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Abstract

The production of high-quality wine is strongly impacted by the quality of grape
clusters, especially their sugar level, which is a key factor in deciding the best
time to harvest. Destructive sample techniques that are labor-intensive, time-
consuming, and not scalable are traditionally used to evaluate grape maturity. This
thesis addresses these limitations by investigating the non-destructive prediction
of grape sugar concentration utilizing machine learning algorithms in conjunction
with modern imaging technologies, with a primary focus on hyperspectral imaging
(HSI). The study starts with a thorough overview of the principles of viticulture,
covering grape biology, development phases, and the importance of sugar buildup
during maturation. After that, it discusses the fundamentals of imaging techniques,
including RGB, multispectral, and hyperspectral imaging, with a focus on how these
technologies record and communicate important information about the product.
This fundamental knowledge lays the groundwork for talking about how several
imaging modalities, each with a different spectral resolution, can be used to
forecast crucial quality metrics like the Brix Index, which measures the amount
of sugar in grapes. The main focus of the thesis is the use of hyperspectral
imaging in conjunction with machine learning models, like Partial Least Squares
Regression (PLSR), to forecast grape sugar concentration. Preparing imaging
data for predictive modeling required a large portion of the study in order to
improve the signal-to-noise ratio and lower dimensionality. The results analysis is
enhanced by philosophical thoughts on the models’ underlying assumptions and
their suitability for various viticultural situations. An additional exploration was
planned, potentially using RGB datasets to test whether simpler, more accessible
imaging methods could provide comparable results to the more sophisticated
hyperspectral approach. The results of this thesis demonstrate the potential of
imaging-based techniques for viticulture’s non-destructive quality evaluation. This
work lays the groundwork for future precision agriculture research targeted at
enhancing the effectiveness and precision of grape quality monitoring by critically
analyzing the methods employed and considering the types of data collected by
various imaging technologies.
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Chapter 1

Fundamentals of viticulture
and grape ripening

1.1 Introduction
Viticulture and enology constitute two distinct sciences and each has its own specific
literature. Viticulture represents the set of agronomic techniques involving the
cultivation of vines (for table and wine), thus being able to consider itself as a
branch of arboriculture[1]. Oenology is the science that studies the transformation
of grapes into wine, the grapes suitable for its production (the microbiology,
chemistry and sensory characteristics), but also the production process itself, thus
the techniques related to it (e.g., filtrations, pressing, pumping over)[2]. Despite
this distinction, these two sciences communicate with each other, and the key to
their communication is the grape. In fact, grape quality is the result of winemaking
practices and the study of viticulture and is the key factor in excelling in wine
production and obtaining a distinctive, quality product[3]. When we talk about
wine quality, we first refer to the quality of grapes at the time of harvest, which
will constitute the raw material for wine production. Grape quality, in turn, is
a complex and not uniquely defined factor and is closely related to the degree of
maturity of the grape at the time of harvest. Grape maturity, which is reached
at the end of the ripening process, is defined as a set of properties that depend
on the physical and chemical characteristics of the grape. Finding and designing
systems that support winemakers in predicting the degree of grape maturity is
one of the greatest challenges for research in viticulture, this is because there are
so many variables involved that are constantly changing and interacting. If we
want to understand how mathematical models, and machine learning algorithms in
particular, can fit in as key tools and evolve this field, we cannot fail to take an
informed look at the complex domain we are interfacing with. In fact, modeling a
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Fundamentals of viticulture and grape ripening

physical system, in this case the growth of a plant and its fruit, means first of all
studying and understanding its evolution over time with a look at the variables at
play that interest us most, in this case ripening. Only in this way can we generate
informed assumptions that will allow us to better understand why models work or
do not work, how they might do so, and answer questions such as, “Can there be a
general methodology that solves problem X ?” and “Can a model trained on a D1
dataset work on a D2 dataset ?” In this chapter, I will explain the complex system
“Grapevine and its Grapes” at a level sufficient to understand the explanations and
reasoning in the next chapters, with an eye toward the variables that will interest
us most. All the explanations and insights on grapes in this chapter come from the
study of books [3], [4], [5], and [6].

1.2 The vine

Making wine is a long and complex process that requires years of dedication,
knowledge and passion. It all begins with planting young vines on carefully selected
soils, carefully evaluating the soil and climate to determine which varieties will
thrive best. For example, in regions like Napa Valley, Cabernet Sauvignon prefers
rocky soils and warm temperatures, while Sauvignon Blanc finds ideal conditions in
cooler microclimates and sandy soils. Once planted, the vines go through a growth
phase that lasts several years before producing quality grapes. During this period,
the plants require constant care: careful watering, precise pruning and protection
from pests and diseases. Pruning, in particular, is essential to ensure an optimal
balance between shoots and buds, directly affecting the quantity and quality of
grapes produced. With the arrival of spring, vines emerge from dormancy and
begin budding, followed by flowering about a month later. This time is crucial, as
weather conditions can significantly affect fruit formation. Late frosts or heavy
rains can affect flower fertilization, reducing the amount of grapes that will be
produced. During the summer, we witness fruit set and, subsequently, veraison.
The latter is a key stage in the vine life cycle: the berries begin to change color
and accumulate sugars through photosynthesis. In red grapes, the berries change
from green to red-purple, while in white grapes they take on golden-yellow hues.
Veraison indicates the beginning of ripening, a period when the balance between
sugars and acids develops, directly affecting the organoleptic characteristics of
the grapes. Determining the ideal time for harvesting is not simple and requires
careful evaluation of several factors. In addition to the analysis of sugar content-
measured in degrees Brix-winemakers consider the development of acids, tannins
and aromas. Weather conditions play a key role: warm days accelerate ripening,
while cooler temperatures slow it down, allowing a more balanced development
of grape compounds. The harvest represents the culmination of this long journey.
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Fundamentals of viticulture and grape ripening

Harvesting can be done manually or mechanically, but in either case it is essential
to act at the right time to preserve the quality of the grapes. White grapes
are generally harvested earlier than red grapes, and those destined for sparkling
wine production are the absolute first, as they require lower sugar content. Once
harvested, the grapes begin their journey toward becoming wine. Red grapes are
destemmed and crushed, allowing the must to ferment in contact with the skins
to extract color, aromas and tannins. White grapes, on the other hand, are often
pressed immediately to avoid prolonged skin contact, thus preserving their freshness
and acidity. Alcoholic fermentation transforms the sugars in the must into alcohol
and carbon dioxide through the action of yeasts. Next, some wines go through
malolactic fermentation, which helps soften acidity and develop more complex flavor
profiles. Aging takes place in different types of containers, oak barrels, steel tanks
or amphorae, depending on the style of wine desired. This long and fascinating
cycle, from the planting of the vine to the ripening of the grapes, highlights how
important it is to fully understand each stage of the process. In the next chapter,
we will delve into grape ripening, focusing on veraison and photosynthesis, to
understand how sugar content becomes one of the key parameters in deciding
the ideal time for harvest. Only through this knowledge can we appreciate how
viticultural practices influence wine quality and how innovative tools can support
winemakers in this complex process [7].

3
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Figure 1.1: Annual phases of vine growth, from planting to harvest
[8]

1.3 The grape, the harvest and the importance
of sugar

As far as viticulture is concerned, the climax of the vintage is sanctioned by the
time of harvest. As written in the book [3] “the harvest is the irrevocable step that
connects enology and viticulture.” At this time, winemakers and winegrowers must
cooperate closely to decide the exact day of harvest with the goal of picking grapes
at the correct degree of ripeness. The desired degree of ripeness depends strictly
on the quality of the grapes planted and the environmental conditions to which
the grape variety was subjected during the vintage. As mentioned earlier, grapes
constitute the raw material for wine production, and their degree of maturity is
certainly one of the factors that most impact wine quality. This is the result of
the physiological and biochemical processes that affect grapes throughout their life
cycle and will be the cause of their physicochemical composition at harvest. Unlike
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other fruits, the capillary study of grapes presents several problems related to the
fact that the growth of this fruit is the result of a long and complex reproduction
cycle.

1.3.1 Bunch morphology and growth phase

Before delving into the stages of growth that most interest this analysis, we need to
understand at least on a superficial level the morphology and terminology of grapes.
In fact, when we talk about grapes in general, we may want to talk about the vine
in general, the grape cluster, the grape berry, or any of its other components. What
we are interested in illustrating in this study is that grape berries are organized into
clusters. The cluster consists of a stalk (or rasp) and numerous berries (also called
grains, or more properly berries), small in size and light in color (yellowish-green,
yellow, golden yellow) in the case of white grapes, or dark in color (pink, purple or
bluish violet) in the case of black grapes. The stalk, or rachis, is the central axis
of the cluster, branched into racemes and then pedicels, which bear the flowers
and later the fruit, the berries. In addition, the stalk also has a very important
function indeed: it performs the task of dragging nutrients into the berry through
the plant’s lymphatic network. The stalk, being a woody element, is inedible and in
the course of winemaking is normally removed because it may contain unpalatable
compositional elements that would give an unpleasant taste to the wine[9].
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Figure 1.2: Bunch morphology
[10]

In the context of predicting the degree of grape maturity, we find ourselves
considering the individual grape berries that make up the cluster. In the course
of its development, the grape follows an evolution that includes all berries and
is divided into three stages, taking into consideration the diameter, weight and
volume of the berries:

1. Rapid initial growth, which, depending on environmental conditions, lasts 45
to 65 days and begins during the period of fertilization and fruit set. During
this period the berry has intense metabolic activity characterized by high
respiratory activity and rapid acid accumulation.

2. A slower growth phase during which one of the most important and relevant
phenological stages for the study of berry evolution, veraison, occurs. This
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event is characterized by the appearance of reddish color in red grapes and a
translucent skin in white varieties.

3. A final, rapid growth phase corresponding to berry maturation. During this
phase, cell growth resumes and important physiological changes are observed.
Respiratory activity of the berry decreases, while some enzymatic activities
increase significantly. This phase, lasting about 35-55 days, is characterized by
the accumulation of simple sugars, cations such as potassium, amino acids and
phenolic compounds, while there is a reduction in malic acid and ammonium.
The final size of the berry depends largely on these accumulation processes, as
well as on the number of cells present. There is a close relationship between
the size of the berry and the number of seeds it contains.

Since in this study we focus on the prediction of sugar content in ripe grapes, in the
following explanations we will mainly focus on the last stage of development. This
will allow us to lay the foundation for a comprehensive view of the phenomenon,
which is essential for a meta-understanding of the context, premises and limitations
associated with the application of the models.

1.3.2 Grape morphology and composition at maturity
The berry, the fruit of the grape, is characterized by its typical round or tending
to oval shape. Depending on the complexity of the phenomenon we are going to
study, it is possible to visualize its composition in different ways. For our analysis,
it is sufficient to know that the berry is composed of skin, pulp and seeds (pips),
more precisely:

• the skin, the outermost part of the berry, has the function of protecting and
containing the pulp so that water does not evaporate and external agents
(insects, fungi, etc.) do not penetrate. This is also very important for its
pigments, colored substances, which give color to the berries, making them
white or black depending on the type of grape variety;

• the pulp, which contains within it the grape seeds, is composed, when ripe, of
water (70-85%), sugars (15-20%), proteins and various nitrogenous substances,
organic acids and some colloidal substances, including pectins;

• finally, the grape seeds, in addition to being the seeds of the plant, are very
important because they contain tannins, which can characterize the final
composition of the wine[11].

In ripe grapes, seeds account for 0 to 6 percent of grape weight and are a key
resource of phenolic compounds during red wine production. Depending on the
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variety, they contain between 20 and 55 percent of the total polyphenols in the
berry. The skin, depending on the variety, accounts for between 8 and 20 percent of
the berry’s weight. It occurs as a heterogeneous tissue and its importance depends
on the extraction method used during wine production. The importance of the
skin depends more on the fact that it contains significant amounts of compounds
such as polyphenols (benzoic and cinnamic acids, flavonols and tannins) and
aromatic substances. In red grapes, other very important phenolic compounds
called anthocyanins occur, which give red grapes their color. The pulp makes up
most of the weight fraction of the berry, it is around 75 to 80 percent. The vacuolar
content, which is the liquid present inside the vacuoles of the pulp cells, consists
mostly of the must and a small solid part(1%). Must appears as a cloudy liquid
and has a high density derived from the many chemicals within it. Sugars, mainly
glucose and fructose, account for most of these substances. The concentration
of sugar in ripe grapes, which is one of the basic parameters by which the level
of ripeness is derived, ranges from 150 g/l to 240 g/l. As can be imagined, this
paragraph has not mentioned all the substances that make up the grape berry, but
an analysis of the most important ones has been made by casting an eye over the
study in question.

Figure 1.3: Cross section of a grape showing its components
[12]

1.3.3 Maturation
The veraison, which follows the fruit set, that is, the fertilization of the flowers and
the subsequent appearance of the grape berries, is the phenological stage that marks
the beginning of the ripening phase. After this event we see a real physiological
change in the grape, from this moment onwards the internal mechanisms of the
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grape change the way they function. During the ripening stage, the grape changes
from being a hard, sour, green fruit to a soft, colorful fruit rich in sugar and aroma.
During this period, the berry begins to accumulate significant amounts of sugar.
At the beginning of ripening, the grape berry imports comparable amounts of
water and sugar, but the amount of water tends to decrease going forward with
time. This phenomenon can also be verified by the fact that the percentage of
solid material continues to increase, so more solute is transported than water.
Sugar accumulation, which is one of the most spectacular phenomena of ripening,
mainly affects seed and pulp growth and is caused by the berry’s high demand
for the products of photosynthesis. In addition, during ripening, there is a rapid
accumulation of phenolic compounds, including anthocyanins, pigments responsible
for coloration in red grapes. These pigments are by-products of sugar metabolism,
and their synthesis is closely linked to sugar accumulation in the berry. In fact, the
appearance of anthocyanins begins about two weeks before the color is externally
visible, and their concentration gradually increases during ripening, peaking and
then stabilizing or declining slightly by the time of full ripeness. The relationship
between sugar accumulation and anthocyanin synthesis is crucial, as it indicates
that increased sugar content not only contributes to the alcohol potential of the
future wine, but also influences the development of phenolic compounds that
determine the color and some of the organoleptic characteristics of the wine itself.
This correlation is particularly significant because color changes in berries, due
to the presence of anthocyanins, can be observed and measured through imaging
techniques, such as RGB or multispectral imaging. Understanding this link allows
us to hypothesize that it is possible to predict the sugar content of grapes by
analyzing color changes during ripening. Accordingly, machine learning models
applied to grape images could be developed to nondestructively estimate the sugar
level in grapes.

1.3.4 Definition of maturity and the moment for harvesting
The environmental conditions to which the vine is subjected and various other
factors strongly influence the processes described in the previous explanations
in a complex and nonlinear manner. For this reason these are not necessarily
simultaneous and do not evolve at the same rate. In some cases physiological
changes in the vine do not occur in the same order from year to year even in the
same grape variety. Ripening, unlike veraison, which is a well-defined event on a
physiological and biochemical level, does not represent a precise stage. Different
parts of the grape reach the stage of physiological maturity at different times.
For example, the seeds reach this stage in the veraison period, while the pulp
and skin continue their ripening process for many more weeks. Consequently, the
definition of maturity, and therefore the time of harvest, varies depending on what
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our goal is and the wine we are going to produce. In enology, skin ripeness is
consequent to the maximum concentration of phenolic compounds and aromatic
substances, while flesh ripeness is defined by the optimal ratio of sugars to acids.
To simplify the problem, we tend to focus on increasing sugar concentration and
decreasing acidity. However, it is also crucial to consider the accumulation of
aromas in white grapes and phenolic compounds, such as anthocyanins, in red
grapes. A quality wine-growing area promotes harmonious ripening, in which all
these transformations reach their peak simultaneously at harvest time. For this
reason, predicting the sugar content of grapes becomes crucial, as it is one of the
key indicators for determining the ideal time of harvest. I will explore this aspect
in more detail in my paper.

