k − fk+1). (2.14)

Solving Eq. 2.12 for f̄k and replacing in Eq. 2.14 results in

x̃(t̄k) =
1

2
[x(tk) + x(tk+1)] +

hk

8
(fk − fk+1). (2.15)

Eq. 2.15 gives the interpolated value of the state at the midpoint of the in-
terval, which is needed to evaluate f̄k. Note that the evaluation of Eq. 2.15
and the substitution of x̃(t̄k) into Eq. 2.13 results in the so-called compressed
Hermite–Simpson method. It generates Nnx differential defect constraints.
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2.4.1 Global Search Method: Multi-Start combined with
Gradient-Based SQP

The optimization tool developed in this thesis, as detailed in Chapter 4, em-
ploys both deterministic and metaheuristic approaches. Specifically, it utilizes
gradient-based SQP algorithms, starting from an initial guess of the decision
vector y. This approach, beginning from a single arbitrary initial guess, may
converge to a local optimal solution without guaranteeing global optimality.
Therefore, it necessitates the integration of a local optimization strategy with
an external mechanism in order to achieve a global optimization. To this end,
a Multi-Start approach was adopted. As illustrated in Figure 2.3, this approach
involves the simultaneous generation of multiple initial guesses within the search
space, facilitating convergence to various local solutions. By thoroughly explor-
ing the solution space and comparing the solutions systematically, this method
may identify the global optimal solution.

This approach is relatively straightforward to implement algorithmically;
however, it is computationally more demanding, requiring a higher number of
within-domain solution evaluations compared to other global methods. Further-
more, in the context of feasibility studies for interplanetary missions, it offers
the added benefit of evaluating and storing sub-optimal solutions. These sub-
optimal solutions can serve as alternatives to the optimal solution, particularly
when it is necessary considering variations in launch dates or flight durations.

Figure 2.3: Graphical visualization of the multi-start + SQP method



Chapter 3

The Low-thrust Interplanetary
Transfer Problem

This chapter aims to delineate and formulate the optimal control model for in-
terplanetary low-thrust trajectories. This mathematical model underpins the
implementation of the optimization tool developed within this study, which will
be operationally detailed in Chapter 4. The following sections present the dy-
namic models of interplanetary transfers, consistent with the existing literature
(see Vallado, 2001[ 44], Curtis, 2020[ 11], Bate, Mueller, and White, 1971[ 1]),
followed by the formulation of the optimization problem, according with Top-
puto and Aguiar, 2018[ 42], Betts and Huffman, 1992[ 5], Pesenti, 2024[ 36] and
Topputo and Zhang, 2014[ 43].

3.1 Dynamics

In this section, we will discuss the modeling of the complete spaceflight dynamics,
also incorporating the mass differential equation. When considering all potential
sources of perturbations, the equations are expressed as follows:

f(x,u, t) =


ṙ = v
v̇ = a
ṁ = −∥u∥Tmax

g0Isp

a = aCB +

n3B∑
j=1

a3Bj + adrag + aSRP + aThrust

(3.1)

Where m is the mass of the spacecraft, r, v, a are the position, velocity
and acceleration vectors related to the S/C motion in a central body intertial
reference frame, thus s = [r,v,m] is the state vector along the trajectory. Con-
cerning the mass differential equation, u is the control vector (that accounts

17
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for the direction and throttle of the thrust along the path), Tmax is the max-
imum allowable thrust level along the trajectory, Isp is the specific impulse of
the thruster and g0 = 9.81m/s. On the right side of the acceleration formula in
Eq.3.1 we can find the contribution of the central body gravity field (aCB), the
third-bodies perturbation (a3Bj), the atmospheric drag perturbation (adrag), the
solar radiation pressure (aSRP ) and finally the continuous thrust (aThrust).

In alignment with the specific objectives of this thesis, this section provides
a detailed description of the formulation of accelerations typically considered
during the preliminary design of heliocentric segments of low-thrust interplan-
etary trajectories. Specifically, it addresses the acceleration due to the central
body’s gravity field, the continuous thrust effect and the perturbations from third
bodies. For further details on other perturbations, the reader is referred to the
aforementioned literature.

3.1.1 Central Body Gravity Field

To determine the acceleration resulting from the gravity field of a central body,
the concept of gravitational potential must be introduced. Since the gravita-
tional field is conservative, it can be associated with a potential. For a spherical
body, this potential is expressed as:

U(r) = −µ

r
(3.2)

The acceleration induced by the potential is evaluated as:

aCB = −∇U(r) = − µ

r3
r (3.3)

In practice, celestial bodies are not perfectly spherical but exhibit irregular
shapes; for instance, it is well known that the Earth approximates a geoid. The
impact of these irregularities is considered negligible for the purposes of this
thesis and, therefore, is not discussed in detail.

3.1.2 Continuous Thrust Modeling

A key distinguishing and complicating aspect of low-thrust trajectory design is
the presence of continuous thrust throughout most of the flight duration. This
continuous thrust results in an acceleration on the spacecraft, which can be ex-
pressed as:

aThrust =
T

m
= u

Tmax

m
(3.4)

Where T represents the thrust vector. The maximum available thrust depends
on the type of electric propulsion system being used. For instance, electric
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propulsion systems with a constant maximum thrust (Tmax) are characteristic
of Nuclear Electric propulsion (NE) systems or applications where the power
generation system is designed to ensure the required power for nominal thruster
operation at the farthest point of the trajectory from the Sun. Conversely, for
Solar Electric propulsion (SE) systems, the available Tmax is dependent on the
spacecraft distance from the sun and must be modeled accordingly.

The model for determining the thrust level of solar-electric propulsion sys-
tems is inherently complex. It is approximately understood that the flux of solar
radiation decreases as 1/r2, where r represents the distance of the spacecraft
from the Sun. Thrust magnitude Tmax depends on input power P (r), thruster
efficiency η, and specific impulse Isp
as follows:

Tmax = 2ηP (r)/c , (3.5)

where c = g0Isp is the engine exhaust velocity.
Additionally, a cutoff distance rmax could be defined, beyond which all the

generated electrical power is required to sustain the spacecraft’s systems, leaving
no power available for propulsion, thus preventing thrust generation. Conversely,
there exists a certain value rmin at which the available electrical power reaches
saturation, resulting in the maximum possible thrust.

Numerous specific mathematical models have been proposed in the literature
(e.g., Williams and Coverstone-Carroll, 1997[ 45], Genta and Maffione, 2015[
17], Kluever, 1997[ 23]); however, the modeling of the thrust profile is generally
contingent upon the specific case study and the associated propulsion system
specifications.

This study presents a modeling approach that aligns with industry require-
ments for preliminary mission studies. Notably, many mission analysis guidelines
documents provided by clients specify thrust characteristics as constant profiles
over various distance ranges, derived from tests, simulations, and measurements
at discrete operating points. In mission analysis, to approximate these data more
accurately, they are numerically fitted using second-degree polynomials, ensuring
that the average value over each sub-interval matches the provided value.

To better understand this process, a representative example of mission anal-
ysis fit is shown in Figure 3.1. It is a BepiColombo-based electric propulsion
system (see Sutherland, Stramaccioni, and Benkhoff, 2019[ 40]) using 2xT6 grid-
ded ion thrusters. It will be implemented in the case study detailed in Section 5.1.



Chapter 3 - The Low-thrust Interplanetary Transfer Problem 20

Figure 3.1: BepiColombo-based EP system (2xt6 ion thrusters) Mission Analysis
modeling

3.1.3 Third-Body Perturbation

The number of third bodies considered depends on the desired accuracy and the
type of orbit a satellite is in. For instance, in very high-altitude earth orbits,
accounting for disturbances due to the Sun and the Moon is usually necessary.
For interplanetary missions, the initial calculation of the heliocentric trajectory
can be performed by neglecting perturbations and considering a restricted two-
body problem. However, once this preliminary solution is obtained, it is essential
to refine it by incorporating the perturbations caused by other relevant planets.
These perturbations may not be negligible, particularly during the initial and
final phases of the heliocentric journey.

The contribution of the i-th body is modeled as follows:

a3Bj = µj

(
rsatj

r3satj
− rj

r3j

)
(3.6)

The gravitational parameter of the j-th body is denoted by µj. The position
vector of the j-th body relative to the satellite is represented by rsatj, while rj
denotes the position vector of the j-th body relative to the central body on which
the inertial reference system is centered, as shown in Figure 3.2.

Two terms are identified: the first, known as the direct effect, represents
the acceleration induced by the third body on the satellite. The second term,
referred to as the indirect effect, identify the interaction between central body
and the third body.
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Figure 3.2: Third-Bodies Perturbation geometrical scheme

3.1.4 Patched Conics Approach

In order to efficiently compute complex interplanetary trajectories, typically the
concept of Patched Conics is used (see Vallado, 2001[ 44]).
This approach divides the transfer into 3 phases, as shown in Figure 3.3:

• The escape trajectory, in which the attractive force of the starting
planet on the S/C is predominant over that of the Sun and other plan-
ets;

• The heliocentric trajectory, in which the Sun’s attraction clearly pre-
vails over that of all other celestial bodies;

• The capture trajectory, in which the attraction of the Sun and other
planets is negligible compared to that of the target planet.

It is possible to study these three phases separately by considering the Spheres
of Influence (SOI) of each planet as patch points. At these points, the analysis
transitions from planet-centric to heliocentric at departure and vice versa at
arrival.

The sphere of influence of a central body defines a region in space where
the motion of a spacecraft is predominantly influenced by the gravity of that
body, rather than by any other perturbations. For instance, the Earth’s sphere
of influence delineates the region of space where Earth’s gravitational attraction
is more significant than that of the Sun and other planets. A commonly used
formula to estimate the radius of this sphere is given by:

rSOI = a⊕

(
m⊕

m⊙

) 2
5

(3.7)

where m⊕ and m⊙ are the masses of the planet and the Sun, respectively,
and a⊕ is the semi-major axis of planet’s orbit around the Sun.



Chapter 3 - The Low-thrust Interplanetary Transfer Problem 22

By employing the patched conics approach, it is possible to decouple the anal-
ysis of the interplanetary (heliocentric) segment from the planetocentric phases
at departure and arrival. This methodology allows for the initial focus on the
study and optimization of the heliocentric transfer alone, treating it as a re-
stricted two-body problem and considering the departure and arrival conditions
as boundary conditions and/or constraints. Subsequently, it is possible to design
the planetocentric trajectories based on the boundary conditions derived from
the interplanetary phase analysis. Finally, the three trajectories can be matched
a posteriori, enhancing the model fidelity by accounting for perturbations.

Figure 3.3: Concept of Patched Conics Approach

3.1.5 Adopted Reference Frames

The reference systems utilized in this study are analyzed in this subsection. As
the objective of this thesis is to examine only the interplanetary phase of the
trajectory and not the ballistic capture phase on the target planet, the primary
focus is on the reference system with respect to the starting planet, useful for
defining the initial characteristics of the trajectory, and on the reference system
employed to describe the entire interplanetary phase.

The terrestrial J2000 reference frame is used for departure. This coordinates
system is centered on Earth’s center of mass, with the X-axis aligned with the
vernal equinox. The Z-axis is Earth’s rotation axis at J2000. The Y-axis is
perpendicular to the X and Z axes. This reference system is good for modelling
the departure phase because it is based on the equatorial plane. It is often used
to describe the orbit of Earth, which makes it useful for things like the change
in velocity.

For the interplanetary phases, the ECLIPJ2000 reference system is used. This
system is centered on the Sun and is also an inertial reference system. It shares
the X-axis with the J2000 system but uses the ecliptic plane as its fundamental
plane, resulting in a rotation relative to the J2000 system by a specific angle.
This reference system is good for the interplanetary phases because most planets
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and other small solar system bodies orbit at a low angle to the ecliptic. This
allows us to represent their paths in two dimensions by projecting them onto the
fundamental plane.

Figure 3.4: Visualizzation of Earth’s J2000 Equatorial and Ecliptic Planes. Cred-
its: Navigation and (NAIF), 2023[ 34]

The SPICE system (see NASA’s Navigation and Ancillary Information Fa-
cility (NAIF), 2024[ 33]) is used to determine the orientation of the reference
systems and rotation matrices. It was developed by NASA’s Navigation and
Ancillary Information Facility (NAIF) at the Jet Propulsion Laboratory (JPL).
This NASA system is the standard for managing data on planetary missions. It
is also used for data analysis on planetary missions by other space agencies.

3.1.6 Ephemerides

In order to study and solve an interplanetary rendezvous problem, it is necessary
to be able to define the positions of the celestial bodies concerned as a function
of the date of interest. In order to achieve this within the context of this study,
ephemeris models are employed in order to determine the positions and velocities
of these bodies at specific points in time.

In order to ensure an high-accuracy optimization tool for industrial study
purposes, the ephemerides, developed by the Jet Propulsion Laboratory (JPL)
and accessible via the SPICE system, are employed. The current lunar orbit
is known with submeter accuracy, achieved by fitting lunar laser ranging data
with an updated lunar gravity field from the Gravity Recovery and Interior Lab-
oratory (GRAIL) mission. The orbits of the inner planets are determined with
sub-kilometer accuracy through radio tracking measurements of orbiting space-
craft. Very long baseline interferometry measurements of spacecraft at Mars
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enable the ephemeris orientation to be aligned with the International Celestial
Reference Frame with an accuracy of 0.0002 arcseconds. This orientation ac-
curacy limits the orbit uncertainties of the terrestrial planets to a few hundred
meters. The orbits of Jupiter and Saturn are determined with accuracies of tens
of kilometers by fitting spacecraft tracking data. The orbits of Uranus, Neptune,
and Pluto are primarily determined from astrometric observations, where mea-
surement uncertainties due to Earth’s atmosphere and star catalog inaccuracies
limit position accuracies to several thousand kilometers.

