
POLITECNICO DI TORINO

Master’s Degree in Aerospace Engineering

Master’s Degree Thesis

DIRECT NUMERICAL SIMULATION
OF FLEXIBLE PATCHES

Supervisors

Prof. Francesco AVALLONE

Prof. Marco Edoardo ROSTI

Prof. Costantino MANES

Candidate

Elisa TRESSOLDI

A.Y. 2023/2024





Abstract

Canopy flows are of significant interest across various natural and industrial ap-
plications, since several elongated slender objects clamped on a wall or a surface
can be addressed to as canopies. Modern word issues, such as river pollution
mitigation and urban heat cooling, can benefit from a deeper understanding of the
flow behavior around such structures. Although extensive research has already been
conducted on rigid canopies through experimental and numerical studies, flexible
canopies are more commonly encountered in many fields, highlighting the need
to investigate not only the fluid behavior around flexible structures, but also the
dynamics of these flexible elements and their interactions with the surrounding flow.
In their recent study of Direct Numerical Simulation (DNS) of flexible canopies,
Foggi Rota et al. 2024 focused on the fluid-structure interactions within and above
a distribution of filaments covering the whole wall, paving the way for studies
on more complex configurations. In this thesis, we expand on these findings by
examining the fluid and filament dynamics in a canopy where flexible filaments
cover only one half of the wall-surface, thus creating an edge aligned with the
flow direction. This scenario reminds of roads cutting through forests or rivers
where submerged seagrass grows along the banks. We take into account two limit
flexibilities, one with almost-rigid filaments, and another where the filaments deflect
significantly when hit by the flow.

The mean flow characteristics in the patch case fall well in between those of the two
limit scenarios - the open channel and the full canopy. Moreover, the mean flow
shows the appearance of mean vortex structures, that brings high energy flow into
the canopy through the lateral edge of the patch, and that creates an updraft of the
flow, transporting low-energy flow outside of the canopy through the canopy top.
The analysis of the shear balance equation indicates that, unlike in full canopies
and open channels, the mean flow plays a key role in balancing the forcing pressure
gradient over time in canopy patches, although the turbulent shear still represents
the major contributor for all the three scenarios investigated. Velocity fluctuation
reveals that ejections dominate over sweeps on horizontal planes above vegetated
regions, regardless of the vegetation distribution, while sweeps are predominant
along the vertical planes separating vegetated and non-vegetated regions. Finally,
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the filament dynamics show that the average tip positions are compliant with
the mean vortex structures in the domain. Overall, although the dynamics of
the filaments in the patch scenario are similar to those in the full canopy, their
swinging behavior varies with the spanwise position: indeed, filaments closer to
the non-vegetated regions exhibit greater deflection and tend to oscillate in a wider
range of frequencies if compared to those deeper within the canopy.
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Chapter 1

Introduction

When talking about canopies, we refer to filaments, fibers or, more in general,
elongated elements which are clamped on a wall. Understanding how fluid flows
through and around these structures has gained increasing importance due to
their relevance in both natural and industrial contexts, with examples of canopy

(a) Marine Ecosystem (b) Crop Field

(c) Forests (d) Urban buildings

Figure 1.1: Examples of canopy systems.

1



Introduction

Figure 1.2: Percentage of surface water bodies not meeting good ecological status
across European countries and Norway (European Commission 2024).
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Introduction

structures including forests, crop fields, urban buildings or artificial installations.
The study of natural canopies provide insights crucial for addressing hydrological
and ecological challenges, while research on industrial canopies contributes to an
efficient planning of urban areas and infrastructures.

In natural systems such as submerged plants or forests, canopies alter flow patterns,
for example, capturing sediments and shaping bed morphology, influencing the
exchange of species and microclimates. Based on the latest report by the European
Environment Agency presenting the state of Europe’s water (European Commission
2024), the majority of surface waters across European countries do not achieve
good ecological status, as shown in figure 1.2. With reference to the Environmental
Quality Standards (EQS, European Commission 2008), the four pollutant sub-
stances discharged into river basins most reported as failing EQSs across Member
States were zinc, copper, arsenic and ammonium. This has significant consequences
not only on human’s health, but also on the preservation of ecosystems. This is
the reason why the European Commission, through the EU Action Plan Towards
a Zero Pollution for Air, Water and Soil (European Commission 2021), aims to
reduce air, soil, and water pollution to levels considered safe for human health and
ecosystem preservation by 2050.

A deep understanding of canopy flows is essential for addressing pollution issues,
including how pollutants diffuse and accumulate in the atmosphere and in water
bodies. Several studies focused on understanding the effect of plants growing in
river corridors in modifying water flow, sediment and particle deposition and bed
erosion (Wu et al. 2005, Gurnell 2014, C. Liu, Hu, et al. 2018). Techniques already
exist to forecast sediment dynamics and trajectories, such as Sediment Trend
Analysis (STA), which enables the identification of sediment patterns, accretion,
and movement (McLaren et al. 2007). Therefore, advancing our understanding of
flow behavior can contribute significantly to the implementation and enhancement
of these forecasting techniques.

Urban and industrial applications are essential in modern city planning. According
to the European Commission Urban heat islands and heat mortality 2024, nearly
three-quarters of Europe’s population resides in urban areas. In 2024, the Coperni-
cus Climate Change Service (C3S) reported that the average surface air temperature
over European land during the summer months (June–August) reached a record
high, measuring 1.54°C above the 1991–2020 seasonal average (C3S seasonal look-
back: summer 2024 | Copernicus 2024), as shown in figures 1.3 and 1.4. Such
anomalies in European air temperature have become increasingly common in recent
years compared to the past. People living in cities are more affected by intense
heat waves: temperatures increase as paved surfaces absorb heat, buildings and
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European surface air temperature anomalies
Anomalies relative to 1991–2020 for June to August
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Figure 1.3: European mean surface air temperature anomalies for each boreal
summer (June to August) from 1979 to 2024, relative to the 1991–2020 average.
Data source: ERA5. Credit: Copernicus Climate Change Service/ECMWF

narrow streets retain it, and human activities contribute additional warmth to
the environment. Gillerot et al. 2024 demonstrated the importance of urban tree
canopies in local heat reduction, thus giving further evidence of the importance of
understanding these kind of structures.

Not only natural structures can be modeled as canopies. Basing on the definition
of canopies, every elongated element clamped on a surface can be considered as
such. Thus, also urban buildings and skyscrapers can be modeled as canopies,
representing the limiting scenario in which the flexibility of the slender objects
tends to zero. Ashie et al. 1999, through a building canopy model coupled with
CFD, studied radiant heat exchange between urban buildings as an attempt to
model a more efficient air conditioning system which took into account both the
indoor and outdoor heat sources. Coceal and Belcher 2004 developed an urban
canopy model to study winds within and above urban areas, in an attempt to
forecast air quality in cities.

Through the examples previously introduced, it becomes clear that canopies can
exhibit a wide range of geometries and properties depending on the application.
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Introduction

Canopies may consist of rigid or flexible filaments, with uniform or varying heights,
and can either cover the entire surface on which they are clamped or be arranged
in patches. In this work, we refer to a full canopy when these structures cover the
entire bottom wall of the domain, and a canopy patch when they are arranged in
localized patches within the domain.

Anomalies and extremes in surface air temperature for June August 2024

Coolest Much Cooler
than average

Cooler
than average

Near
average

Warmer
than average

Much warmer
than average

Warmest

Data: ERA5 1979 2024  Credit: C3S/ECMWF

Figure 1.4: Surface air temperature anomalies and extremes for June–August 2024
are represented using color categories corresponding to percentiles of the tempera-
ture distributions for the 1991–2020 reference period. The "coolest" and "warmest"
extremes are determined based on rankings spanning the period 1979–2024. Data
obtained from ERA5. Source: Copernicus Climate Change Service/ECMWF
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Rigid canopies have been extensively studied, with a rich body of literature address-
ing various aspects of their behavior. Rota et al. 2024 took this research further by
introducing flexible filaments and examining both fluid and filament dynamics in a
full canopy scenario across different levels of filament flexibility. But what happens
in a system where the canopy has finite dimensions, creating a distinct edge? This
thesis aims to investigate the behavior of both the fluid and filaments in such a
scenario.

For simplicity, we focus on a natural canopy, referring to the elongated elements as
filaments. Three distinct scenarios are considered:

1. Open Channel, where no filaments are present;

2. Full Canopy, where filaments cover the entire bottom wall of the domain;

3. Canopy patch, where filaments only partially cover the bottom wall of the
domain.

In this way, we will refer to the filament-covered area of the domain as vegetated
region and the not covered area as non-vegetated.
In the canopy patch scenario, we can imagine starting from a full canopy and
removing a certain number of filaments, creating two regions, one vegetated and
one non-vegetated, with a distinct edge aligned in the streamwise direction. For
a visual understanding of this scenario, we can think about a straight road or
highway cutting through a forest, as in figure 1.5.

Figure 1.5: Canopy patch
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For scenarios involving vegetation, we consider two different levels of filament
flexibility. Flexibility is characterized by the Cauchy number, a dimensionless
parameter representing the ratio of the fluid’s force on the filaments to the restoring
force of the filaments and defined as:

Ca = ρfdh3U2
b

2γ
, (1.1)

where ρf is the density of the fluid, h is the height of the filaments, Ub is the
bulk velocity and γ is the bending rigidity of the filaments. The higher the
Cauchy number, the more flexible the filaments. Thus, we consider two Cauchy
numbers that describe two limit conditions, one with almost-rigid filaments and and
another in which the filaments deflect significantly when hit by the flow. Therefore,
unlike a scenario with entirely rigid filaments, it is crucial to focus on the fluid
dynamics when interacting with flexible structures. When hit by the incoming
flow, the filaments deflect, and this deflection, in turn, influences the flow dynamics.
Consequently, the system forms a fluid-structure interaction problem.

7
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Chapter 2

Literature Review

The study of canopy flows has always been of primary interest. Early investigations
focused on rigid structures occupying the entire bottom wall of the domain, to later
expand to more complex configurations, including modeling the slender elements
as flexible filaments, to finally consider finite patches of vegetation to account for
different natural scenarios and help river and water management. As an example,
J. Li et al. 2022 offered interesting insights into the significance of considering
different spatial layouts of vegetation distribution, emphasizing the role of the
frontal projected area of vegetation patches in shaping the morphological evolution
of fluvial systems. They concluded that a reduction in the frontal projected area
of the vegetation patch could be an efficient solution to restore vegetation. On
the other hand, other studies focused on the effect of finite length patches on
the flow behind them (Folkard 2011, C. Liu, Hu, et al. 2018, Anjum and Tanaka
2020). In particular, C. Liu, Hu, et al. 2018 focused on the vortex structures
forming in the wake of the patches both in the horizontal and in the vertical planes,
which increment the sediment deposition and, thus, play a beneficial role in the
persistence and growth of vegetation. Anjum and Tanaka 2020 highlighted how in
the spaces between vegetation patches, there is a marked reduction in flow velocity,
turbulent kinetic energy, and turbulence intensity attributed to the obstruction
and protection offered by the patches, suggesting conditions that are beneficial for
both aquatic habitats and sediment deposition.

As highlighted by Unigarro Villota et al. 2023, flows within a partially obstructed
channel containing a submerged canopy can be simplified into two two-dimensional
problems. Indeed, depending on the water depth and on the canopy height, aquatic
vegetation can be either emergent, when the canopy height is greater than the
water depth, or submerged, when the canopy is shorter than the water depth (W.-X.
Huai et al. 2019). The flow above the canopy top can be studied by considering
a vegetation distribution such that the vertical flow motions predominate over
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horizontal flow motions, thus considering submerged filaments that fully cover the
bottom wall of the domain. On the other hand, the lateral edge can be modeled
using patches of emergent vegetation, such that vertical motions are stronger
compared to horizontal motions. However, these two scenarios do not account for
the simultaneous presence of both the top edge and the lateral edge of the canopy,
as each considers only one edge in isolation and simplifications on the setup can
bias the outcome of the study, by either hiding or amplifying some of the relevant
physical processes found in natural conditions (Tinoco et al. 2020). Consequently,
recent studies have shifted their focus toward submerged canopy patches, initially
representing the slender elements as rigid cylinders (Devi and Kumar 2016a, Yan,
W.-H. O. Wai, et al. 2016, J. Zhang et al. 2020, D. Li et al. 2022, Yan, Duan,
W.-H. Wai, et al. 2022, Yan, Jia, et al. 2023, Yan, Duan, Y.-H. Zhang, et al. 2023,
Unigarro Villota et al. 2023), then focusing on more complex flexible geometries
resembling more natural conditions (Pang et al. 2014, Devi and Kumar 2016b,
Caroppi et al. 2021).

Figure 2.1: Mixing layer development above a fully distributed submerged canopy.
After an adjustment length La over a sufficiently long canopy, the mixing layer
reaches a constant thickness and ceases to grow, displaying fully developed velocity
profiles. Vertical coherent vortexes grow in size coherently with the growth of the
mixing layer, reaching a fixed size in the fully-developed region and penetrating in
the canopy region of a vertical depth δe inversely proportional to the canopy drag
and canopy frontal area (Figure adapted from Yan, Jia, et al. 2023.)
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2.1 – Fully-distributed Submerged Canopies

2.1 Fully-distributed Submerged Canopies
It is well known that any obstruction or alteration of a flow natural path can signif-
icantly change its characteristics. For instance, when a surface is entirely covered
by flexible filaments or rigid cylinders, the resulting flow often exhibits modified
velocity profiles, which can lead to the development of vortex structures within the
flow, further influencing its behavior and interactions with the surface. This is due
to the resistance opposed by the structures in the domain: the drag discontinuity
at the canopy top creates a shear region similar to a free shear layer, with the
flow in the canopy layer decelerating and in the upper open layer accelerating.
This abrupt change in drag at the canopy top creates significant velocity shear
and amplifies turbulence intensity in this area compared to unobstructed flows.
Thus, flow structure within and just above an unconfined canopy more strongly
resembles a mixing layer than a boundary layer (Raupach et al. 1996, Ghisalberti
and H. M. Nepf 2002).

Monti, Omidyeganeh, et al. 2019, modeling the canopy as fully submerged rigid
cylinders arranged on a wall, through Large Eddy Simulation of the turbulent
channel, showed that flow behavior can be divided into two distinct spatial regions
based on velocity distribution: the canopy layer and the outer region above it. In
the outer region the velocity profile follows the logarithmic law

⟨u⟩ = uτ

κ
log

C
(y − yvo)uτ

ν

D
+ B,

where κ = 0.41, B = 5.2 and yvo is the so called virtual origin, i.e. the point from
which the log-law applies. uτ is the friction velocity at the virtual origin, thus
uτ = uτ (yvo).
Mean streamwise velocity profiles show two inflection points, one within the canopy
and the other one near the canopy tip (Ikeda and Kanazawa 1996, H. M. Nepf 2012,
Rota et al. 2024). As for Rayleigh’s theorem (Rayleigh 1879), an inflection point
in the velocity profile is a necessary condition for flow instability, thus making the
flow prone to the Kelvin–Helmholtz instability. This instability produces large,
coherent vortexes within the mixing layer, which play a dominant role in the
vertical transport of momentum above the canopy (Raupach et al. 1996, Finnigan
2000, Ghisalberti and H. M. Nepf 2002, Ghisalberti and H. Nepf 2006, Diwan
2015). The downstream advection of the vortexes leads the flexible submerged
aquatic vegetation to a gradual, synchronized, large-amplitude waving motion, a
phenomenon first described by Ackerman and Okubo 1993 as monami, which will
be further described in section 2.4. Since coherent vortexes also appear in rigid
canopies, it was concluded that vegetation flexibility is not the cause of vortex
formation. Instead, the Kelvin-Helmholtz instability, arising from the presence
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of an upper inflection point in the velocity profiles, generates these vortexes.
Consequently, the monami motion is a response of flexible filaments, which move in
an organized, resonant pattern with the coherent eddies (Nezu and Sanjou 2008).

When encountering a sufficiently long canopy, the flow hitting a submerged fully-
distributed canopy needs a certain distance to adjust and reach a fully-developed
state. The flow adjustment length, is defined as the distance from the leading edge
of the canopy to the position where the velocity decreases to a constant value,
representing that the flow is fully developed (F. Li et al. 2024). Belcher et al.
2003, by balancing the non-linear drag exerted by the canopy with the non-linear
streamwise advection, estimated the streamwise extension of the adjustment region
as:

La = Lc ln
A

Uh

u∗

h

Lc

B
,

with Lc = 2/(CDNbv), CD the canopy drag, N the canopy density, bv the width of
each vegetation element, Uh the velocity at the canopy tips, h the height of the
vegetation elements and u∗ the shear velocity at the canopy tips, defined as the
square root of the peak Reynolds stress per unit mass at the canopy top in the
fully developed flow region:

u∗ =
ñ

(−u′v′)max.