1.3.5 Maturity index and sampling
“Nothing is more heterogeneous than grapes from the same vineyard at a given
time, even when considering the same variety.” This sentence, taken from the book
[4], and the explanations that follow, represent one of the most important factors
in understanding the significance of my reviews and study, this is because it is of
paramount importance to understand the inherent and nonlinearly controllable
variability of the physical and chemical characteristics of grapes. If we go to analyze
a single bunch of grapes during the ripening stage, we will observe that its berries
will grow in weight and change in color one after another, that these processes
will start at different times and evolve at different speeds. This causes that, at
the time of harvest, even the same bunch of grapes will show some variability
in the physical and chemical characteristics of its berries. This fact leads to the
verification that in the same vine, at the hypothetical time of harvest, different
clusters will have different levels of maturity. For this reason it becomes very risky
to determine the day of harvest by making an analysis of the clusters of a single
vine. The most common method to date is to collect, through the use of shears,
the fragments of three or four bunches from 100 different vines. In doing so, special
attention must be paid to the variability of environmental and soil conditions to
which the vines were subjected during the cycle. It will therefore be necessary
from the same vine to take samples from clusters under the most light-exposed
leaves and under the least light-exposed leaves, and it will be useful to take into
account that in the more compact clusters often the berries located inside are less
ripe than the others. It will also be necessary to take samples of bunches from
all areas of the vineyard because of the variability of the soil and environmental
conditions at different heights in the vineyard. After being harvested, the grapes
are brought to the laboratory and the berries are separated, counted and weighed.
The juice is extracted using a small hand press or centrifugal separator, and the
volume obtained is measured and expressed in liters of must. After this is done,
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the concentrations of sugars and acids in the juice are determined. Instruments
such as the refractometer and hydrometer are used to measure the sugar content
of the must. The refractometer measures the density of the wort. The unit of
measurement used here can be gram per liter or the Brix degree, which expresses
the amount of sugars in the wort in grams per 100 g of solution, that is, as a
percentage of solid content. However, it is important to note that measuring in
degrees Brix is reliable only from a certain level of grape maturity, around 15°
Brix; before that stage, other compounds such as organic acids and amino acids
can interfere with the measurement because their refractive indices are similar to
those of sugars. The hydrometer, on the other hand, measures the specific gravity
of the must, which increases with the concentration of sugars present. However,
the types of analysis described above have some significant limitations. First, they
are destructive methods, as they require the harvesting and processing of berries,
preventing continuous, noninvasive monitoring directly in the field. In addition,
referring to what we wrote earlier, the inherent variability of grapes, influenced by
several factors such as sun exposure, soil conditions, and microclimatic differences
in the vineyard, hampers the possibility of obtaining a representative sample of
the entire harvest. This could lead to incorrect estimates of sugar content and,
consequently, influence the decision on the best time to harvest. The limitations
mentioned above have led research over the years to move toward the study of
alternative, non-destructive methods for measuring the sugar content of grapes.
What one would ideally like are mobile sensors within the vineyard that would be
able to accurately estimate the sugar and polyphenol content of the grapes without
too much waste using techniques and algorithms that could be the ones analyzed in
this study. At any given time, such methods would show grape growers the state of
ripeness of the grapes and improve the accuracy of the predictions, thus enabling
more accurate decisions about when to harvest. What is of paramount importance
to note is that during the ripening stage, the increase of sugars in the grape berry
is very rapid, with values that can grow by an average of 2.2 to 3.2 degrees Brix
in one week, with variations from 0.6 to 4.8 degrees Brix [6]. Counting that the
residual sugar content of ripe grapes varies from 150 g/l (≈ 15 degrees Brix) and
240 g/l (≈ 24 degrees Brix), the latter can grow by as much as 20 percent per week.
These data will be useful in the reflections in the next chapters.
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Chapter 2

Imaging techniques and
cultures

In the previous chapter, I recounted how scholars in recent years are oriented
toward finding reliable, non-destructive and low-cost systems to achieve the goal
of estimating grape quality parameters in order to decide on the optimal day of
harvest. When we talk about predicting the physical and chemical characteristics
of fruit, we first refer to remote sensing techniques and machine learning algorithms
applied to computer vision. What we in fact want to do ideally, and what would be
sufficient, is to estimate quality parameters through the use of images, that is, digital
representations of the entity we are studying. The most frequently used images
are RGB and VIS-NIR images, the reasons for which will be explained later in the
paragraphs. In this chapter I will give a sufficient explanation of the concepts behind
image interpretation, the goal is to present all the necessary tools to understand
how and why machine learning algorithms can achieve excellent performance in
computer vision tasks and in particular in the estimation of fruit quality parameters.
In doing so, I will try to present what assumptions we voluntarily or involuntarily
make when trying to train a machine learning algorithm in computer vision. In
particular, the focus will be on the concept of information, trying to explain the
importance of being aware of what raw information is encapsulated within an
image. The raw information will in fact be that from which more complex and
higher-level information will be deduced by experience that will lead us to trying to
solve a certain task, through a certain machine learning algorithm, by means of a
certain input. After doing this I will focus on and present some studies using RGB,
multispectral or hyperspectral images for the prediction of physical and chemical
characteristics of fruit. The focus of this chapter will not be solely and exclusively
on grapes, with the goal of giving a comprehensive view and then going into more
detail on grapes and the study in the next chapter. The considerations on imaging
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techniques are the result of the study and reworking of the information contained
within the book[13].

2.1 Remote sensing
“A picture is worth a thousand words” is a saying often used when one wants to
introduce the concept of an image and the information it contains. This phrase
actually refers to the fact that within an image are contained a myriad of data
that, if understood and interpreted in the correct way, can tell us about the image.
Remote sensing is the science of deriving information about an object through
measurements at a distance from it, without having direct contact with it[13]. The
quantity most often measured is the electromagnetic energy emitted by the object.
Seismic waves, sound waves, and gravitational force are some of the other entities
that can be measured through the use of these instruments, however, our focus will
be on systems that measure electromagnetic energy. Remote sensing originated
as a discipline for analyzing images and thus its origins coincide with those of
photography, in the early 1800s. However, this discipline began to attract much
interest during World War I, when aerial photography began to be used for military
reconnaissance and surveillance. However, it was during World War II that this
discipline began its greatest acceleration, which would not stop. In fact, at that
time remote sensing began to be used to study the earth and battle zones also by
means of electromagnetic waves outside the visible spectrum. To understand what
imaging is and, in particular, RGB imaging and in the VIS-NIR spectrum, which
are the ones of most interest to this study, we need to start with the concepts of
electromagnetic wave, electromagnetic spectrum and spectral properties of matter.
Having a clear understanding of these concepts will allow one to make consistent
assumptions and reasoning to explain the results and analyses present in this study.

2.1.1 Electromagnetic waves
Why do we see ? This question, which might seem trivial, when thoroughly
analyzed, allows us to be aware of some concepts that we do not dwell on and
ask questions about in our daily lives. These concepts are the basis of the theory
on image interpretation and are therefore fundamental to our purpose. The first
thing that comes to mind to answer the previous question is the fact that we
see because we have eyes. This is true, but what exactly do we perceive ? The
eyes, like all the other senses, are instruments that can measure some form of
magnitude derived from the outside world and instantly inform the brain about
the measurement. The brain’s response and task, once informed, is to make us
perceive. The magnitude that the eyes can measure and thus the one from which
we can extract information to see is the electromagnetic wave, specifically a small
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subset of electromagnetic waves. Once measured, this magnitude will be perceived
as color and thus give us the ability to see the outside world. The origin of these
electromagnetic waves can be traced back to the sun. More precisely, nuclear
reactions in the sun produce electromagnetic waves that propagate at the same
speed to the earth without undergoing any major changes along the way. The sun is
said to produce a full spectrum of electromagnetic waves. A practical interpretation
is that the sun produces an infinite amount of electromagnetic waves at all possible
wavelengths. The electromagnetic spectrum is the range of possible wavelengths.
Every object, depending on its shape and physical chemical composition, inherently
has the property of absorbing or reflecting some or other electromagnetic waves
depending on their wavelength. The human eye is sensitive to a small portion
of the electromagnetic spectrum, particularly to length waves in the 400-700 nm
range. So the reason we see is that every object reflects a certain portion of the
spectrum between 400 and 700 nm, the reflected electromagnetic waves will reach
our eye, which will receive the raw information, send it to the brain, and the brain
will make us perceive colors. From the color information is then derived several
other pieces of information such as shapes, sizes, spaces, and everything related to
sight as we know it.

Figure 2.1: Illustration of how objects absorb and reflect different wavelengths of
light

[14]

The first to investigate the properties of the visible spectrum was Isaac Newton,
who through some experiments came to the conclusion that visible light is divisible
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into 3 segments, today we know these segments as “primary colors” and they are
respectively the waves from 400 to 500 nm (blue), 500 to 600 nm (green) and 600 to
700 nm (red). The fundamental property of each primary color is that none of them
can be derived by mixing the other two in any proportion and that all possible
colors can be derived by mixing the 3 primary colors in the proper proportions. In
practice what we do automatically is to perceive waves with lengths from 400 to 500
nm as blue, from 500 to 600 nm as green, and from 600 to 700 nm as red. Depending
on the intensity of the radiation perceived in these spectra we will perceive all
other colors. When we see a blue object, it means that it is absorbing radiation
with wavelengths from 500 to 700 nm and is reflecting that from 400 to 500 nm.
The fact that you can also see the individual colors blue, green and red in different
ways is that we are talking about continuous ranges. Within each range there are
infinite wavelengths, and each object in turn can reflect some with greater intensity
and some with less intensity. The fact that we perceive only the electromagnetic
waves in the visible spectrum does not mean that there are only those. In fact, the
visible spectrum is only a small part of the electromagnetic spectrum. Objects,
depending on their characteristics, will also absorb or reflect electromagnetic waves
in the rest of the spectrum, and consequently the hypothetical measurement of
their intensity can in turn tell us about the characteristics of matter. In its totality,
the spectrum is divided, by convention, in this way (see Table 2.1). In the next

Table 2.1: Division of the Electromagnetic Spectrum

Region Wavelength Frequency

Radio Waves > 1 mm < 300 MHz
Microwaves 1 mm− 1 µm 300 MHz− 300 GHz
Infrared (IR) 1 µm− 700 nm 300 GHz− 430 THz
Visible Light 700 nm− 400 nm 430 THz− 750 THz
Ultraviolet (UV) 400 nm− 10 nm 750 THz− 30 PHz
X-Rays 10 nm− 0.01 nm 30 PHz− 30 EHz
Gamma Rays < 0.01 nm > 30 EHz

section I will explain what images are from the perspective of the information
they encapsulate and how we can make informed choices in creating image-based
prediction models. In particular, I will focus on images that capture information
in the visible spectrum (RGB) and those that also capture information in the near
infrared (VIS-NIR).
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2.1.2 RGB, multispectral and hyperspectral images

For a long time in the history of remote sensing, images have been recorded
physically in the form of photographic images. A photographic image is a physical
record that through the use of chemical coatings records a scene. This record
will be precisely the representation of the scene and will be a more or less similar
representation of what we see. In this section we will deal with another type of
images, which are easier to analyze, visualize, transfer and save; digital images.
Unlike the physical format, the digital format represents the image as an array of
many individual values called pixels. Each pixel represents in some way a portion
of the image. By convention the image is dissected by a number of horizontal and
vertical segments thus dividing it into small squares, these squares are the pixels
and are associated with a value. RGB images are generated using sensors designed
to replicate the human eye’s response to visible light. These sensors capture three
spectral bands (red, green, and blue), which correspond to the sensitivities of the
three types of cones in the retina, allowing colors to be represented similarly to
how we perceive them visually. For each pixel in an RGB image, there are three
numerical values representing the intensity of light in the red, green and blue bands.
Although the spectra of red, green and blue are continuous, each pixel retains a
single value for each of these bands, which corresponds to an estimate of the average
intensity of light detected in that spectral range. Thus, the color of each pixel is
determined by combining these three values in different proportions. Sensors that
record data across a far larger range of wavelengths than typical RGB photos are
used to create multispectral and hyperspectral images. Multispectral images record
information across many spectral bands, frequently encompassing not just the
visible (VIS) but also the near infrared (NIR), whereas RGB images are restricted
to three bands (red, green, and blue) intended to mimic human vision. A small
number of spectral bands, such as the visible and a few particular near-infrared
bands, are represented by values in each pixel of multispectral photographs. The
intensity of light reflected in each of these bands is represented by these values,
which provide a more thorough understanding of the phenomenon being viewed.
For instance, because it can reveal details like plant moisture, chlorophyll content,
and crop health that are not evident in the visible bands, NIR is very significant in
applications pertaining to viticulture and agriculture. The continuous spectrum
from the visible to the near-infrared and beyond is covered by hyperspectral imaging,
which records data in many more bands, often hundreds. A hyperspectral image
has a whole range of values in each pixel, which corresponds to a spectral signature
specific to the surface or reflective material. It would be challenging to identify
between identical materials and situations using RGB or even multispectral bands
alone, but these spectral characteristics allow for this. Hyperspectral images are
very helpful in the agricultural setting for closely examining the physiological
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traits of crops, including their nutritional content, level of water stress, and other
attributes linked to plant health. Pixel values in both systems reduce the continuous
spectrum to a collection of discrete values by estimating the average intensity of light
reflected in each band. Advanced assessments of vegetation, chlorophyll content,
and crop health, all crucial elements in agricultural and viticultural contexts, are
made possible by the combination of various bands, especially those in the VIS
and NIR, which offer significantly more information than an RGB image.

Figure 2.2: Comparison of RGB, Multispectral, and Hyperspectral Imaging
[15]

2.1.3 Information
In the last chapter I gave a detailed overview of the types of images that will
be analyzed in the study and review of the scientific literature. In this chapter
I will make some considerations about the raw information that digital images
contain and how, through experience, higher-level, interpretable information can
be derived from that information. Finally I will make some considerations about
the maximum amount of information that an image can contain. When we try to
create a machine learning model that classifies a photograph according to whether
a dog, a cat, or neither is present and train it through the use of input examples
(dog and cat pictures) and output examples (dog class, cat class, neither class) we
are from a certain point of view cheating. The reason I say this lies in the fact
that through our experience, we already know from looking at an image that we
know how to interpret what it depicts. Since an image is a digital, albeit simplified,
representation of what we see, we are already certain that the image contains all
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the information necessary to classify what is within it. Whenever such awareness
is present, model building becomes much easier, since the starting assumptions are
already present in our experiential background. In other words, we are already
sufficiently convinced that from a given X we can derive x1 information, from
which we can derive x2 information and going on until we derive the xn information
we are interested in. We can therefore say with some confidence that a machine
learning algorithm trained with sufficient data and of sufficient quality can learn to
predict an information xn from an entity X. Going into the details of RGB images
we are aware of basically two things:

1. The raw information contained in RGB images corresponds to the intensity of
light reflected in the spectra of blue, red and green, for each pixel.

2. The RGB image is a simplified digital representation of what is received by
our eye. In fact, our eye receives the intensity of electromagnetic waves in
the visible spectrum and through an exchange of information with the brain
this is perceived by us as color. We can therefore say that the information
contained in an RGB image is a proxy for color.