3.2 Optimal Control Problem Formulation

In this section, the development of the mathematical model for the optimal con-
trol problem statement is presented. This model forms the foundation of the
numerical tool presented in this thesis. Specifically, the general optimal control
problem is tailored to address the problem of interplanetary rendezvous maneu-
vers utilizing continuous thrust and direct transcription methods. Initially, the
continuous problem is described in Subsection 3.2.1, followed by the discretiza-
tion of the problem through collocation, as detailed in Subsection 3.2.2.

3.2.1 Continuous Optimal Control Problem Statement

To effectively model the optimization problem, it is essential to identify the
objective function to be minimized, the optimization variables, and the con-
straints. Initially, the problem must be clearly defined. The aim of this work is
to determine the optimal thrust profile (in terms of direction and intensity) to
minimize propellant consumption. This trajectory must adhere to interplanetary
rendezvous conditions, satisfying both the departure condition from the initial
planet (e.g., Earth) and the arrival condition on the target (e.g., Mars).

Additional constraints include the maximum escape velocity from the start-
ing planet, which is linked to the launcher’s performances, and the maximum
arrival velocity on the target planet, typically set to zero for electric propulsion
to facilitate ballistic capture. The optimization must also consider the maxi-
mum available thrust along the path, which , depending on the assumptions,
may be constant or vary depending on the spacecraft’s position relative to the
sun. Furthermore, constraints on the departure date, influenced by potential
launch window limitations, and the flight duration must be accounted for. The
aforementioned considerations are translated into the following mathematical
model.
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Variables

The following variables are identified:

• t: time;

• t0: departure date;

• ∆t: Time of Flight (TOF);

• r(t) = [x(t), y(t), z(t)]: spacecraft position vector along the path;

• ṙ(t) = [ẋ(t), ẏ(t), ż(t)]: spacecraft velocity vector along the path;

• m(t): spacecraft mass along the trajectory;

• u(t) = [ux(t), uy(t), uz(t)]: control vector along the trajectory;

The aforementioned vectors r(t),ṙ(t), and u(t) are expressed with respect to the
ECLIPJ2000 reference frame (see Section 3.1.5). It is important to notice that
in this work the thrust control vector u(t) is formulated such that the thrust
vector is T (t) = u(t)Tmax(t). The state vector s(t) = [r(t), ṙ(t),m(t)] and the
control variable vector u(t) are thus identifiable.

Constraints

The aforementioned variables are subject to box-type constraints (upper and
lower bounds) and additional constraints.

The following box-constraints can be identified:

t0,min ≤ t0 ≤ t0,max (3.8)

∆tmin ≤ ∆t ≤ ∆tmax (3.9)

m(t0) = mwet (3.10)

Here, t0,min and t0,max identify the considered launch window limits , mwet

represents the wet mass of the S/C at the beginning of the trajectory, mmin is
the minimum acceptable S/C mass at the end of the trajectory (i.e. when the
maximum allowable propellant mass has been consumed), and tf = t0 +∆t.

Additionally, the following constraints can be defined, related to the depar-
ture and arrival conditions, where rDP (t0) and vDP (t0) are respectively the po-
sition vector and the velocity vector of the departure planet at the departure
date and rAP (tf ) and vAP (tf ) are the position vector and velocity vector of the
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arrival planet at the arrival time:

∥u(t)∥ ≤ 1 for t ∈ [t0, tf ] (3.11)

∥r(t0)− rDP (t0)∥ = rSOIDP (3.12)

∥ṙ(t0)− vDP (t0)∥ ≤ vescape,max (3.13)

∥r(tf )− rAP (tf )∥ = rSOIAP (3.14)

∥ṙ(tf )− vAP (tf )∥ ≤ varrival,max (3.15)

Where rSOIDP and rSOIAP are the radii of the spheres of influence of respectively
departure and arrival planets (computed as shown in Eq.3.7), vescape,max is the
maximum allowable escape velocity from the departure planet, and vcapture,max

is the maximum allowable arrival velocity at the arrival planet’s SOI (usually
equal to zero).

Finally, the system dynamics are incorporated by imposing the differential
dynamical equations (state equations formulated as shown in Section 3.1).

Objective Function

The objective of the optimization is to find the optimal control law to minimize
the fuel consumption of the transfer, i.e. to maximize the final mass of the
spacecraft m(tf ). It is possible to formulate the objective function as follows

min : −m(tf ) (3.16)

By accounting for the dynamics of the system (Eq. 3.1) we can rewrite Eq. 3.16
as

min :

∫ tf

t0

∥u(t)∥Tmax(t)

g0Isp
dt (3.17)
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3.2.2 Discretized Problem Statement

To numerically solve the continuous problem via direct collocation, it is essential
to discretize the problem over a finite set of points, thereby transforming it
into a NLP problem. The core of the reduction of the continuous problem to the
nonlinear programming problem is the parametrization of all continuous variables
and the transcription of the differential equations of dynamics into a finite set
of equality constraints. The detailed process of this discretization is elaborated
upon as follows.

The reduction of the continuous problem to a finite one is based on the dis-
cretization of the continuous variables on a mesh settled up on the time domain.
Thus, it is necessary to discretize the (t0, tf ) interval into an arbitrary number of
N sub-intervals, thereby identifyingN+1 mesh points. The type of discretization
employed, along with the chosen value of N , significantly affects the accuracy of
the discretized solution in comparison to the continuous one. Consequently, var-
ious methods are available in specific literature. The simplest method involves
creating an equispaced grid of points; however, this approach may lack precision
in regions where the actual solution exhibits strong nonlinearity. In such regions,
if the grid is not sufficiently dense, it may fail to adequately capture the solution’s
behavior. To address this issue, adaptive discretization systems have been de-
veloped, which can internally adjust the mesh density based on the nonlinearity
trend of the problem in specific areas (e.g., Legendre-Gauss-Lobatto techniques,
see Hofmann, Morelli, and Topputo, 2022[ 19]). In this study, an equispatially
discretized technique was employed, with a sufficient number of points to enable
an adequate description of the phenomenon in a preliminary approximation.

Thus, the time domain is reduced to a finite vector

t = [t0 , ..., ti , ..., tN ] ∈ RN+1 (3.18)

Where the time step is h = ∆t/N . Consequently, the continuous variables of the
problem will become vectors containing the discrete states of the variables at the
grid points, as described below.

Variables

The following discretized variables are identified, by adopting a notation whereby,
having identified a specific quantity q, q

k
= q(tk) represents the quantity dis-

cretized from the continuous problem:

• t0: departure date;

• ∆t: Time of Flight (TOF);

• r = [x0, . . . , xN , y0, . . . , yN , z0, . . . , zN ] ∈ R3(N+1);

• ṙ = [ẋ0, . . . , ẋN , ẏ0, . . . , ẏN , ż0, . . . , żN ] ∈ R3(N+1);
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• m = [m0, ...,mi, ...,mN ] ∈ RN+1;

• u = [ux0, . . . , uxN , uy0, . . . , uyN , uz0, . . . , uzN ] ∈ R3(N+1);

It is possible to identify the S/C state vector sk and the control vector uk at
each k-th mesh point as follows

sk = [xk, yk, zk, ẋk, ẏk, żk,mk] (3.19)

uk = [uxk, uyk, uzk] (3.20)

The discretized decision vector containing all the variables is defined as follows

d = [t0,∆t, r, ṙ,m,u] ∈ R(10N+12) (3.21)

These variables are subject to the following discretized constraints.

Constraints

The continuous constraints in the previous section can be reduced to the following
discretized ones. The box constraints (3.8) and (3.9) remain unchanged, whereas
(3.10) is reformulated as follows:

m0 = mwet (3.22)

The other constraints are reformulated as follows

∥ui∥ ≤ 1 for i = 0, ..., N (3.23)

∥r0 − rDP (t0)∥ = rSOIDP (3.24)

∥ṙ0 − vDP (t0)∥ ≤ vescape,max (3.25)

∥rN − rAP (tN)∥ = rSOIAP (3.26)

∥ṙN − vAP (tN)∥ ≤ varrival,max (3.27)

Finally, the collocation method yields to the transcription of the differential
equations (Eq. 3.1) into a finite set of defects constraints τ = 0 with τ ∈ R7×RN

through techniques shown in Section 2.4.
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For instance, in the simpler case of trapezoidal collocation, defects constraints
are formulated as follows, according to Eq. 2.6

τ i = si+1 − si − h
1

2
(f i + f i+1) = 0 for i = 0, . . . , N − 1 (3.28)

Where fk = f(sk,uk, tk) for k = 0, ..., N that represent the discretized values
of the dynamics ODEs (Eq. 3.1) evaluated in the mesh points. It is possible to
transform the defects matrix into a row vector τ ∈ R7N . Subsequently, a vector
encompassing all non-linear constraints (3.23, 3.24, 3.25, 3.26, 3.27, 3.28) can be
defined as follows:

ζ ∈ R8N+5 (3.29)

Within this model, the desired level of accuracy can be adjusted by either
increasing the number of nodes in the mesh or by selecting more sophisticated
placement techniques (e.g., Hermite-Simpson, see Eq. 2.13) to generate the
defect constraints. Additionally, the ODE model used within the defects can
be modified to either account for or disregard potential dynamical perturbations
(e.g., third-body perturbations).

Objective Function

The objective function can be simply rewritten as

minimize : −mN (3.30)

3.2.3 Sparsity Implementation

Examining the discretized model reveals that solving an optimization problem
using direct transcription and collocation necessitates managing a substantial
number of variables and non-linear constraints. The quantity of these elements is
contingent upon the discretization refinement and will significantly increase with
higher mesh density, as illustrated in Figure 3.5. Specifically, for this problem,
the number of variables is given nvar = 10N + 12, and the number of non-
linear constraints is nconstr = 8N + 5. For instance, with N = 100, a plausible
value for the initial representative solution in the optimization of interplanetary
trajectories, there are 1012 variables and 805 non-linear constraints that the
solver must handle. The scale of these values necessitates substantial memory
allocation for each evaluation during each iteration of the solution process and
considerable computational time to manage and perturb the variables to achieve
convergence to the optimal solution.

Specifically, in the context of gradient-based solving techniques, the solver is
required to numerically compute finite differences to evaluate the gradient vector
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of the objective function. This evaluation is crucial for searching for the optimal
solution by attempting to satisfy the KKT conditions (see M.Minoux, 1986[ 26]).
Additionally, the solver must compute the Jacobian matrix of constraints, which
is essential for managing the variables to ensure compliance with the imposed
non-linear constraints.

The gradient vector of the objective function is identified as G ∈ R10N+12,
with components defined as follows:

Gk =
∂J

∂dk
for k = 0, . . . , 10N + 11 (3.31)

where J represents the objective function.
The Jacobian matrix of non-linear constraints is J ∈ R8N+5 × R10N+12 ,

and it represents the matrix containing the partial derivatives of the non-linear
constraints with respect to the variables. Thus, its components are defined as
follows:

Ji,k =
∂ζi
∂dk

for i = 0, . . . , 8N + 4 ; k = 0, . . . , 10N + 11 (3.32)

Where ζ and d are defined respectively in Eq.3.29 and Eq.3.21.

Figure 3.5: Variables and non-linear constraints number as function of N

Consequently, it is evident that the gradient vector, comprising 10N + 12
elements, and the Jacobian matrix, consisting of 80N2 + 146N + 60 elements,
necessitate the evaluation of an extensive number of finite differences at each
iteration. This requirement, particularly concerning the jacobian matrix, makes
the computation prohibitively expensive in terms of both memory usage and
computational time.

Therefore, it is imperative to leverage the sparse structure of these matrices by
conducting an ad-hoc analysis tailored to the specific problem and incorporating
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this structure into the solver a priori. Through a detailed study, it is possible
to identify the variables upon which each row of the Jacobian matrix depends
(i.e., each non-linear constraint). Consequently, the solver can be configured
to evaluate the finite differences exclusively for these non-zero elements at each
iteration. The same approach applies to the gradient vector.

Beginning with the gradient of the objective function, it is evident that it
depends solely on the variable representing the final mass of the spacecraft.
Consequently, the gradient vector will contain only one non-zero component out
of a total of 10N + 12 components, corresponding to the variable mN .

It is necessary to determine the structure of the Jacobian matrix of con-
straints. The sparse structure of this matrix is illustrated in Figure 3.6, with
N=5 used as an example for effective visualization. The thrust control con-
straints identify the constraints on the magnitude of the control (3.23). They
are only depending on the components of the thrust control ui at each mesh
point. The departure and arrival constraints identify the constraints on depar-
ture and arrival points (3.12),(3.13),(3.26),(3.27). Concerning the constraint on
departure position, it is depending on t0 and r0 variables, while the departure
velocity one is depending on t0 and ṙ0. On the other hand, the constraint on
the arrival position is depending on t0, ∆t and rN , while the arrival velocity
one is determined by t0, ∆t and ṙN . Finally the Defect Constraints (3.28) for
each interval k ∈ [1, N ] depend on ∆t and on the state and control variables
associated with the extreme nodes of the k-th interval, i.e. sk−1, uk−1, and sk,
uk.

It is evident that the density of the Jacobian matrix decreases rapidly as the
number of mesh nodes increases, becoming lower than 1 % for N > 100 , thereby
making the sparse optimization approach increasingly crucial and effective for
the problem at hand, as illustrated in Figures 3.7 and 3.9.

