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1 Introduction:

The study of collective decision-making in large, distributed groups of animals is a truly
fascinating problem. How often, when looking at the coordinate movements of birds
[48], or the intricate trails of ants [3], do we find ourselves wondering: how do they do

it? The answer to this question bridges the fields of physics and biology, offering insight
from neuronal networks [5], genetic regulatory networks [6], all the way to crowds of
people [29].
The common feature of all these systems is that they are, in fact, collective. What is
most surprising is the emergence of complex phenomena, such as flocking and synchro-
nization, which can be seen as forms of order arising from the interaction of individuals
(agents), each of whom has access only to local information. However, what really
characterizes these systems is not order, but response [10]. A defining property of liv-
ing systems, distinguishing them from most inanimate matter, is their ability to adapt
reactively. When this adaptation occurs at the group level, it often confers advantages
to the participants, and can be seen as an evolutionary trait.
The precise mechanism enabling collectives to achieve such remarkable efficiency, how-
ever, remains largely unknown. In the early twentieth century, the British ornithologist
Edmund Selous1, referring to flocks of birds, said: “They must think collectively, all at

the same time.. a flash out of so many brains”[52]. Later, the attention had turned
from telepathy to synchrony arising from the rapid transmission of local behavioural re-
sponse to neighbours. This perspective has led to the view of such groups as intelligent
entities, laying the foundations of the field now known as swarm intelligence.

Figure 1: Shoal of sulphur mollies from Wikipedia and starling flocks from [48].

1Edmund Selous (14 August 1857 – 25 March 1934) was a British ornithologist and writer.

4



In this work, I focus on a curious predator-prey system involving large fish shoals of
sulphur mollies (Poecilia sulphuraria), which constitute a perfect example of complex,
adaptive system [46, 22, 95]. These shoals are unique in both their behaviour and the
environment in which they live. Indeed, these mollies are one of only two species of fish
known to inhabit the Baños del Azufre in Southern Mexico, a freshwater spring charac-
terized by high temperatures and low oxygen levels, which requires them to swim near
the surface for aquatic respiration. While positioned at the surface, they become vul-
nerable to fish-eating birds; in response, the shoals display repeated synchronized diving
behaviour as a defence mechanism, generating ripples on the water surface, which lead
to the formation of wave-like patterns, and have been shown to reduce the frequency
of attacks [8].
My goal is to identify and analyse the core mechanisms underlying this biological sys-
tem; a central question is “How can animal collectives perceive, propagate, process and

store information?”.
To address this matter, and describe the specific biological system under consideration
(section 3), I will introduce an SIR quadratic contagion model on a spatially embedded
network (section 4, section 5). Here, the term “contagion” refers specifically to be-
havioural contagion, and a more complex mechanism is proposed to go beyond pairwise
connections, considering group interactions too. This accounts for the importance of
reinforcement-mechanism in social influence.
The results clearly show that social contagion and spatial organization are deeply in-
terconnected. To explore this interplay, I will define various possible algorithms on
which to build the networks, and point-out the differences. By systematically studying
the properties and dynamics of this interacting network of fish, we aim to gain deeper
insights into the principles that govern collective behaviour in social animals. This
model could also provide a foundation for understanding similar processes in other ani-
mal groups, or even artificial agent-based systems, designed to mimic biological swarm
behaviour.
Given that one of the peculiarities of the system is its ability to respond to danger,
one might ask: “How can fish discriminate between signal and noise?”. To analyse
this point, I will propose a definition for signal and one for noise, by focusing on the
concept of spatially correlated activations. Based on this, I will introduce a measure of
the system’s susceptibility, which quantifies its responsiveness by comparing perturba-
tions induced by either true or false positives. Let us note here, that a key assumption
in the study of collective biological systems is that they operate at (or near) the so-
called critical point, and this is known in literature as the criticality hypothesis. The
idea stems from the fact that critical systems exhibit distinct properties, such as maxi-
mal responsiveness to external stimuli and optimal propagation of information, making
them well-suited in describing what we observe in animal collectives. In this context,
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the biological system will be most accurately described by the model when the combi-
nation of parameters maximizes susceptibility.
Moreover, given the importance of spatial organization in these phenomena, it is crucial
to understand how the topology of the network affects the dynamics. To this purpose, I
will analyse the Mean-Field approximation (section 7). The results in the case of spa-
tially correlated networks differ from those of the theoretical mean field case, and this
confirms the crucial role of heterogeneities in shaping the final outcome of the contagion
dynamics.
Finally, in a fieldwork trip to Mexico in May 2024, I obtained some empirical observa-
tions of the study system (section 8). The question rises immediately: “How can we

compare these results to real data?”. In this direction, I will build new networks using
the empirically observed positions of the fish. This will of course affect the topology and
the dynamics in a non-trivial way. In particular, the quadratic contagion mechanism,
which was suggested to be a possible way of discriminating between signal and noise,
has no more (or little) influence. In the last section, I will also introduce the hexnut-
experiment (section 8.5), whose goal is to test the response of the shoals by increasing
an external stimulus and measuring the size of the waves. The results will be compared
with those of the model, to estimate its ability to reproduce the behaviour of the system.

When examining such a complex study system, various levels of analysis can arise, de-
pending on the initially posed questions. For this reason, the progression is not strictly
linear, but rather follows an approach aimed at shedding light on specific points of
interest, ranging from a more theoretical analysis, to a qualitative comparison with
experimental data.
To conclude, these results would contribute shifting the fascinating “collective mind”
metaphor to a more quantitative context.
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2 Background:

The emergence of a global order is one distinctive trait of animals living in collectives:
all individuals within the group synchronize to some extent their behavioural state.
This phenomenon is visible in the motion of large groups of animals [7], as well as in
crowds of people, like in the case of the famous Mexican wave, La Ola, which rose to
fame during the 1986 World Cup in Mexico [29]. The presence of this order is easy
to detect, but it may have radically different origins, and discovering the underlying
mechanism is not straightforward [10].
In general, large-scale collective biological systems have been suggested to operate in a
special parameter region where the system’s behaviour undergoes a qualitative change,
or phase transition, at a so-called critical point [28, 10, 46] between two structurally
and functionally different states. More convincing support for the “criticality hypothe-

sis” can be obtained by identifying the mechanisms which enable biological systems to
self-organize towards criticality. For example, in neuronal systems, synaptic plasticity
has been shown to provide such a mechanism [31, 32]. In general, the concept of Self
Organized Criticality (SOC), introduced by Per Bak, Chao Tang and Kurt Wiesenfeld
(“BTW”) [50], is considered to be one of the mechanisms by which complexity arises in
nature [94]. Such type of systems spontaneously organize into a critical state. Bak and
colleagues introduced this concept when studying a cellular automaton model, known
today as the sand-pile model. Here, we will refer to self-organization in a general sense
for macroscopic (group-wide) collective behaviours, which lead to formation of spatio-
temporal dynamics and patterns that cannot be attributed solely to the behaviour of
isolated individuals or to environmental factors.
In the context of animal groups, the key concepts related to this hypothesis include the
following [75]: collective decision making, behavioural contagion, synchronization and
flocking. Let us explain these concepts one by one, and this will naturally lead us to
the introduction of the main ideas of the thesis.

Starting from an initially undecided state, collective decision making is the commit-
ment of a majority of a group to a single option [72]. Examples of this process include
social insects choosing a new nest site [71], fish schools or baboon troops [73] deciding
where to forage. Collective decision making can take place across a variety of spatial
and temporal scales but the fundamental dynamics are often captured by simple, non
spatial models. Most decision models consider binary decision tasks, which can be
modelled by Ising-type models [74] whereas, in case of multi-choice decisions, the Potts
model [76] is commonly used. These models typically assume some sort of quorum or
threshold interactions, in which agents update their states based on the choices made by
their neighbours; these situations are modelled with behavioural algorithms in discrete
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time. It has been shown that speed and accuracy of collective decisions are strongly
modulated by the distance from a critical point on networks [77].

With the term behavioural contagion we indicate the spread of behaviour or infor-
mation through a group, resulting in behavioural cascades that can rapidly encompass
the entire collective. This type of collective dynamics does not correspond to a spon-
taneous symmetry breaking, but rather to percolation, and is directly related to the
non-equilibrium phase transition studied in epidemic spreading.

We have synchronization when individuals in a group engage in periodic behaviours
[78]. A classic model used to describe this phenomenon is the Kuramoto model [79, 80]
in which oscillators influence one another via pairwise coupling that depends on differ-
ence between phases.

One of the most easily observed phase transition is the emergence of orientational order
due to spontaneous symmetry breaking, known as flocking. This transition separates a
disordered state, where many individuals move in random directions with a vanishing
centre of mass speed, from an ordered flocking state, in which a preferred direction of
the group is noticeable, with a non vanishing average momentum of the entire system.
A paradigmatic case is provided by European starlings, Sturnus vulgaris, which can be
observed in many Italian cities where they establish their roosting sites. These birds
are able to gather at dusk and swirl with extraordinary spatial coherence. They have
been largely studied by Ballerini et al. [26].

The parameter space in which such collective biological systems operate is vast, both
due to the complexity of single individuals, and to the large number of individuals that
constitute a functional group. Then the relevant question that arises is whether certain
combinations of parameters or specific regions within a system are especially suited to
a biological function, enabling their collective behaviour to approach an optimal state.
In the context of the criticality hypothesis, at such optimal points, statistical physics
predicts maximal susceptibility, i.e. the sensitivity of the collective dynamics to any
external stimuli. It is worth noticing that the applicability of the concepts of statistical
physics is limited by two main aspects:

• Biological systems are out of equilibrium;

• The dimension of biological system is finite, typically of the order of 10−103 indi-
viduals, only in some rare cases can reach 106 individuals, such as large migration
movements in animals like pelagic fish e.g. sardines [58] or desert locust [57].
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These two observations, while correct, do not refute the significance of phase transi-
tions and criticality when describing finite-sized biological systems. Various aspects
of collective information processing, such as correlation lengths and susceptibility still
become maximal at quasi-critical points in finite-sized systems [69, 67]. Moreover, even
if over the past century, following the introduction of the Ising model, much of the
research has focused on understanding systems at thermal equilibrium, the study of
self-organization and pattern formation in non-equilibrium systems [30], relevant for
biological systems, has gained increasing importance. In this context, criticality might
be a plausible principle of distributed information processing in large animal collectives,
offering a balance between robustness and adaptability [55]. Indeed, an intriguing prop-
erty of living systems that distinguishes them from most (if not all) inanimate matter
is their ability to react adaptively to changing environments. In general, this capacity
relies on distributed processing of information at various levels, characterized by the
collective dynamics of a large number of interacting components, or agents, that make
up the complex biological system. These groups are able to perform efficient collective
information processing, even though each unit or agent typically has sole access to lo-
cal information. They can perform highly coordinated collective behaviours that confer
benefits to the participating individuals by facilitating social information exchange and
providing protection from predators [1, 4]. However, in multi-agent systems, group-
level and individual-level evolutionary optima are often different, leading to so-called
social dilemmas, emerging in a broad range of multi-agent evolutionary game theoretic
problems. For this reason, understanding how consensus is reached and information
is processed within a collective is fundamental to many aspects of social dynamics in
animals and humans.

In this context, the social transmission of behavioural change is central to collective be-
haviour and collective response is the way a group as a whole reacts to its environment;
it is crucial for a group (or for subsets of it) to respond coherently to perturbations.
For many mobile groups, such as schooling fish and flocking birds, social contagion can
be fast, resulting in dramatic waves of response [51]. Waving is indeed a vivid example
of collective behaviour occurring in insects, birds, mammals and fish is the formation of
global waves, which are direct consequences of the aforementioned processes, and has
been typically interpreted as an anti-predator response [59]. These escape waves are
an example of more general avalanche processes, which play an important role in the
collective dynamics in many biological systems, including spike avalanches in neuronal
networks [34] and disease transmission in human or animal populations [38]. In such
processes a local change in the state of an individual unit (i.e. spiking of a neuron
or the infection of an individual) can trigger the same change in its neighbours, thus
spreading through the system like an avalanche [51, 1], with a rate of spreading that
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can decrease (subcritical) or increase (supercritical) as the avalanche grows. Across
many living systems, we have evidence that the degree of such behavioural spreading
is regulated. In neural cultures, adding biochemical regulators that modify excitation
and inhibition can force the system to supercritical and subcritical states [53], while
macaques, key individuals have been shown to influence how conflict spreads through
a colony [54].
One of the first experimental studies of cascading behavioural change was undertaken
by Dimitrii Radakov [60]. Radakov hand-traced the paths of each fish, frame-by-frame,
revealing that the speed of the “wave of agitation” could propagate much faster than the
maximum swim speed of individuals. Using similar methodology, Treherne2 and Foster
[61] studied rapid waves of escape response in marine skaters, describing what they saw
as “the Trafalgar effect” in reference to the speed of communication, via signalling flags,
among ships in the British Navy’s fleet of the Admiral Nelson at the battle of Trafalgar
in 1805. Signals observable at a distance allowed information to travel much faster
than the ships could move themselves. In many situations, such as when a predator
attacks a group [59], or when artificial stimuli are used, it is not possible to differentiate
between the propagation of behaviour through social contagion and the propagation of
behaviour resulting from direct response to the stimulus, or some combination of both.
A fundamental aspect of the self-organization of collectives—from collective decision-
making to consensus formation, including coordinated movements is that individuals
are limited in terms of perception and cognition. Without direct access to the state of
the whole group they must rely on local information. It has been shown [81] that in
heterogeneous environments, strongly limited attention capability of individual agents
results in higher accuracy with respect to large scale coordination; this is caused by a
dynamical spatial “echo chamber”-like effect, where individual attention becomes sat-
urated by social information and non-social cues are largely ignores.
In conclusion, the investigation of collective behaviour offers valuable insights into the
mechanisms that drive self-organization, adaptability, and complex patterns across di-
verse biological systems.

2John Edwin Treherne (15 May 1929 – 23 September 1989) was an English entomologist who
specialized in insect biochemistry and physiology and conducted extensive experimental studies.
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3 Study system:

The defining property of living systems is their capacity for adaptive responses. Through-
out their lifespan, nearly all organisms encounter environmental changes and these vari-
ations may occur at different temporal scales or arise unpredictably. For many animals,
the initial response to altered conditions is often behavioural adaptation [13]. This be-
havioural flexibility is particularly vital in highly dynamic environments. These types
of fluctuations have the potential to affect not only individuals and populations but
also higher community levels through interactions between species, such as competition
and predator-prey relationship [95].
In aquatic ecosystems oxygen is often a limiting factor [15].

As part of a research project at the Science of Intelligence Cluster, we3 are studying
the behaviour of naturally occurring schools of the freshwater fish Poecilia sulphuraria

or Sulphur molly.
Their distinctive behaviour is closely linked to the unique characteristics of the envi-
ronment in which they live. The specific conditions of their habitat, such as water
temperature, and the presence of predators, play a crucial role in shaping their ac-
tions and responses. Over time, these environmental factors have influenced their be-
havioural adaptations, allowing them to thrive in their particular ecological niche. This
connection between their behaviour and habitat underscores the importance of their
surroundings in driving their evolution and survival strategies.

