
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

Integrated Security for IoT:
Methodologies and Certification for

Collaborative Smart Devices

Supervisors

Prof. Luca ARDITO

Dr. Andrea SARACINO

Dr. Marco RASORI

Candidate

Oliver Howard GLANVILLE

November 2024

Abstract

The rapid growth of the Internet of Things (IoT) has created both significant
opportunities and security challenges. IoT devices are increasingly deployed in
dynamic environments, such as smart homes, where securing these devices is critical.
These devices often operate with constrained resources, such as limited memory
and processing power, making it difficult to enforce complex security policies. This
thesis proposes a novel solution to these challenges by leveraging the principles of
Security-by-Contract (S×C) to ensure security compliance through Usage Control
(UCON) across each stage of an IoT device’s lifecycle. The research develops a
framework that allows IoT devices to adhere to dynamic security policies, even in
resource-constrained environments.

The primary objective of this work is to address the security challenges faced
by IoT devices. It integrates S×C principles with UCON, an access control
model that guarantees compliance with security contracts. UCON continuously
validates device actions against predefined policies, ensuring devices perform only
actions that align with security requirements. The novelty of this research lies in
demonstrating how S×C compliance can be effectively managed in resource-limited
IoT environments, where traditional security models often fail due to insufficient
computational resources.

The second objective is to assess the viability of deploying UCON-based S×C
enforcement on resource-constrained devices, such as the Raspberry Pi 4, a widely
used platform in IoT applications. This research uses a distributed architecture
with a Distributed Hash Table (DHT) to manage access control policies across
the network. The focus is on testing the performance, scalability, and security of
UCON, aiming to evaluate whether it can provide strong security with acceptable
performance on lightweight systems.

The experimental setup includes tests for installation, runtime, and revocation per-
formance. Installation tests measure the time required to deploy an IoT application
in a smart home environment, while performance tests focus on handling access
control requests, with emphasis on policy complexity and system behavior as the
number of attributes increases. Revocation tests are critical, as quick revocation is
essential for maintaining security in real-time environments. The results show that
UCON, even on constrained devices, can handle high volumes of requests while
maintaining strong security.

One key finding is that UCON guarantees S×C compliance consistently, even as
the complexity of access control policies increases. Despite some performance

degradation as the number of policy attributes grows, the system maintains ac-
ceptable response times for both access requests and revocations. This indicates
that UCON is a viable solution for securing resource-constrained environments like
smart homes.

In addition to validating the UCON approach, the thesis explores a practical
application by integrating access control mechanisms into a PiCamera system for
video streaming in a smart home. This case study demonstrates how UCON can
control access to sensitive resources, ensuring that only authorized users can view
or control the video feed, further showcasing the scalability and adaptability of the
UCON model in real-world IoT scenarios.

The conclusions confirm that the UCON-based S×C framework is both effective
and feasible for ensuring IoT security. The findings indicate that it is possible to
maintain S×C compliance even under the limitations of small-scale IoT devices,
making this approach suitable for deployment in smart homes. By integrating
S×C with UCON, this thesis represents a significant step forward in enhancing
the security and reliability of IoT ecosystems, ensuring they can scale securely in
complex, dynamic environments.

ii

Acknowledgements

I would like to express my heartfelt gratitude to my family for their unwavering
support throughout this journey. To my mother Sonia, my father Clive Howard,
my sister Emily, and my grandparents Jean, Maria, Sergio, and Simon, your
encouragement and love have meant the world to me.

I am deeply grateful to my girlfriend, Giulia, who has been a constant companion in
my life, providing immense support and understanding. I also wish to acknowledge
her family, particularly Anna Sophia, for their kindness and encouragement.

A special thanks goes to my lifelong friends Lorenzo and Oleg, as well as to those I
have met along this path, Giacomo and Matteo, who I am sure will continue to be
part of my life. I would also like to extend my gratitude to all my friends, including
those not mentioned here, whose unwavering support has been invaluable during
this time.

I would like to express my appreciation to the tutors who supported me in the
creation of this project.

Lastly, I extend my sincere gratitude to the Assiste group for providing me with
the opportunity to grow as an engineer throughout this journey.

Oliver Howard

iii

Contents

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Defining the Internet of Things . 2
1.2 IoT Architectures and Protocols . 2

1.2.1 IoT Communication Protocols 4
1.3 Smart Home Paradigm . 5
1.4 Securing Smart Homes: Key Challenges in IoT Security and Privacy 6
1.5 Access Control Challenges in Constrained Devices for Smart Homes 8
1.6 Examples of Cyber Attacks on IoT Devices in Smart Homes 9
1.7 Overview of My Contributions . 10

2 UCON Framework: State of the Art and Applications 13
2.1 Introduction to the UCON Framework 14
2.2 Components of the UCON Framework 15

2.2.1 Interaction Among UCON Components: Authorization Work-
flow . 18

2.2.2 The Role of XACML in the UCON Framework 20
2.3 A Distributed Architecture for the UCON Framework 23
2.4 Security by Contract . 24
2.5 Practical Applications of UCON Framework: The SIFIS-Home Project 26

3 Proposed Methodology to Enforce S×C Compliance with UCON
on Constrained Devices 29
3.1 UCON as a Mechanism for S×C Compliance 30
3.2 Testing Methodology . 31
3.3 Benefits and Challenges of Deploying UCS on Resource-Constrained

Device . 32

v

3.3.1 Benefits . 32
3.3.2 Challenges . 33

3.4 Objectives of the Testing Methodologies 34
3.4.1 Adherence to S×C Principles 35
3.4.2 Dynamic Monitoring Capabilities 35
3.4.3 Performance Verification . 35
3.4.4 Feasibility Assessment of Security Features 35
3.4.5 User Experience Evaluation 36
3.4.6 Identification of Performance Bottlenecks 36
3.4.7 Revocation and Policy Management Analysis 36
3.4.8 Exploration of Adaptations for Lightweight Systems 36

3.5 Test Framework Architecture and Environment Setup 37
3.5.1 Software Prerequisites . 37
3.5.2 Testing Framework Architecture 38
3.5.3 Workflow of the Testing Process 39
3.5.4 Architecture Overview . 39

3.6 Testing Categories and Strategies 40
3.6.1 Installation Tests . 40
3.6.2 Running Tests . 50
3.6.3 Revocation Tests . 52

3.7 Proposed Modifications to the User Control System 53
3.8 Testing Proposed Modifications . 55

4 Methodologies for Data Collection and Results Evaluation 57
4.1 Data Collection Methodologies . 58
4.2 Test Results for the Usage Control System 59

4.2.1 Installation Tests . 59
4.2.2 Running Tests . 65
4.2.3 Revocation Tests . 67

4.3 Analysis of Usage Control System Test Results 69
4.4 Test Results for the Modified Usage Control System 72

4.4.1 Performance Impact of Disabling Distributed Hash Table
Updates . 72

4.4.2 Performance Impact of Removing Journaling 74
4.4.3 Performance Impact of Direct Policy Integration in tryAccess

Requests . 77
4.5 Analysis of Modified System Test Results 81
4.6 Final Considerations . 83

5 PiCamera IoT Application with UCS on Constrained Devices 85
5.1 Application Development and Deployment 86

vi

5.2 Application Life-Cycle . 87
5.2.1 Installation Phase . 88
5.2.2 Running Phase . 89
5.2.3 Potential Revocation Phase 89

5.3 Considerations . 90

6 Conclusions 91

Bibliography 93

vii

List of Tables

4.1 Average timing results for the complete authorization flow during
the installation process based on the number of requests - Mode 1 . 61

4.2 Average timing results for the complete authorization flow during
the installation process based on the number of requests - Mode 2 . 61

4.3 Average runtime performance results based on the number of at-
tributes in the policy . 66

4.4 Average revocation performance results based on the number of
attributes in the policy . 68

4.5 Average findPolicy performance results based on the number of
loaded policies, ensuring that the applicable policy is always the last
in the set . 78

4.6 Average timing results for the complete authorization flow using the
modified UCS version with the findPolicy operation removed, based
on the number of requests . 79

viii

List of Figures

2.1 UCON Framework architecture. 16
2.2 Initial request processing: PEP sends tryAccess to CH, attribute

retrieval, and policy evaluation . 18
2.3 Policy evaluation: PDP evaluates policy from PAP or PEP, decision,

and session creation . 19
2.4 Transition from initial request to ongoing session: CH enriches the

request with real-time attributes for PDP evaluation 19
2.5 Policy re-evaluation during access: Attribute change and potential

access revocation . 20
2.6 Session termination: Communication of access completion and ses-

sion management . 21

3.1 Architecture of the Test Framework: Interaction between the UCS,
PEP and DHT on the Raspberry Pi 40

4.1 Graphical representation of average timing results for the complete
authorization flow during the installation process based on the num-
ber of requests - Mode 1 . 62

4.2 Graphical representation of average timing results for the complete
authorization flow during the installation process based on the num-
ber of requests - Mode 2 . 62

4.3 Comparative graphical representation of average timing results for
complete requests during the installation process - Modes 1 and 2 . 63

4.4 Graphical representation of the detailed timing breakdown for an
individual authorization flow . 64

4.5 Graphical representation of average execution time for varying num-
ber of attributes during running tests 67

4.6 Graphical representation of average execution time for varying num-
ber of attributes during revocation tests 69

4.7 Comparative graph of average timing results during the installation
process with DHT update enabled and disabled 73

ix

4.8 Comparative graph of average execution time for varying number
of attributes during running tests with DHT update enabled and
disabled . 73

4.9 Comparative graph of average execution time for varying number
of attributes during revocation tests with DHT update enabled and
disabled . 74

4.10 Comparative graph of average timing results during the installation
process with DHT update enabled, disabled, and with journaling
removed . 75

4.11 Comparative graph of average execution time for varying number of
attributes during running tests with DHT update enabled, disabled,
and with journaling removed . 76

4.12 Comparative graph of average execution time for varying number of
attributes during revocation tests with DHT update disabled and
with journaling removed . 76

4.13 Comparative graph of average timing results during the stress tests
with No Journaling and No Journaling + No findPolicy 80

4.14 Comparison of Request Handling Steps Before and After Modification 81

x

Chapter 1

Introduction

According to a study produced by Statista in collaboration with Transforma
Insights in 2024 [1], the number of Internet of Things (IoT) connections worldwide
is approximately 18 billion and is projected to reach 32.1 billion by 2030. This
data not only provides a clearer understanding of the vastness of the IoT market
but also highlights the significant impact that this set of technologies will have in
the coming years.

In this context, the security of IoT devices has emerged as a critical concern. With
the rapid proliferation of connected devices, ensuring robust security measures has
become increasingly challenging. The diverse nature of IoT devices, ranging from
simple sensors to complex systems, introduces unique vulnerabilities. Issues such
as unauthorized access, data breaches, and the difficulty of enforcing consistent
security policies across resource-constrained devices make IoT security one of the
most pressing topics in today’s technological landscape.

This thesis aims to explore the feasibility of implementing the Security-by-Contract
(SxC) paradigm to enforce security policies in restricted environments such as
smart homes. The enforcement of these policies is managed by a Usage Control
System (UCS). The primary objective is to determine whether robust security
measures can be implemented in Internet of Things environments, relying on a
constrained hardware platform as the centralized system. This centralized system,
which operates on lightweight hardware, will be implemented on a Raspberry Pi 4
with 8 GB of RAM, representing the platform used for the UCS in this study.

1

Introduction

1.1 Defining the Internet of Things
Nowadays, the Internet of Things is a hot topic in the technological landscape;
however, it is not a new concept. The idea of connecting "things" over the internet
began with the advent of the internet itself. For instance, the Trojan Room coffee
pot [2], set up at the University of Cambridge in 1991, is often cited as one of the
earliest examples of an IoT device. This coffee pot was connected to the Internet to
allow users to remotely check its status. Similarly, in 1990, John Romkey created
the first internet-connected device, a toaster that could be turned on and off over
the Internet [3].

From its inception, the field of Internet of Things has experienced exponential
growth and is anticipated to continue expanding in the coming years. To provide a
comprehensive overview, it is essential to address the concept of IoT, despite the
absence of a universally accepted definition.

The scientific community has proposed various definitions for IoT. One perspec-
tive describes it as a network that interconnects ordinary physical objects with
identifiable addresses, enabling them to provide intelligent services through tradi-
tional information carriers such as the Internet and telecommunication networks
[4]. Another view defines IoT as a global network of interconnected objects that
are uniquely addressable and based on standard communication protocols [5].

The term "Internet of Things" combines “Internet” and “Things,” encapsulating
its core idea. The real value of IoT lies in its ability to connect a diverse range of
devices, from everyday objects and embedded sensors to context-aware systems
and traditional computing networks. These devices, despite differences in design,
protocols, intelligence, and applications, can communicate and integrate to collect,
process, and exchange data. This connectivity allows for complex operations and
intelligent tasks to be performed both cooperatively and autonomously.

1.2 IoT Architectures and Protocols
The Internet of Things world is characterized by various architectural frameworks
designed to manage and integrate its diverse components. Two of the most widely
recognized and commonly adopted architectures are the three-layer [6] and five-layer
models [7].

Three-Layer Architecture The three-layer architecture is a foundational model
in IoT design. It includes the following layers:

1. Perception Layer (Physical Layer): This layer is responsible for collecting

2

1.2 – IoT Architectures and Protocols

data from the physical environment using devices like RFID tags, barcodes,
sensors, and cameras. Its main role is to sense and gather data from the
real world, converting physical signals into digital information for further
processing.

2. Network Layer: This layer ensures the secure and efficient transmission of
data collected by the perception layer to the application layer. It manages the
communication between devices via both wired and wireless methods, using
technologies such as Wi-Fi, Zigbee, and cellular networks.

3. Application Layer: The application layer processes and analyzes the data
received from the network layer, transforming it into actionable information.
This layer delivers services to end-users and communicates results back to the
perception layer when necessary, closing the feedback loop in IoT systems.

Five-Layer Architecture Building upon the three-layer model, the five-layer
architecture introduces two additional layers to enhance functionality and control.
This architecture consists of:

1. Perception Layer: As in the three-layer architecture, this layer handles
the collection of data from the physical world using various sensors and
technologies, acting as the interface between the physical and digital realms.

2. Network Access Layer: This layer, also known as the access gateway layer,
manages communication within local environments. It handles the connection
of nodes from the perception layer to the network, processing the initial
data and ensuring efficient transmission via base stations, gateways, or other
network infrastructure components.

3. Network Transmission Layer: This layer ensures end-to-end data trans-
mission across large-scale networks, including satellite, mobile, and optical
fiber networks. It handles the neutral access and seamless integration between
different communication protocols, ensuring reliable data exchange across
diverse networks.

4. Application Support Layer: This layer provides support for data processing,
storage, and intelligent analysis. It leverages cloud computing, middleware,
and database technologies to enable scalable, flexible, and efficient management
of IoT data. The application support layer ensures that information from the
perception layer is processed and prepared for specific IoT applications.

5. Application Presentation Layer: The final layer in the five-layer architec-
ture is responsible for presenting processed data and information to users. This
layer focuses on developing user interfaces and applications using multimedia,

3

Introduction

virtual reality, and other technologies to ensure seamless interaction between
IoT systems and end-users.

1.2.1 IoT Communication Protocols
In addition to the architectural models, IoT relies heavily on a wide range of
communication protocols tailored to the specific needs of different applications.
These protocols can generally be divided into two main categories: Low Power
Wide Area Networks (LPWAN) and short-range networks [8].

LPWAN Protocols LPWAN protocols are designed to cover large distances
while consuming minimal power. Two notable protocols in this category are:

• Sigfox: Sigfox is a low-power communication technology used for transmitting
small amounts of data over distances up to 50 kilometers. It operates on
Ultra Narrow Band (UNB) technology, with low data rates (10-1,000 bits
per second) and is ideal for applications like smart meters and environmental
sensors. Sigfox supports star topology and is commonly used in low-energy
IoT applications that require infrequent communication.

• Cellular: Cellular networks, such as GSM, 3G, and 4G, provide high-speed
connectivity over long distances, making them suitable for applications requir-
ing significant data throughput. However, due to their high power consumption,
they are less suitable for low-power IoT devices and M2M communication.
Cellular networks are often used in mobile IoT applications, where power
sources are not a constraint.

Short-Range Network Protocols Short-range networks are optimized for low
power consumption and are typically used in local environments. Some common
protocols include:

• 6LoWPAN: This protocol is widely used in IoT due to its ability to en-
able IPv6 communication over low-power wireless networks (IEEE 802.15.4).
6LoWPAN supports both star and mesh topologies, offering flexibility in
network design, and is well-suited for battery-powered devices.

• Zigbee: Zigbee, based on the IEEE 802.15.4 standard, is designed for low-
data-rate and low-power applications. It supports various network topologies
such as star, mesh, and tree, making it a versatile option for IoT devices
requiring extended battery life and secure communication.

• BLE (Bluetooth Low Energy): BLE is optimized for low power consumption
and short-range communication, often used in IoT applications that require

4

1.3 – Smart Home Paradigm

quick data exchanges over short distances, such as wearables and smart home
devices. BLE supports star topologies and can manage a large number of
nodes.

• RFID: RFID uses radio frequency to communicate between a reader and a
tag. It is commonly used for identification and tracking applications, such
as in smart shopping and healthcare systems. RFID can operate with both
active (battery-powered) and passive tags, with a range that varies depending
on the system used.

• NFC (Near Field Communication): NFC is a short-range protocol that allows
data exchange between devices within a few centimeters. It is often used
in mobile payments and access control systems, and supports peer-to-peer
communication.

• Z-Wave: Z-Wave is another low-power protocol designed for home automation
and small-scale IoT networks. It supports mesh topologies and is optimized
for small data transfers, making it ideal for applications like smart lighting
and energy control.

In summary, the choice of IoT communication protocol depends heavily on the
specific requirements of the application, such as range, power consumption, and
data rate. Each protocol offers different strengths in terms of topology, security,
and performance, ensuring that IoT systems can be tailored to meet the unique
demands of various use cases.

1.3 Smart Home Paradigm
The Internet of Things has revolutionized the concept of smart homes, where
devices and appliances are interconnected through intelligent systems that enhance
convenience, efficiency, and security. A smart home is defined as a residence
equipped with a communication network that allows for remote control, monitoring,
and access to various appliances and services, both from within and outside the
home [9]. The core components of a smart home are an internal network, intelligent
control, and automation systems. The internal network can be based on wired,
wireless, or hybrid communication technologies, while intelligent control is often
implemented through gateways that manage connectivity between devices and
external services [9].

Smart home networks typically use technologies such as powerline communication
(PLC), busline systems, and radio frequency (RF). Powerline systems leverage ex-
isting electrical wiring to transmit data, making them cost-effective but susceptible
to power interruptions and interference. Busline systems, which use dedicated

5

Introduction

cables for communication, offer more robust performance but require additional in-
frastructure. RF-based systems, such as Zigbee and Bluetooth, are widely adopted
for their wireless flexibility, though concerns remain over interference and security
vulnerabilities [10].

One of the key advantages of smart homes is their ability to automate routine tasks
based on user behavior or environmental conditions. For instance, sensors can
detect when residents enter or leave a room, adjusting lighting, heating, and other
systems accordingly. Moreover, smart homes can provide advanced services such as
eldercare and healthcare monitoring, where data from sensors is used to track the
well-being of residents and issue alerts when necessary [10]. Additionally, smart
home systems can be designed to optimize energy consumption by monitoring and
controlling appliances to reduce power usage during peak times, contributing to
energy efficiency [10].

While the technology underpinning smart homes has advanced significantly, chal-
lenges remain in areas such as data privacy, security, and the complexity of
integrating multiple devices and systems. The continuous evolution of AI, sensor
technologies, and IoT protocols will be crucial in addressing these issues and further
enhancing the capabilities of smart homes.

In summary, the smart home paradigm represents a significant application of
IoT, offering residents increased control, convenience, and safety. By leveraging a
combination of network protocols and intelligent control systems, smart homes can
automate daily activities and provide valuable services.

1.4 Securing Smart Homes: Key Challenges in
IoT Security and Privacy

The integration of Internet of Things devices into smart homes brings numerous
benefits, such as increased convenience and automation. However, this connectiv-
ity also introduces significant security and privacy challenges. Addressing these
challenges is crucial to ensuring the safety and privacy of users in a smart home
environment.

One of the primary concerns is the security vulnerabilities inherent in IoT devices.
Many smart home devices are mass-produced with limited security measures,
making them susceptible to cyberattacks. The deployment of similar devices across
a network can amplify vulnerabilities; a single compromised device can potentially
jeopardize the entire system. Devices often have default or weak passwords and
minimal encryption, which can be exploited by attackers to gain unauthorized
access to the network [11].

6

1.4 – Securing Smart Homes: Key Challenges in IoT Security and Privacy

Authentication and access control also pose significant challenges. Many IoT
devices use outdated or insufficient authentication methods, leaving them open
to unauthorized access and attacks. The diversity of devices and platforms used
in smart homes complicates the implementation of consistent security measures.
For instance, smart locks, cameras, and lighting systems may each use different
authentication methods, creating a fragmented security landscape that is difficult
to manage.

Privacy concerns are another major issue. IoT devices continuously collect and
transmit vast amounts of personal data, often without adequate protection. This
data can include sensitive information such as location, audio, and video recordings.
The ubiquitous nature of these devices means that users’ data is frequently trans-
mitted over networks that may not be secure, exposing it to potential breaches
[11].

A significant challenge to securing smart homes is the lack of standardization across
IoT devices. Different manufacturers use proprietary standards, making it difficult
to ensure interoperability and implement consistent security measures. Without
unified standards, securing a network of diverse devices becomes challenging.
Standardization could improve device integration and simplify the application of
comprehensive security protocols across various devices [6].

Additionally, the infrequent release of security updates for IoT devices exacerbates
these issues. Many devices receive updates irregularly, leaving them vulnerable to
newly discovered threats. Manufacturers often prioritize new product development
over maintaining security for existing devices, which can leave older devices exposed
to potential attacks [11].

These challenges become even more significant when examining the security vul-
nerabilities across the three layers of the IoT architecture previously outlined in
Section 1.2. Each of these layers—perception, network, and application—faces
distinct threats that must be addressed.

