
POLITECNICO DI TORINO

Corso di Laurea Magistrale
in Ingegneria Informatica

Tesi di Laurea

Post-Quantum solutions for security protocols

Relators Candidate
prof. Danilo Bazzanella Giacomo Greco
dott. Maria Chiara Molteni
firma dei relatori firma del candidato

.

. .
Academic Year 2023-2024

To my family.
To my grandparents.

Abstract

In an era where data security is an indispensable priority, the evolution of
security protocols is crucial to ensure the protection of digital communica-
tions. This study focuses on integrating post-quantum solutions into the
Transport Layer Security (TLS) security protocol to mitigate vulnerabilities
associated with the advent of quantum computers that could lead to the
break of our security protocols.

The TLS protocol represents a critical standard for ensuring confiden-
tiality and integrity of communications over the Internet. However, its ro-
bustness has been questioned by the increasing computing power of quantum
computers, which could compromise the cryptographic algorithms tradition-
ally used by TLS.

This research work proposes an innovative modification of the TLS hand-
shake algorithm, introducing post-quantum cryptography mechanisms to
ensure enhanced security in the era of quantum computers. Implementing
such post-quantum solutions within the TLS protocol offers robust protec-
tion against cryptographic attacks based on quantum algorithms.

Through a detailed analysis of performance and security, this thesis demon-
strates the effectiveness of post-quantum solutions in increasing the resilience
of the TLS protocol against advanced threats. The results obtained provide
a solid start for integrating these emerging technologies into cybersecurity
systems, while also ensuring the protection of sensitive data in an increas-
ingly complex and threatening digital landscape.

4

Acknowledgements

Un ringraziamento va al mio relatore, il Professor Danilo Bazzanella, per
la sua guida e i suoi consigli durante la stesura di questa tesi. Desidero
ringraziare l’azienda Security Pattern SRL e il mio tutor aziendale Maria
Chiara Molteni, per avermi dato l’opportunità di svolgere uno stage forma-
tivo e per la disponibilità e pazienza dimostrate durante tutto il periodo. La
loro esperienza è stata fondamentale per arricchire questo lavoro.

Grazie alla mia famiglia: a mamma e papà, che mi hanno sempre incor-
aggiato e sostenuto, credendo in me anche nei momenti di difficoltà. Alle
mie sorelle: Virna e Agnese per essere sempre state un punto di riferimento
costante e insostituibile. Grazie per il vostro affetto e il vostro sostegno
incondizionato.

Un ringraziamento dal profondo del cuore va ai miei amici più cari, Giulio,
Luca ed Enrico. Con voi ho trovato non solo il supporto di cui avevo bisogno
nei momenti difficili, ma anche la leggerezza che mi ha permesso di staccare
la mente e ricaricare le energie. Che fossero chiacchierate profonde o sem-
plici risate, ogni momento trascorso insieme ha reso questo viaggio unico e
indimenticabile. Siete stati e siete tuttora il mio porto sicuro. Vi ringrazio
per la vostra presenza costante, per non avermi mai fatto mancare il vostro
affetto e il vostro incoraggiamento, e per avermi regalato i ricordi più belli
che potessi desiderare. La nostra amicizia è una forza inarrestabile, una
certezza che mi ha accompagnato in ogni passo di questo percorso, non es-
istono parole abbastanza forti per esprimere quanto vi sono grato. A voi
devo l’adolescenza più felice che potessi sognare. Grazie di cuore, per tutto
ciò che siete e per tutto quello che continueremo a essere insieme.

Grazie a Federico, conosciuto per caso durante questo viaggio universi-
tario, ma che è diventato presto una presenza fondamentale nella mia vita.
Abbiamo condiviso gran parte di questo percorso insieme, affrontando esami,
progetti e infinite ore di studio, ma anche momenti di svago che hanno reso
tutto più leggero. La tua amicizia ha reso questo cammino più sopportabile

5

e molto più piacevole.
Un pensiero speciale va anche a Gli amici di Maicol, con i quali ho condi-

viso non solo tantissime serate indimenticabili, ma anche legami che vanno
ben oltre il divertimento. Grazie per aver riempito di allegria e risate i miei
giorni, e per essere una costante fonte di spensieratezza.

Grazie Giulia, ogni volta che le sfide sembravano insormontabili, la tua
fiducia in me ha riacceso la mia determinazione. Ti sono grato per aver
sempre creduto in me, per tutti gli alloggi a Roma, per le immagini di
questa tesi e per tutto l’affetto che mi dai ogni giorno. Questo traguardo
senza te al mio fianco, non avrebbe lo stesso sapore.

6

Contents

List of Tables 11

List of Figures 12

1 Introduction 15

2 Cryptography 17
2.1 Mathematical Fundamentals 18

2.1.1 The AND operation 19
2.1.2 The XOR operation 19
2.1.3 Modular Arithmetic 20
2.1.4 Finite Fields . 20
2.1.5 Elliptic Curve . 21
2.1.6 Permutation . 21
2.1.7 Lattices . 21
2.1.8 Basis . 21
2.1.9 Vector Space . 22
2.1.10 Norm . 22
2.1.11 Learning with Error problem 22
2.1.12 Closest Vector Problem 23
2.1.13 Indistinguishability under chosen plaintext attack . . 24
2.1.14 Indistinguishability under non-adaptive and adaptive

Chosen Ciphertext Attack 24
2.2 Encryption . 24
2.3 Symmetric Cryptography . 25

2.3.1 Symmetric Cryptography Algorithms 26
DES . 26

Key Transformation 28

7

Expansion Permutation 29
S-box Permutation 29
P-box Permutation 29

Triple DES . 30
AES . 31

Substitute Bytes Transformation 31
Shift Rows . 32
Mix Columns 33
Add Round Key 33

2.3.2 Symmetric Algorithms application modes 34
Electronic Code Book 34
Cipher Block Chain 35
Counter mode . 36
Stream Cipher . 37

2.4 Hash Functions . 38
2.4.1 SHA-2 and SHA-3 algorithms 40

2.5 Asymmetric Cryptography 45
2.5.1 RSA . 46

Key Generation . 46
Encryption . 47
Decryption . 47

2.5.2 DSA . 47
Key Generation . 47
Signing . 48
Verifying . 48

2.5.3 ECDSA . 49
Key Generation . 49
Signature Generation 49
Signature Verification 50

2.5.4 Digital Signature . 50
2.5.5 Algorithms security pillars 51

3 Security Protocols 53
3.1 Public Key Certificates . 54

3.1.1 Certicate Authorities 55
3.2 SSH . 57
3.3 IPsec . 59

3.3.1 Transport Mode . 60

8

3.3.2 Tunnel Mode . 60
3.3.3 Authentication Header 61
3.3.4 Encapsulating Security Payload 63

3.4 TLS . 63
3.4.1 TLS record . 65
3.4.2 TLS Alert Protocol 66
3.4.3 TLS handshake . 67
3.4.4 TLS 1.3 . 71

4 Post-Quantum Cryptography 75
4.1 Lattice-based cryptography 77
4.2 Hash-based cryptography . 78

4.2.1 CRYSTALS-Kyber 80
Key Generation . 81
Encryption . 82
Decryption . 83
Kyber KEM . 84

4.2.2 CRYSTALS-Dilithium 85
Key Generation . 86
Signature . 86
Verification . 87
Numerical Example 87

4.2.3 FALCON . 89
Key Generation . 90

Numerical Example 91
Signature . 92

Numerical Example 92
Verification . 93

Numerical Example 94
4.2.4 SPHINCS+ . 94

Stateful hash-based signatures 96
HyperTree . 96
Key Generation . 97
Signature . 98
Verification . 99

9

5 Post-Quantum TLS 101
5.0.1 Post-quantum TLS handshake 102

Changes to the Digital Certificate 102
Modified TLS Handshake 103

5.0.2 Mutual Authentication Post-Quantum TLS 106
5.1 Post-Quantum TLS measurements 107

6 Conclusion 113

10

List of Tables

2.1 AND truth table . 19
2.2 XOR truth table . 19
2.3 AES S-box Table . 33
2.4 SHA-2 algorithms . 40
4.1 Tabella per confronto PQ Kyber 80
4.2 Kyber Parameters . 84

11

List of Figures

2.1 Caesar’s Cipher representation from [16] 18
2.2 A Lattice in Euclidean Plane 22
2.3 The same Vector can be represented by using different bases.

Picture from [35] . 23
2.4 Basic encryption . 25
2.5 Symmetric Cryptography 26
2.6 DES algorithm . 27
2.7 Number of keys shifted per rounds 28
2.8 Compression Permutation 28
2.9 3Des Scheme by [32] . 31
2.10 Basic structure of AES Algorithm by [2] 32
2.11 AES Shift Rows . 33
2.12 Add Rund Key transformation schema by [45] 34
2.13 ECB encryption mode . 35
2.14 Cipher Block Chaining . 36
2.15 Counter Modes . 36
2.16 Synchronous Stream Cipher by [21] 37
2.17 Self-Synchronizing Stream Cipher [21] 38
2.18 How a cryptographic hash function works. 39
2.19 The SHA-2 Algorithm schema from [31] 41
2.20 The SHA-2 calculations involved in a single round, from [31] 42
2.21 Keccak Block Diagram 44
2.22 Mechanism of a Sponge-Function took from [4] 44
2.23 Asymmetric Cryptography 46
3.1 Structure of a X.509 certificate 55
3.2 SSH handshake schema from [37] 58
3.3 Transport mode . 60
3.4 Tunnel mode . 61

12

3.5 IPsec AH header format 61
3.6 IPsec ESP header format 63
3.7 General TLS Record Format 65
3.8 TLS record format for alert protocol 66
3.9 Basic TLS Handshake . 68
3.10 Basic TLS Handshake with mutual Authentication . 70
3.11 TLS 1.3 handshake . 72
4.1 Illustration of the shortest vector problem 78
4.2 Merkle tree on the L1,L2,L3,L4 blocks 79
4.3 Signature in 8-time Merkle hash tree 95
4.4 Authentication Path for a signature in 8-time Merkle hash tree 96
4.5 HyperTree of height 4 which can be seen as a tree with merklee

trees on the nodes . 97
5.1 Structure of a modified X.509 Certificate 103
5.2 Post-Quantum TLS Handshake 110
5.3 Post-Quantum TLS Handshake with Mutual Authentication 111
5.4 Post-Quantum TLS Handshake measurements, this Figure

refers to [57] . 112
5.5 Standard TLS Handshake measurements from [57] 112

13

14

Chapter 1

Introduction

In today’s digital era, data security is an indispensable priority, with security
protocols playing a crucial role in protecting digital communications. As
technological advancements continue, a new challenge emerges: the advent
of post quantum computing.

Quantum computers, with their superior processing power, pose a signifi-
cant threat to current cryptographic algorithms, potentially rendering some
of them obsolete.

Many of the currently used security algorithms and protocols are vulner-
able to these emerging threats. An example is The Transport Layer Security
(TLS) protocol, which is a cornerstone for ensuring the confidentiality and
integrity of Internet communications. Quantum algorithms pose a threat
to the traditional cryptographic methods that form the basis of most secu-
rity protocols, making it essential to develop and integrate post-quantum
cryptographic solutions to protect digital communications.

This thesis explores the integration of post-quantum cryptographic mech-
anisms into the TLS protocol. The focus is to propose a modifications to the
TLS handshake algorithm to incorporate post-quantum solutions, thereby
enhancing the security and resilience of TLS against quantum computing
threats. This research aims to demonstrate the viability and effectiveness of
post-quantum solutions in fortifying TLS.

The structure of this thesis is as follows:

1. Chapter 2 delves into the fundamentals of cryptography, explaining
how the main operations works such as: encryption, decryption, hash
functions and the main symmetric and asymmetric algorithms; laying
the groundwork for understanding the cryptographic challenges posed

15

Introduction

by quantum computing.

2. Chapter 3 examines existing security protocols providing a detailed ex-
planation of it, highlighting the parts where they can be vulnerable to
a post-quantum attack.

3. Chapter 4 introduces post-quantum cryptography, explaining lattice-
based and hash-based cryptographic algorithms. In this chapter the
main post-quantum algorithms standardized by the NIST (CRYSTALS-
Kyber, CRYSTALS-Dilithium, FALCON and SPHINCS+) are discussed,
describing for each one the key generation process, the encryption/decryption
mechanism for the encryption algorithms and the digital signature gen-
eration and verification for the signature ones.

4. Chapter 5 presents the proposed modifications to the TLS handshake
protocols, which aims to make it post-quantum resistant. The chapter
starts with the proposed modifications to the structures around the
TLS protocol (such as the X.509 Certificate), and continue with the
proposed changes to the structure of the TLS Handshake protocol to
make it functional in a post quantum environment.

The thesis aims to contribute to the field of cybersecurity by providing
an exhaustive state-of-the-art description for both the actual and the post-
quantum solutions, paving the way for a secure digital future in the age of
quantum computing.

16

Chapter 2

Cryptography

In today’s interconnected world, where sensitive information is transmit-
ted across vast networks, the need for secure communication has never
been more critical. This chapter explain the main cryptography princi-
ples, mandatory for a better understanding of the security protocols used
nowadays. From ancient methods of secret writing to the sophisticated algo-
rithms powering today’s secure communication protocols, cryptography has
evolved over millennia to meet the ever-growing demands of privacy and
security in the digital age.

Cryptography is the discipline that embodies the principles, means, and
methods for the transformation of data in order to hide their semantic con-
tent, prevent their unauthorized use, or prevent their undetected modifica-
tion. Cryptography has a rich history dating back thousands of years, with
ancient civilizations developing rudimentary methods of encrypting mes-
sages to protect sensitive information like the Caesar’s cipher, one of the
simplest and earliest known encryption techniques. It is a type of substitu-
tion cipher where each letter in the plaintext is shifted a certain number of
places down or up the alphabet, this fixed amount is the key. For example,
if the key is 3, each letter in the message would be shifted three positions
to the right in the alphabet. So, "A" would become "D," "B" would become
"E," and so on. If the shift extends beyond the end of the alphabet, it wraps
around to the beginning, so "X" would become "A," "Y" would become "B,"
and "Z" would become "C."

In the mid-1970s with the advent of computers, electronic communica-
tions begin to replace the printed paper in a large number of applications
like communications between many people or many computers in different

17

Cryptography

Figure 2.1: Caesar’s Cipher representation from [16]

parts of the world creating different systems. Although different systems
have different security goals, there are some generic goals:

Confidentiality: A system satisfies the confidentiality goal, if it prevents
an attacker from disclosing some information defined as confidential. The
main mechanism to obtain it is by performing encryption, with two main
variants: symmetric encryption, and asymmetric encryption. This part will
be more developed in the next section.

Integrity: the integrity property, as reported in the article [8] guarantee
that data has not been altered in an unauthorized manner since it was
created, transmitted, or stored .The main way to obtain it is by using hash
functions and Message Authentication Codes (MAC) that are going to be
explained in chapter 2.4.

Authenticity : the authenticity property, as reported in the article [26],
tell us if data are originated from its presumed source. Usually authenticity
is granted by the use of a digital signature, as explained in chapter 2.5.4

Non-Repudiation: is the property that provides evidence of the origin
of information, that can be presented, later, to a third party, to ‘prove’ the
identity of the origin. Usually also granted by signature schemes.

2.1 Mathematical Fundamentals

Before explaining the various parts by which cryptography is composed, a
robust grasp of mathematical principles is needed as the incipit for the anal-
ysis of cryptographic algorithms and security protocols. In this section we

18

2.1 – Mathematical Fundamentals

will analyze the mathematical fundamental needed for a better understand-
ing of the following chapters.

2.1.1 The AND operation
The AND operation, often denoted by the symbol ” ∧ ”, is a fundamental
logical operation in Boolean algebra and digital logic. It is commonly used
to combine or compare the values of two binary variables according to the
following truth table:

Input A Input B Output
0 0 0
0 1 0
1 0 0
1 1 1

Table 2.1: AND truth table

the AND operation produces 1 only if both the input values are 1, oth-
erwise it will produce 0.

2.1.2 The XOR operation
The XOR (exclusive OR) operation is a fundamental bitwise operation that
plays a crucial role in many cryptographic algorithms and protocols. The
XOR operation takes two binary inputs and outputs a single binary value
according to the following truth table:

Input A Input B Output
0 0 0
0 1 1
1 0 1
1 1 0

Table 2.2: XOR truth table

The peculiarity of this truth table is that it has the 50% of 0 and the
50% of 1. If XOR is performed with 2 random inputs then also the output

19

Cryptography

will be equally random. XOR does not change the probability distribution
of the input although it generates different outputs. For that reason is often
used for its property of unpredictability, making it suitable for a variety of
cryptgraphic operations as a "confusion" operation [13].

2.1.3 Modular Arithmetic
Modular arithmetic is a system of arithmetic for integers, where numbers
"wrap around" when reaching a certain value, called the modulus. In mod-
ular arithmetic, the notation amod(n) denotes the remainder when a is
divided by m. For example, 8mod3 = 2 because 8 divided by 3 leaves a
reminder of 2. Modular arithmetic allows cryptographic operations to be
performed efficiently with large integers by working with remainders rather
than the full integer values. Many cryptographic primitives rely on modular
arithmetic for their security properties such ad RSA and DSA, also modular
arithmetic forms the basis of algebric structure: finite fields.

2.1.4 Finite Fields
A finite field is a field that contains a finite number of elements. Finite fields
have several important properties:

1. Closure: The sum and product of any two elements in a finite field
result in another element in the field.

2. Associativity and Commutativity: Addition and multiplication are
associative and commutative in a finite field.

3. Existence of Identity Elements: A finite field has additive and
multiplicative identity elements (0 and 1, respectively).

4. Existence of Inverses: : Every nonzero element in a finite field has
a unique additive and multiplicative inverse.

. The most common examples of finite fields are given by the integers modp
when p is a prime number. The number of elements of a finite field is called
its order.