Moreover, it should be noted that the matrix structure discussed thus far
pertains to a low-thrust trajectory problem utilizing a two-body problem (2BP)
model. If perturbations due to the presence of third bodies in the dynamics are
to be considered, the structure can be readily adjusted by incorporating the t0
dependence for all defect constraints. This adjustment is necessary because, at
each point in the trajectory, the dynamics would be influenced by the positions
of the perturbing bodies, which can be determined through ephemerides, which
depend on the time and on the values of t0 and ∆t.
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Figure 3.6: Jacobian matrix of constraints: sparsity pattern. The non-zero ele-
ments of the matrix are displayed in blue.

Figure 3.7: Plots representing sparsity trends as function of N (number of dis-
cretization intervals).
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Figure 3.8: Jacobian matrix of constraints: structure visualization for N=100.
The non-zero elements of the matrix are displayed in blue.

Figure 3.9: Jacobian matrix of constraints: structure visualization for N=200.
The non-zero elements of the matrix are displayed in blue.



Chapter 4

Experimental Analysis and
Applications in an Industrial
Environment

This chapter presents the experimental analyses conducted within this thesis in
an industrial setting. In Section 4.1, a comparative analysis of various solvers
for simplified low-thrust trajectory optimization problems is introduced. This
analysis aims to demonstrate the effectiveness of specific solvers for large-scale
problems in comparison to generic commercial solvers, with particular emphasis
on the critical role of sparsity implementation to solve the problem. Section
4.2 details the development of an operational tool for optimizing interplanetary
low-thrust trajectories, followed by its validation in the context of Martian mis-
sions, referencing the analysis reported in Casanova-Álvarez, Navarro-Medina,
and D.Tommasini, 2024[ 10]. The refinement post-processing of the optimal so-
lution found by the optimization tool is then described, by focusing on the errors
evaluation and the process necessary to enhance the accuracy of the solution,
also accounting for third-body perturbations in the equations of motions.

4.1 Solver Performances Analysis

This section aims to compare the performance of two general-purpose solvers
used in both academic and industrial settings for solving nonlinear problems,
that specifically areMatlab Optimization Toolbox (see MathWorks, 2024[ 27]) and
We Optimize Really Huge Problems - WORHP solver (see Büskens and Wassel,
2013[ 8]). The Matlab Optimization Toolbox provides functions for identifying
parameters that minimize or maximize objectives while adhering to constraints.
It includes solvers for different kinds of programming problems. Specifically, for
NLP problems, the fmincon routine is applicable. Optimization problems can be
defined using functions and matrices or by specifying variable expressions that
reflect the underlying mathematics. Additionally, automatic differentiation of

34
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objective and constraint functions can be utilized for faster and more accurate
solutions.

Subsequently, the WORHP solver is analyzed. It is designed for tackling
large-scale, sparse, nonlinear optimization problems involving up to millions of
variables and constraints. WORHP is fundamentally built as a sparse SQP
and IP method. It features efficient routines for computing sparse derivatives
using finite difference techniques. Additionally, it utilizes reverse communication,
providing an high level of interaction between the user and the solver. This solver
was selected by the ESA as the European NLP solver due to its exceptional
robustness and its philosophy of application-driven design and development.

The two solvers are employed to address a range of test cases, as detailed
below, with a comparative analysis of their results and computational perfor-
mances. This comparison aims to illustrate the necessity of selecting effective
solvers for large-scale NLP problems in an industrial context, thereby ensuring
significant resource savings.

4.1.1 Test Cases

A series of test cases were conducted to facilitate a comparative analysis of the
solvers. Each test case is firstly solved by handling the dense problem with
fmincon routine and WORHP solver without the implementation of sparsity
structure. Then, the same cases are tested by implementing the sparse problem
(see Section 3.2.3) within the WORHP solver. The analysis commenced with
simplified interplanetary trajectory optimization problems and progressively in-
troduced increasing levels of complexity by incorporating additional nonlinear
constraints. Ultimately, the test cases evolved to reflect problems more repre-
sentative of real-world scenarios. This subsection provides a detailed description
of the various test cases and includes visualizations of the results obtained from
some of the more significant tests. The comprehensive results are compiled in
summary tables presented in subsection 4.1.2, accompanied by comments and
conclusions. All test cases computed within this section assume the patched
conics approach, by accounting for the 2BP with the Sun as central body.

Nuclear Electric Simple Raising between circular orbits (NE-SR)

The initial test case addresses the resolution of a simplified Earth-Mars interplan-
etary maneuvering problem. Specifically, it involves a straightforward transfer
maneuver from Earth’s orbit to Mars’ orbit utilizing nuclear electric propulsion
(NE) model. The orbits are approximated as circular, with the radii of Earth
and Mars assumed to be constant at 1 AU and 1.5 AU, respectively.

Consequently, the trajectory optimization requires only that the S/C reaches
the simplified Martian orbit, without any rendezvous conditions or constraints on
the satellite’s final velocity. Therefore, the constraints outlined in Eq. 3.27 are
not considered. However, all other nonlinear constraints previously described in
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the model are incorporated by reformulating the initial conditions specified in Eq.
3.24 and Eq. 3.25, such that r0 = [1, 0, 0]AU , vescape,max = 0.0 km/s, and vDP =

[0, vEarth, 0], where vEarth =
√

µSun/rEarth = 27.785 km/s. The arrival position
condition expressed in Eq. 3.26 is reformulated such that ∥rN∥ = 1.5AU .

The propulsion system, based on the nuclear electric propulsion model, is
characterized by a constant maximum available thrust level along the trajectory,
denoted as Tmax = 250mN . The specific impulse is also considered constant,
with a value of Isp = 4010 s. The total initial mass of the spacecraft is set at
m0 = 2500 kg. In this simplified scenario, the variable t0 does not influence the
optimization problem, as the starting point is defined as an independent param-
eter and there is no t0-dependent constraint on the endpoint. Consequently, this
variable is not considered in the initial test case. For the NE-SR1 test case,
a constraint on ∆t within the range [0,730.51] days was imposed, whereas in
NE-SR2, the upper bound for the time of flight was reduced to 636.00 days.

A propagated trajectory with maximum tangential thrust acting throughout
the transfer time was used as the initial guess for the optimization, as illustrated
in Figure 4.1. The optimization results for the two solvers are presented in
Figures 4.2, 4.3, 4.4, 4.5, 4.6, and 4.7, showing the optimized trajectories in 2D
X-Y elliptical J2000 plane , the thrust profile and the S/C mass over the transfer
elapsed days.

As expected, the optimization results in multi-revolution trajectories that
saturate the ToF constraint, utilizing the maximum possible flight time to min-
imize consumption. Additionally, the solutions tend to concentrate the thrust
arcs in the low-radius regions of the trajectory, where it is theoretically more
advantageous to apply thrust. Furthermore, it is evident that decreasing the up-
per bound for the ToF leads to an increase in optimal consumption in NE-SR2
compared to NE-SR1.

Figure 4.1: NE-SR1 and SR2 : Initial Tangential Guess
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Figure 4.2: NE-SR1: fmincon Optimal Solution

Figure 4.3: NE-SR1: WORHP(dense) Optimal Solution
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Figure 4.4: NE-SR1: WORHP (sparse) Optimal Solution

Figure 4.5: NE-SR2: fmincon Optimal Solution
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Figure 4.6: NE-SR2:WORHP (dense) Optimal Solution

Figure 4.7: NE-SR2: WORHP (sparse) Optimal Solution

Nuclear electric raising between circular orbits with circular target
velocity (NE-CR)

The objective of the following test case is to optimize the transfer trajectory
from a circular Earth orbit to a circular Mars orbit, defined and approximated
as in the previous test case. The optimization model is based on the same
constraints expressed for the NE-SR problem, with the addition of the constraint
that the spacecraft must reach Mars’ orbit with a velocity that matches the
circular velocity of that orbit, defined as a function of the mean anomaly θ as
follows:
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vAP (θ) =


−vMars sin(θ)
vMars cos(θ)
0

(4.1)

Where rMars = 1.50AU , vMars =
√
µSun/rMars = 24.32 km/s.

The thrust model and the initial mass of the spacecraft are identical to those
in the previous test case. Similarly, the variable t0 does not affect the optimal
control problem and is therefore neglected. This test case examines nine specific
scenarios. For all cases, an upper bound for the time of flight of 730.51 days is
assumed.

In the first case (NE-CR1), the escape velocity from Earth is set to 0 km/s,
and an initial guess solution propagated with tangential thrust is used, as shown
in Figure 4.1. For all other cases (from NE-CR2 to NE-CR8), a maximum direct
escape velocity from Earth of 3.0 km/s is imposed. The problem to be solved
is thus the same for all these cases, but the difference lies in the choice of the
initial guess solution.

For all cases, initial guesses propagated with maximum tangential thrust
throughout the transfer are provided, but with different initial velocities of the
S/C associated with different Earth escape velocities. In NE-CR2, the guess
solution is characterized by an escape guess velocity of 0.0 km/s, which is incre-
mented by 0.5 km/s for each subsequent case, up to an escape guess velocity of
3.0 km/s for NE-CR8. This approach allows for the observation of how different
guess solutions can impact the results and performance of the optimizer for the
same optimal control problem. Examples of different guesses are provided in
Figures 4.8 and 4.9.

All results obtained by the solvers are presented in Tables 4.1 and 4.2, while
a representative example of the outputs is shown in Figures 4.10, 4.11, and
4.12. As expected, the NE-CR1 case exhibits significantly higher propellant
consumption compared to the other cases, as the ability to utilize a non-zero
direct escape velocity from Earth allows for substantial savings in propellant
mass. Furthermore, this parameter greatly influences the optimal ToF, as this
constraint is saturated in the NE-CR1 case, whereas the other cases demonstrate
significantly lower optimal transfer times.

Upon examining the results, it is evident that the choice of the initial guess
significantly influences both the performance and the outcomes obtained. Specif-
ically, each case identifies a different local optimum, resulting in variations in
escape velocity and corresponding differences in ToF. Despite these differences,
all cases exhibit a very similar trajectory geometry at a macroscopic level.
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Figure 4.8: NE-CR4: Guess Solution

Figure 4.9: NE-CR8: Guess Solution

Figure 4.10: NE-CR8: fmincon Optimal Solution
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Figure 4.11: NE-CR8: WORHP(dense) Optimal Solution

Figure 4.12: NE-CR8: WORHP (sparse) Optimal Solution

Nuclear electric rendezvous between circular orbits (NE-CRV)

The objective of the NE-CRV test cases is to optimize a simplified Earth-Mars
rendezvous interplanetary trajectory, assuming coplanar circular orbits of the
planets and defining simplified ephemerides by the user. This test case account
for the same assumption on propulsion system features and S/C mass properties
as the previous tests. This test case serves as a final intermediate step before
addressing the rendezvous case with real orbits, which will be discussed subse-
quently. The optimization model is based on the general framework presented in
Chapter 3 and utilizes arbitrarily defined simplified ephemerides as follows. For
a generic planet, its position and velocity are functions of time such that
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θ(t) = θ0 + ωt , (4.2)

where θ(t) is the mean anomaly of the planet as function of time, θ0 is the user-
defined anomaly of the planet at t = t0, and ω represents the mean angular
velocity of the planet. Thus, it is possible to define the position and velocity
vectors of the planet at time t as follows

r(t) =


r cos(θ(t))
r sin(θ(t))
0

(4.3)

v(t) =


−v sin(θ(t))
v cos(θ(t))
0

(4.4)

Where v represents the circular velocity magnitude of the planet along its sim-
plified circular orbit with radius r.

In this case, unlike the previous test cases, the variable t0 and the value of
θ0 assigned to the planets of interest become crucial. For the NE-CRV1 test
case, θ0,Earth = 0 deg, and θ0,Mars = 0 deg was assumed, and a tangential guess
with maximum thrust and zero escape velocity was provided. The optimization
results with these input parameters are shown in Figures 4.13, 4.14 and 4.15.

Figure 4.13: NE-CRV1: fmincon Optimal Solution
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Figure 4.14: NE-CRV1: WORHP(dense) Optimal Solution

Figure 4.15: NE-CRV1: WORHP (sparse) Optimal Solution

It can be observed that the solver found an optimal solution for t0 = 0,
identifying a local minimum for this variable value. However, it is evident that
this variable significantly influences the rendezvous problem compared to all
other variables in the optimization problem. The solver, however, is unable to
recognize the importance of this variable among the large number of variables
it must handle. Therefore, it tends to find a local optimal solution around the
guess value of this departure date variable.

Indeed, it can be confirmed that the solutions found in the NE-CR test cases
could also satisfy this problem, provided the correct initial phasing of the planets
determined to enable the rendezvous. The value of θ0 required to establish the
initial condition, ensuring that the solutions derived in the previous tests also
satisfy this problem, can be determined through appropriate calculations. This
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was specifically applied in the NE-CRV2 test case, setting θ0,Earth = 0 deg, and
θ0,Mars = 48 deg. The optimization results can be seen in Figures 4.16, 4.17, and
4.18.

It can be observed that in this case, the solvers find another local optimum,
different and better than the one previously computed, similar to the solutions
of the previous test cases. This confirms the importance of the t0 value and the
necessity of a global search method for solutions based on the management of
this variable. This will be further explored in Section 4.2.

Figure 4.16: NE-CRV2: fmincon Optimal Solution

Figure 4.17: NE-CRV2: WORHP(dense) Optimal Solution
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Figure 4.18: NE-CRV2: WORHP (sparse) Optimal Solution

Solar electric rendezvous between real orbits (SE-RRV)

This test case represents the real optimal control problem for low-thrust inter-
planetary rendezvous maneuvers. The ephemerides of the planets are calculated
using the SPICE tool (see Section 3.1.6), and the propulsion system is modeled
as solar electric propulsion (SE). Specifically, the profile of maximum available
thrust as a function of the distance from the Sun is the one introduced in Section
3.1.2 and shown in Figure 3.1.