At the Perception Layer the main issues relate to the strength and integrity of
the wireless signals used for communication. These signals can be disrupted or
intercepted making them vulnerable to physical attacks. Attackers can tamper with
the hardware or capture nodes, compromising the entire system’s confidentiality
through replay attacks or by gaining access to encryption keys via timing attacks.
Limited storage capacity, power consumption, and computational ability also make
devices in this layer particularly susceptible to threats like denial of service (DoS)
attacks, which drain device resources and energy [12].

At the Network Layer, the security risks revolve around the possibility of traffic
interception and data breaches. The use of remote access mechanisms and the

7

Introduction

exchange of information between devices creates vulnerabilities, especially to man-in-
the-middle (MITM) attacks. Attackers can eavesdrop on communication channels,
steal key material, and compromise the secure exchange of data. The heterogeneous
nature of IoT devices further complicates the application of consistent security
protocols, as existing network protocols often struggle to accommodate the unique
demands of machine-to-machine (M2M) communication in IoT systems [12].

The Application Layer is vulnerable due to the lack of unified global policies and
standards for IoT application development. The diverse range of authentication
mechanisms used across different applications makes it difficult to ensure the
privacy of user data. Additionally, the large volume of data shared between
connected devices can lead to system overloads, impacting the availability of
services. Applications that fail to adequately secure personal data may expose
sensitive user information, making it imperative for users to have tools that allow
them to control and monitor the data they disclose [12].

In conclusion, while smart home technologies offer numerous advantages, they also
present several security and privacy challenges. Addressing these challenges requires
a comprehensive strategy that includes enhancing device security, implementing
robust authentication and access control measures, improving privacy protections,
standardizing protocols, and ensuring regular security updates.

This thesis addresses these critical issues by proposing an innovative solution
through the application of the Security-by-Contract paradigm, facilitated by the
Usage Control System, which provides an effective solution for managing security in
resource-constrained environments, such as smart homes. The research highlights
the practical deployment of the UCS on lightweight platforms like the Raspberry
Pi, demonstrating its capability to enhance IoT security.

The integration of advanced access control mechanisms within these systems offers a
promising approach to safeguarding user data and privacy in the evolving landscape
of smart home technology.

1.5 Access Control Challenges in Constrained
Devices for Smart Homes

In the context of smart homes, the majority of Internet of Things devices are
resource-constrained, meaning they operate with limited computational power,
memory, and energy. These limitations stem from the need for IoT devices to
remain small, energy-efficient, and cost-effective, but they also introduce significant
security challenges. Traditional access control mechanisms, such as Role-Based
Access Control (RBAC) or Attribute-Based Access Control (ABAC), which rely on

8

1.6 – Examples of Cyber Attacks on IoT Devices in Smart Homes

centralized systems and require substantial processing power, are often not feasible
for such devices [13]. Moreover, the dynamic and heterogeneous nature of smart
home environments, where devices frequently join or leave the network, complicates
the enforcement of security policies in real time.

A critical issue is finding ways to enforce fine-grained policies on constrained devices
without overwhelming their limited resources. For example, while ABAC offers
greater flexibility in policy management by using attributes rather than explicit
user identities, its implementation can demand frequent updates and recalculations
of policies, which can be burdensome for constrained devices [13]. Lightweight
communication protocols are also essential to reduce the overhead on these devices
while maintaining secure interactions. However, many existing solutions rely on
computationally expensive cryptographic methods, which may not be suitable for
resource-limited devices.

To address these challenges, this thesis proposes the Usage Control System as
a more effective approach to securing constrained devices. The UCS enforces
security policies dynamically by continuously monitoring and controlling the usage
of resources. By leveraging lightweight hardware, such as a Raspberry Pi, the
UCS can enforce fine-grained access control policies without overburdening the
devices, thus offering a practical solution for managing security in smart homes
[13]. This approach ensures that security remains robust while accommodating the
limitations of constrained devices, making it a promising solution for addressing
the unique challenges of IoT environments.

1.6 Examples of Cyber Attacks on IoT Devices
in Smart Homes

The security of smart home IoT devices has been compromised in various high-
profile incidents, revealing significant challenges in access control enforcement
and the inherent limitations of constrained devices. These cases highlight how
vulnerabilities in device security policies, coupled with the limited processing power
and memory of IoT devices, can lead to severe security breaches, affecting the
privacy and safety of users.

The following examples aim to illustrate the potential risks faced by IoT devices in
smart homes, emphasizing how attackers can exploit weaknesses in access control
and authorization mechanisms. These real-world incidents underscore the critical
need for robust security solutions that can effectively manage access to IoT devices,
even in resource-constrained environments.

9

Introduction

Ring Camera Breach In December 2019, Ring home security cameras were
hacked, with attackers exploiting reused credentials to gain unauthorized access.
This incident highlighted the difficulties in enforcing strong access control policies.
Despite Ring’s efforts to promote multi-factor authentication, the vulnerability
stemmed from users’ failure to adopt recommended security practices. The breach
exposed the limitations of relying solely on passwords for device security, emphasiz-
ing the need for improved enforcement of access policies [14].

Z-Wave Downgrade Attack The 2018 discovery of a vulnerability in the Z-
Wave protocol, a wireless communication standard used for home automation
and IoT devices, underscored the challenges associated with enforcing security
standards on such devices. The attack exploited the ability to force devices to
downgrade from a secure to an insecure version of the protocol. This flaw, rooted in
the support for outdated security mechanisms, revealed how constraints in device
capabilities and compatibility issues can undermine security. The incident stressed
the importance of consistent enforcement of updated security protocols across all
devices [15].

Verkada Camera Incident In March 2021, Verkada experienced a security
breach where attackers gained access to customer data through a misconfigured
support server. The attackers exploited internal vulnerabilities to access devices and
data. This incident demonstrated the risks associated with managing and securing
IoT devices when backend support systems are compromised. It highlighted the
need for rigorous enforcement of access controls and the challenges of protecting
device data from unauthorized access [16].

Casino Hack via IoT Thermometer A notable incident involved hackers
targeting a casino through an IoT thermometer in a lobby aquarium. This breach
illustrated how seemingly benign IoT devices can become attack vectors if not
properly secured. The attackers used the thermometer to infiltrate the network
and access sensitive information, showcasing the risks associated with inadequate
security measures for IoT devices. It underscored the need for stringent security
standards and regulations for all IoT devices to prevent such vulnerabilities [17].

1.7 Overview of My Contributions
This thesis investigates the application of the UCON (Usage Control) framework
for ensuring Security-by-Contract (S×C) compliance in smart home environments.
My research makes two key contributions that address both the practical and
theoretical aspects of deploying this framework on lightweight systems.

10

1.7 – Overview of My Contributions

Firstly, I propose using the UCON framework to enforce S×C, modeling its com-
ponents—application (A), contract (C), and policy (P)—in a manner compatible
with UCON’s principles. Policies and requests follow XACML standards, ensuring
that S×C compliance is enforced. The goal is to demonstrate, through practical
examples, how the Usage Control System (UCS) can manage real-time access
control in dynamic environments, such as smart homes. Rigorous testing validated
the UCS’s ability to enforce access policies and respond to rapid changes, shedding
light on the framework’s role in enhancing IoT security.

Secondly, I explore the feasibility of deploying UCON on constrained devices, such
as the Raspberry Pi. By testing a modified UCS on these platforms, I show that
the framework can maintain effective access control even with limited resources,
making it a promising security solution for lightweight IoT devices.

A significant aspect of this work involved evaluating the UCON framework’s per-
formance through tests in installation, runtime performance, and access revocation.
These tests confirm that the UCON framework can deliver consistent security
guarantees, even under limited computational resources, proving that robust access
control can be achieved on IoT devices in smart home settings.

The thesis is structured as follows: Chapter 2 reviews existing access control models,
focusing on UCON and S×C, and examines related concepts from the SIFIS-Home
project.

Chapter 3 describes the methodology for testing the UCS on constrained devices
like the Raspberry Pi 4, outlining the experiments to assess installation time,
policy enforcement efficiency, and the handling of access control requests, including
revocation under real-world conditions.

Chapter 4 presents the experimental results, analyzing how UCON handles complex
policies and access revocation. The findings demonstrate the viability of using
UCON to enforce S×C compliance in resource-constrained devices, with implications
for scalability in dynamic smart home environments.

Chapter 5 explores the practical application of UCON by integrating the UCS with
a PiCamera system for video streaming within a smart home. This case study
illustrates how UCON can manage access to sensitive resources and demonstrates
its flexibility in real-world IoT applications.

The final chapter summarizes the contributions, discusses the implications of the
findings, and highlights the potential for UCON-based S×C enforcement in smart
homes, paving the way for future developments in secure, scalable IoT systems.

Through these contributions, this thesis not only validates the theoretical framework
of S×C but also demonstrates its practical applicability.

11

12

Chapter 2

UCON Framework: State of
the Art and Applications

This chapter provides a comprehensive examination of the UCON framework, with
a particular focus on its application in distributed architectures. It begins by
discussing the framework’s foundational aspects, including its design principles and
the specific challenges it addresses.

The discussion covers the core components and interactions within UCON, high-
lighting how these elements work together to ensure robust security features. A
detailed exploration of the theory behind distributed environments is also presented,
offering insights into how UCON integrates within these contexts.

Following the theoretical overview, the chapter transitions to a practical application
within the Internet of Things domain, exemplified through an in-depth analysis
of the SIFIS-Home project. This case study illustrates how UCON principles are
applied in real-world scenarios, detailing the design and development of security
systems within the project.

Overall, the chapter aims to bridge theoretical concepts with practical implementa-
tions, providing a thorough understanding of both the theoretical underpinnings
and real-world applications of UCON in distributed systems.

13

UCON Framework: State of the Art and Applications

2.1 Introduction to the UCON Framework
The UCON framework represents a significant advancement over traditional access
control systems by addressing their limitations through more dynamic and flexible
security mechanisms. Unlike conventional models that assess access rights solely at
the time of a request, UCON integrates continuous monitoring and adaptive evalu-
ation to manage and regulate access and usage of resources more comprehensively
[18].

Overview of UCON UCON expands upon traditional access control paradigms
by introducing continuous monitoring and dynamic evaluation capabilities. Tra-
ditional access control mechanisms, such as Mandatory Access Control (MAC),
Discretionary Access Control (DAC), Role-Based Access Control (RBAC), and
Attribute-Based Access Control (ABAC), generally focus on static, request-time
evaluations, where access is granted or denied based on fixed rules [19]. In contrast,
UCON incorporates ongoing authorizations and obligations that ensure compliance
throughout the entire duration of access. This approach allows UCON to adapt to
changing conditions and user behaviors, providing a more flexible and responsive
security solution [18].

Design Principles and Objectives The design of the UCON framework is
built around several key principles that enhance its flexibility and effectiveness in
managing security policies. It introduces three core components: subjects, objects,
and rights, supplemented by additional elements such as authorizations, obligations,
and conditions [18]. These components work together to create a robust model
capable of handling complex security scenarios. For example, UCON can manage
policies that involve temporal constraints, such as limiting access based on the
duration or frequency of use, which traditional models cannot easily accommodate
[19].

The primary objectives of UCON are to provide a more nuanced approach to access
control and to address the challenges posed by modern, dynamic environments.
By incorporating the ability to enforce and adapt to policies in real-time, UCON
improves upon the rigidity of traditional models. This dynamic capability ensures
that access rights are not only granted according to predefined rules but are
also continuously monitored and adjusted based on real-time data and conditions
[18]. As a result, UCON enhances the overall security posture of systems by
accommodating complex and evolving security requirements [19].

Problems Addressed by UCON UCON addresses several critical limitations
inherent in traditional access control models. Traditional approaches—including

14

2.2 – Components of the UCON Framework

Role-Based Access Control and Attribute-Based Access Control—often fall short
in scenarios requiring ongoing compliance with security policies, as they typically
evaluate access rights only at the moment a request is made, as discussed in
Section 1.5, where the limitations of traditional models are highlighted. For
example, UCON can enforce policies that depend on mutable attributes or dynamic
conditions—such as ensuring that a subject’s access rights remain valid only while
certain environmental conditions are met. This ability to continuously monitor
and adjust access rights based on real-time changes is a significant improvement
over static, request-time evaluations [18].

UCON introduces the concept of mutable attributes—allowing for more dynamic
and sophisticated policy enforcement. In particular, it enables the system to update
access permissions even during an ongoing interaction, or "active session." An active
session refers to a period when a user has been granted access and is currently
interacting with a system or resource. If, during such a session, the value of an
attribute changes—such as a shift in the security status of a resource—UCON
can dynamically revoke access if necessary. This ongoing evaluation of access
rights addresses the risks associated with static policies—which may no longer
be sufficient in adapting to evolving security threats [19]. By addressing these
challenges, UCON provides a more adaptable and secure framework for managing
access in complex and variable environments [18].

2.2 Components of the UCON Framework
The UCON framework serves as a comprehensive architecture designed to manage
access to resources through a dynamic and continuous approach. At its core lies
the Usage Control System, responsible for evaluating and enforcing Usage Control
Policies (UCPs). In addition to the UCS, two external components play crucial roles
in the overall operation: the Attribute Manager (AM) and the Policy Enforcement
Point (PEP).

The following sections present an overview of the framework’s architecture, followed
by detailed explanations of each component. This includes a distinction between
components that form the core UCS and essential external entities that support its
functionality.

15

UCON Framework: State of the Art and Applications

Subject

Policy Enforcement Point (PEP)

Context Handler (CH)

Policy Decision Point (PDP)

Policy Access Point (PAP)

Session Manager (SM)

Policy Information Point (PIP)

Policy Information Point (PIP)

Attribute Manager (AM)

Attribute Manager (AM)

Usage Control System

Figure 2.1: UCON Framework architecture.

Figure 2.1 illustrates the interactions between the internal components of the UCS
and the external entities. Each component contributes to the effective management
of access control and policy enforcement.

Policy Enforcement Point (PEP) The PEP operates outside the UCS and
serves as the gateway for controlling access to resources. This component intercepts
requests from external subjects and interacts with the UCS to determine whether
to permit, deny, or revoke access. When a subject initiates an access attempt,
the PEP sends a tryAccess request to trigger the authorization workflow. While
the PEP plays a crucial role in managing access, the logic for revoking access
resides within the UCS. The PEP executes commands issued by the UCS, such
as revokeAccess, thereby ensuring that the policies enforced by the UCS can be
applied continuously throughout an active session [19].

16

2.2 – Components of the UCON Framework

Policy Administration Point (PAP) The PAP forms part of the core UCS
and is responsible for managing and storing Usage Control Policies that govern how
access is controlled. All policies determining access rights, including pre-conditions,
ongoing conditions, and post-conditions, reside here, ensuring that the system
always refers to up-to-date rules for decision-making.

Policy Decision Point (PDP) The PDP serves as the decision engine of the
UCS. This component evaluates UCON requests against the policies stored in the
PAP, determining whether a subject can access a resource. While the PAP is the
primary source for these policies, it is worth noting that the trusted PEP could also
provide policies for evaluation. Critical for ensuring compliance with the policies
defined by the administrator, the PDP evaluates pre-conditions (at the time of the
request), ongoing conditions (throughout the session), and post-conditions (after
access ends), enabling continuous enforcement of usage policies [19].

Attribute Managers (AMs) AMs operate as external components responsible
for providing the UCS with up-to-date information about the attributes of subjects,
resources, and environmental conditions. These attributes are crucial for evaluating
UCON requests. As independent entities, AMs can be queried or subscribed to
when the UCS needs to evaluate conditions based on attribute changes.

Policy Information Points (PIPs) PIPs function as intermediaries between
the AMs and the UCS. Positioned within the UCS, they retrieve, subscribe to,
and monitor attribute values from the AMs. PIPs supply the Context Handler
with real-time attribute information, facilitating the dynamic evaluation of access
policies. Although PIPs interface with external AMs, their coordination role places
them firmly within the UCS.

Session Manager (SM) The SM is responsible for managing the lifecycle of
access sessions within the UCS. Each session, uniquely identified and tracked,
follows a sequence from the initial access request to its completion or revocation.
By maintaining session state, the SM ensures that all actions within the UCON
framework are monitored, keeping appropriate records of ongoing and terminated
access.

Context Handler (CH) The CH serves as the orchestrator of the UCS, managing
the flow of messages between all internal components (e.g., PDP, PIPs) and
external ones (e.g., AMs, PEP). This component ensures that UCON requests are
evaluated at the correct stages—before, during, and after access—by coordinating

17

UCON Framework: State of the Art and Applications

the evaluation of UCPs and updating the SM as required. Its coordination role
makes it the central hub of the UCS.

2.2.1 Interaction Among UCON Components: Authoriza-
tion Workflow

The UCON framework effectively regulates access to resources by facilitating contin-
uous monitoring and enforcement of access rights through its various components.
Central to this operation is the interaction between the Policy Enforcement Point,
Policy Decision Point, Policy Administration Point, Attribute Managers, Policy
Information Points, Session Manager, and Context Handler.

PEP CH

PIP

AM

1. tryAccess
2. Retrieve Attribute Values

3. Provide Attribute Values

4. Request Enriched

Figure 2.2: Initial request processing: PEP sends tryAccess to CH, attribute
retrieval, and policy evaluation

When a subject requests access to a resource, the PEP initiates the process by
generating a UCON request and sending a tryAccess message to the CH. This
request includes necessary identifiers for the subject, resource, and action. Upon
receiving this message, the CH enriches the request by retrieving current attribute
values from the PIPs, which act as intermediaries between the CH and AMs. This
interaction ensures that the most up-to-date information is available for evaluation.
We refer to this phase as "fattening," as it involves augmenting the request with
additional attribute data.

Next, the CH instructs the PDP to identify an applicable UCP from the PAP. In
some cases, the trusted PEP may also provide policies for evaluation, especially
when it has locally cached or pre-configured policies relevant to the specific request.
The PDP then evaluates the pre-section of the UCP, whether retrieved from the
PAP or provided by the trusted PEP, against the enriched UCON request. If this
evaluation results in a permit decision, the CH communicates to the SM to create a
new session, marking the access status as TRY_ACCESS. A permitAccess message

18

2.2 – Components of the UCON Framework

is then sent to the PEP, granting the subject access to the resource.

CH PDP

PAP

SM

PEP
8. permitAccess OR denyAccess

7. Create Session

5. Retrieve Policy

6. Decision Made
4. Request Enriched

Figure 2.3: Policy evaluation: PDP evaluates policy from PAP or PEP, decision,
and session creation

Once access is granted, the PEP sends a startAccess message to the CH, which
includes the Session ID (SID) that was communicated to the PEP by the UCS in
response to the initial tryAccess request. The CH then uses the SID to query the SM
to retrieve the original access request associated with the session. Once the original
request is retrieved, the CH enriches it with updated real-time attribute values,
ensuring that the ongoing decision is based on the most current data available.

The enriched request, along with the ongoing section of the UCP, is sent to the
PDP for further evaluation. If the ongoing decision results in a permit, the session
status is updated to START_ACCESS. At this point, the CH subscribes to the
relevant PIPs to monitor mutable attributes in real-time, allowing for continuous
assessment of attribute changes that may affect the session’s access permissions.

CH PDP

PIP

SM

PEP 9. startAccess
14. permitAccess OR revokeAccess

10. Retrieve Real-time Attribute Values 15. Subscription to relevant PIPs

11. Request Enriched
12. Decision Made

13. Update Session Status

Figure 2.4: Transition from initial request to ongoing session: CH enriches the
request with real-time attributes for PDP evaluation

19

UCON Framework: State of the Art and Applications

The continuous monitoring capability is a key feature of the UCON framework. If
any of the monitored mutable attributes’ values change during the session, the CH
triggers a policy re-evaluation using the latest data. If the PDP determines that
the ongoing conditions are no longer satisfied, a revoke decision is issued. The CH
then updates the session status to REVOKE_ACCESS and instructs the PEP to
revoke access.

CH

PIP

PDPPEP

SM

1. Attribute Value Change

2. Trigger Re-evaluation
3. Revoke Decision

4. revokeAccess

5. Update Session Status

Figure 2.5: Policy re-evaluation during access: Attribute change and potential
access revocation

Conversely, if the conditions remain valid, the access grant continues uninterrupted.
This dynamic adjustment of access rights exemplifies the UCON framework’s
superiority over traditional access control mechanisms, which typically assess rights
only at the time of the request.

Finally, upon completion of the access, the PEP communicates this to the CH via
an endAccess message. This message signifies that the session has either concluded
naturally or has been revoked due to a policy violation. The CH then instructs the
SM to terminate the session, thus ensuring a clear and comprehensive management
of access rights throughout the entire process [19].

2.2.2 The Role of XACML in the UCON Framework
The UCON framework leverages the eXtensible Access Control Markup Language
(XACML) as a foundational element for specifying and enforcing access control
policies. This choice stems from XACML’s robust capabilities and its suitability for
managing complex and dynamic access scenarios inherent in contemporary systems,
including the Internet of Things.

XACML provides a standardized language that facilitates the expression of Usage
Control Policies within the UCON framework. The benefits of employing XACML

20

2.2 – Components of the UCON Framework

PEP CH

SM

1. endAccess Message

2. Terminate Session

Figure 2.6: Session termination: Communication of access completion and session
management

are manifold. Firstly, being a widely recognized standard, XACML enhances
interoperability among diverse applications and systems. This interoperability is
crucial in scenarios where multiple entities—such as various Attribute Managers
and external systems—must collaborate seamlessly. The standardized format allows
for consistent policy management and decision-making processes, reducing the
complexities associated with integrating disparate systems.

Secondly, the generic nature of XACML enables the deployment of policies across
various platforms. A single policy written in XACML can serve multiple applica-
tions, thus simplifying policy administration. This characteristic is particularly ad-
vantageous in dynamic environments like IoT, where devices and services frequently
change. By utilizing a common policy language, organizations can streamline
the management of access controls, ensuring that policies are easily adaptable to
evolving requirements.