20

2.1 – Mathematical Fundamentals

2.1.5 Elliptic Curve
Elliptic curves are algebraic curves defined by equations of the form: y2 =
x3 + ax + b where a and b are constants, and the curve is defined over a
finite field K. One of the most important properties of elliptic curves is their
group structure, defined by the following rules:

1. Addition: Given two points P and Q on the curve, their sum is the
reflection of the third point of intersection of the curve with the line
passing through P and Q across the x-axis

2. Identity Element: The point at infinity serves as the identity element
for addition. Adding the point at infinity to any point P results in P
itself.

3. Inverse: For any point P on the curve, its inverse P is the point ob-
tained by reflecting P across the x-axis.

2.1.6 Permutation
A permutation is one of the ways in which a number of things can be ordered
or arranged. For example, the six permutations of the set 1, 2, 3 are: (1,
2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), and (3, 2, 1). Permutations
are used in almost every branch of mathematics and in many other fields of
science.

2.1.7 Lattices
In geometry and group theory, a lattice in the real coordinate space Rn is
an infinite set of points in this space with the properties that coordinate
addition or subtraction of two points in the lattice produces another lattice
point, that the lattice points are all separated by some minimum distance,
and that every point in the space is within some maximum distance of a
lattice point. An example of a lattice in the Euclidean plane is shown in
figure 2.2

2.1.8 Basis
In mathematics, a set of vectors in a vector space V is called a basis if every
element of V may be written in a unique way as a finite combination of
elements of B.

21

Cryptography

Figure 2.2: A Lattice in Euclidean Plane

As we can see in figure 2.3 the same Vector can be represented using two
different bases that are the purple and red arrows.

2.1.9 Vector Space
A vector space (also called a linear space) is a set whose vectors, may be
added together and multiplied by numbers called scalars. Vector spaces are
characterized by their dimension, which, specifies the number of independent
directions in the space.

2.1.10 Norm
In mathematics, a norm is a function from a real or complex vector space
to the non-negative real numbers.

2.1.11 Learning with Error problem
In cryptography, learning with errors (LWE) is a mathematical problem that
is widely used to create secure encryption algorithms. It is based on the idea
of representing secret information as a set of equations with errors. In other
words, LWE is a way to hide the value of a secret by introducing noise to it.

22

2.1 – Mathematical Fundamentals

Figure 2.3: The same Vector can be represented by using different bases.
Picture from [35]

2.1.12 Closest Vector Problem

The Closest Vector Problem (CVP) involves finding the closest lattice vector
to a given point. Given a lattice L defined by a basis B, and a target vector
t not necessarily in the lattice, the goal is to find a lattice vector v ∈ L that

23

Cryptography

minimizes the distance ∥ v − t ∥.

2.1.13 Indistinguishability under chosen plaintext at-
tack

Indistinguishability under Chosen Plaintext Attack (IND-CPA) is a security
property of encryption schemes. It ensures that an attacker, who can choose
plaintexts and obtain their corresponding ciphertexts, cannot distinguish
between the encryptions of any two chosen plaintexts with a probability
significantly better than random guessing.

2.1.14 Indistinguishability under non-adaptive and
adaptive Chosen Ciphertext Attack

IND-CCA1 is a security property of encryption schemes ensuring that an
attacker, who can choose ciphertexts to be decrypted (but only before seeing
the challenge ciphertext), cannot distinguish between the encryptions of any
two chosen plaintexts.

2.2 Encryption
Encryption serves as a fundamental technique in the domain of cyberse-
curity, providing a way to secure sensitive data by transforming it into an
unintelligible form that can only be deciphered by authorized parties, having
a crucial role in ensuring the confidentiality property of a system. Encryp-
tion is done by using mathematical techniques which performs the transfor-
mation of the messages we want to send by using encryption algorithms
and decryption algorithms. For that reason a sender that is encrypting
the message can be confident that only the intended receiver will have the
possession of the right key to decrypt the original text, for that reason the
encryption operation permits to achieve the confidentiality property. We
can see in figure 2.4 how the basic encryption works.

The common terminology used in cryptography includes two keywords

1. Plaintext: the message in clear, that it has not been modified yet.

2. Ciphertext: the encrypted message.

24

2.3 – Symmetric Cryptography

Figure 2.4: Basic encryption

The encryption algorithms takes a message and transform it in a way
which is no more understandable using an encryption algorithm with a secret
key (key-1 in figure 2.4), generating a Ciphertext. To recover the original
message, the decryption algorithm will make the message readable again
only by using the same algorithm in decryption mode and the same key
used for the encryption or a different one(Key-2 in figure 2.4, assuming the
two key are different).

Depending on which relation exists between key-1 and key-2 there are
two different kinds of cryptography: if sender and receiver are using only a
single shared key we are in the Symmetric Cryptography field, otherwise
if sender and receiver are using two separate keys we are in the Asymmet-
ric Cryptography field. Moreover symmetric encryption algorithms are
divided into two categories based on the input type: Block cipher is an
encryption algorithm that takes a fixed size of input and produces a cipher-
text of the same size of the input and Stream cipher if the algorithm does
not works on fixed block.

2.3 Symmetric Cryptography
Symmetric cryptography, known also as secret key cryptography, is a corner-
stone of modern cryptographic systems, plays a fundamental role in securing
data through the use of shared secret keys only known to the communicat-
ing parties, to both encrypt and decrypt messages. In figure 2.5 we have an
high level schema on how it works.
We can see a plaintext used as an input for the E (Encryption) block that
takes also the Key ad an input. The result is a non-understandable text

25

Cryptography

Figure 2.5: Symmetric Cryptography

that is sent to the receiver. To recover the original text the D(Decryption)
block algorithm is used with the same key used to encrypt the original
text, if a different key is used the output will still be available but remains
non-understandable.

2.3.1 Symmetric Cryptography Algorithms
This chapter explores the principles, functionalities, and applications of the
main symmetric cryptography algorithms such as DES, TripleDES and AES.

DES

DES stands for Data Encryption Standard, a historic encryption algorithm
representing one of the earliest and most widely recognized encryption algo-
rithms. Initially developed by IBM in the early 1970s, DES was adopted as
a federal standard for encryption by the United States government in 1977.
DES was widely published and openly available for scrutiny and analysis
by the cryptographic community but the specifications did not include de-
tails about the algorithm’s S-Box that was viewed as proprietary to IBM.
However, these details were eventually made public, and DES was subject
to extensive cryptanalysis over the years. Despite its widespread use and
standardization, concerns eventually arose regarding the security of DES,
particularly due to its relatively short key length of 56 bits. Over time, ad-
vancements in computing power rendered brute-force attacks against DES
feasible, leading to its eventual deprecation as a standard encryption algo-
rithm in favor of more secure alternatives like TripleDES and the Advanced
Encryption Standard (AES).

DES is a block cipher which encrypts data in blocks of size of 64 bits each,
that means 64 bits of plaintext go as the input to DES, which produces 64
bits of ciphertext. The same algorithm and key are used for encryption and

26

2.3 – Symmetric Cryptography

decryption. Here is an explanation on how DES works based on the research
in [62] and on the original paper [29]. We have mentioned that DES uses a
56-bit key. Actually, The initial key consists of 64 bits. However, before the
DES process even starts, every 8th bit of the key is discarded (for checking
parity) to produce a 56-bit key. Parity bits are a form of simple error
detection where, for each byte, a bit is used to ensure that the total number
of 1-bits in the string is even or odd. Indeed bit positions 8, 16, 24, 32, 40,
48, 56, and 64 are discarded. Thus, the discarding of every 8th bit of the
key produces a 56-bit key from the original 64-bit key. DES consists of 16
steps, each of which is called a round and each round performs the Feistel
schemes operations.

Figure 2.6: DES algorithm

27

Cryptography

The algorithm’s overall structure is shown in figure 2.6: there are 16 iden-
tical stages of processing, called rounds. Before the main rounds, the block
is divided into two 32-bit halves and processed alternately, this process is
known as the Feistel scheme (referred ad F in figure 2.6). The Feistel struc-
ture ensures that decryption and encryption are very similar processes—the
only difference is that the keys are applied in the reverse order when de-
crypting. The rest of the algorithm is identical. This greatly simplifies
implementation, particularly in hardware, as there is no need for separate
encryption and decryption algorithms. The F-function operates on half a
block (32 bits) at a time and consists of the following stages: Key Transfor-
mation, Expansion Permutation, S-box permutation and P-box Permutation

Key Transformation As we previously said a 64-bit key is transformed
into a 56-bit key by discarding every 8th bit of the initial key, from this
56-bit key, a different 48-bit Sub Key is generated during each round. The
56 bit key is divided in two 28 bits half that are circularly shifted by one or
two position depending on the round.

Figure 2.7: Number of keys shifted per rounds

We can use figure 2.7 for a better understanding, if the round numbers
1, 2, 9, or 16 the shift is done by only one position for other rounds, the
circular shift is done by two positions and so on. After an appropriate shift,
48 of the 56 bits are selected.

Figure 2.8: Compression Permutation

For instance as shown in figure 2.8, after the shift, bit number 14 moves
to the first position, bit number 17 moves to the second position, and so
on. Observing the table, we will realize that it contains only 48-bit posi-
tions. Bit number 18 is discarded (we will not find it in the table), like 7

28

2.3 – Symmetric Cryptography

others, to reduce a 56-bit key to a 48-bit key. Since the key transformation
process involves permutation as well as a selection of a 48-bit subset of the
original 56-bit key it is called Compression Permutation. This compression
permutation technique permits to use a different subset of the key bits in
each round.

Expansion Permutation In the Expansion Permutation the 32-bit half-
block is expanded to 48 bits. This happens as the 32-bit block is divided into
8 blocks, with each block consisting of 4 bits. Then, each 4-bit block of the
previous step is then expanded to a corresponding 6-bit block resulting in 2
more bits added. Now the 48-bit key is XOR with 48-bit of the precedent
block and the 48 bit of the other half pf the block and the resulting output
is given to the next step, which is the S-Box substitution.

S-box Permutation The S-box (substitution box) permutation is a pro-
cedure that accepts the 48-bit input from the XOR operation containing
the compressed key and expanded half block and creates a 32-bit output
utilizing the substitution technique.The substitution is implemented by the
eight substitution boxes (also known as the S-boxes). Each 8-S-boxes has
a 6-bit input and a 4-bit output. The 48-bit input block is divided into 8
sub-blocks (each including 6 bits), and each sub-blocks is provided to an
S-box.

The substitution in each box follows a pre-decided rule depends on a 4-
row by 16- column table. The sequence of bits one and six of the input
represent four rows and the sequence of bits two through five represent
sixteen columns.

Because each S-box has its own table, we require eight tables, as display
in table 1 to table 8, to represent the output of these boxes. The values of
the inputs (row number and column number) and the values of the outputs
are given as decimal numbers to store space as explained in article [22].

P-box Permutation In this step the new resulting blocks are the input
for 2 permutation box so their bits are transposed again, similar to the step
discussed in figure 2.7. This p-box helps in adding confusion and diffusion,
so as to make the attacker difficult to decrypt the message hidden. The input
block bits are permutated and hence the confidentiality of the message is
preserved. As explained in [46] this process helps in securing the message
more efficiently. In the end, the two previously halved block are rejoined

29

Cryptography

and a Final Permutation is performed on the combined block. The result of
this process produces 64-bit ciphertext.

Before DES was adopted as a national standard, the creators of public
key cryptography, Martin Hellman and Whitfield Diffie, registered some
objections to the use of DES as an encryption algorithm fearing an attack
by an intelligence association [24].

Diffie and Hellman then outlined also a brute force attack[11] on DES
and in 1998, under the direction of John Gilmore of the EFF, a team spent
220,000 and built a machine that can go through the entire 56-bit DES key
space in an average of 4.5 days. On July 17, 1998, they announced they had
cracked a 56-bit key in 56 hours. For that reasons the algorithm was retired
in 2005. [24]

Triple DES

Triple DES is an encryption algorithm based on the original Data Encryp-
tion Standard (DES). It is a symmetric encryption algorithm that uses mul-
tiple rounds of the Data Encryption Standard (DES) to improve security in
particular it is known as Triple DES because it uses the Data Encryption
Standard (DES) three times to encrypt its data.As said in article [30] it
outperforms the original Data Encryption Standard (DES). The idea be-
hind using three DES passes instead of two is designed to prevent Man in
the Middle attacks. In a setting with Double-DES implementation, an
adversary could read the encrypted output of the DES passes at each end of
the stream. They could then use a brute-force attack to find relationships
between the block set and the mathematical operator. Keys that produce
the same result in either direction could also be identified as possible solu-
tions to the DES implementation. According to NIST [17] the Triple DES
scheme that uses three different keys offers a 100-bit security level which is
considered acceptable until the year 2030.

Figure 2.9 describe how 3DES works: the encryption scheme is C(x) =
EK3(DK2(EK1(P (x)))) where C stand for Ciphertext, E for Encryption, D
for Decryption and P for plaintext, that means encrypt the plaintext using
key K1; decrypt using key K2 and encrypt the resultant using K3 while the
Decryption scheme can be denoted as: P (x) = DK3(EK2(DK1(P (x))))

30

2.3 – Symmetric Cryptography

Figure 2.9: 3Des Scheme by [32]

AES

AES stands for Advanced Encryption Standard and is the most used sym-
metric algorithm nowdays. AES supports key lenghts of 128,192 and 256
bits and a longer key means a higher level of security. AES has the ability to
deal with 128 bits (16 bytes) as a fixed plaintext block size, these 16 bytes
are represented in 4x4 matrix. The core of the algorithm is a sequence of
fixed transformations of the state called rounds, and there are a prefixed
number of rounds based on the key lenght (10 rounds for the 128 bits key,
12 for the 192 bits key and 14 for the 256 bits one).

As we can see in figure 2.10 a round on encryption can be decomposed
in four transformations: Substitute Bytes, Shift Rows, Mix Columns,
Add Round Key, for a better understanding of the algorithm we refer to
the FIPS 197 document available on [45].

Substitute Bytes Transformation The first stage of each round starts
with SubBytes transformation. This stage depends on nonlinear S-box to
substitute a byte in the state to another byte.

For a better visualization we can use 2.3: if in the state we have "AC", it

31

Cryptography

Figure 2.10: Basic structure of AES Algorithm by [2]

has to replace to 7 4, created from the intersection of A and C.

Shift Rows Shift Row is a transformation of the state in which the bytes
in the last three rows of the state are cyclically shifted to the left in each
row rather than the first row.

In picture 2.11 we can visualize the transformations done to the matrix:
row zero remains fixed and does not carry out any permutation. In the first
row only one byte is shifted circularly to the left. The second row is shifted

32

2.3 – Symmetric Cryptography

Table 2.3: AES S-box Table

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76
1 CA B2 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0
2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 DB 31 15
3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75
4 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84
5 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF
6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8
7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2
8 CD 0C 13 3C 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73
9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB
A E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79
B E7 CB 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08
C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A
D 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E
E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF
F 8C A1 89 0D BF E6 42 6B 41 99 2D 0F B0 54 BB 16

Figure 2.11: AES Shift Rows

two bytes to the left. The last row is shifted three bytes to the left.

Mix Columns Mix Columns is a transformation that multiplies each of
the four columns of the state by a single fixed matrix. In another word, each
row of matrix transformation must multiply by each column of the state.
The results of these multiplication are used with XOR to produce a new
four bytes for the next state.

Add Round Key AddRoundKey is the most important stage in AES
algorithm and it is a bitwise XOR operation that combines the current ci-
phertext being encrypted with a portion of the encryption key. Both the key
and the input data are structured in a 4x4 matrix of bytes as shown in figure

33

Cryptography

2.11. Before encryption begins, the original encryption key is expanded into
multiple round keys, and each round key is derived from the original key and
is used in a specific round of the AES encryption process. At this point each
byte of the state matrix is XORed with the corresponding byte of the round
key. In figure 2.12 we have a visual representation on the transformation.

Figure 2.12: Add Rund Key transformation schema by [45]

The AddRoundKey transformation introduces the key material into the
data being encrypted, effectively mixing the original data with the encryp-
tion key.

2.3.2 Symmetric Algorithms application modes
Central to the implementation of symmetric algorithms are their application
modes which delineate the specific techniques and procedures through which
data is encrypted, decrypted, and processed.

Electronic Code Book

Electronic Code Book (ECB) is a simple mode of operation with a block
cipher that’s mostly used with symmetric key encryption. It is a straight-
forward way of processing a series of sequentially listed message blocks.

The input plaintext is broken into numerous blocks made by 128 bit
each, and if the plaintext’s bit are not multiple of 128 then some padding
methods will be used. Paddings are mechanisms that allows to append some
predefined values to a block permitting it to fulfill the size of a block. The
blocks are individually and independently encrypted (ciphertext) using the
encryption key. As a result, each encrypted block can also be decrypted

34

2.3 – Symmetric Cryptography

Figure 2.13: ECB encryption mode

individually. ECB can support a separate encryption key for each block
type.

As said in [5],in ECB each block of plaintext has a defined corresponding
ciphertext value, and vice versa. So, identical plaintexts with identical keys
always encrypt to identical ciphertexts. This means that if plaintext blocks
P1, P2 (with P1 and P2 i refer to figure 2.13 where P1 id the first block
and P2 the second one) and so on are encrypted multiple times under the
same key, the output ciphertext blocks will always be the same so, the same
plaintext value will always result in the same ciphertext value. This also
applies to plaintexts with partial identical portions. For instance, plaintexts
containing identical headers of a letter and encrypted with the same key
will have partially identical ciphertext portions. ECB is ideal for limited
data volumes otherwise an attacker can exploit its regularity and decrypt
the data.

Cipher Block Chain

Based on [14] Cipher Block Chaining (CBC) is a mode of operation in sym-
metric key block cipher cryptography, enhancing security by combining each
plaintext block with the previous ciphertext block prior to encryption. This
creates a chain-like dependency, where initial plaintext blocks influence the
successive ones, making the encrypted output more randomly distributed.