However, Zeng and C.-W. Li 2014 noted that the above equation has not a general
validity, as it could get negative values in case the canopy density is not sufficiently
high. Thus, an empirical equation was suggested:

La ∝ 1.5Uav

u∗
D,

where Uav is the cross-sectional mean velocity.
The flow adjustment length can be calculated for submerged fully-distributed
canopies as their shear layer grows only to a finite thickness, unlike free shear
layers which grow continuously downstream. In fact, once the the production
of shear-layer-scale turbulent kinetic energy is balanced by drag dissipation, the
growth of the shear layers ceases and the fully developed state for the flow is reached.
Thus, to describe the thickness of the mixing layer, the momentum thickness θ is
used. It is defined as

θ =
Ú +∞

−∞

1
4 −

A
U − Ū

∆U

B2 dz,

where ∆U = U2 − U1 is the velocity difference of the mixing layer and Ū =
(U1 + U2)/2 is the mean velocity, with U1 and U2 are the lower and upper margin
velocities respectively.
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2.1 – Fully-distributed Submerged Canopies

The constant thickness of the shear layer controls the vertical mixing and exchange
between the vegetated region and the flow above it, as Kelvin-Helmholtz vortex
growth stops when the shear layer reaches a constant thickness (Ghisalberti and
H. M. Nepf 2002, Ghisalberti and H. M. Nepf 2004, Nezu and Sanjou 2008). As
the flow reaches an equilibrium state, turbulence intensities are increased near the
top of the canopy for submerged vegetation, and the peak in the Reynolds shear
stresses lays near the tips of the canopy. In particular, for rigid canopies it always
coincides, within measurements and numerical errors, with the inflection point in
the velocity profile (Bennett et al. 2002, White and H. M. Nepf 2008), while for
flexible canopies it lays below the vegetation top due to the oscillatory motion
of the flexible filaments and their greater deflection, which shifts the shear layer
towards the channel bed (Okamoto and Nezu 2009).

In the fully-developed region, vortexes penetrate downward into the canopy layer.
The vertical penetration depth (δe) is defined basing on the distribution of Reynolds
shear stress, which reaches its maximum value at top of the canopy and diminishes
progressively deeper into the canopy. Thus, the depth of vortex penetration
corresponds to the location from the canopy top where turbulent stress fades to an
insignificant level, that is the vertical position where the Reynolds stress decreases
to 10% of its peak. The penetration depth was found to be inversely dependent on
canopy resistance CD and frontal area a (H. Nepf et al. 2007, Yan, Jia, et al. 2023,
M. Liu et al. 2024):

δe

h
= 0.23 ± 0.06

CDah
,

and roughly coincides with the inner inflection point of the velocity profiles. The
flow above submerged canopies has thus been divided in three sub-zones, as depicted
in figure 2.2, (Nezu and Sanjou 2008 Okamoto and Nezu 2009):

1. Emergent zone (0 ≤ y ≤ hP ), extending from the bottom wall of the domain
to the penetration height hP , which corresponds to the vertical location from
the channel bed where turbulent stress decreases to 10% of its maximum value.
This region is characterized by a small vertical turbulent momentum transport
and an almost-constant velocity due to the shielding effect exerted by the
filaments on the incoming flow;

2. Mixing-layer zone (hP ≤ y ≤ yvo), extending between the penetration
height and the virtual origin, dominated by large-scale coherent vortexes;

3. Log-law zone (yvo ≤ y ≤ H), extending above the virtual origin and
resembling boundary layers, with the velocity profiles obeying the log-law
distribution.
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The coherent vortexes forming in the mixing layer zone contribute to the momentum
and mass exchange at the top of the canopy. Ejections are responsible for moving
low-speed flow from inside the canopy to the outside, while sweeps are responsible
for moving high-speed fluid from within the canopy (Nezu and Sanjou 2008). For
unobstructed channels the largest sweeps and ejections occur in the near-bed region,
with ejection events typically contributing more than sweep events (Nakagawa and
Nezu 1977). Therefore, when submerged vegetation is present, as the log-layer
resembles a boundary layer, ejection dominate near the canopy top. On the other
hand, sweep events become the primary contributors within the canopy (Nezu and
Sanjou 2008, Cui and Neary 2008).

Many parameters influence the characteristics of flow interacting with submerged
canopies, including canopy density. Submerged canopies are often categorized
as sparse or dense, based on the balance between turbulent stress and canopy
drag in affecting momentum. In sparse canopies, the flow profile resembles that
of a turbulent boundary layer, where turbulent stress remains high near the bed,

Figure 2.2: Division of the flow above a generic fully-distributed submerged
canopy in three sub-zones. yvo is the virtual origin, h is the canopy height and hp

is the penetration height. The emergent zone is characterized by small momentum
exchange, the mixing-layer zone is dominated by large scale coherent vortexes,
while in the log-law zone the velocity profiles follow the log-law (figure adapted
from Nezu and Sanjou 2008).
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resembling conditions similar to a non-vegetated channel. In contrast, shear-
scale vortexes generated by the Kelvin-Helmholtz instability penetrate into dense
canopies over a distance δe, reducing near-bed turbulent stresses compared to
canopy-free flows. This has implications for sediment deposition, as suspended
sediment concentration decreases with increasing canopy density (C. Liu, Gao, et al.
2019). The influence of canopy density also affects the development of mixing layer
instability. A denser canopy reduces vertical exchange between the canopy and the
overlying flow while intensifying the mixing layer, as observed by Fang et al. 2022.
Flexibility also significantly impacts canopy-flow interactions. When flexible
canopies deflect under the incoming flow, their effective height decreases, shifting
the canopy shear layer closer to the bed, which enhances near-bed turbulence
levels considerably (Abdolahpour et al. 2018). Additionally, as the relative velocity
between the filaments and the flow decreases, and with a reduced frontal area, the
drag exerted by flexible canopies is lower than in the rigid canopy scenario (Alben
et al. 2002).
Another significant parameter when dealing with submerged canopies is the sub-
mergence relative depth, defined as the ratio between the height of the channel
and the height of the filaments. This means that, at fixed canopy height h, the
higher is the height of the channel H, the higher is the submergence relative depth.
For small submergence depth, the log-law zone of the shear layer disappears and
the shear layer is divided only between the emergent and the mixing-layer zones.
Additionally, the average length scale of coherent vortexes in the mixing layer
depends on the submergence ratio, increasing in a linear relationship as water
depth gets higher (Nezu and Sanjou 2008).

2.2 Partially-distributed Emergent Canopies

In contrast to the full canopy scenario, where all filaments are entirely submerged,
an emergent canopy consists of filaments that extend above the water surface due
to their height exceeding the water depth. This makes it more insightful to focus on
vegetation patches emergent in shallow water rather than a fully vegetated channel
bed. Consequently, even if emergent canopy patches are characterized by a lateral
edge, in contrast to the horizontal edge found in a fully submerged canopy, the
problem is still bi-dimensional.

As the unperturbed flow hits a vegetated region, the flow adjusts over a length
scale proportional to the canopy width. Rominger and H. M. Nepf 2011, indeed,
suggested that the flow adjustment length depends on the canopy drag coefficient
CD, the vegetation density a and the width of the canopy region D, and provided
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an estimation of the flow adjustment length La:

La =


(3.0 ± 0.3)

ñ
2

CDa
(1 + (CDaD)2) CDaD < 1,

(5.5 ± 0.4)
ò1

2
CDa

22
+ D2 CDaD ≥ 1.

Given the difference in velocity between the flow in the vegetated region and the
flow in the main channel, a shear layer forms along the flow-parallel edges. Its width,
measured by the momentum thickness θ as for the fully-distributed submerged
canopy, starts growing until it reaches a fully developed state downstream of the
adjustment region (White and H. M. Nepf 2008, Rominger and H. M. Nepf 2011).
The existence of both vegetated and non-vegetated regions within the channel results
in flow characteristics showing a dependence on the transverse direction, with mean
velocity profiles stabilizing to a quasi-equilibrium shape in the transverse direction,
reaching a condition which resembles the open channel scenario (W.-X. Huai et al.
2019). The shear layer, analogous to the one forming in the fully-distributed
submerged canopy, is characterized by an inflection point in the mean velocity
profile along the transverse direction, similar to the well documented inflection
point observed near the canopy tips in the vertical direction for fully distributed
canopies (White and H. M. Nepf 2007, Rominger and H. M. Nepf 2011, Dupuis
et al. 2017, W.-X. Huai et al. 2019). As already pointed out, as for the Rayleigh
Theorem (Rayleigh 1879), an inflection point in the velocity profile is a necessary

Figure 2.3: Mixing layer development at the lateral edge of a generic partially-
distributed emergent canopy. Downstream of an adjustment length La, the flow
reaches a fully-developed state. Coherent vortex structures penetrate into the
vegetated area of a horizontal depth δe, thus governing the momentum exchange
with the main channel (figure adapted from Yan, Jia, et al. 2023).
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condition for flow instability, thus leading to horizontal coherent vortex structures
forming in the shear layer and growing to a finite size within this layer when the
fully-developed state is reached (White and H. M. Nepf 2008, Rominger and H. M.
Nepf 2011, W.-X. Huai et al. 2019). The horizontal coherent vortexes penetrate
into the vegetated region, thus, similarly to fully-distributed submerged canopies,
an horizontal penetration depth δe can be defined. An empirical estimation was
provided by White and H. M. Nepf 2008:

δe = max[0.5(CDa)−1, 1.8d],

where d is the diameter of the cylinders. For sufficiently large values of CDa such
that (CDa)−1 is smaller than the diameter of the cylinders, the penetration depths
was shown to be independent of CDa, reaching a constant value which depends
only by the diameter of the cylinder. This occurs because the velocity transition
cannot begin before reaching the first row of cylinders and lower values of CDa
would prevent this condition from being met. Consequently, a minimum limit is
set for the penetration depth.

Given the characteristics of the shear layer, it resembles more a mixing layer and

Figure 2.4: Flow regions in a generic partially-distributed emergent canopy,
with the main-channel and the vegetated regions show laterally-uniform velocity
profiles and a two-layer shear-layer structure. The inner shear-layer δI has the
characteristics of a mixing layer and, by penetrating into the vegetated region of
δe, controls the momentum at the interface. The outer shear-layer δO resembles a
boundary layer and lays in the main-channel, dictating the scale of the horizontal
vortexes.
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is asymmetric about the interface between the vegetated and the non-vegetated
regions, showing a two-layer structures. Therefore, the flow can be divided into
four regions (White and H. M. Nepf 2007, White and H. M. Nepf 2008):

1. Vegetated region, characterized by laterally-uniform flow;

2. Inner shear layer, penetrating into the vegetated region of a penetration
length δe, resembling a mixing layer because of the inflection point in the
velocity profile, similarly to the one of the fully-distributed submerged canopies.
It shows the maximum shear near the interface, thus establishing the length
scale of the penetration of momentum into the vegetated region;

3. Outer shear layer, resembling a boundary layer, forms in the main non-
vegetated channel and, by dictating the scale of the vortexes at equilibrium
state, determines the main channel boundary layer width.

4. Main channel outside the region of shear, characterized by laterally-uniform
flow.

In the fully developed state of the flow, the abrupt transition from the fast-moving
channel flow to the slower, obstructed flow within the vegetation generates high
shear at the lateral edge. This shear influences both the turbulence intensity and the
distribution of transverse Reynolds shear stresses, which peak along the interface
between the emergent riparian vegetation and the main channel. Consequently, the
mutual interaction between these two distinct regions is substantial, with horizontal
coherent vortexes, generated by the inflectional instability, playing a primary role.
In particular, near the interface, sweeps and ejections contribute significantly to
the Reynolds stress, with sweeps having a greater influence than ejections within
the vegetated area. Consequently, vortex structures induce strong cross-flows at
the interface, where sweeps draw flow inward from the main channel and ejections
drive outflow from the vegetation array, leading to intense momentum and mass
fluxes across the lateral boundary. On the other hand, near-bed shear stresses are
reduced within the vegetated zone compared to the non-vegetated region (Nezu
and Onitsuka 2001, Bennett et al. 2002, White and H. M. Nepf 2007, White and
H. M. Nepf 2008, W.-X. Huai et al. 2019).
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2.3 Fully Submerged Canopy Patches
Although the fully-obstructed channel with submerged vegetation and the partially-
obstructed channel with emergent vegetation are well-studied scenarios, whose
turbulence dynamics and vortex generations are deeply described in literature,
they can only partially describe finite patches of vegetation. In fact, presenting
two homogeneous directions, they represent bi-dimensional flows and so flow
characteristics. However, when horizontal and lateral interfaces, at the top and
lateral edges of the canopy respectively, coexist, multidimensional coherent vortexes
and turbulence-induced secondary flows may drive complex mass and momentum
exchanges between the canopy region and the surrounding open water (Yan, Duan,
W.-H. Wai, et al. 2022, Unigarro Villota et al. 2023,Yan, Jia, et al. 2023).

As for the other analyzed scenarios, the elongated elements can be modeled as
either rigid or flexible, with the latter ones being part of a fluid-structure interaction
problem. Canopy patches, regardless of their structural flexibility, represent zones
of high flow resistance, causing flow to deflect and interfere with bad erosion and
sediment transport (Colomer and Serra 2021, W.-x. Huai et al. 2021). In fact, the
blockage opposed by the vegetation causes more water to flow in the non-vegetated
region and the difference in velocity above and within the vegetation cause a
shear layer both above the canopy and at the lateral interface, which leads to the
generation of vertical and horizontal vortex structures respectively (Devi and Kumar
2016b, Yan, Duan, W.-H. Wai, et al. 2022). Due to the generation of coherent
vortexes, high-momentum flow from outer open water regions is transported into
the vegetation canopy in the transverse direction and vertical direction, while
low-momentum flow inside the vegetation canopy is transferred into the outer open
water region (Yan, Jia, et al. 2023).

2.3.1 Rigid vegetation
Most studies on canopy patches to date have modeled the vegetation stems as
morphologically simple elements, such as rigid cylinders. Although it represents a
pure fluid-dynamics problem, as there is no a coupled effect between the fluid and
the filament dynamics, it shows some characteristic features of the problem.

When describing the flow characteristics in a turbulent channel fully-covered by
submerged vegetation or partially-obstructed by emergent vegetation, an adjustment
length was present at the leading edge of the canopy, after which the flow reaches
a fully-developed state and the size of the shear layer reaches a constant size.
Yan, Jia, et al. 2023, using plastic cylinders to model rigid vegetation, found
that the adjustment distance was shorter within a submerged partially-distributed
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canopy compared to a submerged fully-distributed canopy. On the other hand,
for both submerged and emergent partially distributed canopies, the adjustment
distances were found to be comparable, thus, the flow adjustment distance can be
estimated with the formula proposed by Rominger and H. M. Nepf 2011. They also
highlighted the so-called velocity reversal phenomenon. During the flow adjustment,
the velocity just below the canopy top in the Junction Region, initially, was overall
smaller than that deeper inside the Vegetated Region, while this trend gradually
reversed further downstream.

When the flow becomes fully-developed, the velocity are altered across three regions
— the vegetated zone, the non-vegetated zone, and the interface between them. In
the non-vegetated area, the velocity profiles are similar to those of open channels
without vegetation, thus resembling a boundary layer. In contrast, the profiles
within the vegetated zone align with those observed in fully vegetated flows. At the
interface between the two regions, velocity profiles exhibit a quasi-linear shape due
to the combined influences of both zones (Nezu and Onitsuka 2001). Particularly,
since the flow in the canopy region still maintains a mixing-layer behavior dominated
by vertical coherent vortexes, this suggests that when the width of the patches is
sufficiently large, the neighboring open water appears to not influence the canopy-
side flow, even if horizontal coherent vortexes were formed at the lateral edge below
the canopy top. Similarly, when getting further away from the junction in the
unvegetated side of the channel, the particular vertical flow structure gradually
shifts to the wall-bounded pattern, characteristic of open channel flows. However,
the flow behavior near the boundary between the vegetated and the non vegetated
regions is more complicated, as the effects of the horizontal and vertical vortexes
exert a combined effect, with the junction momentum exchange playing a key
role in determining the vertical flow structure in both the canopy side and the
neighboring open water side of the shear layer (Yan, Duan, W.-H. Wai, et al. 2022,
Yan, Jia, et al. 2023).

In the near-lateral junction region of the canopy patch, at the neighboring open-
water side, the flow is influenced by both the horizontal and vertical shear layers.
In fact, the presence of the canopy causes a deflected pattern on the vertical flow
structure due to the transverse extension of the vertical coherent vortexes which
arise above the vegetated region, differing significantly from the horizontal shear
layer in fully-distributed canopies that decays above the canopy top. Given also
the lateral outward extension in the neighboring open water region of the vertical
shear layer, the vertical flow structure on the neighboring open side still follows
a mixing-layer pattern for regions near the junction. (Yan, Duan, W.-H. Wai,
et al. 2022). Thus, basing on the vertical velocity profiles, the water depth in the
near-junction region can be divided into three sub-regions, each governed by a
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particular physical mechanism (Yan, Jia, et al. 2023):

• Wall-subregion, where the horizontal vortexes arising on the side of the
canopy, as described for emergent vegetation, don’t have much influence to
the flow, as they are inhibited by the bed, thus resembling a wall-bounded
flow.

• Deflection sub-region, where transverse Reynolds stress become pronounced
as the coherent vortexes at the lateral edge become more pronounced.

• Mixing-subregion, where vertical vortexes become more important while
horizontal coherent vortexes become less important. The flow in the mixing
subregion nearly complies with the turbulent mixing flow theory, the velocity
profile of which might be described by the tangent hyperbolic curve.