Moreover, XACML supports a distributed approach to policy management. Policies
can reference other policies stored remotely, allowing for a modular structure where
different users or groups can manage distinct sets of policies. This distributed
nature not only facilitates collaborative policy development but also enhances the
overall flexibility of the access control model. By integrating results from various
policies, XACML provides a comprehensive decision-making framework that reflects
the complex interactions present in dynamic systems [20].

Additionally, the power of XACML lies in its support for a wide range of data
types and functions, as well as its ability to combine results from different policies
effectively. This capability is crucial in scenarios where access decisions depend on
various attributes, such as those related to the subject, resource, and environmental
conditions. The extensibility of XACML is further complemented by ongoing
developments in standards that integrate it with other technologies, such as Security
Assertion Markup Language (SAML) and Lightweight Directory Access Protocol

21

UCON Framework: State of the Art and Applications

(LDAP). This adaptability positions XACML as a versatile solution for future-
proofing access control implementations.

Finally, the flexibility inherent in XACML aligns well with the dynamic nature of
modern systems, including the IoT. As environments change—whether through
alterations in user roles, resource availability, or contextual factors—XACML’s
Attribute-Based Access Control (ABAC) model allows for real-time adjustments to
access rights. This ensures that access control remains robust and responsive to
the needs of the organization, maintaining security while enabling efficient resource
use.

In summary, the incorporation of XACML within the UCON framework not only
enhances the effectiveness of policy communication and enforcement but also aligns
with the evolving landscape of technology, particularly in dynamic environments
such as the IoT. By harnessing the capabilities of XACML, the UCON framework is
well-equipped to address the complexities of contemporary access control challenges
[20].

In addition to the standard XACML features, the UCON framework incorporates
U-XACML, an extension specifically designed for expressing Usage Control Policies.
U-XACML introduces constructs that address the need for continuous policy
enforcement, which is vital for dynamic environments. It allows for conditions to be
evaluated at different stages of the access control process through the DecisionTime
clause. This clause can specify whether the evaluation occurs at the pre-decision
stage (pre) or continuously during access (ongoing) [21].

Furthermore, U-XACML enhances the ObligationExpression element with a similar
DecisionTime clause, which defines when obligations should be executed—pre, on,
or post the access request. The latter is especially important in usage control
scenarios, as it allows for the enforcement of obligations not only before access is
granted but also during and after the session, thus ensuring compliance throughout
the resource’s use.

To handle mutable attributes effectively, U-XACML introduces the 〈AttrUpdates〉
element, which details how and when attribute updates should be managed. This
element permits updates at various stages: pre, on, or post the access request.
By doing so, U-XACML ensures that access decisions remain valid and relevant,
adapting to changes in the context or user status as they occur.

In summary, U-XACML’s capabilities for pre, ongoing, and post evaluation of
conditions and obligations provide a robust framework for continuous access control
within the UCON model, aligning seamlessly with the evolving demands of modern
systems, including those within the IoT landscape [21].

22

2.3 – A Distributed Architecture for the UCON Framework

2.3 A Distributed Architecture for the UCON
Framework

As the Internet of Things continues to expand within industrial settings, managing
usage control policies becomes increasingly complex due to the diversity of devices
and their functionalities. Traditional centralized models of the UCON framework
often face limitations in scalability and fault tolerance, primarily because they are
ill-equipped to handle the heterogeneous nature of connected devices in Industrial
IoT (IIoT) environments. In response to these challenges, a distributed architecture
for the UCON framework has been developed, providing a more robust and flexible
solution for managing usage control across multiple devices [22].

This distributed architecture operates on a peer-to-peer (P2P) basis, where each
device in the IIoT ecosystem functions as an independent node. Each node
is responsible for enforcing usage control policies autonomously, allowing for a
decentralized approach that diminishes reliance on a central authority. This design
not only enhances scalability but also reduces the risk of single points of failure,
which are prevalent in traditional centralized systems. In this framework, every
node incorporates key components such as the Policy Administration Point, Policy
Decision Point, and Policy Information Points. These components work in tandem
to evaluate incoming requests and determine the appropriate course of action based
on both local and remote attributes [22].

One of the most significant benefits of this architecture is its capacity to utilize data
gathered from various devices within the network. This enables the formulation of
more complex and context-aware policies that adapt to real-time conditions. By
leveraging a Distributed Hash Table, nodes can efficiently share information about
their attributes and states, facilitating a comprehensive view of the operational
environment [22]. This capability is crucial for maintaining an updated and accurate
assessment of the system’s status, which is particularly important in dynamic IIoT
environments.

In the context of this thesis, the distributed architecture provides a practical
framework for evaluating the performance of the Usage Control System. The study
specifically examines the implementation of the UCS on constrained devices such as
the Raspberry Pi 4. The distributed nature of the architecture allows for effective
management and enforcement of usage control policies even on such lightweight
hardware, thereby demonstrating the capability of the UCS to operate efficiently
in resource-constrained environments.

The distributed architecture significantly enhances fault tolerance as well. In
cases where one or more nodes become unavailable, the remaining devices can

23

UCON Framework: State of the Art and Applications

still maintain functionality and ensure the enforcement of control policies. This
resilience is a key advantage, as it allows the system to continue operating smoothly
even in the face of unexpected disruptions. Furthermore, the architecture supports
the replication of critical information across multiple nodes, ensuring that essential
data is not lost and that the decision-making process remains uninterrupted.

In addition to these advantages, the distributed UCON framework promotes
adaptive decision-making by dynamically redistributing responsibilities among the
nodes based on their current capabilities and availability. This adaptability is
vital in an IIoT setting, where conditions can change rapidly and the operational
context may vary significantly between different devices. As a result, the proposed
framework not only supports real-time decision-making processes but also enhances
the overall security and compliance of the connected devices across the IIoT
landscape [22].

In conclusion, the adoption of a distributed architecture for the UCON framework
represents a significant advancement in the management of usage control policies
within Industrial IoT settings. By decentralizing the enforcement mechanisms
and leveraging a P2P structure, the framework is better equipped to handle
the complexities and challenges of modern IIoT environments. This innovative
approach ensures a more secure, resilient, and adaptable system capable of meeting
the demands of a rapidly evolving technological landscape [22].

2.4 Security by Contract
The Security by Contract (S×C) model is a formal approach designed to ensure
that applications and devices behave securely by adhering to predefined security
policies. It is based on three core elements: the application or device code (A), the
contract (C), and the client policy (P) [21, 23]. The primary goal of S×C is to
verify that the behavior of an application complies with the security requirements
outlined in the policy.

The contract (C) serves as a formal specification of the security-relevant actions
that an application or device is expected to perform. This specification encompasses
actions such as system API calls, access to sensitive resources, or any security-
related operations during execution. In IoT systems, contracts define both the
resources required by devices and those they offer to others within the network
[23]. On the other hand, the policy (P) outlines acceptable security behaviors and
constraints.

A fundamental aspect of the S×C model is the formal relationship between the

24

2.4 – Security by Contract

application, contract, and policy, expressed through the following transitive condi-
tion:

A ⪯ C ⪯ P =⇒ A ⪯ P

This relation indicates that if the application behavior conforms to the contract,
and the contract conforms to the policy, then the application is deemed compliant
with the policy. This ensures that the security constraints defined by the policy
are respected throughout the application’s execution [21].

The S×C model employs two key processes to enforce compliance:

• App-Contract Matching (A ⪯ C): This process ensures that the contract
accurately reflects the behavior of the application or device, verifying that
the application’s code adheres to the security specifications defined in the
contract.

• Contract-Policy Matching (C ⪯ P): In this phase, the contract is compared to
the security policy to verify that the contract satisfies the security conditions
imposed by the policy. Only if both matches (A ⪯ C and C ⪯ P) succeed,
can it be concluded that A ⪯ P , meaning the application is secure to execute.

In dynamic environments such as IoT networks, this layered approach allows for
adaptable security management. As policies evolve to address new threats or
changing operational requirements, the S×C model ensures continuous compliance.
When a device attempts to join a network, its contract is evaluated to verify
compatibility with the network’s security policy before integration. Similarly, if
the device’s software or contract is updated, these matching processes are repeated
to maintain compliance.

In cases where either App-Contract Matching or Contract-Policy Matching fails, a
dynamic monitoring mechanism is employed. This monitor continuously tracks the
application’s behavior at runtime, ensuring that any deviation from the contract
or violation of the policy is promptly detected and mitigated. Should the applica-
tion attempt an unauthorized action, the monitor enforces the necessary security
restrictions to prevent the violation. While this introduces some overhead, it is
critical for maintaining security integrity, especially in unpredictable environments
like IoT systems [21].

In conclusion, the Security by Contract model provides a robust method for
managing security in complex and dynamic environments such as IoT networks.
By clearly defining contracts that outline application behavior and enforcing
policies through both static verification and dynamic monitoring, S×C ensures
that applications and devices operate securely, even as security conditions change.

25

UCON Framework: State of the Art and Applications

2.5 Practical Applications of UCON Framework:
The SIFIS-Home Project

The SIFIS-Home project represents a significant advancement in the development of
secure smart home applications, integrating the principles of UCON to ensure user
privacy and security. This initiative aims to establish a comprehensive framework
that facilitates seamless interaction among various smart devices while maintaining
a robust security posture tailored to the unique needs of each household. A critical
aspect of this project is its focus on user empowerment, enabling individuals to
take an active role in managing their data and the devices within their smart home
environment.

At the core of SIFIS-Home is a commitment to enhancing user control over their
data and devices. By leveraging UCON’s dynamic access control mechanisms, SIFIS-
Home allows users to specify privacy preferences in real time. This adaptability
not only fosters user confidence but also ensures compliance with emerging privacy
regulations that increasingly emphasize user consent and data protection [24].

SIFIS-Home aims to provide a secure-by-design software framework that enhances
the resilience of interconnected smart home systems across all stack levels. A
fundamental feature of this framework is its provision of robust development tools,
including a software development kit (SDK) that empowers third-party developers
to create applications adhering to the security and privacy standards established
by SIFIS-Home. This support is crucial for fostering innovation while ensuring
that newly developed applications align with security protocols.

Central to this framework is the application contract system, where each application
is associated with a formal contract that specifies the security-relevant operations
it intends to perform. This contract provides clarity on data access and usage,
which is essential for aligning with user-defined policies. By linking these contracts
with user preferences, SIFIS-Home enables the dynamic enforcement of security
measures, ensuring compliance with individual privacy requirements and overall
security standards [24]. The use of development application programming interfaces
(dev-APIs) further enhances application functionality, allowing secure interactions
with IoT devices. Each dev-API is crafted with specific functionalities and security
considerations, ensuring that operations demanding exclusive access to resources
are well-defined.

Additionally, effective app lifecycle management is integral to the SIFIS-Home
framework, ensuring that applications are properly managed throughout all oper-
ational phases, starting from installation. In this context, only applications that
comply with predefined security policies can be installed, providing an initial layer

26

2.5 – Practical Applications of UCON Framework: The SIFIS-Home Project

of security. This lifecycle management also includes monitoring app behavior,
implementing updates, and dynamically enforcing security policies based on real-
time evaluations. As applications interact with IoT devices, requests are assessed
against these policies, enabling immediate responses to potential security threats
or deviations from user-defined preferences. This comprehensive approach not only
enhances user control and trust among smart home users but also strengthens the
overall resilience of smart home systems against cyber threats [24].

In conclusion, the SIFIS-Home project exemplifies the practical application of
UCON principles to enhance the security and privacy of smart home environments.
By fostering user empowerment, equipping developers with essential tools, and
emphasizing transparency and user awareness, SIFIS-Home leads the way in the
smart home revolution. It ensures that the promise of technology is fulfilled
without compromising user trust, ultimately creating a more secure, private, and
user-friendly smart home experience [24].

27

28

Chapter 3

Proposed Methodology to
Enforce S×C Compliance
with UCON on Constrained
Devices

This chapter introduces a methodology aimed at enforcing the Security-by-Contract
paradigm, in IoT environments, through the use of Usage Control, specifically when
implemented on constrained devices like the Raspberry Pi 4. The proposed method-
ology builds upon established frameworks, such as SIFIS-Home—Section 2.5—and
leverages the UCON framework to evaluate the S×C compliance conditions.

The UCON framework is particularly evaluated as a means of aligning application
behavior with S×C principles, especially addressing the transitive compliance
condition discussed in detail in Section 2.4.

Section 3.1 describes the proposed methodology and illustrates how the S×C
components—the application, contract, and policy—are represented within UCON
to perform the necessary S×C checks.

Following this, a comprehensive series of tests will assess the UCON framework’s
performance, security implications, and operational reliability on lightweight devices,
with results presented in subsequent chapters. The core goal is to verify UCON’s
capacity to enforce continuous compliance with security policies in real-time by
integrating policy-based checks at both the installation and execution stages.

29

Proposed Methodology to Enforce S×C Compliance with UCON on Constrained Devices

3.1 UCON as a Mechanism for S×C Compliance
The UCON framework is investigated as a potential method for enforcing Security
by Contract compliance within IoT environments, specifically in the context of this
thesis, where it is deployed on resource-constrained devices such as the Raspberry
Pi 4. A key objective of this investigation is to evaluate how effectively UCON can
ensure that applications consistently meet the S×C model’s transitive compliance
condition A ⪯ C ⪯ P =⇒ A ⪯ P—well explained in Section 2.4—throughout the
entire applications lifecycle.

In this context, each application, controlling an IoT device, must include a S×C
Contract—provided by the app developer—that describes the application’s ex-
pected behavior. Specifically, this contract is derived from the dev-APIs embedded
within the app code, as detailed in Section 2.5. These dev-APIs represent specific
functionalities of the application, categorized based on their security relevance.
Within the proposed framework, this contract is translated into XACML requests
that capture the security-relevant actions expected from the application. This
structured set of requests enables the UCON framework to perform evaluations,
aligning the app’s contract with applicable security policies to ensure that its
behavior complies with the defined security preferences.

To achieve S×C compliance, the UCON framework integrates two primary types
of security policies:

• Installation Policies: Evaluated during the installation of an application,
these policies ensure that only applications that meet specific security require-
ments are allowed on the system. If an app’s contract includes dev-APIs
capable of manipulating sensitive resources, the installation policy may block
the app if it fails to meet predefined security criteria. This proactive evaluation
ensures that contracts align with policies (i.e., C ⪯ P) before an application
is permitted to run.

• Execution Policies: These policies are evaluated at runtime and determine
whether specific dev-API functions can be executed based on the current
system context and mutable attributes. When a dev-API action is invoked,
UCON checks it against the active execution policies. If the conditions are
not satisfied, the operation is denied. This dynamic enforcement is crucial for
maintaining continuous compliance with the S×C model, thereby ensuring
that application behavior remains consistent with policy requirements during
execution.

By integrating these policies, the UCON framework ensures adherence to contracts,
thereby facilitating S×C compliance. During the installation process, the framework

30

3.2 – Testing Methodology

performs contract-policy matching (i.e., C ⪯ P). Each XACML request embedded
in the contract is evaluated against the installation policies within the UCON
framework. If a Deny decision is rendered at this stage, it signifies that contract-
policy compliance is not met. In such cases, either the application is blocked from
installation due to non-compliance, or it is installed with active monitoring to
enforce A ⪯ P at runtime. In this latter scenario, UCON monitors the specific
dev-API associated with the Deny decision, preventing any non-compliant action
from executing during runtime.

In cases where an app is installed despite initial policy non-compliance, the UCON
framework activates dynamic monitoring mechanisms to ensure that compliance
is maintained throughout execution. This setup allows UCON to enforce A ⪯ P
by selectively monitoring dev-API actions that were flagged during installation
as potentially non-compliant. This proactive approach is essential for sustain-
ing real-time adherence to security policies, especially in dynamic environments
with frequent updates and changing attributes. As a result, compliance is main-
tained continuously through a layered strategy that combines static verification at
installation with ongoing dynamic monitoring during runtime.

If Contract-Policy Matching (C ⪯ P) fails, UCON promptly enforces runtime
restrictions on the application’s behavior to avert any policy violations. This
layered enforcement strategy not only safeguards the system’s integrity but also
ensures that applications operate within the security parameters defined by user
preferences.

This layered approach allows for adaptable security management within IoT net-
works. As the policies evolve to address new threats or changing operational
requirements, the S×C model ensures ongoing compliance.

Ultimately, this evaluation will reveal UCON’s potential as a model for S×C
compliance, ensuring that applications align with user-defined security policies
while maintaining minimal performance impact.

3.2 Testing Methodology
Following the explanation of the model presented in this thesis for using the UCON
framework as a means to enforce S×C compliance, this section now introduces
the testing methodologies employed to evaluate its effectiveness, particularly when
UCS is deployed on resource-constrained devices like the Raspberry Pi 4. The
remainder of this chapter will outline the methods used to assess UCON’s capacity
to enforce continuous S×C compliance and dynamically manage security policies
under real-world conditions.

31

Proposed Methodology to Enforce S×C Compliance with UCON on Constrained Devices

The testing methodology includes a series of evaluations to validate core aspects
of UCON’s performance and security capabilities. These tests were designed to
examine UCON’s effectiveness in enforcing installation and execution policies,
its handling of access revocation, and its operational performance under the re-
source limitations of a lightweight device. Special focus was given to analyzing
trade-offs in performance and resource usage to ensure that UCON’s policy enforce-
ment mechanisms functioned within acceptable bounds for both security and user
experience.

Through rigorous testing, this methodology aims to identify potential performance
bottlenecks and assess UCON’s capacity to maintain S×C compliance across various
operational stages. The findings from these evaluations provide insight into UCON’s
suitability for constrained environments, highlighting potential adjustments or
optimizations required for effective implementation in IoT systems. The following
sections will describe these testing approaches in more detail, presenting the
structure and objectives of each test type and providing a comprehensive view of
the validation process that establishes UCON’s feasibility as a reliable security
solution for IoT applications.

3.3 Benefits and Challenges of Deploying UCS
on Resource-Constrained Device

The deployment of the Usage Control System on resource-constrained devices
presents both unique benefits and challenges. In this context, the Raspberry Pi 4
serves as a representative example of such devices. Understanding the advantages
and limitations associated with the Raspberry Pi 4 is essential for effectively
managing security in Internet of Things environments. Thus, from this point
onward, the discussion will refer to the Raspberry Pi 4 whenever practical aspects
related to resource-constrained devices are analyzed throughout the thesis.

3.3.1 Benefits
One of the primary advantages of utilizing the Raspberry Pi 4 for UCS implementa-
tion is its low cost and accessibility. The Raspberry Pi 4 is a compact, independent
computer that runs various distributions of the Linux operating system, offering
flexible programming options tailored to user requirements. It features a powerful
Broadcom BCM2711 processor, a quad-core Cortex-A72 (ARM v8) 64-bit SoC
operating at 1.5GHz, and substantial RAM of 8GB LPDDR4, allowing efficient
handling of multiple processes. This processing power makes it well-suited for
developing IoT applications in a rapidly evolving technological landscape [25].

32

3.3 – Benefits and Challenges of Deploying UCS on Resource-Constrained Device

Additionally, the Raspberry Pi 4 supports various peripheral connections via its
multiple USB ports (2 x USB 3.0 and 2 x USB 2.0). It also offers advanced con-
nectivity options, including Bluetooth 5.0 and Wi-Fi 802.11ac, which are essential
for establishing robust wireless communication in smart home environments. The
capability to connect to network devices via Gigabit Ethernet further enhances its
functionality and versatility.

Moreover, the Raspberry Pi 4’s ability to interface with various sensors and
actuators allows for real-time implementation of complex security mechanisms,
addressing specific threats prevalent in IoT systems. Its GPIO pins and support for
protocols like I2C and SPI facilitate the integration of diverse electronic components,
contributing to a rich ecosystem for experimentation and development.

Focusing on the Raspberry Pi 4 allows for exploration of the specific benefits it
brings to UCS deployment in resource-constrained environments, providing a clearer
understanding of how these devices can effectively support security measures in
IoT applications.

3.3.2 Challenges
While deploying the Usage Control System on constrained devices like the Raspberry
Pi 4 presents several advantages, it also introduces a range of significant challenges.
A primary concern is the inherent overhead associated with utilizing Java in
embedded systems. The existing implementation of the UCS is available as part
of the SIFIS-Home project1 and is written in Java. Although Java offers benefits
such as platform independence and automatic memory management, its execution
on low-power devices often proves demanding. The requirement for a Java Virtual
Machine (JVM) can lead to considerable resource consumption, affecting both
memory and processing power. This consumption may, in turn, compromise overall
system performance, especially in scenarios requiring robust security protocols [26].

Furthermore, the limited processing power and memory capacity of devices like
the Raspberry Pi can significantly restrict the effectiveness of security measures.
Implementing a comprehensive security framework on such resource-constrained
platforms often necessitates trade-offs between the robustness of security features
and the consumption of available resources. These trade-offs can inadvertently
introduce vulnerabilities, thereby undermining the intended security enhancements
[27].

The growing adoption of Java in embedded systems has prompted the development

1The usage control engine is available as part of the SIFIS-Home project https://github.
com/sifis-home/usage-control.git

33

https://github.com/sifis-home/usage-control.git
https://github.com/sifis-home/usage-control.git

Proposed Methodology to Enforce S×C Compliance with UCON on Constrained Devices

of specialized hardware solutions aimed at accelerating Java execution. However,
these improvements may not fully bridge the performance gap when compared
to lower-level languages such as C or C++. Although advancements in compiler
technology have resulted in more efficient code generation, certain performance-
critical applications may still require assembly language programming, further
limiting Java’s broader adoption in specific contexts [26].

Garbage collection management in Java also introduces unpredictable latencies,
which can be detrimental in embedded systems where real-time responsiveness is
crucial. While Java’s object-oriented design enhances development and maintenance,
it may not align well with applications that demand high performance and quick
response times. This challenge is compounded by the industry’s limited experience
with object-oriented languages, as many practitioners often prefer languages with
less runtime and memory overhead, influenced by their previous professional
experiences [26].

Another significant challenge pertains to the necessity of effective access control
mechanisms. Given that UCS is designed to enforce usage control policies, ensuring
the efficient functioning of these mechanisms within the constraints of a Raspberry
Pi can be complex. The overhead associated with maintaining secure communica-
tions and managing access control can strain the device’s capabilities, potentially
leading to degraded performance or system failures [27].