In figure 2.14 we can see how CBC works.The practical application of
Cipher Block Chaining involves integrating an initialization vector (IV)
XORed with the first block of plaintext (P1) to add an additional layer
of randomness, consequently boosting security by keeping encrypted data
unpredictable. The encrypted output (C1) is then XORed with the next
block of plaintext (P2) to modify the input of the current block before it

35

Cryptography

Figure 2.14: Cipher Block Chaining

is passed through the encryption algorithm, ultimately resulting in a chain
of dependency between the data blocks. In this manner, even if identical
plaintext blocks are encountered, the encrypted output will differ, render-
ing pattern analysis futile. CBC serves as a trusted method in bolstering
cryptographic security, making it a widely adopted strategy for safeguard-
ing sensitive data in various industries like finance, telecommunications, and
e-commerce [14].

Counter mode

In the Counter (CTR) mode the next keystream block is obtained by en-
crypting successive values of a "counter" which can be any function which
produces a sequence which is guaranteed not to repeat for a long time, al-
though an actual increment-by-one counter is the simplest and most popular.

Figure 2.15: Counter Modes

If the nonce is random, then they can be combined with the counter using
any invertible operation (concatenation, addition, or XOR) to produce the

36

2.3 – Symmetric Cryptography

actual unique counter block for encryption. Counter mode uses an arbitrary
number (the counter) that changes with each block of text encrypted. As
shown in figure 2.15, the counter is encrypted with the cipher, and the
result is XORed into ciphertext. Since the counter changes for each block,
the problem of repeating ciphertext that results from the electronic code
book (ECB) method is avoided.

Stream Cipher

Stream ciphers are a type of encryption algorithm that process an individual
bit of plaintext at a time and does not need a fixed-size block. Stream ciphers
are often faster than block ciphers in hardware and require circuitry that is
less complex [21]. A stream cipher is a symmetric-key cipher where plaintext
digits are combined with a pseudo-random cipher bitstream (keystream).
Each plaintext digit is encrypted one at a time with the corresponding digit
of the keystream, to give a digit of the ciphertext stream. Since encryption
of each digit is dependent on the current state of the cipher, it is also known
as state cipher. The combining operation is often a XOR.

The pseudo-random keystream is typically generated serially from a ran-
dom seed value which serves as the cryptographic key for decrypting the
ciphertext stream. Stream ciphers can be classified into synchronous and
self-synchronizing.

Figure 2.16: Synchronous Stream Cipher by [21]

Synchronous ciphers have an independently generated keystream from the
plaintext and ciphertext. They need to use the same key in order to decrypt
the data properly. If a ciphertext character is modified, it does not affect
the decryption of the rest of the ciphertext, but if a character is deleted or
inserted, synchronization will be lost and the rest of the decryption will fail.

As shown in figure 2.5 self-synchronizing (asynchronous) ciphers have a
keystream that is generated from the key and a specified number of previous

37

Cryptography

Figure 2.17: Self-Synchronizing Stream Cipher [21]

ciphertext characters. This type of stream cipher can better handle char-
acters being deleted or inserted as the state only depends on the specified
number of previous ciphertext characters. After that number has been pro-
cessed, the cipher will be synchronized again. A synchronous stream cipher
has no error propagation, but a self-synchronizing cipher has limited error
propagation. If a character is modified, the maximum number of incorrect
decryptions would be limited to the specified number of previous ciphertext
characters after which correct decryption would resume.

2.4 Hash Functions
Hash functions are functions that compress an input of arbitrary length to
a result with a fixed length and they are a very powerful tool to protect the
authenticity of information. And in this chapter we are going to analyze
them referring to [31] the main characteristics of an hash function are:

1. Deterministic: For a given input, a hash function always produces the
same output.

2. Fixed Output Size: A hash function produces a fixed-size output, re-
gardless of the input size.

3. Collision Resistance: It’s computationally difficult to find two different
inputs that produce the same hash output.

4. Pre-image Resistance: Given a hash output, it’s computationally infea-
sible to find the original input.

5. Image-Resistance : It’s computationally infeasible to find two different
inputs that produce the same hash value.

38

2.4 – Hash Functions

6. Avalanche Effect: A small change in the input should result in a signif-
icantly different hash output.

7. Non-invertible: It’s practically impossible to reverse the hash function
to obtain the original input from the hash output.

Hash code works as a unique fingerprint identification digital control. If
even a single bit of control changes, the hash code will change radically.

Figure 2.18: How a cryptographic hash function works.

In figure 2.18 we can visualize how an hash algorithm works:

1. split the message M in N blocks M1...MN

2. iteratively an hash function (f) will be applicated on each block pro-
ducing a digest that is a unique representation of the original input

3. for each block a digest is calculated as follow :Vk = f(Vk−1, Mk) with
V0 = IV and VN = H where the IV is an initialization value which
does not need to be announced or be random and H is the final hash
calculated.

The most widely used hash algorithms nowadays are those ones in SHA
(Secure Hash Algorithm) family published by the National Institute of Stan-
dards and Technology, with SHA-2 and SHA-3 being the most representa-
tive.

39

Cryptography

2.4.1 SHA-2 and SHA-3 algorithms

Name Block Size Digest Size
SHA-224 512 bit 224 bit
SHA-256 512 bit 256 bit
SHA-384 1024 bit 384 bit
SHA-512 1024 bit 512 bit

Table 2.4: SHA-2 algorithms

In table 2.4 we can see the algorithms in SHA-2 family, they have the same
block size but an increasingly digest size. The digest lenght is important to
avoid aliasing that is the collision of two different messages on the same
digest. Breaking a digest algorithm means finding a second message that will
generate the same digest of the first one breaking the Collision Resistance
property, an algorithm that generates a digest of N bits, has a probability
of aliasing (Pa) Pa ∼ 1/2N so, for statistical reason an algorithm with many
bits is preferable, right now SHA-256 is considered secure enough with a 256
bits digest.

We can refer to figure 2.19 for a visualization on how the SHA-2 hashing
process works.

The first thing that’s worth noting is that the diagram shows Round 0,
Round T, and Round 63. Round 0 is the first round, while Round T is a
placeholder that represents any round in between. Round 63 is the final
round, which gives us a total of 64 rounds (note that SHA-384 and SHA-
512 involves 80 rounds) we will continue the explanation assuming a 512
bit block size. The input message (called M in figure 2.19 is padded to
ensure its length is a multiple of the block size used by the SHA-2 variant
(multiple of 512 bit for SHA-224 and SHA-256, multiple of 1024 bits for
SHA-384 and SHA-512). The cut-off point for splitting blocks is actually
either 447 bits (or 895 bits), because we need at least one bit of padding, plus
a 64-bit (or the 128-bit) message containing the length of the block must
be included. At the end of this process we will obtain 16 blocks indicated
in figure as W0...W63,this implies that we need another 48 values before we
have all of our W inputs. The remaining inputs are calculated using the
following formula: Wt = σ1(Wt−2)+Wt−7 +σ0(Wt−15)+Wt−16. t is a stand-
in indicating in which round we are up to, σ1(x) stands for the following

40

2.4 – Hash Functions

Figure 2.19: The SHA-2 Algorithm schema from [31]

equation: σ1(x) = ROTR17(x) ⊕ ROTR19(x) ⊕ SHR10(x). ROTR17(x)
is a circular right shift (for 17 bits in this case) to the value that follows
it (in this case, x). SHR10(x) otherwise is a logical left-shift, so we shift
to the left the value x by, in this case, 10 bits. ⊕ is the XOR operator.
By applying this formula to the 16 W we already have we will obtain the
remaining ones. At the top of the figure, Hi− 1 represents the working
variables, which act as inputs in each round. There are eight of these
variables, and they are updated at the end of each round. The first eight
values are fixed and corresponds to the square root of the first eight prime
numbers, in subsequent rounds these values will be different and indicated
in the figure as a, b, c, d, e, f, g and h. In the right side of the rounds in
the figure, there is another input, K. Those are 64 separate 32-bit values for
K, one for each of the 64 rounds, derived from the cube-roots of the first 64
prime numbers.

41

Cryptography

After defining all the inputs we can refer to figure 2.20for a visualization
of how SHA-2 uses all of them.

Figure 2.20: The SHA-2 calculations involved in a single round, from [31]

At the top we have the working variables (previously defined as a,b,c,d..h)
and in the first round they will be the prefixed values cited before. The Maj
box stands for the following equation: Maj(a, b, c) = (a∧b)⊕(a∧c)⊕(b∧c)
where ⊕ is the XOR operation and ∧ is the AND operator. The next block
to be analyzed is the q one, this block is translated into the following
equation: q

0(a) = ROTR2(a) ⊕ ROTR13(a) ⊕ ROTR22(a). The blocks
with the "+" symbol inside represents a modular addition of the inputs.
The box labeled as "Ch" produces the following equation as an output:
ch(e, f, g) = (e ∧ f) ⊕ (NOTe ∧ g). All of those operations are done in
one round of the SHA-2 algorithm and after 63 rounds, we can see from
figure 2.4 that the eight final H values are all input into a series of modular
addiction boxes that gives as a result the SHA-2 hash desired.

As a consequence of statistical considerations (birthday paradox), a N-
digest algorithm in insecure when more than 2n/2 digest are generated so, if
an attacker sniffs the network, he can simply store all the messages and its
digests passing by. With many messages and digests stored the probability
to have the same digests for two different messages is high. At this point
it is possible to exchange the two messages, because they have the same

42

2.4 – Hash Functions

digest. Because of this problem the National Institute of Standards and
technology initiated the SHA-3 competition in 2007 with a goal to develop
a new standard for cryptographic hash functions that would complement
existing algorithms like SHA-2 and provide an alternative in case they were
compromised. The competition was won by the Keccak algorithm done
by G.Bertoni, J.Daemen, G. Van Assche and M.Peeters announced by NIST
in the special pubblication 800-185 [42]. The following part of the chapter
will be an analysis of how the Keccak algorithm works based on the ar-
ticle [4]. Keccak is a hash function consisting of four cryptographic hash
functions and two extendable-output functions. These six functions are
based on an approach called sponge functions.Sponge functions provide
a way to generalize cryptographic hash functions to more general functions
with arbitrary-length outputs. The block diagram of SHA-3 consists of four
functional blocks called state function, round constant, buffer function and
Keccak function as shown in Figure 2.21.

The algorithm receives a matrix as input, called state. The state has
a length of 1600 bits and consists of a three dimensional 5 x 5 × (word -
sizetable), where word-sizetable ∈ 1, 2, 4, 8, 16, 32, 64. The buffer function
has two input parameters, the first is the number of bits (64 bits or 256
bits) that accepts as input data, and the second is the state matrix and
generates hash output based on sponge construction. Depending on the
desired output length, the algorithm uses two parameters for the sponge
construction as shown in Figure 2.22.

The two input parameters are the bitrate with r-bits, and the capacity
with c-bits. The input message is padded and divided into blocks of r-bits.
The function indicated as f is the main processing part and consists of 24
rounds. We are going to denote with b the width of the state that is made
by r (the outer state) + c (the inner state). Also in the next formula we
refer to the state matrix as A. The process of function f are theta ,rho ,pi
,chi and iota denoted as θ, ρ, π, χandι respectively.

1. θ consists of a parity computation, a rotation of one position, and a
bitwise XOR as shown in the following equation:

C[x] = A[x,0]⊕ A[x,1]⊕ A[x,3]⊕ A[x, 4] 0 ≤ x ≤ 4
D[x] = C[x-1]⊕ROT (C[x+1],1) 0 ≤ x ≤ 4

A[x, y] = A[x, y]⊕D[x] 0 ≤ x, y ≤ 4

43

Cryptography

Figure 2.21: Keccak Block Diagram

Figure 2.22: Mechanism of a Sponge-Function took from [4]

44

2.5 – Asymmetric Cryptography

2. ρ is a rotation by an offset that depends on the word position, and π is
a permutation

Rho(ρ)− Pi(π) : B[y, 2x + 3y] = ROT (A[x, y], r[x, y]) 0 ≤ x, y ≤ 4

3. χ as shown in the following equation consists of bitwise XOR, NOT,
and AND operations.

Chi(χ) : A[x, y] = B[x, y]⊕ ((NOT (B[x + 1, y]))AND(B[x + 3, y])) 0 ≤ x, y ≤ 4

4. Finally, ι is a constant round (RC) addition.

Iota(ι) : A[0,0] = A[0,0]⊕RC

When these five processes are completed, a round is completed.
The Keccak function has three different stages, initialization, absorption,

and squeezing 2.22. In the absorption phase, the r-bit input message blocks
are XORed with the first r-bit of the state and the resulting outputs are
interrelated with the function f . When all message blocks are processed, the
sponge’s construction changes to the compression phase. In the compression
phase, the first r-bit of the state is returned as an output block and is also
inserted with the function f . The number of output blocks can be arbitrary
and selected by the user.The Round Constant function RC[i] are given in
Table 1and consists of 24 permutations values that assign 64 bit of data to
Keccak function.

2.5 Asymmetric Cryptography
There is a second type of cryptography named asymmetric cryptography:
in this kind of cryptography, key1 /= key2 (visual representation in figure
2.23), if one is used for encryption, the other one must be used for decryption.
Since there is not only one key, the keys are named according to the way in
which they are stored: one is kept private (private key), while the other
one is public (public key).

If a message is encrypted with a private key(Kpri) and sent to the receiver,
it will use the corresponding public key(Kpub) to decrypt the message and

45

Cryptography

Figure 2.23: Asymmetric Cryptography

viceversa. One of the main advantages is that it eliminates the need to
exchange secret keys, which can be a challenging process, especially when
communicating with multiple parties. Additionally, asymmetric encryption
is an important part in the creation of digital signatures, which can be
used to verify the authenticity of data (authenticity property).

2.5.1 RSA
The RSA (Rivest-Shamir-Adleman) algorithm is a widely used asymmetric
cryptographic algorithm for encryption and digital signatures. RSA func-
tioning is based on three important step: Key Generation, encryption and
decryption.

Key Generation

In this step the algorithm will generate a public key and a private key, based
on the work provided by [19] we can summarize the creation of RSA keys
as follows:

1. Generate two prime number, p and q.

2. n = p · q. And p has to be /= q, because if p = q then n = p2 so p can
be obtained by simply pulling the square root of r.

3. Count φ(n) = (p− 1)(q − 1)

4. Choose public key, e, relatively prime to φ(n).

5. Generate secret key d, d · e ≡ 1 (mod φ(n)).

46

2.5 – Asymmetric Cryptography

So in the end, the RSA key generation algorithm assigns(e, n) as public
key and d as private key.

Encryption

The RSA encryption algorithm uses the exponential function in modular
n as in the following equation: C ≡ P e (mod n) to produce a ciphertext.
Where C stands for Ciphertext and P stands for plaintext.

Decryption

The RSA decryption algorithm is an inverse of RSA encryption. Just like
the encryption algorithm, the RSA decryption algorithm is a modular ex-
ponential function n by using the private key as in the following equation :
P ≡ Cd (mod n)

RSA security property relies on the mathematical problem of factoring
large composite numbers,that is" the decomposition of a positive integer into
a product of interest which is still considered to be computationally hard to
break " [56].

2.5.2 DSA
The Digital Signature Algorithm (DSA) stands as a pillar of modern cryp-
tography, providing a robust framework for digital signatures (discussed in
chapter 2.5.4). Developed by the National Institute of Standards and Tech-
nology (NIST) in the early 1990s, DSA offers a secure and efficient method
for ensuring the integrity and authenticity of digital messages. DSA is an
asymmetric cryptography algorithm where each entity (signer and verifier)
possesses a pair of keys: a private key for signing and a public key for ver-
ification. The security of DSA is based on the computational difficulty of
certain mathematical problems, particularly the discrete logarithm problem
[44] in finite fields.

For a better understanding of the implementation of DSA we can refer
to [19]. In DSA algorithm, there are 3 important steps : key generation,
signing, and verifying

Key Generation

For the key generation we have to declare several parameters:

47

Cryptography

1. p, is a prime number(so a public parameter) with L (bit length), 512 ≤
L ≤ 1024 and L must be multiples of 64.

2. q, is prime number factor of p˘1.

3. g ≡ h
p−1

q the parameter g is a public one

4. x, is an integer less than q. x parameter is the private one.

5. y ≡ gx (mod p) is the public key.

6. m that is the message to be signed.

.
After all those initialization the key generation algorithm works as follow:

1. Generating private key: Randomly select a private key x such that
0 < x < q.

2. Calculating the Public Key: Compute the public key yusing the
equation: y = gxmodp

Signing

Signers and verifiers must first agree to choose the same hash h function. To
get its digital signature, the signer runs a signing algorithm using the hash
h function and inputs a message m, private key, and public key

1. Generate number k randomly for each message, where 0 < k < q

2. Count r = (gkmodp)modq

3. Count s = (k−1(SHA− l(m) + x∗ r)modq), where SHA− l(m) is SHA
hash function to m message.

4. The digital signature is (r, s)

Verifying

After the verifier receives the message and digital signature (m,r,s),runs a
verifying algorithm to verify the digital signature.

1. Count w = ((s)−1modq)

48

2.5 – Asymmetric Cryptography

2. Count tu1 = ((SHA− l(m) ∗ w)modq)

3. Count u2 = ((r ∗ w)modq)

4. Count v = (((gu1 ∗ yu2)modp)modq)

5. The digital signature is valid if v = r

2.5.3 ECDSA
ECDSA stands for Elliptic Curve Digital Signature Algorithm and is a Dig-
ital Signature Algorithm (DSA) which uses keys derived from elliptic curve
cryptography (ECC). It is a particularly efficient equation based on public
key cryptography . As suggested by [1] ECDSA provides a high degree of
security with short key lengths as ECDSA uses less computation power. At
the heart of ECDSA lies the concept of elliptic curves, which are mathemat-
ical structures defined by the equation

y2 = x3 + ax + b

over a field K, an elliptic curve has points that can be defined with coor-
dinates (x, y) by giving values in a and b, we will call those points point
of origin. From now on i will analyze the key Generation, the signature
generation and the signature verification based on the work by [15]

Key Generation

The key generation process involves selecting a random private key d and
computing the corresponding public key

Q = d ∗G

where G is an origin point on the elliptic curve.

