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Abstract

The objective of this thesis is the analysis of a wing made of a stiffened
composite panel, using the Inverse Finite Element Method (iFEM).
The iFEM method is a structural analysis method that, like the traditional
FEM method, involves creating a model that represents the real structure
and divides it into elements, in this case, inverse elements.
An iFEM model of the wing has been created using both a hybrid model of
shell (2-D) and beam (1-D) elements, as well as a model composed exclu-
sively of 2-D elements.
The iFEM method requires a certain number of experimentally measured
strains as input and, based on these, reconstructs nodal displacements and
nodal rotations through the minimization of an error functional, which ac-
counts for the difference between measured and calculated strains.
A strain calculation code has been implemented that, based on displacements
and nodal rotations obtained from an iFEM analysis software, reconstructs
the strains as output across the entire structure.
An experimental test was conducted with a real panel model. Strains were
measured at specific points using sensors, such as Fiber Optics, to provide
input for the iFEM method and later verify if there was a real correlation
with the numerical results.
Moreover, by using the same iFEM models but with fewer measured strains
as input, the aim was to verify whether the reconstructed strains in both
sensorized and non-sensorized parts of the structure were accurate or not.
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1 Introduction

The objective of this thesis is the analysis of a wing made of a composite stiffened
panel using the Inverse Finite Element Method (Inverse FEM or iFEM).
The wing is a real component on which an experimental test was conducted with
the final goal of measuring its deformations and displacements at specific points
using sensors.
The deformations measured in the test are the input for the iFEM method, which,
as will be explained later, reconstructs the nodal degrees of freedom of the model—i.e.,
displacements and rotations—starting from the geometry of an iFEM model and
a certain number of experimentally measured deformations.
To verify the effectiveness of the reconstruction, some of the reconstructed dis-
placements were compared with the corresponding measured displacements.
Subsequently, starting from the degrees of freedom reconstructed using the iFEM
method, deformations were calculated both at the points where measurements were
taken and in the rest of the panel, through a procedure that is explained below.
The objective in this case is to verify that the iFEM method is accurate in recon-
structing the degrees of freedom and that the deformation calculation method is
accurate in computing the deformations.
Finally, it was desired to verify whether the iFEM method is able to reconstruct
the deformations at the points where they were experimentally measured, in the
case where the number of input data to the iFEM code is smaller than in the real
case.
For this reason, two types of iFEM models were created: one model with a ’full’ sen-
sor configuration, which is faithful to the laboratory configuration, and one model
with a ’reduced’ sensor configuration, with a smaller number of sensors compared
to the experimental setup.
In both the full case and the reduced case, two iFEM models were created: one
entirely made up of 2-D elements and one hybrid model, consisting of both 2-D
and 1-D elements.

1.1 Methods for reconstructing displacements from the mea-

sured deformations

The Inverse FEM method is a shape-sensing technique that allows the reconstruc-
tion of the degrees of freedom of a structure from deformations experimentally
measured by sensors.
This method has been studied and refined in many works, especially for structures
modeled with iFEM 1-D (beam) and 2-D (shell) elements.
To reconstruct the displacements, the first option is the numerical integration of
the experimentally measured deformations. In this case, a large number of mea-
surements is required.
The second option for reconstructing displacements and rotations is the linear com-
bination of basis functions. In this case, it is necessary to define the basis functions,
for example by choosing the vibrational modes of the structure, and the weights,
which could, for instance, be derived from the measured deformations.
Furthermore, there is the possibility of applying Neural Networks[33].
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Finally, there is the shape sensing method based on the variational principle, which
will be explained later.

1.2 Shape Sensing Methods

Two well-known examples of shape sensing methods are the Modal Method (MM)
and iFEM. The Modal Method is based on expressing deformations and displace-
ments as modal shapes and modal coordinates [23],[24]. The modal coordinates
are calculated by fitting the deformation field to the measured deformations. In
[23], for example, the modal coordinates and shapes were experimentally measured
to predict the static deformation of an aluminum cantilever plate. A key factor in
this case was also the number and positioning of the sensors.
In literature, there are comparative studies that use both the MM and the iFEM.
In [25], for example, the case of a wing-shaped plate was analyzed, and it was high-
lighted that the iFEM is more accurate. However, this statement is not generally
valid, as demonstrated by studies [26] and [11], conducted on a numerical model
of a wing box, where it was found that the MM can be more accurate than the
iFEM when there is a limited number of sensors.
Another shape sensing method, developed by Shkarayev et al. [27], involves re-
constructing the aerodynamic load applied to a structure from the measured de-
formations. The load is expressed as a combination of known distributions that
cause deformations, which are compared with the measured ones to determine the
weight of each distribution in contributing to the load.
If an additional step is added to the load reconstruction, namely the calculation of
displacements through the analysis of a FEM model of the structure, the method
is called the "2-steps method" [28], [29]. This method, which has proven accurate
in the numerical analysis of aerospace components, allows for the calculation of
both the load and the displacements of a structure.
In [22], the results of the structural analysis of an aluminum stiffened panel (a
typical aerospace component) are compared, using three different shape sensing
methods: the MM, the iFEM, and the 2-steps method. This study demonstrates
that the iFEM method is superior to the others in terms of accuracy, but it also
shows that both the MM and the 2-steps method are effective in reconstructing
the deformation of the stiffened panel.
Furthermore, this study highlighted how the MM is highly influenced by the choice
of modal shapes and coordinates, while the 2-steps method requires a model that
captures the real structure’s behavior as accurately as possible.
Finally, there is another method, namely Ko’s displacement theory. This method
is suitable for studying the deflection of wings and is based on the Euler-Bernoulli
beam theory. Axial deformations along the wing are measured, and the curvatures
are easily derived, which, when integrated, generate the deformation. It is also
possible to assess the torsion by placing more sensors along a specific chord of the
wing.
An example of an analysis performed using Ko’s displacement theory for displace-
ments is that concerning the doubly tapered wing of the Ikhana aircraft [37].
Ko’s theory was later improved by Pak and allows for the reconstruction of the
entire displacement field through a modal reconstruction [38]. It consists of two
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steps: the first step involves reconstructing the deformation along the measurement
lines, as prescribed by Ko’s theory, while the second step enables the reconstruc-
tion of the deformation across the entire domain through the modal transformation
SEREP [39].