In summary, while leveraging Java in embedded systems can enhance code organi-
zation and maintenance, the associated challenges warrant careful consideration.
Evaluating these factors is essential to ensure that UCS solutions implemented on
devices like the Raspberry Pi 4 are both effective and efficient, ultimately advancing
security in IoT environments.

3.4 Objectives of the Testing Methodologies

This section delineates the key objectives of the testing methodologies designed to
assess the efficacy of the UCON framework as a mechanism for achieving Security
by Contract compliance, as discussed in Section 3.1. The primary objective of this
research is to determine whether UCON can effectively satisfy S×C compliance
within resource-constrained environments, particularly when deployed on devices
like the Raspberry Pi 4. To accomplish this overarching goal, several critical
sub-evaluations will be conducted:

34

3.4 – Objectives of the Testing Methodologies

3.4.1 Adherence to S×C Principles

The methodologies will examine how well UCON adheres to the core principles
of the S×C model. This involves ensuring that applications consistently meet
the transitive compliance condition A ⪯ C ⪯ P =⇒ A ⪯ P . Evaluating this
aspect will establish a baseline for UCON’s effectiveness in maintaining security
compliance.

3.4.2 Dynamic Monitoring Capabilities

The effectiveness of UCON’s dynamic monitoring capabilities will be evaluated,
particularly regarding its ability to enforce runtime restrictions and maintain
compliance during application execution. Understanding how UCON adapts to
runtime conditions will be crucial for its deployment in dynamic environments.

3.4.3 Performance Verification

A crucial objective is to rigorously verify the performance of the UCS when deployed
on a Raspberry Pi 4. This involves a comprehensive assessment of how it manages
security checks under the constraints imposed by limited resources. By conducting
detailed performance measurements, the testing aims to determine whether the
system can maintain an acceptable level of responsiveness while effectively enforcing
usage control policies. It is essential to evaluate not only the time required for
various operations but also the system’s overall stability during operation. This
analysis will facilitate the identification of potential bottlenecks that could adversely
affect user experience or compromise system reliability.

3.4.4 Feasibility Assessment of Security Features

The methodologies are specifically crafted to evaluate the feasibility of implementing
robust security features on constrained hardware. Given the challenges associated
with utilizing Java—along with its inherent resource overhead—on devices like the
Raspberry Pi, the testing will investigate whether the UCS can successfully enforce
access control policies without compromising performance. This objective is critical
for ensuring that security measures do not lead to unacceptable inconsistency time,
especially in scenarios requiring real-time decision-making, where any delay could
result in significant security risks. Thus, it is imperative to ascertain that the
integration of security features aligns with the operational capabilities of the device.

35

Proposed Methodology to Enforce S×C Compliance with UCON on Constrained Devices

3.4.5 User Experience Evaluation
User experience is a fundamental aspect of deploying UCS in domestic settings,
as it directly influences the adoption and usability of the system. The testing
methodologies aim to assess how the performance of the system impacts user
interactions during both the installation and operational phases. This includes
measuring the response times of access requests and monitoring how users perceive
the system’s responsiveness during various scenarios.

3.4.6 Identification of Performance Bottlenecks
To effectively address the challenges outlined in the previous section, a significant
objective of the testing is to systematically identify any performance bottlenecks
that may arise during the operation of the UCS on the Raspberry Pi. This involves
conducting a series of tests under varying conditions to uncover inefficiencies in
the system’s architecture or implementation that could hinder its effectiveness.
Understanding these bottlenecks will not only yield valuable insights into potential
areas for optimization but also guide future iterations of the UCS to ensure more
robust and efficient deployments.

3.4.7 Revocation and Policy Management Analysis
Another critical objective is to analyze the efficiency of revocation processes and
policy management within the UCS framework. Given the necessity for effective
access control mechanisms in a resource-constrained environment, the testing will
evaluate how swiftly and accurately the system can respond to changes in usage
control policies and manage revocations. A key concept in this context is the
"inconsistency time," which refers to the period between the moment a change in
an attribute triggers a re-evaluation and revocation, and the moment the PEP
terminates access to the resource. This analysis is essential for ensuring that
the UCS can maintain security in real-time, particularly in the context of smart
home applications, where unauthorized access can have severe implications for user
privacy and safety. The methodologies will explore various scenarios to simulate
real-world conditions, providing a comprehensive understanding of the system’s
capabilities in policy management.

3.4.8 Exploration of Adaptations for Lightweight Systems
Finally, the methodologies will delve into potential adaptations to the UCS that may
enhance its performance and security in a lightweight environment. This includes
investigating alternative configurations or deployment strategies that optimize
resource usage while ensuring the effectiveness of security measures. The objective

36

3.5 – Test Framework Architecture and Environment Setup

is to identify innovative approaches that strike a balance between the need for
robust access control and the limitations imposed by the hardware. By exploring
these adaptations, the research aims to contribute to the broader discourse on
developing effective security solutions for IoT devices, particularly in constrained
environments.

In conclusion, the objectives outlined in this section focus on validating the deploy-
ment of the UCS on resource-constrained platforms such as the Raspberry Pi 4. By
rigorously testing performance, user experience, security features, and management
capabilities, this research aims to establish whether the UCS can effectively operate
in real-world domestic environments while overcoming the challenges associated
with resource constraints. The insights gained from these methodologies will provide
a solid foundation for enhancing the security posture of IoT devices and contribute
to the development of practical solutions for smart home technologies.

3.5 Test Framework Architecture and Environ-
ment Setup

The architecture of the test framework is meticulously designed to evaluate the
Usage Control System in a resource-constrained environment, specifically utilizing
the capabilities of a Raspberry Pi 4 equipped with 8 GB of RAM. This section
outlines the framework’s architecture, highlights the software prerequisites, and
elaborates on the setup of the testing environment, providing a comprehensive
understanding of the components involved and their interactions. The entire
designed test framework can be accessed on thesis repository 2.

3.5.1 Software Prerequisites
To effectively run the tests within this framework, a set of software components is
required. These include:

• Java 8: Essential for executing the UCS, Java provides the runtime environ-
ment necessary for the system’s functionalities.

• Maven: This build automation tool is used to manage project dependencies
and facilitate the packaging of the UCS into a runnable JAR file.

• Python: Employed for scripting various test scenarios, Python serves as the
language for the Policy Enforcement Point (PEP) components that interact
with the UCS.

2Test Framework respository https://sssg-dev.iit.cnr.it

37

https://sssg-dev.iit.cnr.it

Proposed Methodology to Enforce S×C Compliance with UCON on Constrained Devices

• Docker: Utilizing Docker enables the encapsulation of the distributed hash
table (DHT) functionalities within containers, ensuring a consistent and
isolated execution environment across different machines.

These software components work in unison to establish a robust testing environment
that simulates a real-world scenario where the UCS operates in conjunction with
various PEPs.

3.5.2 Testing Framework Architecture
The test framework is built upon a distributed architecture designed to optimize
the efficiency and reliability of the UCS within a resource-constrained environ-
ment. Central to this architecture is the distributed hash table (DHT) component,
sifis-alpine-dht-arm64v83, which enables the UCS to operate seamlessly across
multiple devices. This architecture facilitates robust communication and data shar-
ing among various UCS instances, which is essential for managing access control in
dynamic environments.

A key feature of this architecture is its use of WebSockets for communication,
allowing for real-time interactions between the Policy Enforcement Points and the
UCS. This mechanism ensures that the PEPs can make access requests to the UCS,
while the UCS promptly communicates its access decisions back to the PEPs based
on policy evaluations. Additionally, the DHT supports the rapid dissemination of
changes in access control policies across all nodes, ensuring that any updates—such
as the addition, removal, or modification of policies—are immediately reflected
throughout the system. This responsiveness is crucial for scenarios where immediate
enforcement of access control decisions is required across multiple devices.

The testing framework is deployed on a Raspberry Pi 4, configured with Raspberry
Pi OS, a lightweight operating system that enhances performance by minimizing
resource overhead. This OS is optimized for the hardware specifications of the
Raspberry Pi, ensuring that the UCS and PEP components can run efficiently
without consuming excessive system resources. The choice of this operating system
contributes to the overall stability and responsiveness of the testing environment.

The usage control engine is available as part of the SIFIS-Home project4.

3https://github.com/sifis-home/libp2p-rust-dht/pkgs/container/
sifis-alpine-dht-arm64v8

4https://github.com/sifis-home/usage-control.git

38

https://github.com/sifis-home/libp2p-rust-dht/pkgs/container/sifis-alpine-dht-arm64v8
https://github.com/sifis-home/libp2p-rust-dht/pkgs/container/sifis-alpine-dht-arm64v8
https://github.com/sifis-home/usage-control.git

3.5 – Test Framework Architecture and Environment Setup

3.5.3 Workflow of the Testing Process
The workflow of the testing process follows a systematic approach that emphasizes
automation and repeatability. At the outset of each test campaign, the PEP script
initializes the UCS, ensuring that it is ready to enforce the defined policies.

Each test campaign is methodically designed to evaluate different aspects of the
UCS, such as installation, performance, and the revocation process. By leveraging
automation, the testing framework allows for multiple iterations of each test scenario,
creating batches that help to minimize the impact of external inefficiencies on the
results. This systematic approach not only enhances the reliability of the outcomes
but also facilitates a more comprehensive assessment of the UCS’s capabilities.

The automated testing scripts are structured to send multiple access requests to
the UCS by leveraging the DHT, capturing responses and logging timing data for
subsequent analysis. By enabling repeated executions of each test, the framework
allows for a robust evaluation that accounts for potential variances in performance
due to external factors. This design is essential for isolating the effects of specific
changes made to the UCS, ensuring that any observed variations can be attributed
to the modifications rather than fluctuations in the testing environment.

Furthermore, while the architecture supports the integration of multiple Raspberry
Pi devices, all tests were conducted on a single Raspberry Pi unit, where both
the PEP and UCS, along with the DHT, reside. This setup simplifies the testing
process while still demonstrating the scalability and effectiveness of the UCS’s
performance across a distributed architecture. The ability to test in such a flexible
environment not only demonstrates the adaptability of the UCS but also highlights
its potential for real-world applications in smart homes and other IoT scenarios.

3.5.4 Architecture Overview
In summary, the architecture of the test framework, combined with the lightweight
configuration of the Raspberry Pi OS, establishes a robust environment for eval-
uating the UCS in a resource-constrained setting. The thoughtful orchestration
of components, paired with the automated testing processes, ensures a systematic
and thorough examination of the system’s capabilities. This setup lays a solid
foundation for the subsequent analysis of test results, providing insights into the
UCS’s performance and its interactions within a distributed architecture.

39

Proposed Methodology to Enforce S×C Compliance with UCON on Constrained Devices

Raspberry Pi 4 - 8GB

Usage Control System

Distributed Hash Table (DHT)

Policy Enforcement Point (PEP)Attribute Manager (AM)

Network
Communication

Network
Communication

Attributes values

Figure 3.1: Architecture of the Test Framework: Interaction between the UCS,
PEP and DHT on the Raspberry Pi

3.6 Testing Categories and Strategies
This section outlines the various testing categories and strategies employed to
assess the performance and security of the User Control System (UCS) deployed
on the Raspberry Pi 4. Each testing category serves a distinct purpose, ensuring a
thorough evaluation of the system’s capabilities and limitations. The focus here
will be on the installation tests, which are critical for understanding the overhead
and performance of the UCS during its initial setup and operation.

3.6.1 Installation Tests
The installation tests are designed to evaluate the overhead introduced during the
application installation process, focusing on two key aspects: the efficiency of the
installation procedure and the performance of the policy enforcement mechanism.
These tests are pivotal in assessing the feasibility of deploying the User Control
System on resource-constrained devices such as the Raspberry Pi 4, particularly in
ensuring compliance with Security by Contract principles.

By validating the alignment between application contracts and corresponding
policies, these tests confirm that the UCS effectively enforces compliance, thereby
enhancing security in domestic settings. This evaluation is crucial for identifying
performance bottlenecks and optimization opportunities that contribute to user
satisfaction and overall system usability.

The tests were structured with the following key goals in mind:

• Evaluating Installation Time Overhead: This goal measures the time
required to install an application, particularly in smart home environments
where IoT devices are managed. A fast and efficient installation process is
vital for user adoption, as long installation times could lead to dissatisfaction
and hinder the system’s practicality.

40

3.6 – Testing Categories and Strategies

• Assessing Contract-Policy Matching Time: Another core objective is
to evaluate the UCS’s policy enforcement efficiency. In this context, it is
important to remind that the contract is composed of multiple XACML re-
quests, each representing a distinct security-relevant operation the application
intends to perform. Therefore, the matching process between contract and
policy involves verifying each individual request. This metric is critical for
user experience, as delays in processing these requests may prevent users from
promptly performing their desired actions.

To rigorously assess these metrics, several scripts and automated processes were
implemented to minimize manual intervention. This includes scripts designed
to generate policies and requests, allowing users to specify test directories and
numbers (maximum 10) for both elements. This automation ensures consistency
across test iterations and facilitates large-scale testing under uniform conditions,
which is essential for generating reliable data.

Python Script as Policy Enforcement Point (PEP). A central component of
the testing process is a Python script which simulates the Policy Enforcement Point
(PEP) interacting with the UCS. This script registers itself with the UCS, initializes
it with the predefined policies, and manages the tryAccess and startAccess requests
during the installation phase.

The main tasks performed by the script include:

• UCS configuration: The script initializes the UCS by registering policies
and preparing the system to process incoming requests.

• Request Management: It sends a predefined number of tryAccess requests,
recording the time at which the first request is dispatched. For each tryAccess
response evaluated as Permit, it immediately sends a corresponding startAccess
request and logs the time when the last startAccess response is received.

• Result Logging: Timing data is logged for later analysis, providing insights
into the total time taken for policy evaluation and request handling.

Following is the Python code—accessible on thesis repository—that illustrates the
functionality of the PEP from a conceptual point of view. This is included in this
thesis as a foundational element for subsequent test scenarios, requiring only minor
modifications to adapt to different testing contexts.

1 import json
2 import websocket
3 from pathlib import Path
4 import base64
5 import uuid
6 import datetime

41

Proposed Methodology to Enforce S×C Compliance with UCON on Constrained Devices

7 import argparse
8 import sys
9 import time

10
11 # WebSocket URI for connection
12 websocket_uri = "ws://localhost:3000/ws"
13 req_number = 1 # Number of requests to send
14 pip_number = 1 # Number of PIPs to add
15 pip_counter = 0 # Counter for added PIPs
16 policy_counter = 0 # Counter for added policies
17 t_i = 0 # Start timestamp
18 t_f = 0 # End timestamp
19 req_completed = 0 # Completed requests count
20 verbose = False # Verbose output flag
21 policy_dir = "" # Directory for policies
22 request_dir = "" # Directory for requests
23 output_dir = "" # Directory for output results
24 nexec = 1 # Execution number
25
26 def on_message(ws, message):
27 # Handle incoming messages from the WebSocket
28 if "ucs-command" in message:
29 print("\nReceived message from the ucs:")
30 parsed = json.loads(message)
31 print("type: " +

parsed["Volatile"]["value"]["command"]["value"]["message"]["purpose"])↪→
32 if verbose:
33 print(json.dumps(parsed, indent=2))
34 print("\n--------------------------------\n")
35
36 # Handle error response
37 if parsed["Volatile"]["value"]["command"]["value"]["message"]["purpose"] ==

"ERROR_RESPONSE":↪→
38 exit(parsed["Volatile"]["value"]["command"]["value"]["message"]["description"])
39
40 # Handle try response
41 if parsed["Volatile"]["value"]["command"]["value"]["message"]["purpose"] ==

"TRY_RESPONSE":↪→
42 if

parsed["Volatile"]["value"]["command"]["value"]["message"]["evaluation"]
!= "Permit":

↪→
↪→

43 exit("TryAccess evaluation is not Permit.")
44 session_id =

parsed["Volatile"]["value"]["command"]["value"]["message"]["session_id"]↪→
45 start_access(session_id)
46
47 # Handle start response
48 if parsed["Volatile"]["value"]["command"]["value"]["message"]["purpose"] ==

"START_RESPONSE":↪→
49 if parsed["Volatile"]["value"]["command"]["value"]["message"]["evaluation"] !=

"Permit":↪→
50 exit("StartAccess evaluation is not Permit.")
51 global req_completed
52 req_completed += 1
53 if req_completed == req_number:
54 global t_f
55 t_f = int(datetime.datetime.now().timestamp()*1000)
56 save_results()
57
58 # Handle register response

42

3.6 – Testing Categories and Strategies

59 if parsed["Volatile"]["value"]["command"]["value"]["message"]["purpose"] ==
"REGISTER_RESPONSE":↪→

60 if parsed["Volatile"]["value"]["command"]["value"]["message"]["code"] !=
"OK":↪→

61 print("Unable to register the PEP")
62 exit()
63 add_policies()
64
65 # Handle add policy response
66 if parsed["Volatile"]["value"]["command"]["value"]["message"]["purpose"] ==

"ADD_POLICY_RESPONSE":↪→
67 global policy_counter
68 policy_counter += 1
69 if policy_counter == num_policies:
70 print("All Policies added.")
71 print("We can start adding PIPs...")
72 add_pips()
73
74 # Handle add PIP response
75 if parsed["Volatile"]["value"]["command"]["value"]["message"]["purpose"] ==

"ADD_PIP_RESPONSE":↪→
76 global pip_counter
77 pip_counter += 1
78 if pip_counter == pip_number:
79 print("All PIPs added (" + str(pip_number) + ")")
80 print("We can start making the requests...")
81 time.sleep(5) # Give UCON time to save the state
82 make_requests()
83
84 def on_error(ws, error):
85 print(error)
86
87 def on_close(ws, close_status_code, close_msg):
88 print("### Connection closed ###")
89
90 def on_open(ws):
91 time.sleep(10) # Wait before sending the register command
92 print("### Connection established ###")
93 print("[" + websocket_uri + "]")
94 register()
95
96 def print_and_send(json_out):
97 # Print and send the JSON output
98 if verbose:
99 print("Message sent:")

100 print(json.dumps(json_out, indent=2))
101 ws.send(json.dumps(json_out))
102
103 def register():
104 # Prepare registration request for the PEP
105 ws_req = {
106 "RequestPubMessage": {
107 "value": {
108 "timestamp": int(datetime.datetime.now().timestamp()*1000),
109 "command": {
110 "command_type": "pep-command",
111 "value": {
112 "message": {
113 "purpose": "REGISTER",
114 "message_id": str(uuid.uuid1()),
115 "sub_topic_name": "topic-name-the-pep-is-subscribed-to",

43

Proposed Methodology to Enforce S×C Compliance with UCON on Constrained Devices

116 "sub_topic_uuid": "topic-uuid-the-pep-is-subscribed-to"
117 },
118 "id": "pep-websocket_client",
119 "topic_name": "topic-name",
120 "topic_uuid": "topic-uuid-the-ucs-is-subscribed-to"
121 }
122 }
123 }
124 }
125 }
126 print("\n---------- REGISTER ------------\n")
127 print_and_send(ws_req)
128
129 def make_requests():
130 # Start making access requests
131 global t_i
132 t_i = int(datetime.datetime.now().timestamp()*1000)
133 for x in range(1, req_number + 1):
134 try_access(x)
135
136 def try_access(n):
137 # Prepare and send a TryAccess request
138 num = str(n)
139 request_file = Path(f'{request_dir}/request_{num}.xml')
140 if not request_file.exists():
141 print(f"Request file {request_file} does not exist.")
142 return
143 request = request_file.read_text()
144 if verbose:
145 print("XACML request used:")
146 print(request)
147 b = base64.b64encode(bytes(request, 'utf-8'))
148 request64 = b.decode('utf-8')
149
150 ws_req = {
151 "RequestPubMessage": {
152 "value": {
153 "timestamp": int(datetime.datetime.now().timestamp()*1000),
154 "command": {
155 "command_type": "pep-command",
156 "value": {
157 "message": {
158 "purpose": "TRY",
159 "message_id": str(uuid.uuid1()),
160 "request": request64,
161 "policy": None
162 },
163 "id": "pep-websocket_client",
164 "topic_name": "topic-name",
165 "topic_uuid":

"topic-uuid-the-ucs-is-subscribed-to"↪→
166 }
167 }
168 }
169 }
170 }
171 print("\n--------- TRY ACCESS -----------\n")
172 print_and_send(ws_req)
173
174 def start_access(s_id):
175 # Prepare and send a StartAccess request

44

3.6 – Testing Categories and Strategies

176 ws_req = {
177 "RequestPubMessage": {
178 "value": {
179 "timestamp": int(datetime.datetime.now().timestamp()*1000),
180 "command": {
181 "command_type": "pep-command",
182 "value": {
183 "message": {
184 "purpose": "START",
185 "message_id": str(uuid.uuid1()),
186 "session_id": s_id
187 },
188 "id": "pep-websocket_client",
189 "topic_name": "topic-name",
190 "topic_uuid": "topic-uuid-the-ucs-is-subscribed-to"
191 }
192 }
193 }
194 }
195 }
196 print("\n-------- START ACCESS ----------\n")
197 print_and_send(ws_req)
198
199 def add_policies():
200 # Add all policies defined in the directory
201 for x in range(1, num_policies + 1):
202 add_policy(x)
203
204 def add_policy(n):
205 # Prepare and send an AddPolicy request
206 num = str(n)
207 policy_file = Path(f'{policy_dir}/policy_' + num + '.xml')
208 if not policy_file.exists():
209 print(f"Policy file {policy_file} does not exist.")
210 return
211 policy = policy_file.read_text()
212 if verbose:
213 print("XACML policy used:")
214 print(policy)
215 b = base64.b64encode(bytes(policy, 'utf-8'))
216 policy64 = b.decode('utf-8')
217
218 ws_req = {
219 "RequestPubMessage": {
220 "value": {
221 "timestamp": int(datetime.datetime.now().timestamp()*1000),
222 "command": {
223 "command_type": "pap-command",
224 "value": {
225 "message": {
226 "purpose": "ADD_POLICY",
227 "message_id": str(uuid.uuid1()),
228 "policy": policy64,
229 "policy_id": "policy_" + num
230 },
231 "id": "pap-web_socket",
232 "topic_name": "topic-name",
233 "topic_uuid": "topic-uuid-the-ucs-is-subscribed-to"
234 }
235 }
236 }