Signature Generation

To sign a message m, an entity A does the following things:

1. Select a random or pseudorandom integer k where 1 ≤ k ≤ n − 1 and
n is the order of the curve.

2. Compute kG = (x1, y1)

49

Cryptography

3. Compute r = x1modn

4. Compute k−1modn

5. Compute and Hash on the message computing for example SHA1(m)
and convert the result into an integer, we will refer to this integer as e

6. Compute s = k−1(e+dr)modn The signature for the message m is (r,s).

Signature Verification

To verify Alice’s signature (r,s) on m, Bob obtains an authentic copy of
Alice’s domain parameters and the public key Q. The verification process
works as follow:

1. Compute SHA-1(m) and convert this bit string to an integer e

2. Compute w = s−1modn

3. Compute u1 = ((ew)modn) and u2 = ((rw)modn)

4. Compute X = u1G + u2Q

If X = 0, then reject the signature. Otherwise, convert the x-coordinate x1
of X to an integer i and compute v = imodn, if v=r then the signature is
accepted.

"The security of ECDSA relies on the computational difficulty of solv-
ing the elliptic curve discrete logarithm problem, which is believed to be
computationally hard to break."[47]

2.5.4 Digital Signature
A digital signature is a mathematical scheme for verifying the authenticity
of digital messages or documents. A valid digital signature on a message
gives a recipient confidence that the message came from a sender known to
the recipient and for that reason it can provide the authenticity and non
repudiation property and like handwritten signatures in the physical world,
digital signatures serve as a seal of approval. For a better understanding of
how a digital signature is performed we refer to the work by [59]. A digital
signature scheme typically consists of three algorithms:

50

2.5 – Asymmetric Cryptography

1. A key generation algorithm that selects a private key uniformly at ran-
dom from a set of possible private keys.

2. A signing algorithm (such as DSA or RSA) that, given a message and
a private key, produces a signature.

3. A signature verifying algorithm that, given the message, public key and
signature, either accepts or rejects the message’s claim to authenticity.

Usually a digital signature is not computed over the message that we want
to sign but over the hash of the message and there are several reasons to
sign such a hash (or message digest) instead of the whole document:

1. Efficiency: The signature will be much shorter and thus save time
since hashing is generally much faster than signing.

2. Compatibility: messages are typically bit strings, but some signature
schemes operate on other domains (such as, in the case of RSA, numbers
modulo N). A hash function can be used to convert an arbitrary input
into the proper format.

3. Entirety: Without the hash function, the text "to be signed" may have
to be split in blocks small enough for the signature scheme to act on
them directly. However, the receiver of the signed blocks is not able to
recognize if all the blocks are present and in the appropriate order.

2.5.5 Algorithms security pillars
Is worth noticing that a lot of algorithms relies on security properties that
ensure the safeness of the algorithm, in this section there will be a discussion
about them, for a better comprehension on the general security level of a
cryptographic algorithm.

• The Integer Factorization Problem, introduced in [36] said that
altought The Fundamental Theorem of Arithmetic states that every
positive integer can be expressed as a finite product of prime numbers
and this factorization is unique except for the ordering of the factors,
this existence proof gives no clue about how to efficiently find the factors
of a large given integer. No polynomial time algorithm for solving this
problem is known and by relying on this property we can build secure
algorithms.

51

Cryptography

• The Discrete Logarithm Problem, introduced in [54] says that for
large prime numbers p, computing discrete logarithms of elements of
its multiplicative group (Z/pZ)is at present a very difficult problem.
The security of certain cryptosystems is based on the difficulty of this
computation.

• The elliptic-curve discrete logarithm problem: given a elliptic-
curve cryptographic systems, e represents the selected random number
that is the private key, G represents the generator point and P the de-
rived public key, the elliptic curve discrete logarithm problem (ECDLP)
is defined as the problem of finding an integer value e, such that the
scalar multiplication of a primitive element G with e, produces another
point P on the elliptic curve.

.

52

Chapter 3

Security Protocols

Security protocols play a pivotal role in safeguarding sensitive informa-
tion and ensuring the integrity, confidentiality, and authenticity of digital
communications in today’s interconnected world. With the ever-growing
prevalence of digital technologies and the increasing sophistication of cyber
threats, the development and implementation of robust security protocols
have become imperative for organizations, individuals, and societies at large.

This chapter aims to provide a comprehensive overview of the most used
security protocols, examining their fundamental principles, underlying tech-
nologies, and practical applications. By exploring the various types of secu-
rity protocols, their design considerations, and their strengths and limita-
tions.

Throughout this chapter, we will delve into the key components of security
protocols, including cryptographic algorithms, authentication mechanisms,
and communication protocols. We will examine the role of encryption in
ensuring confidentiality and privacy, the importance of digital signatures in
verifying the authenticity of messages, and the significance of access control
mechanisms in enforcing authorization policies.

Furthermore, we will explore the evolution of security protocols over time,
tracing their development from early cryptographic techniques to modern
standards and protocols such as TLS and SSH.

Finally, this chapter will discuss emerging trends and challenges in the
field of security protocols, such as the proliferation of Internet of Things
(IoT) devices and the rise of quantum computing. By addressing these
issues, this chapter will give insights into the future direction of security
protocols and the measures needed to ensure their continued effectiveness

53

Security Protocols

and resilience in the face of evolving threats and technological advancements.

3.1 Public Key Certificates
Before analyzing some of the most used security protocols is useful for a
better understanding, to know what a Public Key certificate is, since they
serves as an indispensable tools of the digital security. Public Key Certifi-
cates, often referred to simply as certificates, are an electronic document that
provides a way to verify the authenticity of public keys and the identities
associated with them, forming the cornerstone of many cryptographic pro-
tocols and systems. The certificate includes the public key and information
about it, information about the identity of its owner (called the subject), and
the digital signature of an entity that has verified the certificate’s contents
(called the issuer). If the device examining the certificate trusts the issuer
and finds the signature to be a valid signature of that issuer, then it can
use the included public key to communicate securely with the certificate’s
subject. In a typical public-key infrastructure (PKI) scheme, the certificate
issuer is a certificate authority (CA), usually a company that charges cus-
tomers a fee to issue certificates for them. The most common form of public
key certificate is the X.509 certificate.

Some common fields that can be found in a Public Key Certificate are:

1. Version Number: It defines the X.509 version that concerns the cer-
tificate

2. Serial Number: Used to uniquely identify the certificate within a
CA’s systems.

3. Subject: the entity to which the certificate belongs. Usually it contains
the subject name and the subject public key.

4. Issuer: The entity that verified the subject’s information and signed
the certificate.

5. Key Usage: The valid cryptographic uses of the certificate’s public key.
Common values include digital signature validation, key encipherment,
and certificate signing.

6. Public Key: A public key belonging to the certificate subject.

54

3.1 – Public Key Certificates

7. Signature Algorithm: This contain a hashing algorithm and a digital
signature algorithm. For example "sha256RSA" where sha256 is the
hashing algorithm and RSA is the signature algorithm.

8. Signature:The body of the certificate is hashed and then the hash is
signed with the issuer’s private key.

9. Validity Period: It defines the period for which the certificate is valid.

Figure 3.1: Structure of a X.509 certificate

3.1.1 Certicate Authorities
A certificate authority (CA) is the entity responsible for signing certificates.
These certificates serve as a link between two parties, establishing trust in

55

Security Protocols

digital transactions. This trust is facilitated by a Certificate Authority (CA),
which acts as a reliable third party in the process. A CA handles requests
from individuals or organizations (known as subscribers) seeking certificates,
verifying the provided information, and potentially issuing a certificate based
on this verification. To effectively fulfill this role, a CA must possess one or
more widely trusted root certificates or intermediate certificates, along with
their corresponding private keys. Establishing broad trust usually involve
including root certificates in popular software. Certificate authorities also
bear the responsibility of keeping current revocation information for the
certificates they issue, indicating their validity status. This information is
obtained using protocols like the Online Certificate Status Protocol (OCSP)
and/or Certificate Revocation Lists (CRL). The main differences in using
those protocols are the following:

1. Certificate Revocation List: the certification authority creates a
list of revoked certificates. The list is digitally signed by the CA, be-
cause otherwise someone could remove or add a certificate to the list to
“block” someone. Since it is a list with all revoked certificates, this will
permit to verify the validity since the certificate was issued. For exam-
ple, if today a document is received and it was signed 3 months ago,
we must check if the key was valid 3 months ago. If the certificate has
been removed today, it does not affect the received document, because
the check must be done against the time of the sign. The problem in
using this protocol is that we must download the full list only to check
one single certificate, but this is the only way to know the history of a
certificate.

2. Online Certificate Status Protocol: this mechanism is preferred
for real-time checks. In this case, we need to check if the certificate
is valid at the time we want to verify it and the service needing the
check do not care about previous states of the certificate. OCSP is a
client-server protocol in which is possible to request to a specific service
if the certificate is valid or not at the current time. The response is
signed by the server, so that is not possible for someone to provide a
fake response.

Some major software contain a list of certificate authorities that are
trusted by default. This makes it easier for end-users to validate certificates,
and easier for people or organizations that request certificates to know which

56

3.2 – SSH

certificate authorities can issue a certificate that will be broadly trusted. The
policies and processes a provider uses to decide which certificate authorities
their software should trust are called root programs. The most influential
root programs are: Microsoft Root Program, Apple Root Program, Mozilla
Root Program.

3.2 SSH
Secure Shell (SSH) is a protocol for secure remote login and other secure net-
work services over an insecure network allowing remote login and command
execution, as well as secure data communication between two devices. Since
mechanisms like Remote Shell (a command-line computer program that can
execute shell commands as another username, and on another computer
across the network) are designed to access and operate remote computers,
sending the authentication tokens (e.g. username and password) for the
access requested by these computers that are in a public network in an un-
secured way, poses a great risk of third parties obtaining the password and
achieving the same level of access to the remote system as the remote user.
Secure Shell mitigates this risk through the use of encryption mechanisms
that are intended to hide the contents of the transmission from an observer,
even if the observer has access to the entire data stream.

We refer to the original paper [64] e to the schema obtained from [37]for
a better understanding. The protocol consists of three major components:

1. The Transport Layer Protocol, this layer handles initial key ex-
change as well as server authentication, and sets up encryption, com-
pression, and integrity verification. The transport layer also arranges
for key re-exchange, usually after 1 GB of data has been transferred or
after one hour has passed, whichever occurs first.

2. The User Authentication Protocol authenticates the client-side
user to the server. Authentication is client-driven, the server merely
responds to the client’s authentication requests. Widely used user-
authentication methods includes: password, public-key-based authen-
tication (usually supporting at least DSA, ECDSA or RSA keypairs),
one-time password authentication or by providing external mechanism
for the authentication.

3. The Connection Protocol defines the concept of channels, channel

57

Security Protocols

requests, and global requests, which define the SSH services provided. A
single SSH connection can be multiplexed into multiple logical channels
simultaneously, each transferring data bidirectionally. Channel requests
are used to relay out-of-band channel-specific data, such as the changed
size of a terminal window, or the exit code of a server-side process.

Figure 3.2: SSH handshake schema from [37]

In figure 3.2 we have a conceptual schema on how SSH authentication
and asymmetric encryption works, divided in many steps as follows:

1. The client host (left) connects to the server host (right), conventionally
on TCP port 22. The server and client exchange the protocol versions
they support and, if compatible, the connection continues (at this stage
is still unencrypted).

58

3.3 – IPsec

2. The server sends its authentication information and session parameters
to the client. This includes the server host’s public key component
of its own public/private key pair, as well as a list of the encryption,
compression, and authentication modes that the server supports. The
Public key algorithms supported by most SSH implementations include
RSA and DSA.

3. The client host checks the server host’s public key against the client
host’s library of public keys. If this is the first time that this particular
client and this particular server host have connected over SSH, the user
is asked to verify the addition of new a server host public key to the
client’s public key library. Any future connections to that particular
server host will now be verified against that public key reported from
their first contact. Once the identity of the server is verified, a secret
session key is generated.

4. Once the secret session key is in the possession of both parties, encryp-
tion and integrity checking are turned on. Session keys are typically
stored only in memory and are not written to storage for security pur-
poses

5. The client host and the client host user (“the user”) can now be au-
thenticated to the server host without fear of the authentication and
access transmission being intercepted or corrupted in transit. Meth-
ods by which the users authenticate themselves to the server include
plaintext user login passwords, a user public key certificate or other
preferred methods. Once the user is authenticated, appropriate access
to the server and its services are granted to the user. The two machines
are now connected through a secure, encrypted connection which can
be used as a secure tunnel.

3.3 IPsec
Internet Protocol Security (IPsec) is a secure network protocol suite that
authenticates and encrypts packets of data to provide secure encrypted com-
munication between two computers over an Internet Protocol network. It
supports network-level peer authentication, data origin authentication, data
integrity and data confidentiality.

59

Security Protocols

IPsec is an open standard as a part of the IPv4 (the fourth version of
the Internet Protocol, the ne that describes how the basic packets delivery
is done, essentially establishing the internet) suite and uses the following
protocols to perform various functions:

1. Authentication Header (AH): provides data integrity and data ori-
gin authentication for IP packets while also providing protection against
replay attacks (A replay attack is a form of network attack in which valid
data transmission is maliciously or fraudulently repeated or delayed).

2. Encapsulating Security Payload (ESP) provides confidentiality,
data integrity, data origin authentication, and limited traffic-flow con-
fidentiality.

The IPsec protocols AH and ESP can be implemented in a host-to-host
transport mode, as well as in a network tunneling mode.

3.3.1 Transport Mode

Figure 3.3: Transport mode

It is used for end-to-end security. In transport mode, only the payload of
the IP packet is usually encrypted or authenticated. The routing process is
intact, since the IP header is neither modified nor encrypted; however, when
the authentication header is used, the IP addresses cannot be modified , as
this always invalidates the hash value carried inside the package.

3.3.2 Tunnel Mode
In tunnel mode, the entire IP packet is encrypted and authenticated. It is
then encapsulated into a new IP packet with a new IP header. Tunnel mode

60

3.3 – IPsec

Figure 3.4: Tunnel mode

is used to create virtual private networks (a mechanism for creating a secure
connection between a computing device and a computer network using an
insecure communication)

3.3.3 Authentication Header
The following picture shows how an AH packet is constructed and inter-
preted:

Figure 3.5: IPsec AH header format

61

Security Protocols

The format of the authenticaton header includes:

1. Next header field because this is a pseudo-protocol, so in the IP header
there will be written that it is transporting AH, but then inside the AH
there is the real transporting packet field

2. Lenght parameter of 1 byte to describe the length of the packet

3. Reserved bytes for future uses

4. Security Parameters Index (SPI): 32 bits for referring in a quick
and easy way to all the parameters that are needed to verify in the
packet

5. Sequence number to avoid replay attacks

6. Integrity Check Value (ICV): variable number of 4 bytes words to
provide authentication data

When an IPsec packet is received it is protected with AH. It starts with the
extraction of the AH and from it the ICV is extracted, which is the received
authentication value (the digest computed by the sender). Then, on the
received packet the normalization is performed, which means to put the
packet in the same condition as it was at the sender in order to compute the
same kind of hash. Once the normalized IP packet is available, it is needed to
compute the authentication value (ICV). For that, the Security Parameter
Index (SPI) is being used inside the Database of the Security Association
(SAD). It is a pointer that indicates algorithm and parameters to be used.
These parameters can be used to compute the authentication value and then
it is checked if the two values (the one computed and the one received from
the sender) are the same. If the two values are equal, then the sender is
authentic, and the packet is integral. If the two values are not equal, there
could be a fake sender and/or manipulated packet. An authentic sender
is specified in the previous picture, but there is no place where the sender
is authenticated. So, who is the sender authenticated here? The answer
is in the fact that is being used a specific entry in the SAD. That entry
negotiated with a specific node. For this reason, authentication is implicit
in the process. The real authentication comes into play when we create the
Security Association: this is the point in which the sender must prove its
identity. Then the SA brings on that kind of authentication thanks to the
usage of the correct algorithm/parameters.

62

3.4 – TLS

3.3.4 Encapsulating Security Payload
If confidentiality is wanted, Encapsulating Security Payload (ESP) is needed.
The base mechanism works on DES-CBC ([43]), but other mechanisms are
also possible. The advantage over AH is that the packet dimension is re-
duced. In the following picture we can see how an ESP packed is made:

Figure 3.6: IPsec ESP header format

Only the Security Parameterd Index and the sequence number are in clear
informations, all the rest are encrypted data, let’s assume we are using DES
in CBC mode. Since it is being used DES-CBC an Initialization Vector (IV)
is required. Then there is the payload itself. The part from the SPI to the
padding (to reach a multiple of 64 bits) is the authenticated one. There
must be also 1 byte to declare Padding length and 1 byte for the Payload
Type, which is the layer 4 protocol that we are transporting.

3.4 TLS
Transport Layer Security (TLS) is a cryptographic protocol designed to
provide communications security over an untrusted computer network. The
protocol is widely used in applications such as email and instant messaging,

63

Security Protocols

but its use in securing HTTPS remains the most publicly visible. The TLS
protocol aims primarily to provide confidentiality, integrity, and authenticity
through the use of cryptography and the use of certificates, between two or
more communicating computer applications. TLS is a proposed Internet
Engineering Task Force (IETF) standard, first defined in 1999, and the
current version is TLS 1.3, defined in August 2018 [49]. TLS builds on the
now-deprecated SSL (Secure Sockets Layer) [3].

Client-server applications use the TLS protocol to communicate in a se-
cure way across an untrusted network, since applications can communicate
either with or without TLS (or SSL), it is necessary for the client to request
that the server sets up a TLS connection and the first step for doing it is by
using some specific port number (a port number is a number assigned to
uniquely identify a connection endpoint and to d a specific service) , where
port 80 is used for unencrypted traffic and port 433 is the common port used
for the TLS protocol. Once the client and server have agreed to use TLS,
they negotiate a connection by using the handshake protocol. During
this handshake, the client and server agree on the parameters that are going
to be used to establish the connection’s security:

1. The handshake begins when a client connects to a TLS-enabled server
requesting a secure connection and the client presents a list of supported
cipher suites (a set of algorithms that can secure the network) and from
this set the server choose the best supported ciphersuite.