1.3 iFEM method introduction

The iFEM method, which is a shape-sensing method, has several advantages, such
as requiring fewer measurements compared to the integration method, and being
independent of the shape functions (and thus also of the vibrational modes).
Similar to the standard FEM method, the iFEM method is based on the discretiza-
tion of a structure using finite elements, in this case, inverse elements. As in the
traditional FEM method, the displacement field is reconstructed through the use
of shape functions, which, starting from the nodal degrees of freedom, allow the
calculation of the degrees of freedom within the element. Additionally, the strain-
displacement relations are linear, involving derivatives in space.
The iFEM method uses a functional error that accounts for the difference between
calculated and measured deformations. This functional error must be minimized
(least squares method) to calculate the displacements, as studied by Tessler and
Sprangler in [1], [2].
It follows that the iFEM method depends solely on the geometry of the structure,
but not on the operating conditions, nor does it depend on the properties and
materials the structure is made of.

The iFEM method was initially implemented for 2-D structures [3], applying
Mindlin’s kinematic theory [4]. The shell elements that were implemented in this
way include the 3-node element iMIN3 [3], the 4-node element iQS4 [5], and the
8-node curved element iCS8 [6].
A limitation of the 2-D iFEM method is that achieving accurate results requires a
large number of sensors, and an optimal configuration of these sensors needs to be
determined.
The 2-D iFEM method was initially implemented for the study of plates, and later
extended to the study of multi-layer composite laminates and sandwich structures
[10]. Subsequently, it was extended to the study of wing boxes [11], wing-shaped
panels, and shell or stiffened structures [12]. The results of this extension were
satisfactory.

The 2-D iFEM method proved to be inaccurate in reconstructing the degrees of
freedom of components with a beam or rod shape, where one longitudinal dimen-
sion is dominant over the others. As a result, the 1-D iFEM method was imple-
mented by Gherlone et al. [7]. In this case, the kinematic assumptions are those of
Timoshenko beam theory, while the functional error to be minimized includes the
difference between the longitudinal, bending, shear, and torsional deformations of
the beam.
The 1-D iFEM method can be applied, for example, to beam-shaped components,
such as stringers and other reinforcements, including circular ones [15], [16].
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It is therefore necessary to analyze the advantages and disadvantages of the 1-
D and 2-D iFEM methods.
On one hand, the 1-D iFEM method requires fewer sensors and lower computa-
tional cost, as it needs fewer elements to model the components. On the other
hand, modeling a component with a 1-D element is an approximation, as the re-
constructed degrees of freedom are related to the axis of the component, thus
neglecting its more complex shape. A component with a complex shape would be
inadequately approximated with 1-D elements.
The 2-D iFEM method has the advantage of being more accurate, but at the same
time, it requires a greater number of measurements to be precise and higher com-
putational cost.
Therefore, a hybrid 1-D and 2-D method has been implemented to maximize the
advantages of both methods [7], [2]. In this case, for example, a wing box can be
modeled using 2-D elements (skin, web, ...) and 1-D elements (stringers, ...).

1.4 iFEM Method for non-linear problems

The iFEM method has proven to be accurate in many cases of structures that
exhibited small deformations, and therefore, a linear load-displacement relation-
ship. However, when the iFEM method is applied to cases where the structure
experiences large deformations, there is a risk that the errors will be significant in
predicting the deformed shape.
A first attempt to solve the problem involves creating a "steps" iFEM method,
where the deformation of the structure is obtained as the superposition of multiple
deformations corresponding to different load steps, under linear assumptions.
The non-linear method that was later implemented is based on the superposition
of linear configurations, similar to the method just described.
In the paper [35], there is a study by Tessler, Gherlone et al. that explains the
procedure for implementing the non-linear iFEM method and addresses two exam-
ple problems, one involving a wing-shaped plate and the other a square plate fixed
under transverse loading.
The results of this paper clearly indicate that the incremental iFEM approach can
be easily implemented as a valid tool for real-time structural health monitoring of
aerospace structures subjected to significant deformations.