In particular, Yan, W.-H. O. Wai, et al. 2016 highlighted how the neighboring
open water region near the lateral interface the combination of the bed effect and
transverse coherent vortexes leads to a highly anisotropic flow field. In the near-bed
region, bed friction plays the dominant role in controlling the flow structure, since
it significantly suppresses formation of horizontal coherent vortexes, leading to
poor momentum exchange between vegetation and non-vegetation regions. The low
momentum from the vegetation region is transferred to the neighboring open water
region with high momentum, resulting in reduction of the longitudinal velocity.
On the other hand, large-scale coherent vortexes arising from both the top and
lateral edges of the canopy both coexist near the canopy top corner, where three-
dimensional mass and momentum exchange are present (Yan, Duan, W.-H. Wai,
et al. 2022)

As suggested by Yan, Duan, W.-H. Wai, et al. 2022, in submerged canopy patches,
secondary circulation caused by turbulence anisotropy, plays a fundamental role,
impacting mass and momentum exchange. In fact, due to the coevolution of multidi-
mensional - vertical and horizontal - coherent vortexes, turbulence anisotropy arises,
influencing both the mean flow and the turbulence field. Turbulence anisotropy
also occurs due to the spatially nonuniform distribution of unidimensional vortexes,
such as the bed tending to inhibit horizontal coherent vortexes.
Naot et al. 1996 proposed an algebraic stress model obtained from the stress
transport equations to study turbulence anisotropy. A simpler approach was
adopted by Yan, Duan, W.-H. Wai, et al. 2022, who studied turbulence anisotropy
by evaluating the difference in vertical and transverse components of Reynolds
shear stresses. They showed the existence of a negative anisotropic zone u′v′ −
u′w′ < 0 along the canopy top edge and positive anisotropic zone u′v′ − u′w′ > 0
along the canopy lateral edge, which indicate the domination of the vertical and
transverse coherent vortexes, respectively. However, the turbulence anisotropy
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effect diminishes near the canopy top corner, which means that the turbulent effect
induced by both vertical and transverse dimensions is equivalent even though the
resultant turbulence attains the maximum. D. Li et al. 2022, highlighting the
strong momentum exchange occurring in the mixing layer, where the fluctuating
streamwise and lateral velocity components contribute to the Reynolds stresses
−u′w′, showed that peaks of the Reynolds stress occur in the main channel at
the leading edge of the canopy patch, as a result of the diverging flow caused by
the blockage of the vegetation. The Reynolds stress increases with the distance
downstream, and its peak shifts towards the canopy.
Given the importance of secondary currents, Yan, Duan, Y.-H. Zhang, et al. 2023
further analyzed the momentum fluxes across the different interfaces of the partially-
distributed submerged canopies, concluding that advection momentum fluxes,
generated by secondary circulations, are equally important as Large Scale Vortexes-
driven diffusion momentum fluxes near the mixing interfaces. The turbulence
anisotropy-caused secondary flows are responsible for the exchange of fluid between
the vegetated and the non-vegetated regions. For example, they noted a near-bed
clockwise circulation which enables a mean negative transverse velocity from the
neighboring open water to the vegetation canopy above the bed, resulting in high-
momentum flow being transferred at the junction. Unigarro Villota et al. 2023
highlighted the presence also of tertiary circulations for high density patches, whose
size and strength is smaller and whose rotational direction is opposite with respect
to the secondary circulation.

Other phenomena were found to alter the flow structure in partially-obstructed
channels with submerge vegetation. AS an example, Devi and Kumar 2016a using
steel tube structure, studied the change in flow characteristics of alluvial channel
occupied by submerged vegetated patches of different spacing under downward
seepage condition. In particular, they concluded that the pattern of vegetation
inside the patches has an impact on the drag distribution, with low vegetation
spacing offering more resistance to the flow with respect to high spacings which,
instead, allow the flow to enter the canopy region. On the other hand, downward
seepage has an effect on the near-bed velocity, which is increases with respect to
the case without seepage, suggesting that other kind of circulation arise in the
domain. Nevertheless, they concluded that the distribution of Reynolds stresses
seem to not be affected neither by the spacing between stems, nor by the seepage
condition, with the maximum value always laying near the vegetation top, thus
further highlighting the importance of turbulence generated in this region. However,
the quadrant analysis showed that, when there is a downward seepage, ejections
and sweeps have an equal contribution in the region just above of the canopy, unlike
in the no seepage case which is dominated by ejections.
J. Zhang et al. 2020, instead, considered the impact of vegetation density and

22



2.3 – Fully Submerged Canopy Patches

extension, as well as the distance from the vegetation leading edge on the evolution of
velocity, turbulent kinetic energy, and net deposition within a submerged vegetation.
They concluded that vegetation density has an impact on the deceleration of the
flow, with velocity decreasing in the adjustment region inversely proportional to
dimensionless vegetation density. In the fully developed, instead, vegetation density,
along with water depth ratio and channel bulk velocity, has an impact on the net
deposition of sediment and species. Moreover, they concluded that when the width
of the vegetation is significantly larger than its height, the deceleration induces a
vertical updraft, which plays a key role in transporting sediments away from the
bed.

2.3.2 Flexible and Nature-Inspired Vegetation
When the filaments are flexible, other effects may arise due the combined interaction
between the flow and the structures. For example, Zeng and C.-W. Li 2014
highlighted how the leading edge of a finite-length canopy patch deflects more
and vibrates violently if compared to filaments in the fully-developed region. This
effect may reduce the vegetation resistance and slightly increase the length of the
intrusion region as compared to the results obtained with rigid vegetation.

Given the complexity in realizing the setup of flexible canopy patches, not many
studies are to be found in literature to date. Zeng and C.-W. Li 2014 simulated
semi-rigid vegetation patches using plastic strips with rectangular cross-sections. It
was observed that, beyond the leading edge of the canopy in the intrusion region,
the streamwise velocity gradually decreased within the vegetation canopy while
increasing above it. This deceleration of streamwise velocity within the canopy
was accompanied by vertical flow to maintain water mass balance. Consequently,
part of the water entering the canopy was slowed down, while the majority was
deflected upward. Furthermore, an analysis of the vertical turbulent shear stress,
u′v′, revealed that its peak values occurred at the deflected height of the horizontal
edge when the flow reaches a fully-developed state. These findings support the
validity of modeling the top edge of vegetation patches using the two-dimensional
approach of the fully-distributed submerged canopy model.

Pang et al. 2014 conducted a flume experiment on a patch of submerged eel grass - a
highly flexible herbaceous plant common in Chinese lakes - using Acoustic Doppler
Velocimetry (ADV) technique to measure time-averaged velocity, turbulence inten-
sity, and shear stresses. Results indicated that vertical streamwise velocity profiles
within the plant patch display an S-shaped pattern from canopy to root, a shape
that is more irregular than that for more rigid plants, reflecting the extremely
flexible nature of eel grass.
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Unlike simpler plant structures, the eel grass foliage floats and interacts with
the flow in a more complex manner. Thus, within the canopy patch, turbulence
intensity peaks at the canopy top, where foliage movement is most pronounced.
It rises from the water surface down to the canopy and then declines from the
canopy to the roots, with a turning point at the canopy top level. As turbulence is
responsible for the exchange of flow, mass and momentum fluxes are high in this
location. The quadrant analysis revealed a predominance of sweep events below the
canopy, while ejections dominate above and at the canopy top, similarly to what
happens in fully-distributed canopies. However, ejections interact with sweeps, thus,
higher-speed fluid transported by sweeps around the canopy mixes with lower-speed
fluid brought up from near the bed by ejection or outward interactions. reducing
flow, momentum and energy and influencing sediment and pollutant transport.
These unique turbulent patterns are likely a result of the irregular motion of eelgrass
foliage, which affects turbulent flow differently than artificial rigid or flexible plant
models.

Devi and Kumar 2016b conducted experimental measurements on a turbulent
channel partially covered by submerged flexible rice stems, at different transverse
locations to explore the difference in flow characteristics in the vegetated and
non-vegetated regions and at the junction between the two. They highlighted the
role of vegetation in the flow path in redirecting the flow from the vegetated area
towards the non-vegetated region, resulting in erosion within the non-vegetated
zone. This is attributed to the fact that, as flow progresses downstream, an increase
in flow properties like velocity, Reynolds stress, and turbulence intensity is observed
in the non-vegetated region, while the reduction in these flow characteristics within
the vegetated zone suggests that the flow is intensified in the non-vegetated zone.
An examination of the Reynolds stress distribution shows also in this case that
peaks occur near the canopy top within the vegetated region and close to the bed in
the open water, indicating these locations as primary sources of turbulence in their
respective zones. Elevated Reynolds stress and turbulence intensities also appear at
the boundary between vegetated and non-vegetated areas, likely due to lateral flow
and momentum exchange across this interface. Again, quadrant analysis highlights
the significant roles of sweeps and ejections in momentum transfer between regions,
with sweeps notably dominant within the vegetated zone.

Caroppi et al. 2021 investigated the impact of incorporating natural plants through
experimental simulation of a flow in a partly vegetated channel, using Acoustic
Doppler Velocimetry (ADV). They found that, with respect to rigid cylinders,
lateral flow distributions were governed by factors like shear layer differential
velocity, bulk vegetative drag, and the presence of large-scale vortexes. However,
the flexible, natural-like vegetation introduced unique flow-altering mechanisms,
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especially at the junction between the vegetated side and the open water region.
Features like plant morphology, spacing, and the dynamic movement of flexible
foliage enabled vortexes to penetrate deeper into the vegetated zone, with shear
penetration being 6 − 10 times greater than that for rigid cylinders, expanding the
areas for momentum exchange with adjacent open water significantly. Moreover,
lateral momentum transport efficiency in cases with flexible foliated vegetation
was up to 40% higher than in rigid cylinder setups. This suggests that natural
riparian systems with flexible vegetation allow for more extensive and efficient
momentum transfer across vegetated interfaces and within the canopy compared
to rigid vegetation models.

The above mentioned scenarios suggested that modeling submerged vegetation
as rigid cylinders fails to accurately replicate vegetated shear layers influenced
by reconfiguring foliage, highlighting the importance for major improvements in
representing natural-like vegetation to better understand flow processes in partly-
vegetated natural systems like rivers.

2.4 Filament Dynamics

Several studies focused on characterizing the behavior of plants and filaments when
hit by an incoming flow, given its importance on natural and industrial processes.
For instance, the movement of vegetation may alter the photosynthesis of the
plants, since it alters the amount of light which reaching plants through shedding,
but also the growth of the plants themselves (Sinoquet et al. 2001, H. M. Nepf
2012). Another example includes new technologies focused on the production on
clean photovoltaic using of high efficiency flexible inorganic films and photovoltaic
fibers and filaments, for which the flux of light hitting these structures must be
maximized (Dolez 2021).

When examining flexible filaments affected by flow, a strong coupling between the
dynamics of the fluid and the structure exists, as the filaments not only alter the
fluid behavior above the canopy but are also influenced by the flow itself. Therefore,
a deep understanding of the couple dynamic is essential. Py, E. D. Langre, et
al. 2006 developed a fully coupled model in which wind fluctuations and plant
dynamics interact via a drag term, which impacts canopy dynamics and is therefore
integrated into the linearized momentum equation. This allowed to demonstrate
that a lock-in mechanism arise, similarly to that observed in vortex-structure
interaction problems, thereby further illustrating the strong coupling between the
filaments and fluid behavior.
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The impact of fluid flow over canopies causes the flexible filaments to bend due to
the currents, leading to a morphological change known as reconfiguration (Vogel
1994), which results in a more streamlined shape (E. d. Langre 2008, Tschisgale
et al. 2021). A flexible body hit by a flow or a current adjusts its shape until the
drag force is balanced by the restoring force generated by its stiffness (H. M. Nepf
2012). Reconfiguration depends on the Cauchy number, which influences shape
changes in plants exposed to flow and decreases the effective cross-sectional area
exposed to the flow, with implications on the drag exerted by the filaments (E. d.
Langre 2008, H. M. Nepf 2012). Indeed, flexible systems bending in steady flows
are known to experience reduced drag compared to their rigid counterparts (Alben
et al. 2002, Leclercq and E. d. Langre 2016). As highlighted by Alben et al. 2002,
the classical theory of high-speed flows fails to predict the drag exerted by flexible
filaments, as it estimates the drag exerted by moving rigid objects as a quadratic
law of the velocity. However, the reshaping of flexible filaments is speed-dependent,
causing plant drag to increase more gradually than what the quadratic law would
predict. The drag force is predicted to scale as D ∝ U2+γ, where γ is the Vogel
exponent, whose value falls in between 0 and -0.7 (H. M. Nepf 2012) with an
estimated value of γ = −2/3 by Alben et al. 2002.

As mentioned in section 2.1, the Kelvin-Helmholtz instability present in the mixing
layer above canopies generates vortexes that are advected downstream by the mean
flow, resulting in a waving motion of the vegetation referred to as homani/monami
(Ackerman and Okubo 1993). Several studies focused on characterizing this collec-
tive motion of the filaments. Fang et al. 2022 focused on a deep characterization
of the interaction between fluid and vegetation canopy within the mixing layer
forming on top of it due to the coherent vortexes arising, as previously described.
In the case of less rigid canopies, their resistance to the flow is minimal, resulting
in a static reconfiguration where the filaments are fully deflected. This configura-
tion acts as a barrier, inhibiting the vertical exchange of momentum between the
interior and exterior of the canopy. As bending rigidity increases, a flapping state
occurs, characterized by greater resistance from the filaments while they remain
less deflected, permitting a vertical movement of low-energy flow from within the
canopy to the outside. Following this, a transitional dual state is observed, where
only patches of vegetation exhibit flapping behavior, leading to a regular waving
state when the bending rigidity is sufficiently high. Finally, a rigid static state is
reached when the filaments become almost completely non-flexible: the filaments
are less deflected but still exhibit coherent motion.

Ghisalberti and H. M. Nepf 2002 gave an explanation for the mechanism generating
the monami/honami. When boundary layer flow meets vegetative drag, the lower
fluid slows down, redirecting the flow above the canopy. This creates a mixing
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layer profile where Kelvin-Helmholtz instabilities arise, forming coherent vortexes
sustained by the shear at the canopy top and moving downstream. As a result,
plants experience a sequence of vortexes and an oscillating streamwise velocity,
which induces a synchronized, progressive waving motion in the vegetation. The
monami/homani motion characterizes all canopies, irrespective of filament flexibility,
as demonstrated by Monti, Olivieri, et al. 2023 through direct numerical simulations.
Consequently, the most flexible canopy exhibits passive behavior, being entirely
driven by the turbulent flow and not displaying the structural response of the
filaments, as also pointed out by Tschisgale et al. 2021.

When turbulent flows hit a clamped flexible fiber, two oscillating states are to be
found, one in which the natural structural response dominates, thus the filament
vibrates at his natural frequency fnat and another one where the fiber oscillates at
the characteristic frequency of the largest turbulent eddies fturb. Later on, Rota
et al. 2024 demonstrated that this applies also for flexible canopies with filaments
fully-distributed on the bottom wall of the domain. While the first scenario is
characteristic of the most rigid filaments, the latter scenario corresponds a motion
of the filament which is compliant with that of the flow, independently on its
structural parameters (Foggi Rota et al. 2024). Py, E. D. Langre, et al. 2006
referred to the state in which the instability frequency locks onto the swaying
frequency of the plants as lock-in. The lock-in effect confirms that the governing
mechanism for the dynamic motion of vegetation is indeed a coupling of the mixing
layer and structural property.

2.5 Numerical Simulations of Canopy Flows
The majority of the studies in literature concerning canopy flows are experimental.
Rigid plants are usually modeled as cylinders made of wood (e.g. C. Liu, Hu, et al.
2018), plastic (e.g. Yan, Duan, W.-H. Wai, et al. 2022) or steel (e.g. Devi and
Kumar 2016a), while flexible filaments are represented either by real vegetation
(e.g. Py, E. d. Langre, et al. 2005, Pang et al. 2014, Caroppi et al. 2021) or flexible
plastic fibers (e.g. Zeng and C.-W. Li 2014).
Different experimental approaches have been adopted. For example, Py, E. d.
Langre, et al. 2005 used Particle-Imaginery-Velocimetry (PIV) algorithms. However,
Acoustic Doppler Velocimetry (ADV) is the most widely used (e.g. Pang et al.
2014, Caroppi et al. 2021). Moreover, to highlight large-scale coherent structures
arising in canopy flows, tracer dye visualization have been performed. For example,
C. Liu, Hu, et al. 2018 used fluorescein dye excited by a ultraviolet light, while
Yan, Duan, W.-H. Wai, et al. 2022 used green tracer dye. However, as highlighted
by Monti, Olivieri, et al. 2023, experimental investigations face significant technical
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challenges, particularly in measuring the spatial configuration of fluid flow within
the canopy region and isolating the effects of various governing parameters, such
as the Cauchy and Reynolds numbers, the solid-to-fluid density ratio, and reduced
velocity. These challenges can be addressed by complementing experimental studies
with computational approaches, such as direct numerical simulations (DNS) or
large-eddy simulations (LES), which provide valuable support in analyzing these
complex dynamics.