It is important to note that in the raw information contained in an RGB image
there is actually no reference to colors, yet it is as if it were present because it is
directly derivable information from the raw information. The concept is that since
we are innately capable through the use of sight, and therefore colors, to distinguish
different objects, group them, see their depth, perceive distance and shapes, and
since color is directly correlated with the electromagnetic radiation received by
the eye, a sufficiently intelligent algorithm will be able to perform computer vision
tasks well enough. The algorithm will then learn from the raw information to derive
patterns in the data and more complex, higher-level information to derive the final
information, similar to how we do it by going through colors, then from shapes
etc. The issue becomes more complicated, however, when we attempt to apply the
same way to forecast the amount of a chemical molecule in a fruit. In contrast
to visual categorization, we cannot be as sure that an RGB image has all the
information required to identify a particular chemical property. This is dependent
on whether and how the chemical property of interest is connected to the reflected
radiation. For instance, let’s consider the perfect example of grapes: we know that
anthocyanins, which give the berries their dark hue, rise during the ripening period
as the berries develop and acquire more vibrant hues. In this instance, we may
speculate that the color information in the picture can be used to determine the
anthocyanin content. In fact, a machine learning model trained using RGB photos
may be able to correlate color with anthocyanin content because anthocyanins are
strongly linked to the shift in berry hue. The primary challenge is that, unlike
object recognition, we cannot determine a fruit’s chemical composition only from
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visual observation since our experience prevents us from properly interpreting
that information. Multispectral and hyperspectral photographs are useful in this
situation. Because these images can record reflectances over a wide variety of
spectral bands, including some that are invisible to the human eye, such near-
infrared, they are able to capture a lot more information than RGB photographs.
We may be better equipped to forecast the composition of particular chemical
compounds as a result of this increase of information. It is nevertheless crucial to
comprehend the experience of what data these extra spectral bands record and
how it connects to the chemicals of interest. We can only develop machine learning
models that can accurately predict features beyond visual interpretation if we have
this knowledge and interpretation. Furthermore, the number of spectral bands
and their coverage along the electromagnetic spectrum greatly affects the quantity
of information that is available when looking at multispectral and hyperspectral
photographs. Consider a hypothetical image A that only records the blue spectrum’s
reflectance value and another hypothetical image B that has a far greater spatial
resolution but is still only able to record the blue spectrum. Since all of the
bands are coupled within the same range, picture B adds no discernible spectral
information variety while having higher resolution. To put it another way, we are
merely making the blue spectrum more detailed without increasing the amount
of information that can be gleaned from the visible spectrum. As the phrase
"bands that are close to one another tend to replicate the information in their
adjacent region of the spectrum"[13] describes, this limitation draws attention to
a crucial idea: spectral bands that are close to one another tend to replicate the
information of adjacent regions of the spectrum. This implies that including more
adjacent spectral bands might just make the information already collected more
redundant rather than greatly increasing the diversity of information contained in
the image. Now, if we look at another situation where we have a hyperspectral
image that includes several visible and near-infrared (VIS-NIR) bands, we can
record a lot more information about color as well as physiological traits like the
amount of water or chlorophyll. Since each successive band in VIS-NIR adds a new
dimension of potentially helpful information, this kind of image can in fact give
a far more comprehensive portrayal of the fruit or plant. For instance, a fruit’s
water content, which cannot be determined by the visible bands alone, may be
identified using a near-infrared band. However, it is important to realize that the
capacity to analyze the correlations between various bands and how these relate
to the traits we aim to assess is equally essential to obtaining the most valuable
information. Not every band has the same level of information; some can be quite
redundant, while others might offer crucial information for calculating particular
chemical components. In the end, the diversity of these bands throughout the
electromagnetic spectrum determines how much information an image can hold
in addition to the number of bands and spatial resolution. While multispectral
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and hyperspectral images with bands evenly distributed throughout the VIS-NIR
spectrum can offer a substantially higher amount of pertinent information for
comprehending the internal characteristics of a fruit, an image with numerous
highly correlated bands may not always be valuable. Even yet, it is still essential
to have the knowledge needed to relate the unprocessed data recorded by the
various bands to the chemical or physiological characteristics we wish to forecast;
this process calls for ongoing experience and a thorough comprehension of the
phenomenon.

2.2 Spectral behavior of plants

Understanding how to use multispectral and hyperspectral pictures to evaluate
crop maturity and its physicochemical characteristics requires an understanding
of the spectral behavior of plants. A distinct "spectral signature" that can be
used for agricultural study is produced when electromagnetic waves and plant
structure interact to determine reflectance at various spectrum areas. Depending
on the wavelengths taken into consideration and the physiological state of the plant,
different plants, including grapevines, reflect light in different ways. For instance,
chlorophyll is essential in the visible portion of the electromagnetic spectrum. In
order to perform photosynthesis, it mostly absorbs red and blue light, reflecting
green light, giving the leaves their green appearance to the human eye. This
behavior is also seen in grape berries, where the anthocyanin content, which gives
the berries their color, varies according to the ripeness level and helps to provide
a distinctive spectral signal for red and white grapes. Since reflectance in the
near-infrared (NIR) band is not affected by pigmentation but rather by the interior
structure of the leaves and berries, such as cell arrangement and water content,
it is especially intriguing for spectral study of plants. Near-infrared technology
can be used in agriculture to provide vital information on the health of plants,
the amount of water present, and the maturity of fruit, particularly grape berries.
The relationship between ripeness and spectral changes is especially important
for grapes. For example, as grapes develop, the concentration of other pigments,
including anthocyanins, rises while the amount of chlorophyll in the skins drops.
This alteration causes a "red shift" that can be utilized as a ripeness indicator by
decreasing absorption in the red band and increasing reflectance in the near-infrared.
Numerous crop studies have documented this phenomena, which has led to the
development of vegetation indices like the Normalized Difference Vegetation Index
(NDVI), which may also be used in winemaking to track the growth of plants and
berries. In order to create predictive models that can assess grape quality from
photos, these spectral factors are crucial. We can develop stronger ideas regarding
the relationship between the observed spectral features and chemical attributes,
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including the amount of sugar and anthocyanins, by knowing how the plant reflects
various wavelengths. The key to learning how to use imaging technology to make
better agronomic decisions, such when to harvest, is ultimately tracking the spectral
activity of grapes from the veraison phase to full ripeness.

2.3 Imaging techniques in agriculture
As we mentioned in earlier explanations, imaging technologies have advanced
significantly as a result of the need for accurate, efficient, and non-destructive
ways to evaluate the quality of agricultural products. These technologies, which
enable the evaluation of quality indicators without causing harm to the product,
such as RGB, multispectral, and hyperspectral imaging, have emerged as crucial
instruments in precision agriculture. This section lays the groundwork for the
machine learning applications that will be discussed in the following chapter by
examining the various imaging modalities’ uses in agriculture, with an emphasis on
their usage in assessing the quality of different fruits.

2.3.1 Overview of imaging modalities
RGB imaging

In agriculture, RGB imaging is frequently used to evaluate the external character-
istics of fruits, including their color, size, and form. RGB imaging is a common
option for preliminary quality evaluations due to its affordability and ease of use.
For example, using Artificial Neural Networks (ANNs) to forecast oil and phenol
content and to evaluate overall fruit quality, RGB imaging has been used to iden-
tify faults in olive fruits and classify olives according to maturity[16]. However,
because RGB imaging only records visible light and thus provides limited spectral
information, it is limited in its capacity to assess interior attributes.

Multispectral imaging

A limited number of distinct spectral bands, frequently encompassing visible
and near-infrared (NIR) ranges, are captured via multispectral imaging. This
makes it especially helpful for evaluating characteristics like water status and
chlorophyll levels that are associated with different wavelengths. Fruit firmness
and Total Soluble Solids (TSS) can be efficiently characterized using multispectral
imaging, which offers important information on the internal quality and maturity
of the product. Although it still lacks the full spectrum resolution provided by
hyperspectral imaging, the ability to target particular spectral bands enables higher
precision than RGB imaging.
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Hyperspectral imaging(HSI)

A potent technique for assessing the internal quality of agricultural products is
hyperspectral imaging (HSI), which blends spectral and spatial data. HSI provides
a comprehensive spectral fingerprint of every pixel by capturing hundreds of
contiguous spectral bands, in contrast to RGB or multispectral photography. A more
thorough examination of internal quality characteristics like sugar content, acidity,
and phenolic chemicals is made possible by this capacity. Using sophisticated models
such as SPA-MLR (Successive Projections Algorithm-Multiple Linear Regression)
and GAPLS-LS-SVM (Genetic Algorithm Partial Least Squares-Least Squares
Support Vector Machine), studies on kiwifruit have shown how well HSI predicts
firmness, soluble solids content (SSC), and pH[17]. In a similar vein, mango
hardness, TSS, and titratable acidity have all been evaluated using hyperspectral
imaging, which maps internal changes during the course of ripening[18].

2.3.2 Application in fruit quality assessment
Kiwifruit: When it comes to kiwifruit, HSI has been utilized to forecast important
quality parameters like pH, firmness, and SSC. In order to create predictive models
that were highly accurate in calculating these values, the study examined a variety
of spectral bands, including the visible and NIR ranges. The ability of HSI to
non-destructively assess the interior quality of kiwifruit was demonstrated by the
application of techniques like SPA-MLR and GAPLS-LS-SVM[17].

Mango: Hyperspectral imaging has also been used to map the physicochemical
properties of mangoes. Firmness, TSS, and titratable acidity were all predicted
using HSI, which shed light on how these characteristics change within the fruit
as it ripens. Determining the ideal harvest time and guaranteeing fruit quality
depend on a thorough examination of these changes, which is made possible by
HSI’s capacity to record extensive spectral data[18].

Olive: When it comes to olives, RGB imaging in conjunction with ANNs has
been used to identify surface flaws, classify olives according to age, and evaluate
crucial quality attributes like oil and phenol content. This method shows how even
more basic imaging methods can yield useful information about fruit quality when
paired with machine learning models[16].

Strawberry and Other Fruits: In order to identify physical characteristics
including color, size, and surface flaws, image processing techniques were utilized in
the effective application of RGB imaging to strawberries. In spite of its drawbacks,
RGB imaging can be a very useful tool for external quality assessment when
backed by strong computational models, as the study’s excellent accuracy in quality
assessment shows[19].

Banana and Grapes: Other fruits, such bananas and grapes, have also been
imaged using hyperspectral and RGB techniques. By examining spectral properties,
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HSI was utilized to assess the maturity and interior quality of bananas[20]. RGB
imaging was used to evaluate the physical characteristics of grapes, such as size
and color, which are markers of quality and maturity[21].

2.3.3 Advantages and challenges of imaging technique
Advantages: Every imaging modality has special benefits. RGB imaging is appro-
priate for external quality evaluations when color and shape are the main factors
because it is affordable and simple to use. With its capacity to target particular
spectral bands, multispectral imaging offers more details about particular quality
features, such moisture content or chlorophyll. Because of its extensive spectral
coverage, hyperspectral imaging is unique in that it may identify minute variations
in chemical composition that are invisible using conventional techniques. Because
of this, HSI is especially effective in evaluating internal characteristics that are
crucial for judging the quality of grapes and other fruits, such as sugar and acid
concentration.

Challenges and limitations: Every imaging method has drawbacks despite its
benefits. Since RGB imaging is limited to visible wavelengths, it is unable to
reveal interior quality factors that are not apparent from the outside. Despite
providing more information than RGB, multispectral imaging is still constrained by
the amount of spectral bands it can record. Despite being incredibly informative,
hyperspectral imaging has several drawbacks, such as high processing demands,
massive data quantities, and the requirement for specialist hardware. Additionally,
variations in fruit attributes like size, shape, and maturity can make analysis
more difficult and necessitate sophisticated preprocessing and calibration methods
in order to get accurate results[22]. Furthermore, standardized protocols and
better data handling techniques are required to make hyperspectral imaging more
dependable and accessible for broad agricultural use, according to a systematic
review of recent applications([23], [24]).

2.3.4 Conclusion link to machine learning application
In conclusion, imaging methods are essential for the non-destructive evaluation of
fruit quality since they provide a variety of instruments for analyzing both internal
and exterior characteristics. While multispectral and hyperspectral imaging offer
increasingly more detailed and informative data, RGB imaging is appropriate for
fundamental evaluations. Building on these imaging methods, the next chapter will
concentrate on how machine learning models, specifically, regression techniques,
can use the abundant data from hyperspectral imaging to forecast crucial quality
indicators, such as grape sugar content. With the ultimate goal of optimizing
harvest time and enhancing grape quality assessment through sophisticated data
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analytics, this shift from imaging technology to predictive modeling will demonstrate
the full potential of these tools in precision viticulture.
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Chapter 3

Machine learning for sugar
grape prediction

3.1 Introduction
In the contemporary wine industry, grape quality is a crucial aspect that directly
affects the organoleptic characteristics of the wine and its market value. Chapters 1
and 2 emphasize that the sugar concentration in grape berries is a crucial factor for
establishing the ideal harvest time, affecting the winemaking process and the wine’s
final attributes. The evaluation of grape maturity and sugar concentration has
conventionally been conducted by damaging and labor-intensive techniques that ne-
cessitate hand sampling and laboratory examination. These methods, while precise,
possess considerable constraints regarding time, money, and representativeness,
hence complicating broad and continual vineyard monitoring. Chapter 2 examined
advanced imaging techniques, specifically multispectral and hyperspectral imaging,
which provide novel avenues for the non-destructive assessment of qualitative crop
metrics. We have emphasized that these techniques, utilized in precision agriculture,
can yield comprehensive data on the chemical composition of fruits, facilitating
more efficient and sustainable oversight. This chapter is to critically analyze the
current research that has utilized machine learning techniques on multispectral
images to forecast the sugar concentration in grapes. We will conduct a comprehen-
sive examination of the used methodology, utilized datasets, and achieved results to
ascertain the factors contributing to the success or limitations of specific strategies.
Additionally, we will examine the issues associated with viticultural data, including
genetic and environmental variability, as well as the consequences of mathematical
assumptions in prediction models. This chapter will establish a robust basis for
the experimental work detailed in Chapter 4, in which diverse machine learning
approaches will be employed and evaluated for predicting the Brix index from
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multispectral pictures.

3.2 Understanding the choices

As already discussed in previous reflections, this thesis primarily aims to serve as a
means to deeply understand all the concepts, choices, and assumptions, whether
voluntary or involuntary, that underlie the methodologies integrating machine
learning for predicting grape quality parameters, particularly sugar content. In
fact, although the foundation is always training a machine learning model, the
methodologies can be very different. It will then be the chosen methodology that
will determine the usability, reliability, and performance of the system. In doing
so, it is important to keep in mind that the generally pursued objective is to find
a system that effectively estimates the average sugar content of the grapes in a
vineyard to help winemakers decide on the day of the harvest. To provide a more
concrete idea, let’s use two cases that could be real and compare them. In both cases,
we have a machine learning model that requires a multispectral vector as input
and returns a value corresponding to the sugar content expressed in Brix degrees
as output. To understand which entities correspond to the input multispectral
vector and the predicted sugar content, we need to add some information, which
will be different in the two cases. In the first case, a sampling of grapes from a
single variety v1 was taken from a single vineyard t1 in the year a1. 20 grapes were
collected each day for 20 days, in different parts of the vineyard that are more or
less sunny and at different altitudes, during the period from the beginning of the
ripening phase until the day of the harvest. At the end of the procedure, we will
have a sample of 400 grape berries that will ideally cover a wide range of sugar
content. After sampling, through appropriate methodologies and instrumentation,
an average hyperspectral vector in the range of 400 nm - 1000 nm (VIS-NIR) is
extracted from each berry and its sugar content is measured. The method by which
the average multispectral vector is obtained will be analyzed in more depth in
the following sections; for now, it is sufficient to know that, through the use of
specific instruments, the multispectral image of the grape is obtained, which is
then averaged to derive a multispectral vector. This multispectral vector tells us
how the grape berry reflects incident light at different wavelengths in the reference
spectrum. As already mentioned in Chapter 2, we know that these reflectances
contain information regarding some characteristics, both visible and invisible, of the
grape. Finally, with the obtained data, a machine learning model M is trained to
predict the sugar content of the grape berry using a multispectral vector, achieving
performance P1. In the second case, a sampling of grapes from 5 different varieties
v21, v22, v23, v24, v25 was taken from two different vineyards t21 and t22, in
two different years a21 and a22. The grapes of the v21, v22, and v23 varieties
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are red and were sampled from the t21 vineyard, while the grapes of the v24 and
v25 varieties are green and were sampled from the t22 vineyard. In this case, the
sampling occurs differently. For each grape variety, 10 bunches are harvested per
day from different parts of the vineyard over the 20 days leading up to the harvest
day, exactly as in case 1. After sampling, 6 berries are selected from each cluster,
from different parts of the cluster, representative of it. With a system analogous to
case 1, the multispectral images of the 6 berries are obtained and then averaged to
derive a multispectral vector that represents the entire bunch. This multispectral
vector is associated with the average sugar content of the 6 berries. Finally, with
these data, the same machine learning model M is trained, achieving performance
P2. Now that we have provided context, we will separately consider the differences
between cases 1 and 2 in terms of model generalization, usability, complexity, and
the intrinsic loss or risk of loss of information.