1.5 Sensors position

To maximize the accuracy and efficiency of shape sensing methods (particularly
iFEM), it is important to study the optimal sensor configuration on the structure.
A first approach to evaluate this was to introduce penalization strategies for inverse
elements that lack deformation data [30]. Examples of cases where the optimal
sensor placement has been studied include research on thin-shell cylinders [20],
wing-shaped plates [31], and composite wing boxes [26].
In these studies, it is evident that these iterative optimization procedures yielded
good results where the structure exhibited simple torsion and bending configura-
tions. However, when the deformation and load fields are more complex, the study
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of sensor placement becomes more challenging.
Some studies, such as [32], have addressed this problem, specifically investigating
whether there are sensor configurations that guarantee good results universally
and systematically in iFEM analysis. In [32], the case study is a simple rectangu-
lar panel, and the goal is to examine how different sensor configurations influence
the accuracy of displacement reconstruction. The sensor positions are easily re-
producible experimentally, and the analyzed cases include both simpler and more
complex deformation states. For a better overview, the results were analyzed both
at the sensor locations and away from them. Additionally, these operations were
carried out considering two types of inverse elements to ensure that the element
type did not affect the results.

1.6 Structural Health Monitoring

The most common application for inverse methods in structural analysis is Struc-
tural Health Monitoring (SHM) [8], which allows for monitoring the integrity of a
structure by measuring deformations (temperature, etc.) in real-time using spe-
cialized sensors.
The creation of a digital twin in this case allows for reconstructing the displace-
ment field and thus the deformation of the structure, enabling the determination of
stresses and strains in such a way that it becomes possible to monitor, for example,
the onset and propagation of damage in the real component. This clearly helps
reduce the costs and time of monitoring and analysis, which, if performed manu-
ally, would be much higher. An example of this is the study of the phenomenon of
aeroelasticity in wings [9], where inverse methods are commonly used.
As reported in [22], structural integrity monitoring has evolved over time, shifting
from a preventive to a proactive approach, with continuous and real-time monitor-
ing of specific quantities, such as displacements and deformations.
Especially for aerospace structures, it is challenging to install sensors that are sta-
ble and accurate in measuring quantities. However, the recent use of optical fiber
has made measurements more accurate, and sensors more stable and less invasive.
This is one of the reasons that has led methods like iFEM, which require experi-
mental measurements as input, to develop in live monitoring.
In [36], there is a comparative study that examines the case of a composite wing
box using three methods: iFEM, the Modal Method, and Ko’s displacement theory,
with Pak’s update.
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2 Inverse Finite Elements Method

The Inverse Finite Element Method (iFEM) has been implemented to analyze
different types of structures. In this context, the 1-D iFEM method, suitable for
modeling beams and one-dimensional components, and the 2-D iFEM method,
suitable for modeling plates and shells, will be studied. Depending on the element,
the kinematic relationships underlying the study also vary.

2.1 1-D Inverse Finite Elements Method

A beam with a given cross-section is considered, in the coordinates (x, y, z), where
x is the longitudinal axis of the beam, passing through the shear center, while (y,
z) are the transverse axes, perpendicular to the beam’s axis.

2.1.1 Kinematic Relations

The kinematic relations regarding displacements are those of Timoshenko’s beam
theory, that is:











ux = u+ zθy − yθz

uy = v − zθx

uz = w + yθx

(1)

where:

• ux, uy e uz are the displacements at a generic point along the x, y, and z
axes.

• θ represents the rotation in the three directions.

• u, v, and w are the displacements in the three directions at the shear center.

The strains are obtained through the geometric relations by appropriately differ-
entiating the displacements:







ϵx
γxz
γxy

=







ux,x

ux,z + uz,x

ux,y + uy,x

=







e1 + ze2 + ye3
e4 + ye6
e5 − ze6

where ei are the longitudinal, bending, torsional, and shear strains of the section
along the 3 axes.
The 6 strains ei are defined as:

e(ub) = {e1, e2, e3, e4, e5, e6}
T = {u,x, θy,x,−θz,x, w,x + θy, v,x − θz, θx,x}

T = B
s
u
e

b

(2)
where Bs is the matrix of the derivatives of the shape functions and ue

b is the vector
of the nodal degrees of freedom of the element in the inverse model.
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theory, the weight vector ws = {wk} (k=1,...,6) is given by:

ws = {wk} = {w0

1, w
0

2

Iyy
Ab

, w0

3

Izz
Ab

, w0

4, w
0

5, w
0

6

It
Ab

} (5)

where w0
k (k=1,...,6) are the dimensionless weight coefficients.

The functional error of the element is solved by minimizing the equation with
respect to the nodal degrees of freedom of the element to obtain the following
series of linear algebraic equations:

∂Φe
b(u

e
b)

∂ue
b

= ke
bu

e
b − f e

b = 0 → ke
bu

e
b = f e

b (6)

where the matrix ke
b and the vector f e

b are analogous to the element stiffness matrix
and the force vector in direct FEM. ke

b is a function only of the sensor positions,
while f e

b is a function of both the sensor positions and the measured strains. These
element matrices are the weighted sum of the contributions from each sectional
strain term and can be written as:

ke
b(u

e
b) =

6
∑

k=1

wk

le
N

N
∑

i=1

(Bs
k(xi))

TBs
k(xi) (7)

f e
b (u

e
b) =

6
∑

k=1

wk

le
N

N
∑

i=1

(Bs
k(xi))

T (eϵk)i (8)

2.2 2-D Inverse Finite Elements Method

Considering a plate or shell structure defined in the 3-D Cartesian coordinate frame
(x, y, z) ⊂ R

3. The orthogonal coordinates x ≡ (x, y) define the mid-plane of the
plate, with the z-axis along the normal to the plane (z = 0 defines the surface of
the mid-plane). The plate has a thickness of 2t, where z ∈ [−t, t], and an area on
the mid-plane Ap.