The mathematical characterization of canopy flows remains an area of active
theoretical investigation, with ongoing efforts to develop models that capture the
phenomena accurately without imposing overly restrictive simplifications. Cui and
Neary 2008 highlighted how Reynolds-Averaged Navier-Stokes (RANS) models with
isotropic turbulence closures successfully simulate the time-averaged flow features,
but are not universal and provide only limited descriptions of turbulence statistics,
since they solve Reynolds equations for the mean velocity field, while the Reynolds
stresses, which appear as unknowns, are modeled. Among the different closure
models, Rahimi et al. 2023, for example, used the k − ε closure model. Large Eddy
Simulation (LES) appeared to be in fairly good agreement with the measurements,
but there are no significant improvements compared to RANS simulations, as sown
by Cui and Neary 2008. Their study demonstrated the capability of LES models
in providing detailed information about the tridimensional turbulence field and
anisotropy of the Reynolds stresses, which seemed to be really difficult to obtain
using even the most advanced experimental methods.

Direct Numerical Simulations (DNS) are employed to achieve a high level of
accuracy in the analysis of turbulence and turbulent flows. DNS has proven
invaluable in complementing experimental studies by offering detailed insights
that are unattainable through other methods. However, the main limitation of
DNS lies in its substantial computational cost, which scales approximately with
Re3 for turbulent channel flows. This steep increase in computational expense
with higher Reynolds numbers restricts DNS to low or moderate Reynolds number
flows. Despite this limitation, the Reynolds numbers characteristic of canopy flows
typically fall within the range that DNS can effectively handle (Pope 2000).

2.6 Present Thesis
Although the works presented by Yan, Duan, W.-H. Wai, et al. 2022, Yan, Duan,
Y.-H. Zhang, et al. 2023, Yan, Jia, et al. 2023 and Unigarro Villota et al. 2023 are
one step forward in the study of the complex phenomena and turbulence dynamics
happening in fully submerged canopy patches, they do not account for the majority
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of natural scenarios. Indeed, the vegetation in still modeled as rigid cylinders, while
in most real applications of these kind of flows vegetation needs to be modeled as
flexible elements. Pang et al. 2014 and Caroppi et al. 2021 went one step further,
considering complex geometries which aim to resemble aquatic plants with branches
like Potamogeton Malaianus or Myriophyllum Spicatum. On the other hand, flexible
filaments are frequently employed to simulate the response of underwater seagrass
like Zostera Marina or Vallisneria Spiralis. While rigid cylinders represent a pure
fluid-dynamics problem, the importance of the fluid-structure interaction in flexible
canopy patches is still an interesting scenario, which needs further investigation.
Indeed, understanding the filaments motion regimes may give interesting insight in
many fields.

Another important aspect of research on canopy flows involves their mathematical
modeling. It has been observed that the majority of studies addressing canopy
flows rely predominantly on experimental techniques. While this experimental
approach is effective for investigating rigid canopies, certain challenges arise when
dealing with flexible elements. For instance, although the movement of plants and
vegetation in response to fluid flow is visually apparent, accurately measuring this
motion presents several difficulties. As highlighted by E. d. Langre 2008, most
plants are characterized by their lightweight and flexible structures, which contrasts
sharply with the properties of most devices used for displacement monitoring. Even
minor modifications, such as adding a few grams or attaching a small spring to a
plant organ, can significantly alter its dynamics and consequently affect the results.
Furthermore, while Reynolds-Averaged Navier–Stokes (RANS) and Large Eddy
Simulation (LES) approaches are effective for capturing mean flow characteristics,
Direct Numerical Simulation (DNS), despite its considerably higher computational
cost, remains the most precise method for analyzing the complex interactions within
canopy flows.

Given the aforementioned challenges, high-fidelity direct numerical simulations
have been conducted as part of this thesis to investigate the flow within a partially
obstructed channel containing submerged patches of vegetation. The primary
objective is to analyze both the flow behavior and the dynamics of the filaments,
with the goal of highlighting the interconnection between the two.
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Chapter 3

Simulation Setup and
Methods

3.1 Simulation Setup

3.1.1 Computational Domain

For each of the considered scenarios - canopy patch, full canopy and open channel -
the computational domain consists in a three-dimensional box, whose dimensions
are scaled with respect to the parameter H which denotes the height of the channel:

Lx × Ly × Lz = 2πH × H × 1.5πH

Figure 3.1: The Computational Domain is a box, whose dimensions Lx×Ly ×Lz =
2πH × H × 1.5πH, where H is the height of the channel.

31



Simulation Setup and Methods

As highlighted by Rota et al. 2024, the domain length in the homogeneous direction
is adequate to contain the largest turbulent structures, while the vertical extent of
the domain with respect to the height of the filaments indicates that the simulated
canopy is submerged.

A Cartesian right-handed reference frame is adopted, with the flow streaming
in a direction aligned with the x axis. The y axis represents the wall-normal
direction and extends vertically from the bottom wall of the channel, while the z
axis corresponds to the spanwise direction and closes the reference frame, as in
figure 3.1.

3.1.2 Filaments
While the open channel scenario does not include filaments, both the canopy
patch and fully-distributed canopy configurations incorporate filaments that are
clamped to the bottom wall of the domain. These filaments are arranged in a
semi-random pattern to minimize preferential flow effects. In the fully-distributed
canopy configuration, the filaments completely cover the bottom wall, whereas in
the canopy patch configuration, the filaments occupy only a portion of the domain.
This partial coverage divides the domain into two distinct regions: one vegetated
and the other non-vegetated, as shown in figure 3.2. As a result, the arrangement of
the filaments introduces an additional edge aligned with the streamwise direction,
in addition to the horizontal edge formed at the top of the canopy.

To arrange the filaments, the vegetated region of the domain was divided into a grid

Figure 3.2: Configuration of the filaments in the computational domain for the
canopy patch scenario. The bottom wall of the domain has been divided into
nx × nz = 144 × 54 tiles, each containing a randomly allocated filament.
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of nx×nz = 144×54 tiles for the canopy patch configuration and nx×nz = 144×108
tiles for the fully distributed canopy. Within each tile, a single filament was placed
in a random position. Consequently, the canopy patch contains a total of 7776
filaments, while the fully distributed canopy includes 15,552 filaments. Each
filament is modeled as a line of nL = 32 Lagrangian points, which generalize the
Euler-Bernoulli beam model. This approach allows for finite deflections while
enforcing an inextensibility constraint. The undeflected height of the filaments is
set to one-quarter of the channel height, such that h = 0.25H.

As introduced in Chapter 1, the flexibility of the filaments is described through the
Cauchy number:

Ca = ρfdh3U2
b

2γ
,

where ρf is the density of the fluid, h is the height of the filaments, Ub is the bulk
velocity and γ is the bending rigidity of the filaments. It represents the ratio of
the force exerted on the filament by the fluid to the restoring force exerted by the
filaments. Two different values of the Cauchy number are considered, specifically
Ca = 10 and Ca = 100. Since a higher Cauchy number corresponds to greater
filament flexibility, the first value represents a scenario where the filaments are
nearly rigid but still exhibit some bending under the influence of the flow. In
contrast, the latter value corresponds to highly flexible filaments that fully deflect
in response to the flow, capturing two limiting cases of filament behavior. This
is further supported by the findings of Foggi Rota et al. 2024, who demonstrated
that for sufficiently high Cauchy numbers (Ca > 50) the response of the filaments
approach a frequency which is independent from their structural characteristics.
Conversely, at lower Cauchy numbers, the filaments oscillate predominantly at
their natural frequency.

3.1.3 Fluid Flow
We assume that the fluid can be modeled as an incompressible Newtonian fluid,
governed by the mass conservation and the momentum balance equations:∇ · u = 0,

∂u
∂t

+ ∇ · (uu) = − 1
ρf

∇p + ν∇2u + ffib + ffor,
(3.1)

where u(x, t) denotes the velocity field, ρf the fluid vdensity, p(x, t) the pressure
field, ν the kinemantic viscosity. Two forcing terms have been taken into account:
ffib accounts for the presence of the filaments in the fluid flow describing the force
field acting on the fluids and computed though a Lagrangian Immersed Boundary
Method, while ffor is the homogeneous force field, uniformly applied to achieve at
every time step the desired flow rate.
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When performing numerical simulations of flow within a duct, an external forcing
to drive fluid motion against viscous friction is required. Typically, this is achieved
by maintaining a constant value for either the flow rate or the pressure gradient
(Hasegawa et al. 2014). In order to obtain the desired flow rate, the forcing term
ffor introduced in paragraph 3.1.3 is the pressure gradient, computed as:

ffor = Ub − Û

dt
x̂,

where x̂ is the versor in the streamwise direction, dt is the simulation time-step, Ub

is the bulk velocity and Û is the streamwise velocity component averaged over the
entire domain volume V

Û = 1
V

ÚÚÚ
V

udV,

Therefore, for all the considered scenarios, the bulk Reynolds number is constant
and set to the value

Reb = UbH

ν
= 5000,

where H is the height of the channel, ν is the kinematic viscosity and Ub is the
bulk velocity defined as

Ub :=
sss

V u(x, y, z)dVsss
V dxdydz

,

(V is the volume of the computational domain). Establishing that constant bulk
Reynolds number enables fully developed turbulence above the vegetated region.

To discretize the fluid flow, for all the three scenarios an Eulerian grid made up
of Nx × Ny × Nz = 1152 × 384 × 864 points has been adopted. While the spacing
is homogeneous in both the streamwise x and spanwise z directions, a stretched
grid is adopted in the wall-normal direction in order to capture the sharp velocity
gradients arising near the canopy tip. Thus, the spacing in the streamwise and
spanwise direction is set to ∆x/H = 0.0055 and ∆z/H = 0.0055 respectively, while
the wall-normal spacing, starting from a uniform spacing of ∆y/H = 0.002 for
y/h ∈ [0.0, 0.3], gradually increases, reaching ∆y/H = 0.004 at the top wall of
the domain, that is y/H = 1. This was proven to be compliant with the grid
requirements for Direct Numerical Simulation (DNS) of turbulent flows. In fact,
the accuracy of turbulence statistics predictions near the wall in DNS of turbulent
flows is highly sensitive to the resolution of the computational grid, particularly
in the wall-normal direction. To effectively capture the boundary layer behavior,
the grid must adequately resolve all three regions of the inner layer: the viscous
sub-layer, the buffer layer, and the logarithmic layer. Insufficient grid resolution
in one or more directions can lead to errors in both mean flow properties and
higher-order turbulence statistics. To ensure grid spacing is independent of the

34



3.2 – Mathematical Methods

Reynolds number, it is typically defined in terms of the non-dimensional wall unit,
y+. Standard guidelines for DNS grids in wall-bounded turbulent flows include
placing the first grid point below y+ = 1 and ensuring at least 10 grid points are
within y+ = 10. These conditions are often achieved by locating the first grid point
close to the wall y+ = 1 and increasing the grid spacing away from the wall, often
using a geometric progression (Ghiasi et al. 2018).

3.2 Mathematical Methods
The simulations have been performed with OIST’s in-house solver Fujin (Fujin
Code 2020). We, therefore, consider the generic mathematical formulation:ρ

1
∂ui

∂t
+ ∂uiuj

∂xj

2
= ∂σij

∂xj
+ fi, σij = −pδij + µ

1
∂ui

∂xj
+ ∂uj

∂xi

2
∂ui

∂xi
= 0,

(3.2)

representing the 3D incompressible Cauchy equation.

3.2.1 Time Advancement
To deal with the incompressibility constraint, a fractional step-method is adopted for
the temporal advancement of the numerical solution. Indeed, the primary challenge
in achieving a time-accurate solution for incompressible flow stems from the absence
of an explicit time-derivative in the continuity equation. Thus, mass conservation is
enforced through an implicit coupling between the continuity equation and pressure
within the momentum equations, which leads to the Poisson equation (Kim and
Moin 1985).

The fractional-step method consists in the following steps (Wendt 2009):

1. Prediction Step: assuming a random pressure distribution p∗, a velocity
field V ∗ which does not necessary satisfy the incompressibility constraint,
given by the diverge free velocity field ∇ · V = 0, is calculated by solving the
momentum equation.

2. Projection Step: to enforce incompressibility, the intermediate velocity field
calculated during the prediction step is projected onto a divergence-free field
and the correct pressure field is calculated.

3. Correction Step: once the pressure field such that the continuity equation is
satisfied is calculate, the final divergence-free velocity field can be calculated
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Prediction Step

In order to calculated the predicted velocity field, we consider the momentum
equation 3.2:

∂ui

∂t
= −∂uiuj

∂xj

+ 1
ρ

∂σij

∂xj

+ fi, σij = −p∗δij + µ

A
∂ui

∂xj

+ ∂uj

∂xi

B
(3.3)

where p∗ is the assumed pressure field which does not necessarily satisfy the
continuity equation. A second order Adams-Bashforth scheme for the time stepping
is adopted. Considering a generic ODE:

y′(t) = f(t, y(t)), (3.4)

and integrating it between a generic time interval [tn+1, tn+2], we obtain:

y(tn+2) = y(tn+1) +
Ú tn+2

tn+1
f(t, y(t))dt, (3.5)

However, the integral cannot be computed directly, as it depends from y(t) which
is unknown, thus it must be approximated.

The idea behind multi-step methods is based on the fact that the integral can
be approximated using polynomials of varying degrees, where the order of the
scheme is determined by the degree of the polynomial function. Specifically, if the
polynomial used to approximate the integrand is of degree k, the method will be of
order k + 1. Within the multi-step methods, the Adams method are distinguished
into:

• Explicit methods, known as Adams-Bashforth methods;

• Implicit methods, known as Adams-Moulton methods.

Implicit methods are unconditionally stable, but they do not allow for a deter-
mination of the intermediate field. Since our objective in the prediction step is
to determine the intermediate velocity field, it is essential to refer to the explicit
methods. This is also due to the fact that, when considering an IBM method,
the fluid-structure interaction is accounted for through an external moment/force
exerted by the structure on the surrounding fluid. Because the introduction of
the external forcing is taken into account in the uncorrected predicted field, it is
immediately clear that the latter must be known.

The second order Adams-Bashforth scheme, in order to evaluate the integralÚ tn+2

tn+1
f(y, t)dt,
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adopts a linear polynomial interpolation between tn and tn+1 and the value at tn+2
is extrapolated. The calculations of the integral have been reported in Appendix
A, leading to the numerical method:

yn+2 = yn+1 + ∆t
33

2f(yn+1, tn+1) − 1
2f(yn, tn)

4
. (3.6)

Applying the second order Adams-Bashforth scheme to equation 3.3, we can
determine the predicted velocity field u∗

i :

u∗
i − un

i

∆t
= 3

2rhsn
i − 1

2rhsn−1
i , (3.7)

with the right hand side:

rhsi = −∂uiuj

∂xj

+ 1
ρ

∂σ′
ij

∂xj

+ fi

ρ
,

where un
i is the velocity field at the n-th time step which respects the continuity

equation, while rhsn
i and rhsn−1

i are the right-hand side of equation 3.3 at the time
steps n-th and (n − 1)-th respectively. Finally:

u∗
i = un

i + ∆t
33

2rhsn
i − 1

2rhsn−1
i

4
.

Projection Step

The predicted velocity field V∗ is used to calculate the correct pressure field. This is
achieved by solving the numerical Poisson equation, which, in the case of constant
density, writes as:

∂2p

∂xi∂xi

= ρ

∆t

∂u∗
i

∂xi

= Si, i = 1,2,3

where u∗
i , i = 1,2,3 are the three components of the predicted velocity field. Since

we are dealing with a 3D problem, the left-hand side of the equation, leads to an
epta-diagonal matrix:

pi−1,j,k − 2pi,j,k + pi+1,j,k

∆x2 + pi,j−1,k − 2pi,j,k + pi,j+1,k

∆y2 + pi,j,k−1 − 2pi,j,k + pi,j,k+1

∆z2 .

The pressure field can be divided into to contributes:

p = p∗ + p′, (3.8)
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where p∗ is the assumed pressure field considered in the prediction step, p′ is the
pressure correction and p is the pressure field such that the velocity field respects
the incompressibility constraint. Thus, p∗ is known and by substituting p′ into
the Poisson Equation, we can obtain a pressure correction which leads to the
desired pressure field. It is worth noting that an analogous approach consists in
not considering the pressure field in the projection step, thus considering p∗ = 0,
which leads to p = p′.

Different methods can be adopted to solve the Poisson Equation. As highlighted by
Dorr 1970, discrete models of the Poisson Equation involve systems of very large
dimensions, which cause direct methods like Gaussian elimination not efficient.
Other direct methods which take advantage of the block structure of the linear
equations, but, when dealing with really large matrices, they become expensive from
both a computational and a memory point of view. Tensor products approaches
have also taken into consideration, but, given the huge amount of multiplications
involved, they are not really efficient. Instead, an efficient way to solve the Poisson
equation and simplify the matrix structure involves the computing of Fourier
transforms, commonly used in the Fourier series methods. The discrete Fourier
transform is computed in the homogeneous directions:

p̃i,j,k = Fi(pi,j,k),

thus obtaining a reduced system which is solved through the Gaussian elimination
method. Finally, an inverse discrete Fourier transform allows to return to the
physical space.