2. The server also provides identification using a Digital Certificate and
the client will validate the certificate.

3. If the client confirms the validity of the certificate, it will generate
the session keys for securing the connection by either: encrypting a
random number (PreMasterSecret) with the server’s public key (pre-
viously obtained from the public certificate) and sends the result to the
server. Then both client and server will use the random number to gen-
erate a unique session key for the future encryption and decryption of
the session. Or using the Diffie-Hellman key exchange to securely
generate a random and unique session key for encryption and decryp-
tion that also has the additional property of forward secrecy: if the
server’s private key is disclosed by an attacker, then it will not be able
to use it to decrypt the current session’s traffic but only the past one.

This concludes the handshake and begins the secured connection, which is

64

3.4 – TLS

encrypted and decrypted with the session key until the connection closes.
If any one of the above steps fails, then the TLS handshake fails and the
connection is not created.

When a connection uses the TLS protocol it gains:

1. confidentiality thanks to the symmetric key encryption algorithm
used to encrypt the data, moreover those keys are generated uniquely
for each connection and are based on a shared secret that was negotiated
at the start of the session.

2. authentication : using public-key cryptography. Authentication is
mandatory only for the server and optional for the client.

3. integrity: each message transmitted includes a message authentica-
tion code to prevent undetected loss or alteration of the data during
transmission.

3.4.1 TLS record
The TLS protocol exchanges records, which encapsulate the data to be
exchanged in a specific format. Each record can be compressed, padded,
appended with a message authentication code (MAC), or encrypted, all
depending on the state of the connection.

Figure 3.7: General TLS Record Format

In figure 3.7 we can see the main fields that a TLS record has:

65

Security Protocols

1. Content type serves as an identifier of the protocol to which this
record refers, it can assume multiple values, but the most common are:
20 that means the ChangeCipherSpec protocol, 21 for the alert protocol
and 22 for the handshake protocol.

2. Legacy version: identifies the major and minor version of TLS prior
to TLS 1.3 for the contained message.

3. Length: The length of the protocol message(s), MAC and padding
fields combined, that must not exceed 214 bytes.

4. Protocol message: One or more messages identified by the Protocol
field.

5. MAC and padding: A message authentication code computed over
the "protocol message(s)" field, with additional key material included.

3.4.2 TLS Alert Protocol
This message is based on the standard TLS record explained before but with
a difference in the structure as showed in figure 3.8:

Figure 3.8: TLS record format for alert protocol

This message can be sent at any time during the handshake and up to the
closure of the session and it’s used to signal an error during the handshake
procedure. After this message the tls session will be closed and this record

66

3.4 – TLS

can give to the user a reason for the closure. The record has 2 additional
fields called Level and Description.

1. Level is used to identify the level of the alert, and can assume two values:
1 or 2, corresponding to warning (the connection may be unstable) and
fatal (an unrecoverable error has occurred)

2. Description identifies which type of alert is being sent. It can assume
multiple values but some or the most common are:

• 10, unexpected message.
• 21, decryption failed.
• 40, handshake failure.
• 42, Bad certificate.
• 48, unknown Certificate Authority.
• 71, insufficient security.
• 116, certificate required.

The use of Alert records is optional, however if it is missing before the session
closure, the session may be resumed automatically (with its handshakes).

3.4.3 TLS handshake
A typical messages exchange in the TLS handshake protocol works as illus-
trated in figure 3.9:

A client sends a ClientHello message specifying the highest TLS proto-
col version it supports, a random number, a list of suggested cipher suites
and suggested compression methods. The server responds with a Server-
Hello message, containing the chosen protocol version, a random number,
cipher suite and compression method from the list previously obtained by
the client. The chosen protocol version should be the one that grants high-
est that security level obtainable by the client and server. The server sends
its Certificate message (depending on the selected cipher suite, this may
be omitted by the server). The server sends a ServerHelloDone message,
indicating it is done with handshake negotiation. The client responds with
a ClientKeyExchange message, which may contain a PreMasterSecret,
public key, or nothing. This PreMasterSecret is encrypted using the public
key of the server, the client has access to the server’s public key, by looking

67

Security Protocols

Figure 3.9: Basic TLS Handshake

at its certificate. The client and server then use the random numbers and
PreMasterSecret to generate a common secret, called the master secret.
All other key data (session keys such as IV, symmetric encryption key, MAC
key) for this connection are derived from this master secret and the client
and server generated random values. The client now sends a ChangeCipher-
Spec record, essentially telling the server that every message exchanged from
now on will be authenticated and encrypted. The client sends an authen-
ticated and encrypted Finished message, containing a hash and MAC over
the previous handshake messages. The server will attempt to decrypt the

68

3.4 – TLS

client’s Finished message and verify the hash and MAC. If the decryption or
verification fails, the handshake is considered to have failed and the connec-
tion should be terminated. Finally, the server sends a ChangeCipherSpec
and its authenticated and encrypted Finished message. The client performs
the same decryption and verification procedure as the server did in the pre-
vious step. Application phase: at this point, the "handshake" is completed
and the application protocol is enabled, with content type of 23. Application
messages exchanged between client and server will also be authenticated and
optionally encrypted exactly like in their Finished message.

Sometimes also the client authentication is requested by the server so the
protocol will have some differences, figure 3.10 shows an message flow of a
mutual-authentication TLS handshake.

A client sends a ClientHello message specifying the highest TLS proto-
col version it supports, a random number, a list of suggested cipher suites
and suggested compression methods.

The server responds with a ServerHello message, containing the chosen
protocol version, a random number, cipher suite and compression method
from the list previously obtained by the client.

The server sends aCertificateRequest message, to request a certificate
from the client and then a ServerHelloDone message, indicating it is done
with handshake negotiation. The client responds with a Certificate mes-
sage, which contains the client’s certificate, but not its private key.

The client sends a ClientKeyExchange message, which may contain
a PreMasterSecret, public key, or nothing (depending on the selected
ciphersuite). This PreMasterSecret is encrypted using the public key of
the server, the clint has access to the server’s public key, by looking at its
certificate.

The client sends a CertificateVerify message, which is a signature over
the previous handshake messages using the client’s certificate’s private key.
This signature can be verified by using the client’s certificate’s public key.
This lets the server know that the client has access to the private key of
the certificate and thus owns the certificate. The client and server then use
the random numbers and PreMasterSecret to compute a common secret,
called the master secret. All other key data (from now on called "session
keys") for this connection is derived from this master secret (and the client-
and server-generated random values), which is passed through a carefully
designed pseudorandom function.

The client now sends a ChangeCipherSpec record, essentially telling

69

Security Protocols

Figure 3.10: Basic TLS Handshake with mutual Authentication

the server, "Everything I tell you from now on will be authenticated and
encrypted". The client sends an authenticated and encrypted Finished
message, containing a hash and MAC over the previous handshake mes-
sages. The server will attempt to decrypt the client’s Finished message and
verify the hash and MAC. If the decryption or verification fails, the hand-
shake is considered to have failed and the connection should be terminated.
Finally, the server sends a ChangeCipherSpec and its authenticated and
encrypted Finished message. The client performs the same decryption and
verification procedure as the server did in the previous step.

70

3.4 – TLS

3.4.4 TLS 1.3
TLS 1.3 is the current version of the protocol, defined in August 2018 [49], is
condensed to only one round trip compared to the two round trips required
in previous version of TLS/SSL. TLS 1.3 has rapidly been adopted giving
a significant contribution to the Internet [27]. In fact, it deprecates vulner-
able cryptographic primitives and substantially reduces the time required
to perform the handshake compared to the TLS 1.2 handshake. Compared
to TLS 1.2, TLS 1.3 guarantees perfect forward secrecy by removing static
RSA key exchanges. It also reduces the number of round-trips of the TLS
handshake from two to one, aiming to improve the performance of the initial
setup. The following figure shows the sequence of messages for the full TLS
handshake [12].

The handshake is mainly composed of three parts:

1. Key Exchange:The client sends a ClientHello message to server. The
server processes the ClientHello message and determines the appropri-
ate cryptographic parameters for the connection. It then responds with
its own ServerHello message, which indicates the negotiated connection
parameters. For TLS 1.3, the ServerHello message determines the key
and cipher options only. Other handshake parameters may be deter-
mined later.

2. Server Parameters:The server sends two messages to establish server
parameters: EncryptedExtensions: This message contains responses
to ClientHello extensions that are not required to determine the cryp-
tographic parameters, other than those that are specific to individual
certificates. CertificateRequest (optional): If certificate-based client
authentication is desired, then the server sends this message, which
contains the desired parameters for that certificate. This message is
omitted if client authentication is not desired.

3. Authentication: The server sends these authentication messages:

(a) Certificate (optional): This message contains the authentication
certificate and any other supporting certificates in the certificate
chain. This message is omitted if the server is not authenticating
with a certificate. CertificateVerify (optional): This message con-
tains a signature over the entire handshake using the private key
corresponding to the public key in the Certificate message. This

71

Security Protocols

Figure 3.11: TLS 1.3 handshake

message is omitted if the server is not authenticating with a certifi-
cate. Finished: a MAC over the entire handshake.

The client responds with its own Certificate, CertificateVerify, and Fin-
ished messages. The Certificate message is omitted if the server did

72

3.4 – TLS

not send a CertificateRequest message. The CertificateVerify message
is omitted if the client is not authenticating with a certificate.

73

74

Chapter 4

Post-Quantum
Cryptography

In recent years, the research in post-quantum cryptography has been going
through a significant improvement driven by the imminent threat of quan-
tum computers. Traditional cryptographic schemes, which form the base of
secure communication and data protection, rely on mathematical problems
that are believed to be hard for classical computers to solve efficiently, such
as the previously described (see Section 2.5.5) integer factorization, dis-
crete algorithm, and elliptic-curve discrete logarithm problems. However,
the advent of quantum computing threatens to undermine the security of
these schemes by potentially rendering these problems solvable by a quan-
tum computer running Shor’s Algorithm [52]. The Shor’s algorithm is a
quantum algorithm for finding the prime factors of an integer, it can break
the security pillars of an asymmetric algorithm such as the logarithm or the
integer factorization problem, and it was developed in 1994 by Peter Shor.
On the other hand, there is another algorithm called the Grover’s algo-
rithm that can break the security provided by symmetric algorithms since
it can lead to a quadratic advantage for many interesting computational
tasks such as unstructured search problems [28]. The Grover’s algorithm is
more difficult to apply compared to the Shor one since it needs more qubit
to work. This leads to a different threat for asymmetric algorithms and the
symmetric one: most of the current symmetric cryptographic algorithms are
considered to be relatively secure against attacks by quantum computers by
using a key of 256 bits or more[6]; on the other hand, the threat to asymmet-
ric cryptography is tangible. While as of 2024, quantum computers lack the

75

Post-Quantum Cryptography

processing power to break widely used cryptographic algorithms [20], cryp-
tographers are designing new algorithms to be prepared for Q-Day, the day
when current algorithms will be vulnerable to quantum computing attacks
[50]. The need for cryptographic solutions that can resist against attacks
from quantum computers has led to the emergence of a new research area
known as post-quantum cryptography. Post-quantum cryptography aims to
develop cryptographic algorithms and protocols that remain secure even in
the presence of powerful quantum adversaries.

This chapter provides an overview of post-quantum cryptography, cover-
ing its historical context and fundamental concepts. Furthermore, we delve
into some of the families of post-quantum cryptographic algorithms, includ-
ing lattice-based cryptography and hash-based cryptography.

Overall, this chapter is an introduction to post-quantum cryptography,
providing a comprehensive overview of its significance, principles, and on-
going developments in the pursuit of secure communication in the quantum
age.

A quantum computer is a computing device that uses the principles
of quantum mechanics to perform certain types of computations much more
efficiently than classical computers. The main characteristics of the qubits
are: Superposition: qubits can exist in a superposition of both 0 and
1 states simultaneously. This allows quantum computers to process a large
number of possibilities at the same time. Quantum Parallelism: quantum
computers can exploit the parallelism provided by superposition to process
a large number of possibilities simultaneously. This can lead to exponential
speedup for certain types of computations.

As a result of the fast computation a quantum computer can achieve,
widely used cryptographic algorithms such as RSA, which currently secure
our digital transactions and communications, may become vulnerable to at-
tacks from quantum adversaries in the next future. Their work has gained
attention from academics and industry such as the European Telecommu-
nications Standards Institute (ETSI) [18] and NIST (National Institute of
Standards and Technology) [40] that is in charge of the standardization of
the Post-Quantum algorithms.

NIST in the post-quantum standardization process started in 2017 [9]
chose four valid post-quantum algorithms: CRYSTALS-Kyber for the
Key encryption mechanism (based on cryptography on lattices) and Dilithium,
Falcon and SPHINCS+ to perform digital signature (the first two based
on cryptography on lattices and the last based on hash functions). They are

76

4.1 – Lattice-based cryptography

starting to define them naming it, respectively, as ML-KEM in FIPS 203,
ML-DSA in FIPS 204, SLH-DSA in FIPS 205 and FN-DSA in FIPS 206
[10].

The NIST standardization body, in the Special Publication 800-131A
[41], defined three security levels (level 1, level 3, Level 5) that correspond
to different levels of security strength for cryptographic algorithms. Level 1
provides a basic level of security, similar to the level of security provided by
AES-128, used for applications where the primary goal is to protect against
casual threats. Level 3 provides a moderate level of security suitable for
protecting sensitive information, similar to the level of security provided by
AES-192. Level 5 provides a high level of security, similar to the one provided
by AES-256, and is suitable for protecting highly sensitive information and
systems [25].

4.1 Lattice-based cryptography

Lattice-based cryptography is the generic term for constructions of cryp-
tographic primitives that involve lattices, either in the construction itself
or in the security proof. Lattice-based constructions are one of the build-
ing blocks of post-quantum cryptography. Unlike public-key schemes based
on: the integer factorization, the discrete logarithm and the elliptic curve
problem (such as the RSA, Diffie-Hellman or elliptic-curve cryptosystems)
which could be defeated using Shor’s algorithm on a quantum computer,
some lattice-based constructions appear to be resistant to attack by both
classical and quantum computers. The NIST standardization process in
the Post-Quantum field has identified two cryptographic schemes to be con-
sidered as "primary" solutions: regarding Key Encapsulation Mechanisms
(KEMs), CRYSTALS-Kyber has been selected, while in the context of dig-
ital signatures, the choice has fallen on CRYSTALS-Dilithium.

The most important lattice-based computational problem is the shortest
vector problem that can be visualized using figure 4.1: given a basis of a
vector space V, and a norm N , find the shortest non-zero vector in V (the red
arrow in figure 4.1). This problem is thought to be hard to solve efficiently,
even with approximation factors, and even with a quantum computer.

77

Post-Quantum Cryptography

Figure 4.1: Illustration of the shortest vector problem

4.2 Hash-based cryptography

Hash-based cryptography is the generic term for constructions of crypto-
graphic primitives based on the security of hash functions.

Hash-based cryptography is used to construct digital signatures, combin-
ing a one-time signature scheme with a Merkle tree structure.

A one-time signature schema is a digital signature scheme that can
be used to sign one message per key pair, with no assurance of security if
the key pair is reused to sign again. The one-time digital signature schemes
have the advantage that signature generation and verification are very
efficient but the key must be recomputed any time.

A Merkle tree structure is a tree in which every leaf node is labelled
with the cryptographic hash of a data block, and every node that is not a
leaf is labelled with the cryptographic hash of the labels of its child nodes
as showed in: ??.

Since a one-time signature scheme key can only sign a single message
securely, it is practical to combine many such keys within a single, larger

78

4.2 – Hash-based cryptography

Figure 4.2: Merkle tree on the L1,L2,L3,L4 blocks

structure. In this hierarchical data structure, a hash function and concate-
nation are used repeatedly to compute tree nodes (Hash L1...HashL4 in
figure ?? .

The central idea of hash-based signature schemes is to combine a larger
number of one-time key pairs into a Merkle tree to obtain a practical way
of signing more than once.

One public and one private key are constructed from the numerous public
and private keys of the underlying one-time scheme. The global public key
is the single node at the very top of the Merkle tree (the top node in figure
??.

Its value is an output of the selected hash function, so a typical public
key size is 32 bytes. The validity of this global public key is related to the
validity of a given one-time public key using a sequence of tree nodes. This
sequence is called the authentication path. It is stored as part of the
signature, and allows a verifier to reconstruct the node path between those
two public keys.

The global private key is generally handled using a pseudo-random num-
ber generator. Then it is sufficient to store a seed value. One-time secret
keys are derived successively from the seed value using the generator.

Hash-based signature schemes can only sign a fixed number of messages
securely, a maximum of 2h where h is the height of the Merkle tree. For
the reasons explained before, hash-based signature schemes can sign only a

79

Post-Quantum Cryptography

limited number of messages securely. The US National Institute of Stan-
dards and Technology (NIST), specified that algorithms in its post-quantum
cryptography competition must support a minimum of 264 signatures safely
[38].

4.2.1 CRYSTALS-Kyber
Kyber is a post-quantum algorithm based on lattices. It is used to estab-
lish a shared secret between two communicating parties making an attacker
unable to decrypt it. Its main use case is to establish keys of symmetric-
key systems in higher-level protocols like TLS. Kyber has three security
levels and the trade between key size and security levels are better shown
table [23] using RSA as a pre-quantum comparison. The system is based
on the module learning with errors (LWE) problem. Different versions of
the Kyber algorithm have been defined based on the security levels needed:
Kyber512 (NIST security level 1), Kyber768 (NIST security level 3), and
Kyber1024 (NIST security level 5). Its keys are bigger than those of pre-
quantum schemes, but small enough to be used in real-world systems. This
makes Kyber an interesting candidate for many PQC applications. It won
the NIST competition for the first post-quantum cryptography standard
[55]. NIST calls its draft standard Module-Lattice-Based Key-Encapsulation
Mechanism (ML-KEM) [39].