2.2.1 Kinematic Relations

The 2-D FEM for plates or shells is formulated based on the kinematic assumptions
of Mindlin’s theory. The components of the displacement vector can be described
in terms of kinematic variables up ≡ {u, v, w, θx, θy}

T as:











ux = u+ zθy

uy = v − zθx

uz = w

(9)

where u and v are the displacements of the mid-plane surface in the x and y
directions; w is the transverse deflection averaged over the thickness of the plate,
and θx and θy are the rotations of the section about the x and y axes.
Using the linear strain-displacement relation, the strain field of the plate is calcu-
lated as:
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2.2.2 Experimental Strain Measurements

The strain measurements in Eq. 13 can be experimentally calculated using strain
measurements from sensors mounted on the upper surface (z = t) and the lower
surface (z = −t) of the plate. The sensor positions are defined by xi = (x, y)i,
where i = 1, . . . , N , while the strains measured on the upper and lower surfaces
are:

ϵ+i =







ϵ+xx
ϵ+yy
γ+
xy







i

e ϵ−i =







ϵ−xx
ϵ−yy
γ−

xy







i

The surface strain measurements are used to calculate the strain measurements
on the mid-surface of the plate using the following relations:

mϵ
i =

1

2











ϵ+xx
ϵ+yy
γ+
xy







+







ϵ−xx
ϵ−yy
γ−

xy











i

, (14)

kϵ
i =

1

2t











ϵ+xx
ϵ+yy
γ+
xy







−







ϵ−xx
ϵ−yy
γ−

xy











i

(15)

The transverse shear strain measurements cannot be directly calculated from
the experimental strains and they are not present in this work.

2.2.3 Least Squares Functional Error

The 2-D iFEM is based on the discretization of the structural domain using inverse
finite elements with elemental areas Ae

p. For each inverse element e, a least squares
error functional between the analytical and experimental strain measurements is
defined as:

Φe
p(u

e
p) ≡ wmΦm(u

e
p) + wkΦk(u

e
p) + wgΦg(u

e
p) (16)

where wm, wk, and wg are row vectors of weights used to enforce the correlation
between the analytical and experimental strain measurements. The error functions,
Φm, Φk, and Φg, corresponding to the membrane strain, curvature strain, and
transverse shear strain measurements, respectively, are given by:

Φm ≡
1

Ae
p

∫

Ae
p

[m(ue
p)−mϵ]2dA, Φk ≡ (2t)2

1

Ae
p

∫

Ae
p

[k(ue
p)− kϵ]2dA, (17)

Φg ≡
1

Ae
p

∫

Ae
p

[g(ue
p)− gϵ]2dA (18)

If an element have experimental strains, the corresponding weights are set to
unity (wm = wk = {1, 1, 1} and wg = {1, 1}), otherwise they are set to a very
low value (10−5 − 10−3). Using a lower weight reduces the contribution of the
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element to the global error functional. Since gϵ cannot be directly calculated from
experimental measurements, the following form is used:

Φg ≡
1

Ae
p

∫

Ae
p

[g(ue
p)]

2dA (19)

where the corresponding weighting coefficient vector is set to a very low value,
wg = {10−5, 10−5}.
Minimizing equation (16) with respect to the nodal degrees of freedom of the
element produces the following set of linear algebraic equations:

∂Φe
p(u

e
p)

∂ue
p

= ke
pu

e
p − f e

p = 0 ⇒ ke
pu

e
p = f e

p (20)

where the matrix kp
e and the vector f p

e are given in terms of the derivatives of
the shape functions as follows:

ke
p(u

e
p) =

1

Ae
p

∫

Ae
p

[

wm(B
m)TBm + wk(2t)

2(Bk)TBk + wg(B
g)TBg

]

dA, (21)

f e
p (u

e
p) =

1

Ae
p

∫

Ae
p

[

wm(B
m)Tmϵ + wk(2t)

2(Bk)Tkϵ + wg(B
g)Tgϵ

]

dA. (22)

2.3 Hybrid Formulation

The hybrid iFEM formulation combines 1-D and 2-D approaches by discretizing
the structure with both inverse beam and shell finite elements. For each beam or
shell element, the local element matrices can be related to the global coordinate
system using:

{ke
b}g = (Te)Tke

bT
e, {f eb }g = (Te)T f eb (23)

{ke
p}g = (Te)Tke

pT
e, {f ep}g = (Te)T f ep (24)

where the transformation matrix, T e, accounts for the local orientation of the
elements and the offsets with respect to the global coordinate system.
For any node of a beam or plate inverse element, the local degree of freedom can
be transformed into the global degree of freedom using the following relations:




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
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
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






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u
v
w
θx
θy
θz

















g

(25)

where y0 and z0 define the offset of the local axis of the beam element relative to
the global structure. Similarly, for shell elements, z0 is the offset of the mid-surface
relative to the global structure (with y0 = 0).
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The contributions from all beam and shell elements are assembled using the FEM
assembly method to obtain the global system of equations for the structure:

KU = F (26)

As in FEM, boundary conditions ensure a non-singular system matrix. Fi-
nally, solving equation (26), iFEM reconstructs the nodal displacements, U , of the
structure.
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θy(x, y) =
4

∑

i=1

Niθyi (38)

where Li and Mi are the shape functions that relate the in-plane rotation θz
and the displacements in the plane u and v. The functions Li and Mi are given
below:

L1 = y14N8 − y21N5 (39)

L2 = y21N5 − y32N6 (40)

L3 = y32N6 − y43N7 (41)