Given the critical importance of managing the departure date variable, a com-
prehensive global approach to identifying solutions is essential. This methodol-
ogy is elaborated in detail in Section 5.1. From the solutions derived in the case
study, an estimate for the variable t0 was identified, pinpointing a local solu-
tion to the specific problem on 2026 OCT 06. The problem was subsequently
addressed using a tangential-thrust guess, characterized by the aforementioned
departure date. Constraints were applied to the ToF, ensuring it remained within
the interval of [200, 550] days, and to the departure date t0, allowing for a launch
window of ± 1 day. The results are presented in Figures 4.19 and 4.20. It is note-
worthy that the problem was resolved exclusively using the WORHP solver, as
previous test cases (refer to Tables 4.1 and 4.2) demonstrated that the Matlab’s
fmincon solver was not computationally adequate for handling such a complex
problem.
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Figure 4.19: SE-RRV1: WORHP(dense) Optimal Solution

Figure 4.20: SE-RRV1: WORHP (sparse) Optimal Solution

4.1.2 Solver Outputs Comparison

Tables 4.1 and 4.2 provide a summary of the main outputs from the optimizations
conducted in the previously described test cases. This summary includes both
the key results and the computational performances of Matlab’s fmincon and
the WORHP solver, with and without the implementation of the sparse matrix
structure.

Specifically, Table 4.1 presents a comparison between Matlab’s fmincon and
WORHP, both of which address the problem using a dense numerical approach.
It is important to note that, to the extent possible, the same optimization pa-
rameters were set for both solvers. Among the most critical parameters are the
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feasibility tolerance, set at 1× 10−6, and the optimality tolerance, which ensures
compliance with the KKT conditions, also set at 1 × 10−6. Furthermore, for
each test case, both solvers were provided with the same initial guess solution,
specifically those with tangential thrust.

The results indicate that both solvers converge to nearly identical solutions
for each test case; however, there is a significant difference in computational
performance. It is evident that in all cases, WORHP outperforms the fmincon
routine, particularly when handling guess solutions that do not satisfy all the
constraints of the control problem.

For instance, in the NE-SR1 and NE-SR2 cases, where the initial guess is
already a feasible solution, WORHP requires at least half the computational
time compared to fmincon to converge to the local optimum. Observing the re-
sults for other cases, where the initial solution does not meet all the optimization
constraints, the performance discrepancy increases further. This behavior under-
scores fmincon’s difficulty in handling guesses, whereas WORHP demonstrates
robust performance regardless of the initial guess. Specifically, in test cases NE-
CR2 to NE-CR8, fmincon exhibits highly variable computational times, ranging
from 13.93 minutes for NE-CR3 to 52.26 minutes for NE-CR6, when solving the
same problem with different initial guesses. In contrast, WORHP maintains rel-
atively stable performance across varying guesses, with times ranging from 3.79
minutes for NE-CR4 to 8.25 minutes for NE-CR2, achieving computational times
up to 10 times faster than the other solver.

MatLab’s fmincon WORHP Dense

Cases
CPU time

[min]

mprop

[kg]

ToF

[days]

vescape

[km/s]

CPU time

[min]

mprop

[kg]

ToF

[days]

vescape

[km/s]

NE-SR1 21.075 176.34 730.51 0.00 7.99 176.30 730.51 0.00

NE-SR2 11.12 213.81 636.00 0.00 2.76 213.81 636.00 0.00

NE-CR1 12.00 302.55 730.51 0.00 7.03 302.65 730.51 0.00

NE-CR2 20.13 195.27 730.51 2.255 8.25 195.26 730.51 2.243

NE-CR3 13.93 195.27 730.51 2.256 4.36 195.27 730.51 2.259

NE-CR4 21.52 195.27 730.51 2.256 3.79 196.77 653.16 2.349

NE-CR5 24.87 197.04 588.08 2.310 3.98 197.07 586.38 2.312

NE-CR6 52.26 198.20 431.29 3.000 4.62 198.23 485.34 2.281

NE-CR7 45.67 197.65 539.31 3.310 4.09 197.67 539.36 2.311

NE-CR8 36.71 198.28 483.71 2.291 4.15 198.24 483.82 2.288

NE-CRV1 14.43 236.93 730 3.000 12.34 236.72 730 3.000

NE-CRV2 38.05 193.92 730 2.336 4.09 192.62 730 2.418

Table 4.1: Summary Table of comparison between MatLab’s fmincon solver and
WORHP dense solver (i.e. without sparsity implementation), reporting the main
optimization outputs for each test case

However, it is important to note that even when using WORHP with a dense
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structure, although the performance is significantly better than Matlab’s non-
linear solver and typically on the order of a few minutes, it remains insufficient
for this type of problem. This is because a global search for the optimal solution
is required, necessitating the evaluation of hundreds, if not thousands, of local
solutions. The significant advantage of such a solver lies in its ability to imple-
ment the sparse structure of the Jacobian matrix and gradient vector, which can
further accelerate computational time. This potential was extensively leveraged
in this thesis, as detailed in Section 3.2.3, and was tested across all previous
cases, as illustrated in Table 4.2.

WORHP Dense WORHP Sparse

Cases
CPU time

[min]

mprop

[kg]

ToF

[days]

vescape

[km/s]

CPU time

[min]

mprop

[kg]

ToF

[days]

vescape

[km/s]

NE-SR1 7.99 176.30 730.51 0.00 0.47 176.30 730.51 0.00

NE-SR2 2.76 213.81 636.00 0.00 0.23 213.81 636.00 0.00

NE-CR1 7.03 302.65 730.51 0.00 1.35 302.65 730.51 0.00

NE-CR2 8.25 195.26 730.51 2.243 1.57 195.26 730.51 2.243

NE-CR3 4.36 195.27 730.51 2.259 0.74 195.26 730.51 2.262

NE-CR4 3.79 196.77 653.16 2.349 0.79 196.77 653.16 2.349

NE-CR5 3.98 197.07 586.38 2.312 0.17 197.05 587.47 2.311

NE-CR6 4.62 198.23 485.34 2.281 0.16 198.23 486.34 2.251

NE-CR7 4.09 197.67 539.36 2.311 0.22 197.58 545.14 2.313

NE-CR8 4.15 198.24 483.82 2.288 1.79 198.06 508.65 3.000

NE-CRV1 12.34 236.72 730 3.000 1.19 237.2 730 3.000

NE-CRV2 4.09 192.62 730 2.418 0.31 192.62 730 2.418

SE-RRV1 5.10 193.24 526.14 2.493 0.65 193.24 526.14 2.493

Table 4.2: Summary Table of comparison between WORHP dense solver and
WORHP sparse solver (i.e. with sparsity implementation), reporting the main
optimization outputs for each test case

The results clearly demonstrate the effectiveness of the sparse approach. In
most cases, computational times are significantly reduced to well below one
minute, and for the most demanding cases, around one minute. This approach
achieves performance improvements up to 10 times better than the dense ap-
proach with the same solver and up to 100 times faster than Matlab’s fmincon,
which also uses a dense approach. For instance, considering the worst-case sce-
nario for the sparse structure’s performance, the NE-CR8 case, the computa-
tional time is reduced to 1.79 minutes, compared to 4.15 minutes for WORHP
with a dense structure and 36.71 minutes for fmincon. Conversely, in the NE-
CR6 case, which presents the smallest computational time for sparse WORHP
at 0.16 minutes, the dense WORHP takes 4.62 minutes, and Matlab’s fmincon
takes 52.26 minutes.
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In conclusion, it can be asserted that the utilization of solvers specifically
designed for large-scale nonlinear problems with a sparse structure is essential for
drastically reducing computational time. This enables the execution of multiple
local optimizations to thoroughly explore the solution space in search of the
optimum. It is evident that such a process would be unsustainable in terms of
computational timing when using dense solvers, particularly those not originally
intended for large-scale problems.

4.2 Developed Optimization Tool

This section describes the purpose and operational structure of the optimization
tool for low-thrust interplanetary trajectories, developed in industry within the
mission analysis unit of Thales Alenia Space (Turin, Italy). The detailed purpose
and architecture of this tool are described in Section 4.2.1. Its validity is sub-
sequently assessed in Section 4.2.2 through comparison with feasibility studies
of Earth-Mars electric propulsion missions, as documented in the literature by
Casanova-Álvarez, Navarro-Medina, and D.Tommasini, 2024[ 10]. Section 4.2.3
presents the post-processing of the optimal solution found by the optimization
tool in order to enhance its accuracy. The process of accuracy refinement is
described, concerning refinement in collocation techniques and dynamics mod-
eling, including perturbations due to third-bodies gravitational fields along the
spacecraft interplanetary trajectory.

4.2.1 Tool Architecture

The objective of the developed tool is to determine the optimal interplanetary
trajectory in terms of propellant consumption (and consequently ∆V ) for a di-
rect interplanetary transfer (without the possibility of fly-bys). The goal is to
perform multiple local optimizations within a given launch window, starting from
relatively simple guess solutions. This approach aims to identify the most promis-
ing specific launch windows and strive to converge towards the global optimal
solution within the predefined domain. From an implementation perspective,
the software is developed in the Matlab environment and interfaces with the
WORHP solver for resolution, utilizing the sparse structure of the optimization
problem.

The architecture of the tool, as depicted in the diagram in Figure 4.21, is
based on a multi-start plus SQP approach (as explained in Section 2.4.1), in-
specting the solution space at two levels. Specifically, for this problem, the
critical variable in identifying local optima is t0 (i.e. launch epoch or departure
date). Therefore, the multi-start approach generates multiple guess solutions
characterized by different t0 values within the considered bounds.

At this point, the process advances to the second level of the search (low-level
search), where the most promising regions of launch dates, identified from the
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Figure 4.21: Optimization tool architecture diagram

previously found solutions, are refined. This involves increasing the discretiza-
tion of the departure dates within the identified region and re-optimizing for each
of them. The guess provided at this level is selected from the high-level solutions
storage, identifying the one with the t0 value closest to the target. The guess
solution used at this stage is already feasible, as it is a solution to the problem.
Therefore, the solver is used directly in optimization mode, yielding a new op-
timal solution within the refined interval of the launch date of interest. This
process results in multiple new detailed solutions, allowing the identification of
the best solution found, which is then designated as the global optimal solution
within the domain of departure dates.

The entire process described above is conducted using direct collocation meth-
ods for trajectory optimization, initially with a relatively high level of approxima-
tion to benefit computationally. In the case studies within the thesis, collocation
is initially modeled using the trapezoidal method with an equally spaced mesh
of N=100 intervals, in order to approximate the equations of dynamics by ac-
counting for the two-body problem. The global optimal solution identified in this
manner is thus a high-level approximation that requires post-processing refine-
ment to enhance its fidelity and precision in terms of dynamics. This refinement
process is detailed and applied in Section 4.2.3.

In the first level of search (high-level multi-start search), the interval of launch
epochs to be inspected is discretized on a relatively coarse mesh of various de-
parture dates. For each descretized value in the grid, a tangential thrust guess is
generated with the initial condition being the departure planet and an escape ve-



Chapter 4 - Experimental Analysis and Applications 52

locity chosen by the user within the permissible vescape range. This guess results
from propagating the tangential control until a user-defined radius is reached,
coinciding with the average orbit radius of the arrival planet. Generally, this
guess, while feasible in terms of dynamics, does not satisfy the rendezvous con-
straint. Therefore, it is processed by the WORHP solver in feasibility mode,
aiming solely to satisfy the constraints. The feasibility mode outputs a feasible
guess for the problem, if found, which is then used as the initial guess for the
solver in optimization mode. This process yields a local optimal solution within
the sub-interval of launch epochs defined by the initial high-level mesh, which is
then stored in a solutions storage.

4.2.2 Tool Validation

Earth-Mars Transfer with Constant Available Thrust Model

The optimization tool developed, as described in the previous section, is vali-
dated here by comparing the results with those proposed by Casanova-Álvarez,
Navarro-Medina, and D.Tommasini, 2024[ 10]. The case study aims to optimize
a direct Earth-Mars transfer using a constant thrust model, analogous to the NE
model. The characteristics and constraints of the optimization are summarized
in Table 4.3.

Optimization Inputs Value Unit

Launch Mass (m0) 2000 [kg]

Max available propellant 500 [kg]

Max available thrust level (Tmax) 0.3 (constant) [N]

Specific Impulse (Isp) 2029 [s]

Launch Epochs Range [Jan 01, 2030; Jan 01, 2040]

ToF Bounds [200, 365] [Days]

Escape velocity 2.94 [km/s]

Max arrival velocity 0.001 [km/s]

Table 4.3: Optimization Input Parameters and Constraints

The high-level multi-start search was conducted by discretizing the launch
epochs range with a step of 4 days, generating 913 sub-intervals of departure win-
dows. To decrease the overall computation time, Matlab’s Parallel Computing
Toolbox was utilized (see MathWorks, 2024[ 28]), parallelizing the calculations
across 10 cores (Ncores = 10). Out of the 913 trials, 77 solutions converged, as
depicted in the graph in Figure 4.22, which shows the propellant consumption
of each solution and the corresponding departure date. This high-level search
process took 2.21 hours to complete.
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In Figure 4.22, it is evident that the region of solutions identified in the refer-
ence paper, specifically the launch window in 2031, is well delineated. However,
other launch windows appear to be more promising in the subsequent years. No-
tably, the 2037 launch window presents the best solution among those found at
this level. Following this initial analysis, the low-level search is conducted within
the two aforementioned windows.