Correction Step

As the pressure correction is now known, considering once again the momentum
equation:

un+1
i − u∗

i

∆t
= −1

ρ

∂p′

∂xi

,

the correct velocity field is calculated

un+1
i = u∗

i − ∆t

ρ

∂p′

∂xi

,

and the incompressibility equation is respected.

The step project method has been summarized in the scheme in figure 3.3.
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3.2.2 Space Discretization
A second order central finite difference scheme is used for space discretization of
variables. Therefore, the first derivative of a generic variable f with respect to a
generic direction x computed in a generic point x0:

∂f

∂x

------
x0

≃ f(x0 + h) − f(x0 − h)
2h

,

while the second derivative:

∂2f

∂x2

------
x0

≃ f(x0 + h) − 2f(x0) + f(x0 − h)
h2 .

Additionally, a staggered grid arrangement is used, where velocity components are
defined at the cell faces, while other variables, including pressure, are located at
the cell centers. Linear interpolation is applied to facilitate data transfer between
the faces and centers.

3.2.3 Filament Dynamics and Lagrangian-IBM
When considering flexible filaments, we no longer deal with a pure fluid-dynamics
problem, since there is a strong coupling between the filament and the fluid dynamics
(Py, E. D. Langre, et al. 2006). Thus, the fluid-structure interaction is addressed
to with a Lagrangian Immersed Boundary Layer Method.

As previously mentioned, each flexible filament is modeled as a line of nL = 32
Lagrangian points. This choice is not random: as highlighted by Rota et al. 2024,
as flexible filaments tend to follow the flow, their velocity is closer to that of the
fluid if compared to rigid filaments, resulting in too strict implications on the time
step if a higher number of Lagrangian filaments was adopted.

The dynamics of the filaments is modeled using the approach proposed by Ba-
naei et al. 2020, which is an extended version of the Distributed-Lagrangian-
Multiplier/Fictitious-Domain (DLM/FD, Yu 2005) formulation. The flexible fil-
aments are described with the generalized Euler-Bernoulli beam model coupled

Figure 3.3: Scheme of the Step Projection Method
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with the inextensibility constraint (Yu 2005, Huang et al. 2007, Banaei et al. 2020).
Given X(s, t) the position of a Lagrangian point in the filament as a function of
the curvilinear abscissa s and of time t:∆ρ̃∂2X

∂t2 = ∂
∂s

1
T ∂X

∂s

2
− γ ∂4X

∂s4 − F,
∂X
∂s

· ∂X
∂s

= 1,
(3.9)

where T is the tension force along the filament axis, γ the bending rigidity, F the
forced exerted by the fluid on the filament and ∆ρ̃ = (ρs − ρf)πd2/4 the density
difference between the filaments and the surrounding fluid.
The system of equation 3.9 is then closed enforcing boundary conditions. In fact,
the filaments are clamped on the bottom wall (s = 0), while their extreme (s = h)
is free to oscillate, thus: 

X|s=0 = X0 s = 0
∂X
∂s

|s=0 = (0,1,0) s = 0
∂2X
∂s2 |s=h = ∂3X

∂s3 |s=h = 0 s = h

T|s=h = 0 s = h

(3.10)

Equation 3.9 along with the boundary conditions is solved following the approach
outlined by Huang et al. 2007. Thus, the fluid motion, defined on an Eulerian grid,
and the filament motion, defined on a Lagrangian grid, are independently solved,
while the fluid-structure interaction is accounted through a feedback law. At every
time step the fluid velocity u is calculated and then interpolated at the structure
points. We call uL the fluid velocity interpolated on a specific Lagrangian point
of the structure and uIBM the velocity of the filament at the same Lagrangian
point. The transformation of the velocity between the fluid-Eulerian grid and the
filament-Lagrangian grid is realized through the Dirac delta function:

uL(s, t) =
Ú

Ω
u(x, t)δ(X(s, t) − x)dx.

The Lagrangian force exerted by the fluid on the filaments is a linear function of
the difference between these two velocities:

F = β(uIBM − uL),

where β is a properly defined coefficient. Finally, the Lagrangian force is projected
on the Eulerian grid to compute the back-reaction of the filaments on the nearby
fluid:

f(x, t) = ρ
Ú

Γ
F(s, t)δ(x − X(s, t))ds.
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Figure 3.4: Comparison of the mean streamwise velocity profile and Reynolds
shear stress between experimental data by Shimizu et al. 1991 and numerical data
computed with the code. Rota et al. 2024.

3.3 Code Validation
The accuracy of a code is typically assessed by comparing its predictions to real-
world observations, indicating how well the mathematical model represents actual
conditions or behaviors. Thus, the importance of validation when dealing with
computational models (Borg et al. 2014).

3.3.1 Fluid
A comparison between simulation results and experimental data, as presented by
Rota et al. 2024 and Monti, Olivieri, et al. 2023, is shown in figure 3.4. Both the
mean streamwise velocity profile and the Reynolds shear stress obtained from the
simulations are compared to the experimental measurements of Shimizu et al. 1991,
which investigated turbulent flow at Reb = 7070 over a rigid canopy with a height
of h = 0.65H. The agreement between the simulation and experimental results
demonstrates that the code accurately captures the fluid dynamics of the studied
phenomena.

3.3.2 IBM
The validation of the Lagrangian-IBM, available at Fujin Code 2020, has been
conducted basing on either the results obtained by Huang et al. 2007 or theoretical
results. A filament of length c and flexibility γ, with a density difference ∆ρ̃
between the filament and the fluid, is considered. Initially held stationary with an
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S1 S2 S3
c 1 m 1 m 1 m

nL 100 100 65
∆ρ̃ 1 kg/m 1 kg/m 1.5 kg/m
γ 0.01 kgm3/s2 0.01 kgm3/s2 0.0015 kgm3/s2

g 10 m/s2 - 0.5 m/s2

ν - - 0.005 m2/s

Table 3.1: Parameters used in the three considered scenarios for validating the
IBM code: a hanging filament under gravity (S1), a unsupported and cantilevered
fiber with no loads applied (S2) and a hanging filament in a uniform form with
velocity V (S3).

angle of 0.1π from the vertical direction, after being released, the filament starts
oscillating. It is discretised with a total of hL Lagrangian points. Three different
scenarios, whose sketches are shown in 3.5 have been simulated:

1. A hanging filament under gravity, where the driving force is the gravity force;

2. A unsupported and cantilevered fiber under no loads, thus subjected to free
vibrations;

3. An hanging filament in a uniform flow with velocity V, where the driving force
is a combined effect of the viscous fluid flow ν and gravity force g

The values of the parameters for the three analyzed scenarios have been reported
in table 3.1.

Graphs in figure 3.6 compare the values computed by the code with either data
obtained by Huang et al. 2007 or theoretical formulations.

(a) Hanging filament under gravity (b) Hanging filament in uniform flow

Figure 3.5: Sketch of the problems considered for IBM validation: a hanging
filament sujected to gravity force (a) and a hanging filament in a uniform flow (b)
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For the filament oscillating under the gravity force (figure 3.6a) and for the hanging
filament in a uniform flow (3.6c), the time evolution of the y-coordinate of the free-
end of the filament has been reported. Results obtained by Huang et al. 2007 are
shown as red dots, while the numerical results obtained by the code are reported as
blue lines. On the other hand, for the filament performing free oscillations 3.6b, the
frequency of the free oscillations computed (red dots) is plot against the analytical
solution (blue lines), described by:f = 22.3733

2πc2

ñ
γ

∆ρ̃
Free fiber

f = 3.5161
2πc2

ñ
γ

∆ρ̃
Clamped fiber

The graphs confirm the ability of the code of addressing the dynamics of the
filaments, as evidenced by the correspondence between the code’s calculated data
and the comparative data.

(a) S1 (b) S2 (c) S3

Figure 3.6: Filament code validation, Fujin Code 2020. Time evolution of the
y-coordinate of the free end of the filament is shown for the cases of the filament
oscillating under gravity (Panel (a)) and the hanging filament in a uniform flow
(Panel (c)). Red dots represent results from Huang et al. (2007), while blue lines
indicate the numerical results from the current code. For the case of the filament
performing free oscillations (Panel(b)), the computed frequency of oscillations (red
dots) is plotted against the analytical solution (blue lines)
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3.4 Convergence of the Simulations
Channel flows require external forcing to counterbalance the viscous forces that
arise, which is typically achieved by either specifying a constant flow rate or a
fixed pressure gradient Hasegawa et al. 2014. In our simulations, we employed the
latter approach, thus, to verify the convergence of the simulations, we examined
the stabilization of the pressure gradient toward a constant value. Since in channel
flows pressure is a function of only the streamwise direction and is independent of
the other two spatial directions (Pope 2000), the pressure gradient writes as

∂p

∂x
= dp

dx
,

as in figure 3.7. For both the canopy patch simulations (Ca = 10 in panel 3.7a
and Ca = 100 in panel 3.7b), after eliminating the initial transitory, the pressure
gradient stabilizes, oscillating within an amplitude range of 0.003.

To further verify convergence, we looked at the shape of the streamwise velocity
profiles (Figure 3.8). The velocity profiles in both the vegetated (panels 3.8a and
3.8c) and non-vegetated regions (panels 3.8b and 3.8d) were compared between the
final iteration (blue profiles) and the profiles at three-quarters of the total iterations
(red profiles), ensuring that significant changes do not occur in the profile shape as
the simulation progresses, which would indicate non-convergence.

(a) Ca = 10 (b) Ca = 100

Figure 3.7: Numerical convergence of the simulations for Ca = 10 (a) and
Ca = 100 (b). For both simulations, the value of the pressure gradient oscillates
in a range of values of amplitude 0.003, thus the simulations can be considered to
have reached convergence.
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3.4 – Convergence of the Simulations

The limited fluctuation of the pressure gradients and the velocity profiles indicate
that the simulations have reached convergence.

(a) Vegetated side, Ca = 10 (b) Non vegetated side, Ca = 10

(c) Vegetated side, Ca = 100 (d) Non vegetated side, Ca = 100

Figure 3.8: Numerical convergence of the simulations for Ca = 10 (panels (a) and
(b)) and Ca = 100 (panels (c) and (d)). The velocity profiles in both the vegetated
(panels (a) and (c)) and non-vegetated regions (panels (b) and (d)) were compared
between the final iteration and the profiles at three-quarters of the total iterations.
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Chapter 4

Results

Since the goal of the thesis is to study the behavior of both the fluid and the
filaments, the results have been divided into two parts. Section 4.1 focuses on fluid
dynamics, starting with the mean flow and velocity profiles 4.1.1, followed by an
analysis of fluctuations. This includes examining how they balance the forcing term
in the shear equation on average 4.1.2, then investigating instantaneous events
4.1.3 and correlations 4.1.4. Once the behavior of the fluid is known, section 4.2
focuses on filament dynamics by examining the mean position of canopy tips 4.2.1,
the average deflection of filaments 4.2.2 and the spectral analysis of the velocity of
the tips to better understand how the filaments oscillate 4.2.3.
Knowing that the domain is divided into two regions and considering for convenience
the system as a natural canopy, in the following we will address the regions covered
by filaments as the vegetated side, while the region without filaments as the
non-vegetated side.

4.1 Fluid Dynamics

4.1.1 Mean Flow and Velocity Profiles
To gain deeper insight into the fluid’s behavior as it flows above and through a
canopy region, it is essential to first examine the mean fluid field and analyze
the different velocity components. Quantities denoted with angle brackets ⟨·⟩
are averaged both in time and along the homogeneous directions. For the fully
distributed canopy and open channel scenarios, this averaging is performed over
both the streamwise and spanwise directions. In contrast, for the canopy patch
scenario, averaging is carried out only in the streamwise direction. Consequently,
while velocity profiles in the fully distributed canopy and open channel scenarios
depend solely on the wall-normal coordinate, in the canopy patch scenario, they
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(a) Ca = 10 (b) Ca = 100

(c) Ca = 10 (d) Ca = 100

(e) Ca = 10 (f) Ca = 100

Figure 4.1: Streamwise, Wall-normal and Spanwise velocity fields averaged in
time and in the streamwise direction for Ca = 10 (a) and Ca = 100 (b). The
black lines represent the extent of the canopy region when the filaments are at rest
without deflection.
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vary with both the wall-normal and spanwise coordinates.

Focusing on the canopy patch scenario, Figure 4.1 illustrates the distribution of the
velocity components, each normalized by the global bulk velocity Ub, for the two
Cauchy numbers, Ca = 10 and Ca = 100. It is worth remembering that the z/H
represents the spanwise direction, while y/H is the wall-normal direction, both
normalized basing on the height of the channel H.

Several key features can be observed. Starting with the streamwise velocity
component ⟨u⟩/Ub, the highest velocity values are found in the upper region, where
no vegetation is present, and the fluid flow is less affected by the canopy. Conversely,
within the canopy itself, the velocity decreases towards zero, as highlighted by
Bennett et al. 2002, indicating that the filaments act as a barrier to the flow. The
presence of the canopy is noticeable even above the filaments, with the undeflected
height of the filaments marked by the black horizontal line. The black vertical
lines indicate the boundary between the vegetated and non-vegetated regions. In
the rigid scenario Ca = 10, the shielding effect is evident even above the canopy,
where the velocity gradually increases outward from the canopy. This contrasts
with the more flexible scenario Ca = 100 where the velocity increases more slowly.
This difference may be attributed to the greater deflection of the filaments in the
flexible scenario, which results in a different perturbation of the flow just above
the canopy.
As for the wall-normal ⟨v⟩/Ub and spanwise ⟨w⟩/Ub velocity components, the mean

Figure 4.2: Illustration of the secondary circulation and the associated upflow
generated by it.
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behavior of the flow suggests the emergence of vortex structures in the domain,
similar to the secondary circulations highlighted by Unigarro Villota et al. 2023.
The trends of the span-wise and wall-normal velocities are consistent with this
result. These vortexes induce an updraft of low-energy flow above the canopy.

Having established the behavior of the mean flow in the canopy patch scenario,
it is now important to compare it with the fully-distributed canopy and open
channel scenarios. This comparison will help determine whether the problem can
be simplified into two two-dimensional problems, one where the flow above the
vegetated region is treated as a fully-distributed submerged canopy, and the other
where the flow in the main non-vegetated channel is modeled as an open channel.
To achieve this, the vertical velocity profiles must be analyzed.
It is important to note that, unlike the fully-distributed canopy scenario, where the
filaments cover the entire bottom wall of the domain, in the canopy patch scenario,
only half of the bottom wall is covered by vegetation. Therefore, it is of interest
to investigate whether the canopy patch scenario behaves as an intermediate case
between the two other scenarios under consideration. The averaging is performed
over both time and the homogeneous directions. In the canopy patch scenario,
there is only one homogeneous direction - the streamwise direction - whereas in the

Figure 4.3: Spanwise locations at which the velocity profiles have been computed.
The blue profiles are located deep inside the canopy, while the red ones are positioned
towards the center of the non-vegetated region. Black lines represent the extent of
the non-deflected filaments.

50



4.1 – Fluid Dynamics

fully-distributed canopy and open channel scenarios, there are two homogeneous
directions, the streamwise and the spanwise. To account for this, several spanwise
coordinates in the canopy patch scenario have been considered, as shown in Figure
4.3. For each of these spanwise coordinates, the profiles of the different velocity
components have been plotted. The profiles colored in blue represent locations
deep within the canopy, closer to where the periodic condition is imposed, while
those in red are positioned towards the center of the non-vegetated area. The black
lines indicate the extent of the undeflected filaments and are included to clarify
the locations where the profiles have been computed. Only half of the domain is
considered, as the domain is symmetric in the spanwise direction, meaning that
the results are identical for the other half.

Figure 4.4 depicts the streamwise vertical velocity profiles at the different spanwise
coordinates considered, for the two different Cauchy number Ca = 10 in panel
4.4a and Ca = 100 in panel 4.4b. The streamwise velocity is normalized on the
global bulk velocity Ub. The dashed profile is the one at the boundary between the
vegetated and non-vegetated regions, while the dashed horizontal line represents
the canopy tip position when not deflected. The figure highlights the presence of
inflection points, indicated by black dots, in some but not all of the velocity profiles
for both filament flexibilities. According to Rayleigh’s theorem, the existence of an

(a) Ca = 10 (b) Ca = 100

Figure 4.4: Streamwise velocity profiles computed at different locations in the
spanwise direction for Ca = 10 and Ca = 100. The blue profiles are located deep
inside the canopy, while the red ones are positioned towards the center of the
non-vegetated region. The dashed profile is located at the boundary between the
vegetated and non-vegetated side. Black dots represent inflection points of the
velocity profiles. The horizontal dashed line represent the position of the canopy
tips when not deflected.
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inflection point in the velocity profile is a necessary condition for flow instability,
making the flow more susceptible to shear instabilities, such as the Kelvin-Helmholtz
instability. Starting with the profiles inside the vegetated region (colored blue) and
moving towards the center of the domain, two inflection points are identified. These
points then merge into a single inflection point and, since the last velocity profile
within the canopy is the dashed one, this merging occurs in the non-vegetated
region for both Cauchy numbers. This suggests that the canopy may induce flow
instability - and potentially vortex formation - even outside the vegetated area.
The outer inflection point is located near the canopy tip, while the inner inflection
point is within the canopy and closer to the bottom wall. This observation aligns
with the findings of Rota et al. 2024, who identified an outer inflection point due to
the drag discontinuity above the canopy, and an inner inflection point that merges
the velocity profile with the no-slip condition imposed at the bottom wall. As we
move deeper into the canopy from the non-vegetated region, the outer inflection
points stabilize at a height corresponding to the tip of the filaments, whereas the
inner inflection points do not stabilize. This suggests that as we approach the
periodicity condition in the spanwise direction, the flow tends to a configuration
that can be modeled as a fully-distributed canopy. For a higher flexibility, the
outer inflection point moves below the canopy top.