L4 = y43N7 − y14N8 (42)

M1 = x41N8 − x12N5 (43)

M2 = x12N5 − x23N6 (44)

M3 = x23N6 − x34N7 (45)

M4 = x34N7 − x41N8 (46)

where:

N5 =
(1− ξ2)(1− η)

16
(47)

N6 =
(1 + ξ)(1− η2)

16
(48)

N7 =
(1− ξ2)(1 + η)

16
(49)

N8 =
(1− ξ)(1− η2)

16
(50)

xij = xi − xj (51)

yij = yi − yj (52)

with i,j = 1,2,3,4.
Using these equations, the three displacement components ux, uy, uz along the
three axes (x, y, z) for each point of the element can be written as follows:

ux(x, y, z) = u+ zθy (53)
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uy(x, y, z) = v − zθx (54)

uz(x, y, z) = w (55)

Where ux and uy are the in-plane displacement components and uz is the trans-
verse displacement component.

3.2 Strain Field in the Inverse Shell Quadrilateral Element

The linear displacement-strain relations are as follows:

ϵxx =
∂ux

∂x
=

∂u

∂x
+ z

∂θy
∂x

(56)

ϵyy =
∂uy

∂y
=

∂v

∂y
− z

∂θx
∂y

(57)

γxy =
∂uy

∂x
+

∂ux

∂y
=

∂v

∂x
+

∂u

∂y
+ z(

∂θy
∂y

−
∂θx
∂x

) (58)

γxz =
∂uz

∂x
+

∂ux

∂z
=

∂w

∂x
+ θy (59)

γyz =
∂uz

∂y
+

∂uy

∂z
=

∂w

∂y
− θx (60)

It should be noted that the plane stress assumption implies that ϵzz = 0.
It is also noted that by differentiating the displacements and rotations in space,
the shape functions are also differentiated in space. Below are the derivatives of
the shape functions with respect to the local dimensionless coordinates (ξ, η):

N1,ξ = −
1

4
(1− η) (61)

N2,ξ =
1

4
(1− η) (62)

N3,ξ =
1

4
(1 + η) (63)

N4,ξ = −
1

4
(1 + η) (64)

N5,ξ = −
1

8
ξ(1− η) (65)

N6,ξ =
1

16
(1− η2) (66)

N7,ξ = −
1

8
ξ(1 + η) (67)

N8,ξ = −
1

16
(1− η2) (68)

19



N1,η = −
1

4
(1− ξ) (69)

N2,η = −
1

4
(1 + ξ) (70)

N3,η =
1

4
(1 + ξ) (71)

N4,η =
1

4
(1− ξ) (72)

N5,η = −
1

16
(1− ξ2) (73)

N6,η = −
1

8
η(1 + ξ) (74)

N7,η =
1

16
(1− ξ2) (75)

N8,η = −
1

8
η(1− ξ) (76)

M1,ξ =
1

8

(

−x41(
1

2
(1− η2)) + x12(ξ(1− η))

)

(77)

M2,ξ =
1

8

(

−x12(ξ(1− η))− x23(
1

2
(1− η2))

)

(78)

M3,ξ =
1

8

(

x23(
1

2
(1− η2) + x34ξ(1 + η)

)

(79)

M4,ξ =
1

8

(

−x34(ξ(1 + η)) + x41(
1

2
(1− η2))

)

(80)

M1,η =
1

8

(

−x41(η(1− ξ)) + x12(
1

2
(1− ξ2))

)

(81)

M2,η =
1

8

(

−x12(
1

2
(1− ξ2)) + x23(η(1 + ξ))

)

(82)

M3,η =
1

8

(

−x23(η(1 + ξ))− x34(
1

2
(1− ξ2))

)

(83)

M4,η =
1

8

(

x34(
1

2
(1− ξ2)) + x41(η(1− ξ))

)

(84)

L1,ξ =
1

8

(

−y14(
1

2
(1− η2)) + y21(ξ(1− η))

)

(85)

L2,ξ =
1

8

(

−y21(ξ(1− η)− y32(
1

2
(1− η2))

)

(86)

L3,ξ =
1

8

(

y32(
1

2
(1− η2)) + y43(ξ(1 + η))

)

(87)
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L4,ξ =
1

8

(

−y43(ξ(1 + η)) + y14(
1

2
(1− η2))

)

(88)

L1,η =
1

8

(

−y14(η(1− ξ)) + y21(
1

2
(1− ξ2))

)

(89)

L2,η =
1

8

(

−y21(−
1

2
(1− ξ2)) + y32(η(1 + ξ))

)

(90)

L3,η =
1

8

(

−y32(η(1 + ξ))− y43(
1

2
(1− ξ2))

)

(91)

L4,η =
1

8

(

y43(
1

2
(1− ξ2)) + y14(η(1− ξ))

)

(92)

Associated with the change of coordinates from global to local is a Jacobian
matrix J . In general, the Jacobian matrix of a vector-valued function f : Rn → R

m,
with f = (f1, f2, . . . , fm), is the matrix of partial derivatives of f with respect to
the variables x = (x1, x2, . . . , xn). It is defined as follows:

J(f) =











∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
...

∂fm
∂x1

∂fm
∂x2

· · · ∂fm
∂xn











where the element in the i-th row and j-th column is the partial derivative of
fi with respect to xj, i.e. ∂fi

∂xj
.