Version Security
Level

Private
Key Size

Public Key
Size

Ciphertext
Size

Kyber512 AES128 1632 800 768
Kyber768 AES192 2400 1184 1088
Kyber1024 AES256 3168 1568 1568
RSA3072 AES128 384 384 384
RSA15360 AES256 1920 1920 1920

Table 4.1: Kyber performances

While RSA keys are still smaller, Kyber key sizes are of the same order.
This is not obvious, because some PQC systems have keys with hundreds of
kilobytes, or even in the megabyte range.

Since Kyber is a public key encryption system, it works with public keys
for encryption and private keys for decryption. The algorithm works in three

80

4.2 – Hash-based cryptography

different stages.

1. Key Generation where a public key and a corresponding private key
are created.

2. Encryption The encryption phase involves using the receiver’s public
key to encrypt a message. The process includes generating random
polynomials and adding noise to ensure security based on the Learning
With Errors (LWE) problem.

3. Decryption in this phase the secret key is used to recover the original
message from the ciphertext.

For a better understanding of the algorithm a numerical example of each
phase of the algorithm is provided. The following variables are expressed
using a toy example for a more readable numerical values:

1. Modulo q, since we are operating in on a finite field. In the following
example q = 17.

2. A polynomial modulo f in the form of f = xn +1, where n is the degree
of the polynomial. The polynomial modulus we will use is f = x4 + 1.
So, by taking a polynomial modulo f , we guarantee that its degree
(highest exponent) will be smaller than 4.

From now on all calculations are implicitly done modulo q (on coefficients)
and modulo f (on polynomials).

Key Generation

The private key of a pair of Kyber keys consists of polynomials with small
coefficients. In our example each private key contains two polynomials, for
example:

s = (−x3 − x2 + x,−x3 − x)
Generating this private key is straightforward.

A Kyber public key consists of two elements. A matrix of random poly-
nomials A and a vector of polynomials t. Generation of the matrix is fairly
simple, we just generate random coefficients and take them modulo q. For
example:

A =
A

6x3 + 16x2 + 16x + 11 9x3 + 4x2 + 6x + 3
5x3 + 3x2 + 10x + 1 6x3 + x2 + 9x + 15

B

81

Post-Quantum Cryptography

To calculate t we need an additional vector e. This is called error vector
and also consists of polynomials with low degree coefficients, exactly like the
private key. For example:

e = (x2, x2 − x)

t is obtained by the following operations:

t = As + e

This makes t a vector of polynomials, just like s and e, by doing the calcu-
lations we end up with

t = (16x3 + 15x2 + 7,10x3 + 12x2 + 11x + 6)
Now we have

1. Private Key: s

2. Public Key: A,t

The security of this scheme relies of the fact that recover s starting from
(A,t) is a hard problem, in fact it would require an attacker to solve the
learning with error problem. LWE problem is expected to be hard to resolve
even for quantum computers and if formally defined as follow:
Given a matrix A, a positive integer q and a positive real number β find a
vector x such that:

Proposition 1. 0 ≤ |x| ≤ β

Proposition 2. A · x ≡ 0modq

Encryption

Since kyber is a public key encryption scheme, we can encrypt a message
using the public key. The encryption procedure uses an error polynomial
vector e1 and a randomized polynomial vector r. These polynomial vectors
are generated for every encryption. Additionally, we need an error polyno-
mial e2. The polynomials within e1, e2 and r are random, for example:

r = (−x3 + x2, x3 + x2 − 1)

e1 = (x2 + x, x2)

82

4.2 – Hash-based cryptography

e2 = (−x3 − x2)
To encrypt a message, we have to turn it into a polynomial and it is done
by using the message’s binary representation. Every bit of the message is
used as a coefficient. For example, assume we want to encrypt the number
11.
Eleven has as binary representation 1011, therefore our message encoded as
binary polynomial is:

mb = 1x3 + 0x2 + 1x1 + 1x0 = x3 + x + 1

Before encryption we have to scale this polynomial. We upscale mb by
multiplying it with ⌊q/2⌋ (the integer closest to q/2). This is done because
the coefficients of the polynomial need to be large to make decryption harder.
Our example then become:

m = ⌊q/2⌋ ·mb = 8 ·mb = 8x3 + 8x + 8

And now the message is ready to be encrypted using the public key (A,t).
The encryption procedure outputs two values (u, v):

u = At · r + e1

v = tT · r + e2 + m

Doing the calculations in our example we obtain

u = (11x3 + 11x2 + 10x + 3, 4x3 + 4x2 + 13x + 11)

v = 7x3 + 6x2 + 8x + 15
The ciphertext obtained from the encryption consists of those two values
(u, v).

Decryption

Given the private key s and a ciphertext (u, v), the decryption process
proceeds as follows. First, we have to compute a noisy result:

mn = v − sT u (4.1)

This result is noisy because of the error vector added during the encryp-
tion phase. And now we can see why we needed to scale m by making its

83

Post-Quantum Cryptography

coefficient larger. All other terms in 4.1 were chosen to be small. So, the
coefficients of mn are both closer to ⌊q/2⌋= 8, implying that the original bi-
nary coefficient of mb was a 1, or closer to 0 implying that the original binary
coefficient was 0. We can mitigate this effect by choosing bigger parameter
that the one used in this explanation. In the following table we can see some
examples of the parameters used in Kyber for a better understanding of its
security principles:

Algorithm n k q η1 η2 du dv δ

Kyber512 256 2 3329 3 2 10 4 δ = 2−139

Kyber768 256 3 3329 2 2 10 4 δ = 2−164

Kyber1024 256 4 3329 2 2 11 5 δ = 2−174

Table 4.2: Standard Parameters set for Kyber
[23]

Those parameters represents:

1. n: maximum degree of the used polynomials.

2. k: number of polynomials per vector.

3. q: modulus for numbers.

4. η1, η2: control how big coefficients of “small” polynomials can be.

5. du, dv: control how much (u,v) get compressed.

6. δ: the probability that a decryption yields a wrong result.

Kyber KEM

Kyber is usually referred to as a Key Encapsulation Mechanism(KEM), not
a public key encryption system. A KEM is a cryptographic method that
is used to securely exchange encryption keys between parties. It allows a
sender to encapsulate a random symmetric key using a receivers’s public
key, and the receiver can then decapsulate it using its private key to retrieve
the symmetric key. The reason for this is technical: Kyber uses a technique
to turn the indistinguishability under chosen plaintext attack secure PKE
(Public Key Encryption) (see Section 2.1.13) into an Indistinguishability

84

4.2 – Hash-based cryptography

under non-adaptive and adaptive Chosen Ciphertext Attack secure KEM
[34] (see Section 2.1.14.)

4.2.2 CRYSTALS-Dilithium
CRYSTALS-Dilithium is a post-quantum digital signature scheme based on
lattices. It is based on the hardness of the Module Learning With Errors
2.1.11 and the Closest Vector Problem (CVP) 2.1.12.

Within modern cryptographic communication protocols, Dilithium is one
of the main post-quantum schemes for digital signatures, that could substi-
tute non-quantum digital signature schemes, including RSA and those based
on elliptic curves, that have been proved to be vulnerable to attacks by a
quantum computer.

The algorithm in divided into three main phases:

1. Key Generation this phase involves generating public and secret keys.
The secret key components are short vectors in the lattice, and the
public key is generated using these secret keys and an error term.

2. Signature Generation: this phase involves creating a signature that
proves knowledge of the secret key without revealing it. This process
can be seen as finding a short vector (CVP) and handling noisy lattice
points (LWE).

3. Verification:The verification process ensures that the signature corre-
sponds to a valid short vector in the lattice.

All three of these phases will be better explained through an example in the
following sections.

Before entering in the details of the Dilithium signature scheme, it is
useful to establish some notations:

1. q: a prime number

2. Zn denotes the set 0, ..., q − 1

3. Rq: Indicates the set of polynomials in X

4. Sη denotes a subset of Rq with coefficients limited from η

5. Let S be a set, s← S indicates that s is uniformly sampled from S

85

Post-Quantum Cryptography

6. Bt indicates the subset of Rq consisting of polynomials with t coefficients
equal to 0 and the rest to 1

7. H is an hash function with codomain Bt.

Key Generation

In this phase, the private key and the public key are produced, which will
be respectively used to generate and verify a signature. A public matrix A
is uniformly sampled, where each component is a polynomial in the set Rq.
The entries of the private key (s1, s2) are uniformly sampled from the set
Sη. In this part we can notice the instance of the LWE problem. Using the
matrix A and the vectors (s1, s2), the vector t is derived, which together
with A forms the public key of the signature scheme.

It is relevant to note that, since the random matrix A is composed of
k · l polynomials in Rq, its representation would be excessively large, making
transmission rather costly and therefore making the use of Dilithium less
practicable. The adopted solution is to generate A from a smaller-sized
seed, thus it is sufficient to transmit only the identified seed within the
public key.

Signature

Given a message m, the process of generating a signature σ in Crystals-
Dilithium involves the following six steps:

1. Hash the Message: Compute a hash of the message m using a cryp-
tographic hash function. Denoted as H(m).

2. Generate a Random Vector Generate a random vector y with small,
random coefficients. This vector serves as a nonce and ensures the
uniqueness of the signature for different messages.

3. Calculate the Commitment Compute the commitment w = A · y.
Use the commitment to compute a hint vector c by hashing w together
with the message hash H(m).

4. Compute the Response Calculate the response vector z = y + c · s1.
Here, c is the hint vector and s1 is the part of the secret key.

86

4.2 – Hash-based cryptography

5. Check Norm

Check that the coefficients of z and w− c · t are within certain bounds.
If not, discard and start over with a new y.

6. Create the Signature

The signature σ consists of the response z and the hint c.

Verification

In the verification step, it is checked that the commitment c, contained
in the signature, matches the output of the hash function computed on
the concatenation of the message m and w1, where w1 is derived from the
signature σ = (z, c) and the public key A.
Also in the signature verification process, some optimizations have been
introduced that, by working with only the most significant bits, allow for a
significant reduction in the size of the digital signature.

Numerical Example

A numerical example is provided for a better visualization of the previous
sections (4.2.2, 4.2.2, 4.2.2).

Key Generation

1. Parameter Selection: Let’s assume small parameters for simplicity.
A =

C
1 2
3 4

D

2. Secret Key Generation: Generate secret vectors s1 and s2 with small
coefficients. s1 =

C
1
1

D
, s2 =

C
0
1

D

3. Public Key Calculation: t = A · s1 + s2 t =
C
1 2
3 4

D
·
C
1
1

D
+
C
0
1

D
=C

1 · 1 + 2 · 1
3 · 1 + 4 · 1

D
+
C
0
1

D
=
C
3
8

D
+
C
0
1

D
=
C
3
9

D

87

Post-Quantum Cryptography

Signature Generation Given a message m:

1. Hash the Message: Compute H(m). For simplicity, let H(m) = 2.

2. Generate a Random Vector: Generate a random vector y. Assume
y =

C
1
−1

D

3. Calculate the Commitment: w = A · y w =
C
1 2
3 4

D
·
C

1
−1

D
=C

1 · 1 + 2 · (−1)
3 · 1 + 4 · (−1)

D
=
C
1− 2
3− 4

D
=
C
−1
−1

D
Compute c = H(w||H(m)) .

Let H(−1,−1, 2) = 1.

4. Compute the Response: z = y+c·s1 z =
C

1
−1

D
+1·

C
1
1

D
=
C

1 + 1
−1 + 1

D
=C

2
0

D

5. Check Norm: Check z and w− c · t are within bounds. Assume they
are.

6. Create the Signature: The signature σ = (z, c) is σ =
AC

2
0

D
, 1
B

Signature Verification To verify σ on message m:

1. Compute the Commitment: w′ = A·z−c·t w′ =
C
1 2
3 4

D
·
C
2
0

D
−1·

C
3
9

D
=C

1 · 2 + 2 · 0
3 · 2 + 4 · 0

D
−
C
3
9

D
=
C
2
6

D
−
C
3
9

D
=
C
−1
−3

D

2. Hash the Commitment: Hash w′ together with H(m) to obtain c′.
Let H(−1,−3, 2) = 1.

3. Check the Signature: Verify that c′ = c and that z and w′ are within
bounds.

Since c′ = 1 and c = 1, and assuming all bounds checks pass, the signature
is valid.

88

4.2 – Hash-based cryptography

4.2.3 FALCON
FALCON is a post- quantum digital signature schema based on lattice. This
chapter will present the key ideas underlying Falcon and explain how they
all fit together based on its original paper [65].

Falcon is based on

1. q-ary lattices: characterized by the fact that their points coordinates
are integer and “wrapped around” an integer q. If we reduce modulo q
the coordinates of a lattice point, the result will still be a point of the
lattice

2. NTRU Lattices : a lattice-based cryptographic scheme (see Section
4.1) that uses structured polynomials over a ring. NTRU lattices lever-
age the properties of polynomials and their transformations to achieve
efficient key generation, encryption, and decryption operations [53].

3. Fast Fourier Sampling: a technique used in lattice-based cryptog-
raphy, to efficiently sample from discrete Gaussian distributions over
lattices[63]. By leveraging fast Fourier sampling, Falcon ensures that
cryptographic operations remain efficient and scalable, even with large-
scale deployments.

Before entering in the details of the FALCON signature scheme, it is useful
to establish some notations:

1. q: called modulus, it is a prime number that defines the size of the fi-
nite field over which operations are performed. Larger q provides higher
security against attacks but typically requires more computational re-
sources, while smaller q offer better efficiency but could compromise
security.

2. n: called dimension, refers to the number of components in the vectors
that define the lattice. The dimension n influences the complexity of
cryptographic operations and the size of the keys and signatures.

3. T : called trapdoor matrix, refers to a matrix T that possesses a special
property: it simplifies operations in one direction (generating a matrix
from a vector) but not in the reverse direction (finding the vector from
the matrix without knowing T).

89

Post-Quantum Cryptography

4. e: called noise vector, refers to a vector whose components are chosen
from a certain distribution, typically a discrete Gaussian distribution.
This noise vector is intentionally added to certain computations to en-
sure the security of cryptographic schemes. Used to achieve protection
against various attacks and to introduce randomness becoming resistant
to statistical attacks.

5. m: the message to be signed.

6. H: a cryptographic hash function

7. z: the signature performed.
After choosing appropriate parameters this is an high level scheme on

how FALCON works:
1. Key Generation Process In this phase, the private key and the public

key are produced, which will be respectively used to generate and verify
a signature.

2. Signing Process This phase involves creating a digital signature for a
given message using the private key.

3. Signature Verification This phase involves checking that a given sig-
nature is valid for a specific message and public key. This process
ensures that the signature was indeed produced by the holder of the
corresponding private key and that the message was not altered.

Those phases will be explained more in detail in the following sections,
including also a numerical example for a better understanding of each phase.

Key Generation

This process is based on NTRU lattices [53] and involves the generation of
polynomials that define the lattice.

1. Generate Secret Polynomials: The first step on the generation of a
public and private key-pair is to define two secret polynomials f and g.
These are random polynomials with coefficients typically in {−1,0,1}.

2. Compute Auxiliary Polynomials: These polynomials are derived
such that they satisfy the NTRU equation

fG− gF = q (4.2)

90

4.2 – Hash-based cryptography

3. Compute the Private Key The private Key S is is a 2 × 2 matrix
constructed from the polynomials f, g, F and G.

4. Compute the Public Key The public key h is derived from the pri-
vate key polynomials as h = gf−1 mod q, where f−1 is the modular
inverse of f .

Numerical Example A numerical example is useful for a better visual-
ization of the steps explained before. In the following example the value of
n will be 12289.

1. Generate Secret Polynomials, called f and g:

f(x) = 1− x− x3

g(x) = −1 + x2 + x3

2. Compute Auxiliary Polynomials F and G:

F (x) = 1 + x + x3

G(x) = −1− x2 + x3

We have to verify the relation fG− gF = q:

f(x)G(x) = (1− x− x3)(−1− x2 + x3)

= −1− x2 + x3 + x + x3 + x5 + x3 + x4 + x6

g(x)F (x) = (−1 + x2 + x3)(1 + x + x3)

= −1− x− x3 + x2 + x3 + x4 + x3 + x4 + x6

In the above calculations, fG− gF = q.

3. Construct the Private key S:

S =
A

1− x− x3 −1 + x2 + x3

−1− x2 + x3 −(1 + x + x3)

B

91

Post-Quantum Cryptography

4. Compute the Public Key h

h = gf−1 mod q.
Assume f−1(x) = 1 + x + x2

h = (−1 + x2 + x3)(1 + x + x2) mod 12289
Simplifying this (omitting intermediate polynomial multiplication steps):
h ≡ x3 − x + x2 mod 12289 the specific value of the public key h de-
rived from the private key polynomials f and g is determined by how
the polynomials are evaluated and combined.

Signature

This process ensures that the signature can be verified later using the cor-
responding public key and that it authenticates the message’s integrity. It
is based on the following 5 points:

1. Message Hashing: Hash the message m using a cryptographic hash
function to obtain µ.

2. Generate Random Noise: Generate a small, random polynomial e.

3. Compute Short Vector s: Compute s as s = f · e + G · z mod q
Where:

• f and G are private key polynomials,
• e is the random noise polynomial,
• z is another random polynomial used to enhance security.

4. Construct Signature σ: The signature σ consists of the short vector
s.

Numerical Example Let us continue from the key generation example
and use the same variables obtained before.