These fish are endemic to Mexico, specifically to the Baños del Azufre (Grijalva River
basin) near Teapa, Tabasco (17’◦33 N, 93’◦00 W) 2. The Baños del Azufre are sulfidic
springs fed by sulfidic groundwater aquifers with high concentrations of hydrogen-sulfide
(H2S) generated from volcanic deposits and bacterial sulfate reduction (e.g., drainages
Pichucalco, Tacotalpa and Puyacatengo) [95].

3When referring to we I mean Pawel Romanckuz, Yunus Sevinchan, Carla Vollmoeller, who have
partecipated in the discussion of the model and its implementation, and David Bierbach, Jens Krause
and Korbinian Pacher, biologists who helped me understand the biological system and set up the
experiments in Mexico.
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Figure 2: Map of Mexico to see the location of the study system from [95] and [96].

In the case of our study species, the sulphur mollies, sulfidic and non-sulfidic lineages
genetically diverged between 15 and 30 ky ago [11]. While several morphological and
physiological adaptations allow this species to persist in these conditions, for examples
mouth and gill area enlargement for enhanced oxygen uptake, modified toxicity tar-
gets and detoxification pathways [112, 12], they are still dependent on aquatic surface
respiration (ASR) for survival. A previous study estimated that sulphur mollies spend
up to 84% of their time performing ASR [18], which was three times higher than a
closely related species (Poecilia mexicana) from a nearby, slightly less sulfidic, spring
system. The environment in which they live was characterized [19] (see also Fig.fig. 3)
as a freshwater habitat with high temperatures (31.9 ± 0.7) and sulfide content (H2S:
190.4 ± 119.7 µmol/L), low oxygen (1.06±0.92 mg/L) and pH (6.9 ± 0.1), and high
conductivity (2.7 ± 0.2 mS/cm), which shows little variation across the year but some
spatial variation due to differences in habitat structure and spring discharge.
Due to their reliance on ASR, the fish spend a majority of their time near the surface,
often leading to dense aggregations that result in a quasi-2D system; however, they
frequently dive under water to engage in benthic foraging as well as aggressive or re-
productive activities (Fig.4). While at water surface, they are more visible and thus
susceptible to predation by fish-eating birds; main predators are kingfishers, herons and
egrets (see Fig.5). The fish have developed a defence mechanism: the shoals perform
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Figure 3: Oxygen concentration, Water temperature and turbidity over the daytime.
Data from January 2023, plot made by Yunus Sevinchan and David Bierbach.

collective and synchronized diving as a response to bird attacks, causing ripples on the
water surface and wave-like patterns (“surface waves”, see Videos)). The visibility of
these waves can be attributed to a two-fold mechanism: individual splashes obviously
play a role, but additionally, when the fish perceive risk, they often adopt a C-shape,
revealing their light-coloured bellies.
This collective diving may last for an extended period of time and is presumed to reduce
the frequency of attacks by predatory birds [8].
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Figure 4: Images from the surface and underwater of the study system. These photos
were taken and kindly made available from Juliane Lukas (a) and David Bierbach (b).

Figure 5: Some of the main predators. On the top left corner (a) the Green Kingfisher
(Chloroceryle americana) and on the right (b) the Amazon Kingfisher (Chloroceryle
amazona). On the bottom left (c) the Black-necked stilt (Himanoptus mexicanus), in
the centre (d) the Tricolored heron (Egretta tricolor) and on the right (e) the Great
kiskadee (Pitangus sulphuratus). These photos were taken and kindly made available
by Korbinian Pacher (a,b,c,e) and Jens Krause (d).
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Figure 6: Image from Wikipedia page “Lateral line”. Oblique view of a goldfish (Caras-
sius auratus), showing pored scales of the lateral line system.

Ultimately, these fish face two distinct pressures, which can be described as habitat
constraints. On one hand, they must fulfil their need for oxygen, requiring them to
engage in active respiration, often by surfacing or staying in oxygen-rich areas; this
process demands a significant portion of their time and energy, as maintaining effective
respiration is critical for their survival. On the other hand, they are under constant
threat from predators, particularly birds, which forces them to remain vigilant and de-
velop strategies to avoid attacks. Balancing these two pressures — ensuring sufficient
oxygen intake, while minimizing their vulnerability to predation — presents a complex
challenge that shapes their behaviour and overall survival strategies.

These fish have thus developed the remarkable ability of responding to two different
types of stimuli. They can detect visual stimuli through their sense of sight, allowing
them to process changes in their surroundings; additionally, they can perceive stimuli
through the lateral line organ, a specialized sensory system that enables them to detect
vibrations and movements in the water [68]. This dual sensory capability enables them
to interact effectively with their environment. While the primary characteristics and
limitations of their eyesight are relatively intuitive — being influenced by factors such
as distance, occlusion, and light availability — the lateral line organ remains less well-
known and understood. This organ plays a crucial, yet often overlooked, role in their
sensory perception; to better appreciate its significance, let us introduce the structure
and function of this fascinating sensory system, which complements their vision and
enhances their ability to interact with their environment.
The mechanosensory lateral line (LLO) is a system of sensory organs found in all fish
(see Fig.6) and some amphibia, which responds to hydrodynamic stimuli, such as water
movement and vibration. The sensory ability is achieved via modified epithelia cells,
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known as hair cells, which respond to displacement caused by motion, and transduce
these signals into electrical impulses via excitatory synapses. This response is much
faster than visually-induced reaction. The time-scales are estimated to be: for LLO (in
the case of hydrodynamic sensory input) - 5-20 ms circa, for visual reaction - approxi-
mately 120 ms.
In a dense fluid environment, such as water, disturbances are created by anything that
moves. Of course, lateral line organs can be very different; sensory structures and cen-
tral processing have been shaped by evolution to exploit physical properties of water
disturbances in order to extract biologically significant information. It is important to
notice that LLO appears to be functionally important to all fishes, even those who rely
most on sight, like billfish. We also note that other sensory systems are stimulated by
mechanical disturbance: tactile receptors and external taste buds, for example. The
range of cutaneous senses in fish also reinforces the notion that most behaviour is prob-
ably mediated via a synergy of diverse sensory information, rather than being mediated
by a single discrete sensory modality such as the lateral line system. In both fish and
amphibians, the lateral line input is connected toMauthner cells, a pair of big and easily
identifiable neurons that are responsible for a very fast escape reflex, known as C-start
response, which mediates escape behaviour; this is clear evidence of the importance of
the LLO to prey fish, though it must be said that vision is the dominant Mauthner cell
input [35]. During active swimming the oscillatory movement of the tail produces a
substantial turbulent wake, that can persist in the water for some time after the fish has
passed; this vortex wake will produce a potent lateral line stimulus allowing fish that
swim into the wake to detect the fish which has passed. In this view, water movements
produced by swimming are also used as a form of communication, and the coordination
of schooling fish is in part maintained by lateral line stimuli.

A detailed distinction between these two communication pathways lies beyond the scope
of this thesis. For the purposes of this work, we will generally assume that they in-
teract through a specific mechanism However, when discussing the potential linking
algorithms (section 4.2), we will explore which approaches are better suited to replicat-
ing visual interactions and which are more appropriate for modelling the functioning
of the lateral line organ (LLO). This distinction will help identify algorithms that best
capture the nuances of each sensory modality.

To conclude this section, it is important to highlight a significant study conducted
on our same system. In a notable work by Gomez-Nava et al. [46], the authors ex-
amined the baseline behaviour of these fish shoals in the absence of bird attacks. This
study is particularly relevant as it strongly supports the criticality hypothesis, which
forms a cornerstone of my research. Given its importance and its role in motivating

16



this work, I will briefly outline the key findings of Gomez-Nava et al. to provide context
for the following discussions.
By combining the experimental results with an agent-based model of the system, they
were able to show that these fish shoals might operate at a critical point between a
state of high individual diving activity and low overall diving activity. To test the crit-
icality hypothesis they acquired videos over multiple days in absence of bird attacks,
binarized the original videos into active pixels that represent the diving of fish and non
active pixels corresponding to fish at surface, or underwater, and analysed the fraction
of active pixels as a proxy for the number of fish diving at a given moment in time.
They observed peaks of activity (spikes) corresponding to waves spreading through the
system, separated by long periods of low activity corresponding to small-scale non-
propagating surface activity. By defining the activity clusters as the number of active
pixels connected in time and space corresponding to a single wave, they found that
the empirical cluster size distribution is consistent with a power-law distribution with
exponent α = 2.3. However, as we know, the existence of a power-law distribution in
empirical data is not sufficient to conclude that a system is at criticality. They also
devised a cellular automata model for the spatio-temporal propagation of the surface-
activity waves, in which each cell can be one of three states. In this way they simulated
the emergent collective dynamics and identified parameters best fitting the observed
macroscopic behaviour.
To identify the phase transition they:

• Computed the average correlation of fluctuations between neighbouring cells,
which peaks at the phase transition;

• Computed the susceptibility of the surface-activity signal as a function of system
size (L ∈ [25, 50, 100, 200, 400, 800]): they found that the susceptibility increases
as a function of system size in a way that is consistent with a power-law with
exponent ≈ 1.7;

• Computed the susceptibility in the empirical videos using different window sizes,
finding that it increases with said size. The exponents vary across measurement
days — potentially due to environmental factors such as temperature, or lighting
conditions — but they are consistent with the exponent in the model for at least
three measurement days.

This means basically that susceptibility is scale-free, which is one of main indicator of
criticality in biological systems [10].
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Figure 7: Results for inter-spike times, spike duration and cluster areas by Gomez et
al. [46].

These findings provide strong evidence that the collective dynamics of the fish shoals
are governed by critical phenomena, where the system is poised between high and low
activity states.

Building on that research, we aim to better understand how these fish respond in
different ecological contexts, maximizing their ability to discriminate among different
environmental stimuli. We are combining experimental observations with computa-
tional approaches to understand how these fish tune the responsiveness of the school
in a self-organised way, e.g. through individual-level changes in sensitivity to predator
stimuli and social cues.
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4 Network Model:

We will propose a contagion dynamics on a network model. It is necessary to introduce
some of basic concepts of network theory and then explain what a contagion model is.
Loosely speaking, a network is a collection of nodes connected in some way. Repre-
senting the system as a network means mapping elements of the system to nodes and
relations among such elements, called links. A network is thus an interconnected struc-
ture where nodes and link have some meaning. The object obtained by stripping a
network of the meaning of its elements is what in mathematics is called a graph, nodes
are known as vertices and links as edges.
A graph G=(V,E) is a pair formed by a finite set V={1,...,N} of vertices and a set
E={e1,..,em} of pairs of vertices called edges. As a combinatorial object a graph is one
of the possible ways in which N=|V | elements can be arranged into M = |E| subsets
of 2 elements each. The graph is encoded in its adjacency matrix A, a NxN matrix
whose elements Aij are such that:

Aij =

{

1 if e = {i, j} exists

0 otherwise

In general for a weighted graph instead of 1’s or 0’s there would be some positive or
negative numbers. Moreover, there are also directed graphs where links have a direc-
tion.
A subset of vertices where each vertex is connected to any other vertex is called clique.
If a clique is not included in any larger clique is called maximal. A n-cycle is a closed
chain of n edges joining n vertices. A tree is a graph with no cycles. A graph is bipartite
if the vertex set is partitioned into two subsets representing two types of vertices and
so the edges only connect vertices of different type.

In this project, we define a network where nodes represent individual fish, and links
represent interactions or communication pathways among them. The network is static
since neither node positions nor links change. Indeed, there exists a time-scale separa-
tion where the spread of information is much faster than any change in the interaction
network [47]. Moreover, we assume that individual fish in the shoal are interchangeable
and the macroscopic structure of the fish shoal remains similar over time, despite fish
changing their position within the shoal [115].
Under this hypothesis, fish are treated as agents in a spatially embedded network, al-
lowing us to analyse how they interact within a shared environment. A key focus of
our research is to examine the response of this network to specific stimuli, which, in
this case, involves the activation of selected nodes within the network. By activating
certain nodes, we simulate a stimulus that might represent a natural trigger, such as
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the perception of a predator or an environmental change, and observe how this influ-
ence propagates throughout the network. This analysis is done by defining a contagion
model, which describes the way a stimulus can spread within the network (section 5).
To thoroughly understand this phenomenon, our study will involve:

• Characterizing the structural properties of the network: This includes analysing
metrics such as degree distribution and clustering, which provide insights into the
connectivity and resilience of the network;

• Exploring the dynamics of information flow: This analysis will help us identify key
patterns in response dynamics that are crucial for coordinated group behaviours.

One of the central challenges is establishing a consistent and biologically plausible rule
for constructing the network. Coordination among social animals, like fish, relies on
efficient and rapid information transfer between individuals, which may depend on the
structural characteristics of the network they form [89]. The topology of the network,
specifically its connectivity patterns and levels of heterogeneity, plays a significant role
in shaping how effectively information can spread. For example, a densely connected
network might facilitate rapid information dissemination but could also lead to con-
gestion or excessive sensitivity to local disturbances. Furthermore, the structure and
heterogeneity of the network have profound implications for the dynamics of contagious
processes [114, 17], such as the spread of information, behaviours, or alerts within the
group. Accurately predicting the scale and speed of contagion, as well as identifying
nodes that are particularly influential in these processes, is critical for understanding
the group’s coordinated behaviour.
By systematically studying the properties and dynamics of this fish interaction network,
we aim to gain deeper insights into the principles that govern collective behaviour in
social animals. This model could also provide a foundation for understanding simi-
lar processes in other animal groups or even artificial agent-based systems designed to
mimic biological swarm behaviour.

4.1 Positioning algorithms:

We can define different algorithms to generate the positions of the network. Prior to
having the empirical positions of the fish, we estimated them via a Poisson Disk Sam-

pling method [21]. This method is an iterative sampling strategy. Starting from a seed
sample, n-candidates are sampled in the hypersphere surrounding the seed. Candidates
below a certain radius or outside the domain are rejected. New samples are added in a
pool of sample seeds. The process stops when the pool is empty or when the number
of required samples is reached. In the end, this algorithm allows us to obtain a set
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Figure 8: Poisson disk sampling to place 100 nodes in a square.

of uniformly distant nodes with a fixed density, which is spatially homogeneous but
non-regular (see Fig.8). Positional noise can also be added, but we opted not to in
order to maintain the physical constraint that distance between fish must be greater
than zero, given the very size of the fish. Additionally, the introduction of noise makes
the network highly heterogeneous. While this heterogeneity is beneficial for creating a
more realistic representation of the network, it can lead to undesirable outcomes when
analysing borderline cases. For example, in networks with very few links, certain spe-
cific configurations may arise where the contagion cannot effectively propagate. This
choice allows us to concentrate on the role of linking.
We set the density to be consistent with the real system; typical densities are around
1000- 2000 individuals per square meter.

In the last part of the thesis (section 8) we will introduce the empirically measured
positions of the fish, which will be denoted as fish positions. We will see just how
deeply modified the outcome of the dynamics results by simply using these new posi-
tions.
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Figure 9: Two examples of networks: in the first, the positions are estimated via Poisson
sampling, in the second, empirically observed positions from annotated images are used.