In this case, the elements that make up the Jacobian matrix (2x2) that transforms
the coordinates (ξ, η) into (x, y) are:

J11 =
1

4
(x21(1− η) + x34(1 + η)) (93)

J12 =
1

4
(y21(1− η) + y34(1 + η)) (94)

J21 =
1

4
(x41(1− ξ) + x32(1 + ξ)) (95)

J22 =
1

4
(y41(1− ξ) + y32(1 + ξ)) (96)

while the determinant ∆J is given by:

∆J = J11J22 − J12J21 (97)

To calculate the derivatives with respect to x and y, the Jacobian matrix J
must be used, and in particular, the inverse matrix IJ , whose elements are:

IJ11 =
J22
∆J

(98)
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IJ12 = −
J12
∆J

(99)

IJ21 = −
J21
∆J

(100)

IJ22 =
J11
∆J

(101)

The derivatives of the shape functions with respect to x and y are then obtained
as:

Nr,x = IJ11Nr,ξ + IJ12Nr,η (102)

Nr,y = IJ21Nr,ξ + IJ22Nr,η (103)

Mk,x = IJ11Mk,ξ + IJ12Mk,η (104)

Mk,y = IJ21Mk,ξ + IJ22Mk,η (105)

Lk,x = IJ11Lk,ξ + IJ12Lk,η (106)

Lk,y = IJ21Lk,ξ + IJ22Lk,η (107)

with k=1,2,3,4 and r=1,2,3,4,5,6,7,8.
Once the derivatives of the shape functions are obtained, it is possible to construct
the shape function derivative matrices, resulting in the following expressions for
the in-plane deformations:





ϵxx
ϵyy
γxy



 = m(ue
p) + zk(ue

p) = Bmu
e
p + zBku

e
p, (108)

For each element, there is a matrix Be given by:

Be = Bm + ztBk. (109)

Here, only the top coordinate has been considered, and the same operation must
be performed for the bottom coordinate.

3.3 Rotation of the Reference System

It is necessary to analyze how to reconcile the local reference systems of the ele-
ments with the global reference system.
This procedure requests a tensor of size (3x3xne), which contains a 3x3 matrix for
each element of the model. Each 3x3 matrix, which can be called, for example,
"Rot", is of the form:
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Rot =





i1 j1 k1
i2 j2 k2
i3 j3 k3





This matrix contains, for each row, the 3 coordinates in the global reference
system of the 3 axes of the local reference system of the element.
If the local reference system of an element and the global one are aligned, the
resulting matrix is the identity matrix:

Rot =





1 0 0
0 1 0
0 0 1





Each "Rot" matrix for each element must be expanded to be multiplied by Be.
Thus, an expanded matrix Rotexp of dimension 24×24 must be created, which has
8 submatrices "Rot" along its diagonal.
Therefore, Rotexp must multiply Be, and a matrix is obtained, which can be called,
for example, Br:

Br = Be ∗Rotexp (110)

At this point, each element is associated with a matrix Br that takes into
account the derivatives of the shape functions and the variation between the ori-
entation of the local and global reference systems.
For each element, the matrix Br becomes a sub-matrix that contributes to some
parts of the matrix M .

The key logical step is that the matrix Br has 24 columns, which must be
multiplied by 24 degrees of freedom. These 24 degrees of freedom are grouped in
such a way that there are 6 degrees of freedom for 4 nodes, i.e., 4 groups of 6
degrees of freedom. The 4 groups, or 4 nodes, are the 4 nodes of each element and
are arranged in sequence to respect the Connectivity Matrix.
This is a matrix of size (ne×5) that associates each element with its corresponding
4 nodes in a counterclockwise direction, always starting from the node with local
coordinates (-1,-1).
The 6 consecutive columns corresponding to a node in the matrix Br are copied
into the positions in M corresponding to the same node. The correspondence
between the node in Br and in M is achieved through the Connectivity Matrix.
This operation must be performed for each element, and in this way, the degrees
of freedom on the columns of the matrix M are obtained without node repetition.
Obviously, this operation must be done for both the top and bottom Br matrices.
As for the rows of M , each element occupies (27 × 2) rows of M , since 27 is the
size of the rows of a single matrix Br, and 2 represents the top and bottom.
Thus, a matrix M is obtained which has (27× 2× ne) rows. The number of rows
that we want to obtain in the matrix M is (9×3×2×ne), as explained previously,
and it is immediately evident that the two numbers match.
The matrix M has (6× nn) columns, as expected, corresponding to the 6 degrees

23







ϵxxn = P ∗ ϵxxg (125)

ϵyyn = P ∗ ϵyyg (126)

γxyn = P ∗ ϵxyg (127)

where ϵxxn is a 4x1 vector containing the strains along the x-axis calculated
at the 4 nodes, and ϵxxg is a 9x1 vector containing the strains along the x-axis
calculated at the 9 Gauss points. The same applies for the strains along the y-axis
and in the xy-plane.