45

Proposed Methodology to Enforce S×C Compliance with UCON on Constrained Devices

237 }
238 }
239 print("\n--------- ADD POLICY -----------\n")
240 print_and_send(ws_req)
241
242 def add_pips():
243 # Add all PIPs defined
244 print("Running add_pips()")
245 for x in range(1, pip_number + 1):
246 print("Running add_pip")
247 add_pip_reader(x)
248
249 def add_pip_reader(n):
250 # Prepare and send an AddPIP request
251 num = str(n)
252 attribute_id = "urn:my-namespace:1.0:environment:attribute-" + num
253 category = "urn:oasis:names:tc:xacml:3.0:attribute-category:environment"
254 data_type = "http://www.w3.org/2001/XMLSchema#string"
255 attribute_value = "attribute-value-" + num
256 file_name = "attribute-" + num + ".txt"
257 refresh_rate = 1000
258
259 ws_req = {
260 "RequestPubMessage": {
261 "value": {
262 "timestamp": int(datetime.datetime.now().timestamp()*1000),
263 "command": {
264 "command_type": "pip-command",
265 "value": {
266 "message": {
267 "purpose": "ADD_PIP",
268 "message_id": str(uuid.uuid1()),
269 "pip_type": "it.cnr.iit.ucs.pipreader.PIPReader",
270 "attribute_id": attribute_id,
271 "category": category,
272 "data_type": data_type,
273 "refresh_rate": refresh_rate,
274 "additional_properties": {
275 attribute_id: file_name,
276 file_name: attribute_value
277 }
278 },
279 "id": "pip-reader-" + num,
280 "topic_name": "topic-name",
281 "topic_uuid": "topic-uuid-the-ucs-is-subscribed-to"
282 }
283 }
284 }
285 }
286 }
287 print("\n------ ADD PIP READER -------\n")
288 print_and_send(ws_req)
289
290 def save_results():
291 # Save execution results to the output directory
292 global req_number, nexec
293 if output_dir:
294 Path(output_dir).mkdir(parents=True, exist_ok=True)
295 file_path = Path(f"{output_dir}/out{req_number}{nexec}.txt")
296 with open(file_path, "a+") as f:
297 f.write(f"t_f = {t_f}\n")

46

3.6 – Testing Categories and Strategies

298 f.write(f"t_i = {t_i}\n")
299 print(f"Results saved to {file_path}")
300
301 if __name__ == "__main__":
302 # Command-line argument parsing
303 parser = argparse.ArgumentParser(description='FindPolicy batch test.')
304 parser.add_argument('-v', '--verbose', action='store_true', help="Enable verbose output")
305 parser.add_argument('-r', '--requests', type=int, default=1, help="Number of requests to

send")↪→
306 parser.add_argument('-p', '--pips', type=int, default=1, help="Number of PIPs to add")
307 parser.add_argument('--policies', type=int, default=1, help="Number of policies to add")
308 parser.add_argument('--policy-dir', type=str, required=True, help="Directory containing the

policies")↪→
309 parser.add_argument('--request-dir', type=str, required=True, help="Directory containing the

requests")↪→
310 parser.add_argument('--output-dir', type=str, required=True, help="Directory to save the

output results")↪→
311 parser.add_argument('--nexec', '--number-execution', type=int, default=1, help="Execution

number for output diffs")↪→
312 args = parser.parse_args()
313 req_number = args.requests
314 pip_number = args.pips
315 verbose = args.verbose
316 num_policies = args.policies
317 policy_dir = args.policy_dir
318 request_dir = args.request_dir
319 output_dir = args.output_dir
320 nexec = args.nexec
321 # Initialize WebSocket connection
322 ws = websocket.WebSocketApp(websocket_uri,
323 on_open=on_open,
324 on_message=on_message,
325 on_error=on_error,
326 on_close=on_close)
327 ws.run_forever()

Bash Script for Automating Test Executions. To streamline the testing
process, a Bash script was developed to automate repeated executions of the
Python script under different test conditions. Automation is essential for ensuring
both efficiency and consistency across multiple iterations, eliminating the need for
manual intervention and reducing the possibility of human error. The decision to
use Bash scripting was made to avoid unnecessary overhead on the Raspberry Pi
system.

The Bash script handles the following tasks:

• Automating Multiple Test Runs: By repeatedly executing the Python
script, the Bash script allows data to be collected across various test scenarios,
such as varying numbers of requests and policies. This repeated execution
ensures statistically significant results by averaging out any temporary system
anomalies, such as CPU spikes or memory usage fluctuations.

• Initializing the DHT: At the beginning of the batch test, the script initial-
izes the DHT to ensure a completely reset testing framework, allowing for

47

Proposed Methodology to Enforce S×C Compliance with UCON on Constrained Devices

comprehensive assessments of the interactions between the components.

• Resetting the UCS: Before each new test run, inside the batch test, the
script resets the UCS to ensure that no residual memory overhead or cached
data from previous runs impacts the current iteration. This guarantees that
each test starts from a clean state, ensuring data integrity.

• Managing Temporary Files: Output from each test run is stored in
temporary files, which are later processed and analyzed. This method allows
for easy tracking of results and helps identify anomalies or irregularities in
the data.

The following Bash script is included not only to demonstrate the implementation
of the testing framework but also because it serves as a crucial component that
can be adapted for subsequent test types, thereby emphasizing its relevance within
the context of this thesis.

1 #!/bin/bash
2 # Enable to debug:
3 # set -x
4 # Default values
5 MAX_REQUEST=10
6 MIN_REQUEST=1
7 VERBOSE=false
8
9 # Function to print help message

10 print_help() {
11 echo "Usage: $0 [-r requests] [-t times] [--td test-dir] [-v] [--ps python-script] [--ucsdht

UCSDht-jar-path] [UCS_OPTIONS] [-h]"↪→
12 echo
13 echo "Options:"
14 echo " -r, --requests Number of requests to send in a single test execution"
15 echo " -t, --times Number of times to run the complete test"
16 echo " --td test-dir Path to the root directory of the tests"
17 echo " -v, --verbose Enable verbose output"
18 echo " --ps python-script Name of the Python script to run for a single test"
19 echo " --ucsdht UCSDht-jar-path Path to the UCSDht.jar file"
20 echo " UCS_OPTIONS Additional options for the UCS execution"
21 echo " -h, --help Show this help message"
22 exit 1
23 }
24
25 # Parse command-line arguments
26 OPTIONS=$(getopt -o r:t:v --long requests:,times:,td:,verbose,ps:,ucsdht:,help -- "$@")
27 if [$? -ne 0]; then
28 echo "Error parsing options"
29 exit 1
30 fi
31 eval set -- "$OPTIONS"
32
33 # Initialize variables with default values
34 req=""
35 tms=""
36 TEST_DIRECTORY=""
37 PYTHON_SCRIPT=""

48

3.6 – Testing Categories and Strategies

38 UCSDHT_JAR_PATH=""
39 UCS_OPTIONS=""
40
41 while true; do
42 case "$1" in
43 -r|--requests) req="$2"; shift 2;;
44 -t|--times) tms="$2"; shift 2;;
45 --td) TEST_DIRECTORY="$2"; shift 2;;
46 -v|--verbose) VERBOSE=true; shift;;
47 --ps) PYTHON_SCRIPT="$2"; shift 2;;
48 --ucsdht) UCSDHT_JAR_PATH="$2"; shift 2;;
49 -h|--help) print_help; shift;;
50 --) shift; break;;
51 *) echo "Internal error!"; exit 1;;
52 esac
53 done
54
55 # Collect remaining arguments as UCS_OPTIONS
56 UCS_OPTIONS="$@"
57
58 # Validate parameters
59 if [-z "$req"] || [-z "$tms"] || [-z "$TEST_DIRECTORY"] || [-z "$PYTHON_SCRIPT"] || [-z

"$UCSDHT_JAR_PATH"]; then↪→
60 echo "Error: All parameters must be specified."
61 print_help
62 fi
63
64 if ["$req" -lt "$MIN_REQUEST"] || ["$req" -gt "$MAX_REQUEST"]; then
65 echo "Incorrect parameter values. See help for usage."
66 exit 1
67 fi
68
69 # Directories for request and policy outputs
70 REQUEST_DIR="$TEST_DIRECTORY/requests"
71 POLICY_DIR="$TEST_DIRECTORY/policies"
72
73 # Clean up and create output directories
74 rm -rf "$TEST_DIRECTORY/UCSOutputs" "$TEST_DIRECTORY/PEPOutputs"
75 mkdir "$TEST_DIRECTORY/UCSOutputs" "$TEST_DIRECTORY/PEPOutputs"
76
77 # Run the test
78 docker_cmd_dht="docker run -d --network host ghcr.io/sifis-home/sifis-alpine-dht-arm64v8

--shared-key a789c015f35fef58fa18f4c36ace5fa4b466a1900709fe64fd32f69aa14de289"↪→
79 lxterminal -e bash -c "$docker_cmd_dht; exec bash"
80 sleep 5
81
82 # Execute tests
83 for i in $(seq $tms); do
84 for j in $(seq $req); do
85 echo "START PEP [tms: $i - req: $j - pip 1 - Npolicy: $j]"
86
87 # Start the Python script for PEP
88 if ["$VERBOSE" = true]; then
89 lxterminal -e python $PYTHON_SCRIPT -v -r $j -p 1 --policies $j --policy-dir

$POLICY_DIR --request-dir $REQUEST_DIR --output-dir $TEST_DIRECTORY/PEPOutputs
--nexec $i &

↪→
↪→

90 else
91 lxterminal -e python $PYTHON_SCRIPT -r $j -p 1 --policies $j --policy-dir $POLICY_DIR

--request-dir $REQUEST_DIR --output-dir $TEST_DIRECTORY/PEPOutputs --nexec $i &↪→
92 fi
93

49

Proposed Methodology to Enforce S×C Compliance with UCON on Constrained Devices

94 echo "START UCS"
95 # Run the UCS with provided options
96 java -jar $UCSDHT_JAR_PATH --hard-reset $UCS_OPTIONS 2>&1 | grep "INFO" >

"$TEST_DIRECTORY/UCSOutputs/out${i}${j}.txt" &↪→
97
98 sleep 50
99

100 echo "STOP PEP: $PYTHON_SCRIPT"
101 # Stop the PEP Python script
102 pkill -9 -f "python $PYTHON_SCRIPT -${VERBOSE:+v} -r $j -p 1 --policies $j"
103
104 echo "STOP $UCSDHT_JAR_PATH"
105 pkill -9 -f "java -jar $UCSDHT_JAR_PATH --hard-reset"
106 done
107 done
108
109 # Clean up Docker containers
110 docker stop $(docker ps -q)
111 sleep 10
112 docker rm $(docker ps -aq)
113
114 # Call the combination_outputs script
115 echo "Calling combination_outputs script"
116 lxterminal -e python $TEST_DIRECTORY/combination_outputs_installation_testBatch.py -r $req -t $tms

--td $TEST_DIRECTORY &↪→
117 sleep 180
118 echo "Installation batch test concluded"

Throughout the installation tests, several configurations were used to simulate
different real-world scenarios. These configurations varied the number of requests
and policies to examine how the UCS scales and performs under different loads.

Key configurations included:

• Varying Numbers of Requests and Policies: The number of requests
ranged from 1 to 10, with the number of policies always set equal to the
number of requests. This ensured that each request was matched to a unique
policy, avoiding any caching optimizations that could artificially enhance
performance.

• Repetition for Statistical Accuracy: Each test configuration was exe-
cuted 20 times to ensure statistically reliable results. This repetition helped
eliminate the influence of random factors such as system load or background
processes, ensuring a clear understanding of system performance under different
conditions.

3.6.2 Running Tests
The process of enforcing security policies during runtime involves continuously
verifying that the actions executed by the application code A conform to the client
policy P . This enforcement mechanism is critical to ensuring that the behavior of

50

3.6 – Testing Categories and Strategies

the application, as defined by its contract C, remains within the boundaries of the
policy’s security requirements. Whenever a monitored dev-API is attempted at
runtime—as explained in Section 2.5—the Usage Control System must evaluate
the action against the policy to either permit or deny it.

The running tests are designed to assess how effectively the UCS enforces these
security policies during runtime, especially as the number of attributes involved in
the evaluation increases. As policies become more complex, due to a rise in the
number of attributes, the system’s resource requirements also grow. Therefore, it
becomes essential to evaluate how efficiently the UCS can handle this complexity
while ensuring that performance remains within acceptable limits.

These tests focus on assessing the performance impact caused by the number of
Policy Information Points, which correspond to the attributes in the policies. Unlike
installation tests, which measured the efficiency of installing applications, these
running tests analyze the authorization flow of an application already installed
in a smart home environment. Specifically, they examine the timing required to
evaluate an access request made by the application at runtime in order to perform
an action on a resource, ensuring that the action complies with the policy P .

As the number of attributes in the policy increases, the complexity of the evaluation
process escalates. This is due to the need for the UCS to involve a greater
number of PIPs, each of which corresponds to an individual attribute in the policy.
Consequently, each PIP must interface with an Attribute Manager responsible for
handling the specific attribute’s values. This interaction can lead to significant
stress on the system during policy evaluations, thereby increasing the overall
workload on the platform.

To isolate the effects of policy complexity on performance, each running test
evaluates a single request against varying numbers of PIPs. This focused approach
allows for a clear assessment of how the system’s performance metrics change as
more attributes are processed during policy evaluation without the interference of
additional requests, which could introduce overhead and complicate the results.

Key metrics, such as response times for different phases of request handling—
specifically tryAccess and startAccess—are analyzed. Monitoring these times is
crucial, as any substantial increase in response time as the number of PIPs grows
could indicate areas for optimization.

To run these running tests efficiently, adaptations were made to existing automation
scripts to handle the increased number of PIPs. The initialization of the UCS
with the correct policy setup is performed while ensuring that the timing of each
phase is logged for analysis. Automation is employed to streamline the testing
process, enabling multiple configurations to be tested without manual intervention.

51

Proposed Methodology to Enforce S×C Compliance with UCON on Constrained Devices

This consistency across test iterations is critical for gathering reliable data across
different scenarios.

The automation process allows for rapid test execution and provides the ability to
repeat tests across different configurations, ensuring that the results are statistically
significant. Each configuration executes multiple times to account for potential
anomalies, such as CPU spikes or variations in memory usage, which could otherwise
skew the results.

In this series of tests, the number of PIPs varies from 1 to 50, with each PIP
representing an attribute in the policy. The decision to keep the number of requests
fixed at one per test allows for a focus exclusively on the impact of policy complexity.
To summarize, in this batch, each test includes:

• A single request sent to the UCS.

• A policy utilized in the test with a varying number of attributes, corresponding
to the number of PIPs involved in the evaluation.

• Evaluation of every request against a corresponding policy, ensuring that each
tryAccess request results in a Permit, and each startAccess request also results
in a Permit.

3.6.3 Revocation Tests
Revocation tests play a critical role in verifying the effectiveness of access control
mechanisms within the system, ensuring that any changes in access rights are
communicated and enforced promptly. This is especially vital for maintaining the
security integrity of applications operating in real-time environments, where delays
in access revocation could expose the system to unauthorized entry and significant
vulnerabilities.

A key performance metric evaluated during these tests is the latency between
the moment an attribute’s value is altered to one that violates predefined access
policies and the time when the application receives the revoke signal from the User
Control System. This interval is known as inconsistency time and is essential for
assessing how quickly the system can respond to changes in access permissions.
Timely revocation is crucial for mitigating unauthorized access and maintaining
robust security protocols, as it ensures that access rights remain coherent with the
established policies.

In the context of smart home applications, the ability to dynamically adjust access
rights in response to real-time events is critical for security. For example, if a
user’s status changes, the system must swiftly revoke any previously granted
access to prevent unauthorized actions. Understanding the performance of the

52

3.7 – Proposed Modifications to the User Control System

revocation process thus contributes to evaluating the overall security posture of
the application. By ensuring rapid response times for revocation, the reliability of
the UCS is bolstered, fostering user trust in its security measures.

To implement these tests, adaptations were made to existing automation scripts to
incorporate revoke logic and log the timing associated with the reception of revoke
signals. The simulation of this behavior involved executing a typical authentication
flow, where the system initially grants access based on specific attribute values.
Following this, the value of a designated attribute is changed to one that triggers
the revocation of access rights. The timing of both the attribute change and the
reception of the revoke signal are recorded, facilitating a comprehensive analysis of
the revocation process.

To create a realistic testing environment, varying numbers of Policy Information
Points—ranging from 1 to 50—were utilized, reflecting the complexity of the
associated policies. Each PIP corresponds to an individual attribute that impacts
access decisions. This setup mirrors the methodology employed in previous batches,
ensuring consistency in testing while allowing for a focused analysis of the revocation
mechanism. By maintaining a single request per test, the influence of additional
overhead is minimized, thereby isolating the performance implications of policy
complexity on the revocation process.

In practical terms, the simulation involved manipulating the last attribute of the
ongoing section of the policy, specifically to eliminate any potential optimizations
that could be inadvertently introduced by the UCS. This ensures that the revocation
behavior is tested under controlled conditions, providing a reliable measurement of
the system’s performance in real-world scenarios.

3.7 Proposed Modifications to the User Control
System

In the pursuit of enhancing the authentication flow and overall performance of the
User Control System, several strategic modifications were implemented and rigor-
ously tested. This section details these modifications, explaining their significance,
the reasoning behind their feasibility, and the expected impact on the system’s
security posture. The overarching aim is to assess how these changes can affect
performance while maintaining robust security measures.

One primary modification involves disabling the Distributed Hash Table update
mechanism, which refers to the upload of the overall state of the UCS across
the network. This state encompasses critical information such as the database
containing ongoing sessions, active policies, and Policy Information Points. While

53

Proposed Methodology to Enforce S×C Compliance with UCON on Constrained Devices

DHT updates facilitate a distributed operational model and improve data con-
sistency across nodes, they may introduce performance overhead unsuitable for
resource-constrained devices like the Raspberry Pi. Disabling DHT updates may
allows for greater efficiency in processing requests, streamlining the UCS’s overall
operation. Although this trade-off limits the system’s fully distributed capabilities
and need to be fully evaluated.

Another key modification is the removal of the journaling functionality within
the UCS when writing to the SQLite database. The UCS implements journaling
during write operations to ensure that transactions are completed successfully
before changes are finalized. However, this functionality can introduce performance
overhead that is less practical for constrained environments. Eliminating journaling
allows the UCS to operate more efficiently, although this may affect robustness
during power outages. This change strikes a balance between functionality and
efficiency, acknowledging that smart home devices may face intermittent power
reliability issues. While the reduction in update frequency could impact resilience,
it may lead to improved system responsiveness and resource management.

A crucial modification involves leveraging the trusted nature of the Policy Enforce-
ment Point within the architecture. As a fully trusted entity, the PEP can send
applicable policies directly within the tryAccess requests. This change eliminates
the need for the UCS to conduct potentially time-consuming policy searches, facili-
tating a faster authorization process. The PEP’s trustworthiness ensures that it
can accurately assess which policies are relevant to a given access request without
compromising security.

Regarding security, these modifications are designed to maintain robust access
control mechanisms. While performance enhancements are essential, ensuring
security remains a top priority. The ability to send applicable policies directly within
requests is expected to have minimal impact on the attack surface. Additionally,
the decision to forgo DHT updates is informed by the need to enhance efficiency in
the system’s operation, particularly for lightweight devices. This approach aims to
uphold strong security measures without overloading constrained resources.

In summary, these proposed modifications aim to enhance the UCS’s performance
and efficiency while prioritizing security. The interplay between these factors is
crucial for achieving optimal outcomes in lightweight systems. This thesis seeks
to demonstrate that it is possible to refine the UCS’s authentication flow while
adhering to rigorous security standards.

54

3.8 – Testing Proposed Modifications

3.8 Testing Proposed Modifications
Testing the proposed modifications in the User Control System (UCS) was conducted
to evaluate the changes made to enhance authorization flow and overall performance.
The focus of these tests was to collect data that would help understand the effects
of the modifications on system operations.

To assess the impact of disabling the Distributed Hash Table (DHT) update mech-
anism, we performed tests aimed at measuring the efficiency of request processing.
This involved monitoring the response times for user authentication requests before
and after the modification. The data collected during these tests was intended
to elucidate the trade-offs associated with reduced distributed capabilities in the
context of a smart home environment.

Tests were designed to analyze the effects of removing the journaling functionality on
system operations. This was particularly important during the authorization flow,
where writes to the database occur. Since journaling only takes place during these
write operations to the SQLite database, understanding its impact on performance
is crucial for evaluating the efficiency of the modified UCS.

The testing framework also explored the integration of policies directly within
the tryAccess requests, leveraging the trusted nature of the Policy Enforcement
Point (PEP). This aspect of the testing focused on measuring the time taken to
process authentication requests when applicable policies were included, compared to
previous methods that required policy searches. By collecting this data, we aimed
to understand how this modification influenced the speed of the authentication
process.

In summary, the tests conducted on the proposed modifications aimed to gather
valuable data regarding the performance and efficiency of the UCS, focusing on
the specific changes made and their implications for access control mechanisms.

55

56

Chapter 4

Methodologies for Data
Collection and Results
Evaluation

This chapter outlines comprehensive methodologies for data collection and evalua-
tion, forming the foundation for assessing the system’s performance across various
test scenarios. Emphasis is placed on systematic techniques for gathering data from
the tests described in the previous chapter, ensuring reliability and thoroughness
in the results.

Initially, the chapter elaborates on the automated tools and scripts used in the
data collection process. These tools are designed to maintain consistency through-
out testing, minimizing manual input and reducing human error. Automation
streamlines test execution and facilitates the replication of scenarios under uniform
conditions, which is essential for data validity. Specific scripts and tools utilized will
be detailed, demonstrating their functionality within the overall testing framework.