4.1.1 Nearest-Neighbors distance distribution (NND):

A clear characterization of the structure group is given by the spatial distribution of
nearest-neighbours. As we know, the Poisson sampling method allows us to maintain
a lower limit for the Nearest Neighbors Distance (NND).

Figure 10: Nearest Neighbour distribution in absence of noise (left) and with positional
noise (right).

In the first plot we see a cut-off. Adding positional noise, the cut-off disappears and
the nearest-neighbour distance can be 0.
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4.2 Linking algorithms:

A major challenge in the study of collective animal behaviour is that the pathways of
communication are not directly observable. It has long been recognized in the study
of isolated organisms that mapping the physical and functional connectivity of neural
networks is essential for developing a quantitative and predictive science of how indi-
vidual behaviour is generated [14]. By contrast, in the study of mobile animal groups,
the analogous issue of determining the structure of the sensory networks by which in-
teractions, and the resulting group behaviour, are mediated remains to be explored.
Typically, spatially embedded interaction networks between biological agents are mod-
elled either via metric network models, where the probability of a link (or its strength)
depends only on the inter-individual distance, or by topological models where a focal
agent is connected to a set of spatial neighbours based on their distance rank in com-
parison to all others, as e.g., in the k- nearest neighbour network model, but where the
actual link probability (or strength) does not depend on the absolute physical distance.
In the past, most agent-based models assumed metric interaction networks, but after
evidence for topological interaction in starling flocks has been presented by Ballerini et
al. [48], corresponding topological interaction networks have received increased atten-
tion in the context of collective animal behaviour. In the study of the starling flocks,
they discovered that each bird interacts on average with a fixed number of neighbours
equal to either six or seven individuals. Their explanation for this phenomenon is that a
topological interaction is indispensable for maintaining the flock’s cohesion against the
large density changes caused by external perturbations, typically predation. Finally,
topological interaction networks with a limited number of nearest neighbours have been
recently discussed in the context of cognitive constraints regarding the number of neigh-
bours (or objects) a focal individual can pay attention to [81].

However, the discussion of these two idealized models largely ignores the constraints
set by different sensory mechanisms underlying social interactions. In the system un-
der analysis, the two most relevant mechanisms are: visual and LLO communications
(see section 3). This second mechanism is not affected by constraints, as is vision (e.g.
occlusion at high densities), but mainly depends on sensory limits and properties of the
medium. The LLO in fish is indeed involved in detecting mechanical vibrations and
water movements, which can indirectly facilitate acoustic-like interactions. While it is
not a traditional “acoustic” system like the ears of terrestrial animals, it shares simi-
larities with acoustic detection because it is sensitive to pressure waves and vibrations
in the surrounding water.

We will briefly illustrate the three different types of network we are going to analyse

23



from a structural and dynamical point of view.

4.2.1 Metric networks:

Metric interaction networks are the most common in the study of animal collectives and
in models of collective movement. This is due to the typicall assumption that collective
behaviour emerges from simple rules of interaction among individuals [48]. The main
theoretical assumptions are:

• attraction among individuals;

• short range repulsion;

• alignment of the velocities.

These are reasonable, but generic, and there are as many different models as there are
different ways of implementing these assumptions. To grant cohesion, models make
the sound assumption that individuals align and attract to each other, and that such
interaction decays with increasing distance between them. These models adopt met-
ric distance, since animals have developed many ways of estimating distance,including
stereo-vision, retinal image size, and optic flow [49]. Thus, a metric interaction seems
natural. However, it is important to underline that little is know about the mechanism
and accuracy with which fish perceive distance [4]. Li et al. [2], for example, suggested
that fish use parallax while moving through water. In the case of fish, metric interac-
tion may provide a simple model for social interactions via LLO, which is reasonably
dependent on the sole measure of distance, given the medium.

In these models, we could define a strength of interaction as a decreasing function
of the Euclidean distance dij between two individuals i and j. Here we will just set a
threshold distance: two nodes are connected only if their Euclidean distance is smaller
than the metric threshold θmetric. The adjacency matrix is then defined as:

A =

{

1 if dij ≤ θmetric

0 otherwise

This algorithm strongly depends on the density and on the radius (dij
4) we assume.

4This radius, even if not explicitly specified, will be given in metres.
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Figure 11: Metric network for radius 0.03, 0.04, 0.05, 0.07 m on a network built with
the empirically observed positions (section 8).

All these measures are referred in terms of metres.

4.2.2 Voronoi networks:

This algorithm is based on Voronoi tassellation5, which for a given set of node positions,
divides the space into cells, each containing one node. A cell around a node is made up

5Invented by the russian mathematician Georgij Feodos’evič Voronoj (Žuravka, 1868 – Žuravka,
1908), should be more correctly written Voronoj tassellation.
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of all points in space which, using Euclidean distance and a metric, are closer to this
node than to any other.
The first shell of Voronoi neighbours of a node is given by all nodes for which the
containing cells share a common border. The second and higher order shells are then
defined similarly by having a common cell border with the previous shell. A Voronoi
network is constructed by connecting each node to its (usually first shell of) Voronoi
neighbours. As a result, network neighbours are more evenly distributed around the
focal individual than in the KNN topological network, described in the next section.
By construction, Voronoi networks always connect all individuals within a group. As
observed by Strandburg et al. [90], Voronoi models may better approximate visual ones,
as their transitivity (which is the extent to which individuals who share a neighbour are
neighbours themselves, and reflects the redundancy of information among neighbours)
is similar.

Figure 12: Example of Voronoi tasselation with randomly located points.

4.2.3 Topological networks (or k-nearest neighbours):

Motivated by empirical research and considerations of cognitive constraints that limit
the number of objects or individuals an animal can keep track of [81], these network
prescribe a fixed number of links (k) to each node. For comparison, we now recall
that human observers are unable to accurately report a number of objects shown in a
flash whenever this number exceeds 4, a well studied effect, known as numerosity in
the human psychophysical literature [24, 23]. For example, the percentage of incorrect
counting when eight objects are briefly presented to a human observer is known to
exceed 50%. Based on these observations, Krause et al. [4] showed through an ex-
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periment on Three-spined sticklebacks (Gasterosteus aculeatus) frightened via a light
stimulus, that they cannot make any accurate size distinction between shoals with n>3.
Of course, it is important to keep in mind that we are working on a totally different
system, and then these results can not be directly used in our model.
Finally, systems based on metric distance may be unable to reproduce the density
changes typical of animal aggregation [48]. In this case, defining as k the number of
nearest neighbours to consider, the adjacency matrix gets rewritten:

A =

{

1, if kNN

0, otherwise

We will analyse how the variation of k affects the dynamic.

Figure 13: Generated networks with same positions (100 nodes, with Poisson sampling
positioning ) in the case of Metric, KNN and Voronoi networks.

In conclusion, let us show an image from Strandburg et al. [90], where we clearly
see the difference between the above illustrated networks and the visual network. In
this work they showed explicitly how the Voronoi network was a good estimation of the
visual one.
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Figure 14: Comparison between networks from Strandburg et al. [90].

4.3 Weights:

In the following discussion we will set the weights to 1, assuming an undirected net-
work. This modelling choice was made to keep the model as simple as possible, with a
minimal number of variables and parameters.

However, there are alternative descriptions of the study system that include the ef-
fects of weights. For example, Rosenthal et al. [82] computed a planar representation
of each fish’s visual field using ray casting to approximate the pathways of light onto
the retina, based on automated estimation of the body posture and eye position of each
individual. This representation reveals the underlying visual information available to
each fish. Then, determining the initiator and first responder of a startle, they inves-
tigate the social contagion, analysing how individuals translate sensory information to
motor response (evasion) and revealing the social cues that inform individual decision
making in this behavioural context.
They finally formulated a probability of response P (i|j) in fish i given that fish j is
startled:

P (i|j) = (1 + exp(−β1 − β2LMD − β3AR))1

where β1, β2, β3 are the model coefficients to fit the data (0.302, -1.421, -0.126), LMD is
the log of the metric distance between fish i and j, AR is the ranked angular area of fish
j subtended on the eye of fish i. This mapping between sensory input and behavioural
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response, constructed based only on the behaviour of first responders, allows to build
a hypothetical network, predictive of how behaviour will spread through the group.
Here, the weight of an edge between individuals i and j, wij = P (i|j), is the probability
of a behavioural response by individual i if individual j exhibits behavioural change.

4.4 Network characterization:

The emergent collective behaviour of animal groups, or more generally multi-agent
systems, is decisively shaped by the underlying networks of social interactions. A
variety of measures have been introduced to characterize the structural properties of
networks, often with the intention to predict the average outcome of a certain dynamical
process on the network [102]. Within this thesis several well-established measures are
used to characterize the different types of networks and understand the behaviour of
different dynamical processes: the average in-degree, the clustering coefficient and the
number of triangles. These quantities, are relevant in order to describe the contagion
processes on a network [89]. It has been shown [62] that infectious disease dynamics can
be profoundly influenced by two key network properties: the number of contacts per
individual (degree distribution) and the transitivity, or clustering, of contact. Moreover,
although it is widely accepted that high connectivity among individuals facilitates group
consensus, and that being in a group provides benefits to individuals through social
information about environment provided by other group members, it has been shown
[81] that large scale coordination can be maximized by strongly limiting the cognitive
capacity of individuals, where due to self-organized dynamics the collective self-isolates
from disrupting information. In conclusion, within this thesis, it is possible to show that
the outcome of the contagion process is ultimately determined not by the actual links,
but mainly by these general measures, and in particular the distributions of degrees
and triangles.

4.5 In degree:

The in-degree of a node is defined as the number of its incoming links. Since we consider
undirected networks, it coincides with the degree. Given the adjacency matrix, the
degree of node i is defined as:

ki =
N
∑

j=1

Aji

Counting the fraction of nodes with degree k in the graph gives the degree distribution.
This distribution is typically used as a measure of heterogeneity, as it provides insights
into how connections are distributed across the network.
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Figure 15: Histogram of degrees on a metric network for different radii (0.03, 0.04,
0.05).

The peak obviously shifts by changing the radius of influence. Here we see that it
goes from ∼3 to ∼7.
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Figure 16: Histogram of degrees on topological (k=8) and Voronoi networks.

KNN and Voronoi linking algorithms are independent on the density of the nodes.
Let us note that in the topological network, even if we pose k=8, we will have a non
negligible fraction of nodes with higher degree, because we built it in a such a way that
all nodes have at least k neighbours. In the Voronoi network, the average degree is
around 6.

4.6 Clustering coefficient:

Clustering, also known as transitivity, is a typical property of acquaintance networks,
where two individuals with a common friend are likely to know each other. The clus-
tering coefficient is a measure of how frequently any two neighbours of a node are
themselves neighbours. In terms of a generic graph, transitivity means the presence of
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high number of triangles. For unweighted graphs, the clustering of a node is the fraction
of possible triangles through that node (T (u) is the number of triangles through that
node). The clustering coefficient per node is defined as:

cu =
2T (u)

k(u)(k(u)− 1)

It is assigned to 0 if the degree is lower than 2.
We can analyse the distribution of clustering coefficients among the different networks.
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Figure 17: Distribution of clustering coefficients for a metric network with increasing
density (from 1000 individuals per square metre to 3000).

As we can see, by increasing the density, the distribution tends to be more peaked.
For low densities it is wider and takes on some discrete values, while for bigger densities
it is a continuous distribution with a well defined peak.
If instead we analyse the variation of the radius, the distribution looks like:

Figure 18: Distribution of clustering coefficients for a metric network with increasing
radii (0.03, 0.04, 0.05).
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In case of smaller radius, being the network almost disconnected, the distribution
is highly peaked in a clustering coefficient equal to 0.
Finally, the KNN and the Voronoi networks:
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Figure 19: Distribution of clustering coefficients for KNN (left) and Voronoi networks.

The Voronoi network is characterized by some discrete values associated with a very
high number of counts, while the KNN has a more Gaussian-shaped distribution.

This coefficient can have a significant impact on the epidemic size or endemic state.
For example, it is widely accepted that the value of the transmission rate needed to
generate an epidemic is larger for networks which are clustered when compared to an
equivalent network with the same degree distribution but no clustering [102].

We could define a generalized definition accounting for weights. There are several ways
to define clustering [33], one example is to use the geometric average of the sub-graph
edge weights:

cu =
1

deg(u)(deg(u)− 1)

∑

vw

(wuvwuwwvw)
1/3

where wuv are the edge weights, normalized by the maximum weight in the network.

Representing the clustering coefficient with different colours from white to dark green,
we can visualize how this coefficient changes by varying the radius in the construction
of the metric networks.
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Figure 20: Metric networks for radius 0.03, 0.04 and 0.05 fixing density at 1000 indi-
viduals/square meters. The green colours represent the clustering coefficients.

If in the quasi-disconnected case (radius = 0.03) all nodes have clustering equal
to zero apart for some isolated nodes with clustering 1, by increasing the radius, the
clustering seems to be more uniformly distributed among the network.
Finally, let us see the same representation for the KNN and Voronoi networks:
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Figure 21: KNN and Voronoi networks for fixed density 1000. The green colours
represent the clustering coefficients.

The Voronoi network tends to be more homogeneous in terms of spatial distribution
of the clustering coefficient per node with some few nodes with clustering 1, the KNN
never reaches clustering equal to 1.

4.7 Number of triangles:

Another useful measure, which will turn out to be relevant in the description of complex
contagion, is the number of triangles, the configurations of 3 strongly connected nodes.
In the case of metric networks, this measure depends on the chosen density.
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Figure 22: Distribution of number of triangles for metric networks of increasing density.

The distribution from being very peaked relaxes with increasing density.
It also depends strongly on the radius. Let us see how it varies by changing it from
0.03 to 0.05 m.
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Figure 23: Distribution of triangles for metric with radius 0.03, 0.04, 0.05 for fixed
density 1000.
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Figure 24: Distribution of triangles for the KNN and the Voronoi networks.

As compared to metric and KNN networks, Voronoi tends to have, on average, a
smaller number of triangles.
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5 Simulated Dynamics:

5.1 Introduction:

To model our physical system, we will consider a contagion dynamic over a network
model. Let us now better characterize the contagion models.
The term ’contagion’ itself has roots in the Latin verb ’contingere’, formed by the com-
bination of com (“with, together”) and tangere (“to touch”), thus conveying the idea
of spreading through contact. The earliest recorded usage of this word dates back to
ancient Rome. For instance, it appears in Lucretius’6 epic poem De Rerum Natura (1st
century BCE circa), where he describes the transmission of disease from one person to
another through direct contact. This disease-related meaning of “contagion” persisted
for centuries and was largely confined to describing the spread of pathogens. It was
not until the late 19th century that the concept began to extend beyond the domain
of disease. Sociologists Gabriel Tarde7 and Gustave Le Bon8 were among the first to
examine contagion in a social context, with Le Bon introducing the term behavioural
contagion to describe how behaviours spread within groups [39]. Later, in 1939, Her-
bert Blumer 9— a foundational figure in the study of collective behaviour—coined the
term social contagion [42]. By the mid-20th century, contagion had become a widely
used concept in sociology, capturing the spread of behaviours, opinions, rumours, and
norms across societies [43].
In the late 20th and early 21st centuries, the application of contagion theory expanded
further, encompassing financial and economic systems. Economists and financial an-
alysts began using the term to describe the transmission of financial crises or shocks,
which could propagate between interdependent markets and economies through mech-
anisms such as investor behaviour and information cascades [44]. Nowadays, this term
also describes the rapid spread of information, trends, and visual content across online
platforms [41].
What brings together all the described phenomena is the transmission of some quantity-

6Titus Lucretius Carus (c.99 – c.55 BC) was a Roman poet and philosopher. His only known
work is the philosophical poem De Rerum Natura, a didactic work about the tenets and philosophy of
Epicureanism.