In particular, the optimization search within the launch window from January
1, 2031, to March 1, 2031, was refined using a new discretization step of 0.5
days. This approach resulted in 119 trials, of which 116 successfully converged,
within 3.87 minutes of parallelized computation. It is interesting to note how the
calculation of over 100 local solutions to the problem is remarkably fast in this
case, due to the availability of good initial guesses from high-level research. The
solutions obtained are summarized in Figure 4.23. A convex curve of optimal
propellant consumption as a function of the departure date is easily identifiable,
from which a local minimum within this launch window can be determined.
The minimum propellant consumption is 368.388 kg, with the departure date
identified as January 31, 2031 at 06:00. It is possible to compute the ∆V of this
maneuver, defined as follows

∆V =

∫ t0+∆t

t0

∥T (t)∥
m(t)

dt (4.5)

Thus, it can be integrated numerically with trapezoidal method and it yields
∆V = 4.051 km/s. The detailed results of this trajectory solution are shown in
the following Figures 4.24, 4.25, and 4.26.

Figure 4.22: High level multi-start search summary plot. Details on the the local
minima for each identified launch window.
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Figure 4.23: Low level search summary plot. Launch epochs window: Jan 01,
2031 - Mar 01, 2031. Detail on the minimum-propellant solution for the launch
window.

Figure 4.24: Optimal Solution of the 2031 launch window. On the left: 2D
Trajectory in ECLIPJ2000 X-Y plane with its main features. On the right:
thrust and mass over transfer elapsed time.
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Figure 4.25: Optimal Solution of the 2031 launch window. On the left: 3D
trajectory in ECLIPJ2000. On the right: departure condition wrt Earth J2000.

Figure 4.26: Optimal Solution of the 2031 launch window. On the left: S/C radii
with respect to relevant celestial bodies. On the right: S/C angles with respect
to relevant celestial bodies.

It is now interesting to analyze the low-level research on the launch opportu-
nity of 2037, as high-level research indicated it to be the most promising within
the 2030-2040 interval. The launch window was identified from May 1, 2037,
to October 1, 2037, with the interval discretized using a time step of 0.5 days,
generating 338 trial points. Among these trials, 239 solutions converged within
27.49 minutes of parallel computation on 10 cores. The solutions are summarized
in the graph shown in Figure 4.27. Here too, a convex curve representing the



Chapter 4 - Experimental Analysis and Applications 56

optimal propellant mass as a function of the departure date can be identified,
with the minimum found for the launch epoch of August 7, 2037, at 06:00, with
∆V = 2.585 km/s and a corresponding propellant consumption of 243.646 kg.
The results of the optimized trajectory are detailed and visualized in Figures
4.28, 4.29, and 4.30.

The discussed results are reported and summarized in Table 4.4, comparing
them with those presented in the aforementioned reference article. It is evident
that the solution proposed in this thesis for the 2031 launch window is indeed
validated by the one proposed in the paper. Additionally, this tool has enabled
the identification of a more promising launch window in 2037, which offers further
propellant savings compared to the 2031 window.

Thus, by exploiting this tool, it was possible to calculate over 400 local solu-
tions for various departure dates, identifying five launch windows and exploring
the most promising ones in greater detail. The best solution within the 2030-2040
interval was identified, with the entire process taking approximately 3 hours of
computation. Once the best solution within the domain to be explored has been
identified, a refinement process can be applied to the solution itself, increasing its
level of accuracy as explained and demonstrated in the following Section 4.2.3.

Figure 4.27: Low level search summary plot. Launch epochs window: May 01,
2037 - Oct 01, 2037. Detail on the minimum-propellant solution for the launch
window.
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Figure 4.28: Optimal Solution of the 2037 launch window. On the left: 2D
Trajectory in ECLIPJ2000 with main features. On the right: thrust and mass
over transfer elapsed time.

Figure 4.29: Optimal Solution of the 2037 launch window. On the left: 3D
trajectory in ECLIPJ2000. On the right: departure condition wrt Earth J2000.
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Figure 4.30: Optimal Solution of the 2037 launch window. On the left: S/C radii
with respect to relevant celestial bodies. On the right: S/C angles with respect
to relevant celestial bodies.

Optimization Outputs Paper
Thesis Tool:

2031 Solution

Thesis Tool:

2037 Solution (Best)

Departure Date [UTC] Jan 31, 2031

06:38

Jan 31, 2031

06:00

Aug 07, 2037

06:00

ToF [days] 362.94 361.07 365.00

Arrival Date [UTC] Jan 29, 2032

05:14

Jan 27, 2032

07:34

Aug 07, 2038

06:00

Propellant Consumption [kg] 384 368.4 243.65

Mass at Mars SOI [kg] 1616 1631.6 1756.4

Table 4.4: Table of comparison between the results proposed by Casanova-
Álvarez, Navarro-Medina, and D.Tommasini, 2024[ 10] and the results achieved
by the developed optimization tool of this work

4.2.3 Solution Refinement

As elucidated in the previous section, the methodology for determining the global
optimum employs trapezoidal collocation techniques with 100 equispaced nodes.
These collocation parameters represent a compromise between computational
cost and the precision of the derived optimal trajectory. At that stage of the
process, prioritizing computational efficiency is crucial to facilitate the evaluation
of multiple local optima, rather than concentrating solely on the precision of an
individual solution.

Consequently, it is necessary to refine the identified optimal solution post
hoc to enhance its dynamic accuracy. The error of the solution with the current
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collocation properties can be evaluated through various methods documented in
the literature. In this thesis, for the sake of simplicity and ease of visualization,
a propagator of the equations of dynamics was selected for error calculation.
Specifically, starting from an optimal solution obtained via direct collocation,
the optimal control is propagated using a numerical propagator that accounts
for the ODEs of the involved dynamics. The propagated trajectory, in terms
of positions and velocities, is then compared with the trajectory approximated
through collocation.

The objective is to develop a cascading process for refining the optimal solu-
tion, aiming to reduce errors below acceptable thresholds through step-by-step
re-optimization. This involves incrementally increasing the number of nodes
changing the collocation method and refining the dynamics model (by account-
ing for third-bodies perturbations) in order to achieve an high-fidelity trajectory.
This process is applied to the 2031 and 2037 solutions previously presented, with
the results of this refinement detailed in Tables 4.5 and 4.6.

Initially, since the dynamics are modeled as a 2BP in the previous opti-
mization stage, the error is evaluated using a propagator (2B propagator) that
considers only the dynamics of the two-body problem, with gravitational accel-
eration solely due to the central body (the Sun). As shown in the tables, the case
0, which corresponds to the output of the optimization tool with N=100 and the
trapezoidal method, exhibits relatively high maximum errors in positions and
velocities, on the order of 105 km for position and 102 m/s for velocity absolute
errors. These maximum errors are located at the end of the trajectory, resulting
from accumulation during propagation, and are not acceptable given the magni-
tudes involved. A positional error of 105 km would be comparable to the radius
of Mars’ sphere of influence (SOI), and is therefore excessively large. Given these
observations, relative maximum error values of 10−6 for positions and 10−5 for
velocities can be considered acceptable. These correspond to absolute values of
less than 1000 km for positions and less than 1 m/s for velocities.

In Solution Refinement 1, the solution is re-optimized by doubling the number
of mesh nodes (N=200) while maintaining the trapezoidal collocation method.
This adjustment does not significantly impact the errors, reducing the relative
errors in positions and velocities by one order of magnitude. In Solution Refine-
ment 2, the number of mesh nodes remains the same as in Case 0, but the degree
of the collocation polynomial is increased by employing the Hermite-Simpson
method. This approach proves to be highly effective in reducing relative errors,
achieving relative errors on the order of 10−7 for both positions and velocities in a
computational time comparable to the refinement using the trapezoidal method
with an increased number of nodes. It is thus evident that increasing the order
of the collocation polynomial is much more effective than increasing the num-
ber of nodes.In Solution Refinement 3, the number of nodes is further doubled
(N=200), while retaining the Hermite-Simpson method. This increase in the
number of nodes results in a reduction of relative errors by approximately one
order of magnitude.
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At this point, it is interesting to examine the impact of gravitational pertur-
bations due to the effect of third bodies on the interplanetary trajectory. While
the patched conics approach is widely used for impulsive maneuvers and is gen-
erally acceptable, in this case, we aim to evaluate the effect of third bodies (i.e.
Earth and Mars) on the interplanetary leg for low-thrust maneuvers. By exam-
ining the aforementioned summary tables, it is possible to observe the maximum
errors wrt NB propagator for each Solution Refinement Case. Specifically, for the
first four cases, which were optimized considering only the two-body dynamics,
the non-negligible impact of third-body perturbations is evident. The relative
maximum errors do not fall below 10−3, implying absolute errors of 106 km in
the final position and 102 m/s in the final velocity. These values are unaccept-
able for a trajectory that aims for a high level of accuracy. This indicates the
necessity to further refine the solutions by re-optimizing with direct collocation,
taking into account third-body perturbations in the equations of motion. Given
the strong nonlinearity of the equations of motion with perturbations and the
effectiveness of this method for refinement, all subsequent cases (from 4 to 6) are
re-optimized using the Hermite-Simpson method. Specifically, in Case 4, only the
Earth’s perturbation is considered in the direct collocation, demonstrating that
its contribution to the error is not particularly significant. In the following cases,
the perturbation due to Mars is also included, which indeed proves to be signif-
icant in terms of error. In Case 6, satisfactory relative error values are achieved
for both trajectories by using Hermite-Simpson with 400 equispaced nodes. The
entire refinement process requires a total computational time of approximately
10 minutes for both trajectories.

The refined and accurate trajectories are shown in Figures 4.31, 4.32, 4.33,
4.34, 4.35, and 4.36. It is evident that third-body perturbations have impacted
the solutions found, particularly the gravitational effect of Mars on the final part
of the trajectory. Specifically, in the 2031 solution, these perturbations lead to
a shift in the optimal launch date by two days and result in the saturation of
the ToF constraint. The impact in terms of consumption is an additional 50
m/s of ∆V required, translating to approximately 4 kg more propellant. For
the 2037 Solution, the perturbations do not affect the launch date but have a
more significant impact on consumption, increasing the ∆V by 300 m/s and
the propellant mass by 15 kg. This is likely because the optimizer could not
take advantage of an increased ToF, as the constraint was already saturated
in the two-body dynamics solution. In conclusion, it can be asserted that a
following refinement process, which accounts for dynamic perturbations, is indeed
necessary to achieve highly accurate trajectories.
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Solution Refinement
ID

0 1 2 3 4 5 6

Collocation
Method

Trapezoidal Trapezoidal
Hermite-
Simpson

Hermite-
Simpson

Hermite-
Simpson

Hermite-
Simpson

Hermite-
Simpson

Mesh Points
Number (N)

100 200 100 200 200 200 400

Dynamics
Central Body

(2BP)
Central Body

(2BP)
Central Body

(2BP)
Central Body

(2BP)
Central Body +

Earth Perturbation

Central Body +
Earth and Mars
Perturbations

Central Body+
Earth and Mars
Perturbations

Computation time
[s]

27.21 63.45 76.23 119.96 191.06 268.37 504.08

Optimization Outputs
Departure Date [UTC] 2031 JAN 31 2031 JAN 31 2031 JAN 31 2031 Jan 31 2031 JAN 30 2031 JAN 29 2031 JAN 28

ToF [Days] 361.07 362.63 360.89 360.77 361.65 364.99 365.00
mpropellant [kg] 368.39 368.92 369.1 369.06 365.99 372.71 372.63
∆V [km/s] 4.051 4.057 4.059 4.059 4.022 4.104 4.103

Max Errors
wrt 2B propagator
Position relative error 2.1e-3 5.3e-4 1.6e-7 1.2e-7
Velocity relative error 1.4e-3 3.4e-4 1.1e-7 8.8e-8
Position absolute error

[km]
4.4e5 1.1e5 32.9 25.1

Velocity absolute error
[m/s]

35.2 8.9 2.6e-3 2.2e-3

Max Errors
wrt NB propagator
Position relative error 4e-3 3.9e-3 5.2e-3 5.2e-3 3.2e-3 7.7e-6 6.3e-7
Velocity relative error 4.6e-3 6.3e-3 6.6e-3 6.6e-3 5e-3 3.5e-5 2.9e-6
Position absolute error

[km]
7.5e5 1.03e6 1.1e6 1.1e6 6.8e5 1.6e3 134.26

Velocity absolute error
[m/s]

118.6 161.1 168.9 169.3 282.9 0.9 7.7e-2

Table 4.5: Summary of the refinement process of the optimal solution found in
the 2031 launch window

Solution Refinement
ID

0 1 2 3 4 5 6

Collocation
Method

Trapezoidal Trapezoidal
Hermite-
Simpson

Hermite-
Simpson

Hermite-
Simpson

Hermite-
Simpson

Hermite-
Simpson

Mesh Points
Number (N)

100 200 100 200 200 200 400

Dynamics
Central Body

(2BP)
Central Body

(2BP)
Central Body

(2BP)
Central Body

(2BP)
Central Body +

Earth Perturbation

Central Body +
Earth and Mars
Perturbations

Central Body+
Earth and Mars
Perturbations

Computation time
[s]

48.63 91.02 86.64 105.95 139.375 637.97 675.57

Optimization Outputs
Departure Date [UTC] 2037 AUG 07 2037 AUG 07 2037 AUG 07 2037 AUG 07 2037 AUG 07 2037 AUG 07 2037 AUG 07

ToF [days] 365.00 365.00 365.00 365.00 365.00 365.00 365.00
mprop [kg] 243.65 244.73 245.10 245.10 255.71 270.53 270.50
∆V [km/s] 2.585 2.597 2.602 2.602 2.722 2.892 2.892

Max Errors
wrt 2B propagator
Position relative error 2.5e-3 6.3e-4 1.5e-7 3.3e-8
Velocity relative error 1.8e-3 4.5e-4 1.1e-7 4.9e-9
Position absolute error

[km]
6.3e5 1.6e5 36.2 8.2

Velocity absolute error
[m/s]

40.4 10.1 2.44e-3 1.2e-4

Max Errors
wrt NB propagator
Position relative error 2.12e-2 1.9e-2 1.8e-2 1.8e-2 2.6e-3 1.6e-6 3.9e-6
Velocity relative error 1.51e-2 1.4e-2 1.4e-2 1.3e-2 2.6e-2 9.9e-5 2.1e-5
Position absolute error

[km]
5.1e6 4.6e6 4.5e6 4.5e6 6.5e5 3.9e3 976

Velocity absolute error
[m/s]

339.9 307.4 296.3 296.6 595.3 2.2 0.47

Table 4.6: Summary table of the refinement process of the optimal solution found
in the 2037 launch window
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Figure 4.31: 2031 solution refined (with third-bodies perturbations). On the
left: 2D Trajectory in ECLIPJ2000 with main features. On the right: thrust
and mass over transfer elapsed time.