The chapter will also outline key metrics and evaluation criteria employed to
assess system performance, including installation efficiency, runtime performance,
and revocation effectiveness. The rationale behind selecting these metrics will
be discussed, ensuring alignment with the testing framework’s objectives and the
practical requirements of smart home environments.

Configurations and scenarios simulated during testing are designed to reflect real-
world conditions, enabling a realistic assessment of the system under various loads
and complexities. The diversity of test conditions, including variations in the
number of requests and policies, will be examined, contributing to a comprehensive

57

Methodologies for Data Collection and Results Evaluation

understanding of the system’s capabilities and limitations.

Transitioning from data collection to processing and analysis, both quantitative
and qualitative aspects will be covered to facilitate a holistic understanding of
system performance. This section will clarify the analytical techniques employed,
illustrating how data transforms into actionable insights that inform optimization
decisions.

Additionally, the methodologies will evaluate the proposed modifications to the
User Control System to determine their potential as enhancements for constrained
devices. Insights will be gathered on which modifications may improve performance
while ensuring security, and which may introduce vulnerabilities or be deemed
unsuitable.

In summary, this chapter serves as a crucial component of the thesis, articulating a
structured approach to data collection and evaluation that underpins the findings
and conclusions drawn in subsequent sections.

4.1 Data Collection Methodologies
This thesis employed various data collection methodologies to evaluate the per-
formance of the User Control System across different operational scenarios. The
primary goal was to systematically gather relevant data points to gain insights into
the system’s efficiency and performance characteristics.

Central to the data collection process were the outputs from the Policy Enforcement
Point, which tracked and recorded key events during UCS operations from the user
perspective. As requests were processed, timestamps for actions such as request
submissions and response receptions were collected. This information allowed for
the calculation of the time taken for different operations, providing a clear overview
of system performance.

A significant aspect of this research involved testing combinations of operational
parameters. By varying configurations of policies and request attributes, a compre-
hensive dataset was generated. These combinations formed the foundation for the
output data collected from individual tests within each batch, enabling a nuanced
understanding of the UCS’s behavior under different conditions.

Data was gathered selectively from both the PEP and the UCS, focusing on distinct
performance aspects. The PEP provided insights into request-response cycles,
while UCS data offered a deeper understanding of internal processing and policy
evaluations. This dual approach ensured thorough documentation of both external
interactions and internal dynamics.

58

4.2 – Test Results for the Usage Control System

To enhance the robustness of data collection, multiple execution iterations were
conducted for each test scenario, with a total of 10 or 20 executions performed per
batch. This methodology allowed for averaging results, minimizing the impact of
outliers and ensuring statistical validity.

Data verification was crucial to maintaining the integrity of the collected information.
Temporary files were created to log outputs from the UCS, confirming the correctness
of test executions. This step validated the findings, ensuring conclusions were based
on reliable data.

In addition to timing data, the collection process focused on capturing operational
metrics, such as the number of policies evaluated and attributes linked to each
request. Cataloging these metrics provided a holistic view of the UCS’s performance
under varying conditions and configurations.

For analysis, the collected data was exported to CSV format for further examination.
Tools like Microsoft Excel were utilized to organize, visualize, and interpret the
information, facilitating the identification of trends and significant findings within
the dataset.

Overall, the data collection methodologies were designed to enable an in-depth
analysis of UCS performance while ensuring that the gathered data was relevant
and reliable. By structuring the process around specific operational combinations,
critical performance metrics were uncovered, informing future optimizations and
enhancements to the UCS.

4.2 Test Results for the Usage Control System
This section presents the results from the tests conducted on the Usage Control
System. These tests, designed to assess the system’s performance under different
conditions and across various stages of the authorization process, were thoroughly
outlined in section 3.6.

The results focus on key aspects such as installation, runtime performance, and
revocation handling. By analyzing the collected data, insights are provided into
the system’s functionality, its response to varying loads, and its overall stability.
These findings form the basis for the subsequent analysis and evaluation in the
following section.

4.2.1 Installation Tests
The installation tests conducted on the Usage Control System aimed to measure the
overhead introduced during the application installation phase, specifically focusing

59

Methodologies for Data Collection and Results Evaluation

on the time elapsed between the submission of the first tryAccess request and
the receipt of the last startAccess response. Two distinct modes were tested to
capture variations in performance, each designed to reflect different approaches to
processing authorization requests.

The primary objective of these tests was to evaluate the UCS’s performance on
a constrained device, such as the Raspberry Pi 4. Given the constraints of such
devices, it was important to explore whether sending requests in different orders
would yield varying performance outcomes. The rationale behind testing both
modes lies in the nature of request processing in the UCS, where requests may
arrive in a non-sequential manner. Both tested modes respect the UCON flow,
ensuring that the system’s access control logic remains consistent regardless of the
order in which requests are processed.

In the first mode (Mode 1), the startAccess request for a given action was sent
immediately after receiving a Permit response for the corresponding tryAccess. This
mode simulates a scenario where each request is handled in real time as soon as its
authorization is confirmed, regardless of whether additional tryAccess requests are
still pending. This approach allows for an analysis of the immediate performance
impact of processing each request individually.

The second mode (Mode 2), by contrast, involved submitting all tryAccess requests
consecutively before initiating any startAccess actions. This separation between
the tryAccess and startAccess phases enabled a clearer analysis of how the system
handles batches of requests. By isolating the two phases, it was possible to observe
whether the UCS exhibited performance improvements or degradations as the
number of tryAccess requests increased.

This distinction is crucial, as sending multiple tryAccess requests together may
prevent the UCS from unnecessarily reloading components required for processing
subsequent startAccess requests. In scenarios where components, such as those
responsible for creating session IDs, are retained in cache, this could lead to delays
if the requests are processed out of order. By executing all tryAccess requests first,
potential caching benefits can be leveraged, thus avoiding performance degradation
that might occur if each request is processed immediately as it is authorized.

Both testing modes involved the use of automated scripts to ensure consistency in
test execution. Policies were generated and matched with corresponding tryAccess
requests, with up to 10 requests per test, and the process was repeated 20 times to
ensure statistically reliable results. Each test was configured to match each request
to a unique policy, ensuring that no caching or optimization techniques artificially
enhanced the results.

Table 4.1 and Table 4.2 present the average times measured in each mode, as

60

4.2 – Test Results for the Usage Control System

the number of requests increases. These results provide a clear understanding of
how the system’s performance scales with an increasing number of authorization
requests.

Number of
Requests

Avg. Time for Complete All
Requests [s]

Standard
Deviation %

1 5.40 1.77
2 9.34 2.58
3 13.28 2.58
4 16.47 2.61
5 19.36 2.63
6 21.59 3.53
7 23.92 3.60
8 25.88 3.70
9 27.77 2.86

10 28.97 2.34

Table 4.1: Average timing results for the complete authorization flow during the
installation process based on the number of requests - Mode 1

Number
of

Requests

Avg. Time
TryAccess
Phase [s]

Avg. Time
StartAccess

Phase [s]

Avg. Time for
Complete All
Requests [s]

Standard
Deviation %

1 3.05 2.37 5.42 0.53
2 5.49 3.92 9.41 0.47
3 7.85 5.53 13.38 0.49
4 9.80 6.60 16.40 0.55
5 11.99 7.72 19.72 1.22
6 13.63 8.07 21.70 3.04
7 15.64 8.88 24.51 3.48
8 17.32 9.24 26.56 1.86
9 18.78 9.57 28.35 0.90

10 19.21 9.83 29.04 0.27

Table 4.2: Average timing results for the complete authorization flow during the
installation process based on the number of requests - Mode 2

The graphical representation in Figure 4.3 illustrates the differences in timing
between the two modes, providing a clearer comparison of the system’s behavior as
the number of requests increases.

61

Methodologies for Data Collection and Results Evaluation

1 2 3 4 5 6 7 8 9 100
5

10
15
20
25
30

Number of Requests

Av
g.

T
im

e
[s]

Mode 1: Avg. Time for Complete All Requests

Figure 4.1: Graphical representation of average timing results for the complete
authorization flow during the installation process based on the number of requests
- Mode 1

1 2 3 4 5 6 7 8 9 100
5

10
15
20
25
30

Number of Requests

Av
g.

T
im

e
[s]

Avg. Time for All tryAccess Requests
Avg. Time All startAccess Requests

Avg. Time for Complete All Requests

Figure 4.2: Graphical representation of average timing results for the complete
authorization flow during the installation process based on the number of requests
- Mode 2

62

4.2 – Test Results for the Usage Control System

1 2 3 4 5 6 7 8 9 100
5

10
15
20
25
30

Number of Requests

Av
g.

T
im

e
[s]

Mode 1: Avg. Time for Complete All Requests
Mode 2: Avg. Time for Complete All Requests

Figure 4.3: Comparative graphical representation of average timing results for
complete requests during the installation process - Modes 1 and 2

In addition to the aggregated data for the two modes, the tests also enabled tracing
of the individual steps within the authorization flow for each request. By analyzing
the UCS’s internal logs, it was possible to capture detailed timing information for
each step in the authorization process. This includes the initial submission of the
tryAccess request, the policy evaluation, the issuance of the Permit decision, and
the subsequent interactions that occur after the startAccess request is made by the
PEP.

Figure 4.4 presents a graphical representation of the detailed timing breakdown for
a single authorization flow, providing deeper insights into where potential delays
might occur within the system.

63

Methodologies for Data Collection and Results Evaluation

se
nt

tr
yA

cc
es

s
re

qu
es

t
[P

EP
]-

st
ar

t
tr

yA
cc

es
s

[U
C

S]
st

ar
t

tr
yA

cc
es

s
-t

ry
A

cc
es

s
fa

tt
en

in
g

st
ar

t
tr

yA
cc

es
s

fa
tt

en
in

g
st

ar
t

-t
ry

A
cc

es
s

fa
tt

en
in

g
en

d
tr

yA
cc

es
s

fa
tt

en
in

g
en

d
-t

ry
A

cc
es

s
fin

dP
ol

ic
y

st
ar

t
tr

yA
cc

es
s

fin
dP

ol
ic

y
st

ar
t

-t
ry

A
cc

es
s

fin
dP

ol
ic

y
en

d
tr

yA
cc

es
s

fin
dP

ol
ic

y
en

d
-t

ry
A

cc
es

s
po

lic
y

ev
al

ua
tio

n
st

ar
t

tr
yA

cc
es

s
po

lic
y

ev
al

ua
tio

n
st

ar
t

-t
ry

A
cc

es
s

po
lic

y
ev

al
ua

tio
n

en
d

tr
yA

cc
es

s
po

lic
y

ev
al

ua
tio

n
en

d
-t

ry
A

cc
es

s
ev

al
ua

te
d

tr
yA

cc
es

s
ev

al
ua

te
d

-c
re

at
e

se
ss

io
n

st
ar

t

cr
ea

te
se

ss
io

n
st

ar
t

-c
re

at
e

se
ss

io
n

en
d

cr
ea

te
se

ss
io

n
en

d
-s

en
t

st
ar

tA
cc

es
s

re
qu

es
t

[P
EP

]
se

nt
st

ar
tA

cc
es

s
re

qu
es

t
[P

EP
]-

st
ar

t
st

ar
tA

cc
es

s
st

ar
t

st
ar

tA
cc

es
s

-s
ta

rt
A

cc
es

s
fa

tt
en

in
g

st
ar

t
st

ar
tA

cc
es

s
fa

tt
en

in
g

st
ar

t
-s

ta
rt

A
cc

es
s

fa
tt

en
in

g
en

d
st

ar
tA

cc
es

s
fa

tt
en

in
g

en
d

-s
ta

rt
A

cc
es

s
po

lic
y

ev
al

ua
tio

n
st

ar
t

st
ar

tA
cc

es
s

po
lic

y
ev

al
ua

tio
n

st
ar

t
-s

ta
rt

A
cc

es
s

po
lic

y
ev

al
ua

tio
n

en
d

st
ar

tA
cc

es
s

po
lic

y
ev

al
ua

tio
n

en
d

-s
ta

rt
A

cc
es

s
ev

al
ua

te
d

st
ar

tA
cc

es
s

ev
al

ua
te

d
-s

ta
rt

A
cc

es
s

up
da

te
en

tr
y

st
ar

t
st

ar
tA

cc
es

s
up

da
te

en
tr

y
st

ar
t

-s
ta

rt
A

cc
es

s
up

da
te

en
tr

y
en

d
st

ar
tA

cc
es

s
up

da
te

en
tr

y
en

d
[U

C
S]

-r
ec

ei
ve

d
st

ar
tA

cc
es

s
re

sp
on

se
[P

EP
]

0

200

400

600

800

1,000

1,200

243

581

250

3

749

5

756

4

324
187

3
86

1,160

229

2

444

1 2 23

449

Step

Av
g.

T
im

e
[m

s]

Figure 4.4: Graphical representation of the detailed timing breakdown for an
individual authorization flow

64

4.2 – Test Results for the Usage Control System

This graphical representation helps identify any inefficiencies or bottlenecks within
the authorization process.

4.2.2 Running Tests
The running tests were designed to evaluate the runtime performance of the Usage
Control System when processing requests for an application that is already installed.
These tests focus specifically on measuring the overhead introduced during the
runtime authorization phase, analyzing the system’s behavior as the complexity of
the policies increases.

In these tests, each request follows the standard authorization flow: an initial
tryAccess request is submitted, resulting in a Permit decision, followed by a
corresponding startAccess request, which also results in a Permit. However, unlike
the installation tests, the primary focus here is on how the UCS handles the
evaluation of policies that include varying numbers of attributes within their
ongoing sections.

Each policy is linked to a number of Policy Information Points (PIPs), where each
PIP corresponds to a specific attribute that must be evaluated. To investigate how
the number of attributes in the ongoing section of each policy affects performance,
the tests were conducted by varying the number of attributes from 1 to 50. This
approach allows for a detailed analysis of the UCS’s scalability and efficiency when
handling policies of increasing complexity. Each test consists of a single request,
ensuring that the observed performance reflects the impact of policy complexity
alone, without interference from additional request overhead.

All PIPs are of the same type, with each PIP obtaining the value of its corresponding
attribute by reading from a file located within the device. Automated scripts were
employed to ensure consistent test execution and accurate logging of performance
metrics, including the response times for the tryAccess and startAccess phases.
These metrics provide insights into how the UCS responds to the increasing workload
imposed by the evaluation of multiple attributes found in the ongoing section of
each policy. The number of PIPs involved in each test plays a critical role, as each
additional attribute introduces a new layer of complexity, requiring interactions
with the relevant Attribute Manager responsible for processing that attribute’s
values.

Table 4.3 presents the average execution times measured during the running tests,
with varying numbers of PIPs involved. These results provide valuable insights
into how the system’s runtime performance evolves as the complexity of the policy
attributes increases.

To provide a clearer understanding of the performance degradation as the number of

65

Methodologies for Data Collection and Results Evaluation

Number of PIPs Avg. Time [s] Standard Deviation %
1 5.04 3.91
2 5.25 3.89
3 5.33 3.29
4 5.38 4.30
5 5.56 3.95
6 5.58 3.29
7 5.53 3.96
8 5.56 5.13
9 5.67 4.53

10 5.70 4.33
11 5.64 3.12
12 5.74 3.94
13 5.84 6.10
14 5.89 4.94
15 6.08 2.91
16 6.01 3.67
17 6.01 4.00
18 6.09 4.05
19 6.07 5.02
20 5.96 3.92
21 6.07 4.71
22 6.14 2.49
23 6.03 3.39
24 6.03 4.34
25 6.08 3.26
26 6.12 4.15
27 6.20 2.16
28 6.30 2.84
29 6.25 5.75
30 6.29 3.10
31 6.32 3.85
32 6.36 3.55
33 6.40 4.90
34 6.33 4.37
35 6.40 5.68
36 6.37 2.93
37 6.51 4.49
38 6.70 4.06
39 6.57 4.63
40 6.55 6.42
41 6.46 5.08
42 6.58 4.26
43 6.21 5.60
44 6.11 4.95
45 6.19 4.69
46 6.16 3.83
47 6.27 2.90
48 6.33 4.41
49 6.32 4.20
50 6.35 3.94

Table 4.3: Average runtime performance results based on the number of attributes
in the policy

PIPs increases, Figure 4.5 visualizes the average time for processing a single request
and the related standard deviation percentages. This graphical representation
highlights how the system’s performance is impacted as the policy complexity
increases.

66

4.2 – Test Results for the Usage Control System

1 5 10 15 20 25 30 35 40 45 50

5
5.2
5.4
5.6
5.8

6
6.2
6.4
6.6
6.8

Number of Attributes

Av
g.

T
im

e
[s]

Avg. Time [s]

Figure 4.5: Graphical representation of average execution time for varying number
of attributes during running tests

4.2.3 Revocation Tests
The revocation tests aimed to evaluate the efficiency of the Usage Control System
in managing the revocation of previously granted permissions. These tests are
crucial for understanding how quickly the system responds to changes in access
rights, particularly when an attribute’s value is modified in a way that violates
established policies.

The focus is on measuring the inconsistency time, which refers to the period between
the alteration of an attribute’s value and the Policy Enforcement Point receiving the
revoke signal from the UCS. Each test follows a standard workflow: access is initially
granted based on specific attribute values, after which a designated attribute’s
value is intentionally changed to trigger the revocation process. Timestamps for
both the attribute modification and the receipt of the revoke signal at the PEP are
recorded for analysis.

Testing involved varying the number of Policy Information Points from 1 to 50,
corresponding to different policy attributes. This range facilitates an examination
of how revocation performance is influenced by the number of attributes evaluated.
By concentrating on a single request per test, we isolate the impact of attribute
complexity and minimize extraneous overhead.

67

Methodologies for Data Collection and Results Evaluation

Table 4.5 presents the average inconsistency times measured during the revocation
tests, illustrating the latency experienced as the number of PIPs increases and
providing insights into the UCS’s responsiveness in enforcing access control across
different policy complexities.

Number of PIPs Avg. Time [s] Standard Deviation %
1 1.52 12.48
2 1.48 8.14
3 1.47 29.82
4 1.59 20.33
5 1.61 22.11
6 1.69 23.28
7 1.47 28.25
8 1.49 24.19
9 1.52 22.97

10 1.70 22.15
11 1.66 21.37
12 1.66 19.26
13 1.70 13.30
14 1.72 19.88
15 1.69 10.34
16 1.64 14.96
17 1.77 13.40
18 1.99 5.30
19 2.12 5.48
20 2.56 28.20
21 2.85 6.59
22 2.90 4.67
23 3.18 4.90
24 3.38 4.35
25 3.79 4.74
26 3.92 5.03
27 4.23 4.48
28 4.33 3.30
29 4.62 3.42
30 5.27 2.49
31 5.75 3.65
32 5.88 4.42
33 6.24 7.84
34 5.98 5.05
35 6.25 7.64
36 6.08 4.45
37 6.43 6.26
38 9.22 4.57
39 9.53 3.50
40 9.68 3.10
41 9.95 4.50
42 9.86 5.26
43 10.38 6.43
44 6.58 4.71
45 6.75 8.25
46 7.01 5.66
47 10.59 9.26
48 10.18 6.06
49 10.55 5.71
50 9.98 6.06

Table 4.4: Average revocation performance results based on the number of
attributes in the policy

To illustrate the performance degradation as the number of PIPs increases, Fig-
ure 4.6 visualizes the average revocation times for processing a single revocation
request. This graphical representation highlights the impact of policy complexity
on the system’s responsiveness.

68

4.3 – Analysis of Usage Control System Test Results

1 5 10 15 20 25 30 35 40 45 501
2
3
4
5
6
7
8
9

10
11

Number of Attributes

Av
g.

T
im

e
[s]

Avg. Time [s]

Figure 4.6: Graphical representation of average execution time for varying number
of attributes during revocation tests

4.3 Analysis of Usage Control System Test Re-
sults

The analysis of the test results for the Usage Control System deployed on constrained
devices, specifically a Raspberry Pi 4, reveals several performance challenges that
need to be addressed. The performance was evaluated through three types of tests:
installation, running, and revocation. These results offer detailed insights into
the system’s limitations and strengths, particularly in environments with limited
resources, highlighting areas where targeted optimizations and adjustments are
necessary for improved usability and performance.

The installation tests showed that executing the system in the two modes tested—
processing all TryAccess requests before StartAccess, or handling them out-of-order—
did not result in any significant differences in performance. This demonstrates that
the UCS can handle different request patterns consistently, even on constrained
devices. However, the tests revealed a notable overhead in terms of installation
time, particularly during specific phases of the process. This suggests that the
UCS, in its unmodified state, may introduce usability challenges when deployed
on lightweight systems. Users could experience delays during the installation
of applications, which might negatively impact the overall efficiency of system

69

Methodologies for Data Collection and Results Evaluation

rollouts in real-world applications where swift deployment is critical. Although
these installation-related performance issues do not directly affect the system’s
operational phase, they indicate potential bottlenecks that, if left unaddressed,
could compromise user satisfaction and delay initial system availability.

Nevertheless, despite these initial overheads, the system displayed a consistent
and predictable degradation in performance as the number of requests increased,
with the performance drop remaining within expected percentages. This trend
indicate that the system retains a certain degree of scalability, even when operating
in environments with limited resources. The ability of the UCS to handle an
increasing volume of requests without suffering disproportionate slowdowns is an
encouraging sign. It suggests that, provided the installation overhead is carefully
managed and optimized, the UCS can be effectively deployed in resource-constrained
environments. This level of predictable scalability is important for ensuring the
system’s usability in applications.

The performance tests, which examined the system’s behavior as the number
of attributes in the policies increased, revealed an expected decline compared
to the baseline performance, but not significantly in percentage terms. These
results suggest that the system is optimized for environments where policies are
highly dynamic and involve frequent evaluations of multiple attributes. The ability
to maintain relatively stable performance as policy complexity increases clearly
indicates that the UCS can handle complex policy management even under resource
constraints, making it a viable option for scenarios where dynamic access control is
critical, such as in IoT or smart environments.