Figure 4.5: Wall-normal locations at which the velocity profiles have been
computed. The blue profiles are located close to the bottom wall of the domain,
while the red ones are positioned towards the top wall of the domain. Black lines
represent the extent of the non-deflected filaments.
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In order to evaluate the effect of the lateral interface, figure 4.6 shows at fixed
locations in the wall-normal direction, the dependence of the average streamwise
velocity, normalized on the global bulk velocity Ub, on the spanwise direction, for
the two different Cauchy numbers Ca = 10 (panel 4.6a) and Ca = 100 (panel 4.6b).
Thus, profiles colored in blue are located closer to the bottom wall of the domain,
while the red ones are close to the top wall, as shown in figure 4.5. In both cases,
the dashed profile is the one located at the average position of the deflected canopy
tips, thus separating the vegetated region to the above flow. The analyzed velocity
profiles reveal the presence of inflection points, indicating the potential formation
of coherent structures at the lateral interface, similarly to what occurs in partially
obstructed channels with emergent vegetation. This is due to the inhomogeneity
in the spanwise direction, which creates an abrupt change in velocity between the
vegetated and the non-vegetated sides.

To compare the canopy patch scenario with the fully-distributed canopy and open
channel scenarios, it is essential to examine the vertical profiles of the streamwise
velocity. In fact, in the two limiting scenarios, the spanwise direction is homogeneous,
meaning that the velocity does not vary in the transverse direction and the velocity
profiles in figure 4.6 cannot be considered.To enable a meaningful comparison, the
velocity profiles shown in figure 4.4 must be normalized to ensure a unit area under
each profile. For this purpose, a new quantity is introduced, the local bulk velocity,

(a) Ca = 10 (b) Ca = 100

Figure 4.6: Streamwise velocity profiles as a function of the spanwise direction
U(z)/Ub computed at different locations in the wall-normal direction for Ca = 10
and Ca = 100. The blue profiles are located closer to the bottom wall of the
domain, while the red ones are positioned towards the top wall of the domain.
The dashed vertical line is located at the boundary between the vegetated and
non-vegetated side.
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Ub(z), that is the bulk velocity calculated at fixed spanwise coordinates z.
It may be defined considering the general definition of bulk velocity:

Ub :=
ss

A⟨u(y, z)⟩dydzss
A dydz

, (4.1)

taking into account that y and z are the coordinates in the wall-normal and spanwise
direction respectively, u is the velocity component in the streamwise direction,
while the symbol ⟨·⟩ represents the averaging in time and in the homogeneous
direction. Given a fixed position in the spanwise direction z, the local bulk velocity
Ub(z):

Ub(z) =
sH

0 ⟨u(y, z)⟩dysH
0 dy

, (4.2)

where H is the height of the channel. This normalization allows to obtain the
velocity profiles in 4.7. The colored lines represent the canopy patch scenario, with
velocity profiles computed at the same spanwise coordinates as in the previous figure.
The blue profiles were computed deep within the canopy, close to the periodic
condition, while the red ones are located near the center of the non-vegetated region.
For the other two scenarios, only one velocity profile is shown, as the averaging

(a) Ca = 10 (b) Ca = 100

Figure 4.7: Velocity profiles of the streamwise velocity component at different
positions in the spanwise direction. The streamwise velocity component is averaged
in time and in the homogeneous direction and has been normalized with the local
Ub in order to compare it to the velocity profiles of the open channel (solid black
line) and of the fully-distributed canopy (dash-dotted black line). The dashed
profile is located at the boundary between the vegetated and non-vegetated regions.
The horizontal dashed line represent the position of the canopy tips when not
deflected.
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is done over time and in both homogeneous directions. Thus, the solid black line
represents the average velocity profile for the fully-distributed canopy scenario, and
the dashed-dot black line corresponds to the open channel scenario. Finally, the
horizontal dashed line represents the tip of the filaments in their undeflected state.

As the velocity profiles in the canopy patch scenario falls between the two limiting
cases of the open channel and fully-distributed canopy, the canopy patch scenario
represents as an intermediate case between the other two. In fact, as the analysis
moves deeper into the vegetated region, the velocity profiles tend to align more
closely with those of the fully-distributed canopy. On the other hand, in the
non-vegetated region, the velocity profiles increasingly resemble those of the open
channel scenario. This behavior is particularly pronounced in the more rigid
case Ca = 10, where the velocity profiles within the canopy approach the fully-
distributed canopy condition more distinctly. In contrast, in the more flexible case,
Ca = 100, the velocity profiles within the canopy do not fully converge to the
fully-distributed canopy scenario. This discrepancy is likely attributable to the
increased deflection and movement of the filaments in the flexible configuration,
which alters the flow dynamics within the canopy.

4.1.2 Shear Equation
Once the dynamics of the mean flow has been studied, we focus on understanding
the behavior of the velocity fluctuations by subtracting the mean flow to the
instantaneous flow field. To do so, we can start by having a look at their role on
average in counterbalancing the forcing term, that is the pressure gradient. To do
so, this section focuses on deriving and analyzing the shear equation, highlighting
the role of the different terms and that of the fluctuations over time.

Taking into account the momentum equation in the streamwise direction

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −∂p

∂x
+ 1

Re

A
∂2u

∂x2 + ∂2u

∂y2 + ∂2

∂z2

B
− D, (4.3)

where D is the drag exerted by the filaments, first the Reynolds decomposition is
introduced:

u = ⟨U⟩ + u′, v = ⟨V ⟩ + v′, W = ⟨W ⟩ + w′, P = ⟨P ⟩ + p′, (4.4)

where ⟨(·)⟩ is a double average in time and in space, while (·)′ refers to the
fluctuation terms. Since we want to find an expression that is valid in all three
analyzed scenarios—canopy patch, fully-distributed canopy, and open channel—the
average in space is performed only in the streamwise direction, which is a common
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homogeneous direction. Therefore, the expression will contain some terms that
are zero for the fully-distributed canopy and open channel, where the spanwise
direction is also homogeneous.

By introducing the Reynolds decomposition into the momentum equation 4.3 and
averaging both in time and in the homogeneous direction, some terms can be
simplified, yielding the following expression:

⟨u⟩∂⟨u⟩
∂x

+ ⟨u′ ∂u′

∂x
⟩ + ⟨v⟩∂⟨u⟩

∂y
+ ⟨v′ ∂u′

∂y
⟩ + ⟨w⟩∂⟨u⟩

∂z
+ ⟨w′ ∂u′

∂z
⟩ =

= −∂⟨p⟩
∂x

+ 1
Re

C
∂2⟨u⟩
∂y2 + ∂2⟨u⟩

∂z2

D
− ⟨D⟩.

By reordering the terms:

1
Re

A
∂2⟨u⟩
∂y2 + ∂2⟨u⟩

∂z2

B
= ∂⟨p⟩

∂x
+ ⟨u⟩∂⟨u⟩

∂x
+ ⟨u′ ∂u′

∂x
⟩ + ⟨v⟩∂⟨u⟩

∂y
+

+ ⟨v′ ∂u′

∂y
⟩ + ⟨w⟩∂⟨u⟩

∂z
+ ⟨w′ ∂u′

∂z
⟩ + ⟨D⟩, (4.5)

which is the average momentum balance. It is important to note that the Reynolds
number is based on the global bulk velocity Ub:

Re = µ

ρUbH
, (4.6)

where µ is the fluid viscosity, ρ the density and H the height of the channel. By
integrating expression 4.5 between the bottom wall (y = 0) and a generic coordinate
in the wall-normal direction y, and explicitly expressing the Reynolds number, it is
possible to derive an expression for the wall shear stress:

− τw

ρUbH
= − µ

ρUbH
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y
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ρUbH

Ú y

0
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0
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⟩dy+
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0
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o
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⟩dy +

Ú y

0
⟨D⟩dy,

(4.7)

where the wall shear stress term arises from the following integration:

µ

ρUbH

Ú y

0

∂2⟨u⟩
∂y2 dy = µ

ρUbH

∂⟨u⟩
∂y

-----
y

− µ

ρUbH

∂⟨u⟩
∂y

-----
0

= µ
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∂⟨u⟩
∂y

-----
y

− τw

ρUbH
.

It is worth noting that, in the most general scenario where there is only one direction
of homogeneity, all the quantities in brackets ⟨·⟩ are functions of both the spanwise
and wall-normal directions.

56



4.1 – Fluid Dynamics

By integrating again equation 4.5 but between the bottom wall (y = 0) and the
top wall of the domain (y = H):

✘✘✘✘✘✘✘✘✘✘✿0µ

ρUbH
· ∂⟨u⟩

∂y

-----
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0
⟨v′ ∂u′
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∂z
dy +
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0
⟨w′ ∂u′
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0
⟨D⟩dy,

(4.8)

where the term µ
ρUbH

· ∂⟨u⟩
∂y

-----
y=H

simplifies, as a free-shear condition is enforced at

the top wall of the domain.

By substituting the expression for the wall-shear stress from 4.7 into equation 4.8,
and rearranging all terms, we finally obtain the final form of the shear equation:-----∂p
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dy. (4.9)

Several terms can be identified, each playing a role in describing how momentum is
transferred, diffused, or advected in the flow, considering both viscous and turbulent
effects:

•
sH

y ⟨D⟩dy is the mean canopy drag term, representing the mean drag exerted
by the filaments;

• µ
ρUbH

∂⟨u⟩
∂y

-----
y

is the viscous shear term due to the viscosity of the fluid, involving

the mean velocity gradient in the wall-normal direction ∂⟨u⟩
∂y

;

• µ
ρUbH

sH
y

∂2⟨u⟩
∂z2 dy is the viscous diffusion term, linked to the diffusion of momen-

tum due to viscous forces in the spanwise direction and involving the second
derivative of the mean velocity with respect to the spanwise direction ∂2⟨u⟩

∂z2 ;

•
sH

y

è
⟨v⟩∂⟨u⟩

∂y
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∂z

é
dy is the mean advection term, representing the advec-

tion of momentum by the mean flow;
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dy is the turbulent shear term, which describes
the mean contribute of fluctuations in transferring momentum.
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Each term plays a different role in balacing the imposed pressure gradient along the
flow direction

--- ∂p
∂x

--- 11 − y
H

2
· H driving the flow. The factor

1
1 − y

H

2
· H accounts

for the variation of the shear stress with height.

Equation 4.9 is valid for all three analyzed scenarios, as it is averaged only in the
streamwise direction. For the fully-distributed canopy and open channel scenarios,
where the spanwise direction is also homogeneous, the equation does not depend
on the spanwise direction, unlike in the canopy patch. Therefore, to obtain a single
plot for each case, the equation is also averaged in the spanwise direction, resulting
in the plots shown in 4.8. The panels in the first column, 4.8a and 4.8d, refer to
the fully-distributed canopy scenario, those in the middle column, 4.8b and 4.8e,
to the open channel scenario, and the panels in the third column, 4.8c and 4.8f,

(a) Ca = 10, full canopy (b) Open Channel (c) Ca = 10, Canopy Patch

(d) Ca = 100, full canopy (e) Open Channel (f) Ca = 100, Canopy Patch

Figure 4.8: Shear stress balance for the three different scenarios - fully-distributed
canopy, open channel and canopy patch - and for different values of Cauchy number
- Ca = 10 and Ca = 100. The forcing term (black line) is balanced by the canopy
drag (light blue line), the viscous shear (red line), the viscous diffusion (yellow
line), the mean advection (purple line) and the turbulent shear (green line).
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to the canopy patch scenario. Each row takes into a account a different flexibility
of the filaments, with the panels in the first row referring to the more rigid case
Ca = 10 and the ones in the second row referring to the more flexible scenario
Ca = 100. Each line represents a different contribution to balancing the driving
pressure gradient, represented by the black line: canopy drag (light blue), viscous
shear (red), viscous diffusion (yellow), mean advection (purple), and turbulent
shear (green).

Starting with the fully-distributed canopy scenario, it is evident that the forcing
term is balanced by three main contributions: the viscous shear (red line), the
turbulent shear (green line), and the canopy drag (light blue line). Near the bottom
wall of the domain, the canopy drag dominates, fully balancing the forcing term at
the wall. As we move in the wall-normal direction, the canopy drag decreases and
becomes zero at the deflected tips of the filaments, as expected. In contrast, the
turbulent shear increases as we move away from the bottom wall, becoming the
dominant term just below the filament tips. Lastly, the viscous shear, although less
significant compared to the other two contributions, reaches its peak at different
locations. In the rigid scenario, it peaks at the deflected filament tips, while in the
flexible scenario, its maximum occurs within the canopy, just below the top.

In the open channel scenario, instead, the primary contributors are the viscous
shear and the turbulent shear, but there is no drag at all, consistent with the
absence of filaments in the domain. Near the bottom wall the viscous shear is more
significant, but overall, the turbulent shear has a dominant role.

For the canopy patch scenario, also the mean flow plays a key role in balancing
the forcing term. In addition to the viscous shear, turbulent shear, and canopy
drag, mean advection also contributes significantly. At the bottom wall, the canopy
drag remains the most important term, as in the fully-distributed canopy scenario.
However, unlike in the fully-distributed canopy, the canopy drag is not the only
contributor at the bottom wall, since there is also a contribution from the viscous
shear. While in the fully-distributed canopy scenario the viscous shear showed a
single peak near the deflected filament tips for Ca = 10 and into the canopy for
Ca = 100, in the canopy patch, the highest contribution of viscous shear occurs at
the bottom wall, more similarly to the open channel scenario. This is expected,
given that the shear balance equation was also averaged in the spanwise direction,
and in the canopy patch, half of the domain is vegetated while the other half is
not. This confirms that when the filaments are arranged such that they occupy
only half of the domain, creating two edges aligned with the flow direction, the
situation represents an intermediate case between having no vegetation and having
the entire bottom wall covered by vegetation.
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To highlight which term is predominant, figure 4.9 shows the wall-normal integrated
contributions, normalized such that their sum equals one. The colors associated
to each contribute are consistent to the ones previously used. In both the fully-
distributed canopy and canopy patch scenarios, a lower Cauchy number shows
a higher contribution of canopy drag in balancing the driving pressure gradient,
indicating that the resistance exerted by the filaments on the flow is stronger when
the filaments are more rigid, while greater flexibility reduces this effect. Viscous
shear has the highest contribution for the open channel scenario, where it is one of
the two primary terms balancing the driving force, whereas its role is marginal in
both the fully-distributed canopy and canopy patch scenarios. Viscous diffusion is
a negligible contribution in all three scenarios. Unlike the fully-distributed canopy
and open channel, where the mean advection is negligible, the canopy patch scenario
also exhibits a contribution from the mean advection. Lastly, turbulent fluctuations
are by far the dominant term in the shear balance equation, thus highlighting their
fundamental role over time.

Figure 4.9: Wall-normal integration of the shear balance equation for the fully-
distributed canopy (FC), open channel (OC), and canopy patch (HC) scenarios.
Each color represents a different contribution balancing the forcing term: viscous
shear (red), viscous diffusion (yellow), mean advection (purple), turbulent shear
(green) and canopy drag (light blue). The contributions are normalized, such that
their sum equals one.
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4.1.3 Quadrant Analysis
The analysis of the shear equation highlighted the significant role of turbulent
fluctuations in balancing the driving pressure gradient. However, it did not provide
any insight into the instantaneous contributions of velocity fluctuations, which
could offer a deeper understanding of the fluid dynamics and how the flow inside
the canopy interacts with that on the outside. Therefore, the instantaneous velocity
fields are now investigated by subtracting the mean flow, which has been averaged
over both time and the homogeneous directions, as discussed previously in section
4.1.1. This approach, as outlined by Rota et al. 2024, allows to focus on the events
occurring above the canopy and, in the canopy patch scenario, on the vertical
plane separating the vegetated and non-vegetated regions. Studying the events is
crucial in order to have a deeper understanding of how the flow inside the canopy
interacts with the flow outside the canopy exchanging mass and momentum (Shen
and Leclerc 1997.