Generalization and Complexity

Regarding this aspect, the two cases are very different from each other and are
based on more or less strong assumptions. In the first case, we are training the
model to predict the sugar content of a single grape variety from a single vintage.
On the contrary, in the second case, the goal is to generalize the model to more
grape varieties, both red and white, across different vintages. What can we expect
from the two models and what are the conceptual differences underlying the two
systems? When we train a model to predict a dependent variable Y from an
independent variable X, the general and basic assumption we are making is that
Y is a random variable generated by a distribution f(X, w) + ε (random error),
where X is also a random variable. What the discipline of machine learning does
is assume a function f and estimate the parameters w of the function with the
real observations of X and Y . Having this aspect clear, we can understand the
fundamental differences between the two cases. In case 1, I am practically assuming
that the sugar content of the grapes of variety v1 can be estimated based on its
spectral vector with a certain margin of error. In the second case, I am making the
same assumption but simultaneously for 5 different varieties, collected over two
years in 5 different vineyards. This in practice amounts to assuming that if I take
two samples from two different years, in two different vineyards, and of two different
qualities, their sugar content can be estimated from their spectral vectors using
the same function, always with a certain margin of error. The intention of these
reflections is not to delve into the truthfulness or validity of these assumptions, but
rather to understand how they plausibly influence the performance of the models
and, above all, their usability. To give a more concrete idea, it is useful to think
that in the first case I am assuming, without knowing it a priori, that the grapes
of the variety v1, harvested in the vintage a1, constitute a group, and that the
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elements of this group (all the individual berries or bunches) are somehow similar
to each other. In the second one, I am making the same assumptions about a
much larger group. Although no one can know the truth of the assumptions, since
by their nature they are taken as true without being verified, we can still try to
reason probabilistically about their degree of truthfulness. We can indeed assert
that the probability of there being parameters and indicators that, when compared,
reveal that the entities of the group are actually similar to each other is greater in
the first case than in the second. This is because in the second case we increased
the degree of complexity by bringing together a greater number of entities that,
based on our experience, have a certain degree of dissimilarity (different vintages,
different varieties, different vineyards). All these reflections lead to the conclusion
that the assumptions underlying model 1 are stronger and have a higher degree
of truthfulness than those underlying model 2. For this reason, we expect model
1 to perform better than model 2, meaning it will be able to better predict the
sugar content of the type of grape it was trained on. At this point, keeping in mind
that the ultimate goal is to estimate the average sugar content of the grapes in a
vineyard, it is important to understand how applicable the two models are in reality.
If it is true that model 1 is likely more accurate in its estimates on data similar to
those on which it was trained, it is also true that it manages a much lower degree of
variability and that a hypothetical system estimating the harvest day by integrating
model 1 will be less universal. On the contrary, although it is true that model 2 is
likely less performant, a system built on the basis of this model will be far more
usable because it is intrinsically designed to handle variability regarding regions,
years, and grape varieties. The objective of the previous reflections is to draw
attention to the importance of carefully evaluating all factors directly and indirectly
involved in processes of this type, without underestimating the complexity. It is
of fundamental importance to understand that the quality of the grape is subject
to a large number of variables such as soil quality, climate, plant health, and the
variety itself, and that these variables can be very different if certain conditions are
changed such as the vintage, the vineyard’s location, the position of the individual
vine, and the position of the individual bunch. It will therefore be essential to
find a compromise between the robustness of the model, its practical usability, and
the quality of its estimates. In the next section, we will focus on the concept of
"information loss".

Information loss

Another aspect that the two cases allow us to evaluate is related to the difference in
the significance that my data represents within the dataset. In both cases, in fact,
the single spectral vector within the dataset and the corresponding sugar index
represent two different entities. In the first case, we said, the spectral vector is
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obtained by averaging all the spectral vectors of the pixels in the hyperspectral
image of the berry; in the second case, the spectral vector is obtained by averaging
the spectral images of 6 different berries belonging to the same bunch, taken from
different parts of the bunch to ensure the greatest possible variability. Although in
both cases the data with which we train the model have the same structure, they
actually represent very different entities and therefore do not capture the same type
of information. In the first case, the spectral vector and the sugar index represent
a specific grape berry, while in the second case, they represent the entire bunch. In
light of these facts, it is natural to wonder what kind of predictions the machine
learning model is intrinsically structured to make if it is trained with one dataset
or the other. Encoding an entity through data is, in itself, a process that leads to
a certain loss of information depending on the type of data we use and the entity
to be encoded. The lost information will carry more or less weight depending on
how connected it is to the final information we want to estimate, in our case the
sugar content of the grape. Understanding these arguments leads us to the idea
that when I represent an entire bunch of grapes with a single spectral vector, I
am losing more information compared to when I represent a single grape. This is
because in the second case, I am materially averaging 6 different spectral images
and 6 different sugar degree values to construct a single data point related to the
bunch. I am therefore performing two distinct operations, namely using 6 berries
from the bunch as a proxy for the bunch itself and then averaging the respective
spectral images and sugar contents. Each of these operations carries a certain
loss of information. In the first case, the loss of information will definitely be
smaller, because I am averaging vectors related to the pixels of the same grape. The
variability of these vectors will be relatively low, and therefore the average vector
will be a more accurate representation of the entire image. All these considerations
are fundamental when we test models on new data and interpret their results,
because they already tell us what to expect and what the model can and cannot
do. Returning to the two hypothetical cases we are analyzing, the first model will
be trained to predict the sugar content of a grape berry from its spectral vector,
so it will be a model that from a certain point of view we can define as pointwise.
The second model, on the other hand, will be inherently trained to predict an
average sugar content related to multiple entities, and therefore cannot be used
to accurately predict the sugar content of a single grape. This means that if I
take a grape, calculate its spectral vector, and estimate the sugar content using
model 2, I cannot expect that to be an accurate estimate of the sugar content
of the grape, but rather an estimate of the average sugar content of the bunch
from which the grape comes. If we now imagine a real scenario, where we have
a mobile system moving through a vineyard and integrating a camera capable of
capturing spectral images, model 2 will certainly be the most suitable for estimating
the average sugar content of the vineyard. This is because we can imagine that
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the mobile system will capture images of entire clusters, which can then be used
to estimate their average content and finally the average of all the clusters. If
we used model 1, we would likely encounter a greater error, because we would
estimate the sugar content of the bunches in a precise manner as if they were
individual berries, and we would not have a representative value for the entire
bunch. If we imagine having more time and resources to collect a representative
sample of grapes from the entire vineyard and to individually acquire their spectral
vectors, the integration of model 1 into the system would certainly be the most
appropriate. We have therefore seen how the initial choices and assumptions are
inextricably linked with the integration of models into real processes. Even in
this case, it is important to reach compromises between performance, costs, time,
data quantity, and specific objectives. These reflections highlight the intricate
balance between model performance, generalization, and practical applicability
in the context of grape sugar content prediction. Understanding the impact of
methodological choices on the usability and reliability of machine learning models
is crucial. To further explore how these considerations manifest in real-world
applications, we will now review existing studies that have applied hyperspectral
imaging and machine learning techniques in viticulture.

3.3 Critical Review of the Literature

3.3.1 State-of-the-Art Research Review
This section offers a thorough critical analysis of previous research that has used
machine learning and hyperspectral imaging to forecast grape sugar content and
other quality metrics. Understanding the methods used, the presumptions made,
the results obtained, and the applicability of the models across various vintages,
varieties, and environmental circumstances are the main points of emphasis.

The use of hyperspectral imaging and machine learning algorithms to forecast
enological parameters including grape sugar, anthocyanin, and flavonoid content has
been investigated in a number of research. Among these, Gomes et al. [25] carried
out an extensive investigation contrasting several machine learning techniques,
such as Neural Networks (NN) and Partial Least Squares Regression (PLSR), for
forecasting the sugar content of Port wine grape berries. Using hyperspectral data
obtained in reflectance mode from samples consisting of just six whole berries,
they created prediction models. Data from the 2012 vintage was used to train the
models, and samples from the 2012 and 2013 vintages were used for testing. A rare
consideration in the literature, this method assesses the model’s generalizability to
vintages not used in model building.

With R2 values of 0.93 and 0.92, respectively, the findings demonstrated that
the RMSE values for the test set containing 2012 samples were 0.94 °Brix for PLSR
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and 0.96 °Brix for NN. The RMSE values for PLSR and NN climbed to 1.34 °Brix
and 1.35 °Brix, respectively, when test data with 2013 samples were used. This
suggests that performance declined while predicting on a new vintage. Nonetheless,
both models maintained a high degree of correlation between predicted and actual
values, as indicated by the R2 values, which stayed high at 0.95 for PLSR and 0.92
for NN.

The RMSE is a standard way to measure the error of a model in predicting
quantitative data, calculated as the square root of the average of squared differences
between predicted and observed values. The R2 value indicates the proportion
of variance in the dependent variable that is predictable from the independent
variables, ranging from 0 to 1, with higher values indicating better model fit.

In a later study, Gomes et al. [26] extended their investigation by including other
machine learning techniques, like Convolutional Neural Networks (CNN) and Ridge
Regression (RR), to forecast the amount of sugar in Port wine grape berries. The
vast dataset included samples from three grape varietals that are commonly utilized
in the production of Port wine: Tinta Barroca (TB), Touriga Franca (TF), and
Touriga Nacional (TN). Due to variations in terroir, climate, and grape maturation
stages, samples were gathered from 2012 to 2018 for TF and from 2013 to 2017 for
TN and TB. This allowed for the capture of a broad range of variability.

The models were tested on separate test sets that included TN and TB samples
(different varieties), as well as TF samples (same variety as training), after being
trained on TF samples from all vintages. The CNN model performed better
than the other approaches, according to the results, obtaining the lowest RMSEP
values in both the test and validation sets. In particular, CNN’s RMSEP for
the TF independent test set was 0.97 °Brix, whereas NN’s, RR’s, and PLSR’s
were 1.14 °Brix, 1.45 °Brix, and 1.47 °Brix, respectively. With RMSEP values
of 1.15 °Brix for TN and 1.31 °Brix for TB, which were much lower than those
attained by the other models, the CNN model once again demonstrated superior
generalization ability when tested on various grape varietals (TN and TB).

Silva et al. [27] examined the prediction of anthocyanin concentration, pH index,
and sugar content in whole grape berries using Support Vector Regression (SVR)
in conjunction with hyperspectral imaging. Three grape varieties, TF, TN, and TB,
collected throughout several vintages were included in the samples. Reflectance
mode was used to gather hyperspectral data in the 380—1028 nm range. To
evaluate the SVR models’ capacity for generalization, they were evaluated on TF
samples as well as the other two kinds after being trained on TF samples. On
the TF test set, the SVR model’s R2 value for sugar content prediction was 0.96,
and its RMSE was 0.80 °Brix. The model performed well when evaluated on TN
and TB samples, with R2 values of 0.90 and 0.89 and RMSE values of 3.19 °Brix
for both types. These findings imply that SVR in conjunction with hyperspectral
imaging can yield reliable forecasts for a range of grape types and vintages.
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The viability of employing hyperspectral imaging to track grape maturity in
the field under natural lighting conditions was investigated by Benelli et al. [28].
Thirteen separate days during the pre-harvest and harvest periods were analyzed for
the study, which concentrated on the ’Sangiovese’ grape variety. In the visible and
near-infrared (Vis/NIR) region (400–1000 nm), hyperspectral data were gathered,
and a portable digital refractometer was used to determine the soluble solids
content (SSC). With a R2 value of 0.77 and an RMSECV of 0.79 °Brix, PLSR was
used to predict SSC. PLS-DA was also utilized to classify the samples into ’ripe’
(SSC ≥ 20 °Brix) and ’not-ripe’ (SSC < 20 °Brix) classes, with 86% to 91% correct
classification rates. The study showed how hyperspectral imaging may be used for
non-destructive in-field grape maturity monitoring, offering a useful method for
choosing the best time to harvest.

The potential of hyperspectral imaging for defining table grapes according to
their sugar content (Total Soluble Solids or TSS), total flavonoid content (TF), and
total anthocyanin content (TA) was assessed by Gabrielli et al. [29]. Seven table
grape varietals, including both white and red grapes, were used to get hyperspectral
pictures in the visible and short-wave near-infrared range (411–1000 nm). To
improve the quality of the spectral data, a number of data preprocessing techniques
were used, including white and dark adjustments, first and second derivatives, and
Standard Normal Variate (SNV). To predict TSS, TF, and TA, PLSR models were
created utilizing the entire spectral range.

Gabrielli et al. employed regression coefficients (β-coefficients) and Variable
Importance in Projection (VIP) scores to choose the best wavelengths in order to
decrease the complexity of the data and increase computational efficiency. These
chosen wavelengths were then used to build Multiple Linear Regression (MLR)
models. The findings showed that both the calibration and validation sets’ R2

values were high for the PLSR models. The SNV-pretreated PLSR model for TSS
prediction, for example, had an RMSEV of 1.1 g/100 g and R2

cal and R2
val of 0.94

and 0.91, respectively. With smaller data sets and lower processing demands, the
MLR models that used the best wavelengths also demonstrated strong predictive
performance. This study demonstrates how well hyperspectral imaging predicts
important quality metrics in table grapes when paired with suitable preprocessing
and variable selection techniques.

In order to forecast the sugar content of grape berries for agronomic applications,
particularly grape maturity monitoring, Courand et al. [30] examined the use
of a robust regression approach, RoBoost-PLSR. Three grape varieties, Syrah,
Fer-Servadou, and Mauzac, were the subject of the investigation. Densimetric
baths were used to quantify reference sugar levels, and hyperspectral pictures were
obtained in the VIS-NIR region. Predictive performance may suffer from traditional
PLSR models’ sensitivity to outliers. In order to limit the impact of outliers in the
calibration set, the authors used the RoBoost-PLSR technique, which combines
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boosting methods with PLSR.
According to the findings, the RoBoost-PLSR models performed better than

the conventional PLSR models for every grape variety. The RoBoost-PLSR model
produced an RMSEP of 3.14 g/L and a R2

p of 0.990 for the Syrah variety, while the
regular PLSR model produced an RMSEP of 5.36 g/L and a R2

p of 0.971. Similar
enhancements were noted for the Mauzac and Fer-Servadou types. For practical
applications in viticulture, where data quality can vary, the study highlights the
value of robust regression techniques in boosting model dependability and prediction
model accuracy in the presence of outliers.

A new ground truth multispectral image dataset of grape berries was presented
by Navarro et al. [31]. It included weight, anthocyanin content, and Brix index
values. 1,238 multispectral photos of five different grape varieties, Autum Royal,
Crimson, Itum4, Itum5, and Itum9, make up the dataset. Detailed ground truth
data is included with every image, making it an invaluable tool for creating and
evaluating machine learning algorithms for use in agricultural applications. In
order to categorize grape types based on multispectral photos, the authors used this
dataset to train machine learning models, such as Multilayer Perceptron (MLP)
and three-dimensional Convolutional Neural Networks (3D-CNN). Both models
demonstrated the dataset’s efficacy for supervised learning tasks by achieving 100%
accuracy.

Attempts to create regression models to forecast continuous variables like antho-
cyanin content and Brix index were less effective, despite the excellent classification
accuracy. Accurate predictive model development was hampered by the unequal
distribution of these factors and the small sample numbers for some classes. The
potential of extensive datasets to advance machine learning applications in agri-
culture was emphasized by Navarro et al. The availability of the dataset makes it
easier to create sophisticated algorithms for classifying fruits and evaluating their
quality, which supports precision farming methods. The study also emphasizes
the need for larger and more balanced datasets by highlighting the difficulties in
forecasting continuous variables in agricultural datasets.

3.3.2 Other relevant studies
To broaden the scope of this review, we briefly highlight several additional studies
that apply advanced imaging and machine learning methods for grape quality
assessment without delving into detailed analysis, as the previously reviewed works
already cover a comprehensive range of approaches and insights.

• 3DeepM: An Ad Hoc Architecture Based on Deep Learning Methods
for Multispectral Image Classification by Navarro et al. [32]. This work
presents a deep learning model named 3DeepM, specifically developed for the
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categorization of multispectral grape images. Employing 3D convolutional
layers, 3DeepM effectively extracts spatial-spectral features from multispectral
data, attaining 100% classification accuracy for grape varieties while signifi-
cantly reducing the parameter count relative to models such as AlexNet and
ResNet, thus rendering it appropriate for real-time agricultural applications.

• In situ grape ripeness estimation via hyperspectral imaging and
deep autoencoders by Tsakiridis et al. [33]. The authors investigate
non-destructive estimate of grape ripening by hyperspectral imaging and
deep autoencoders to mitigate the effects of fluctuating illumination in field
environments. The research, concentrating on predicting sugar content for
selective harvesting, reveals that deep convolutional autoencoders surpass fully
connected autoencoders in accuracy for ripeness estimate.

• Developing deep learning based regression approaches for prediction
of firmness and pH in Kyoho grape using Vis/NIR hyperspectral
imaging by Xu et al. [34]. This study use stacked autoencoders to forecast
grape firmness and pH from Vis/NIR hyperspectral pictures, surpassing con-
ventional techniques like PLS and LSSVM. The research illustrates the efficacy
of stacked autoencoders in handling high-dimensional hyperspectral data and
improving non-destructive quality evaluation for post-harvest applications.

• Determination of anthocyanin concentration in whole grape skins
using hyperspectral imaging and adaptive boosting neural networks
by Fernandes et al. [35]. This study introduces a novel application of Ad-
aBoost neural networks for the non-destructive assessment of anthocyanin
concentration in grape skins, attaining a moderate correlation (R2 = 0.65) and
demonstrating potential for quality control applications utilizing hyperspectral
data.