7Gabriel Tarde (12 March 1843 – 13 May 1904) was a French sociologist, criminologist and social
psychologist who conceived sociology as based on small psychological interactions among individuals
(much as if it were chemistry), the fundamental forces being imitation and innovation.

8Charles-Marie Gustave Le Bon (7 May 1841 – 13 December 1931) was a leading French polymath
whose areas of interest included anthropology, psychology, sociology, medicine, invention, and physics.
He is best known for his 1895 work The Crowd: A Study of the Popular Mind, which is considered
one of the seminal works of crowd psychology.

9Herbert George Blumer (March 7, 1900 – April 13, 1987) was an American sociologist whose main
scholarly interests were symbolic interactionism and methods of social research.
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information-entity throughout a population, facilitated by a network of interactions-
communication. In this way, contagion dynamics in a network model capture how cer-
tain entities—whether biological, social, or informational—propagate through these in-
teractions, regardless of whether the “contact” is physical or simply a network-mediated
influence.
Classical contagion models, like SIR, SIS, and SIRS, describe these phenomena by at-
tributing to all agents a state. In these models S means susceptible, that is to say
that an individual can be infected, I means infected, R recovered, died, or no-more
prone to infection. The SIR model assumes permanent immunity after recovery, useful
for diseases like measles [63]; the SIS model has individuals return to a susceptible
state, describing well the common cold for example [64]; and the SIRS model includes
temporary immunity, conveys effectively infections like certain influenza strains [65].
Extensions, like SEIR and SEIRS, add an “Exposed” stage for incubation periods and
are used for diseases with delayed infectiousness, such as COVID-19 [66].

Contagion processes can be classified as simple or complex. There are different non-
equivalent criteria to define the two. We can distinguish between them by assuming
that a contagion is simple if each exposure acts independently from any other expo-
sure, while complex contagions are trivially those in which multiple exposures do not
act independently, but their effect is instead interdependent.
In particular, when dealing with social contagion phenomena, such as adoption of
norms, simple epidemic-like contagions do not provide a satisfactory description, es-
pecially if reinforcement mechanisms are at work [92]. Complex contagion mechanisms
have been proposed to account for these effects. As defined by Centola and Macy [93],
“a contagion is complex if its transmission requires an individual to have contact with

two or more sources of activation”, i.e. if a “contact with a single active neighbour is

not enough to trigger adoption”. Here, we propose to go further and take into account
that contagion can occur in different ways, either through pairwise interactions (the
links of a network) or through group interactions, i.e., through higher-order structures.
Consequently we can define a minimum “critical mass” of adopters, often required for
many social entities to spread widely. Finally, we observe that higher order interactions
enable more nodes to exchange information simultaneously, thus allowing more efficient
communication and leading to enhanced synchronization [83].

Since our model will be of the SIR kind with a quadratic contagion mechanism, let
us explain briefly how to approach the standard SIR model. This model, formulated by
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Kermack10 and McKendrick11 [27] in 1927 to describe the irreversible propagation of
an infectious disease, is the most popular and used contagion model. Given the rate of
infection β, β∆t is the probability that infection occurs during the small time interval
∆t. Clearly this probability should be proportional to the number of contacts k an
individual had during the interval. Moreover, infected individuals recover and obtain
permanent immunity with a constant rate µ. Let S(t), I(t), R(t) be the fraction of
susceptible, infected and recovered at time t, the dynamics is described by a set of
ordinary differential equations (ODEs):











Ṡ(t) = −βkS(t)I(t)

İ(t) = βkS(t)I(t)− µI(t)

Ṙ(t) = µI(t)

with the constraint S(t)+I(t)+R(t)=1, only two of these equations are independent.
Rewriting the above equations, we get the following:

dS(t)

S(t)
= −(βk/µ)dR(t)

integrating, we obtain a solution for the evolution of susceptible nodes:

S(t) = S(0)exp

(

−βk

µ
(R(t)−R(0))

)

then I(t) is just a function of R(t) with parameters S(0) and R(0).

Figure 25: Figure from the Ph.D. thesis of Burgio G. [45]. Phenomenology of the
SIR model. (a) Time evolution of the fraction of susceptible, infected and recovered
individuals in the population. (b) Final attack rate R∞ as function of βk/µ.

10William Ogilvy Kermack (26 April 1898 – 20 July 1970) was a Scottish biochemist.
11Lt Col Anderson Gray McKendrick (8 September 1876 – 30 May 1943) was a Scottish military

physician and epidemiologist.
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In this analysis the quantity βk/µ plays a central role. Here, 1/µ represents the
average infection period, which is the average time interval between an individual be-
coming infected and recovering. During this period, an infected individual transmits
the infection to each of its susceptible contacts with a probability of β/µ. In a popula-
tion where all other individuals are susceptible, an infected individual will, on average,
infect βk/µ others. This value is known as the basic reproduction number, commonly
denoted as R0. It represents the number of secondary cases generated by a single pri-
mary case. If R0 > 1, the first case will cause more than one secondary case, on average,
before recovering, leading to exponential growth in the number of infections.
It is important to note that the deterministic dynamics describing the evolution of the
system’s average state are valid only in the infinite-size limit. For any finite popula-
tion size, statistical fluctuations around the average become significant, and there is a
non-zero probability that the number of infected individuals deviates from the expected
infinite-size behaviour, potentially fluctuating down to zero. Once the system reaches
this state with no infected individuals, it cannot return to an active state. This state
is referred to as an absorbing state.

In the above description there is no contact network in the model; contacts occur
uniformly at random between any two individuals in the population. In fact, we only
specified the number or rate of contacts k, the degree in the network, which is the same
for each node, thus the network is k-regular.

5.2 Dynamics description:

Contagion models have broad applications, ranging from epidemiology, where they help
model the spread of infectious diseases [85], to social contagion [86] and the diffusion
of rumours [87]. Traditionally, these models operate under the assumption that conta-
gion spreads via pairwise interactions, often represented through network graphs where
nodes signify individuals and edges represent interactions between them. In these con-
ventional models, the spread is limited to interactions between two individuals at a
time. However, this framework has recently been expanded to capture more complex
dynamics, as researchers have introduced models that incorporate higher-order inter-
actions, which are essential in scenarios involving group-based interactions or collective
behaviour [92, 45].

To model these higher-order effects in behavioural contagion networks, we introduce
a complex contagion model that accounts for interactions within groups of three (trian-
gles) and includes a fractional contagion perspective. This fractional model emphasizes
the relative influence of contagious neighbours, based on their proportion, rather than
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their absolute number. Thus, in this formulation, the contagion mechanism depends
on both the presence of immediate contacts and their clustering in small groups.
Ultimately, this model adapts the Susceptible-Infected-Recovered (SIR) framework to
incorporate both link-based and group-based contagion. Here Susceptible corresponds
to the fish at the surface of the water, Infected means in the act of diving and moving in
this movement the water and Recovered corresponds to a fish underwater which cannot
infect any more the others. In this sense, the contagion corresponds to the adoption of
the diving-behaviour. In the complex SIR model, the infection rate for an individual
i is defined as follows:

αi(S → I) = α1[k
1

i ]
−γ

∑

j

Aijxj + α2[k
2

i ]
−γ

∑

jk

AijAikAjkxjxk (1)

where:

• α1 and α2 are respective infection rates for pairwise and triangle-based interac-
tions;

• k1

i is the degree of individual i in terms of pairwise (single-link) connections, while
k2

i represents the count of triangles involving i;

• Aij is the adjacency matrix element indicating the presence (1), or absence (0),
of a link between nodes i and j;

• xi is a binary indicator of the infectious state of neighbour i;

• the exponent γ modulates the influence of the connection strength based on de-
gree. Specifically γ = 0 for numeric contagion =1 for fractional.

In the following we will assume fractional contagion and we have two different mecha-
nisms for the recovery:

• constant time recovery: Individuals recover after a fixed number of steps after t
steps;

• constant rate recovery: Each individual has a fixed probability µ of recovering at
each time step.

Seeing as our goal is to model a biological system, it would be reasonable to assume a
deterministic recovery (constant time) mechanism, reflecting the observation that fish
typically need a consistent amount of time to dive underwater. If not specified explic-
itly, it will be a deterministic model with t=10. Changing this time simply shifts the
transition, but does not deeply affect the dynamics (see section 6.1). Nonetheless, we
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Figure 26: Explanation of the various channels of infection, with the corresponding
rates. If we only have one link between an infected (red) node and a susceptible (blue)
node, the infection rate is just α1. In the case of triangles, either 2 nodes are infected,
in which case we can have infection via both the links and the triangle itself with rate
α2, or just one node is infected and the contagion travels along the links only.

will also explore the probabilistic recovery case to consider possible variations and to
analytically analyse the model.

Let us observe that moreover, if we wanted to analyse the repeated wave behaviour, we
would also need to consider the transition from R to S again. We know from the data
that the period they spend underwater is around 2 seconds.

As seen in Formula1, we are working within a fractional contagion framework. Here,
the activation of each node is influenced by the activity level of its neighbouring nodes.
However, unlike independent link channels, activation depends on the fraction of active
neighbours relative to the maximum possible activity level. This fractional approach
is particularly suited for modelling fish school behaviour, as studies have shown that
behavioural transmission in these groups aligns closely with fractional contagion dy-
namics [82]. In general, for all types of networks and initial conditions with increasing
α1 (simple contagion), we observe a clear transition from a small fraction (nrec) of re-
covered to nrec ∼ 1, and this can be defined as single avalanche spreading through the
network. However the corresponding transition for increasing α2 (complex contagion)
depends strongly on network properties and initial conditions. In the next section,
section 6.1, and in the final section, section 8, we will try to understand the role that
network properties play in this transition.

Another relevant aspect to be analysed is the ability of filtering out noise from sig-
nal in collective networked systems. Since birds must enter the water to catch fish, a
combination of visual and mechano-acoustic cues (multimodal) characterize an imme-
diate attack, while single cues (unimodal) may represent less dangerous disturbances.
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In a field survey, Lukas et al. [95] confirmed that the sulphur mollies frequently have
to distinguish between these two stimuli. Sensitivity was high regardless of stimulus
type and number, but fish dove deeper, faster, and for longer when both stimuli were
available simultaneously. Based on the system’s high rates of bird activity, we argue
that the fish adopt a non-selective dive initiation strategy, quickly starting their de-
scent without detailed evaluation, and then fine-tune their diving parameters based on
received cues. This behaviour allows them to conserve energy, which is essential for re-
sponding to future predatory attacks. The model does not reproduced this mechanism,
but what is relevant is that it retains the ability to discriminate.

We have focused on two biologically relevant and arbitrary definitions of signal and
noise:

• Coincidence detection: We know from fish schools that individuals can occa-
sionally startle spontaneously, even without an actual predation threat, but it is
unlikely for two individuals to startle simultaneously by chance. Therefore we fo-
cus on the case where the signal is defined as two nodes activated simultaneously,
and noise as only one activated node. This is a reasonable approximation in the
case that the rate of spontaneous startles is low, such that it becomes vanishingly
unlikely for two spontaneous startles to occur in the same cascade event.

• Spatially correlated activations: In some cases a true positive, such as a
predator approaching from a given spatial position, is likely to induce activations,
which are correlated in space. Of course, the opposite could also be true, that
simultaneous activations of distant individuals are less likely to be correlated
and are more likely to give uncorrelated information about the environment. To
model this, we compare simultaneous initial activations of individuals close and
far apart, in network terms.

The question is now whether complex contagion could be a robust mechanism for fil-
tering out false positive signals (spontaneous startles). Additionally, both signal and
noise may be introduced at certain places within the group’s structure, and we have
separated this into boundary and bulk conditions (i.e. introduced only at the periphery
or in the core of the group). This is important to consider because biological systems
have boundary conditions that, on the scale of the systems we are interested in, will be
relevant to the dynamics of the process. We consider this factor because it is relevant
for real animal groups and would generate empirically testable predictions.

An important observable to be analysed is the fraction of recovered individuals, which
basically defines the dimension of the infection in the network.
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5.2.1 Role of weights:

Another important factor to take into account when modelling the contagion process
is the role of weighted interactions, which can capture the intensity or strength of
connections between nodes. To represent this, we introduced two distinct infection
rates for the two different contagion mechanism. Specifically, if we wanted to account
for the presence of weights (wi):

α′

1
= α1 · w1

α′

2
= α2 · w2

in which the weights are combinations of weights associated to each link. Specifically,
we distinguish between absolute and fractional modes:

• simple-weight (w1) can be:

– absolute: simply the weight of the associated link;

– fractional: weight divided by the total weight for links including the node;

• quadratic-weight (w2) can be defined in different ways:

– mean: the average of the weights involved in the triangle;

– mean fractional: average divided by the total weight for triangles including
the node;

– max: max between weights of links in the triangle;

– max fractional: max divided by the total weight for triangles including the
node;

– min: min between weights;

– min fractional: min divided by the total weight for triangles including the
node.

We will concentrate on the case in which weights are constant, and the chosen modes
for computing probabilities are fractional and mean fractional.

5.3 Model Implementation:

To run our simulations we used Utopia, a comprehensive modelling framework for com-
plex and adaptive systems [99, 100, 101]. Utopia handles simulation configuration,
parallelized parameter sweeps, as well as efficient reading, writing, and evaluating of
high-dimensional simulation output. It is designed to facilitate collaborative research
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and flexible model development while maintaining high individual freedom in imple-
mentation and analysis. Utopia includes a C++ library for model implementations and
data writing, and a Python interface for simulation control, data analysis, and plotting.
The model itself is implemented in Python, using NetworkX for representing spatially
embedded networks.
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6 Percolation transition: SIR model on spatial net-

works.

6.1 Introduction:

By defining the model as a three-state SIR system (section 5.2), we aim to describe
the diving behaviour of fish while excluding the possibility of repeated waves. Instead,
the focus is solely on the so-called escape wave. Observations of the biological system
(see empirical data in section 8) reveal that when externally stimulated by a sufficiently
strong input, an initial wave is generated. The size of this wave depends on the stimu-
lus intensity. Subsequently, additional waves may occur, either in the same or different
locations. In this context, the stimuli correspond to bird attacks.

The final state of an SIR model is characterized by a fraction of susceptible nodes,
while the remaining nodes are classified as recovered. Recovered nodes (denoted as
R) are all those that were infected by the contagion. Thus, when comparing with the
biological system, it is reasonable to associate these recovered nodes with the fish that
participated in the escape wave (see Fig.27).
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Figure 27: In the Figure above, we see on the left an example of the final state of the
network, where recovered nodes are in grey and susceptible nodes are in blue. On the
right, a screenshot of the annotation tool we used to analyse empirical data (section 8).
The small yellow circle indicates the impact point of the external artificial stimulus, the
outer yellow line outlines the clearly visible escape wave.