Figure 4.32: 2031 solution refined (with third-bodies perturbations). On the
left: 3D trajectory in ECLIPJ2000. On the right: departure condition wrt Earth
J2000.
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Figure 4.33: 2031 solution refined (with third-bodies perturbations). On the left:
S/C radii with respect to relevant celestial bodies. On the right: S/C angles with
respect to relevant celestial bodies.

Figure 4.34: 2037 solution refined (with third-bodies perturbations). On the
left: 2D Trajectory in ECLIPJ2000 with main features. On the right: thrust
and mass over transfer elapsed time.
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Figure 4.35: 2037 solution refined (with third-bodies perturbations). On the
left: 3D trajectory in ECLIPJ2000. On the right: departure condition wrt Earth
J2000.

Figure 4.36: 2037 solution refined (with third-bodies perturbations). On the left:
S/C radii with respect to relevant celestial bodies. On the right: S/C angles with
respect to relevant celestial bodies.



Chapter 5

Case Studies

This chapter presents two primary case studies resolved using the previously de-
veloped and validated tool. Section 5.1 details the optimization process for an
Earth-Mars transfer utilizing solar electric propulsion, characterized by a variable
available thrust profile along the trajectory, dependent on the spacecraft’s posi-
tion relative to the Sun. Conversely, Section 5.2 provides a trajectory analysis for
an Earth-Apophis transfer employing electric propulsion. Multiple trajectories
were computed using the developed tool to visualize launch opportunities and
identify optimal solutions concerning propellant consumption and time of flight.

For all the study cases presented in this chapter, an initial search for the
optimal solution within the domain was conducted using a two-stage multi-start
search, as described in the previous chapter. The initial search is performed using
a relatively simple collocation model, employing the trapezoidal method and
considering the dynamics of the 2BP. Once the optimal solutions for each study
case are identified, they are further processed to reduce the approximation of the
model. This involved re-optimizing these solutions by increasing the precision
of the collocation model, increasing the number of grid nodes, employing the
Hermite-Simpson method, and incorporating gravitational perturbations due to
third bodies of interest into the dynamical equations. This approach ultimately
yields a more realistic optimal solution to the problem.

5.1 Earth-Mars Transfer with Solar Electric

Thrust Model

This section aims to evaluate the tool developed for addressing an interplanetary
Earth-Mars transfer problem using a solar electric propulsion model. At the
industrial level, it is essential to incorporate the capability to implement electric
propulsion profiles with variable thrust along the trajectory, dependent on the
spacecraft’s position.

In many real-world case studies, particularly during the early stages of project
development (phases 0/A/B), electric thruster performance is specified across

65
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various operational ranges for different distances from the Sun. However, since
performance does not change discontinuously but follows continuous operational
curves as the spacecraft-Sun distance varies, interpolating these discrete values
is necessary for a more accurate mission analysis. This approach is adopted in
this work.

Specifically, a BepiColombo-based electric propulsion system, comprising two
T6 ion thrusters, was modeled in this case, as documented in Sutherland, Stra-
maccioni, and Benkhoff, 2019[ 40] and previously referenced in Section 3.1.2.
Specifically, the operating thrust conditions of the EP system provided to the
mission analysis team are assumed to be as follows:

• Tmax=290 mN until 1.25 AU;

• Tmax=250 mN until 1.37 AU;

• Tmax = 200 mN until 1.46 AU;

• Tmax= 145 mN until 1.67 AU;

For the trajectory optimization, the continuous model approximated in Fig-
ure 3.1 has been utilized. The thrust profile, drawn in red in the aforementioned
figure, maintains a constant thrust of 290 mN up to a distance of 1.22 AU from
the Sun. Beyond this range, a second-order polynomial is applied. The coeffi-
cients of this polynomial have been calibrated to align with the average thrust
level of the preceding stepwise thrust profile. This thrust model is expected to
provide a highly accurate approximation of the actual transfers, particularly fa-
cilitating an adequate estimation of the transfer times. The variable power level
of the electric propulsion engine influences both the thrust level and the specific
impulse. However, this variation is expected to have a minor second-order effect
on the transfer computations. Consequently, a fixed specific impulse (Isp) value
of 4010 seconds has been employed, regardless of the thrust level. All others
S/C parameters and optimization input values and constraints are summarized
in Table 5.1.

The launch epochs range was initially divided into a grid with a time step
of 3 days for high-level interval research. For each time-grid point, a local SQP
optimization is performed by using a number of grid point equal to 100 and the
trapezoidal method for the direct collocation technique.

This multi-start search took 112.56 minutes to identify 29 convergent solu-
tions and two possible launch windows, each spanning between 3 and 4 months.
The first window is in 2026 (approximately from July 1, 2026, to November
1, 2026), and the second window is in 2028 (approximately from September 1,
2028, to December 1, 2028). The solutions found within this high-level search
are summarized in Figure 5.1.

Based on prior high-level research, the launch window in 2026 is identified
as the most promising. Consequently, we proceed to the low-level optimum
search stage within the departure date window ranging from July 1, 2026, to
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Optimization Input Value/Range Unit

Launch Mass (m0) 2500 [kg]

Max available propellant 500 [kg]

Max available thrust level (Tmax) Variable profile (see Fig. 3.1)

Specific Impulse (Isp) 4010 [s]

Launch Epochs Range [Jun 01, 2026 ; Jan 01, 2029 ]

ToF Bounds [200, 550] [Days]

Escape velocity [0, 3.00] [km/s]

Arrival velocity [0.000, 0.001] [km/s]

Table 5.1: Optimization Input Parameters and Constraints

November 1, 2026. Utilizing a discretization step of 0.5 days, 246 trial points
are generated. For each of these trial points, an optimization based on SQP
algorithms is subsequently performed. The initial guess for this optimization is
the solution closest to the trial point’s launch date, selected and filtered from
the solutions identified during the high-level search stage.

The results of this low-level search, which require a computational time of
33.82 minutes to identify 199 locally converged solutions, are illustrated in Figure
5.2. The time-dependent consumption curve of the various solutions exhibits a
convex trend, enabling the identification of the optimal solution over the range
of launch epochs. This optimal solution corresponds to a departure date of
October 2, 2026, at 21:28, with a propellant consumption of 197.35 kg. The
detailed outputs of this solution are summarized in Table 5.2 and depicted in
detail in Figures 5.3, 5.4, and 5.5.

Figure 5.1: High level search summary plot. Details on the best solutions found
for each launch window found
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Figure 5.2: Low level search summary plot. Launch epochs window: Jul 20,2026 -
Nov 01, 2026. Detail on the minimum-propellant solution for the launch window.

Optimization Outputs 2026 Solution (Best)

Departure Date [UTC] Oct 02, 2026 21:28

ToF [days] 527.06

Arrival Date [UTC] Mar 12, 2028 23:04

Propellant Consumption [kg] 197.35

∆V [km/s] 3.234

Escape Velocity [km/s] 2.472

Arrival Velocity [km/s] 0.001

Mass at Mars SOI [kg] 2302.6

Table 5.2: Best solution (2026) outputs summary table
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Figure 5.3: Optimal solution for the 2026 launch window. On the left: 2D
Trajectory in ECLIPJ2000 x-y plane with main features. On the right: thrust
and mass over transfer elapsed time.

Figure 5.4: Optimal solution of the 2026 launch window. On the left: 3D Tra-
jectory in ECLIPJ2000. On the right: departure condition wrt Earth J2000.
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Figure 5.5: Optimal solution of the 2026 launch window. On the left: S/C radii
with respect to relevant celestial bodies over elapsed time. On the right: S/C
angles with respect to relevant celestial bodies over elapsed time.

In this case study, the refinement process of the optimal solution is performed
with the goal of increasing its dynamical accuracy, following steps similar to those
extensively described in Section 4.2.3. The main features and errors correspond-
ing to each refinement step are summarized in Table 5.3. The objective is to
generate a solution that satisfies relative errors of the order of 10−6 for positions
(resulting in an absolute error of less than 1000 km) and relative errors of the
order of 10−5 for velocities (resulting in an absolute error of less than 0.5 m/s),
even by accounting for an higher level of dynamical fidelity that accounts for
third-bodies perturbations along the trajectory.

It should be noted that, unlike previous cases, gravitational perturbations
due to third bodies are introduced only after increasing the refinement of the
placement mesh to 400 nodes using the Hermite-Simpson method. This adjust-
ment was necessary because attempting to introduce these perturbations and
re-optimize with 200 nodes resulted in the solver being unable to find a solution
that met the constraints, even with slight relaxations. This increased complex-
ity is likely due to the additional nonlinearity introduced by the non-constant
thrust profile, making the problem more challenging than the previous one involv-
ing nuclear electric propulsion model. However, the process concludes with the
achievement of a satisfactory final solution in about 6 minutes of computational
time. Although the constraint on the arrival velocity is not strictly satisfied, re-
quiring relaxation to 10 m/s to achieve convergence, this relaxation is considered
acceptable for the interplanetary transfer problem under consideration.

The refined optimal trajectory is illustrated in Figures 5.6, 5.7, and 5.8, with
its main characteristics and optimization outputs summarized in Table 5.3. It
is evident that considering the N-body problem (NBP) influences the optimal
solution found with the simplified 2BP.
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In the 2BP solution, there is a small final coasting phase of a few days before
reaching Mars’ SOI. However, in the NBP solution, this coasting phase is replaced
by a propelled arc, where the thrust acceleration balances the minor perturbation
due to Mars’ proximity. This results in an increase in the propellant mass used,
which rises to 199.36 kg (an increase of approximately 2 kg compared to the
2BP), and consequently, an increase in ∆V to 3.268 km/s (an increase of 34 m/s
compared to the 2BP).

On the other hand, there is no significant impact on the optimal launch date.
It is also noted that the optimal escape velocity from Earth has increased, and
the total time of flight (ToF) for the interplanetary leg has decreased.

Solution Refinement
ID

0 1 2 3 4 5

Collocation
Method

Trapezoidal
Hermite-
Simpson

Hermite-
Simpson

Hermite-
Simpson

Hermite-
Simpson

Hermite-
Simpson

Mesh Intervals
Number (N)

100 100 200 400 400 400

Dynamics
Central Body

(2BP)
Central Body

(2BP)
Central Body

(2BP)
Central Body

(2BP)

Central Body +
Earth

Perturbations

Central Body+
Earth and Mars
Perturbations

Computation time
[s]

67.35 81.27 92.57 130.42 185.28 382.82

Optimization Outputs
Departure Date [UTC] 2026 OCT 02 2026 OCT 02 2026 OCT 02 2026 OCT 02 2026 OCT 02 2026 OCT 02

ToF [Days] 527.06 527.11 527.00 527.01 526.97 518.45
mprop [kg] 197.35 198.83 198.79 198.78 197.67 199.36
∆V [km/s] 3.234 3.260 3.259 3.258 3.239 3.268

Escape Velocity [km/s] 2.472 2.482 2.482 2.482 2.624 2.614
Arrival Velocity [km/s] 0.001 0.001 0.001 0.001 0.001 0.010

Max Errors
wrt 2B propagator
Position relative error 5.3e-3 1.2e-5 5.0e-7 1.9e-7
Velocity relative error 3.9e-3 7.7e-6 1.2e-6 3.4e-7
Position absolute error

[km]
1.1e6 2.4e3 104.1 41.8

Velocity absolute error
[m/s]

97.7 2.03e-1 3.2e-2 9.1e-3

Max Errors
wrt NB propagator
Position relative error 2.1e-2 1.8e-2 1.8e-2 1.8e-2 8.8e-3 1.1e-6
Velocity relative error 1.5e-2 1.3e-2 1.3e-2 1.3e-2 1e-2 1.3e-5
Position absolute error

[km]
4.5e6 3.7e6 3.7e6 3.7e6 1.8e6 871.3

Velocity absolute error
[m/s]

351.2 314.5 314.0 314.3 268.2 2.3e-1

Table 5.3: Summary table of the refinement process to the optimal solution found
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Figure 5.6: Optimal solution refined (with third-bodies perturbations). On the
left: 2D Trajectory in ECLIPJ2000 x-y plane with main features. On the right:
thrust and mass over transfer elapsed time.