• Brix, pH, and anthocyanin content determination in whole Port
wine grape berries by hyperspectral imaging and neural networks by
Fernandes et al. [36]. This research utilizes hyperspectral imaging and neural
networks to concurrently forecast essential enological parameters, attaining
high accuracy (R2 values of 0.73 for pH, 0.92 for sugar content, and 0.95
for anthocyanins) and showcasing the method’s effectiveness for swift, non-
destructive evaluation of grape quality.

• Soluble solids content and pH prediction and variety discrimination
of grapes based on visible–near infrared spectroscopy by Cao et al.
[37]. This study utilized Vis–NIR spectroscopy alongside genetic algorithms
for feature selection, attaining a 96.58% accuracy rate in differentiating grape
varieties and producing reliable predictions for SSC and pH, underscoring the
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efficacy of Vis–NIR spectroscopy as a non-destructive, cost-efficient quality
assessment instrument.

These studies collectively underscore the diverse potential of hyperspectral and
multispectral imaging, deep learning, and machine learning techniques in viticulture,
from real-time classification in field conditions to non-destructive measurement of
quality metrics and varietal discrimination. The breadth of methodologies and
success across various grape quality parameters reinforce the applicability of these
technologies in advancing precision agriculture and grape quality management.

3.3.3 Techniques Employed
The papers under consideration used a variety of approaches that combined machine
learning algorithms with hyperspectral imaging. Gomes et al. [25, 26] and Silva et
al. [27] used machine learning models such as CNN, NN, SVR, RR, and PLSR in
conjunction with hyperspectral imaging in reflectance mode. They concentrated
on evaluating the models’ capacity to generalize across various grape varietals
and vintages. To increase computational efficiency, Gabrielli et al. [29] selected
variables using regression coefficients and VIP scores. The RoBoost-PLSR method
was created by Courand et al. [30] to successfully handle outliers. Benelli et al.
[28] used PLSR and PLS-DA for prediction and classification tasks while doing
in-field hyperspectral imaging in natural light.

3.3.4 Hyperspectral Imaging Techniques and General Sam-
pling Methods

Hyperspectral image acquisition and grape berry sampling are crucial procedures
in the reviewed studies that have a big impact on the caliber and usefulness of
the prediction models created. Gaining knowledge of these techniques helps one
to better understand the difficulties in obtaining representative data as well as
the possible variability that may be introduced during data collecting. Choosing
berries or clusters that best reflect the variety found in a vineyard or experimental
setup is the usual procedure for grape sampling. To guarantee that the samples
reflect the variability required for reliable model building, factors including grape
variety, maturity stage, vineyard location, and environmental circumstances are
taken into account. As an example, Gomes et al. [25, 26] gathered samples from
several grape types and vintages, resulting in a broad range of variability brought
about by variations in terroir and climate. In a similar vein, Silva et al. [27]
evaluated the generalization capacity of their models by incorporating samples
from three wine types gathered across several vintages. Using specialized cameras
and sensors that record spectral data across a broad range of wavelengths is
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necessary to acquire hyperspectral images. These studies’ hyperspectral imaging
devices work in the visible to near-infrared (Vis/NIR) spectrum, usually between
380 and 1028 nm or 400 and 1000 nm. As demonstrated by Benelli et al. [28],
the imaging procedure can be carried out immediately in the field in natural
light or in laboratory settings under controlled lighting conditions. Hyperspectral
data must be preprocessed in order to improve data quality and lower noise.
First and second derivatives, calibration using white and dark references, and
Standard Normal Variate (SNV) correction are examples of common preprocessing
methods. These procedures aid in adjusting for baseline shifts, scattering effects,
and other environmental or instrumental factors that could have an impact on the
spectral data. According to Gabrielli et al. [29], preprocessing data is crucial for
enhancing the prediction capabilities of their models. Following the acquisition and
preprocessing of the hyperspectral pictures, spectral characteristics are retrieved
for use as machine learning model input. Principal Component Analysis (PCA)
and other dimensionality reduction techniques are sometimes used to focus on the
most informative spectral bands and minimize the number of variables. In order
to improve computational efficiency and model interpretability, variable selection
techniques are also used to pick wavelengths that contribute most significantly
to the prediction models. These techniques include regression coefficients and
Variable Importance in Projection (VIP) ratings. Interpreting the findings of these
investigations and evaluating the generalizability of the created models require an
understanding of the sampling strategies and hyperspectral imaging techniques.
Model performance may be impacted by the variability introduced during sampling
and data collection, underscoring the necessity of rigorous experimental design and
uniform procedures in subsequent studies.

3.3.5 Model Generalization Analysis

The assessment of model generality over various vintages, grape types, and climatic
circumstances is a crucial component of these investigations. CNN models had
the best generalization ability, according to Gomes et al. [25, 26], who showed
that models could generalize to new vintages and different grape varietals. Good
generalization was demonstrated by Silva et al. [27], who demonstrated that SVR
models trained on one grape variety could accurately predict sugar content in other
varieties. Benelli et al. [28] demonstrated that accurate predictions could still be
made using hyperspectral imaging in changeable field circumstances. These results
imply that hyperspectral imaging in conjunction with machine learning can provide
prediction models that generalize effectively across various situations, provided
that the right data preprocessing and model selection are implemented.
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3.3.6 Implications for Real-World Uses
Together, the reviewed research highlight the potential of machine learning and
hyperspectral imaging for quick, non-destructive evaluation of grape quality criteria.
According to Gabrielli et al. [29], cutting down on wavelengths helps preserve high
accuracy while increasing computing efficiency, which is essential for industrial
applications. According to Courand et al. [30], robust regression techniques are
crucial for managing data variability and enhancing model reliability. Despite
difficulties in predicting continuous variables because of problems with data dis-
tribution, Navarro et al. [31] offered a useful dataset for creating and evaluating
machine learning algorithms.

Silva et al. [27] and Benelli et al. [28] highlighted the usefulness in real-world
situations. Benelli et al. proved that in-field measurements are feasible, which
is essential for making harvest decisions in real time. Silva et al. demonstrated
how models may generalize between vintages and kinds, minimizing the require-
ment for retraining. These results have real-world applications in the grape and
wine industries for quality control, sorting procedures, and harvest scheduling
considerations.

However, factors like data requirements, processing complexity, and the demand
for calibration under various climatic conditions must be taken into account.
Future studies should concentrate on streamlining pipelines for data collection and
processing, growing datasets to encompass more vintages and varieties, refining data
preprocessing methods, and investigating cutting-edge machine learning approaches
that can manage imbalance and unpredictability in agricultural data.

3.3.7 Conclusion
Significant progress has been made in forecasting grape quality metrics using
hyperspectral imaging and machine learning, as demonstrated by the examined
literature. Despite advancements, there are still difficulties in creating models that
accurately represent various vintages, cultivars, and environmental circumstances.
In order to improve the technology’ practical application in the agricultural industry,
future research should focus on addressing these issues.

3.4 Mathematical and Methodological Assump-
tions in Machine Learning Models

For applications like grape sugar content prediction, where environmental variability
and grape phenotypic diversity present particular challenges, choosing the right
machine learning algorithm is essential to obtaining accurate and generalizable
results in the field of predictive modeling using hyperspectral imaging data. With an
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emphasis on Partial Least Squares Regression (PLSR) and its connection to Multiple
Linear Regression (MLR), this section explores the mathematical underpinnings of
the main regression models utilized in the examined studies. To give a thorough
grasp of their suitability, advantages, and disadvantages in viticultural applications,
we also investigate other models such as Support Vector Regression (SVR), Ridge
Regression (RR), and neural networks, especially Convolutional Neural Networks
(CNNs).

3.4.1 Multiple Linear Regression (MLR)
A fundamental statistical technique for modeling the linear relationship between a
dependent variable Y and several independent variables X1, X2, . . . , Xp is multiple
linear regression (MLR). The expression for the MLR model is:

Y = β0 + β1X1 + β2X2 + · · ·+ βpXp + ε (3.1)

The intercept term is represented by β0, the regression coefficients that show
how each independent variable affects Y are represented by β1, β2, . . . , βp, and the
error term is represented by ε, which is assumed to be normally distributed with
zero mean and constant variance, ε ∼ N(0, σ2).

Linearity, residual independence, homoscedasticity, residual normality, and the
lack of multicollinearity among predictors are among the presumptions of MLR.
When used to hyperspectral data in viticulture, where spectral bands show strong
collinearity because of the tiny wavelength intervals, these assumptions, while
simple, become restrictive. Large variations in the estimated regression coefficients
and, as a result, reduced interpretability and predictive power might result from this
multicollinearity problem, which can destabilize MLR. Furthermore, hyperspectral
datasets frequently have a large number of predictors, which results in a high-
dimensional environment where there may be more predictors than observations.
This situation decreases computing efficiency and raises the possibility of overfitting,
in which the model learns noise in the data instead of actual signal patterns.

MLR’s incapacity to manage collinearity well frequently leads to biased predic-
tions in applications such as grape sugar content prediction, where high-dimensional
and collinear hyperspectral data are common. Therefore, more reliable techniques
like Partial Least Squares Regression (PLSR) are favored since they can extract
crucial predictive data while addressing multicollinearity-related problems.

3.4.2 Partial Least Squares Regression (PLSR)
By combining the advantages of Principal Component Analysis (PCA) and MLR,
PLSR overcomes the drawbacks of MLR in high-dimensional, collinear datasets.
For hyperspectral data applications like grape sugar content prediction, where
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spectral data from a variety of wavelengths needs to be compressed into useful
predictive characteristics, this hybrid approach is especially well-suited.

In order to maximize the covariance between X and Y, PLSR projects the
predictors X and the response Y onto a new set of latent variables (or scores).
PLSR breaks down a responsive matrix Y ∈ Rn×q and a predictor matrix X ∈ Rn×p

as follows:

X = TP⊤ + E (3.2)

Y = TQ⊤ + F (3.3)
where T ∈ Rn×a is the matrix of latent variables (scores), P ∈ Rp×a and

Q ∈ Rq×a are the loading matrices for X and Y are the residual matrices.
Weight vectors wi and ci that maximize the covariance between Xi−1wi and

Yi−1ci are found iteratively by the PLSR algorithm. After computing the latent
scores ti and ui, loadings pi and qi are calculated. The procedure is repeated for
every component as the residual matrices Xi and Yi are updated. The following
formula yields the final regression coefficients:

B = W(P⊤W)−1Q⊤ (3.4)
where the weight matrix for each component is represented by W. After that,

the response predictions are acquired by:

Ŷ = XB (3.5)
PLSR offers a number of benefits, such as interpretability through latent variables,

computational efficiency, dimensionality reduction capabilities, and multicollinearity
handling. Nevertheless, resilience may be impacted by its drawbacks, which include
its linearity assumption and sensitivity to outliers. In viticultural applications,
these factors are crucial since sugar content forecasts must take into consideration
variations in grape types, maturation stages, and weather circumstances.

Because it may simplify hyperspectral data by detecting latent structures that
contain crucial spectral information linked to sugar concentration, PLSR is fre-
quently chosen in grape quality prediction experiments, including those covered in
Section 3.3. To further increase PLSR’s adaptability for grape quality monitoring,
Courand et al. [30] showed that even little adjustments to conventional PLSR,
such RoBoost-PLSR, might greatly increase robustness against outliers.

3.4.3 PLSR and MLR Comparison
Despite being linear models designed to predict a response variable, PLSR and
MLR handle predictors very differently. Due to multicollinearity, MLR struggles in
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high-dimensional environments characteristic of hyperspectral data and necessitates
separate predictors. In contrast, predictors are converted into latent variables using
PLSR in order to optimize their covariance with the response. PLSR’s coefficients
are linked to latent variables, which may make interpretation more difficult but
offer a more trustworthy predictive framework in collinear datasets than MLR’s,
which explicitly depict correlations between predictors and the answer.

PLSR has been widely used in the reviewed studies due to its effectiveness
in managing high-dimensional, collinear data in grape analysis. Scholars such
as Gomes et al. [25] emphasized that PLSR outperformed MLR in sugar level
prediction because of its structure, which enables it to take advantage of intricate
spectral band covariations that are missed by more straightforward MLR models.

3.4.4 Alternative Models for Nonlinear Relationships
Although PLSR gets around a lot of MLR’s drawbacks, it still makes the assumption
that latent variables and the response have a linear connection. Other models,
such as Support Vector Regression (SVR) and neural networks, provide extra
possibilities in viticulture, where sugar concentration may be dependent on nonlinear
relationships among spectral parameters.

Support Vector Regression (SVR)

When there is nonlinearity in the interactions between predictors and the response,
Support Vector Regression (SVR) offers a reliable substitute for linear models.
By mapping input data into a higher-dimensional space where linear regression is
applied using kernel functions, SVR allows the model to identify intricate patterns
that linear approaches might overlook. The SVR optimization method improves
robustness to noise and outliers by minimizing a loss function while maintaining
predictions within an epsilon-insensitive margin.

When data variability is substantial or there is a nonlinear relationship between
spectral characteristics and sugar content, SVR is useful for grape sugar prediction.
SVR’s performance is dependent on hyperparameters like the kernel function and
regularization constant, which need to be adjusted for every dataset, and it can be
computationally demanding, especially for big hyperspectral datasets.

Neural Networks: Focus on Convolutional Neural Networks (CNNs)

A subclass of neural networks called Convolutional Neural Networks (CNNs) has
become popular in hyperspectral imaging because of its ability to represent intricate,
nonlinear relationships. Because CNNs can identify spectral and spatial patterns
across several bands, they are especially useful for image data. CNNs are capable of
processing large amounts of spectral data for grape quality prediction, identifying
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complex wavelength correlations that more straightforward models like PLSR can
miss.

1. Data Requirements: Given the complex patterns found in hyperspectral
data, CNNs require sizable datasets to prevent overfitting. Getting enough
labeled data across grape varietals and vintages is a challenge in viticulture.
Data restrictions can be addressed with methods like data augmentation or
transfer learning from related applications.

2. Computational Complexity: CNNs’ use in real-time vineyard monitoring
is frequently limited by the high-performance computational resources needed
for training.

3. Interpretability: CNNs function as "black-box" models, which makes it more
difficult to interpret certain spectral contributions than PLSR. Although they
don’t offer precise, quantitative interpretations, methods like Grad-CAM can
be useful.

According to research by Gomes et al. [25], CNNs show good generalization
in situations with a variety of data, despite these difficulties. CNNs require more
resources and specialist handling, but they are particularly useful for complex
spectral-spatial interactions.

Ridge Regression (RR)

Another linear technique for managing multicollinearity is Ridge Regression (RR),
which lessens collinearity problems by minimizing big coefficients by adding a
penalty term. It does not, however, have the dimensionality reduction capabilities
of PLSR.

3.4.5 Model Selection Considerations
Data properties, interpretability requirements, and computing limitations all influ-
ence the model selection:

• PLSR and RR: Ideal for high-dimensional data with linear relationships.
While RR provides simplicity, PLSR is chosen for interpretability.

• SVR: It needs to be tuned and can be computationally demanding, but it
works best for mild nonlinearity.

• CNNs: Ideal for highly variable, nonlinear, complicated data, but at the
expense of interpretability and resource requirements.
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3.4.6 Conclusion
For high-dimensional data, PLSR is still useful because it strikes a balance between
interpretability and prediction accuracy. Nonlinearities are handled by SVR and
CNNs, although CNNs demand a significant amount of resources. For managing
collinearity, Ridge Regression offers a more straightforward option. Particularly in
viticulture, where grape type, weather circumstances, and spectral patterns change,
model selection should take into account data complexity, interpretability, and
resource availability.