The fraction of R relative to the total number of individuals serves as the order
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parameter, a key measure that allows us to distinguish between two distinct phases:
one in which the contagion spreads across the entire network, and another where only
a subset of the fish dive. This perspective naturally aligns with a percolation model,
where the critical observable is the size of the giant cluster—the single, large connected
component of nodes that dive in response to the stimulus.

What we will do, in this first part, is study the behaviour of the system by varying
the strength of the contagion process, or rate of infection, not the initial input. This
can be seen as a phase transition between a system that does not have the capability to
spread the diving behaviour, and a fully connected system in which all fish dive. This
transition would strongly depend on the topology of the network.

To better understand what we will be studying, let us briefly introduce the main con-
cepts of percolation theory [117, 102].
Percolation theory is one of the simplest statistical-mechanics models showing non-
trivial phase transition. The purely geometrical nature of these transitions makes them
fundamental ingredients of more complex collective phenomena observed in many phys-
ical systems. We can distinguish between bond percolation and site percolation. In
general each bond (or link) of the model is assigned to a binary variable xi, with prob-
ability p (typically a constant unique value) of being equal to 1, and with probability
(1-p) of being 0. The probability p is called occupation probability, and xi = 1 means
that the site (the link) is either occupied, present, or active, depending on the context.
The percolation problem involves analysing the conditions on the occupation proba-
bility required for the emergence of connected groups of sites (clusters), whose size is
comparable to that of the entire system, corresponding to infinite clusters in the ther-
modynamic limit. The existence of a macroscopic aggregate of connected sites would
ensure the existence of a path between boundaries. We will thus observe a singularity at
a certain pc, called critical probability, minimum value over which percolating clusters
exist. Generally bond and site percolation are different, i.e. the value of pc is not the
same for a given topology, but there are some trivial cases in which they coincide, such
as the one-dimensional case. Moreover, this model is strongly affected by the dimen-
sionality of the embedding space, which is however, not a variable in this case.
Given the presence of a phase transition, many properties will exhibit power-law be-
haviour with respect to the distance from the critical point, (p − pc). The behaviour
of the system close to criticality is expected to be characterized by universal proper-
ties. In this context, when exact results are not accessible, approximation methods can
be employed; Real Space Renormalization Group [40] is particularly useful because it
allows to extract qualitatively correct information on critical behaviour and determine
the critical exponents.
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In the following section, we will give a general analysis of the model in terms of the
ability of the networks to distinguish between noise and signal. In the context of epi-
demic modelling on networks, measuring the susceptibility of a population to infection
is essential for understanding the dynamics of disease spread and the potential for out-
breaks. A useful way of quantifying this susceptibility is by assessing how sensitive
the final epidemic outcome is to the initial number of infected individuals. For this
purpose, we introduce a susceptibility measure based on the difference in the fraction
of individuals in the recovered state under two initial conditions in the SIR model;
namely the difference between a minimal infection -one infected individual only- versus
a slightly larger initial infection -two infected individuals. This assumption is just an
arbitrary choice. Even though we assume that the peaks of this measure correspond
to the so-called critical region of parameters, this could be profoundly different for a
different definition of susceptibility. In networked populations, however, this measure
can reveal aspects of the structure that influence epidemic spread, such as clustering,
connectivity, or the presence of highly connected nodes (hubs).
Of course it is useful to analyse other cases, like the difference between infections in the
periphery and in the centre, or in the case of more initially infected agents.

In the final part of this thesis (section 8), we will see why this analysis is relevant
for our specific study system by introducing an experiment we conducted in the field
(section 8.5).
The different network topologies will be discussed separately.
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6.2 Metric Network:

In the beginning, we focus on a metric network to observe how varying connectivity,
through changes in the interaction radius, affects the system’s susceptibility to disease
spread. By tuning the interaction radius, we control the average in-degree of nodes,
thereby moving the network between states of near-isolation (with a low radius and few
connections), where widespread disease transmission improbable and independent on
the quadratic contagion, and highly connected configurations (with a higher radius), in
which the system becomes sufficiently connected, allowing an infection to potentially
activate the entire network and here we’ve a strong dependence on α2 . The transi-
tion point while varying the radius is of particular interest, as it marks the critical
connectivity where disease spread dynamics change significantly. As explained, a key
aspect of our analysis is the system’s response to different initial conditions, specifically
comparing the outcomes when the infection begins with only one infected node versus
when it begins with a pair of connected infected nodes. This comparison is essential
for assessing the system’s sensitivity to initial infection conditions and understanding
the degree to which network structure amplifies or dampens the spread from a minimal
initial infection.

We will always, if not explicitly said, apply the stimulus in the centre to a number
N of individuals. This analysis will be focused on the heatmaps describing, by varying
α1 and α2, the fraction of recovered nodes and the susceptibility measure.

Let us comment the results. As observed in Fig.28, the dynamics’ sensitivity to
variations in α2 appears to increase with the radius. This behaviour is intuitive, as
for smaller radii (e.g., 0.03), there is practically no dependence on quadratic contagion
effects. In such cases, the number of triangles in the network is essentially zero, which
limits the influence of higher-order interactions.
In the more connected cases, the susceptibility peaks at high values of α2 (see Fig. 29),
highlighting how important the quadratic contagion mechanism is for these values.
This result could appear straightforward. The assumption of having two infected con-
nected nodes and α2 ∼ 1 implies that these two nodes will probably infect other nodes
via both channels of contagion. On the contrary, for small values of α2, only the links
spread the epidemic, thus the two analysed initial conditions are not so different, since
being linked to another infected node does not favour the contagion via triangles.
However, as will we see in the analysis of the dynamics on the networks built using
the empirically observed positions (section 8), this is not always the case. The hetero-
geneities change non-trivially the results.
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Figure 28: Fraction of recovered for N=1 (above) and N=2 (below) in the case of metric
network by varying the radius. Yellow means all nodes recovered, purple none of them
(just few).
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Figure 29: Susceptibility heatmap. It is obtained by subtracting, for each radius, the
N=1 and N=2 cases.
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Let us focus for a moment on the last case, with radius fixed to 0.05 and we analyse
the susceptibility. In the context of the criticality hypothesis (section 2), identifying
the parameters that maximize the susceptibility measure allows us to conclude that
the system, under that specific combination of parameters, is at the critical state. Of
course, this conclusion must be justified within the framework of the chosen model
and, specifically, in terms of the defined susceptibility. We are not concluding that the
biological system is critical. Instead, we state that if the system is well described by
the model under that specific combination of parameters, and if it can be demonstrated
through experimental evidence that the system is indeed in a critical state (which is
something partly done in [46]), then the defined susceptibility could be considered a
good description of the sensitivity of the system.

Figure 30: This plot represents the susceptibility heatmap for metric network with
radius 0.05. The red square represents the region of parameters where susceptibility
assumes its highest values.

It is worth noticing that:

• This is just one possible measure of susceptibility, we could have defined a different
susceptibility. Here, for the purpose of studying the discrimination ability of the
shoals, we decided to keep just this and use it to describe the system phase;

• The susceptibility will strongly depend on the network size;

• The susceptibility strongly depends on the network topology.

Another aspect to analyse is that the infection dynamics are notably influenced by the
location where the stimulus is applied. Specifically, when the stimulus is initiated at
the centre, the infection spreads more effectively. This is likely due to the higher con-
nectivity of central nodes, which facilitates the propagation of the signal. In contrast,
nodes located near the boundary are less connected, and as a result, the wave signal
tends to dissipate before reaching the edges. This highlights the critical role of network
structure and geometry in shaping the spread of contagion processes.
Indeed, if we assume that the initially infected nodes are chosen in the left-down corner
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Figure 31: Fraction of recovered for N=1 and N=2. Here we have a metric network
with radius 0.05 and the initially infected nodes are in the left-down corner.

instead of the centre, we will obtain Fig.31. In this plot is evident that the dependence
on the quadratic contagion is much less important in the transition. This can be justi-
fied by the fact that in the border it is less probable to be involved in triangles.

Finally, we observe that the duration of the Infected to Recovered (I → R) transi-
tion affects the system’s behaviour by shifting the overall transition line but does not
fundamentally change the dynamics of the spread. Here, the “time” refers to the fixed
duration that an individual remains in the Infected (I) state before transitioning to
the Recovered (R) state. This duration directly influences the rate at which infected
individuals recover, thus shaping the timing of the epidemic’s progression through the
network. To simplify our analysis, we fixed this Infected to Recovered transition time
to t=10. By holding this transition time constant, we can focus more effectively on the
effects of two key parameters, which control other aspects of the infection dynamics.
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Figure 32: Fraction of recovered for the metric network (radius 0.05) as function of the
parameters for N=1,2 in the metric network by changing the time of recovery.
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6.3 Voronoi Network:

Assuming now the Voronoi linking algorithm, we want to analyse the same quantities as
in the metric case, specifically the fraction of recovered and the susceptibility measure.
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Figure 33: Fraction of recovered for the Voronoi network for N=1 and N=2.

The region of parameters where the susceptibility maximizes is again concentrated
in the upper-left portion of the heatmap, emphasizing the critical role of the quadratic
contagion mechanism (see Fig.33). These results are comparable to those observed in
the metric network with a radius of 0.05, as both exhibit similar degree distributions.

We now turn finally our attention to the probabilistic case of the model, which in-
troduces randomness in the transition dynamics. Analysing this probabilistic approach
offers valuable insights, as it allows us to draw more analytically tractable models. In
the probabilistic model, the likelihood of an infected individual passing the infection
or transitioning to recovery at any given time step is based on predefined probabilities
rather than fixed time intervals. This approach aligns well with real-world scenarios,
where the exact duration of infection and recovery times vary among individuals.
As expected, compared to the deterministic case, there is significantly more noise (espe-
cially for N=1) due to the additional stochasticity introduced (see Fig.34). Nevertheless,
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Figure 34: Fraction of recovered for the Voronoi network for N=1 and N=2 in the
probabilistic case assuming p= 0.1

it is still possible to observe a dependency on ³2.
We are able to show that a key distinguishing factor between these two cases lies in
the evolution of the number of “active” triangles over time, which means triangles with
two infected nodes. In the probabilistic case, this count is generally lower (for example,
comparing t=10 with p=0.1) but also active for more time.
This suggests that a form of “synchronized” behaviour is essential to maintain the struc-
ture of active triangles. Consequently, the probabilistic case is more sensitive to chance
deactivations of nodes, as a single early deactivation can disrupt triangle connections,
while a chance extension of activity in one node has a less pronounced effect. Let us
show explicitly the number of active triangles over time:
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Figure 35: Comparison of the number of active triangles over time between the de-
terministic case with time of recovery t=10 and the probabilistic case with p=0.1 for
N=1,2. In both plots ³1 = 1 and ³2 = 1.

6.4 Knn Network:

Considering a topological linking algorithm we obtain the knn network. Let us analyse
again the fraction of recovered nodes and the susceptibility. It is interesting to show how
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these two observables are dependent on the chosen k (to build the network); similarily
to the metric case, increasing the connectivity we observe an increase in dependency
with respect to ³2. Highly connected graphs imply greater dependency on the quadratic
contagion mechanism.
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Figure 36: The first image shows the fraction of recovered for the Knn network for N=1
and N=2 by varying the value of k. The second represents the susceptibility measure.

6.5 Conclusions:

To summarize, the analysis of the percolation transition allows us to conclude that the
collective response ultimately depends heavily on the interplay between the dynamics
and the structure of the underlying network. We were in fact able to show how the
choice of the linking algorithm is determinant in the outcome of the contagion and in
the identification of the values of the parameters that maximized the susceptibility; in
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the framework of the criticality hypothesis these ultimately correspond to the critical
values.
In the deterministic case, where the infection time is fixed, the entire network exhibits
a sharp transition characterized by a well-defined critical line. While this transition is
less pronounced in the probabilistic case, it remains observable. This distinction can,
in part, be explained by examining the evolution of the number of active triangles over
time. Additionally, the degree distribution plays a pivotal role: only in sufficiently con-
nected networks does the quadratic contagion mechanism exhibit a clear and explicit
influence on the system’s behaviour.
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7 Mean-Field approximation on SIS dynamics:

7.1 Introduction to simplicial complexes:

Complex networks have proven highly effective in describing disease spread within pop-
ulations of interacting individuals [56].
One recent advancement in this field is the formalization of interaction patterns using
hypergraphs [92, 114, 109], which generalize traditional graphs by allowing edges, or
hyperedges, to connect any number of vertices. In this work, we will introduce the main
concepts of hypergraph theory and demonstrate how they can be applied to analyse the
mean-field approximation of the SIS model. However, to facilitate a comparison with
our model, we will ultimately return to the framework of traditional graph theory.

A hypergraph is encoded either in a series of adjacency tensors each one accounting for
the connectivity at the level of m-edges or through an incidence matrix H, defined as
follows:

H(v, e) =

{

1 if v ∈ e

0

where H indicates the presence or absence of vertices in each hyper-edge, allowing for a
detailed and flexible representation of the relationships within complex social systems.

Figure 37: Image from Mathematical Foundations of Hypergraph [110].

This flexibility makes hypergraphs particularly suited to capturing correlations in
complex, multi-way interactions beyond simple pairwise connections.
To better understand these structures, we can define an equivalence between hyper-
graphs and bipartite graphs mapping the two subset of vertices of the bipartite graph
to the vertex set and the edge set of the hypergraph.
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Figure 38: Image from [45]. A hypergraph, its equivalent representation as a bipartite
graph, and its underlying graph. Note that the hypergraph in this example is linear.

A hypergraph is called simple if no hyperedges is subset of any other. If H is simple
and two hyperedges share no more than one vertex, then H is said to be linear.

This framework allows us to introduce the concept of simplical complexes.
We know that a simplex is simply a generalization of the concept of a triangle (in 2
dimensions) or a tetrahedron (in 3 dimensions) to any number of dimensions. For sim-
plicity, we call nodes (or vertices) the 0-simplices and links (edges) the 1-simplices of
a simplicial complex K, 2-simplices correspond to the full triangles, 3- simplices to the
tetrahedra of K and so on (see Fig.39).
A simplicial complex K on the vertex set V is a hypergraph endowed with the additional
hereditary property: given k ∈ K and k’¦ k, then k’ ∈ K.
The elements of K are called faces and a n-dimensional face (n-face) is a subset of V
made of n+1 vertices. The hereditary property says that given a face or hyperdge which
is included in the complex, then all its sub-faces or sub-hyperedges are included too. For
instance: k={i, j, k} generates the simplex s={{i, j, k}, {i, j}, {i, k}, {j, k}, {i}, {j}, {k}}.