In order to define what an event is, taking into account figure 4.10, we will call as
u′ the velocity fluctuation aligned with the direction of the flow and v′ the velocity
fluctuation in the direction perpendicular to the plane where the events are studied.
In particular, we are interested in investigating the conditions under which the
product of the two fluctuations is negative:

u′v′ < 0, (4.10)

which is equivalent to stating that the two fluctuations have opposite signs. De-
pending on the sign of the aforementioned velocity fluctuations, we distinguish two
kind of events, named ejections and sweeps:

u′ < 0, v′ > 0 Ejections
u′ > 0, v′ < 0 Sweeps

(4.11)

Figure 4.10: Definition of a generic event.
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In order to understand the importance of events in the exchange of flow between
the different regions of the domain, they have been studied on the planes which
separate the canopy from the outer waters, as depicted in red in figure 4.11. In
the fully-distributed canopy scenario, instantaneous events can only be analyzed
on a horizontal plane above the canopy, as there is only the horizontal edge. As
noted by Rota et al. 2024, the strongest sweeps and ejections are observed near
the top of the canopy, thus the wall-normal location where the events are studied
corresponds to the mean height of the deflected canopy tips. This applies also for
the patch canopy above the vegetated region. However, for the canopy patch, it
is also interesting to study the events occurring on the vertical planes separating
the vegetated and non-vegetated regions. As a consequence, the definition in 4.1.3
varies depending on the plane being analyzed: on horizontal planes the relevant
fluctuating velocity components are the streamwise u′ and the wall-normal v′, while
on vertical planes the streamwise u′ and the spanwise w′.

Ejections occur when the instantaneous velocity component aligned with the flow
direction is lower than the mean velocity in that direction, while the instantaneous
velocity component perpendicular to the plane where the events are studied is
higher than the mean velocity in the same direction. This means that, when studied
on the surface of the canopy, ejections tend to transport low-energy flow from inside
the canopy to the outside. The opposite applies in the case of sweeps, which tend
to transport high-energy flow from outside the canopy into the interior.

(a) fully-distributed canopy (b) Canopy Patch

Figure 4.11: Planes highlighted in red are the regions in which the events have
been studied for both the fully-distributed canopy and the canopy patch scenarios.
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(a) Canopy patch, Ca = 10 (b) Canopy patch, Ca = 100

(c) fully-distributed canopy, Ca = 10 (d) fully-distributed canopy, Ca = 100

Figure 4.12: Events happening above the canopy at the average tips position.
Sweeps are colored in blue while ejections in red. The panels in the first row
refer to the canopy patch scenario, while the ones in the second row refer to the
fully-distributed canopy. Panels (a) and (c) are for Ca = 10, while (b) and (d) for
Ca = 100.
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Figure 4.12 illustrates the instantaneous events happening above the canopy for
the canopy patch scenario (panels in the first row) and both on the horizontal and
lateral edge for the fully-distributed canopy scenario (panels in the second row),
for the two different Cauchy number Ca = 10 (4.12a and 4.12c) and Ca = 100
(4.12b and 4.12d). For each panel corresponding to the canopy patch scenario, the
first and last subplots represent events on horizontal planes where the streamwise
u′ and wall-normal v′ velocity fluctuations are analyzed. The second and third
subplots, on the other hand, depict events occurring at the interface between the
vegetated and non-vegetated regions of the domain, where the streamwise u′ and
spanwise w′ velocity fluctuations are considered. Sweeps are represented in blue,
while ejections are shown in red. Consistent with the findings of Rota et al. 2024,
the turbulence intensity appears higher in the more rigid case (Ca = 10), for both
scenarios. This is indicated by a greater prevalence of coherent events compared to
the more flexible case (Ca = 100) where such events are less pronounced.

To gain a more quantitative understanding of the dominant events over time, a
quadrant analysis for the instantaneous Reynolds stresses −u(t)v(t) was conducted.
Referring again to figure 4.10, we recall that u′ represents the streamwise velocity
fluctuation, while v′ is the velocity fluctuation perpendicular to the plane where
events are analyzed. Consequently, the definition varies depending on whether the
horizontal or vertical plane is considered. The joint probability density function
(J-PDF) is then calculated and displayed on a u′ − v′ plane (Wallace 2016) which
is divided into four quadrants, basing on the approach first outlined by Raupach
1981:


Q1 : u′ > 0, v′ > 0 outward interaction
Q2 : u′ < 0, v′ > 0 ejection
Q3 : u′ < 0, v′ < 0 inward interaction
Q4 : u′ > 0, v′ < 0 sweep

Depending on the quadrant where the peak of the joint probability density function
lays, we can define which of the above mentioned interactions dominates.

This analysis was performed at the horizontal edge of the canopy and, in the case
of the canopy patch, also at the vertical edge, for both Cauchy numbers. Thus,
figure 4.13 reports the contour of the J-PDFs computed on the horizontal planes
above the canopy highlighted in figure 4.11 for the canopy patch (panels 4.13a and
4.13b in the first row) and for the fully-distributed canopy (panels 4.13c and 4.13d
in the second row), while figure 4.14 shows the J-PDFs computed on the vertical
planes separating the vegetated side to the non-vegetated one. The peaks of the
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J-PDFs, shown as black dots in the graphs, highlight which event is dominant over
time.

Several studies already showed that, for the fully-distributed canopy scenario, the
peak of the joint probability density function is located in the second quadrant
u′ < 0 and v′ > 0 (e.g. Rota et al. 2024), indicating that ejections dominate over
sweeps over time. The J-PDFs stretch into the fourth quadrant u′ > 0 and v′ < 0,
highlighting the presence of less dominant sweep events. The same pattern is
observed also for the canopy patch, with ejections as the dominant events and a
similar shape of the J-PDFs, suggesting that, regardless of vegetation distribution
on the bottom-wall of the domain, the dynamics of the events happening above
the canopy in the vegetated region is not altered, with a more frequent exchange
of low momentum fluid from inside the canopy.

(a) Canopy patch, Ca = 10 (b) Canopy patch, Ca = 100

(c) fully-distributed canopy, Ca = 10 (d) fully-distributed canopy, Ca = 100

Figure 4.13: Joint Probability Density Function (J-PDF) of the velocity fluctua-
tions streamwise u′ and wall-normal v′ on the horizontal planes above the canopy.
The panels in the first row refer to the canopy patch scenario, while the ones in
the second row refer to the fully-distributed canopy. Panels (a) and (c) are for
Ca = 10, while (b) and (d) for Ca = 100. The black dots correspond to the peaks
of the J-PDFs.
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(a) Canopy patch, Ca = 10 (b) Canopy patch, Ca = 100

Figure 4.14: Joint Probability Density Function (J-PDF) of the velocity fluctua-
tions streamwise u′ and spanwise w′ on the vertical planes for the canopy patch
scenario. Panels (a)is for Ca = 10, while (b) for Ca = 100. The black dots
correspond to the peaks of the J-PDFs.

Figure 4.14 presents the joint probability density functions (J-PDFs) of the stream-
wise and spanwise velocity fluctuations (u′ and w′, respectively) on the vertical
planes that separate the vegetated region from the non-vegetated region within
the canopy patch. In this case, the peak of the J-PDFs is situated in the fourth
quadrant (u′ > 0, w′ < 0), indicating that sweeps are the dominant events occur-
ring on these vertical planes. This suggests that the lateral edge of the canopy is
dominated by the exchange of high-momentum flow coming from the main channel,
in a completely opposite way with respect to the event dynamics over the horizontal
edge.

4.1.4 Two-point Correlations
At the beginning of the present study, by characterizing the mean flow properties,
we concluded that when vegetation partially obstructs the channel, as in the
configuration considered here, the flow can be modeled as either a fully-distributed
canopy or an open turbulent channel, depending on the region of the domain and
its distance from the lateral junction. It is interesting to investigate whether this
conclusion also applies to velocity fluctuations. Although the quadrant analysis
provided some insights into the turbulent motion - suggesting that the distribution
of vegetation in the domain is not a critical factor influencing the events occurring
above the horizontal edge of the canopy - examining the two-point correlations of
velocity fluctuations for the canopy patch scenario, and comparing them with the
two limiting scenarios, allows us to explore whether this decomposition into two
simpler problems is also valid for turbulent activity.

The two-point spatial correlation is a statistical measure used to quantify the
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spatial relationships between two points in a random field, such as a velocity
field, scalar field, or any other physical quantity. Since we aim to understand the
velocity fluctuations, we focus on the streamwise velocity fluctuations u′, which
were identified, through a comparison with the other two velocity fluctuation
components, as the most dominant. It can be defined as:

Ru′u′(r, x, t) = ⟨u′(x, t)u′(x + r, t)⟩,

where u′(x, t) and u′(x + r, t) are the streamwise velocity fluctuations at positions x
and x + r, r is the space separation between two points and ⟨·⟩ denotes a temporal
average (Pope 2000).
The correlations were computed for all the analyzed scenarios and compared at two
fixed wall-normal coordinates. For the fully-distributed canopy and the turbulent
open channel, where homogeneity in the spanwise direction is present, a single
correlation function was obtained for each wall-normal position considered. In
contrast, for the canopy patch, due to its inhomogeneity in the spanwise direction,
three representative spanwise coordinates were selected: one within the canopy, one
at the center of the non-vegetated main channel, and one at the junction between
the two regions, as in figure 4.15. Thus, the coordinate vector x:

x = (x, y, z). (4.12)

Figure 4.15: Locations in which the correlations have been computed.
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Once computed, the two-point correlation functions have been normalized as:

Ru′u′(r, x, t) = ⟨u′(x, t)u′(x + r, t)⟩
⟨u′(0, y, z, t)2⟩

.

The results suggest that, outside the junction region, the shape of the correlations

(a) Ca = 10

(b) Ca = 100

Figure 4.16: Two-point correlations of streamwise velocity fluctuations at different
spanwise coordinates, with the wall-normal coordinate fixed. The solid black line
represents the fully distributed canopy, while the dashed black line corresponds
to the turbulent open channel. The colored lines indicate specific positions in the
spanwise direction, with the color scheme matching that used in Figure 4.15.
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for the canopy patch scenario closely resembles those of the two limiting scenarios,
providing further confirmation that the problem can be modeled using two simplified
cases. This resemblance is more apparent for the scenario with more rigid filaments,
while in the more flexible case, the motion of the filaments may introduce additional
dynamics that alter the turbulent characteristics.

4.2 Filament Dynamics
THaving characterized the fluid dynamics, we now turn to the behavior and
movement of the filaments within the flow. When dealing with flexible filaments,
the problem shifts from a purely fluid-dynamics problem to one more to fluid-
structure interaction. We begin by examining the mean position of the canopy tips
in Section 4.2.1, followed by an analysis of the average deflection of each filament
in Section 4.2.2, and conclude with a study of their oscillatory behavior through
the velocity fluctuation spectra in Section 4.2.3.

4.2.1 Average tip position
Since the filaments are flexible, they deflect when impacted by the incoming flow,
adopting a more streamlined shape in a process known as reconfiguration. The
extent of the deflection depends on the filament’s flexibility, which is governed by

(a) (b)

Figure 4.17: Panel (a) displays a generic deflected canopy tip. Panel (b) shows
the time- and streamwise-averaged positions of filament tips for the more rigid case
(blue dots, Ca = 10) and the more flexible case (red dots, Ca = 100). The vertical
black line represent the boundary between the vegetated and the non-vegetated
sides.
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the Cauchy number: the higher the Cauchy number, the greater the deflection.
Given that the extremities of the filaments are expected to experience the most
deflection, we begin by analyzing the average position of the canopy tips (figure
4.17a) in the canopy patch scenario. It is a double average in time and in the
homogeneous streamwise direction.

Figure 4.17 shows the front view of the average height of the deflected filaments.
The blue dots refer to the more rigid case (Ca = 10), while the red dots to the more
flexible case (Ca = 100). The black vertical lines indicate the boundary between

(a) ⟨V ⟩/Ub, Ca = 10 (b) ⟨V ⟩/Ub, Ca = 100

(c) ⟨W ⟩/Ub, Ca = 10 (d) ⟨W ⟩/Ub, Ca = 100

Figure 4.18: Average positions of the canopy tips (black dots) at varying span-
wise positions of the filaments, displayed against the mean velocity field in the
background for Ca = 10 (panels (a) and (c)) and for Ca = 100 (panels (b) and
(d)). Panels in the first row show the mean wall-normal velocity, while panels in
the second row show the mean spanwise velocity.
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the vegetated and non-vegetated regions. As expected, the more rigid filaments
generally exhibit less deflection than the more flexible ones. A decreased average
height of flexible canopies displaces the canopy shear layer closer to the bed, leading
to a notable increase in near-bed turbulence levels, weaking momentum transfer in
the shear layer and diminishing vertical mixing (Abdolahpour et al. 2018).
The extent of deflection varies with the spanwise position of the filaments, with those
closer to the non-vegetated region showing greater deflection. This observation
suggests that the filaments act as a shield for one another, providing mutual
protection against deflection. Moreover, being the filaments more deflected in the
more flexible case, the frontal area of the canopy seen by the incoming flow is
smaller than in the more rigid case, resulting in less blockage of the incoming flow.

The pattern of filament heights across the spanwise direction indicates that some
filaments within the canopy deflect more than others. By displaying the average
positions of the canopy tips against the mean flow field, we gain better insight into
the interaction between the flow and the filaments, as illustrated in figure 4.18.
Panels in the first row show the mean wall-normal velocity component, while panels
in the second row show the mean spanwise velocity. Where the filaments are less
deflected, the wall-normal velocity component indicates an updraft of fluid moving
from inside the canopy to the outside. In contrast, near the boundary between the
vegetated and non-vegetated regions, where the filaments are more deflected, the
flow tends to be directed from outside the canopy to the inside. As discussed in
4.1.1, this flow pattern arises from the presence of mean vortexes forming within the
domain, as suggested by the correspondence between the wall-normal and spanwise
velocity distributions.

4.2.2 Average deflection
By analyzing the height of the filaments, we observed a dependence of their
deflection behavior on the spanwise coordinate. Therefore, we aim to investigate
whether this pattern is also evident when examining the average deflection of the
entire filaments, rather than just the canopy tips. For this reason, we consider a
total of six filaments at different spanwise locations, as illustrated in figure 4.19.
For each filament, we examine the mean deflection in the streamwise and in the
spanwise directions along with the average root mean square of the oscillations.
As with previous analyses, the averaging is conducted both over time and in the
homogeneous streamwise direction.

Figure 4.20 displays the average streamwise deflection (black solid line) of the
analyzed filaments for the two levels of flexibility. The shaded regions represent
the root mean square of the displacements from the mean position, indicating that
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the filaments do not reach a static fully deflected state. Instead, they oscillate
around their average deflected position. Filaments at the boundary between the
vegetated and non-vegetated regions experience greater average deflection compared
to those located deeper within the canopy, further confirming the shielding effect
of the filaments. Additionally, the oscillations around the mean position are more
pronounced at the boundary than for the filaments situated further inside the
canopy.

Similar conclusions can be drawn from examining the mean deflection behavior
of the filaments in the spanwise direction, as shown in figure 4.21b. In this case
as well, the filament separating the vegetated and non-vegetated sides tends to
oscillate more than those located deeper within the canopy.
Both the streamwise and spanwise deflections confirm that a higher Cauchy number
leads to increased filament flexibility, resulting in greater deflection. This, in turn,
reduces the cross-sectional area of the canopy and decreases the obstruction of the
channel, thereby confirming the reduced drag in this configuration.

Figure 4.19: Spanwise location of the analyzed filaments
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(a) Ca = 10

(b) Ca = 100

Figure 4.20: Time and streamwise average deflection of the filaments in the
streamwise direction. The black solid line represents the mean streamwise position
of the filament, while the colored regions represent the root mean square of the
filaments oscillations.
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(a) Ca = 10

(b) Ca = 100

Figure 4.21: Time and streamwise average deflection of the filaments in the
spanwise direction. The black solid line represents the mean streamwise position
of the filament, while the colored regions represent the root mean square of the
filaments oscillations.
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4.2.3 Canopy tip velocity spectra

By analyzing the mean deflection of the filaments and the root mean square of
their displacement, we highlighted their oscillatory nature. The filaments do not
reconfigure into a static, fully deflected state, but instead sway around their average
position. To gain further insight into the dynamics of these oscillations, we now
focus on the spectra of velocity fluctuations at the tips of the canopies. As observed
previously, we expect a dependence on the spanwise direction, with filaments closer
to the non-vegetated region exhibiting more intense oscillations. Therefore, for
each spanwise position of the filaments, we computed the Fourier Transform of the
spanwise velocity at the filament tips, yielding 3D spectra.

Figure 4.22 presents a top view of the resulting 3D spectra for the two flexibility
cases, spanning from the location where the periodic boundary condition is applied
to the center of the non-vegetated region, showing only half of the domain due to
its symmetry. The y-axis represents the logarithm of the frequency, normalized
by the channel height H and the bulk velocity Ub. As confirmed by Foggi Rota
et al. 2024 and Rota et al. 2024, the more rigid filaments tend to oscillate at a
frequency close to their natural frequency, while the more flexible filaments oscillate
at a relatively constant frequency, independent of their structural characteristics,
corresponding to the bulk turbulence frequency. The black dashed-dotted line

(a) Ca = 10 (b) Ca = 100

Figure 4.22: Top view of the 3D spectra of the spanwise velocity of the filament
tips for Ca = 10 (a) and Ca = 100 (b). The dashed dotted line corresponds to
the natural frequency of the filaments fnat, while the solid line represents the bulk
turbulence frequency.

75



Results

represents the logarithm of the natural frequency of the filaments, defined as:

fnat = 3.516
dh2

ñ
γ/(ρsπ3)

,

where d is the cross-section diameter of the filaments, h is their length, γ is their
bending rigidity and ρs is their density. On the other hand, the black solid line
represent the logarithm of the bulk turbulence frequency:

fturb = 0.5Ub

H
.