3.5 Conclusion
This chapter included an in-depth analysis of hyperspectral imaging integrated
with machine learning methods for forecasting grape sugar content and additional
quality metrics. By critically reflecting on methodological choices and conducting a
thorough literature analysis, we emphasized the significance of sampling strategies,
data preprocessing, and model selection in the development of effective predictive
systems. The mathematical analysis of PLSR, SVR, and neural networks elucidates
the foundational assumptions, advantages, and constraints of each model. Compre-
hending these factors is essential for choosing the suitable modeling methodology
according to the particular environment and goals. Building upon these insights,
in the next chapter, we implement and evaluate these machine learning algorithms
using two real-world datasets of multispectral grape images. We specifically inves-
tigate the challenges of predicting the Brix index, considering the issues of data
variability, potential information loss, and model generalization discussed herein.
By tackling these challenges, we aim to contribute to the advancement of precision
viticulture and develop effective methods for grape quality assessment.
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Chapter 4

Methodology and deep
analysis

4.1 Introduction and Objective
As anticipated in previous chapters, this chapter focuses on the study of grape
sugar content prediction using multispectral and hyperspectral vectors. The main
objective is to compare three methodologies widely adopted in machine learning
applied to chemometrics, analyzing their behavior in predicting sugar content and
discussing their limitations. Throughout the analysis, detailed explanations of
the results obtained will be provided, with a focus on the mathematical theory
underlying each model. The three approaches examined are Principal Component
Regression (PCR), Partial Least Squares Regression (PLSR) and its robust method,
RoBoost PLSR. To conduct this analysis, I used two separate datasets. The first
dataset proved to be particularly effective in highlighting the potential of the models
considered, allowing significant prediction of sugar content. In contrast, the second
dataset raised some difficulties, providing an opportunity to explore the limits of
application of these techniques and of the dataset itself. The main focus will be on
the first dataset, which provides the ideal context for implementing and evaluating
a personal contribution: the implementation of RoBoost PLSR in Python, which
is not available in standard libraries. In the course of the analysis, not only will
the performance of the predictive models be examined, but also the relationships
between the variables will be explored in depth through various analytical tools.
Among them, correlation matrices will be used to identify key connections between
spectral bands, principal components extracted from the models and sugar content,
highlighting how some wavelengths are more influential than others. VIP scores
calculated for the PLSR and RoBoost PLSR models will allow identification of the
most significant bands in the prediction and show differences with the components
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extracted from PCA. A crucial role will be played by the graphical representation
of the data. In particular, graphs will be presented showing the average spectra
of different grape varieties, divided into red grapes, white grapes and for specific
varieties. These graphs will make it possible to observe the differences in reflectances
at different wavelengths, highlighting the physical phenomena that distinguish red
and green grapes, discussed in previous chapters. Other graphs, such as heatmaps
of correlations between bands, will be used to understand how indeed features of
multispectral vectors are strongly correlated with each other, particularly those
adjacent to each other and belonging to the same segments of the electromagnetic
spectrum, highlighting that there is a limit to the amount of information present
in a multispectral vector even if the wavelengths represented are many but fall in
the same range. Finally, model results on datasets divided into subgroups, such
as red and white grapes or specific varieties, will be discussed, and comparative
graphs showing how performance changes depending on data segmentation will be
included. These comparisons will not only make clear the differences between the
subgroups, but also allow the results to be linked to physical phenomena related to
the chemical composition and spectral structure of the grapes.

4.2 Datasets description

In this section, we provide a detailed description of the two datasets utilized in
our study. The first dataset was instrumental in achieving successful predictive
modeling, while the second dataset presented challenges that impacted its utility
in our analysis. For each dataset, we outline the nature of the data collected, the
methodologies employed in data acquisition, and the characteristics that define
their variability and composition.

4.2.1 First Dataset: Hyperspectral Imaging and Sugar Con-
tent Measurements

The first dataset, titled “Dataset containing spectral data from hyperspectral imaging
and sugar content measurements of grapes berries in various maturity stages”
[38], comprises hyperspectral reflectance spectra and corresponding sugar content
measurements of grape berries at different maturity levels. This dataset was curated
to explore the feasibility of using hyperspectral imaging for monitoring grape berry
maturity, particularly focusing on the prediction of sugar content, an essential
parameter in viticulture.
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Data Acquisition and Sample Preparation

A total of 274 samples were collected during the summer of 2020 from the ex-
perimental vineyard Domaine Expérimental Viticole Tarnais, located in Gaillac,
France. The samples represent three grape varieties: two red varieties (Syrah and
Fer Servadou) and one white variety (Mauzac). Table 4.1 summarizes the number
of samples per variety.

Table 4.1: Number of samples per grape variety in the first dataset.

Variety Syrah Fer Servadou Mauzac

Number of Samples 126 63 85

Grape berries were harvested approximately once a week, starting one or two
weeks after véraison (the onset of ripening) until just before harvest. In the
laboratory, berries were carefully detached at the pedicel to maintain the integrity
of the fruit. To ensure homogeneity in maturity levels within samples, berries were
sorted using densimetric sodium chloride (NaCl) baths of increasing concentrations,
ranging from 70 to 190 g/L. This sorting technique leverages the correlation between
berry density and sugar content, effectively grouping berries with similar ripeness
based on their flotation in the NaCl solutions.

Each sample consisted of 100 berries of similar maturity, collectively placed on a
tray for hyperspectral imaging. Prior to imaging, the sugar content of each sample
was measured using a refractometer (HI-96816, Hanna Instruments) on the must
obtained from the 100 berries.

Hyperspectral Imaging Procedure

Hyperspectral images were acquired using a Specim IQ hyperspectral camera
(Specim, Finland) covering the visible to near-infrared (VIS-NIR) spectral range
from 400 nm to 1000 nm with a spectral resolution of 7 nm. The camera was
positioned 1.5 m above the sample tray. Illumination was provided by a halogen lamp
(Arrilite 750 Plus ARRI, Munich, Germany) with consistent angles of illumination
maintained at −50◦ and 50◦ relative to the camera axis to ensure uniform lighting
conditions.

To account for instrument and illumination non-uniformities, a certified re-
flectance standard (Labsphere, SRS-40-010) was included in each image as a
reference. Reflectance spectra (Rs(λ)) were calculated for each pixel using the
following equation:

Rs(λ) = Is(λ)− Ib(λ)
Io(λ)− Ib(λ) , (4.1)
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where Is(λ) is the measured intensity reflected from the sample, Ib(λ) is the
dark current image, and Io(λ) is the intensity reflected from the reference standard.

Data Processing and Spectral Data Extraction

Image processing was performed using MATLAB (The MathWorks, Natick, MA,
USA). Segmentation of grape berry pixels was achieved using the Spectral Angle
Mapper (SAM) method, which compares the spectral similarity between each pixel
and predefined reference spectra for each grape variety. This approach effectively
isolates berry pixels from the background by calculating the spectral angle α
between the pixel spectrum x and the reference spectrum y:

α = arccos
A

x · y
||x|| ||y||

B
. (4.2)

By applying a spectral similarity threshold, pixels corresponding to grape berries
were identified and extracted. For each sample, an average reflectance spectrum
was computed by averaging the spectra of all berry pixels within the image. This
resulted in 204 mean reflectance spectra, each associated with a corresponding
sugar content measurement.

Dataset Characteristics

The dataset includes reflectance spectra spanning from 400 nm to 1000 nm at 7 nm
intervals, yielding a total of 204 spectral bands per sample. Each row in the dataset
represents a single sample, which corresponds to an average spectrum of 100 grape
berries of similar maturity and their associated sugar content. The sugar content
values range from approximately 100 to 300 g/L, covering various stages of grape
maturation.

This dataset is well-suited for chemometric analyses and modeling techniques
aimed at predicting sugar content based on spectral data. The inclusion of multiple
grape varieties and maturity stages enhances the variability and robustness of the
dataset, making it valuable for testing regression methods and variable selection
techniques.

4.2.2 Second Dataset: Multispectral Imaging with Weight,
Anthocyanins, and Brix Index Measures

The second dataset, titled “A novel ground truth multispectral image dataset with
weight, anthocyanins, and Brix index measures of grape berries tested for its utility
in machine learning pipelines” [31], consists of multispectral images of individual
grape berries along with associated measurements of weight, anthocyanin content,
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and Brix index. This dataset was developed to facilitate the application of machine
learning techniques in viticulture, particularly for tasks involving classification and
regression based on multispectral imaging data.

Data Acquisition and Sample Preparation

A total of 1,283 grape berries were collected from five seedless table grape varieties:
Autumn Royal, Crimson, Itum4, Itum5, and Itum9. The berries were harvested
from a commercial vineyard in Alhama de Murcia, Spain, during the fully ripe
stage suitable for marketing and export, approximately 3 to 4 weeks after véraison.
Table 4.2 details the sample distribution among the varieties.

Table 4.2: Number of samples per grape variety in the second dataset.

Variety Autumn Royal Crimson Itum4 Itum5 Itum9

Number of Samples 199 401 84 504 95

From each bunch, berries were sampled from three distinct regions (top, middle,
bottom) to capture intra-bunch variability. The berries were cleaned, weighed, and
individually labeled prior to imaging.

Multispectral Imaging Procedure

The imaging was conducted using a custom-built multispectral chamber designed to
capture images across a broad spectrum of wavelengths. The chamber components
include:

• Illumination System: A multispectral LED illumination system covering
wavelengths from 450 nm to 970 nm.

• Imaging System: Two Photonfocus snapshot mosaic multispectral cameras
were used. One camera (MV1-D2048x1088-HS03-96-G2) captured 12 bands
in the visible range (488 nm to 625 nm), and the other (MV1-D2048x1088-
HS02-96-G2) captured 25 bands in the red-infrared range (676 nm to 952 nm),
resulting in a total of 37 spectral bands per image.

• Software Control: A LabVIEW-based application controlled the illumination
and acquisition parameters.

Each berry was imaged alongside a 1 cm2 reference marker to facilitate spatial
calibration and size measurements. The imaging process produced raw multispectral
images, which were subsequently calibrated using dark and white reference images
to correct for sensor noise and illumination inconsistencies.
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Data Processing and Feature Extraction

Due to the variability in berry reflectance, particularly among darker varieties
like Autumn Royal, a custom image processing algorithm was developed for grape
segmentation. The algorithm involves edge detection, adaptive thresholding, and
template matching to accurately isolate the berry from the background in each
spectral band.

Once segmented, the multispectral images of each berry were associated with
their corresponding weight, anthocyanin content, and Brix index measurements.
Anthocyanin content was quantified using spectrophotometric methods, measuring
absorbance at 530 nm and 657 nm, and calculated using the formula:

Qtotal anthocyanin = A530 − 0.25× A657

FW , (4.3)

where A530 and A657 are the absorbance values at the respective wavelengths,
and FW is the fresh weight of the sample. The Brix index, indicative of sugar
content, was measured using a digital refractometer (ATAGO PAL-1) on the juice
extracted from each berry.

Dataset Characteristics

The dataset comprises 1,283 multispectral image arrays, each with 37 spectral
bands ranging from 488.38 nm to 952.76 nm. Each row in the dataset represents
an individual grape berry, including its multispectral image data and associated
measurements of weight, anthocyanin content, and Brix index.

The dataset’s extensive variety coverage and detailed measurements make it
a valuable resource for developing and testing machine learning algorithms for
regression and classification tasks in viticulture. However, challenges such as the
complexity of image segmentation and potential variability in imaging conditions
may impact the dataset’s utility in predictive modeling.

4.2.3 Comparison of the Datasets
The two datasets differ significantly in their structure, content, and potential
applicability:

• Sample Composition:

– First Dataset: Each sample represents an average of 100 grape berries
of similar maturity, providing a collective spectral signature and sugar
content measurement.
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– Second Dataset: Each sample corresponds to an individual grape berry, of-
fering detailed multispectral images and multiple associated measurements
(weight, anthocyanins, Brix index).

• Spectral Data:

– First Dataset: Hyperspectral data with 204 spectral bands covering 400 nm
to 1000 nm at 7 nm intervals.

– Second Dataset: Multispectral data with 37 spectral bands ranging from
488.38 nm to 952.76 nm.

• Varietal Coverage:

– First Dataset: Includes three grape varieties with both red (Syrah, Fer
Servadou) and white (Mauzac) grapes.

– Second Dataset: Encompasses five seedless table grape varieties, all of
which are red or white, but focuses on table grapes rather than wine
grapes.

• Measurement Parameters:

– First Dataset: Focuses on sugar content as the primary measurement
associated with spectral data.

– Second Dataset: Provides additional measurements such as weight and
anthocyanin content alongside the Brix index.

The differences in sample composition and data structure impact the applicability
of each dataset in predictive modeling. The first dataset’s aggregation of berries
into samples may smooth out individual variability, facilitating more robust sugar
content predictions. In contrast, the second dataset’s focus on individual berries
introduces greater variability and complexity, which may present challenges in
modeling but also offers a more detailed analysis at the berry level.

4.2.4 Implications for Analysis
The first dataset proved to be effective for our modeling purposes due to its
controlled sample composition, consistent imaging methodology, and focus on a key
predictive parameter (sugar content). The homogeneity within samples and the
comprehensive spectral coverage enhanced the reliability of the regression models
developed.

Conversely, the second dataset posed challenges, possibly due to the high
variability among individual berries, the complexity of image segmentation, and
potential inconsistencies in imaging conditions. These factors may have contributed
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to less satisfactory modeling results, highlighting the importance of dataset structure
and quality in predictive analysis.

4.3 Analytical Tools
As previously discussed, when we are faced with the challenge of predicting the
sugar content of grapes using a multispectral vector as a predictor, we encounter
data that present multiple difficulties. Firstly, as in the dataset we will analyze
in this study, the number of observations is often quite limited. Even when many
berries are sampled, they are frequently aggregated based on their maturity level.
For example, in the dataset described in the previous section, a single multispectral
vector is produced by averaging the spectral vectors of 100 berries. The result is a
dataset of only 274 spectral vectors.

Secondly, multispectral vectors, and even more so hyperspectral vectors, contain
a very large number of features, which can often exceed 200. As already discussed,
each feature represents the intensity of reflected light at a specific wavelength,
which is strongly correlated with the intensities at preceding and succeeding
wavelengths. The closer the wavelengths are, especially within the same segment
of the electromagnetic spectrum, in our case, BLUE, GREEN, RED, and NIR,
the stronger this correlation becomes. Therefore, the datasets used to train our
machine learning models are characterized by few observations and many features
that are highly correlated with each other. In the dataset used for this study, the
number of features of the spectral vectors (204) are very similar to the number
of observations (274). If we do not perform preliminary operations to reduce the
number of features in the dataset, this will pose a problem for the convergence of
machine learning algorithms, which would have too many parameters relative to
the observations available for training.

In general, the most commonly used machine learning models when dealing with
such data are regression models because they have a reduced number of parameters
to train compared to more complex models like neural networks. In this scenario,
classical multiple linear regression (MLR) does not produce good results. This
happens for two reasons:

1. Lack of sufficient data: As previously discussed, the limited number of
observations hampers the model’s ability to generalize effectively.

2. Collinearity among features: One of the assumptions of linear regression
is that the predictor variables are independent of each other. Having variables
that are highly correlated can lead to problems because the design matrix be-
comes ill-conditioned, making it difficult to estimate the regression coefficients
accurately. Multicollinearity inflates the variance of the coefficient estimates,
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making them unstable and unreliable. This can result in overfitting and poor
predictive performance on new data.

Ideally, before training a regression model, we would like to reduce the dimen-
sionality of the dataset while retaining the information it contains and creating new
features that are uncorrelated with each other. This is what Principal Component
Regression (PCR) achieves by performing a Principal Component Analysis (PCA)
before training the regression model. PCA is one of the most widely used techniques
in multivariate statistical analysis and is based on the fact that, if a dataset has high
dimensionality but the variables within it are highly correlated, it can be projected
onto a lower-dimensional hyperplane while retaining most of the information within
the data [39]. More precisely, PCA seeks directions w, orthogonal to each other,
onto which to project the data points of the dataset. The optimization problem is
as follows:

wk = arg max
w

1
w⊤Sw

2
,

subject to w⊤w = 1,

w⊤wj = 0 for j < k,

(4.4)

where S is the covariance matrix of the data, and wk is the k-th principal
component.

By solving this problem, we obtain a set of orthogonal components that capture
the maximum variance in the data. The number of principal components to retain
is determined by the amount of variance we wish to preserve. Typically, we select
the smallest number of components that account for a desired percentage (e.g.,
95%) of the total variance.

In PCR, after reducing the dataset’s dimensionality through PCA, we train a
linear regression model using the principal components.

While this system is powerful and consistent, it can present problems in some
cases. The reason lies in the fact that PCA reduces the dimensionality of the data
X without taking into account the target variable Y. The principal components
are created with the objective of retaining the variance in X, without considering
which directions most influence the variable Y. PCR can therefore struggle in
regression problems where the target variable is strongly associated with directions
in the data that have low variance[40]. These directions might not be adequately
captured by PCA.

For this reason, in chemometrics, where problems often involve predictor variables
with very high dimensions, increasing the risk that important variables have
low variance, one of the most used methods is Partial Least Squares Regression
(PLSR)[41]. PLSR is in some ways similar to PCA, as it reduces the dimensionality
of the dataset and performs regression, but it does so differently by taking into
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account the target variable. Specifically, it sequentially searches for directions to
project the dataset in order to maximize the covariance between Xw and Y. The
optimization problem is:

wk = arg max
w

(Cov(Xw, Y)) , (4.5)

where Cov(Xw, Y) represents the covariance between the projected data and
the target variable.