In the context of networks and complex systems, a simplex is often used to repre-
sent a basic unit of interaction or relationship between entities in a higher-dimensional
space, where interactions involve more than just pairs of individuals. Introduced by
Iacopini et al. [92], the simplicial contagion model recognizes group, many-body inter-
actions as an alternative mechanism responsible for complex contagions.
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Figure 39: Image from Iacopini et al. ([92])

Unlike generic hypergraphs, simplicial complexes received substantial attention from
a broader community. In particular, they recently proved to be useful in describing
the architecture of complex networks: functional [103] and structural [104] brain net-
works, protein interactions [105], semantic networks [106], and co-authorship networks
in science [107]. Building on these principles, we model a social group as a simplex and
employ simplicial complexes to represent the underlying structure of the social system
under study.
In a recent paper, Iacopini et al. [92] showed that in the case of exponential random
simplicial complex and comparing to some social interaction based networks, higher
order interactions lead to the emergence of new phenomena, changing the nature of
the transition at the epidemic threshold from continuous to discontinuous. Further-
more, Burgio et al. [108], demonstrated that the outcome of the contagion process is
closely tied to how interactions of different orders are structured within the system.
These works offer a more quantitative analysis that reinforces the previous qualitative
findings [36, 37] and provide a qualitative understanding through mean-field approxi-
mation.
To conclude, these findings underscore the crucial role of higher-order interactions in
shaping the dynamics of complex systems.
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7.2 Mean field:

In this section, to gain additional insights into the interaction network we have con-
structed and to better characterize our model, we will introduce the widely used Mean-
Field approximation (MF). Contagion processes are known to fundamentally depend
on the structural properties of the interaction networks through which they propagate.
Many real-world networked systems exhibit clustered substructures, comprising either
collections of all-to-all pairwise interactions (cliques) or group interactions involving
multiple members simultaneously. Therefore, it is crucial to examine how the underly-
ing structure and its heterogeneities influence the dynamics of these processes.

In particular, differently from the other sections of this thesis, we will map now the
social contagion to a SIS process. To keep this difference evident we will call now ´1

and ´2 the infection rates, instead of ³1 and ³2.

Systems with many (sometimes infinite) degrees of freedom are generally hard to solve
exactly or compute in closed, analytic form, except for some simple cases. In this way,
MF is an approximation method that often makes the original problem to be solvable
and open to calculation, and in some cases it may give very accurate approximations.
In general, the MF theory assumes that to some extent degree of freedom interacts
equally with the others, as if it was interacting just with some average of the others
and neglecting correlations between the agents.
Here, the approximation consists on considering each agent being affected in the same
way by the presence of the neighbourhood. This removes local variability and we keep
only some features of the original network, specifically the average degree and the av-
erage number of triangles.
We will be able show how the outcome of the contagion process is fundamentally linked
to how the interactions of different order are arranged in the system and then how this
approximation is weak in our case.

Generically, we will define as ´(n) the rate of which a node involved in a (n+1)-body
interaction with n simultaneously infected individuals gets infected.
Suppose m is the size of the largest groups, the evolution of the fraction of infected
individuals in the population under the assumption of homogeneous mixing hypothesis
is given by:

İ(t) = −µI(t) + (1− I(t))
m−1
∑

n=1

´(n)k(n)I(t)n

where k(n) is the average generalized simplicial degree.
That corresponds essentially to the rate of change of the average density of active
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sites. Under this homogeneous mixing hypothesis, all sites play an identical role in the
dynamics of the well-mixed system, therefore the dynamics is completely specified by
the number of active sites.
We will develop a slightly more accurate approximation. In any case, if we want now to
define the first-order moments and derive the evolution of it, we see that it depends on
moments of higher orders. Moment equations does not close, so we need to introduce
moment closures.

7.3 Closures:

Let us start from the closure approximation which we apply to the exact microscopic
equations on hypergraphs. We know that there are several choices of closures. Closing,
for example, the equations at the level of nodes requires the assumption that the states
of the neighbouring nodes are statistically independent. In our description we will
introduce instead the triadic approximation. This choice implies a more qualitatively
correct model, capable to predict new qualitative effects. The need of introducing such
approximation is to account for dynamical correlations between the individuals.
To better understand this point let us introduce an illustrative example from [102] of
a SIR model on a simple line network with three nodes. Let us denote as: ïSið(t) the
probability that node i is susceptible at time t, ïIið(t) the probability that i is infected
at time t, ïRið(t) recovered, (ïIið + ïRið)(t) the probability that i is either infected or
recovered, ïIiðïRið the probability that i is susceptible and j infected at time t. Each
node can be infected if it is susceptible from a neighbour with rate Ä , while the recovery
rate is called µ.

Figure 40: (a) Simple line network with three nodes. (b) Creation of new infected
node. (c,d) SI links are created when SS pairs are invaded by infected nodes, which
requires us to develop equations for triplets such as SSI.
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If one would be to write down evolution equations at level of nodes, pairs, triplets,
etc, the procedure would need to continue until full network size is reached.







































































ïṠ1ð = −ÄïS1I2ð

ïİ1ð = ÄïS1I2ð − µïI1ð

ïṘ1ð = µïI1ð

ïṠ2ð = −ÄïI1S2ð − ÄïS2I3ð

ïİ2ð = ÄïI1S2ð+ ÄïS2I3ð − µïI2ð

ïṘ2ð = µïI2ð

ïṠ3ð = −ÄïI2S3ð

ïİ3ð = ÄïI2S3ð − µïI3ð

ïṘ3ð = µïI3ð

The equations for R can be eliminated because ïRið = 1−ïSið− ïIið. This reduces the
number of differential equations. However, we have to study the evolution of the new
terms such as ïS1I2ð and this requires additional equations. Using similar arguments,
we find:



















ï ˙S1I2ð = ÄïS1S2I3ð − (Ä + µ)ïS1I2ð

ï ˙I1S2ð = −ÄïI1S2I3ð − (Ä + µ)ïI1S2ð

ï ˙S2I3ð = −ÄïI1S2I3ð − (Ä + µ)ïS2I3ð

ï ˙I2S3ð = ÄïI1S2S3ð − (Ä + µ)ïI2S3ð

These equations requires further information about specific triples:










ïS1Ṡ2I3ð = −(Ä + µ)ïS1S2I3ð

ïS1Ṡ2I3ð = −(2Ä + 2µ)ïI1S2I3ð

ïI1Ṡ2S3ð = −(Ä + µ)ïI1S2S3ð

Ultimately, by neglecting the equations for R, we reduce the system to just 13 differential
equations. However, this approach quickly becomes impractical as the network size
increases, due to the rapid growth in the number of required equations. For a generic
network, the number of terms needed would equal the total number of nodes, making
the model cumbersome to handle.
To simplify the model, we aim to express pairs in terms of singles, triples in terms of
pairs and singles, and so on. These simplifications are typically performed to reduce
higher-order structures into lower-order ones. For instance, if we can represent all triples
in terms of pairs and singles, such as:

ïSiSjIkð = ïSiSjðïSjIkð/ïSjð
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then the total number of equations is O(N) provided that the number of edges scales
as such. This yields systems simple enough to be studies numerically and sometimes
even analytically.

In practice, the common thread across all these approaches is the goal of expressing
higher-order structures in terms of lower-order ones, either exactly or approximately.
This strategy relies on the assumption that, at some scale, certain variables can be
treated as independent. For instance, consider two neighbouring sites with either iden-
tical or different statuses. The correlation between these two types can be expressed
as:

CAi,Bj
=

P (AiBj)

P (Ai)P (Bj)
=

ïAiBjð

ïAiðïBjð

where C=1 is equivalent with assuming independence.

For both SIS and SIR models, this assumption does not hold, as infected nodes transmit
to their susceptible neighbours, leading to an increased probability that infected nodes
will be connected to other infected nodes. In contrast, susceptibles and infected nodes
are negatively correlated. In this context, knowing that node i is infected provides
information about the status of node j. This correlation can be expressed as:

ïAiBjð = ïAiðïBjðCAi,Bj

Assuming independence at the pair level means:

ïAiBjð ≈ ïAiðïBjð

Thus simplification is the assumption of weak correlation which is often reasonable
in large networks where nodes interact only locally and their states are not strongly
dependent on each other. However, as the epidemic progresses, correlations tend to
increase, making this assumption less accurate. This can lead to an underestimation of
the epidemic’s spread.
For this reason, this approach is generalized to higher order structures. For example,
following van Baalen ([9]), the probability of an open triple (i,j,k) where i and k not
connected can be written as:

ïAiBjCkð = ïAiðïBjðïCkðCAi,Bj
CBj ,Ck

TAi,Bj ,Ck

where TAi,Bj ,Ck
is the triple-level correlation. Note that if ïBjð = 0 then this is zero. If

ïBjð > 0 then plugging in the corresponding expressions for the pair-level correlations
and neglecting triple-level correlations (TAi,Bj ,Ck

) then:

ïAiBjCkð ≃
ïAiBjðïBjCkð

ïBjð
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Equivalently, if i,j,k form a triangle (closed triple), yields:

ïAiBjCkð = ïAiðïBjðïCkðCAiBj
CBjCk

CAiCk
TAiBjCk

which leads:

ïAiBjCkð ≃
ïAiBjðïBjCkðïAiCkð

ïAiðïBjðïCkð

This approach can be extended to higher-order interactions by considering more com-
plex structures, such as quadruples, and beyond. In these cases, the same principle of
expressing higher-order dependencies in terms of lower-order correlations is applied, but
now the relationships between multiple nodes must be carefully considered. This exten-
sion allows for a more detailed approximation of the system’s behaviour, accounting for
increasingly intricate interactions and incomporating the information about network
topology, that cannot be captured by pairwise correlations alone. As such, the method
enables a more accurate description of the dynamics in systems where higher-order
connections play a significant role.

This leads to some questions:

• At which level (pairs, triplets) should the closure be applied?

• How well will the solutions of the closed system compare to results based on the
original exact system?

• How do all the above depend on the structure/topology of the network and prop-
erties of the dyanamics?

Let us see a possible approach.

7.4 Results:

Going back to our model, we need to analyse the SIS dynamics on the networks built.
Considering up to three-body interactions, we account for the evolution of:

• the state probability P σi

i for node i to be in state Ãi;

• the maximal link probability P
σiσj

ij for the link to be in state ÃiÃj;

• the maximal (i.e. cliques not subsets of larger ones) 3-clique probability P
σiσjσl

ijl .
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Figure 41: Image from Burgio et al. [108] showing the difference between the 3 cycles,
3-edge, triangle.

We observe that a 3-clique, when projected back onto the hypergraph, can manifest in
one of three forms (see Fig:41): a length-3 cycle, representing three 2-body interactions;
a 3-edge, representing a 3-body interaction; or a 2-simplex (triangle), which encapsu-
lates all of these interactions. Although we will initially present the general analysis
considering all three types of 3-cliques, we will ultimately simplify our model by assum-
ing that only the first form—essentially a triangle in a traditional graph structure—is
present.
The state probability of the other local structures is approximated in terms of the
maximal cliques composing it. We thus need a closure only for the following local
structures: two maximally connected links, a maximal link connected to a 3clique, 2
connected 3cliques.
The closure approximation we apply to the exact microscopic equations on hypergraphs
is the triadic approximation:











P
σiσjσl

ijl ≈ P
σiσj

ij P
σjσl

jl /P
σj

j

P
σiσjσlσh

ijlh ≈ P
σiσj

ij P
σjσlσh

jlh /P
σj

j

P
σiσjσlσhσk

ijlhk ≈ P
σiσjσl

ijl P
σjσlσhσk

lhk /P σl

l

The triadic approximation helps to improve the accuracy of epidemic predictions and
is particularly important in networks with many triangles. In lattice networks without
triangles, such as the square or hexagonal lattice, the triadic approximation often pro-
vides less additional information because triads are absent, meaning that the pairwise
approximation alone can often suffice.

The higher-order interaction structure is encoded in the following binary tensors: A(1)

s.t. A
(1)
ij = 1 if link ij exists; A(1,0) and A(0,1) s.t. A

(1,0)
ijl = 1 (A

(1,0)
ijl = 0 and A

(0,1)
ijl = 0

(A
(0,1)
ijl = 1) if ijl is a 3-cycle (3-edge), and such that A

(1,0)
ijl A

(0,1)
ijl = 1 if ijl is a triangle.

Rescaling by µ, the general process is described by the following system of microscopic
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equations:

Ṗ I
i = −P I

i +´(1)
∑

j

A
(1)
ij P

SI
ij +

1

2

∑

jl

[A
(1,0)
ijl ´(1)(P SSI

ijl +P SIS
ijl +2P SII

ijl )+A
(0,1)
ijl ´(2)P SII

ijl ]

˙P SI
ij = P II

ij − (1 + ´(1))P SI
ij − ´(1)

∑

l ̸=j

A
(1)
il P

ISI
jil + ´(1)

∑

l ̸=i

A
(1)
jl P

SSI
ijl +

−
1

2

∑

l,h

[A
(1,0)
ilh ´(1)(P ISIS

jilh + P ISSI
jilh + 2P ISII

iljh ) + A
(0,1)
ilh ´(2)P ISII

jilh ] + [i− j]

˙P SSI
ijl = −(1 + 2A

(1,0)
ijl ´(1))P SSI

ijl + P ISI
ijl + P SII

ijl − ´(1)
∑

h ̸=j,l

A
(1)
ih P

SISI
jlih +

− ´(1)
∑

h ̸=i,l

A
(1)
jh P

SISI
iljh + ´(1)

∑

h ̸=i,j

A
(1)
lh P SSSI

ijlh −
1

2

∑

h,k ̸=j,l

[A
(1,0)
ihk ´(1)(P SISIS

jlihk +

+ P SISSI
jlihk + 2P SISII

jlihk ) + A
(0,1)
ihk ´(2)P SISII

jlihk ]−
∑

h,k ̸=i,l

[i− j] +
∑

h,k ̸=i,j

[i− l]

˙P SII
ijl = −(2 + 2A

(1,0)
ijl ´(1) + A

(0,1)
ijl ´(2))P SII

ijl + A
(1,0)
ijl ´(1)(P SSI

ijl + P SIS
ijl ) + P III

ijl

− ´(1)
∑

h ̸=j,l

A
(1)
ih P

IISI
jlih + ´(1)

∑

h ̸=i,l

A
(1)
jh P

SISI
iljh + ´(1)

∑

h ̸=i,j

P SISI
ijlh −

1

2

∑

h,k ̸=j,l

[A(1,0)´(1)(P IISIS
jlihk

+ P IISSI
jlihk + 2P IISII

jlihk ) + A
(0,1)
ihk ´(2)P IISII

jlihk ] + [i− j]

where [i− j] denoted that obtained by swapping i and j in the explicit term.
The other state probabilities are found as:































P S
i = 1− P I

i

P SS
ij = 1− P I

i − P SI
ij

P II
ij = P I

i − P IS
ij

P SSS
ijl = 1− P I

i − P SII
ijl − P SSI

ijl − P SIS
ijl

P III
ijl = P I

i − P IIS
ijl − P ISS

ijl

To make the model more analytically tractable, we perform a Mean Field approximation
by regarding all the nodes and cliques as equivalent to their average counterparts,
equivalently by considering the network to be homogeneous. Accordingly, every node
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is assumed to be part of the same number of maximal links k(1), 3-cliques k(1,0), 3-edges
k(0,1) and triangles k(1,1). The states probabilities P σ

i , P
σσ′

ij , P σσ′σ”
ijl with Ã, Ã′, Ã” ∈

{S, I} are taken equal to their respective averages. Considering Ã = S, I, R, we can
write:

P σ =
∑

i

P σ
i

N

Similarly for the edges:

P σσ′

=
∑

ij

A
(1)
ij

P σσ′

ij

Nk(1)

And for triangles:

P σσ′σ”
x =

∑

i,j,l

Ax
ijl

P σσ′σ”
ijl

2Nkx

where x ∈ {(1,0),(0,1),(1,1)} indicating the type of the considered 3-clique. Then the
system of equations is:

Ṗ I = −P I+´1k
(1)P SI+2´(1)[k(1,0)(P SSI

(1,0)+P SII
(1,0))+k(1,1)(P SSI

(1,1)+P SII
(1,1))]+´2[k

(0,1)P SII
(0,1)+k(1,1)P SII

(1,1)]

Ṗ SI = −(1 + ´1)P
SI + P II − ´1(k

(1) − 1)P SI P
SI − P SS

P S
+

− 2´1[k
(1,0)(P SSI

(1,0) + P SII
(1,0)) + k(1,1)(P SSI

(1,1) + P SII
(1,1))]

P SI − P SS

P S
+

+ ´2[k
(0,1)P SII

(0,1) + k(1,1)P SII
(1,1)])

P SI − P SS

P S

Ṗ SSI
x = −2(1 + ´11x ̸=(0,1))P

SSI
x + 2P SII

x − ´1k
(1)P SI 2P

SSI
x − P SSS

x

P S
−

+ 2´1[(k
(1,0) − 1x=(1,0))(P

SSI
(1,0) + P SII

(1,0)) + (k(1,1) − 1x=(1,1))(P
SSI
(1,1)+

+ P SII
(1,1))]

2P SSI
x − P SSS

x

P S
− ´2[(k

(0,1) − 1x=(0,1))P
SII
(0,1) + (k(1,1)+

− 1x=(1,1))P
SII
(1,1)])

2P SSI
x − P SSS

x

P S
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Ṗ SII
x = −(12 + 2´11x ̸=(0,1) + ´21x ̸=(1,0))P

SII
x + 2´11(x ̸=(0,1))P

SSI
x + P III

x +

− ´1k
(1)P SI P

SII
x − 2P SSI

x

P S
− 2´1[(k

(1,0) − 1x=(1,0))(P
SSI
(1,0) + P SII

(1,0)) + (k(1,1)+

− 1x=(1,1))(P
SSI
(1,1) + P SII

(1,1))]
P SII
x − 2P SSI

x

P S
− ´2[(k

(0,1) − 1x=(0,1))P
SII
(0,1) + (k(1,1)+

− 1x=(1,1))P
SII
(1,1)])

P SII
x − 2P SSI

x

P S

where:






























P S = 1− P I

P SS = 1− P I − P SI

P II = P I − P SI

P SSS = 1− P I − P SII − 2P SSI

P III = P I − P SSI − 2P SII

Now, since we have a network model without hyper-edges we can now assume that k11
and k10 are both equal to zero and use as k1 and k01 the average degree and quadratic
degree, respectively. Once the equations are defined, it is possible to find a numeri-
cal solution. To this end, I implemented a Python code to simulate the dynamics of
the system of differential equations, specifically focusing on the stationary state of PI ,
associated to the infected individuals which represents the proportion of infected indi-
viduals. This stationary state depends on the parameters ´1 and ´2 for the contagion
dynamics which govern the contagion dynamics, as well as the initial condition, defined
by the initial probability of being infected, PI (ϵ). We considered two values for ϵ,
specifically: [0.0000001, 0.7], to explore how the initial condition influences the final
outcome.
The results from this analysis are reported in Fig.42.

Let us comment these results.
Firstly, we were able to reproduce the effect for which increasing ´2 (then the non-
linearity of the transmission process) the transition becomes discontinuous, which is
well known in literature [108, 114, 92].
On the opposite, if we consider now the particular case of simple contagion, or ´2 = 0,
we have only the continuous transition as expected for a SIS model (see blue curves
in Fig.42). To interpret this situation we have to reflect about the difference between
a discontinuous and continuous transition. Here, we are looking at a phase transition
between the inactive, when the infection dies, and the active phase, where you have a
constant number of infected individuals over time. In this context, the order param-
eter, is just the fraction of infected individuals. We know that, whenever you have
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Figure 42: Numerical results for the metric (a), knn (b) and Voronoi (c) networks.
These plots represent the stable state of infected individuals in a mean-field approxi-
mation for different initial conditions and varying the values of ´1 and ´2. The three
networks are characterized by different average degree and quadratic degree (number of
triangles). Specifically: metric degree: 6.66 and metric quadratic degree: 8.55, Voronoi
degree=5.94 and Voronoi quadratic degree=5.92, knn degree= 6.55 and knn quadratic
degree 8.04. The dark-orange and dark-green lines correspond to ϵ=0.7. The values of
´2 are 0 (blue), 0.5 (orange) and 1 (green).
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an abrupt change in the order parameter by varying the control parameter, now the
infection strength (or better ´1 for each selected ´2), then we call it first order phase
transition or discontinuous phase transition. Whenever we have such transition we have
a sort of threshold mechanism, to filter out false positive which implies the existence of
a critical mass value needed for the activation of the transition. On the opposite, for
slowly varying order parameter we have a second order or continuous phase transition.
Here, even if we have an non-heterogeneous network (thanks to the mean-field hypoth-
esis), we have a clustered network. Indeed, we see that the average number of triangles
per node is quite high (comparable to the number of links). Thanks to this high clus-
tering whenever a node becomes infected, its neighbours are likely connected to each
other via triangles. This means that an infected node can simultaneously reinforce
the infection in multiple neighbours through their shared connections, amplifying the
spread locally. At low infection probability this reinforcement mechanism is weak, and
the infection struggles to sustain itself. However, as the infection probability crosses
a critical threshold, the clustering effect “activates” and triggers a rapid cascade of
infections. This feedback mechanism creates a situation where system abruptly jumps
from a low-infection state to a high-infection state, skipping intermediate levels. This
is analogous to a bistable system in physics or engineering, where the system has two
stable states (low and high infection), and small changes in input lead to dramatic shifts
between states.

Now, in order to compare the mean field approximation to our model, we can plot
the fraction of infected nodes in the stationary state regime, obtained waiting a suffi-
ciently large number of steps (5000 steps). Let us show from the time series why it is
possible to conclude that the stationarity is effectively reached.
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Figure 43: Example of a time series for the fraction of infected nodes in Voronoi network,
only one node is initially infected, deterministic recovery time.

69



The results of the model simulation are illustrated in Fig.44.
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Figure 44: Stable state of the number of infected in the simulation of the model. We
reproduced the results for all three networks as a comparison to the above mean-field
results. Specifically, the first line represents the Metric network (radius 0.05), the second
the topological network (k=6) and the third is the Voronoi network. Same number of
random seeds (26), N=10 infected initially, p=0.1 for transition I to S, averaging over
the last 100 time-steps (over 5000 steps). In the left to the write we just show a zoom-in
of the right.

We also include one example of the above plots in the log-x scale to compare with
Fig.42.
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Figure 45: This is Fig.44 in log-x scale.

Let us comment these results.
First of all we observe that of course, we get a great variance only in correspondence of
the sharp transition.
Moreover, we see that the transition is only continuous now. It is known that typically
the heterogeneities can increase the values of β2 where we have the destruction of the
discontinuous transition increases until when we just have continuous transition [114].
Let us observe that real networks, like the ones we are analysing, are heterogeneous,
with some nodes (hubs) having many connections and others having very few, espe-
cially close to the border. This variability dilutes the effect of clustering because hubs
can act as bridges between otherwise unconnected clusters, destroying in some way the
clustering effect above. In such networks, even when triangle-based contagion is strong,
the influence of hubs ensures a smoother progression of infection, preventing abrupt
changes. Here hubs act as “super-spreaders” ensuring that the infection spreads more
uniformly throughout the network, regardless of local clustering effects. This uniform
spread smooths out the transition, as the infection can propagate effectively even at
lower probabilities, bypassing the need for a critical threshold to activate clustering-
based feedback. The presence of hubs diminishes the abrupt “jump” caused by triangles,
as infection pathways via hubs dominate over localized clustering effects. Even if the
network built with the Poisson disk sampling and the linking algorithms defined are
not very heterogeneous, this effect is still present.

In conclusion, in heterogeneous graphs, the infection does not rely solely on triangle-
based pathways. Instead, it can propagate through multiple mechanisms: direct in-
fection via long-range connections, indirect infection via weakly clustered or loosely
connected parts. This diversity of pathways ensures that the infection spreads in-
crementally, with a smooth increase in prevalence as infection probability rises. The
feedback loop necessary for a discontinuous transition becomes diluted by these alter-
native routes.
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Another factor to consider is that the mean-field approximation is quite crude, making
it reasonable for the results to show discrepancies.
It is worth also noticing that the above results do not tell us whether there are some
cases in which we actually have bi-stability. To see if this was the case the plotted the
density of the stable state in a heatmap.
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Figure 46: Density of stable state for the Metric network with N=10, 200, 800 initial
infected.

The results are consistent also for the other two networks. We can then conclude
that we do not have bi-stability.

7.5 Conclusions:

We conclude this section by reiterating that these results clearly demonstrate the deep
interconnection between social contagion behaviour and spatial organization within
animal collectives. The scope of conducting this Mean-Field analysis was to understand
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just how important the actual topology of the network was in determining the dynamics.
It turns out to be fundamental. The outcome of the contagion process is deeply modified
by assuming that all nodes are, in terms of degree and number of triangles, equivalent.
The heterogeneities destroy the discontinuous transition we observe through the analysis
of the mean field equations; the infection spreads incrementally, propagating through
multiple mechanisms (direct infection via long-range connections, indirect infection via
weakly clustered or loosely connected parts, for example). This naturally leads us
to the introduction of the next section (section 8), where we will analyse even more
heterogeneous cases; we will build more realistic networks using the actual positions of
the fish instead of the approximate we used so far.
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8 Using empirically observed data from Mexico trip:

8.1 Introduction:

In this last section we want to try to link the theoretical model with the real system.
This can be done using the empirically observed data. In the second half of May 2024,
during the local dry season, we went to Mexico to study the system in its natural
environment. First of all we wanted to understand how much our estimation of the
positions of the fish, through the Poisson disk sampling (we will denote these networks
as Poisson networks), was correct. Then we took photos of the shoals in different po-
sitions and at different times and analysed the underlying network. In this way the
density fluctuations are more reproduced. It is important to note that, as we could
understand from the introduction of the study system above, there are several aspects
that could affect the dimension and the topology of the shoals. Primary, the shoals
are in different positions in the river. Then, and this is really relevant, the presence of
predators of external stimuli in general (as our presence in the field) strongly affect the
behaviour. Sometimes it was evident that they basically escaped from us. Moreover,
there are several other factors as the time of the day and the temperature. For these
reasons it is really important that we develop now, using our field data, a systematic
analysis of the real network in different external conditions (which are not accounted
in the model). From now on we will refer to the empirically observed positions of the
fish as the fish positions. Of course, we can not have the real pathway on interaction
since we do not develop a specific analysis about the mechanism of communication.
However, it is reasonable to assume a Voronoi network as it approximate the visual
network [90]. This network is also quite convenient since it does not depend explicitly
on some parameters, as the metric and the topological networks which depend on the
radius the first and on the number k the latter.

An example of an annotated image is shown in Fig.47, where the heads and tails of the
fish are highlighted with red and green dots, respectively. For more details regarding
these annotations see section 8.5.3.

After annotating the positions from frames of the fish in the field we built new network
using the actual positions. Let us note that since our model do not account for the
dimension of the nodes, to build the network we consider only the position of the head
and forget about the actual size of the fish and about the orientation.
As an example, in Fig.48, two networks obtained from different locations are shown,
displaying significantly different densities. Apart from the links, which are now set via
metric rule, what is evident is that the node-positions are really different with respect to
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Figure 47: Example of annotated image. The red dot are the heads of the fish, the
green dot the tails.

the network we were using until now. We indeed observe graphs that are far less homo-
geneous, featuring highly clustered regions (hubs) adjacent to sparsely connected areas,
with even isolated, disconnected nodes. This structural heterogeneity will undoubtedly
have a significant impact on the dynamics.
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Figure 48: Example of images from the field (left) and the corresponding networks
constructed via metric rule (right). There are 704 and 791 fish, respectively.
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8.2 Network characterization:

To characterize the network built with the fish positions, we use the same measures
introduced in first part of the thesis for the Poisson networks. Let us first visualize how
different the network structures here is by changing the linking algorithm.

Figure 49: Example of KNN, metric and Voronoi networks built on the same network
structure from empirical data.

Here, this difference becomes more pronounced compared to homogeneous networks,
particularly in the case of the metric network.
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The main measures of interest, given the definition of the dynamics, are [62]:

• the degree distribution;

• the clustering coefficient;

• the distribution of the number of triangles.

Let us show what these distributions look like, then we will analyse a bit deeper the
comparison with the Poisson network.
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Figure 50: Degree distribution (first line), clustering coefficient (second line), triangles
(third line), for two empirically built positions (on the left and on the right). For both
we show the results for the three linking algorithms.

Although the two networks discussed above are quite distinct, their distributions
exhibit a similar overall shape. Notably, the metric network differs significantly from
both the Voronoi and knn networks, particularly in the distribution of the number of
triangles.
To deepen this analysis, we directly compare the number of triangles in these networks
with the distributions observed in the approximated Poisson networks examined earlier
in this thesis. This comparison proves highly valuable for understanding the dynamics,
especially in evaluating how the measure of susceptibility differs when applied to fish
position networks.
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Figure 51: These plots represent the number of triangles for the network with the
estimated positions with Poisson sampling and for the empirically observed network
with same number of nodes. The above plots correspond to the Voronoi network while
below they correspond to the metric network. Note the different scales for Voronoi
compared to metric. Note that the width of the lines does not have a meaning.

It is evident that in both cases, and this is drastic in the case of metric network, the
distributions related to the fish positions are less peaked. In the metric network we see
that there exist nodes involved in even 100 triangles, compared to the Poisson network
distribution that goes to zero after 20 triangles.
Homogeneous structures, being more regular, tend to have the same number of triangles
(then very peaked distributions). On the opposite, in empirical networks we have both
highly connected nodes (hubs) and peripheral or sparsely connected nodes that are
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less likely to participate in triangles, leading to a wider distribution. This feature is
expected to have significant implications for the study of the dynamics. Specifically,
we will find that the final outcome is largely independent of the quadratic contagion
mechanism. This can be partially attributed to the heterogeneous nature of the graph.
Such heterogeneity creates structural challenges that hinder the spread of the epidemic.
To characterize the degree of heterogeneity we computed the variance of the degree
distribution, denoted as V ar(k).

V ar(k) = ïk2ð − ïkð2

We report some numerical values for graphs with same number of nodes built on the
estimated network, denoted as Poisson network, and with empirical positions, called
the empirical network.

Linking algorithm Poisson network: Empirical network:
Voronoi: 0.91 1.49
KNN: 0.5 0.98
metric: 1.7 13.75

Table 1: Table of the values of variance for the three linking algorithms for both the
Poisson network and the empirical network.