In contrast, the revocation tests exposed a more concerning performance issue.
A substantial degradation in revocation times was observed as the number of
attributes increased, with a staggering 654 % increase in the time required to
complete a revocation when comparing tests with 1 attribute to those with 50
attributes. This raises serious security concerns, as slow revocation times could lead
to unauthorized access being maintained far longer than intended. In environments
dealing with sensitive data or critical infrastructure, this delay could have severe
consequences, as access to resources that should have been revoked immediately
might persist, potentially leading to data breaches or unauthorized use of critical
systems. The inability to revoke access promptly undermines the reliability of the
UCS in dynamic contexts, where permissions need to be adapted or revoked in real
time. This issue highlights a significant weakness in the current implementation of
the UCS, and addressing it will be essential to ensure that the system can perform
effectively in situations where security and timely access revocation are paramount.

Overall, the results from these tests highlight both the strengths and weaknesses

70

4.3 – Analysis of Usage Control System Test Results

of the UCS when deployed on constrained devices. The installation phase demon-
strated that, while some overhead is present, the system maintains a good level
of scalability, handling increasing request volumes in a predictable manner. The
running tests showed that, the system performs exceptionally well under more
complex policy conditions, managing multiple attributes with surprising efficiency.
This indicates that the UCS is well-suited to environments where access control
policies are dynamic and complex. However, the severe degradation in revocation
times represents a critical flaw, as delayed revocations could lead to unauthorized
access, particularly in sensitive and time-critical environments.

Addressing these challenges, particularly the revocation performance issue, is crucial
to ensuring the UCS can function reliably and securely in resource-constrained
settings. Once these performance issues are resolved, the UCS could offer a
robust solution for managing access control in lightweight systems. Its ability to
handle complex, attribute-intensive policies with reasonable scalability makes it an
attractive candidate for deployment in environments such as smart homes, where
constrained devices are prevalent, and dynamic access control is often required.
These results lay the foundation for future optimizations, suggesting that, with
targeted improvements, the UCS could become a reliable and effective solution for
access control in a wide range of constrained device environments.

71

Methodologies for Data Collection and Results Evaluation

4.4 Test Results for the Modified Usage Control
System

The proposed modifications to the Usage Control System were subjected to thorough
testing to evaluate their impact on performance, efficiency, and security. The tests
aimed to assess improvements in request processing speed, system resilience, and
the dynamic handling of access control policies, while comparing the system’s
behavior before and after the modifications.

This section details the testing process for each modification, offering a comparative
analysis of the system’s performance prior to and following the changes. The
focus is on examining the specific effects on the authentication flow and other key
operational metrics.

4.4.1 Performance Impact of Disabling Distributed Hash
Table Updates

The decision to disable Distributed Hash Table updates represents a significant
reduction in the distributed functionality of the Usage Control System. While DHT
updates facilitate synchronization across multiple nodes, they introduce notable
performance overhead, particularly in resource-constrained environments such as
the Raspberry Pi 4 platform, on which the UCS is deployed. Given the limited
computational and memory resources of such devices, it becomes crucial to assess
whether a more centralized architecture, with DHT updates disabled, could provide
a better trade-off between performance and functionality.

The modification aimed to eliminate the DHT update overhead during the request
handling flow by disabling the StatusWatcher component, which is responsible for
monitoring changes in the UCS local database and triggering DHT updates. By
doing so, the system sacrifices its distributed nature in favor of a more lightweight
operation, potentially better suited for environments with limited resources.

To evaluate this modification, the performance of the UCS was analyzed in various
test scenarios, including installation tests, running tests, and revocation tests. The
analysis compared the behavior of the system before and after disabling the DHT
updates, focusing on metrics such as request processing time, authentication flow
latency, and overall system responsiveness.

In the following sections, graphical representations of the test results are presented,
offering a comparative analysis of the system’s performance before and after the
modification, with particular attention to installation, running, and revocation
phases.

72

4.4 – Test Results for the Modified Usage Control System

1 2 3 4 5 6 7 8 9 100
5

10
15
20
25
30

Number of Requests

Av
g.

T
im

e
[s]

DHT Update Enabled
DHT Update Disabled

Figure 4.7: Comparative graph of average timing results during the installation
process with DHT update enabled and disabled

1 5 10 15 20 25 30 35 40 45 504
4.2
4.4
4.6
4.8

5
5.2
5.4
5.6
5.8

6
6.2
6.4
6.6
6.8

Number of Attributes

Av
g.

T
im

e
[s]

DHT Update Enabled
DHT Update Disabled

Figure 4.8: Comparative graph of average execution time for varying number of
attributes during running tests with DHT update enabled and disabled

73

Methodologies for Data Collection and Results Evaluation

1 5 10 15 20 25 30 35 40 45 501
2
3
4
5
6
7
8
9

10
11

Number of PIPs

Av
g.

T
im

e
[s]

DHT Update Enabled
DHT Update Disabled

Figure 4.9: Comparative graph of average execution time for varying number of
attributes during revocation tests with DHT update enabled and disabled

4.4.2 Performance Impact of Removing Journaling
Another key modification within the Usage Control System is the removal of
the journaling functionality. This change aims to reduce system functionality
and resilience, particularly in the face of potential power failure errors. While
journaling enhances system resilience by capturing updates frequently, it can
introduce performance overhead, making it less practical for resource-constrained
environments such as the Raspberry Pi 4 platform, where the UCS is deployed.

The decision to disable journaling is rooted in the recognition that smart home
devices may encounter intermittent power reliability issues. By eliminating the
journaling process, the UCS can operate more efficiently, albeit at the cost of
robustness during unexpected power outages. This modification underscores the
necessity of balancing functionality and efficiency, as the removal of frequent updates
may impact the system’s ability to recover from failures. However, it may lead
to improved system responsiveness and resource management, critical factors in
resource-limited environments.

Furthermore, this change allows for a more lightweight system while maintaining
a distributed architecture. This enhancement could potentially open the door to

74

4.4 – Test Results for the Modified Usage Control System

broader applications in smart home environments, enabling higher connectivity
and integration among devices.

To evaluate the impact of removing the journaling functionality, the performance
of the UCS was analyzed across various test scenarios, similar to the approach
taken when disabling DHT updates. The tests included installation tests, running
tests, and revocation tests. The performance metrics considered included request
processing time, authorization flow latency, and overall system responsiveness.

In the subsequent sections, graphical representations of the test results will be
presented, illustrating the comparative analysis of the UCS’s performance before
and after the modification. This analysis will focus on how the removal of journaling
affects the system’s efficiency, particularly during the installation, running, and
revocation phases. The findings will provide insights into whether the trade-off in
resilience is justified by the gains in performance and resource utilization.

1 2 3 4 5 6 7 8 9 100
5

10
15
20
25
30

Number of Requests

Av
g.

T
im

e
[s]

DHT Update Enabled
DHT Update Disabled

No Journaling

Figure 4.10: Comparative graph of average timing results during the installation
process with DHT update enabled, disabled, and with journaling removed

75

Methodologies for Data Collection and Results Evaluation

1 5 10 15 20 25 30 35 40 45 504
4.2
4.4
4.6
4.8

5
5.2
5.4
5.6
5.8

6
6.2
6.4
6.6
6.8

Number of Attributes

Av
g.

T
im

e
[s]

DHT Update Enabled
DHT Update Disabled

No Journaling

Figure 4.11: Comparative graph of average execution time for varying number
of attributes during running tests with DHT update enabled, disabled, and with
journaling removed

1 5 10 15 20 25 30 35 40 45 501
1.2
1.4
1.6
1.8

2

Number of Attributes

Av
g.

T
im

e
[s]

DHT Update Disabled
No Journaling

Figure 4.12: Comparative graph of average execution time for varying number of
attributes during revocation tests with DHT update disabled and with journaling
removed

76

4.4 – Test Results for the Modified Usage Control System

4.4.3 Performance Impact of Direct Policy Integration in
tryAccess Requests

Integrating policies directly within the tryAccess requests marks a significant
improvement in the architecture of the Usage Control System. This modification
leverages the trusted nature of the Policy Enforcement Point (PEP) to reduce the
operational overhead associated with policy searches.

In standard implementations, the UCS conducts time-consuming searches for
applicable policies, introducing latency in the request handling process. By allowing
the PEP to embed relevant policies directly into the tryAccess requests, this
overhead is eliminated, streamlining the authorization flow and improving system
performance.

Although using the PEP as a trusted component raises concerns about increasing the
attack surface, this trade-off is justified when considering the goal of deploying the
UCS on constrained devices, such as the Raspberry Pi 4. In addition to performance
gains, reducing the operations on limited hardware also enhances system security by
minimizing vulnerabilities related to resource exhaustion. This approach improves
both performance and functionality by simplifying policy management without
compromising security.

The performance tests in this section were conducted using the No Journaling
variant of the UCS, which was chosen after prior tests demonstrated its superiority
in terms of both performance, functionality, and security. As a result, only results
with this variant are presented here.

Although other configurations, such as DHT Update Disabled or the original UCS,
could have been evaluated, the notable benefits of No Journaling made it the most
suitable foundation for further enhancements. While the integration of policies
directly into tryAccess is an independent optimization, this study focuses on the
most promising configuration to maximize performance, security, and functionality
in resource-limited environments.

To accurately evaluate the efficiency of this implementation, it was first necessary
to assess the impact of searching for an applicable policy with a growing number
of policies, referred to as the findPolicy operation. In this case, the complexity is
represented by the number of policies loaded into the system, with a fixed scenario
where the applicable policy is always the last one in the set. This setup ensures
that no unintended optimizations influence the results and provides a consistent
metric for evaluating performance.

The findPolicy operation represents a key part of the standard UCS request handling
process and, on average, accounts for 757 ms—approximately 24.82 % of the total

77

Methodologies for Data Collection and Results Evaluation

handling time for a single tryAccess request with the standard UCS implementation.
Understanding how this time scales with the number of policies is essential to
properly gauge the performance gains from removing this step in the modified
approach. By quantifying the search time under varying conditions, it becomes
possible to measure the extent of the optimization achieved through direct policy
integration.

Table 4.5 presents the results of the tests conducted, illustrating the time taken by
the findPolicy operation as the number of policies increases. This data provides a
baseline for comparing the performance improvements realized by bypassing this
step in the optimized implementation.

Number of Policies Avg. Time [s] Standard Deviation %
1 0.71 0.01
2 0.80 0.01
3 0.81 0.01
4 0.73 0.01
5 0.90 0.01

10 1.05 0.01
11 0.74 0.01
12 0.71 0.01
13 0.80 0.01
14 0.86 0.01
15 0.81 0.01
20 0.88 0.01
21 0.90 0.01
22 0.92 0.01
23 0.80 0.01
24 0.83 0.02
25 0.90 0.01
30 0.91 0.01
31 0.91 0.01
32 1.01 0.01
33 1.00 0.01
34 0.99 0.01
35 1.05 0.02
36 0.91 0.01
37 0.87 0.01
38 0.98 0.01
39 0.95 0.02
40 0.92 0.01
41 0.88 0.01
42 0.93 0.01
43 0.89 0.01
44 0.95 0.01
45 0.91 0.01
46 1.04 0.01
47 1.00 0.01
48 0.96 0.01
49 0.90 0.01
50 0.92 0.01

Table 4.5: Average findPolicy performance results based on the number of loaded
policies, ensuring that the applicable policy is always the last in the set

As observed from the data, the findPolicy operation is impacted only minimally,
with negligible fluctuations (less than 200 ms) as the number of initialized policies
increases. This indicates that the overhead associated with policy searching does
not significantly degrade performance. However, it represents approximately 30 %
of the time required for handling a tryAccess request, so removing this step could

78

4.4 – Test Results for the Modified Usage Control System

positively affect the overall efficiency of the system when deployed on constrained
devices.

To further assess the robustness of this evaluation, a stress test was conducted using
the modified version of the Usage Control System, where the findPolicy operation
was removed. In this scenario, consecutive tryAccess requests were processed,
with all requests sent by the Policy Enforcement Point (PEP) already containing
the applicable policy. This configuration was designed to simulate a real-world
usage scenario, allowing for a comparative analysis against the unmodified UCS
implementation from the perspective of the PEP.

The results of this stress test are presented in Table 4.6 , highlighting the differences
in performance between the modified UCS variant (with the findPolicy operation
removed) and the standard implementation, focusing on request handling times
and overall system responsiveness under load.

Number
of

Requests

Avg. Time
TryAccess
Phase [s]

Avg. Time
StartAccess

Phase [s]

Avg. Total
Time [s]

Standard
Deviation %

1 2.87 2.09 4.96 4.10
2 5.38 3.40 8.78 2.23
3 7.50 4.89 12.39 2.02
4 9.70 5.73 15.43 1.75
5 11.70 6.59 18.29 2.33
6 13.48 6.89 20.38 3.63
7 15.41 6.93 22.34 4.68
8 16.98 7.62 24.61 3.33
9 18.03 7.23 25.26 3.73

10 19.95 7.65 27.60 3.74

Table 4.6: Average timing results for the complete authorization flow using the
modified UCS version with the findPolicy operation removed, based on the number
of requests

Figure 4.13 presents a graphical comparative version of the same data between this
implementation and the one prior to the modification. This visual representation
will help clearly illustrate the performance variations achieved through the direct
integration of policies in the access requests.

79

Methodologies for Data Collection and Results Evaluation

1 2 3 4 5 6 7 8 9 100
5

10
15
20
25
30

Number of Requests

Av
g.

T
im

e
[s]

No Journaling
No Journaling + No findPolicy

Figure 4.13: Comparative graph of average timing results during the stress tests
with No Journaling and No Journaling + No findPolicy

To explain why, even though the UCS no longer needs to invest time in searching
for the applicable policy, there is no significant change in processing time from
PEP prospective, as shown in Figure 4.13, it is important to note that the PEP is
no longer limited to merely creating the tryAccess request and sending it to the
UCS. In the modified architecture, the PEP now assumes a more active role by
selecting the applicable policy and managing the Base64 encoding of the identified
policy to be inserted inside the request before transmission. This additional step
introduces complexity.

Furthermore, upon receiving a new tryAccess request, the UCS is responsible for
accurately decoding the Base64-encoded request, enabling it to handle and process
the request as intended. This new workflow introduces a layer of complexity.

In order to provide a comprehensive overview of the impact of the modification
on overall performance, data from the UCS has been collected and analyzed. This
analysis aims to identify which steps in handling requests have the greatest impact
and to quantify the overall effect on request processing.

A comparative view of the steps of the request handling process that have been
substantially impacted is presented in Figure 4.14.

80

4.5 – Analysis of Modified System Test Results

200 300 400 500 600 700 800

Unmarshalling

findPolicy

243

757

472

229

Time [ms]

Original UCS
Modified UCS

Figure 4.14: Comparison of Request Handling Steps Before and After Modification

As shown in Figure 4.14, the unmarshalling of the received request–—converting
the XML-formatted request into a Java object, useful for subsequent steps–—takes
longer than before, reducing the efficiency gained from eliminating the findPolicy
operation.

4.5 Analysis of Modified System Test Results
The analysis of the modified Usage Control System reveals several key performance
improvements following changes to its architecture, while also highlighting cer-
tain trade-offs. The modifications introduced—disabling Distributed Hash Table
updates, removing journaling functionality, and directly integrating policies into
TryAccess requests—were extensively tested for installation, runtime, and revoca-
tion performance on a resource-constrained device like a Raspberry Pi 4. Each
modification impacts the system differently, enhancing performance or reducing
functionality, but overall, the system retains its usability and security.

Disabling DHT updates had a significant effect on system performance. By
removing the synchronization overhead associated with DHT updates, the UCS
experienced improved installation times and a more efficient architecture, shifting
from a distributed to a single-node model. During runtime tests, the system showed
not only faster base performance but also a reduced degradation rate as the number
of attributes in the policies increased. This indicates that the UCS is more efficient
at handling requests under load when DHT updates are disabled.

Most notably, the revocation phase saw substantial gains. Previously, the overhead

81

Methodologies for Data Collection and Results Evaluation

from DHT updates across distributed nodes resulted in excessive delays for re-
voking permissions, compromising system responsiveness and security in real-time
applications. In contrast, the modified UCS consistently completed revocations in
under two seconds, regardless of policy complexity. This improvement is critical in
environments such as smart homes, where timely revocation is essential. While this
modification sacrifices distributed scalability, it enhances performance significantly
for centralized or small-scale deployments.

The removal of journaling functionality also contributed to improved perfor-
mance but with different implications. Journaling was primarily used for ensuring
data integrity during power failures and introduced substantial performance over-
head due to frequent updates. By removing journaling, the UCS exhibited faster
installation and running times, similar to the effects seen with DHT updates dis-
abled. While the architecture remains distributed, the frequency of updates to the
DHT is reduced, leading to a more streamlined and responsive system, albeit at a
slight cost to fault tolerance.

Both modifications—disabling the DHT updates and removing journaling—led
to significant improvements in revocation performance. Previously, the system’s
overhead in managing updates hampered timely access revocation. The modified
UCS demonstrates that removing some features is essential for maintaining secure
and prompt access control environments prioritizing performance. This balance
between efficiency and resilience is especially beneficial in resource-constrained
settings.

In comparing the two versions, the DHT-disabled configuration offered superior
performance, with faster installation and running times than the journaling-disabled
version. The overhead from maintaining the DHT proved more detrimental to
performance than that introduced by journaling. However, the trade-offs remain
significant: disabling DHT updates enhances performance but sacrifices the ability
to scale across distributed nodes, whereas removing journaling improves performance
while retaining a degree of fault tolerance.

Direct integration of policies into TryAccess requests marks a significant
change in the interaction between the PEP and the UCS. In the original system, the
PEP simply created TryAccess requests, while the modified architecture requires
the PEP to actively select and embed policies into these requests. Although this
adds complexity to the PEP’s role, increasing the attack surface, it significantly
reduces the workload of the UCS.

Upon receiving the TryAccess request, the UCS decodes the embedded Base64-
encoded policy, streamlining the process by eliminating costly policy lookups.
This new workflow has resulted in improved response times: TryAccess operations

82

4.6 – Final Considerations

average 2.33 seconds, with StartAccess operations even faster at about 1.2 seconds.
The reduction in time between these two operations highlights increased efficiency
from the decreased overhead in policy management.

While this modification adds some burden to the PEP, it ultimately benefits the
overall system by offloading tasks from the UCS, allowing it to focus on decoding
and evaluating policies rather than searching for them. This division of labor
becomes particularly advantageous in smart home environments, where the number
of requests and PEPs can grow exponentially. Although the end-user experience
may remain largely unchanged, the reduced workload on the UCS can lead to
better overall system performance during high demand.

4.6 Final Considerations
The analysis of the modified Usage Control System highlights its potential for
efficient deployment on constrained devices like the Raspberry Pi 4. The modifi-
cations implemented—including the disabling of Distributed Hash Table updates
and the removal of journaling functionality—have led to significant performance
improvements, making the UCS a viable option for resource-limited environments.

Among the variations tested, the final architecture without journaling has proven
to be the most favorable, striking an optimal balance between functionality, per-
formance, and security in access control. By eliminating journaling, the system
reduces overhead, which significantly enhances performance relative to the original
version, where journaling is enabled.Additionally, this configuration maintains an
acceptable level of system-wide resilience, particularly when compared to the alter-
native architecture in which DHT updates are also disabled. While the removal of
journaling reduces the system’s ability to withstand sudden interruptions—reducing
local resilience—it achieves a middle ground by preserving the DHT updates, which
ensure consistent management of access permissions across the network. This bal-
ance minimizes the potential impact of security vulnerabilities in individual nodes
on the overall system while optimizing performance for constrained environments.

The modified UCS demonstrates improved installation and running times and
ensures timely revocation of access permissions, consistently achieving revocations
in under two seconds, regardless of policy complexity. This capability underscores
its suitability for dynamic environments like smart homes, where rapid adjustments
to access control are critical.

Moreover, the testing frameworks validate UCON as an effective mechanism for
achieving Security by Contract compliance. By managing app-to-contract and
contract-to-policy matching, UCON ensures applications align with predefined

83

Methodologies for Data Collection and Results Evaluation

security contracts, which is crucial in environments with rapidly changing security
requirements.

The evaluation of UCON’s dynamic monitoring capabilities has revealed its ef-
fectiveness in enforcing runtime restrictions, ensuring continuous alignment with
user-defined security policies throughout the application’s lifecycle.

Ultimately, the UCS in its modified form offers a robust solution for managing
access control in constrained settings. With targeted optimizations, it can effectively
handle complex policies and high volumes of access requests, making it an attractive
choice for modern IoT applications. The findings from this research affirm that
UCON can significantly enhance compliance with the S×C model, paving the way
for a more secure and adaptable IoT ecosystem.

84

Chapter 5

PiCamera IoT Application
with UCS on Constrained
Devices

This chapter presents a practical example of enforcing Security-by-Contract compli-
ance in IoT applications through the UCON framework. The proposed approach is
applied to a common IoT device, the PiCamera, operating within the constraints of
a Raspberry Pi platform. The primary objective is to demonstrate the effectiveness
of the UCS framework in managing and enforcing real-time access control policies
for video streaming, addressing essential security requirements in smart home
environments.

For a practical reference, the application code implementing this example is available
in the thesis repository1. This example serves as a final demonstration that utilizes
the UCON framework for enforcing a monitored dev-API at runtime.

The approach assumes control over the methods available to application developers,
i.e., the dev-APIs, used to construct the application. These dev-APIs are defined
within the SIFIS-Home project, as explained in Section 2.5. A valid contract maker
is also presumed to be accessible, allowing the creation of contracts, defined in
Sections 2.4 and 3.1, by extracting pertinent information from the dev-APIs in the
application code.

The chapter presents the application and its development, structured to detail

1Thesis repository: https://sssg-dev.iit.cnr.it/marco-rasori/sxc-ucon-tests

85

 https://sssg-dev.iit.cnr.it/marco-rasori/sxc-ucon-tests

PiCamera IoT Application with UCS on Constrained Devices

each stage of the application life cycle, including installation, policy enforcement
during video capture, and revocation of access rights as managed by the UCON
framework.

5.1 Application Development and Deployment
In the context of enforcing Security-by-Contract compliance using the UCON frame-
work, the PiCamera application exemplifies a practical implementation designed for
real-time access control in video streaming. This application operates seamlessly
on a Raspberry Pi platform, leveraging the capabilities of the PiCamera while
adhering to essential security requirements in smart home environments.