The plots confirm that for the more rigid filaments (Ca = 10), the oscillation
frequency is closer to the filaments’ natural frequency, whereas more flexible
filaments (Ca = 100) approach the constant bulk turbulent frequency. This latter
scenario resembles the result obtained by Tschisgale et al. 2021, who concluded
that vegetation responds almost passively to the fluid, thus reflecting the local flow
conditions.
The more notable finding, however, is that the oscillatory behavior of the filaments
indeed depends on their spanwise location, as already highlighted previously.
Filaments nearer to the non-vegetated region not only exhibit a greater extent of
oscillations, but also sway over a broader range of frequencies compared to those
positioned deeper within the canopy.
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Discussion

Through Direct Numerical Simulations, we analyzed the dynamics of both the
fluid and the filaments in a canopy patch consisting of 7776 flexible filaments
occupying half of the bottom wall. The domain is, thus, divided into two regions,
one with vegetation and the other one without. Two levels of filament flexibility
were analyzed - one where the filaments are nearly rigid and another where they
deflect significantly under the incoming flow. The results were then compared with
two limiting cases, an open channel with no filaments and a full canopy, where
filaments cover the entire bottom wall of the domain. The latter case, extensively
studied by Rota et al. 2024, paved the way for exploring more complex filament
configurations in the domain.

5.1 Mean flow characteristics
An analysis of the mean flow suggests that the canopy acts as a shield to the
incoming flow, as the velocity tends to zero inside the canopy. This is due to the
resistance exerted by the filaments, which slows the flow in the canopy region. As
the filaments are flexible, we can assume that the drag follows the scaling proposed
by Alben et al. 2002 D ∝ U4/3, instead of the quadratic law, which was shown to
not correctly predict the drag, due to their reshaping.
Due to the abrupt change in the flow velocity both in the vertical and transverse
directions, two shear layers form and coexist: an horizontal one above the canopy
and a vertical one on the lateral edge. Thus, starting from inside the vegetated
region and moving either vertically or laterally, the streamwise velocity increases.
As the canopy patch inhibits the flow from flowing, the flow is redirected in the
main-channel, where the mass flow is higher than that in the non-vegetated region.
This enhances erosion and sediment transportation processes in the river bed of
the main channel, as suggested by Colomer and Serra 2021 and W.-x. Huai et al.
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2021. The shielding effect of the filament is felt also outside of the canopy region,
with a greater extent in the case of the more rigid filaments.

5.1.1 Horizontal edge
Given the transverse inhomogeneity of the computational domain due to the finite
width of the canopy, there is a dependence of the vertical streamwise velocity profiles
from the location in the spanwise direction. In fact, profiles inside the canopy
resemble those of the submerge fully-distributed canopy, while profiles towards the
center of the non-vegetated region, thus, in the middle of the main open-channel,
resemble those of a turbulent open channel without vegetation. This suggests not
only that the canopy patch lays in between the other two limit scenarios, but also
that, far from the lateral edge of the canopy patch, the flow can be simplified into
bi-dimensional problems. Thus, far from the junction, the vegetated region can be
modeled as a fully-distributed submerged canopy, while the non-vegetated region
can be modeled as an open channel without vegetation. In this way, while for
profiles in the middle of the non-vegetated region no inflection points are to be
found, two inflection points are observed in the profiles inside the canopy region,
as also highlighted by Rota et al. 2024, one within the canopy and another near
the canopy top. These two inflection points gradually merge as we move toward
the center of the domain (non-vegetated region), indicating that the influence of
the canopy extends also in the main non-vegetated channel.
A better understanding of the flow near the lateral edge is needed. In the junction
region and, especially, at the main-channel side, the velocity profiles perform a
more marked S-shape profiles, unlike Nezu and Onitsuka 2001 who highlighted
a almost-linear velocity profile at the interface between the rigid cylinders and
the open water, due to the influence of both the vegetated and the non-vegetated
regions. This is probably due to the flexible nature of the filaments considered in
our study, but which aligns well with the study performed by Pang et al. 2014 on
patch of real vegetation, that is eel grass. The S-shape becomes more irregular at
a higher flexibility of the filaments.

As for the Rayleigh theorem, an inflection point in the velocity profile is a necessary
condition for flow instability. Inflectional instability is responsible for the generation
of vortex structures, which are responsible for the exchange of mass between the
inside and the outside of the canopy. Similarly to the secondary currents highlighted
by Unigarro Villota et al. 2023, two counter-rotating cells form above the vegetated
region, resulting in an updraft of low-energy flow from inside the canopy to the
outside. This is an interesting result for many applications, as this particular flow
structure could have an impact on the vertical transport of sediments and particles,
reducing their accumulation on the ground. This is a fertile ground for future
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studies.

5.1.2 Vertical edge
To better understand the flow dynamics at the lateral edge of the canopy patch, a
look at the horizontal streamwise velocity profiles was given. An abrupt increase
of velocity is to be found at the junction, with flow slowed down inside the canopy
and accelerated in the main channel. This abrupt change is more marked inside
the canopy and, as we move up above the canopy top, the discontinuity in the
streamwise velocity is less marked, with velocity profiles close to the top of the
computational domain that do not reach unperturbed condition. This is due to
the fact that the flow accelerates over the canopy. Thus, the height of the channel
represents a parameters, whose influence on the flow structure would be interesting
to be further investigated.
An inflection point forms right in at the interface between the vegetated and
the non-vegetated regions, leading to a flow instability and the generation of
vortex structures similar to those forming above the canopy. Those structures are
responsible, over time, for bringing high-energy flow from the main channel into the
canopy through the lateral edge. Thus, flow enters the canopy through the lateral
edge end than exits through the horizontal edge, as a consequence of secondary
currents arising from the transverse inhomogeneity of the domain.

5.2 Shear Balance Equation
Mean flow plays a significant role also in balancing the pressure gradient, which
is the driving force of the flow, unlike in the open unvegetated channel and in
the submerged fully-distributed canopy. Besides this, the shear stress balance
equation suggests again that the canopy patch is a scenario which lays in between
the limiting ones considered.
In the open channel, indeed, two terms play a key role, the viscous shear, which
reaches its peak in the river bed, and the turbulent shear, which gives the highest
contribution. On the other hand, for the fully-distributed submerge canopy, the
viscous shear plays a secondary role, with the drag exerted by the filaments and the
turbulent shear being the predominant terms. In particular, the first one has its
highest value in the near-bed region and becomes zero at the top of the canopy, as
above this region there are no filaments. Turbulent shear, instead, reaches its peaks
in the near top region, as expected from the turbulence activity which is higher
in this location, as widely-documented in literature (e.g. White and H. M. Nepf
2008).
Given the inhomogeneity in the spanwise direction, to obtain a single shear balance
equation, the quantities have been averaged also in the spanwise direction, thus
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obtaining an average balance of the whole domain. A part from the mean flow
which has a contribute, turbulent shear has still the a major role, reaching its peak
near the canopy top. On the other hand, although playing a key role, the drag
term isn’t the only contribute in the near-bed region, as the viscous shear reaches
a peak value in this location, even if with a weaker contribute, thus resembling the
open channel scenario.

The effect of flexibility in balancing the forcing pressure gradient is to be found in
the drag term, which decreases with an increase in the filament flexibility in spite
of an increase in the turbulent shear. This is due to the reduced drag experienced
by flexible filaments, as highlighted by Alben et al. 2002. The higher the filament
flexibility, the greater they bend when hit by the flow, resulting in a movement of
the shear layer closer to the river bed. This explains also the location of the peak
of the turbulent shear (and at the same time of when the drag term reaches the
zero), which moves towards the channel bed as a result.

5.3 Velocity fluctuations

The analysis of the shear balance equation revealed the importance of turbulent
activity and, thus, velocity fluctuations. However, it provides only an average
perspective on their role, but it is essential to focus on their instantaneous behavior
as well. As we concluded that the highest turbulent activity is to be found near the
canopy top, a characterization of the events happening here is essential. Moreover,
given the existence of a lateral edge, an analysis of the turbulent activity here is
also important.

Sweeps and ejections have been reported to have a dominant role, with respect to
outer and inner interaction, in the exchange of mass and momentum between the
inside and the outside of the vegetated region (Devi and Kumar 2016a). Ejections
dominate over sweeps on horizontal planes above the vegetated regions, similarly
to what happen for fully-distributed submerged canopies (Nezu and Sanjou 2008,
Foggi Rota et al. 2024). Moreover, joint probability contours display consistent
shapes across the two different vegetation distributions. This result suggests that
the instantaneous interaction between the outer flow and the flow within the canopy
is primarily driven by the outward transport of low-momentum fluid from within
the canopy. On the other hand, on the vertical plane that separates the vegetated
and non-vegetated regions, sweeps predominate, transporting high-momentum flow
from the outer region into the canopy, thus suggesting that an opposite mechanism
works here.
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Further insights into the role of fluctuations were obtained by analyzing the two-
point correlations of the streamwise velocity fluctuations, u′. Two wall-normal
locations were selected for this analysis, and for each, correlations were calculated
at three distinct spanwise coordinates. The results confirm that also the turbulence
dynamics in the canopy patch scenario lie between those observed in the open
channel and full canopy cases. Specifically, correlations at spanwise positions within
the canopy tend to align with those of the full canopy, whereas correlations at the
center of the non-vegetated region are more similar to those of the open channel.

5.4 Filament Dynamics
Since dealing with flexible filaments, it is no more a pure fluid-dynamics problem,
but a strong coupling between fluid and filament dynamics is to be found. When
the flow hits the canopy patches, filaments deflect in the same direction of the
streaming flow, thus assuming a stream-shaped configuration which has been called
reconfiguration (Vogel 1994). The higher the flexibility of the structures, the more
streamlined their shape. Thus, the average position of the tip of the filament is
lower than in their undeflected state, as also supported by the location of the outer
inflection point in the velocity profiles, which tend to move below the canopy top
for the more flexible filaments and, so, the horizontal shear layer. This results in a
reduced cross-sectional area and, consequently, a lower obstruction of the channel
by the canopy, compared to more rigid filaments, explaining the reduced drag in
flexible configurations, as highlighted by Alben et al. 2002.

A dependence on the spanwise position is shown. The mean position of the tips of
the canopy aligns well with that of the mean flow. It was, indeed, highlighted that
secondary circulation arises in the domain in the form of vertical circulating cells
which result in a vertical upflow. Where the vertical upflow is to be found, the tip
of the filaments is less deflected, thus suggesting a strong coupling with the mean
properties of the flow.

Filaments do not assume a static state, but instead, oscillate around their mean
position both in the streamwise and spanwise direction, with more flexible filaments
having a greater extent of oscillation. Although the overall dynamics of the
filaments in the patch scenario resemble those in the full canopy, the oscillatory
behavior varies based on spanwise position. Filaments closer to the non-vegetated
region show greater deflection and tend to oscillate across a wider frequency range
compared to those located deeper within the canopy. The frequency of the oscillation
dictates which one between the structural properties of the filaments and the vortex
structures dominates. Spectra of velocity fluctuations at the canopy tip showed
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that, in the more rigid scenario, filaments oscillate near their natural frequency
fnat, while in the more flexible scenario, they oscillate at the characteristic bulk
turbulence frequency fturb, which remains constant regardless of flexibility. These
findings are consistent with results by Foggi Rota et al. 2024, who analyzed a single
filament’s dynamics, and later confirmed by Rota et al. 2024 in full-distributed
canopy. In regimes where the frequency of the instability approaches and equals
the swaying frequency of the filaments, a lock-in regime arises, which resembles
that characteristic of vortex-structure interaction problems (Py, E. D. Langre, et al.
2006).
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Chapter 6

Conclusions and concluding
remarks

Vegetation plays a crucial role in rivers and marine environments, growing in various
distributions, often forming patches that alter the natural development of the flow.
When the height of the plants is shorter than the water depth, the structures are
fully submerged, resulting in multiple edges forming around the vegetation patches.
These edges give rise to complex turbulent structures in the flow domain.
In this thesis, we considered a partially obstructed channel where submerged flexible
filaments extend longitudinally along both sides of the channel. This configuration
forms a horizontal and a lateral edge extending in the streamwise direction. The
analysis of both the flow and filament dynamics has revealed several key findings:

1. Flow characteristics and intermediate behavior
The characteristics of the main flow, turbulent structures, and energy balance
indicate that the canopy patch scenario behaves as an intermediate case
between the limiting scenarios of a fully distributed canopy and an unvegetated
open channel. Consequently:

• In the vegetated region, far from the lateral boundary, the system can
be simplified by modeling it as a fully distributed canopy covering the
bottom wall. Here, vertical streamwise velocity profiles display two
inflection points.

• In the non-vegetated region, the flow can be modeled as an open channel,
with no inflection points in the velocity profile.

2. Influence of the near-junction region
The near-junction region, influenced by both vegetated and non-vegetated
areas, exhibits distinct characteristics and must be treated separately. In this
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region:

• S-shaped velocity profiles persist on the main-channel side, even in the
absence of vegetation, with two inflection points.

• These inflection points approach each other and merge as the flow transi-
tions to the open channel condition.

3. Kelvin-Helmholtz instability
The presence of inflection points in both vertical and transverse streamwise
velocity profiles suggests susceptibility to Kelvin-Helmholtz instabilities and
the formation of coherent structures. These structures, also referred to as
secondary circulations, facilitate mass and momentum exchange between the
canopy and the outer flow by:

• Inducing an upflow above the horizontal edge of the canopy.
• Causing inflow at the lateral edge.

Thus, high-energy flow enters the vegetated region laterally and exits from
the top of the canopy, ensuring mass conservation.

4. Quadrant analysis and turbulent events
Quadrant analysis revealed that:

• Ejections dominate above the vegetated regions, regardless of the vegeta-
tion distribution, and the shape of the joint probability density function
(J-PDF) remains consistent;

• Sweeps dominate at the lateral interface of the canopy.

5. Coupling between flow and filament dynamics
The coupling between the flow and filament dynamics is evident:

• Filaments bend under the flow’s influence and oscillate around their mean
deflected position, regardless of vegetation distribution.

• Filaments near the boundary between vegetated and non-vegetated regions
exhibit greater deflection and oscillate over a broader range of frequencies
compared to those deeper within the canopy. This behavior confirms the
shielding effect of inner filaments, which inhibits larger deflections.

• In rigid filaments, the structural response dominates, with oscillations
occurring at their natural frequency. In more flexible configurations,
the structural response diminishes, and filaments oscillate at frequencies
characteristic of the larger turbulent structures in the flow.
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Those results highlight the challenging nature of these kind of flow. Many more
questions may arise, which can pave the way for future research. First of all, in
this thesis we considered two filament configurations, but it would be interesting
to study different geometries of the canopy patches, to investigate their effect to
the different flow properties. Moreover, we highlighted an upflow generated by
turbulent structures within the domain, which may play a crucial role in sediment
and particle transport. Investigating how scalars are transported by the flow could
enhance our understanding of these dynamics and have significant implications in
many practical applications.
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Appendix A

Second Order
Adams-Bashforth Scheme

Considering a generic ODE:

y′(t) = f(t, y(t)), (A.1)

and integrating it between a generic time interval [tn+1, tn+2], we obtain:

y(tn+2) = y(tn+1) +
Ú tn+2

tn+1
f(t, y(t))dt. (A.2)

However, the integral cannot be computed directly, as it depends from y(t) which
is unknown. The second order Adams-Bashforth scheme, to evaluate the integral

Ú tn+2

tn+1
f(y, t)dt,

adopts a linear polynomial interpolation betweeen tn and tn+1 and the value at
tn+2 is extrapolated. We consider τ ∈ [tn, tn+1]:

f(y, t) = τ − tn

tn+1 − tn

f(yn+1, tn+1) + tn+1 − τ

tn+1 − tn

f(yn, tn)

= τ − tn

∆t
f(yn+1, tn+1) + tn+1 − τ

∆t
f(yn, tn).
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Therefore, the integral:Ú tn+2

tn+1
f(y, t)dt =

Ú tn+2

tn+1

5
τ − tn

∆t
f(yn+1, tn+1) + tn+1 − τ

∆t
f(yn, tn)

6
dτ

=
C

(τ − tn)2

2 · ∆t
f(yn+1, tn+1) + (tn+1 − τ)2

(−2) · ∆t
f(yn, tn)

Dtn+2

tn+1

= 1
2

(tn+2 − tn)2

∆t
f(yn+1tn+1) − 1

2
(tn+1 − tn+2)2

∆t
f(yn, tn)−

− 1
2

(tn+1 − tn)2

∆t
f(yn+1, tn+1)

= 1
2

(2 · ∆t)2

∆t
f(yn+1, tn+1) − 1

2
(−∆t)2

∆t
f(yn+1, tn+1)−

− 1
2

(∆t)2

∆t
f(yn, tn)

= 3
2f(yn+1, tn+1)∆t − 1

2f(yn, tn)∆t,

which leads to the Adams-Bashforth method (Atkinson et al. 2009):

yn+2 = yn+1 + ∆t
33

2f(yn+1, tn+1) − 1
2f(yn, tn)

4
. (A.3)
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