3.6 Strains at Coincident Nodes

The 9 Gauss points are unique and vary from element to element, but this is not
the case for the nodes. In fact, two adjacent QUAD4 elements share 2 common
nodes, or it may happen that 4 QUAD elements share 4 coincident nodes.
The issue arises from the fact that strains at the nodes are calculated from the
strains at the Gauss points, element by element. Therefore, it is possible for the
same node, which is shared by multiple elements, to have different strain values.
To resolve this issue, it has been decided to simply average the strain values between
the elements at the node:

ϵxxni =
n

∑

i=1

(ϵxxnie)/n (128)

where i denotes the i-th node, e denotes the element that contains the i-th node,
and n represents the number of coincident nodes, so in this case n = 1, 2, 3, 4.
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software.
Figures 10 and 11 show the errors for the strains along the y-axis (ϵyy) and in the
xy-plane (ϵxy):

Figure 10: Relative error of the strains along the y-axis

Figure 11: Relative error of the rotation strains in the xy-plane

It is evident that the error is close to 0, with a peak error of 300% for element
59. However, this high error is justified, as the strain calculated by the Abaqus
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Figure 13: Relative error of the strains along the x-axis
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Figure 14: Relative error of the strains along the y-axis

Figure 15: Relative error of the strains in the xy plane
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Figure 37: Micro-Strain along Fiber 1. The red dots represent
the strains calculated using the iFEM method, and the black dots
represent the experimentally measured strains.

Figure 38: Error along Fiber 1

Now, in Figures 41, 42, 43, and 44, strain values and relative error are shown
for a line of elements corresponding to "Fiber 12" and "Fiber 13", that is, 2-D
shell elements modeling the stringers, thus presenting different planes compared to
the panel:

There is a good overlap of the strain plots, although they are generally less
accurate compared to the elements of the panel. In fact, the error ranges from
0.5% to 1%, but it reaches peaks over 2% for "Fiber 12" and 3% for "Fiber 13".
From this data, two possibilities can be deduced. The first possibility is that the
strain measurement is less precise when taken along the stringer, but there is no
evidence of this. The second, more probable possibility is that the iFEM method
reconstructs the displacements and rotations of the stringers with greater difficulty,
as these components have a specific section and plane different from that of the
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Figure 39: Micro-Strain along Fiber 3

Figure 40: Error along Fiber 3

panel.
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Figure 41: Micro-Strain along Fiber 12

Figure 42: Error along Fiber 12

5.5.4 Results for the Shell Reduced Model

The goal now is to check whether the shell reduced model, that is, the shell model
with fewer sensors than the original, is able to reconstruct the strains in areas that
are only sensorized in the shell-full model.
It is important to highlight an aspect that will be fundamental also in the beam
reduced model, namely that the iFEM method is a method that takes the experi-
mentally measured strains as input and uses the least squares method for approx-
imation. As a result, the more data provided as input, the greater the calculation
precision. It is necessary to verify whether the reconstructed strains in the unsen-
sorized areas in the reduced models are accurate or not, by comparing them with
the measured strains.
The strains and the relative error for Fiber 2 are shown in Figures 45 and 46,

It is clearly noticeable that the reconstructed strains closely follow the trend
of the experimental ones, although the errors are slightly higher compared to the
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Figure 43: Micro-Strain along Fiber 13

Figure 44: Error along Fiber 13

shell-full case.
From the error graph, it can be seen that the errors tend to remain below 5-6%,
except for some out-of-range values. However, the error trend increases as we move
towards the outer part of the wing, and for the final element (n.72), the error is
high, as shown in the strain graph, reaching values over 90%. This can be explained
by the fact that as the strains move towards the wing tip, they decrease, eventually
approaching very small values close to 0. Consequently, it is difficult to accurately
reconstruct the exact strain values, and moreover, the error is not a critical factor
for the structural integrity.
Considering, for example, Fiber 9, whose micro-strains and error are plotted in
Figures 47 and 48, it can be observed that the calculated strain curve follows the
trend of the experimental ones, with a certain degree of error.

It is evident that for some elements, errors reach peaks of 70%. However, this
can be explained by the fact that the strain difference is related to a value of 16
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Figure 45: Micro-Strain along Fiber 2

Figure 46: Error along Fiber 2

micro-strain, which is a very small value, close to zero, so it is understandable that
the relative errors increase.
It can be seen that for element 529, the error is around 40%, while the error curve
remains stable at values below 10% for the adjacent elements. The difference in
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Figure 47: Micro-Strain along Fiber 9

Figure 48: Error along Fiber 9

the strain behavior is due to local effects, but globally, the reconstructed trend
matches the measured one.
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5.5.5 Beam Full Model Results

The beam full model has fewer elements compared to the shell full model, as the
stringers are modeled with 1-D elements. Consequently, the number of sensors to
be inserted into the iFEM software for the beam full model is smaller than the
number of sensors required for the shell full model, and therefore, the accuracy
with which strains are calculated varies.
For example, by analyzing Fiber 4 and Fiber 10 as shown in Figures 49, 50, 51,
and 52:

It is immediately noticeable that the calculated strain curves closely follow the
measured strain curves, with errors below 1%.
This result implies that the slightly lower number of sensors does not affect the
accuracy of the strain calculation, as the sensor lines are the same as those in the
shell full model, except for the stringers. It can therefore be concluded that whether
choosing the shell full or beam full model, the differences in strain calculation on
the panel are minimal.
This is an important result, as it implies that a hybrid 1-D and 2-D model is
almost equivalent, in terms of calculation accuracy, to a 2-D model, despite the
computational advantages and greater simplicity.