Figure 5.7: Optimal solution refined (with third-bodies perturbations). On the
left: 3D Trajectory in ECLIPJ2000. On the right: departure condition wrt Earth
J2000.
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Figure 5.8: Optimal solution refined (with third-bodies perturbations). On the
left: S/C radii with respect to relevant celestial bodies over elapsed time. On
the right: S/C angles with respect to relevant celestial bodies over elapsed time.
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5.2 Earth-Apophis Transfer

This section presents a preliminary mission analysis to evaluate the feasibility
and potential benefits of an Earth-Apophis transfer utilizing electric propulsion.
Apophis, an asteroid with an approximate diameter of 370 meters, orbits the
Sun and is expected to make a close approach to Earth, passing at a distance
of approximately 31,000 kilometers from the Earth’s surface on April 13, 2029.
This event offers a unique opportunity to plan an observational mission to study
the physical and dynamic effects of the Earth-Apophis gravitational interaction,
thereby providing insights into the behavior and properties of asteroids.To this
end, ESA has proposed the RAMSES (Rapid Apophis Mission for Security and
Safety) mission, which aims to reach Apophis prior to its close encounter with
Earth.

The work presented within this section focuses on the reachability analysis of
Apophis, investigating potential trajectories from Earth to the asteroid using a
low-thrust spacecraft, with the goal of arriving before the fly-by. The objective
is to utilize and test the tool developed in this thesis to generate a pork chop-
like plot of low-thrust trajectories. This involves calculating and storing a large
number of potential solutions, and subsequently identifying the optimal ones in
terms of propellant consumption and ToF.

To achieve this, it is necessary to make minor modifications to the architecture
of the previously presented tool. In this case study, a parametric search of
solutions is conducted by varying departure dates and times of flight within
certain bounds. Therefore, not only the departure dates but also the times of
flight will be discretized, requiring the solver to find a local solution within the
sub-interval of departure dates and ToF identified by the corresponding grid
point. Additionally, in this specific case, identifying an appropriate tangential
thrust guess is not straightforward. Since Apophis is not a planet in the solar
system, it is challenging to determine an average radius of its orbit around the
Sun to use as a target for the tangential thrust guess. To address this, considering
the asteroid’s relative proximity to Earth’s orbit during the reference period, a
simple guess is employed: the spacecraft’s trajectory with zero escape velocity
and zero thrust along the path. Thus, the guess provided is the same as Earth’s
orbit propagated over the ToF corresponding to the grid point, starting from the
departure date of that point.

Regarding the input parameters for optimization, such as the spacecraft char-
acteristics, the properties of the electric propulsion system, and the bounds on
the main variables involved, these are based on the proposals in the referenced
article by Morelli et al., 2024[ 31] and are summarized in Table 5.4. In particular,
the selected values for the maximum thrust-to-initial mass ratio Tmax

m0
, and the

specific impulse Isp are 1.2 × 10−4 m/s2 and 1500 s, respectively. These values
are compatible with state-of-the-art Hall-effect thrusters (see Dannenmayer and
Mazouffre, 2009[ 12]). Consequently, the maximum available thrust is Tmax = 60
mN, and it is considered constant along the trajectory.
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Optimization Inputs Value/Range Unit

Launch Mass (m0) 500 [kg]

Max available propellant 75 [kg]

Max available thrust level (Tmax) 0.060 (constant) [N]

Specific Impulse (Isp) 1500 [s]

Launch Epochs Range [Nov 01, 2026; Mar 01, 2028]

ToF Bounds [250, 800] [Days]

Escape velocity [0, 4.00] [km/s]

Arrival velocity [0.000, 0.001] [km/s]

Table 5.4: Optimization Input Parameters and Constraints assumptions

At this stage, a parametric search for local solutions is conducted on the
mesh points. Initially, a step size of 4 days is used to discretize the departure
dates, and a step size of 50 days is used to discretize the ToFs, generating 1464
trial points from which 451 local solutions are found. From these solutions, the
mesh refinement of the most critical and promising areas is performed by locally
reducing the discretization steps of ToFs and launch epochs, generating new trial
points. For each trial point, the nearest high-level solution is used as a guess. The
closest solution is identified as the high-level solution with the smaller distance
from the new trial point of the mesh, in terms of ToF and launch epoch. Thus,
it is selected by evaluating the solution that meets the requirement as follows:

min(
|∆ttrial −∆tsol|
∆tmax −∆tmin

+
|t0,trial − t0,sol|
t0,max − t0,min

) (5.1)

Where t0,trial and ∆ttrial are the departure date (in days past j2000) and the
ToF corresponding to the trial point we want to evaluate, t0,sol and ∆tsol are
the departure date and the ToF relative to the considered high-level solution
already available, and t0,max, t0,min, ∆tmax, and ∆tmin represents the bounds on
launch epochs and ToFs of the optimal research, useful to nondimensionalize the
quantities involved.

The entire process concludes with the evaluation of optimal local solutions
across 7995 starting points, resulting in 3781 convergent solutions within a com-
putation time of 26.66 hours. These results are presented in the form of a
porkchop-like plot in Figure 5.9. The x-axis represents the departure dates,
while the y-axis denotes the maneuver time. The contour plot levels indicate the
propellant consumption values associated with each solution found, following a
color scale depicted in the color bar on the right. In this porkchop plot, it is pos-
sible to identify the most promising region in terms of propellant consumption
and times of flight.

Specifically, the plot allows for the identification of Solution A, which repre-
sents the minimum propellant consumption, and Solution B, which corresponds
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to the minimum ToF required to reach Apophis. The main outcomes of these
solutions are summarized in Table 5.5 and they are described in details in the
dedicated Section 5.2.2 and Section 5.2.1, with the detailed process of accuracy
refinement applied on each solution. It is important to note that both solutions
have arrival dates preceding the predicted fly-by date of Apophis, making them
suitable for the mission.

This parametric approach to generating local solutions within the ranges of
launch epochs and transfer times is computationally demanding, as it requires
evaluating a large number of solutions. However, it is highly beneficial because
it allows for the creation of a manageable and modifiable storage of possible
solutions without the need for re-optimization. This approach enables the appli-
cation or modification of constraints on the solution domain as needed. A clear
example is the requirement for the arrival date at the asteroid, which was not
considered a constraint during the optimization. If this constraint needs to be
applied or modified, the solution domain can be easily managed by identifying
the new optimal solution within the available storage for the updated constraint,
as presented in Section 5.2.3.

Figure 5.9: Porkchop plot of the Earth-Apophis transfer opportunities within
the 2026-2028 launch window. Detail on the most promising solutions area with
the identification of 2 best solutions. The A solution represents the optimal-
consumption trajectory, while the B solution represents the optimal-ToF trajec-
tory.



Chapter 5 - Case Studies 77

Optimization Outputs
Solution A:

Minimum Propellant

Solution B:

Minimum ToF

Departure Date [UTC]
Nov 21, 2027

00:00

Oct 23, 2027

13:08

ToF [days] 489.41 264.62

Arrival Date [UTC]
Mar 20, 2029

14:35

Jul 14, 2028

03:58

∆V [km/s] 1.428 1.975

Propellant Consumption [kg] 46.24 65.09

Escape velocity [km/s] 4.00 4.00

Arrival velocity [km/s] 0.001 0.001

Table 5.5: Summary table reporting the main features of the two proposed so-
lutions for the Earth-Apophis transfer

5.2.1 Minimum Propellant Consumption Solution

The objective of this case study is to determine the optimal trajectory with a
focus on minimizing propellant consumption. In this section, we present Solution
A, which identifies the trajectory that achieves the lowest propellant usage. Fig-
ure 5.10 displays the trajectory projected onto the ecliptic plane, with the legend
highlighting the key characteristics of the transfer. Additionally, the thrust and
mass profiles are shown as functions of elapsed time. Figure 5.11 presents the
three-dimensional trajectory in the ecliptic reference system, emphasizing the
propelled arc in red. It also depicts the escape condition from the Earth’s sphere
of influence in the EarthJ2000 equatorial reference system, highlighting the re-
quired departure declination. Figure 5.12 illustrates the trends of positions and
angles relative to the main celestial reference bodies (Earth, Apophis, and Sun).

Subsequently, the refinement process of the identified solution is implemented,
similar to the previously discussed case studies, to enhance its accuracy. The
step-by-step results of this process are presented in Table 5.2.1. This table details
the solution’s main characteristics, computation time for each step, the main
attributes of the newly identified solution, and the discrepancies between the
solution and the reference propagator (2B or NB) for each refinement step. It is
important to note that the primary perturbation affecting the trajectory is due
to the Earth, as the spacecraft remains in close proximity to Earth on the way
to Apophis, making the influence of other planets (such as Mars) negligible.

By increasing the number of mesh segments to 400, employing the Hermite-
Simpson method, and incorporating Earth’s perturbation into the dynamic equa-
tions, a new optimal solution can be obtained in about 12 minutes (specifically
743.4 seconds). This solution exhibits satisfactory relative errors compared to
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the NB propagator, with maximum absolute position error of 150 km and veloc-
ity errors less than 0.4 m/s. The results of this high-accuracy optimal solution
are depicted in Figures 5.13, 5.14, and 5.15.

In this case, the impact of Earth’s gravitational perturbation on propellant
consumption is less pronounced compared to the previously discussed scenarios.
This is because the spacecraft velocity at the beginning of the trajectory, where
Earth’s gravitational influence is strongest, is relatively high. Consequently,
the spacecraft spends less time in this region, minimizing the perturbation’s
effect on the trajectory. However, this perturbation does cause a shift in the
optimal departure date from Earth to November 18, 2027, and a reduction of
approximately two days in the time of flight, that lead to an arrival date set to
March 20, 2029. The ∆V increases by about 43 m/s, yielding an increase in
propellant consumption by about 1.33 kg.

Figure 5.10: Optimal Solution for Earth-Apophis transfer with minimum propel-
lant consumption. On the left: 2D Trajectory Visualization with main features.
On the right: thrust and mass over transfer elapsed time
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Figure 5.11: Optimal Solution for Earth-Apophis transfer with minimum pro-
pellant consumption. On the left: 3D trajectory visualization. On the right:
departure condition wrt Earth J2000

Figure 5.12: Optimal Solution for Earth-Apophis transfer with minimum pro-
pellant consumption. On the left: S/C radii with respect to relevant celestial
bodies. On the right: S/C angles with respect to relevant celestial bodies
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Solution Refinement
ID

0 1 2 3 4

Collocation
Method

Trapezoidal
Hermite-
Simpson

Hermite-
Simpson

Hermite-
Simpson

Hermite-
Simpson

Mesh Intervals
Number (N)

100 100 200 200 400

Dynamics
Central Body

(2BP)
Central Body

(2BP)
Central Body

(2BP)
Central Body +

Earth Perturbation
Central Body +

Earth Perturbation
Computation time

[s]
43.4 55.6 102.72 595.7 743.4

Optimization Outputs
Departure Date [UTC] 2027 NOV 21 2027 NOV 21 2027 NOV 20 2027 NOV 19 2027 NOV 18

ToF [days] 489.41 489.34 490.17 486.71 487.7
mpropellant [kg] 46.24 46.58 46.58 47.66 47.57
∆V [km/s] 1.428 1.441 1.444 1.473 1.471

Errors wrt 2B propagator
Position relative error 4.9e-3 2.7e-6 1.58e-7

Position absolute error [km] 6.51e5 363.85 21.63
Velocity relative error 4.2e-3 2.47e-6 1.56e-7

Velocity absolute error [m/s] 132.4 7.9e-2 4.9e-3
Errors wrt NB propagator

Position relative error 1.5e-2 1.1e-2 1.2e-2 1.7e-5 9.7e-7
Position absolute error [km] 2.4e6 1.8e6 1.8e6 2.08e3 153.4

Velocity relative error 1.5e-2 1.1e-2 1.1e-2 1.4e-5 1.3e-6
Velocity absolute error [m/s] 404.8 297.9 301.5 5.2e-1 3.4e-2

Table 5.6: Summary table of the refinement process to the minimum propellant
solution

Figure 5.13: Refined optimal solution for Earth-Apophis transfer with minimum
propellant consumption (accounting for Earth’s third-body perturbation). On
the left: 2D Trajectory Visualization with main features. On the right: thrust
and mass over transfer elapsed time
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Figure 5.14: Refined optimal solution for Earth-Apophis transfer with minimum
propellant consumption (accounting for Earth’s third-body perturbation). On
the left: 3D trajectory visualization. On the right: departure condition wrt
Earth J2000

Figure 5.15: Refined optimal solution for Earth-Apophis transfer with minimum
propellant consumption (accounting for Earth’s third-body perturbation). On
the left: S/C radii with respect to relevant celestial bodies. On the right: S/C
angles with respect to relevant celestial bodies

5.2.2 Best ToF Solution

In this section, we present an alternative solution, namely the solution identified
with the shortest maneuvering time (Solution B). The 2BP solution, which is
the output of the developed optimization tool, is shown in Figure 5.16, Figure
5.17, and Figure 5.18.
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Subsequently, the refinement process of the identified solution is implemented,
similar to the previously discussed case studies, to enhance its accuracy. The
step-by-step results of this process are summarized in Table 5.7. By increasing
the number of mesh segments to 400, employing the Hermite-Simpson method,
and incorporating Earth’s perturbation into the dynamic equations, a new opti-
mal solution can be obtained in less than 10 minutes (specifically 531.28 seconds).
This solution exhibits satisfactory relative errors compared to the NB propaga-
tor, with absolute position errors less than 60 km and velocity errors less than
0.15 m/s.