After finding each direction wk, a deflation step is performed to remove the
information explained by that component from X. This is necessary because the
directions captured by PLSR are not orthogonal to each other. The deflation
process ensures that subsequent components capture new information that is not
redundant with the previously extracted components. This sequential extraction
and deflation continue until a sufficient number of components have been extracted
to model the relationship between X and Y effectively.

However, even PLSR can be sensitive to outliers, which, if not properly managed,
can adversely affect the model’s predictive performance. Therefore, robust methods
have been developed to handle outliers without excluding samples that significantly
contribute to the quality of the model. As noted in [42], "These methods must be
parsimonious so as not to exclude major samples who contribute strongly to the
good predictive quality of the model. According to Ref. [16], ’For high-dimensional
data this would result in a severe loss of information as long as the outliers still
contain some valuable information, and thus intelligent robust methods adapt the
weights according to the outlyingness or inconsistency of the observations.’"

RoBoost PLSR (Robust Boosted Partial Least Squares Regression) is partic-
ularly useful in this context. It not only enhances the robustness of the model
against outliers but also aids in their identification. Often, outliers are detected
by examining only one dimension, which is insufficient. An observation that may
seem anomalous in a single variable, such as the target, can be generated by
legitimate combinations of the predictor variables. Similarly, in the context of
spectral analyses, it is possible for a sample to have normal values of Y and X
separately but together form a multivariate outlier.

RoBoost PLSR addresses this by adaptively weighting observations based on their
consistency with the model, reducing the influence of outliers without discarding
them outright. This allows the model to remain robust while still leveraging
valuable information contained in the data.

These considerations will be crucial in the next section, where we will apply
these methods to our data and demonstrate how RoBoost PLSR can enhance model
robustness and improve predictive performance in the presence of outliers.
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4.4 Exploratory data analysis

4.4.1 Description of features and target variable
As previously described in the data presentation, we have a dataset consisting of
274 samples, each representing a group of 100 grape berries of similar maturity. In
addition to the 204 columns indicating reflectance at specific wavelengths in the 400
nm – 1000 nm range (VIS-NIR), there are three additional columns that indicate
the variety, color, and sugar content of the grapes, expressed in g/L. The varieties
considered are three: two red (Syrah and Fer) and one white (Mauzac).The average
sugar content, calculated across all varieties, is 189 g/L, with a minimum value
of 101 g/L, a maximum value of 283 g/L, and a standard deviation of 35 g/L
(Figure 4.1). As can be observed in the histogram in Figure 4.2, the sugar content
shows an approximately normal distribution, which is favorable for the convergence
of machine learning algorithms.

Figure 4.1: Summary of the sugar content

Regarding the 204 spectral columns, their means range from 0.05 to 0.47 and all
have a low standard deviation (<0.1). This suggests the need for data standardiza-
tion to center and increase the variability of the columns before proceeding with
model training (Figure 4.3).

4.4.2 Spectral Analysis by Color and Variety
Spectral plots of the mean spectra were generated separately by color and variety,
using five random samples for each subset. Along with the spectral plots, histograms
of the sugar content for each subset were also generated. This approach allowed for
the analysis of spectral differences between white grapes, red grapes, and specific
varieties.

The spectral plots highlight differences in reflectance at certain wavelengths
between green grapes and red grapes. In particular, green grapes reflect more at
specific wavelengths. As one might expect, green grapes have higher reflectance in
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Figure 4.2: Distribution of Sugar Content in the Dataset

Figure 4.3: Summary Statistics of Sugar Content in the Dataset.
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the spectral range of green and yellow-orange from 500 to 620 nm, and also in the
near-infrared region. Understanding that the color and chemical composition of an
object directly affect its reflection characteristics, these results are comprehensible
and suggest that separate models for green grapes and red grapes could perform
better (see Figure 4.4).

Figure 4.4: Spectral plots and histograms for red and green grapes.

Subsequently, a correlation matrix of the entire dataset was calculated and
visualized for all 204 spectral bands. The result is consistent with the explanations
in previous chapters regarding the strong correlation and redundancy of information
between adjacent bands and those belonging to the same segments of the spectrum.
The heatmap in Figure 4.5 clearly shows how the bands belonging to various
segments of the spectrum are strongly correlated with each other. These results
highlight the possibility of reducing the dimensionality of the dataset while retaining
its inherent information.
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Figure 4.5: Correlation matrix heatmap of the 204 spectral bands.

4.4.3 Principal Component Analysis (PCA)

A Principal Component Analysis (PCA) was applied using the scikit-learn library. A
threshold value of 95% was set, meaning that the minimum number of components
was selected to explain at least 95% of the dataset’s variance. This allowed us to
reduce the dataset from 204 features to 3 principal components. Specifically, PC1,
PC2, and PC3 retain 57%, 32%, and 10% of the dataset’s variance, respectively
(see Figure 4.6).
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Figure 4.6: Variance explained by the first three principal components.

By analyzing the loadings of the components and using a heatmap, we visualized
how each spectral band contributes to the creation of each principal component.
What emerges is a parallel with the correlation matrix of the spectral bands.
Spectral bands that are correlated with each other contribute uniformly to the
generation of the same principal component. This is consistent with the fact that
if two variables are correlated, the direction of their correlation will be the best
projection to maximize the variance of the projection itself. From this, we learn
that the directions along which a dataset is projected tend to be connected with
the directions along which there is a strong correlation between variables (see
Figure 4.7).
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Figure 4.7: Variance explained by the first three principal components.

Subsequently, a scatter plot of the first two principal components was generated,
differentiating the observations by color and variety to search for patterns or clusters
that might group some of the subgroups. What is observed is a clear distinction
between white and red grapes, which are visibly organized into two subgroups when
plotted against the first two principal components. This suggests once again the
difference between white and red grapes and implies the necessity of separating the
models to improve performance (see Figure 4.8).
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Figure 4.8: Variance explained by the first three principal components.

4.5 Regression’s models implementation

As previously mentioned, three different models were tested: PCR, PLSR, and a cus-
tom implementation of RoBoost PLSR. The models were initially trained and tested
on the entire dataset, without considering differences between variety and color,
and subsequently on specific subsets to verify if performance improved on these.
For PCR and PLSR, the PCA, LinearRegression, and PLSRegression classes
from the scikit-learn library [43] were used. However, since scikit-learn and
other Python libraries do not provide an implementation of RoBoost PLSR, it
was necessary to develop a custom algorithm in Python, the algorithm of which is
provided in Appendix A.

The algorithm implements the RoBoost PLSR approach based on the reference
article, adapting it to the specific needs of the analyzed dataset. The implementation
involves defining several functions to manage the adaptive weights of observations,
using robust weighting functions like Tukey’s bisquare function. Functions were
created to calculate weights based on residuals, to center the data, and to compute
the weighted mean, ensuring correct manipulation of the data matrices. The core
of the algorithm consists of a function that implements the weighted NIPALS PLS
algorithm, adapted to handle a single response variable. This allows the extraction
of latent components while considering the weights assigned to the observations,
improving the model’s robustness against outliers.

Additionally, a RoBoostPLSR class was developed to manage the entire training
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and prediction process of the model. The class includes methods for parameter ini-
tialization, iterative model training with weight updates, and generating predictions
on new data. During training, convergence criteria are calculated and updated,
and latent components and regression coefficients are stored. The implementation
requires careful management of matrix operations and weights, ensuring numerical
stability and convergence of the algorithm. Controls were implemented to avoid
divisions by zero and to handle situations where weights become zero, thus ensuring
the robustness of the algorithm.

The complete implementation algorithm is provided in Appendix A, where
detailed comments explain the individual parts of the algorithm. This custom
implementation allowed the effective application of the RoBoost PLSR method
to the dataset in question, overcoming the limitations of existing libraries and
providing a model robust to anomalous values.

For training, the dataset was divided into two subsets using the train_test_split
function, obtaining a training set containing 80% of the observations and a test
set with the remaining 20%. Before training, the explanatory variables (X) were
standardized using StandardScaler. This operation was necessary because regres-
sion algorithms, such as those implemented in PCR, PLSR, and RoBoost PLSR,
assume that the explanatory variables have a centered distribution (zero mean)
and similar variance among the different features.

The standardization process was carried out with particular attention to the
separation of training and test data. The scaler was fitted exclusively on the
training set (Xtrain), calculating the mean and standard deviation for each feature.
Subsequently, these same transformations were applied to both the training set
and the test set (Xtest), ensuring that the test data remained independent of the
training process. It is important to emphasize that the target variable (Y) was not
standardized. This is because the scale of the dependent variable does not directly
affect the tested models, which focus on the relationship between input features (X)
and output values (Y). This approach ensured proper data preparation, minimizing
the risk of contamination between training and test sets and allowing a more reliable
evaluation of the models’ performance.

For the PCR model, a pipeline was defined that first implements PCA, using the
first three components that cumulatively explain 97.5% of the variance, followed
by a linear regression. For hyperparameter tuning for PLSR and RoBoost PLSR,
cross-validation with 5 folds was performed. In particular, the parameter optimized
for PLSR is the number of components to extract, while for RoBoost PLSR, three
additional parameters were optimized: α, β, and γ, which regulate the handling of
outliers within the model’s algorithm.

Regarding training on the complete dataset, PCR achieved on the test set an
R2 = 0.54 and an RMSE = 26.07. PLSR improved performance, with R2 = 0.71
and RMSE = 20.54. RoBoost PLSR outperformed both, obtaining R2 = 0.81 and
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RMSE = 10.53. Cross-validation identified the best number of components for
PLSR as 10, while for RoBoost PLSR, the optimal hyperparameters were α =∞
and β = γ = 4.

Table 4.3: Model Performance on Complete Dataset

Model R2 RMSE

PCR 0.54 26.07
PLSR 0.71 20.54
RoBoost PLSR 0.81 10.53

The same models were then trained on specific subsets, obtaining the results
shown in Table 4.4.

Table 4.4: Model Performance by Subset

Subset PCR
RMSE

PCR
R2

PLSR
RMSE

PLSR
R2

RoBoost
RMSE

RoBoost
R2

White Grapes 23.26 0.42 20.97 0.53 19.01 0.61
Red Grapes 13.72 0.82 13.03 0.84 12.24 0.86
SYRAH 8.97 0.92 8.67 0.93 8.37 0.94
MAUZAC 23.26 0.42 23.24 0.53 19.01 0.61
FER 32.68 0.17 30.82 0.25 29.1 0.35

As expected, the models’ performance varies when trained on specific subsets.
PLSR consistently showed better performance than PCR, while RoBoost PLSR
achieved the best results in all subsets, confirming its robustness, especially in the
presence of outliers.

For white grapes, the models showed a slight decrease in performance, with
lower R2 values and higher MSE compared to the complete dataset. This decline
could be due to less variability in the sugar content within the white grape subset,
limiting the models’ ability to generalize effectively.

In the case of red grapes, performance improved, with PLSR achieving an
R2 = 0.84 and RoBoost PLSR obtaining R2 = 0.86. This improvement can be
attributed to the distinctive spectral characteristics of red grape varieties, which
seem to provide more useful information for predicting sugar content.

For the SYRAH variety, all models performed exceptionally well, with RoBoost
PLSR reaching an R2 = 0.94 and an MSE of 70.00. This high performance can be
linked to the relatively large number of observations for this variety and its specific
spectral properties.

Conversely, for the FER variety, performance was significantly lower, with PLSR
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obtaining an R2 = 0.25 and RoBoost PLSR an R2 = 0.35. The reduced sample size
for this variety (only 63 observations) likely contributed to the lower performance,
as the models had fewer data to learn from.

In summary, while the general trends align with expectations, the variation
in performance among subsets underscores the importance of data quantity and
variability in achieving robust predictive models. Further investigations into the
characteristics of subsets with lower performance, such as FER and white grapes,
could provide valuable insights for future studies.

4.6 Interpretation of Results

4.6.1 Correlations
After confirming the superior performance of the PLSR model over the PCR model,
and of the RoBoost PLSR model over the other two, we conducted further analyses
and generated graphs to critically examine the results and verify that the behavior
of the models is consistent with the theoretical understanding of their functioning.

Firstly, we generated plots of the first three principal components for PCR and
the first three latent variables for PLSR and RoBoost PLSR. These plots show
the loadings of each spectral band on the first three components. This illustrates,
separately for each of the three components, how much each of the 204 predictive
variables, corresponding to the spectral bands, contributes to the construction of
the components. As expected, we observe that the three models extract components
differently, so the importance that each model assigns to each variable for prediction
is different (see Figure 4.9).

400 500 600 700 800 900 1000
Wavelength (nm)

0.10

0.05

0.00

0.05

0.10

0.15

Lo
ad

in
gs

PCA Loadings
PCA PC1
PCA PC2
PCA PC3

400 500 600 700 800 900 1000
Wavelength (nm)

0.10

0.05

0.00

0.05

0.10

0.15

0.20

PLSR Loadings
PLSR LV1
PLSR LV2
PLSR LV3

400 500 600 700 800 900 1000
Wavelength (nm)

0.15

0.10

0.05

0.00

0.05

0.10

0.15
RoBoost PLSR Loadings

RoBoost LV1
RoBoost LV2
RoBoost LV3

Figure 4.9: Loading’s Comparison

Next, we calculated the correlation matrices between the extracted components
and the sugar content, separately for each model. These matrices indicate how much
each component is correlated with the target variable. Regarding the principal
components from PCA, we note that the only component correlated with the target
variable is the third one, with a correlation coefficient of 0.69. Very different results
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are shown by the correlation matrices of the other two models. For the PLSR
and RoBoost PLSR models, we see that almost all the extracted components are
connected with the target variable (see Figure 4.10).
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Figure 4.10: Matrix Correlations

The findings from these analyses explain why the PCR model has lower perfor-
mance compared to the other two models. By extracting only one latent component
correlated with the target variable through PCA, the model can derive information
related to the prediction of the target variable only from that single component (as
shown by the PCR regression coefficients). In contrast, the PLSR and RoBoost
models can extract information from multiple components, leading to more accurate
results.

These results align with the explanations provided in Section 4.3. It is evident
that, during component extraction, PCA does not consider the relationship with
the target variable. By projecting the data into a new dimensional space with the
aim of preserving a certain percentage of variance, PCA loses information that
links low-variance variables with the target variable. The PLSR algorithm, on
the other hand, extracts each component with constant consideration of how it is
connected with the target variable, resulting in less information loss and latent
components more correlated with the target variable.

Finally, the graph in Figure 4.11 shows the variance explained by the first three
components for the three models separately. In this graph, it is clearly seen how the
variance explained by the first three components of PLSR and RoBoost PLSR is
significantly lower compared to those extracted by PCA, illustrating once again how
the focus and objectives of the two methods are different. PLSR extracted the first
three components in that way even though their explained variance of the predictor
data (X) was very low, effectively recognizing that, despite the low variability of
those directions, they were strongly correlated with the target variable.
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4.6.2 VIP Scores Analysis
Subsequently, an in-depth analysis of the VIP Scores (Variable Importance in
Projection) was conducted to assess the relative importance of each predictor
variable in the PLSR and RoBoost PLSR models. The VIP Scores are metrics that
quantify the contribution of each variable in the construction of the PLS model,
considering both the ability to explain the independent variables and the dependent
variable. A high VIP Score indicates that a particular variable plays a significant
role in predicting the sugar content of grapes.

To calculate the VIP Scores in the PLSR and RoBoost PLSR models, the
standard formula that combines the weights of the latent components with the
explained variance was used. Specifically, the VIP score for the j-th variable is
calculated as:

VIPj =

öõõô
p×

qA
a=1

1
w2

ja × SSYa

2
SSYtotal

where:

• p is the number of predictor variables,

• wja is the weight of the j-th variable in the a-th latent component,

• SSYa is the explained sum of squares by the a-th component for the dependent
variable,

• SSYtotal is the total sum of squares of the dependent variable.

This approach allows the identification of the spectral variables (the different
wavelengths) that most influence the model predictions. The VIP Scores were then
normalized using the Min-Max scaling technique to facilitate comparison between
the different models.

Similarly, for the PCR model, a comparable analysis was performed using
the regression coefficients of the principal components. Although PCA does not
directly provide VIP Scores, it is possible to evaluate the importance of variables
by analyzing the regression coefficients associated with the principal components
used in the linear regression model.