1. Compute Short Vector s: Compute s using the formula: s = f ·
e + G · z mod 12289 Assume z(x) = 1 − x2 (a random polynomial):
s = (1 − x − x3)(−1 + x − x2) + (−1 − x2 + x3)(1 − x2) mod 12289
Perform the polynomial multiplication: f · e = (1 − x − x3)(−1 + x −

92

4.2 – Hash-based cryptography

x2) = −1 + x − x2 + x − x2 + x3 − x3 + x4 − x5 Simplify and reduce
modulo q: f · e = −1 + 2x− 2x2 + x4 − x5 mod 12289 Compute G · z:
G · z = (−1− x2 + x3)(1− x2) = −1 + x2− x3− x2 + x4 + x5− x3− x5

Simplify and reduce modulo q: G · z = −1− 2x3 + x4 mod 12289 Add
the results: s = (−1+2x−2x2 +x4−x5)+(−1−2x3 +x4) mod 12289
Simplify: s = −2 + 2x− 2x2 − 2x3 + 2x4 − x5 mod 12289

2. Construct Signature σ:

• The signature σ is constructed using the computed short vector s:
σ = (−2 + 2x− 2x2 − 2x3 + 2x4 − x5)

Verification

This process ensures that the signature can be verified later using the cor-
responding public key and that it authenticates the message’s integrity. It’s
organized in the following steps:

1. Message Hashing:

• The verifier first hashes the message m using the same crypto-
graphic hash function used during the signing phase. This results
in a hashed value µ.

2. Extract Components from Signature:

• The signature σ consists of a short vector s derived during the
signing. Extract s from σ.

3. Compute Syndrome:

• Using the public key h, compute the syndrome t: t = µ−hs mod q
Where:
– h is the public key polynomial derived during key generation,
– s is the short vector extracted from the signature σ,
– q is the modulus used in the Falcon lattice.

4. Verify Syndrome: Check if t is sufficiently small according to pre-
defined criteria. Typically, this involves ensuring each component of t
falls within a specific range or bound.

93

Post-Quantum Cryptography

5. Conclusion:

• If t meets the criteria (i.e., all components are within bounds), the
signature σ is valid for the message m under the public key h.

• If any component of t exceeds the bound, the signature σ is consid-
ered invalid.

Numerical Example The numerical example concludes all of the previ-
ous example showing us how the signature can be verified.

1. Compute Syndrome t:

• Compute hs: hs = (x3−x+x2)(0, 1,−1, 0) = (0, x3−x+x2,−x3 +
x− x2, 0)

• Compute t: t = µ − hs mod 12289 Substitute µ = (1, 0, 1,−1):
t = (1, 0, 1,−1)−(0, x3−x+x2,−x3+x−x2, 0) mod 12289 Simplify
to find t.

2. Verify Syndrome: Check if each component of t is within the ac-
ceptable range specified by the protocol. For instance, ensure each
component is sufficiently small in relation to the modulus 12289.

3. Conclusion:

• If all components of t are within bounds, the signature σ = (0, 1,−1, 0)
is valid for the message "Hello" under the public key h = x3−x+x2

mod 12289.
• If any component of t exceeds the bound, the signature would be

deemed invalid for the given message and public key.

4.2.4 SPHINCS+
SPHINCS+ (SPHINCS-256) is a post-quantum digital signature algorithm
that relies on the security of cryptographic hash functions, it uses trees
whose nodes are Merkle trees (see Section 4.2) and one-time signature
(OTS) schemes (see Section 4.2) to provide a post-quantum secure digital
signature.

In Figure 4.3 we can see an example of how a Merkle tree works, starting
from 8 secret keys s1..s8

94

4.2 – Hash-based cryptography

Figure 4.3: Signature in 8-time Merkle hash tree

The leaves are made of a couple (si, pi) where pi is computer starting from
the secret keys through a one time signature schema.

The layers are then chained 2 by 2 and then hashed to generate the new
layer until we arrive to the root (P15 in 4.3), P15 is the Public Key .

To sign a message (m1) the signer uses the couple (S1, P1) so the message
is signed with the secret key S1.

The signature of m1 is (sign(m1, S1), P1, P10, P14) so a verifier needs also
P10 and P14 to verify a signature.

The verifier receives sign((m1, S1), P2, P10, P14) and knows P15.
He computes P ′

9 by hashing p1 and p2, p′
13 by hashing p′

9 and p10 and p′
15

by hashing p′
13 and p14 (see Figure 4.4).

The verification is done by comparing p′
15 with P15, if the signature calcu-

lated is the same as the top leaf of the tree the signature is valid, otherwise
it would be rejected.

All the nodes that needs to be used from the verifier compose an Au-
thentication Path as shown in figure 4.4

With this scheme is possible to sign more messages with the same
public key (2n, where n is the number of levels in the tree), and the public
key is short, since it is just an hash output. The problem of this scheme is
that computing the public key requires computing and storing 2n one time
signature keys (si)and each signature contains n public keys.

The Merkle tree also do not provides a stateful scheme because signing
a message requires to keep state of the already used keys, making sure they

95

Post-Quantum Cryptography

Figure 4.4: Authentication Path for a signature in 8-time Merkle hash tree

are never reused.

Stateful hash-based signatures

Stateful hash-based signatures are a class of digital signature schemes that
leverage hash functions to provide secure signatures. The security features
introduced by this schema are:

1. Post Quantum Resistance: Stateful hash-based signatures are con-
sidered secure against attacks from quantum computers

2. Forward Security: Since each OTS key pair is used only once, com-
promising one key does not affect the security of other keys or past
signatures.

3. Minimal Security Assumptions: The security of these schemes
relies mainly on the strength of the hash function, which is a well-
understood cryptographic primitive.

On the other hand this scheme can be broken by reusing the keys.

HyperTree

The aim of SPINCS+ is to: Achieve moderate signature time and size and
get rid of any state in the nodes.

96

4.2 – Hash-based cryptography

Figure 4.5: HyperTree of height 4 which can be seen as a tree with merklee
trees on the nodes

This is done by using a structure in which every leaf in a tree structure
is another tree (see Figure 4.5).

In SPHINCS, each leaf has an address, which contains: its layer in the
SPHINCS hypertree, the number of its Merkle’s tree in the layer, its position
in the Merkle’s tree.

Moreover, in addiction to OTS, SPINCS+ use Few-Time Signatures
(FTS) like FORS (Forest of Random Subsets) (see [7]) which can sign a
limited number of messages securely.

SPHINCS+ have the pro of being based on hash cryptography, which is
a consolidated field of study, so it allows a conservative choice unrelated to
lattice-based cryptography but, on the other hand, the scheme significantly
affects the performance of the protocols that uses it, both in computation
time and in size of signatures [25].

Key Generation

The key generation process in SPHINCS+ involves several steps to ensure
the creation of a secure and efficient key pair.

1. Parameter Selection Choose parameters for the scheme, including
the number of layers in the hypertree, the height of each Merkle tree,
and the parameters for the OTS and FTS schemes

2. Seed Generation Generate a random seed for the secret key. This

97

Post-Quantum Cryptography

seed will be used to derive all other key pairs and parameters in the
scheme.

3. OTS Key Pair Generation For each leaf node in the lowest level of
the hypertree, generate a OTS key pair using the seed and the hash
function.

4. FORS Key Pair Generation Generate FORS key pairs for signing.

5. First-Level Merkle Tree Construction: Construct a Merkle tree
using the WOTS public keys as leaf nodes. Compute the parent nodes
by hashing the child nodes until the root of the tree is obtained.

6. Upper-Level Merkle Trees Construction: Use the roots of the
lower-level Merkle trees as leaf nodes to construct the Merkle trees for
the next level. Repeat this process up to the root of the top-level Merkle
tree.

7. Public Key Generation:The public key of the SPHINCS+ scheme is
the root of the top-level Merkle tree.

8. Private Key Storage: The private key consists of the initial seed and
the parameters used to derive the OTS and FORS key pairs.

Signature

The signature generation process in SPHINCS+ involves several steps upon
the key structures generated during the key generation phase.

1. Message Digest: Compute a hash of the message m to be signed. This
hash will be used as the input for the signature generation process.

2. Randomness Generation: Generate a random value,r, which is unique
for each signature. This ensures that even if the same message is signed
multiple times, the signatures will be different.

3. Index Selection:Determine the indices for the OTS and FORS key
pairs that will be used in the signature by selecting specific leaves in
the tree structure.

4. FORS Signature: Sign the message hash with the FORS scheme

98

4.2 – Hash-based cryptography

5. OTS Signature:Sign the output of the FORS signature with the OTS
scheme

6. Authentication Paths: For each level in the hypertree, include the
necessary authentication paths to authenticate the WOTS public keys.
Compute the paths from the selected WOTS leaf nodes up to the root of
the top-level Merkle tree. These paths allow the verifier to reconstruct
the Merkle tree roots and ensure the integrity of the public keys

7. Constructing the Signature: Combine all components into the fi-
nal signature, the random value r, the FORS and OTS signatures and
authentication paths, the authentication paths for all levels in the Hy-
pertree.

Verification

The SPHINCS+ signature verification process ensures the authenticity and
integrity of a signed message using a combination of hash-based crypto-
graphic primitives and hierarchical Merkle trees.

1. Extract Components from Signature: Extract the random value r,
the FORS signature SIGNF ORS with its authentication path, the OTS
signature SIGNOT S with its authentication path, and the authentica-
tion paths for all levels in the hypertree.

2. Recompute Message Digest: Compute the hash of the message
H(m)

3. Verify FORS Signature: Using the FORS public key derived from
the signature.

4. Verify OTS Signature Using the OTS public key derived from the
FORS signature.

5. Verify Authentication Paths: For each level in the hypertree, verify
the authentication paths. Starting from the lowest-level Merkle tree
and move up to the top-level Merkle tree to ensure that the public keys
at each level are correctly integrated into the Merkle tree structure

6. Final Verification: Ensure that the root of the top-level Merkle tree
matches the public key of the SPHINCS+ scheme. If all checks pass,
the signature is valid.

99

100

Chapter 5

Post-Quantum TLS

Transport Layer Security (TLS) (see Section 3.4) is one of the most impor-
tant security protocols of the Internet. This fundamental protocol protects
the confidentiality, authenticity, and integrity of individual communication
channels in potentially malicious network environments. TLS is one of the
most widely used tools for securing application protocols. Like any other
protocol that uses public key cryptography, the security of TLS is threat-
ened by future quantum attackers. This is because quantum computers can
efficiently break the underlying hardness assumptions of the public key cryp-
tography on which the TLS handshake protocol is currently based, namely
the integer factorization and discrete logarithm problems (see Section 2.5.5).
Thus, future adversaries with such powerful machines can undermine the
security of TLS by forging signatures to falsely authenticate themselves to
users, and by deriving encryption keys to read secret messages, even from
past TLS sessions.

In this chapter, we will discuss the integration of two specific post-quantum
algorithms: Dilithium for digital signatures and Kyber for key encapsulation
mechanisms (KEM). These algorithms were chosen due to their robustness
and efficiency, as evidenced by their performance in the NIST post-quantum
cryptography standardization process [9] and in many research papers such
as [57] and [60]. Both the cited papers will be two keystones for the following
work.

The modifications made to the TLS 1.3 protocol involve several aspects,
such as

1. Key Exchange: Integration of Kyber KEM to secure the key exchange
process against quantum attacks.

101

Post-Quantum TLS

2. Digital Signatures:Incorporation of Dilithium to provide quantum-resistant
digital signatures.

3. Encryption: Ensuring that encryption mechanisms within the protocol
are compatible with post-quantum standards.

4. Changes to digital certificates: adapting the X.509 certificates to the
proposed changes.

There are also other implementation of the Post Quantum TLS in dif-
ferent programming languages on Github such as [61], done in Rust or the
liboqs repository [58] that provides implementation of the main components
both for the TLS algorithm and the post quantum algorithms in C language.

By implementing these changes, our primary goal is to enhance the secu-
rity of the TLS protocol against potential quantum computer threats, also
offering a secure communications protocol in the future.

Through this work, our objective is to contribute to ongoing efforts in
cryptographic research to develop and deploy quantum-resistant security
protocols, ensuring the confidentiality, integrity, and authenticity of com-
munications in the quantum era.

5.0.1 Post-quantum TLS handshake
In this section we will explore the proposed changes to the standard TLS
handshake architecture. The proposed changes are intended not only to in-
tegrate post-quantum algorithms into the protocol but also to main-
tain retro-compatibility to the actual TLS.

The retro-compatibility property ensures us the fact that the actual struc-
ture of the TLS architecture can be maintained without the need of major
changes such as adding fields to the X.509 certificate (see Figure 3.1) with
the whole post-quantum signature of the certificate.

Since the goal is to make the TLS protocol post-quantum resistant, the
client and the server during the handshake procedure will agree to use algo-
rithms that guarantee a post-quantum level of security.

Changes to the Digital Certificate

The first change to the previously discussed protocol is related to the Digital
Certificate used for the authentication of the client and server that are willing
to communicate in a secure way.

102

Post-Quantum TLS

The differences are in the extension field: since we now are also giving
the possibility to use PQ algorithms, we have to add to the certificate the
post-quantum public key of the certificate and the post-quantum digital
signature of the certificate into the Certificate.

Adding those fields into the extensions section of the X.509 allow us to use
the same structure of the certificate, without the need of radically chang-
ing its fields, granting us the retro-compatibility. The new post-quantum
field will also be used in the verification phase by the Certificate Authority
(see section 3.1.1).

Figure 5.1: Structure of a modified X.509 Certificate

Modified TLS Handshake

After the discussion on how the Digital Certificate has to be modified, we are
now going to discuss the Post-Quantum TLS handshake with reference
to figure 5.2 as a guide.

The handshake will be described in 6 steps, listed below and also present

103

Post-Quantum TLS

in Figure 5.2.

1. At the beginning of the connection we have a client and a server that are
willing to communicate, each one will produce a random integer num-
ber referred respectively as server random for the server and client
random for the client.
In a preliminary phase correspondent to the Client Hello and Server
Hello messages (see section 3.4) the client and the server that are will-
ing to communicate will exchange some preliminary information, such
as the security level they want to achieve in the communication, the ci-
phersuite they will use, and they will exchange their random numbers.

2. The communications starts with the server sending their certificate to
the client, giving the client a way to verify that the server is actually
who is supposed to be.

3. When the client receives the certificate, it proceeds to verify it, checking
the Certification Authority up to the root until it can verify its validity.
If this step is not performed correctly, the handshake stops here and
the connection is closed.
If the Certificate is proved to be valid, the client retrieves from the
extensions field of it the post-quantum Public key of the server, and
the Post-Quantum digital signature of the certificate.
The Digital signature will be validate using the post-quantum key pre-
viously retrieved from the certificate in the new PQ section added in
the extension field (see Figure 5.1). The keys are generated from the
client through the specific functions of the chosen signature algorithm.
See [33] for the key generation function. If the signature is valid, the
connection goes on; otherwise, the connection will be closed.

4. If the signature is proved to be valid, the client now has to achieve
the Proof of Possession (PoP) property, that means that he wants a
proof that the server posses the private key corresponding to the public
one we took from its certificate. To obtain it the client will generate
a random string using a pseudo-random function, called pre-master
secret because it is the first step to obtain the master secret that will
make the communication safe. After that, the encryption is done us-
ing the Kyber Public key of the server, previously retrieved from the

104

Post-Quantum TLS

server’s certificate, with the kyber encryption function [48].

The result of this encryption will be a ciphertext representing the ran-
dom string, encrypted with the kyber public key of the server.

5. At this point the Key Encapsulation Mechanism offered by kyber is
used to encapsulate the ciphertext of the pre-master secret. This step
is done to make it resistant to sniffing attacks. Even if an attacker sniffs
the packet with the ciphertext will still not be able to decrypt it.
The encapsulated packet is sent to the server that will decapsulate it
and will us its Kyber private key to decrypt it and to obtain the Pre
Master secret. The encaps and decaps function are available in the
kyber Github [48].
If the pre master secret received is different from the one generated from
the client, the connection will occur in an error and will be stopped;
indeed, it is possible that an attacker sent a packet trying to guess the
pre master secret. Otherwise, the server and the client now have access
to the same pre-master secret and will use it to build the master
secret.
The obtained master secret will be the shared secret that makes the
connection secure.

6. The client and the server will now generate the Master Secret using
a Key Derivation Function (KDF) that takes as input the concatena-
tion of the client random, the server random and the ciphersuite string
choosed at the start of the communication. Since all the values in it are
shared between the client and the server, they will produce the same
key.
The KDF function is then performed not only once but a variable num-
ber depending of the KDF used.

At the end of this process the client and the server will have a secret
shared key and from now on the communication will continue using the
shared key as the encryption parameter. This process allows the creation
of a shared secret key for two unknown entity, and by using post-quantum
algorithm will achieve also the post-quantum protection for the protocol.

105

Post-Quantum TLS

5.0.2 Mutual Authentication Post-Quantum TLS
As previously said in chapter 3.4, while the authentication of the server is
a mandatory requisite, TLS can also supports the mutual authentication
between client and server. This scheme can be useful in many cases, such
as the implementation of an embedded device that needs to automatically
connect to a server. The scheme presented before in figure ?? can cover this
eventuality with few modifications.

1. At the beginning of the connection we have a client and a server that are
willing to communicate, each one will produce a random integer num-
ber referred respectively as server random for the server and client
random for the client.
During the Client Hello and Server Hello messages (see Section3.4)
the client and the server will exchange some preliminary information:
the security level they want to achieve in the communication, the ci-
phersuite they will use, and the exchange of their random numbers.
Later on the communication those randoms ensures that, if the server or
the client changes during the communication, the connection does not
proceed since the new receiver (or sender) will have a different random
number.

2. When the client verifies the validity of the server, the connection won’t
proceed as explained before because the mutual authentication has to
be performed, so not only the server has to send its certificate but also
the client so there will be another Send Certificate message.

3. The certificate received from the client will be validated in a similar
way as the precedent scheme (Figure 5.2). When the server receives the
certificate, it proceeds to verify it, checking the Certification Authority
up to the root until it can verify its validity.
If this verification is not performed correctly, the handshake stops here,
and the connection is closed without exchanging other data and return-
ing an error message. Otherwise, the connection continues with the
server and the client mutually authenticated.

4. If the certificate is confirmed to be valid, the client will extract the
server’s post-quantum public key and the post-quantum digital signa-
ture of the certificate from its extensions field. The digital signature is

106

5.1 – Post-Quantum TLS measurements

verified using the post-quantum key previously obtained from the cer-
tificate in the new PQ section included in the extension field (see Figure
??).
Upon successful verification of the signature, the client must ensure
the Proof of Possession (PoP) property. The client generates a ran-
dom string using a pseudo-random function (the pre-master secret).
The client then encrypts the pre-master secret using the server’s Kyber
public key, previously extracted from the server’s certificate, obtaining
a ciphertext.