5.5.6 Beam Reduced Model Results

The beam reduced model has a significantly smaller number of sensors compared
to the shell full model, both because the number of elements in the beam model
is fewer than in the shell model due to the presence of 1-D elements, and because
the sensor configuration is reduced. Therefore, the number of input measurements
is the minimum among the four configurations, and lower accuracy is expected in
reconstructing strains at the unsensed points.
Figures 53 and 54 below show the micro-strain and error in Fiber 2, the same one
considered in the shell reduced model, allowing for a comparison:

It is immediately noticeable that the trend of the calculated micro-strain closely
follows the measured one, but to better understand the difference with the one
obtained in the shell reduced model, it is useful to observe the error.
The error trend is very similar to that of the shell reduced model. It remains
within values below 10% for a long portion of the Fiber, then increases towards
the end, reaching peaks of around 70%. This trend has already been explained in
the chapter related to the shell reduced model, but it is now more interesting to
compare the magnitude of the errors.
It can be seen that in the first part, the errors are within the 0-10% range, but in
the case of the beam reduced model, the curve is less flat and contains more peaks,
reaching around 10%.
The average error in this part of the graph is therefore higher in the beam reduced
model case, but this is justifiable by the lower accuracy due to the approximation
of the stringers with 1-D elements and the corresponding difference in sensors. The
differences in the error are still limited, and the results are excellent.
It is also important to note that at element 72, the error is around 70%, while in
the shell reduced case it is around 100%. It can be deduced that representing the
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Figure 49: Micro-Strain along Fiber 4

Figure 50: Error along Fiber 4

stringers as 1-D elements was more effective in capturing the edge effects, as the
stringer ends at that point.
Now, observing Fiber 16, as shown in Figures 55 and 56:

It can be observed, as highlighted, that there is a portion of the Fiber where
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Figure 51: Micro-Strain along Fiber 10

Figure 52: Error along Fiber 10

the error curve is flat and remains around 10%, so the approximation is excellent.
As in the previous cases, the error increases as we move to the right on the graph,
but it can be observed that the micro-strain approximation is still respected. The
explanation is therefore the same as previously mentioned in other cases: first,
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Figure 53: Micro-Strain along Fiber 2

Figure 54: Error along Fiber 2

element 264, where the error is very high (250%), is an element close to the support,
and second, it involves very small micro-strain values, close to zero, which makes
the relative error large. Indeed, the error values are slightly above and below zero.
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Figure 55: Micro-Strain along Fiber 16

Figure 56: Error along Fiber 16
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6 Conclusions

The iFEM method is a structural analysis method for shape-sensing that, start-
ing from an iFEM model of a structure and a certain number of experimentally
measured strains of the same structure, reconstructs the degrees of freedom of the
structure, i.e., displacements and rotations. This operation is mathematically car-
ried out by minimizing an error function that takes into account the difference
between the analytical and experimental deformations. From the nodal degrees of
freedom of the model, it is possible to reconstruct the deformations in each element.
To verify the effectiveness of the method, measured and calculated deformations
can be compared.
An experimental test was carried out on a structure, which in this case is a com-
posite wing-shaped panel, supported at the ends with a load applied at midspan.
The deformations were measured along specific measurement lines using an optical
fiber sensor and at specific points using strain gauges.
Furthermore, displacements were measured using LVDT sensors at specific points.
These measured displacements were compared with those reconstructed by the
iFEM code, and a good agreement was observed between the two, with errors typ-
ically in the range of a few percentage points.
To verify the accuracy of the procedure for calculating deformations from nodal dis-
placements, a simplified panel model was analyzed using MSC.Patran and Abaqus
FEA software, where it was found that the deformations at the centroids of the
elements indeed correspond to those calculated from the nodal degrees of freedom
calculated by Abaqus FEA.
Two models of the actual panel were created: one entirely made up of 2-D shell
elements (shell model) and one hybrid with 1-D beam elements (beam model). For
both cases, two configurations were analyzed: one where the number and position
of the sensors are faithful to the real component (full configuration) and one where
the number of sensorized elements is smaller (reduced configuration).
Thus, the real panel model was analyzed, and it was observed that the deforma-
tions calculated at the centroids of the elements corresponding to the sensorized
parts of the structure are very similar to the experimentally measured ones. The
errors in this case are generally below 5%, both for the shell model and the beam
model. Therefore, it can be concluded that approximating the stringers with 1-D
beam elements and having fewer sensors on the stringers compared to the shell
case do not significantly affect computational accuracy.
In the reduced configurations, it was found that the reconstruction of deforma-
tions on the panel is accurate, with errors similar to the full configuration, while
the reconstruction of deformations in the unsensed elements produces larger errors.
This is due to the fact that the number of experimentally measured deformations
provided as input to the iFEM code is lower, which influences the least squares
approximation method.
In general, relative errors increase where the deformation values are infinitesimal,
but this fact is justifiable and of little relevance, as deformations close to zero are
difficult to reconstruct perfectly and do not pose a threat to the structural integrity.
As a future development, it will be possible to calculate stresses from the recon-
structed strains. To do this, it will be necessary to know the material properties
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of the elements, especially the stiffness matrix.
Knowing the stresses is important for assessing the state of the structure in real-
time (Structural Health Monitoring).
Regarding the iFEM method in general, the most interesting future prospects in-
volve its application to complex structures, including spatial ones. The increasing
complexity of structures implies that non-linear iFEM methods will need to be
refined.
For example, fuselages and wings are subjected to high pressure loads during flight,
which produce significant deformations. An iFEM method that reconstructs the
deformed shape from a set of measured deformations would be useful for monitor-
ing potential buckling failures.
Other structures that experience significant deformations include solar sails, de-
orbiters, and sunshields (such as the one on the James Webb Space Telescope).
Again, monitoring through shape sensing is an interesting prospect in these cases.
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