The detailed representations of the new high-accuracy optimal solution are
presented in Figures 5.19, 5.20, 5.21. The results indicate that, in this case as
well, the impact of third-body perturbations on the trajectory is not entirely
negligible, adversely affecting performance in terms of ∆V and propellant con-
sumption. It is evident that this perturbation leads to a new optimal solution,
resulting in an extension of the propelled arc of the trajectory by approximately
10 additional days. Consequently, there is an increase of about 77 m/s in the
required ∆V and an associated increase in the necessary propellant by approxi-
mately 2.3 kg.

Figure 5.16: Optimal solution for Earth-Apophis transfer with minimum ToF.
On the left: 2D Trajectory Visualization with main features. On the right: thrust
and mass over transfer elapsed time.
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Figure 5.17: Optimal solution for Earth-Apophis transfer with minimum ToF.
On the left: 3D trajectory visualization. On the right: departure condition wrt
Earth J2000.

Figure 5.18: Optimal solution for Earth-Apophis transfer with minimum ToF.
On the left: S/C radii with respect to relevant celestial bodies. On the right:
S/C angles with respect to relevant celestial bodies.
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Solution Refinement
ID

0 1 2 3 4

Collocation
Method

Trapezoidal
Hermite-
Simpson

Hermite-
Simpson

Hermite-
Simpson

Hermite-
Simpson

Mesh Intervals
Number (N)

100 100 200 200 400

Dynamics
Central Body

(2BP)
Central Body

(2BP)
Central Body

(2BP)
Central Body +

Earth Perturbation
Central Body +

Earth Perturbation
Computation time

[s]
97.65 152.25 192.94 310.29 531.28

Optimization Outputs
Departure Date [UTC] 2027 OCT 23 2027 OCT 22 2027 OCT 21 2027 OCT 22 2027 OCT 23

ToF [days] 257.44 257.75 258.76 262.58 264.62
mpropellant [kg] 62.81 62.71 62.18 65.22 65.10
∆V [km/s] 1.975 1.973 1.956 2.063 2.052

Errors wrt 2B propagator
Position relative error 6.9e-4 1.9e-8 5.5e-9

Position absolute error [km] 9.94e4 2.68 0.7
Velocity relative error 7.5e-4 2.4e-8 4.2e-9

Velocity absolute error [m/s] 24.3 7.74e-4 1.4e-4
Errors wrt NB propagator

Position relative error 1.5e-2 1.5e-2 1.6e-2 5.5e-6 4.0e-7
Position absolute error [km] 2.1e6 2.1e6 2.4e6 796 59.9

Velocity relative error 1.2e-2 1.2e-2 1.4e-2 4.6e-6 3.7e-7
Velocity absolute error [m/s] 371.6 370.5 417.7 1.39e-1 1.1e-2

Table 5.7: Summary table of the refinement process to the minimum ToF solution

Figure 5.19: Refined optimal solution for Earth-Apophis transfer with minimum
ToF (accounting for Earth’s third-body perturbation). On the left: 2D Tra-
jectory Visualization with main features. On the right: thrust and mass over
transfer elapsed time.
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Figure 5.20: Refined optimal solution for Earth-Apophis transfer with minimum
ToF (accounting for Earth’s third-body perturbation). On the left: 3D trajectory
visualization. On the right: departure condition wrt Earth J2000.

Figure 5.21: Refined optimal solution for Earth-Apophis transfer with minimum
ToF (accounting for Earth’s third-body perturbation). On the left: S/C radii
with respect to relevant celestial bodies. On the right: S/C angles with respect
to relevant celestial bodies.

5.2.3 Arrival Date Assessments

Given the objective of this preliminary transfer study, the focus is on solutions
that optimize propellant consumption rather than time of flight. Solution A is
characterized by an arrival date at Apophis of March 20, 2029. Since the fly-by
of Apophis around Earth is expected on April 13, 2029, it can be theoretically
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assumed that Solution A is suitable for this mission. The satellite would be
able to reach the asteroid before the fly-by, thus enabling observation of the
phenomenon.

However, it is important to consider potential requirements regarding the
arrival date due to possible commissioning operations of the systems and pay-
loads. These operations might be necessary to ensure that the satellite is in
nominal observation condition upon arrival, requiring a certain period of time,
which would necessitate a more stringent constraint on the arrival date. Based
on the solutions previously computed by the optimization tool and depicted in
the porkchop plot, these assumptions can be easily implemented retrospectively.
It is possible to draw lines on the porkchop plot representing the limiting condi-
tion of ToF as a function of the launch epoch for a given arrival date constraint.
These lines would indicate the subspace of solutions that remain valid while re-
specting this constraint. Specifically, all solutions above this line would not meet
the constraint, whereas the solutions below it would satisfy the requirement.

The aforementioned description is illustrated in Figure 5.22, which depicts
the previously presented porkchop plot with superimposed constraint lines for
various arrival date limits. Specifically, three representative lines are shown: the
first (in red) represents the limiting condition of an arrival date coinciding with
the predicted fly-by date, the second (in magenta) represents the condition of
arrival by March 13, 2029 (i.e., one month before the fly-by), and the last repre-
sents the condition of arrival by February 13, 2029 (i.e., two months before the
fly-by). It can be observed that for each imposed arrival date constraint, a new
optimal solution in terms of propellant consumption can be identified that also
meets the constraint. Specifically, the Figure 5.22 indicates the three optimal
solutions for the three cases: solution A meets the limiting condition of arrival
by the fly-by date and corresponds to the previously discussed global minimum
consumption solution. Solution A2 represents the new optimal solution for the
condition of arrival within one month before the fly-by, while solution A3 rep-
resents the minimum-propellant solution for the condition of arrival within two
months before the fly-by. In solution A2, the time of flight decreases by approx-
imately 7 days, accompanied by a minor increase in propellant consumption of
0.56 kg. Conversely, solution A3 exhibits a substantial reduction in ToF by 55.45
days, with a corresponding increase in propellant consumption of approximately
4.6 kg, representing an increase of about 10 %. Therefore, it can be inferred that
meeting the arrival date requirements is feasible without significantly compro-
mising the required propellant consumption.
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Figure 5.22: Porkchop plot of the Earth-Apophis transfer opportunities with the
limit arrival date conditions superimposed (dashed lines). Detail the 3 minimum-
propellant solutions A, A2, A3 found for each limit arrival date.

5.3 Future Developments

This section aims to summarize the future prospects opened by this thesis work,
with the objective of enhancing or completing it. As demonstrated in the test
cases presented in Chapter 4 and the study cases in Chapter 5, the optimization
process using direct collocation is significantly influenced by the initial guesses
employed as starting solutions for the SQP solvers, both in computational terms
and in the local results obtained. This work utilized very simple guess generation
methods to produce useful results within the available time frame. However, this
approach often led to issues related to convergence and computation time for each
solution. Future improvements could involve studying and implementing more
efficient guess generation methods, which would provide the solver with an initial
solution for the rendezvous problem that is at least very close to feasibility.

To this end, one could initially consider using shape based methods for gen-
erating guesses. These methods are based on the generation of geometrically ap-
proximated trajectories that closely adhere to the constraints of the real problem
and provide a good estimate of the objective function. Various state-of-the-art
approximation methods have been proposed and implemented, based on models
using Chebyshev polynomials (see Patel et al., 2009[ 35]), logarithmic spirals (see
Roa, 2018[ 37]), or Fourier series (see Taheri and Abdelkhalik, 2012[ 41]).

Another alternative could be to use the Sims-Flanagan model for an initial
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approximate direct optimization of the problem, whose solution can then be used
as a guess for the more accurate problem with direct collocation. This model (see
Sims and Flanagan, 1997[ 38]) proposes a direct optimization method in which
the low-thrust trajectory is discretized into a finite number of segments (arcs),
denoted by N, where the continuous thrust is approximated by a corresponding
impulsive ∆V . These ∆V i (corresponding to the i-th segment) will be the
variables of the optimization problem and their magnitudes must not exceed the
magnitude of ∆Vmax associated with the maximum available thrust level, which
can be calculated as follows

∆Vmax = (Tmax/m)(tf − t0)/N (5.2)

where Tmax id the maximum thrust of the low-thrust engine, m is the mass of
the S/C at the beginning of the leg, t0 is the departure epoch and tf is the arrival
epoch of the leg. The S/C mass is then propagated using the rocket equation:

mi+1 = mi e
−∆Vi/g0Isp (5.3)

where i represents the i-th segment of the leg, g0 is the standard gravity, and
Isp is the specific impulse of the low-thrust engine. The trajectory is propagated
forward from the departure point (e.g., the departure planet) and backward
from the arrival point (e.g, the arrival planet) to a matchpoint, usually halfway
through a leg. At that matchpoint the forward propagated S/C state and the
backward proagated S/C state should meet in order to achieve a feasible solution
of the problem (or at least they should respect a tolerance on the mismatch in
position, velocity, and mass). The concept of this model is visualized in Figure
5.23.

Thus, this problem can be transcripted into a NLP problem where the objec-
tive is to maximize the final S/C mass while meeting the constraints on maximum
∆V and state mismatch. To properly interface that approach with direct collo-
cation employed in the tool developed within this thesis work, it is possible to
set the number of segments in the Sims-Flanagan model equal to the number of
mesh intervals of the collocation model. Then, it is possible to extrapolate the
guess for the collocation variables from the results of the Sims-Flanagan, in par-
ticular by finding a way to transform the impulsive ∆V i vector of each segment
in control vectors on each mesh point of the collocation grid (uk, for the k-th
grid point). The first step is to formulate an expression of the thrust control
vector given an impulse in a specific point i in which the impulse is applied, that
could be expressed starting from Eq. 5.2 as

ui =
mi ∆V i

Tmax∆ti
(5.4)

where ∆ti is the ToF relative to the i-th segment of the Sims-Flanagan model.
It is important to notice that this impulse is applied at the midpoint of the
segment in the Sims-Flanagan model, while in the collocation model the control
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vector is defined in the grid points, that match with the vertices of the segment. A
way to compute the control vector value for the k-th mesh point of the collocation
grid can be to compute the average value of the control vectors associated to the
previous and following segments of the Sims-Flanagan model. Since for the first
collocation mesh point there is not a previous segment, the control of the previous
segment can be set equal to zero. The same approach can be used for the last
collocation point, by setting to zero the control of the next segment.

Figure 5.23: Sims-Flanagan model concept visualization. The triangle represents
the matchpoint between the forward-propagated segment (from the departure
point) and the backward-propagated segment (from the arrival point).

The generation methods for guesses described above are therefore essential
for enhancing the performance of the optimization tool presented in this thesis.
The primary goal is to reduce the computation time for each trial within the
multi-start process, thereby significantly decreasing the total computational time
required to find the global optimum. Additionally, these methods are crucial
for addressing more complex low-thrust interplanetary trajectory optimization
problems, such as those involving the possibility of interplanetary flybys.

A potential future enhancement of the tool involves extending the optimiza-
tion of low-thrust interplanetary trajectories to include scenarios where plane-
tary swing-bys are possible. These swing-bys can be modeled as instantaneous
changes in the spacecraft’s heliocentric velocity, resulting from the appropriate
alignment of the satellite and planet positions at specific points along the trajec-
tory. For a comprehensive understanding of the modeling and implementation
of this phenomenon within the optimal control framework, readers are referred
to the literature (see Kostantinov and M.Thein, 2017[ 25], Pesenti, 2024[ 36]).
In this context, the trajectory would be segmented into a finite number of legs
between planets, for which optimal solutions would be determined, alongside
managing the optimal fly-by conditions with the desired planets. It is thus evi-
dent that addressing this problem necessitates the generation of accurate initial
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guesses for the various legs to ensure convergence to optimal solutions within
acceptable time frames.

Furthermore, extending the optimization to such interplanetary trajectories
would necessitate a more sophisticated global solution search management com-
pared to the multi-start approach presented in this thesis. Specifically, it would
be essential to manage not only the launch dates and overall transfer times
within the external global search loop but also the sequence of fly-bys to be ex-
ecuted. This management might require the implementation of more advanced
and efficient algorithms than the multi-start method, such as heuristics or meta-
heuristics, for instance genetic algorithms, as utilized in the open-source tool
MOLTO-IT (see Morante et al., 2018[ 30]).



Concluding Remarks

In conclusion, this thesis successfully achieved its intended objectives by ad-
dressing and resolving the challenges associated with the optimal control of in-
terplanetary low-thrust trajectories. This accomplishment was facilitated by
a thorough analysis of methodologies for managing and solving optimal control
problems, with the selection of transcription via direct collocation as the founda-
tional technique for the entire work. This choice, combined with an experimental
analysis of implementation methodologies and algorithms for solving such com-
plex problems, led to the successful development of a numerical tool capable of
producing satisfactory results. The tool was tested on various case studies, and
the consistency of the results was verified against the existing literature on the
subjects.

Furthermore, the subsequent step involved the successful development and
testing of the refinement process for the optimal solutions found accounting for
the two-body problem. This advancement enabled the incorporation of third-
body perturbations into the system dynamics, allowing for the assessment of
their impact on the interplanetary leg. Consequently, the optimal trajectories
were re-optimized, incorporating refinements in collocation discretization and
methods employed, to account for these perturbations, ultimately yielding high-
accuracy solutions.

This thesis work serves as a solid foundation for potential future studies
and developments. Among them, the primary possible advancements were in-
troduced, as the enhancement of the numerical tool performance through the
generation of more effective and faster initial guess solutions, and the exten-
sion of the optimization problem to low-thrust interplanetary trajectories which
include the possibility of multiple gravity assists.
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