5. At this stage, the Key Encapsulation Mechanism provided by Kyber is
utilized to encapsulate the ciphertext of the pre-master secret, ensuring
resistance to eavesdropping attacks.
The encapsulated packet is then sent to the server, which will decap-
sulate it and use its Kyber private key to decrypt it and retrieve the
pre-master secret.

6. If the pre-master secret received by the server differs from the one gen-
erated by the client, the connection will result in an error and will be
stopped, as it indicates a possible attack where an attacker sent a guess-
ing packet. If the pre-master secret matches, both the server and the
client will use it to construct the master secret, which will be the shared
secret securing the connection.

7. The client and server will now derive the Master Secret using a Key
Derivation Function (KDF) applied multiple times to the same input:
a concatenation of the client random and the server random, and the
ciphersuite string chosen at the start of the communication.

From now on both client and server have a common shared secret, so the
connection will continue in a secure way, since the data exchanged will be
encrypted using the master key.

5.1 Post-Quantum TLS measurements
In this section contains the performance analysis of a post-quantum TLS
scheme not only with the pair Kyber/Dilithium chosen as post-quantum
algorithms , but also with the other algorithm chosen by the NIST. We

107

Post-Quantum TLS

also compare the values obtained with the one provided by the standard
TLS with RSA/ECDHE and ECDSA/ECDHE, currently the most common
algorithms used in standard TLS.

The performance evaluation in Figure 5.4 refers to a post- quantum TLS
scheme implemented on resource-constrained embedded devices. The evalu-
ation is performed on the ARM Cortex-M4 embedded platform NUCLEO-
F439ZI, that provides 180 MHz clock rate, 2MB Flash Memory and 256KB
SRAM. With regarding to TLS design and open-source implementation,the
project is developed using a cryptographic library named liboqs [51], that
has collected implementations of PQC algorithms.

In figure 5.4 the notation column indicates which couple of algorithms
are used for the PQ handshake, where Dil stands for Dilithium, Kyb for
Kyber, Falc for Falcon and Sph for Sphincs+. Moreover, there is a number
associated with the algorithms that refers to the security level achieved. For
example, Dil3 means that we are using the Dilithium algorithm as a digital
signature algorithm that provides us the security level 3. The Static Usage
and the .bss Usage columns refers to memory requirements needed. The
first one is telling us how much static memory is needed to perform the
algorithms, while the second one is telling us that an additional memory
section (the bss section) is needed since there are some variables in the code
that are declared but not explicitly initialized.

The “Communication Size” column tells us the byte size of all messages
exchanged during the TLS handshake, which is the sum of all the bytes that
a peer has sent plus the sum of all the bytes that the peer has received.
The last column indicates the time needed to perform the handshake and
is detailed with the time needed by the client and the time needed by the
server.

The measurements collected from the client differ from the measurements
collected from the server. That is because although the TLS handshake
authentication related operations are similar between the two peers (1 “Sign”
and 2 “Verify” operations for each), this is not the case for KEM related
operations where the client executes 1 “Key Generate” and 1 “encapsulate”
operation, while the server executes 1 “decaps” operation.

We can also verify that KEM combinations with Dilithium perform much
better than KEM combinations with Falcon. This is due to the fact that
Falcon has extremely fast “Verify” but slow “Sign” operations [57]. We also
see that using sphincs+ leads to an extremely slow handshake, with over
66 seconds of run-time, which is an expected result since SPHINCS+ is the

108

5.1 – Post-Quantum TLS measurements

only algorithm hash-based, while all the other ones are lattice-based.
In terms of communication size, we can notice that KEM combinations

with Dilithium generally perform much better in terms of speed, com-
pared to KEM combinations with Falcon; however, it can be observed that
Dil2+Kyb1 requires more than twice the bandwidth than Falc1+Kyb1. The
same applies to higher security levels.

Compared to the classical TLS (see Figure5.5), PQ TLS introduces a
larger overhead in terms of network traffic due to the excessive communica-
tion size. Dil2+Kyb1 uses 6.26 times more bandwidth than ECDSA+ECDHE,
while Falc1+Kyb1, having a lower overhead, consumes only 2.9 times more
bandwidth than ECDSA+ECDHE.

The data and .bss segments play a crucial role in the PQC algorithm
integration in embedded systems.

Algorithms introducing large artifact sizes or having an implementation
that requires a lot of Stack memory, may eventually be impossible to be
integrated in a memory-constrained device, and that is the reason why Dil5
is not included, since it has too large memory requirements.

Given an average embedded system evaluation board, which has 192 KB
usable RAM, Dil2+Kyb1 consumes approximately 25 % of the total available
memory, while on higher security levels, Dil3+Kyb5 uses ≈ 35%. Combina-
tions with Falcon generally use less memory: Falc1+Kyb1 consumes ≈ 22%
of the total available memory and Falc5+Kyb5 uses ≈ 43%. On the other
hand, Sph1s-Kyb1 uses merely 800 bytes of RAM.

109

Post-Quantum TLS

Figure 5.2: Post-Quantum TLS Handshake
110

5.1 – Post-Quantum TLS measurements

Figure 5.3: Post-Quantum TLS Handshake with Mutual Authentication

111

Post-Quantum TLS

Figure 5.4: Post-Quantum TLS Handshake measurements, this Figure refers
to [57]

Figure 5.5: Standard TLS Handshake measurements from [57]

112

Chapter 6

Conclusion

In this thesis, we discuss a way to implement post-quantum algorithms into
the TLS handshake scheme. In particular, this work is divided in two main
parts. The first one is focused on as a state-of the art on the main crypto-
graphic algorithms (see Chapter2) and the security protocols that use them
3, highlighting the TLS protocol with a detailed description of how its hand-
shake phase works 3.4. The second part explores the post-quantum cryp-
tographic environment (see Chapter 4), explaining the main post-quantum
security algorithms providing also numerical examples for each.

This part also introduces the main organizations that leads the transition
in the post-quantum world such as the NIST. The last chapter of the thesis
is a scheme that describes how two of the main post-quantum algorithms
(CRYSTALS-Dilithium for digital signatures and CRYSTALS-Kyber for the
Key Encapsulation Mechanism) can be added into the actual TLS handshake
process 5.

This work was done considering the need to maintain compatibility with
the current handshake process; this was taken into account by modifying
some parts of it, such as the X.509 extension field, avoiding structural
changes.

This thesis not only dicuss the advances in integrating post-quantum
cryptographic solutions into security protocols, but also highlights the sig-
nificant threat posed by quantum computing to current cryptographic stan-
dards.

This work stands as a clear indicator of the present and growing quan-
tum threat, emphasizing the critical need for the cybersecurity community

113

Conclusion

to adopt and implement post-quantum solutions proactively. It is imper-
ative to be ahead with respect to these emerging threats, to ensure the
continued protection of digital communications and sensitive data in an in-
creasingly complex and quantum-capable world. As we move towards a
future where quantum computing becomes more prevalent, the proactive
adoption of these solutions is not just a necessity but a critical step towards
safeguarding our digital infrastructure against new threats.

114

Bibliography

[1] Elliptic curve digital signature algorithm. HYPR, 2022.

[2] Ako Muhammad Abdullah. Advanced encryption standard (aes) algo-
rithm to encrypt and decrypt data. ResearchGate, 2017.

[3] Paul C. Kocher Alan O. Freier, Philip Karlton. The secure sockets layer
(ssl) protocol version 3.0. Internet Engineering Task Force (IETF),
2011.

[4] Minas Dasygenis Argyrios Sideris, Theodora Sanida. High throughput
implementation of the keccak hash function using the nios-ii processor.
MDPI, 2020.

[5] Rahul Awati. Electronic code book (ecb). TechTarget, 2021.

[6] Daniel J. Bernstein. Grover vs. mceliece. The University of Illinois,
2010.

[7] Leo Breiman. Random forests. University of California, 2001.

[8] William C.Barker. Nist sp 800-59, guidelines for identifying an infor-
mation system as a national security system. NIST Special Pubblication
800-59, 2003.

[9] NIST Computer Security Resource Center. Post-quantum cryptography
| csrc. csrc.nist.gov, 2022.

[10] NIST Computer Security Resource Center. Three draft fips for post-
quantum cryptography | csrc. csrc.nist.gov, 2023.

[11] Michael Cobb. What is triple des and why is it being disallowed?
TechTarget, 2023.

115

BIBLIOGRAPHY

[12] IBM Corporation. The tls 1.3 protocol. IBM, 2024.

[13] Robert B Davies. Exclusive or (xor) and hardware random number
generators. Robertnz.net, 2002.

[14] DevX. Cipher block chaining. DevX, 2023.

[15] Scott Vansto Don Johnson, Alfred Menezes. The elliptic curve digital
signature algorithm (ecdsa). Certicom, 2001.

[16] Fabio Donatantonio. Il cifrario di ceare in php. Donatantionio.net,
2010.

[17] Nicky Mouha Elaine Barker. Recommendation for the triple data en-
cryption algorithm (tdea) block cipher. NIST computer security re-
source center, 2017.

[18] ETSI. Etsi 2nd quantum-safe crypto workshop in partnership with the
iqc. ETSI, 2014.

[19] EndroyonoAchmad Affandi Farah Jihan Aufa. Security system analysis
in combination method: Rsa encryption and digital signature algorithm.
International Conference on Science and Technology (ICST), 2018.

[20] Eric Gershon. New qubit control bodes well for future of quantum
computing. PHYS.org, 2013.

[21] Jeff Gilchrist. Encyclopedia of Information Systems. 2003.

[22] Ginni. What are the role of s-boxes in des. tutorialspoint, 2022.

[23] Ruben Gonzalez. Kyber - how does it work? Approechable Cryptogra-
phy, 2021.

[24] J. Orlin Grabbe. The des algorithm illustrated. Laissez Faire City
Times, Vol 2, No. 28.

[25] M. C. MOLTENI L. NAVA A. GRINGIANI G. GRECO. Integration
of pqc in tls protocol for iot devices. Qubip.eu, 2024.

[26] Amir Herzberg. Applied introduction to cryptography and cybersecu-
rity. ResearchGate, 2023.

116

BIBLIOGRAPHY

[27] Yonghwi Kwon Hyunwoo Lee, Doowon Kim. Tls 1.3 in practice: How
tls 1.3 contributes to the internet. WWW ’21: The Web Conference
2021, 2021.

[28] IBM. Grover’s algorithm. IBM quantum Learning, 2023.

[29] Raymond G. Kammer. Data encryption standard (des). FEDERAL
INFORMATION PROCESSING STANDARDS PUBLICATION, 1999.

[30] krishna693rah. Triple des (3des). geeksgorgeeks, 2024.

[31] JOSH LAKE. the sha-2 algorithm. comparitech, 2023.

[32] Philip Leong. Implementation of an fpga based accelerator for virtual
private networks. researchgate.net, 2002.

[33] Vadim Lyubashevsky. dilithium. https://github.com/itzmeanjan/
dilithium, 2023.

[34] Varun Maram and Keita Xagawa. Post-quantum anonymity of ky-
ber. NTT Social Informatics Laboratories, Department of Computer
Science, ETH Zurich, 2022.

[35] Maschen. Own work. https://commons.wikimedia.org/w/index.php?curid=25757569,
2023.

[36] Peter L Montgomery. A survey of modern integer factorization algo-
rithms. Quarterly, 1997.

[37] Duncan Napier. The ssh protocol. Enterprise Operations Management,
2001.

[38] NIST. Submission requirements and evaluation criteria ,for the post-
quantum cryptography standardization process. NIST, 2016.

[39] NIST. Module-lattice-based key-encapsulation mechanism standard.
FIPS 203, 2023.

[40] NIST. National institute of standards and technology. Technical report,
NIST, 2024.

[41] National Institute of Standards and Technology (NIST). Transitions:
Recommendation for transitioning the use of cryptographic algorithms
and key lengths. Special Publication 800-131A, 2023.

117

https://github.com/itzmeanjan/dilithium
https://github.com/itzmeanjan/dilithium

BIBLIOGRAPHY

[42] National Institute of Standards and Technology. Sha-3 standard:
Permutation-based hash and extendable-output functions. NIST, 2015.

[43] W. Simpson P. Karn, P. Metzger. The esp des-cbc transform. IETF,
1995.

[44] Pramod Pandya. Advanced data encryption. Cyber Security and IT
Infrastructure Protection, 2014.

[45] James A. St. Pierre. Fips 197. Federal Information Processing Standards
Publication, 2023.

[46] preetikintali. What is p-box in cryptography. geeksforgeeks, 2023.

[47] Saleem Raza. Ethereum’s elliptic curve digital signature algorithm
(ecdsa). Medium, 2023.

[48] Oded Regev. crystals/kyber. https://github.com/pq-crystals/
kyber, 2023.

[49] E. Rescorla. The transport layer security (tls) protocol version 1.3.
Internet Engineering Task Force (IETF), 2018.

[50] Redazione RHC. Il q-day si avvicina. e’ necessario introdurre una crit-
tografia resistente ai quanti. Red Hot Cyber, 2024.

[51] Open Quantum Safe. Oqs. https://openquantumsafe.org/, 2023.

[52] Peter W. Shor. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM Journal on Com-
puting, 1997.

[53] Joseph H. Silverman. Ntru and lattice-based crypto: Past, present,
and future. The Mathematics of Post-Quantum Cryptography DIMACS
Center, Rutgers University, 2015.

[54] Kevin S.McCurley. The discrete logarithm problem. American Mathe-
matical Society, 1990.

[55] Gorjan Alagic Daniel Apon David Cooper Quynh Dang Thinh Dang
John Kelsey Jacob Lichtinger Yi-Kai Liu Carl Miller Dustin Moody
Rene Peralta Ray Perlner Angela Robinson Daniel Smith-Tone. Sta-
tus report on the third round of the nist post-quantum cryptography
standardization process. NIST, 2022.

118

https://github.com/pq-crystals/kyber
https://github.com/pq-crystals/kyber

BIBLIOGRAPHY

[56] Jacqueline Speiser. Implementing and comparing integer factorization
algorithms. Applied cryptography Group Stanford, 2018.

[57] George Tasopoulos Jinhui Li Apostolos P. Fournaris Raymond K. Zhao
Amin Sakzad Ron Steinfeld. Performance evaluation of post-quantum
tls 1.3 on resource-constrained embedded systems. Industrial Systems
Institute/Research Center ATHENA, 2021.

[58] SWilson4. liboqs. github, 2020.

[59] FALGUNI A. SUTHAR UNNATI P. PATEL, ASHA K. PATEL. The
study of digital signature authentication process. JOURNAL OF IN-
FORMATION, KNOWLEDGE AND RESEARCH IN COMPUTER
SCIENCE AND APPLICATIONS, 2019.

[60] Nouri Alnahawi Johannes Müller Jan Oupický Alexander Wiesmaier.
Sok: Post-quantum tls handshake. University of Luxembourg Darmstadt
University of Applied Sciences, 2020.

[61] Tom Wiggers. Kem tls. github, 2023.

[62] www.geeksforgeeks.org. Data encryption standard (des). geeksforgeeks,
2023.

[63] Praveen K. Yenduri and Anna C. Gilbert. Continuous fast fourier sam-
pling. University of Michigan, 2009.

[64] T. Ylonen. The secure shell (ssh) transport layer protocol. Cisco Sys-
tems, Inc., 2006.

[65] Pierre-Alain Fouque Jeffrey Hoffstein Paul Kirchner Vadim Lyuba-
shevsky Thomas Pornin Thomas Prest Thomas Ricosset Gregor Seiler
William Whyte Zhenfei Zhang. Falcon: Fast-fourier lattice-based com-
pact signatures over ntru. falcon@ens.fr, 2020.

119

	List of Tables
	List of Figures
	Introduction
	Cryptography
	Mathematical Fundamentals
	The AND operation
	The XOR operation
	Modular Arithmetic
	Finite Fields
	Elliptic Curve
	Permutation
	Lattices
	Basis
	Vector Space
	Norm
	Learning with Error problem
	Closest Vector Problem
	Indistinguishability under chosen plaintext attack
	 Indistinguishability under non-adaptive and adaptive Chosen Ciphertext Attack

	Encryption
	Symmetric Cryptography
	Symmetric Cryptography Algorithms
	DES
	Key Transformation
	Expansion Permutation
	S-box Permutation
	P-box Permutation
	Triple DES
	AES
	Substitute Bytes Transformation
	Shift Rows
	Mix Columns
	Add Round Key

	Symmetric Algorithms application modes
	Electronic Code Book
	Cipher Block Chain
	Counter mode
	Stream Cipher

	Hash Functions
	SHA-2 and SHA-3 algorithms

	Asymmetric Cryptography
	RSA
	Key Generation
	Encryption
	Decryption

	DSA
	Key Generation
	Signing
	Verifying

	ECDSA
	Key Generation
	Signature Generation
	Signature Verification

	Digital Signature
	Algorithms security pillars

	Security Protocols
	Public Key Certificates
	Certicate Authorities

	SSH
	IPsec
	Transport Mode
	Tunnel Mode
	Authentication Header
	Encapsulating Security Payload

	TLS
	TLS record
	TLS Alert Protocol
	TLS handshake
	TLS 1.3

	Post-Quantum Cryptography
	Lattice-based cryptography
	Hash-based cryptography
	CRYSTALS-Kyber
	Key Generation
	Encryption
	Decryption
	Kyber KEM

	CRYSTALS-Dilithium
	Key Generation
	Signature
	Verification
	Numerical Example

	FALCON
	Key Generation
	Numerical Example

	Signature
	Numerical Example

	Verification
	Numerical Example

	SPHINCS+
	Stateful hash-based signatures
	HyperTree
	Key Generation
	Signature
	Verification

	Post-Quantum TLS
	Post-quantum TLS handshake
	Changes to the Digital Certificate
	Modified TLS Handshake
	Mutual Authentication Post-Quantum TLS

	Post-Quantum TLS measurements

	Conclusion