The analysis revealed that there are variables that are important in the PLSR
model but not adequately represented in the PCR model. In particular, some
spectral bands have high VIP Scores in the PLSR model but show negligible
importance in the PCR model. This further confirms how PLSR is able to identify
and exploit relationships between the predictor variables and the target variable
that PCA, focusing only on maximizing the variance of the independent variables,
may overlook.
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The VIP Scores plots shown in Figure 4.12 highlight the differences in the
importance assigned to variables by the different models. It is observed that PLSR
and RoBoost PLSR assign importance to a greater number of variables compared
to PCR, and in particular, some specific wavelengths are identified as particularly
relevant for predicting sugar content.
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Figure 4.12: Vip scores confront between PCR and PLSR

These results underscore the effectiveness of VIP Scores as a tool to interpret
PLSR and RoBoost PLSR models and to identify key variables in the prediction
process. Moreover, they highlight the limitations of PCR in identifying important
variables that do not contribute significantly to the total variance but are strongly
correlated with the target variable.

The analysis of the VIP Scores, along with the previous evaluations of the
latent components and correlations with the target variable, provides a deeper
understanding of the models’ functioning and why PLSR and RoBoost PLSR
achieve better performance compared to PCR. It confirms that PLSR models, by
focusing on the relationships with the target variable during component extraction,
are more effective in capturing the relevant information for predicting the sugar
content of grapes.
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Figure 4.13: Importance of the variables in the PCR model
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Figure 4.14: Importance of the variables in the PLSR model
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4.7 Predictive Analysis of Sugar Content in the
Syrah Variety with Outlier Identification

In this section, we focus on the predictive modeling of sugar content specifically
for the Syrah grape variety. The Syrah dataset consists of 126 samples, each
representing an average spectrum of 100 berries of similar maturity from the Syrah
variety. This subset allows us to analyze the performance of the models in a more
controlled setting, where varietal characteristics are consistent, and to delve into
the identification and impact of outliers on model performance.

4.7.1 Data Preprocessing and Exploration

We filtered the original dataset to include only the samples corresponding to the
Syrah variety. This resulted in a dataset of 126 observations. Missing values were
checked and none were found, ensuring data integrity for subsequent analysis. The
target variable, sugar content (expressed in g/L), showed an approximately normal
distribution with a mean of 194 g/L, a minimum of 123 g/L, a maximum of 283 g/L,
and a standard deviation of 37 g/L (see Figure 4.15). The histogram indicates a
relatively symmetric distribution, which is favorable for regression modeling.
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Figure 4.15: Distribution of Sugar Content in Syrah Variety

68



Methodology and deep analysis

We standardized the spectral features (X) using the StandardScaler from
scikit-learn, fitting the scaler on the training data and transforming both training
and test sets accordingly. The target variable (Y ) was not standardized.

4.7.2 Model Implementation and Hyperparameter Opti-
mization

We applied the three models, PCR, PLSR, and RoBoost PLSR, to the Syrah dataset.
To ensure fair comparison and robust evaluation, we used 5-fold cross-validation to
optimize hyperparameters for each model.

Principal Component Regression (PCR)

For PCR, we constructed a pipeline consisting of PCA followed by linear regression.
We performed grid search cross-validation over the number of principal components,
ranging from 1 to 10. The optimal number of components was found to be 5, which
explained approximately 95% of the variance in the predictor variables.

Partial Least Squares Regression (PLSR)

For PLSR, we similarly performed grid search cross-validation over the number of
components, also ranging from 1 to 10. The optimal number of components was
determined to be 6.

RoBoost Partial Least Squares Regression (RoBoost PLSR)

For RoBoost PLSR, we performed cross-validation over the number of components
(from 5 to 15) and the hyperparameters α, β, and γ, which control the robustness
of the model to outliers. The optimal parameters were found to be ncomponents = 6,
α = 4.685, β = 4.685, and γ =∞.

4.7.3 Model Performance and Comparison

The models were evaluated on a test set comprising 20% of the data. The per-
formance metrics, including the coefficient of determination (R2) and Root Mean
Squared Error (RMSE), are summarized in Table 4.5.
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Table 4.5: Model Performance on Syrah Test Set

Model Optimal Components R2 RMSE (g/L)

PCR 5 0.92 9.0
PLSR 6 0.93 8.6
RoBoost PLSR 6 0.97 5.5

As expected, PLSR outperformed PCR due to its ability to consider the rela-
tionship between predictors and the target variable during component extraction.
RoBoost PLSR achieved the best performance, with an R2 of 0.97 and an RMSE
of 5.5 g/L, indicating its effectiveness in handling outliers and enhancing predictive
accuracy.

4.7.4 Outlier Identification and Analysis

An important aspect of RoBoost PLSR is its capacity to identify and down-weight
outliers during model training. We extracted the final observation weights assigned
by the RoBoost PLSR model to each sample. Lower weights indicate observations
considered as outliers. Upon analyzing the distribution of these weights, we
identified a subset of observations with significantly lower weights, specifically those
below the 10th percentile. These observations are considered outliers by the model
(see Figure 4.16).
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Figure 4.16: Distribution of Observation Weights in RoBoost PLSR for Syrah

Interestingly, when we examined the sugar content values of these outliers, we
found that they were distributed across the central range of the sugar content
distribution (see Figure 4.17). This implies that these outliers cannot be easily
identified using classical univariate methods based solely on the target variable Y ,
as they do not exhibit extreme values in sugar content. Instead, the outliers are
likely multivariate anomalies, exhibiting unusual combinations of spectral features
and sugar content.

120 140 160 180 200 220 240 260 280
Sugar content g/l

Rug plot of the sugar content with outlier evidence
All observations
Outlier

Figure 4.17: Distribution of Sugar Content with Outliers Indicated (Syrah)

4.7.5 Impact of Outliers on Model Performance
To assess the impact of the identified outliers on model performance, we retrained
the PLSR model after removing the outliers detected by the RoBoost PLSR model.
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The performance of the PLSR model improved significantly, with R2 increasing
from 0.93 to 0.98 and RMSE decreasing from 8.6 g/L to 5.3 g/L (see Table 4.6).

Table 4.6: PLSR Performance Before and After Outlier Removal

PLSR Model R2 RMSE (g/L)

Original PLSR 0.93 8.6
PLSR without Outliers 0.98 5.3

This improvement indicates that the RoBoost PLSR model effectively identified
observations that negatively impacted the PLSR model’s performance. By removing
these outliers, the PLSR model becomes more robust and achieves better predictive
accuracy.

4.7.6 Discussion on Outlier Detection
The inability of classical methods to detect these outliers is attributed to their
focus on univariate distributions. Since the outliers have sugar content values
within the normal range, they do not appear as anomalies when examining Y alone.
However, in the multivariate space of spectral features, these observations exhibit
atypical relationships between X and Y , which are effectively identified by the
robust weighting mechanism of RoBoost PLSR.

This highlights the importance of considering multivariate outlier detection
methods in chemometric analyses, as univariate approaches may overlook influential
anomalies that affect model performance.

4.7.7 Conclusions
The analysis of the Syrah variety demonstrates the effectiveness of RoBoost PLSR in
improving predictive performance and handling outliers. By identifying observations
that traditional methods might overlook, RoBoost PLSR enhances model robustness
and accuracy.

The outliers detected were not apparent when examining the sugar content
alone, underscoring the necessity of multivariate outlier detection in chemometric
modeling. The removal of these outliers led to improved performance in the PLSR
model, validating the relevance of the outliers identified by RoBoost PLSR.

This case study emphasizes the importance of robust modeling techniques
in viticulture and chemometrics, particularly when dealing with complex, high-
dimensional data where outliers may not be evident through classical univariate
analyses.

72



Methodology and deep analysis

4.8 Additional Case Study
In this part, we provide another case study that uses a different dataset to estimate
the Brix Index from hyperspectral vectors. The results were inadequate even if
methods akin to those employed in the earlier analysis were applied. We look into
the causes of this result, concentrating on the features and caliber of the dataset.

4.8.1 Dataset Description

Multispectral photos of individual grape berries with weight, anthocyanin content,
and Brix Index measurements make up the dataset in question. Each image has
dimensions of 140×200 pixels and is in the .tif format. The 37 spectral bands that
make up each pixel record the intensity of reflected light at wavelengths between
around 450 and 970 nm. Autumn Royal, Crimson, Itum4, Itum5, and Itum9 are
seedless table grape varieties that represent a range of maturity stages.

There are some significant differences between this dataset and the primary one
that was previously examined. First of all, because berries naturally vary from
one another, each sample is a single grape berry rather than an average of several
berries, adding to the variability. Second, the dataset may have an impact on the
spectral features and their relationship to the Brix Index because it concentrates
on seedless table grapes rather than wine grape varietals. Thirdly, the imaging
method uses 37-band multispectral imaging instead of the 204-band hyperspectral
imaging that was previously employed. Finally, in order to filter and compress
the images into spectral vectors that can be used for analysis, more preprocessing
processes are needed.

4.8.2 Model Application

A number of preparation procedures were carried out in order to get the data ready
for modeling. The grape fruit pixels were first separated from the backdrop using
image segmentation. A threshold-based approach was used to do this, keeping
pixels in channel 22 with intensity levels higher than 25. A single spectral vector
of length 37 was produced for each grape berry by averaging the spectral values
across all berry pixels in each image to determine the mean reflectance spectrum.

To comprehend the data structure and possible connections between spectral
properties and the Brix Index, an exploratory data analysis was carried out. To
reduce dimensionality and show the data, Principal Component Analysis (PCA)
was used. More than 90% of the variance was explained by the first three main
components. Correlation analyses, however, showed weak connections between the
principal components and the Brix Index and low correlations between particular
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spectral properties and the Brix Index. This suggested that there were not enough
linear relationships for regression models to take advantage of.

As in the previous experiments, we used Partial Least Squared Regression. To
find the ideal amount of components, cross-validation was done. The model’s
performance was subpar in spite of these efforts. High prediction errors were
indicated by the Root Mean Squared Error (RMSE), which was similar to the Brix
Index standard deviation. Given the poor coefficient of determination (R2) values,
it appears that the model only partially accounted for the variation in the Brix
Index.

4.8.3 Discussion on Differences
The models’ poor performance on this dataset seems to be related to the poor quality
of the dataset itself, in particular the Brix Index measurment. With comparable
spectral ranges covering important wavelengths related to grape composition and
good correlation among spectral bands, as anticipated in hyperspectral data,
the dataset looks similar when analyzed only based on the spectral data. This
resemblance implies that the primary problem is not the spectral data per se.
It’s possible that the Brix Index values weren’t gathered consistently or precisely
enough. Any model’s capacity to discover significant connections between the
predictors and the target variable is directly hampered by inaccurate ground truth
measurements. The most likely reason for the poor predictive performance is the
carelessness with which the Brix Index measurements were collected, since the
spectral data shares characteristics with the successful dataset. Inconsistencies
in the Brix Index data or measurement errors may have a major impact on the
model’s capacity to generate reliable predicted correlations.

4.8.4 Conclusions
This case study emphasizes how crucial data quality is to predictive modeling,
particularly for the target variable. Models cannot correct for errors in basic data,
even with the right preprocessing and analytical methods. Developing successful
predictive models in chemometrics and related domains requires high-quality,
dependable measurements. Future research could enhance model performance
by reassessing the Brix Index measurements, perhaps by collecting data again
with more accurate techniques, and putting in place uniform procedures for data
gathering. Furthermore, taking into account sophisticated preprocessing methods
or different modeling strategies could aid in identifying intricate patterns in the
data.
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Conclusion

The research conducted in this thesis once again highlights how the use of VIS-
NIR spectroscopy is a valid and effective methodology for developing models
that estimate fruit quality parameters. Although the results obtained are in line
with the existing literature, the fundamental contribution of this thesis lies in its
very structure. All aspects of this research are indeed analyzed by posing the
main question as "why" before "how." Starting from some fundamental, almost
philosophical questions regarding ML and system modeling, the reader is guided
through a process that first leads them to discover the fundamentals of viticulture
and imaging, which serve to build the assumptions at the base of the problem-
solving, before moving on to practical implementations. The critical analysis
and interpretation of the results, conducted in a meticulous manner, represents
another innovative aspect of this work. The perspective from which the results are
analyzed is always that of information, leading the reader to clearly understand the
fundamentals of each model used and to question how the information conveyed by
the result is related to what we know about the domain in question. To appreciate
this thesis, it is fundamentally important to truly understand what the greatest
difficulty a novice faces when approaching a problem in a specific domain they are
unfamiliar with. One might indeed think that the greatest lack is the knowledge of
the domain. This is true to some extent, in the sense that what is actually lacking
is the part of domain knowledge that is strictly necessary to interface with the
problem (reading an entire book on the use of pesticides in viticulture may help,
but it is not strictly necessary to tackle and understand how to estimate the sugar
content of grapes). The real problem is that most of the time, one does not know a
priori what the necessary subset of knowledge is that provides the context to tackle
the problem. What we are faced with, therefore, is a lack of meta-knowledge, that
is, the kind that allows us to group, categorize, and conceptualize new knowledge
through language. The only way to fill this gap is to be aware of it, look at the
problem from the outside, and act methodically, always considering that there
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might be something that has been overlooked. In this context, the value of this
thesis is primarily the method with which it was conceived.

The limitations encountered are mainly related to the lack of public datasets
that are numerous and well-provided. The future perspective is that more and
more companies will start collecting and publishing their data in order to advance
research in a more solid and faster manner. It is indeed by looking at new types of
data that new methodologies and approaches to solving problems can more easily
come to mind. Finally, having a vast amount of heterogeneous data, concerning
different grape varieties, varying degrees of ripeness, and originating from areas
with variable soils and climates, could allow for understanding whether universal
methodologies exist and whether the models developed are transferable from one
grape to another. This would not only promote the development of more robust and
generalizable models but also allow for the exploration of the possibility of applying
common approaches to different contexts, improving the prediction of grape quality
parameters on a global scale. In this way, new perspectives for research would
open up, facilitating the adoption of innovative techniques in the wine sector and
promoting greater collaboration between researchers and industry professionals.
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Appendix A

RoBoost PLSR Algorithm
and Weighted NIPALS

In this appendix, we provide high-level pseudocode descriptions of the RoBoost
PLSR algorithm and the weighted NIPALS algorithm used in our analysis.
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A.1 RoBoost PLSR Algorithm

Algorithm 1 RoBoost PLSR Algorithm
Require: • Dataset X ∈ Rn×p (predictor variables)

• Response variable Y ∈ Rn

• Number of components A

• Maximum iterations Niter

• Tuning parameters α, β, γ

• Convergence threshold θ
Ensure: • Model parameters: weights W, loadings P, scores T, regression

coefficients b
1: Initialize weights d← 1n (Vector of ones)
2: Center X and Y using weighted means with weights d
3: for a = 1 to A do
4: Set convergence criterion cor← 0, iteration counter f ← 1
5: while cor < θ and f ≤ Niter do
6: Compute weighted PLS component:
7: Use weighted NIPALS algorithm (Algorithm 2) to compute weights

wa, scores ta, loadings pa, and coefficient ca with weights d
8: Update residuals:
9: X← X− tap⊤

a

10: Y← Y − cata

11: Compute residuals:
12: rY ← residuals of Y
13: rX ← residuals of X
14: rT ← residuals of T
15: Update weights using robust weight functions:
16: wY ← Fβ(rY )
17: wX ← Fα(rX)
18: wT ← Fγ(rT )
19: Update overall weights:
20: d← wY ◦wX ◦wT (Element-wise multiplication)
21: Normalize weights: d← d/

qn
i=1 di

22: Compute convergence criterion cor
23: Increment iteration counter: f ← f + 1
24: end while
25: Store component parameters wa, ta, pa, ca

26: end for
27: Compute regression coefficients:
28: R ←W

1
P⊤W

2−1

29: b← RC =0
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A.2 Weighted NIPALS Algorithm

Algorithm 2 Weighted NIPALS Algorithm for PLS
Require: • Centered predictor matrix X ∈ Rn×p

• Centered response vector Y ∈ Rn

• Number of components A

• Observation weights d ∈ Rn

Ensure: • Weights W, loadings P, scores T, regression coefficients C
1: Initialize residual matrices: X0 ← X, Y0 ← Y
2: for a = 1 to A do
3: Compute weight vector:
4: wa ← X⊤

a−1(d ◦Ya−1)
5: Normalize: wa ← wa/∥wa∥
6: Compute score vector:
7: ta ← Xa−1wa

8: Compute regression coefficient:
9: ca ← (d ◦Ya−1)⊤ta/(t⊤

a (d ◦ ta))
10: Compute loading vector:
11: pa ← X⊤

a−1(d ◦ ta)/(t⊤
a (d ◦ ta))

12: Update residuals:
13: Xa ← Xa−1 − tap⊤

a

14: Ya ← Ya−1 − cata

15: Store component parameters wa, ta, pa, ca

16: end for=0
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