To facilitate effective control over the PiCamera, the application utilizes FFmpeg,
a powerful multimedia framework that enables video processing and encoding.
This allows users to capture high-quality video streams with customizable settings
such as framerate, resolution, and quality. Additionally, the application employs
WebSocket for real-time communication between the user and the User Control
System (UCS).

The design incorporates hypothetical developer APIs, which encapsulate key func-
tionalities and integrate a Policy Enforcement Point within the dev-API code. This
integration allows the application to make real-time requests to the UCS, ensuring
dynamic policy evaluations.

The APIs are:

• start_PiCamera_streaming: This API initiates the video streaming
process, allowing users to begin capturing video with configurable parameters
on the storage location they prefer, with unique video files.

• update_default_settings: This API enables adjustments to the default
video settings, with modifications taking effect upon the next restart of the
video streaming.

• update_current_settings: This API facilitates the modification of cur-
rent streaming settings by stopping the current stream, updating the video
streaming settings, and restarting the recording. This API requires that the
PiCamera is already streaming.

• stop_PiCamera_streaming: This API stops the current video streaming
process, ensuring that the PiCamera is no longer capturing video. It safely
terminates the streaming session by killing the FFmpeg process responsible
for the video capture and updates the application state to reflect that the
camera is no longer running.

86

5.2 – Application Life-Cycle

Additionally, the application is designed for easy deployment across various devices
through containerization. By utilizing Docker, the application can be built and run
on a Raspberry Pi 4 using the following command, ensuring compatibility with the
ARM architecture:

docker build --platform linux/arm64 -t picamera-app $PATH

During the deployment phase, it is crucial that the application possesses a valid
contract specifying the security-relevant actions it is permitted to perform, as
explained in Section 2.4. This contract is derived from the dev-APIs and acts as a
manifest detailing the application’s intended security operations. Features provided
by the contract maker may include:

• Starting the video stream: This means that the application is able to
control and initiate video streaming through the IoT device.

• Modifying video settings: This means that the application can modify
video settings, such as resolution, frame rate, and quality, in both static and
dynamic ways.

• Stopping the video stream: This means that the application can terminate
the current video streaming process, ensuring that the IoT device is no longer
capturing video.

5.2 Application Life-Cycle
The objective of this section is to outline the relevant stages in the application
life cycle, which involves several critical phases: installation, execution, and the
management of access permissions. The aim is to illustrate how the Usage Control
System can effectively enforce Security-by-Contract compliance in a practical
application.

To set the stage for the discussion, the primary subjects involved are identified:

• User: The individual who interacts with the application to manage video
streaming.

• Application: The PiCamera application designed for video capture and
streaming.

• Smart Home: The environment equipped with IoT devices, including the
PiCamera.

• User Control System: The system responsible for managing permissions
and enforcing security policies.

87

PiCamera IoT Application with UCS on Constrained Devices

In this context, it is assumed that the user, or more specifically, the smart home
administrator, has defined policies within the UCON framework that may affect the
life cycle of the application, because they pertain to actions that may be executed
through the various dev-APIs utilized in the application’s development. For this
section, it is hypothesized that the user has defined policies that state:

• An application that controls video recording must not be installed if it does not
allow the user to specify where videos should be stored. This policy ensures
that users are aware of how their video data will be managed.

• An application that controls video recording must not be installed if it over-
writes any existing video files. This ensures that users do not accidentally lose
important recordings.

• An application that controls video recording may not register videos with a
resolution exceeding 1920x1080 to prevent excessive memory usage.

• An application that controls video recording may not lower the quality below a
certain threshold, fixed at 15, during night hours (23:00-06:00). This prevents
poor-quality recordings when lighting conditions are less than optimal, ensuring
that any video captured at night remains usable. If this condition cannot be
respected, the recording should be stopped to prevent memory usage of useless
video.

• An application that controls video recording may not operate if the device’s
battery level is below 20 %. This prevents interruptions in recording due to
sudden power loss.

5.2.1 Installation Phase
During installation, the UCS verifies Security-by-Contract compliance by perform-
ing Contract-Policy matching, which must be satisfied to allow the application
installation. In the context of the PiCamera application, installation can be suc-
cessfully completed in the smart home environment because it fulfills all specified
requirements outlined by the user-defined policies.

The start_PiCamera_streaming dev-API, for instance, enables the application to
initiate video capture while adhering to policies regarding video storage and file
management. This API ensures that users can specify the storage location for
video files and prevents overwriting existing recordings, aligning with the policies
that safeguard user data.

However, while the application may install successfully, it is imperative for the
UCS to activate monitoring. This is necessary because certain actions taken by
the application during execution could potentially violate the defined policies. For

88

5.2 – Application Life-Cycle

instance, because the application may allow changes to video recording quality
and resolution settings, it is crucial to enforce restrictions, such as not permitting
resolutions above 1920x1080 or quality levels below the specified threshold during
night hours.

The UCS’s monitoring role becomes critical in these scenarios to ensure that the
application complies with all user-defined policies throughout its operation. This
proactive approach helps mitigate risks associated with non-compliance, thereby
maintaining the integrity and security of the smart home environment.

5.2.2 Running Phase
Once the PiCamera application is installed, it enters the running phase, where
it actively engages in video capture and streaming according to the parameters
set by the user. During this phase, the application utilizes the previously defined
dev-APIs to perform its functionalities, while the UCS continuously monitors the
application’s compliance by performing Application-Policy matching. This ensures
that the behavior of the application, as defined by its contract, remains within the
boundaries of the policy’s security requirements.

As the application operates, it may attempt to modify settings related to video
capture, such as resolution and quality through the update_current_settings dev-
API. When such a dev-API is invoked, the PEP asks for permission from the UCS,
which evaluates these modifications against the established policies. For example, if
the application tries to change the resolution to 2560x1440, the UCS will intervene,
performing a corrective action that may involve stopping the video recording and
logging the incident for compliance tracking.

5.2.3 Potential Revocation Phase
In cases where the application is found to be non-compliant with user-defined
policies during the running phase, the UCS may initiate a potential revocation
phase. This phase involves reassessing the application’s permissions, which may
lead to the suspension or complete revocation of access rights to certain resources.

The revocation process is triggered by changes in certain attributes that the
application utilizes during its operations. For instance, if the application, which
has started the recording with acceptable values, according to user-defined policies,
during the session, attempts to change resolution exceeding the allowed 1920x1080
limit, the UCS could revoke its permission to record video. The user would then
be informed of this action and the reasoning behind it, allowing them to make
informed decisions regarding the application’s usage.

89

PiCamera IoT Application with UCS on Constrained Devices

Similarly, if the application continues to lower the video quality below the permitted
threshold during night hours, the UCS might temporarily disable the application
until compliance can be ensured. This could require the user to review the settings
or reset the application before access is restored.

In addition, if the device’s battery level falls below 20 %, the UCS will revoke video
recording permissions to prevent interruptions due to sudden power loss. To delve
in practical actions taken by the UCS in this phase, consider the scenario when the
user initiates video capture via the start_PiCamera_streaming dev-API. At this
moment, the PIP retrieves the current battery level, and the UCS evaluates the
policy. If the battery level is above 20 %, access is granted, allowing the recording
to proceed. As the application runs, the UCS continuously monitors the battery
level, re-evaluating policies when changes occur, provided there is an active session
with an associated battery-level condition. If the battery level drops below the
threshold of 20 %, the UCS revokes recording permissions, preventing unauthorized
operation. If the battery level remains above the threshold, recording continues
without interruption. In either case, the user receives a notification, allowing them
to manage device resources effectively.

Overall, the potential revocation phase acts as a safeguard, ensuring that the
application adheres to established security requirements while allowing users to
address any compliance issues that arise during operation.

5.3 Considerations
In conclusion, the analysis of the application life cycle in this practical example
illustrates how the UCON framework serves as an efficient mechanism for enforcing
Security-by-Contract compliance. The structured approach to installation, running,
and potential revocation underscores the framework’s capacity to maintain security
and integrity in IoT environments, such us the smart homes.

90

Chapter 6

Conclusions

This thesis has critically examined the security challenges faced by IoT devices
throughout their operational life cycle, highlighting the significance of effective
security mechanisms. Central to this research is the validation of the Usage
Control System within the UCON framework as an efficient tool for achieving
Security-by-Contract compliance in smart home environments.

The findings demonstrate that the UCS is adept at managing access control policies,
effectively addressing the dynamic security requirements inherent in smart homes.
By aligning applications with predefined security contracts, the UCS ensures robust
protection against potential vulnerabilities, thereby reinforcing the overall security
posture of IoT devices in domestic settings.

Additionally, this research establishes that deploying the UCON framework on
lightweight systems, such as the Raspberry Pi, is feasible and practical. The
modified version of the UCS, as discussed in the thesis, facilitates this deployment
without compromising performance or security.

In summary, the modified UCS emerges as a strong solution for access control
management in constrained environments, bridging the gap between functionality,
performance, and security. The insights gained from this study contribute signifi-
cantly to the body of knowledge in IoT security, offering a foundation for further
exploration and development of more secure and adaptable IoT solutions in smart
home contexts.

91

92

Bibliography

[1] Statista and Transforma Insights. Number of Internet of Things (IoT) connec-
tions worldwide from 2022 to 2023, with forecasts from 2024 to 2033. Accessed:
September 2024. 2024 (cit. on p. 1).

[2] Quentin Stafford-Fraser. Trojan Room Coffee Pot Biography. Accessed: Septem-
ber 2024. 2024 (cit. on p. 2).

[3] John Romkey. «Toast of the IoT: The 1990 Interop Internet Toaster». In:
IEEE Consumer Electronics Magazine 6 (Jan. 2017), pp. 116–119. doi: 10.
1109/MCE.2016.2614740 (cit. on p. 2).

[4] Hua-Dong Ma. «Internet of Things: Objectives and Scientific Challenges». In:
Journal of Computer Science and Technology 26.6 (2011), pp. 919–924. doi:
10.1007/s11390-011-1189-5 (cit. on p. 2).

[5] Maarten Botterman. Internet of Things: an early reality of the Future Internet.
sn, 2009 (cit. on p. 2).

[6] Sarah A. Al-Qaseemi, Hajer A. Almulhim, Maria F. Almulhim, and Saqib Ra-
sool Chaudhry. IoT architecture challenges and issues: Lack of standardization.
2016. doi: 10.1109/FTC.2016.7821686 (cit. on pp. 2, 7).

[7] Chang-Le Zhong, Zhen Zhu, and Ren-Gen Huang. Study on the IOT Architec-
ture and Gateway Technology. 2015. doi: 10.1109/DCABES.2015.56 (cit. on
p. 2).

[8] Shadi Al-Sarawi, Mohammed Anbar, Kamal Alieyan, and Mahmood Alzubaidi.
Internet of Things (IoT) communication protocols: Review. 2017. doi: 10.
1109/ICITECH.2017.8079928 (cit. on p. 4).

[9] Li Jiang, Da-You Liu, and Bo Yang. Smart home research. 2004. doi: 10.
1109/ICMLC.2004.1382266 (cit. on p. 5).

[10] Liyanage C. De Silva, Chamin Morikawa, and Iskandar M. Petra. «State of
the art of smart homes». In: Engineering Applications of Artificial Intelligence
25.7 (2012). Advanced issues in Artificial Intelligence and Pattern Recognition
for Intelligent Surveillance System in Smart Home Environment, pp. 1313–
1321. issn: 0952-1976. doi: https://doi.org/10.1016/j.engappai.2012.

93

https://doi.org/10.1109/MCE.2016.2614740
https://doi.org/10.1109/MCE.2016.2614740
https://doi.org/10.1007/s11390-011-1189-5
https://doi.org/10.1109/FTC.2016.7821686
https://doi.org/10.1109/DCABES.2015.56
https://doi.org/10.1109/ICITECH.2017.8079928
https://doi.org/10.1109/ICITECH.2017.8079928
https://doi.org/10.1109/ICMLC.2004.1382266
https://doi.org/10.1109/ICMLC.2004.1382266
https://doi.org/https://doi.org/10.1016/j.engappai.2012.05.002
https://doi.org/https://doi.org/10.1016/j.engappai.2012.05.002

BIBLIOGRAPHY

05.002. url: https://www.sciencedirect.com/science/article/pii/
S095219761200098X (cit. on p. 6).

[11] Lo’ai Tawalbeh, Fadi Muheidat, Mais Tawalbeh, and Muhannad Quwaider.
«IoT Privacy and Security: Challenges and Solutions». In: Applied Sciences
10.12 (2020). issn: 2076-3417. doi: 10.3390/app10124102. url: https:
//www.mdpi.com/2076-3417/10/12/4102 (cit. on pp. 6, 7).

[12] Rwan Mahmoud, Tasneem Yousuf, Fadi Aloul, and Imran Zualkernan. «In-
ternet of things (IoT) security: Current status, challenges and prospective
measures». In: 2015 10th International Conference for Internet Technology
and Secured Transactions (ICITST). 2015, pp. 336–341. doi: 10 . 1109 /
ICITST.2015.7412116 (cit. on pp. 7, 8).

[13] Shantanu Pal. «Limitations and Approaches in Access Control and Identity
Management for Constrained IoT Resources». In: 2019 IEEE International
Conference on Pervasive Computing and Communications Workshops (Per-
Com Workshops). 2019, pp. 431–432. doi: 10.1109/PERCOMW.2019.8730651
(cit. on p. 9).

[14] Neil Vigdor - The New York Times. Somebody’s Watching: Hackers Breach
Ring Home Security Cameras. Accessed: September 2024. 2019 (cit. on p. 10).

[15] Swati Khandelwal - The Hacker News. Z-Wave Downgrade Attack Left Over
100 Million IoT Devices Open to Hackers. Accessed: September 2024. 2018
(cit. on p. 10).

[16] Verkada. Summary: March 9, 2021 Security Incident Report. Accessed: Septem-
ber 2024. 2021 (cit. on p. 10).

[17] Oscar Williams-Grut - Business Insider. Hackers once stole a casino’s high-
roller database through a thermometer in the lobby fish tank. Accessed: Septem-
ber 2024. 2018 (cit. on p. 10).

[18] Antonia M. Reina Quintero, Salvador Martínez Pérez, Ángel Jesús Varela-
Vaca, María Teresa Gómez López, and Jordi Cabot. «A domain-specific
language for the specification of UCON policies». In: Journal of Information
Security and Applications 64 (2022), p. 103006. issn: 2214-2126. doi: https:
//doi.org/10.1016/j.jisa.2021.103006. url: https://www.sciencedi
rect.com/science/article/pii/S221421262100212X (cit. on pp. 14, 15).

[19] Marco Rasori, Andrea Saracino, Paolo Mori, and Marco Tiloca. «Using the
ACE framework to enforce access and usage control with notifications of
revoked access rights». In: International Journal of Information Security 23.5
(2024), pp. 3109–3133. issn: 1615-5270. doi: 10.1007/s10207-024-00877-1.
url: https://doi.org/10.1007/s10207-024-00877-1 (cit. on pp. 14–17,
20).

[20] Hany F Atlam, Madini O Alassafi, Ahmed Alenezi, Robert John Walters, and
Gary B Wills. XACML for Building Access Control Policies in Internet of
Things. 2018 (cit. on pp. 21, 22).

94

https://doi.org/https://doi.org/10.1016/j.engappai.2012.05.002
https://doi.org/https://doi.org/10.1016/j.engappai.2012.05.002
https://doi.org/https://doi.org/10.1016/j.engappai.2012.05.002
https://www.sciencedirect.com/science/article/pii/S095219761200098X
https://www.sciencedirect.com/science/article/pii/S095219761200098X
https://doi.org/10.3390/app10124102
https://www.mdpi.com/2076-3417/10/12/4102
https://www.mdpi.com/2076-3417/10/12/4102
https://doi.org/10.1109/ICITST.2015.7412116
https://doi.org/10.1109/ICITST.2015.7412116
https://doi.org/10.1109/PERCOMW.2019.8730651
https://doi.org/https://doi.org/10.1016/j.jisa.2021.103006
https://doi.org/https://doi.org/10.1016/j.jisa.2021.103006
https://www.sciencedirect.com/science/article/pii/S221421262100212X
https://www.sciencedirect.com/science/article/pii/S221421262100212X
https://doi.org/10.1007/s10207-024-00877-1
https://doi.org/10.1007/s10207-024-00877-1

BIBLIOGRAPHY

[21] Alessandro Aldini, Antonio La Marra, Fabio Martinelli, and Andrea Saracino.
«Ask a(n)droid to tell you the odds: probabilistic security-by-contract for
mobile devices». In: Soft Comput. 25.3 (Feb. 2021), pp. 2295–2314. issn:
1432-7643. doi: 10.1007/s00500-020-05299-4. url: https://doi.org/
10.1007/s00500-020-05299-4 (cit. on pp. 22, 24, 25).

[22] Antonio La Marra, Fabio Martinelli, Paolo Mori, and Andrea Saracino. «A
Distributed Usage Control Framework for Industrial Internet of Things». In:
Security and Privacy Trends in the Industrial Internet of Things. Ed. by
Cristina Alcaraz. Cham: Springer International Publishing, 2019, pp. 115–
135. isbn: 978-3-030-12330-7. doi: 10.1007/978-3-030-12330-7_6. url:
https://doi.org/10.1007/978-3-030-12330-7_6 (cit. on pp. 23, 24).

[23] Alberto Giaretta, Nicola Dragoni, and Fabio Massacci. «IoT Security Config-
urability with Security-by-Contract». In: Sensors 19.19 (2019). issn: 1424-
8220. doi: 10 . 3390 / s19194121. url: https : / / www . mdpi . com / 1424 -
8220/19/19/4121 (cit. on p. 24).

[24] Joni Jämsä. SIFIS-Home. Accessed: 2024-10-05. 2020. url: https://www.
sifis-home.eu/ (cit. on pp. 26, 27).

[25] Mirjana Maksimović, Vladimir Vujović, Nikola Davidović, Vladimir Milošević,
and Branko Perišić. «Raspberry Pi as Internet of things hardware: perfor-
mances and constraints». In: design issues 3.8 (2014), pp. 1–6 (cit. on p. 32).

[26] Øyvind Strøm, Kjetil Svarstad, and Einar J. Aas. «On the Utilization of Java
Technology in Embedded Systems». In: Design Automation for Embedded
Systems 8.1 (Mar. 2003), pp. 87–106. issn: 1572-8080. doi: 10.1023/A:
1022344203816. url: https://doi.org/10.1023/A:1022344203816 (cit.
on pp. 33, 34).

[27] Stan Kurkovsky and Chad Williams. «Raspberry Pi as a Platform for the
Internet of Things Projects: Experiences and Lessons». In: Proceedings of the
2017 ACM Conference on Innovation and Technology in Computer Science
Education. ITiCSE ’17. Bologna, Italy: Association for Computing Machinery,
2017, pp. 64–69. isbn: 9781450347044. doi: 10.1145/3059009.3059028. url:
https://doi.org/10.1145/3059009.3059028 (cit. on pp. 33, 34).

95

https://doi.org/10.1007/s00500-020-05299-4
https://doi.org/10.1007/s00500-020-05299-4
https://doi.org/10.1007/s00500-020-05299-4
https://doi.org/10.1007/978-3-030-12330-7_6
https://doi.org/10.1007/978-3-030-12330-7_6
https://doi.org/10.3390/s19194121
https://www.mdpi.com/1424-8220/19/19/4121
https://www.mdpi.com/1424-8220/19/19/4121
https://www.sifis-home.eu/
https://www.sifis-home.eu/
https://doi.org/10.1023/A:1022344203816
https://doi.org/10.1023/A:1022344203816
https://doi.org/10.1023/A:1022344203816
https://doi.org/10.1145/3059009.3059028
https://doi.org/10.1145/3059009.3059028

	List of Tables
	List of Figures
	Introduction
	Defining the Internet of Things
	IoT Architectures and Protocols
	IoT Communication Protocols

	Smart Home Paradigm
	Securing Smart Homes: Key Challenges in IoT Security and Privacy
	Access Control Challenges in Constrained Devices for Smart Homes
	Examples of Cyber Attacks on IoT Devices in Smart Homes
	Overview of My Contributions

	UCON Framework: State of the Art and Applications
	Introduction to the UCON Framework
	Components of the UCON Framework
	Interaction Among UCON Components: Authorization Workflow
	The Role of XACML in the UCON Framework

	A Distributed Architecture for the UCON Framework
	Security by Contract
	Practical Applications of UCON Framework: The SIFIS-Home Project

	Proposed Methodology to Enforce S×C Compliance with UCON on Constrained Devices
	UCON as a Mechanism for S×C Compliance
	Testing Methodology
	Benefits and Challenges of Deploying UCS on Resource-Constrained Device
	Benefits
	Challenges

	Objectives of the Testing Methodologies
	Adherence to S×C Principles
	Dynamic Monitoring Capabilities
	Performance Verification
	Feasibility Assessment of Security Features
	User Experience Evaluation
	Identification of Performance Bottlenecks
	Revocation and Policy Management Analysis
	Exploration of Adaptations for Lightweight Systems

	Test Framework Architecture and Environment Setup
	Software Prerequisites
	Testing Framework Architecture
	Workflow of the Testing Process
	Architecture Overview

	Testing Categories and Strategies
	Installation Tests
	Running Tests
	Revocation Tests

	Proposed Modifications to the User Control System
	Testing Proposed Modifications

	Methodologies for Data Collection and Results Evaluation
	Data Collection Methodologies
	Test Results for the Usage Control System
	Installation Tests
	Running Tests
	Revocation Tests

	Analysis of Usage Control System Test Results
	Test Results for the Modified Usage Control System
	Performance Impact of Disabling Distributed Hash Table Updates
	Performance Impact of Removing Journaling
	Performance Impact of Direct Policy Integration in tryAccess Requests

	Analysis of Modified System Test Results
	Final Considerations

	PiCamera IoT Application with UCS on Constrained Devices
	Application Development and Deployment
	Application Life-Cycle
	Installation Phase
	Running Phase
	Potential Revocation Phase

	Considerations

	Conclusions
	Bibliography