Comparing this results with an homogeneous network, as the hexagonal lattice
(0.06), it is quite evident how these two networks are heterogeneous. Values bigger
than 1 means that there are a few highly connected nodes (hubs) and many nodes with
lower degrees. This is common in real-world networks like social networks, the internet,
or biological networks, where a small number of nodes (hubs) dominate the connections,
and most nodes have a much lower degree.
Finally it is interesting to observe the change in shape of the nearest neighbour distri-
bution (Fig.52). This indicates that the assumption of removing positional noise in the
positioning algorithm, though reasonable, results in a significantly altered distribution.
However, when accounting for the presence of noise, the distribution becomes notably
more symmetrical, aligning better with expected patterns.

80



0.00 0.01 0.02 0.03 0.04 0.05
NND

0

25

50

75

100

125

150

175

200

Co
un

t

0.00 0.01 0.02 0.03 0.04 0.05
NND

0

25

50

75

100

125

150

175

200

Co
un

t
0.00 0.01 0.02 0.03 0.04 0.05

NND

0

25

50

75

100

125

150

175

200

Co
un

t

Figure 52: Nearest-neighbour distribution for the Poisson network without positional
noise, with the normally distributed noise to the individual coordinates (standard de-
viation: 0.01) and the network using the fish positions.

8.3 Dynamics of the SIR model:

As outlined in the Percolation section (section 6.1), we define an SIR dynamics incorpo-
rating a quadratic contagion mechanism, which accounts for higher-order interactions.
The objective is to estimate the escape wave size, corresponding to the extent of the
contagion phenomenon or the number of final recovered nodes. Analysing this system
by varying model parameters reveals behaviour akin to a percolation transition, distin-
guishing between parameter regimes where the contagion remains localized and those
where it propagates across the entire network.
Of particular interest is the system’s ability to discriminate between noise and signal,
where noise is characterized as a single random fish diving alone, and signal as two
neighbouring fish diving together. This distinction enables the definition of a suscep-
tibility measure, calculated as the difference in response between these two scenarios.
The “critical” parameter values can then be identified as those that maximize suscepti-
bility, highlighting the system’s optimal sensitivity to distinguishing noise from signal.
Instead of repeating the whole analysis as in 6.1 let us analyse specifically only the sus-
ceptibility measure. In Fig.53 we compare directly the result we got with the Poisson
network and the new susceptibility we obtain with the fish positions.
The region of “critical” parameters undergoes a noticeable shift. While in the first

plot we observe a strong dependence on α2, the quadratic contagion parameter, this
influence vanishes in the case of the empirical network. In this latter scenario, the
critical region is determined almost exclusively by the contagion via links (α1), with
the maximum values of susceptibility occurring even at small values of α2. This high-
lights how the structural characteristics of the empirical network significantly alter the
system’s dynamics. The presence of such a degree of heterogeneity greatly influences
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Figure 53: Susceptibility heatmap for a Voronoi network built with the estimated po-
sitions with the Poisson sampling and with the fish positions.

the dynamics, implying the existence of various pathways for the infection to spread:
direct infection via long-range connections and indirect infection via weakly clustered
or loosely connected regions. In this context, the model of quadratic contagion loses its
relevance and only the rate of contagion via pairwise interactions affects the suscepti-
bility.
From Fig.53 we can extract the values of the alpha’s that maximizes the susceptibil-
ity and analyse the sub-critical, critical and super-critical cases. We are then mainly
interested in the region of parameters indicated by the red square in the following image:

Figure 54: Susceptibility measure for network with empirically observed positions. The
red square evidence the region where this measure maximizes. The points correspond
to the values we will analyse. In particular we will consider 3 possible values of α2 (0.1,
0.4, 0.8) and for each of them 6 possible values of α1 (0.05, 0.1, 0.2, 0.25, 0.3, 0.45).

The blue, yellow and green dots correspond to the combinations of parameters we
will consider. In particular, we will classify as sub-critical the first two values of α1
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for all three values of α2, critical the three central values and finally as super-critical
the last point. Even if this last point does not seem really supercritical, it is evident
from the plot of the fraction of recovered nodes that it already represents the upper
bound of the dynamics. For this reason, we will not analyse any larger values. We want
to study the response of the system by varying the external stimulus, which is simply
represented by the number of initially infected nodes. After the activation of them,
indeed, the contagion can diffuse in the network and the way it does it depends on the
infection rate, of course, and on the network topology.
Let us show the fraction of final recovered nodes, which can be denoted as ïRð.
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Figure 55: Voronoi network built with fish positions. Estimation of final number of
recovered for some values of α1 and α2 as explained above and varying the number of
initially infected nodes from 0 to 300.

We note a clear change of behaviour. The sub-critical lines are almost linear, the
critical lines have a pronounced increase followed by a plateau and the super-critical
line is almost flat. However, the dependence with respect to α2 is almost absent. We
see that all the curves are just a little bit steeper.
These results will be compared to the empirical results (section 8.5).
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8.4 Mean-Field analysis:

Similarly with what we did for the networks with the estimated positions (section 7),
we can perform the mean-field approximation of the SIS model under the triadic closure
approximation. This analysis was motivated by the willing of acquiring more informa-
tion about the network and specifically the role of the heterogeneities for the dynamics.
Indeed, this approximation consists in assuming each agent of the network as equivalent
in terms of degree and number of triangles. We find here comparable results as before,
specifically:

1. The appearance of the discontinuous transition for increasing β2, then the non
linearity, in the solution of the mean field equations;

2. The presence of only continuous transitions from the simulation of the model.
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Figure 56: Voronoi network built with real positions. comparison of the estimated
transition via mean field analysis and the results of the model.

The first point is justified by the fact that the high average number of triangles and
then an high clustering induce a clustering effect for which the infection experiences a
sharp increase in correspondence of a threshold value for β2 and then system abruptly
change. For this reason we observe the appearance of a discontinuous transition (for
more detailed explanation see section 7).
The second point, instead, is once a way, due to the heterogeneities of the network.
This variability implies the presence of multiple channels of infection. We could have for
example some long range connections or some indirected infection via weakly clustered
parts connected to highly clustered hubs.
The topology plays a crucial role in determining the outcome of the contagion process,
and as such, the mean-field (MF) approximation proves to be too simplistic to capture
its full complexity.
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8.5 The hexnut experiment:

We present here one of the experiments we conducted in Mexico in May 2024. We
defined a easily reproducible experiment which main goal was the analysis of the escape
wave. It is not easy in the field to account for all possible side-effects of an experiment
in the same way as it is impossible in a model to account for all possible variables that
play a role. In order to have more statistics we analysed different shoals in different
parts of the river in different moments of the days with two filming sessions per day for
2 weeks.

8.5.1 Scope:

The scope of this experiment was to analyse the response of the fish to external artificial
stimuli. Of course, it is now important to distinguish the 2 different mechanisms that
could lead a fish to dive. The first one is the direct stimulation from the external, as
the attack of a predator or some external stimuli. The second one is the behavioural
contagion, the one modelled with the complex contagion mechanism. These two are
difficult to disentangle, we can not really know if a fish “felt” the dangerous or if it is
just copying the behaviour of its neighbours. However, as we will see, we are able in this
specific setting to have an estimation of the fraction of individuals that immediately
react after an external perturbation and of the fraction of fish involved in the whole
escape wave. In the prospective of analysing the escape wave we filmed the reaction
of the shoals when stimulated with an increasing the size of the stimulus, which now
corresponds with objects of increasing weight.

8.5.2 Set-up:

We set a stick on the riverside from which a string was tied up (see Fig.57). The
string terminated in the water, where it was anchored to the river floor. In this way
we had a constant angle between the string and the water. This set-up allowed us to
drop into water hexnuts of increasing weight which correspond to stimuli of increasing
strength. Then with time intervals dependent on the weight of the stimulus (to ensure
the system to come back to the “normal state”, then when repeated wave behaviour
was finished) we stimulated the shoals and film the response. The stimuli were typically
randomized and are all of different sizes and we can assume that each of them does
not imply a visual stimulation of the shoal, compared to the typical size of the bird
predators. Probably the external stimulus mainly affect the lateral line organ (LLO) for
the first responding fish. We analysed three different locations along the river, which
are denoted as: Small Bridge, BigPoolOutlet, Banana Bay. The river was filmed by
two cameras (Sony FDR-AX53 and Canon XF-200 ) one with a close-up on where the
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Figure 57: Scheme of the experiment. From the river bank we set the stick from which
a string was kept in tension into the water with a fixed angle. From the opposite side
of the bank there were two cameras used to record their reaction in response to the
external stimulation.

string entered the water, to have a recording of the local density and to estimate the
kinetic energy of the hexnuts when approaching the water, and the other for the whole
shoal, to analyse the waves. A list of the different stimuli and the time interval to wait
after each of them:

stimulus type weight: time interval:
1 0.3 g 2 min
1+1 0.6 g 2 min
2 0.8 g 2 min
3 1.1 g 2 min
4 1.2 g 2 min
4D 1.3 g 2 min
2+2 1.6 g 2 min
3+3 2.2 g 2 min
5 2.9 g 3 min
5+2 3.7 g 4 min
6 4.2 g 3 min
4x4D 5.2 g 3 min
7 6.5 g 4 min
6+6 8.4 g 4 min
7+5 9.4 g 4 min
8 12.8 g 4 min
9 31.3 g 4 min
10 49.0 g 4 min

Table 2: Table of the different stimuli we used in the experiment and the corresponding
waiting times.
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8.5.3 Analysis:

Thanks to an annotation tool implemented by Yunus Sevinchan, member of the research
group, it is possible to analyse in a systematic way the response. FishWaveAnalysis
(see Link to the Zenodo page ) is a Python-based toolkit for the quantitative analysis
of so-called “fish waves”; to annotate and process video recordings made in the field
and subsequently extract quantitative observables of the waving behaviour.
We manually marked the coordinates of fish positions in the shoal and then the escape
wave shapes. Using a calibration object of known size and a perspective transforma-
tion we were obtain to obtain a 2D top-down view of the shoal, where a quantitative
geometric analysis becomes possible. To see how it works, see Fig.58.

Figure 58: Screenshots from the annotation tool. In all images the yellow curve repre-
sents the final size of the escape wave. The small yellow circle is the impact point. In
the first image the hexnut is approaching the water, showing no waves, the second is
taken after the impact, showing the wave expanding.

Let us observe that the escape wave area is a sort of integration over time, in the
sense that we do not have the whole area active simultaneously but rather an initial
small region around the hexnut which propagates outwards.

What we can immediately visualize from the above experiment is the area of the waves,
depending on the stimulus strength which is quantified by the kinetic energy of the
hexnut approaching the water (Fig.59).
Of course we could repeat this plot by associating the different colours to different days,
moments of the day for example, or find some other criteria. However, this would not
be useful. There are so many observables we could account for and it is really impossi-
ble to disentangle all possible effects, like the relation between the time of the day and
the location, which could be more/less exposed to the sun. This goes far beyond our
analysis of the system.
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Figure 59: The plot above represent the empirical data of the hexnut experiment; they
represent the area of diving fish with respect to impact kinetic energy. The second plot
has a log-x scale. The different colours represent different locations along the river,
namely: SmallBridge, BigPoolOutlet, BananaBay.

What we observe from these plots is that the escape wave area increases steeply with
the external stimulus for low energies (below 0.1J) and then appears to plateau or ex-
hibit a slower rate of increase. However, it is not entirely clear how this impact energy
translates into a stimulus perceived by the animals. The pressure wave becomes com-
plicated when looked at it in detail but as a first approximation, a behaviour of the
pressure scaling with 1/r2 is something reasonable to assume.
Even fish that do not react directly, would feel some shock wave, which may prime them.
This type of stimulus is not encoded in the actual model so to gain deeper insights, we
need quantities that are more directly comparable with the underlying model.
To this purpose, we analysed the first response area, which is defined as the area di-
rectly reacting to the external stimulus. We arbitrarily (heuristically) chose to analyse
the size of the wave at 3 frames after impact (120 ± 20 ms). To understand this choice
let us consider some frames (Fig.60).
In frame 2, 3 and 4, some very clear, small, individual splashes. It is even possible to
see the light-coloured belly of the fish. In the later frames, ripples overlap, forming
some kind of waving front. After four frames the social response sets in. As observed
in section 3, the timescale of reaction is typically 5-20 ms for LLO, 120 ms circa for
visual. It is therefore reasonable to assume that, 120 ms after the hexnut approaches
the water, the only fish diving are those directly frightened by it.
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Figure 60: Frames from annotation tool.

Coming back to the analysis, let us show the plot of the escape wave from the
empirical data and the related plot from the model analysis.

Figure 61: This plot represents the Escape wave area (y) with respect to the first
response area (x). The different colours represent the impact energy of the hexnut.

This type of analysis is more related to Fig.55 where we analysed the fraction of
recovered nodes by increasing the number of initially infected nodes. Specifically to have
an even more clear correspondence between these two levels of analysis we could consider
from the model point of view the fraction of recovered nodes by varying the fraction of
initially infected nodes, from the empirical analysis the normalized area of the escape
wave (with respect to the maximum area, which we can assume to correspond to the
size of the shoal), as function of the normalized first response area (same normalization
as before). Let us show these plots and then discuss the comparison (Fig,62, Fig.63).
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Figure 62: These plots represent (in lin-x scale and log-x scale) the fraction of recovered
nodes w.r.t. the fraction of initially infected nodes. The value of α2 is fixed equal to
0.4, while the different colours represent the values of α1.

Figure 63: These plots represent (in lin-x scale and log-x scale) the escape wave area
w.r.t. the fast response area. The different colours represent the impact energy of the
hexnut.

By analysing the non-logarithmic plot in Fig.63, it becomes clear that the empirical
data exhibits an increase that lacks the characteristic steepness observed in Fig.62 for
high values of α1, particularly in the critical and super-critical cases. Furthermore, the
data does not show the subsequent plateau, characteristic of green and red curves in
Fig.62. Moreover, the log plot shows a qualitative correspondence only with the sub-
critical case, where both plots feature an initial plateau, which can be interpreted as an
activation threshold. Then, the biological system seems to be described by the model
in the sub-critical regime.
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As previously mentioned in section 6.1, this analysis alone does not allow us to draw
strong conclusions about the applicability of the criticality hypothesis to this system.
However, given arbitrary definition of the susceptibility we have given, we can only
conclude that, within the specific parameter region and for that particular definition of
susceptibility, the model can be defined critical. If we are able to show that the model
is well-suited in describing the empirical observations and that the biological system
shows some evidences of being at criticality (like the fact that the main properties are
described by power-laws, as observed by Gomez et al., [46]), then this analysis would
be meaningful.
With these results, however, we do not find it to be critical but rather sub-critical.

In conclusion, another interesting observable is the shape of the waves (Fig.64). As
we will discuss in (section 9), this feature is not completely represented in the model.
In particular, if the escape wave has typically an approximately-circular shape, similar
to what we obtain in the model, the repeated waves will have much different forms.
The shape of the wave depends on the shape of shoal, which is clearly modelled by the
riverbank, presence of obstacles, the current and other external factors.
Here we show all the escape waves for different filming sessions; the colours are related
to the kinetic impact energy, so to the stimulus strength.

Figure 64: Shapes of the waves. The first plot represent all annotated waves shifting
the location where the hexnut approaches the water to the origin for all. The second
plot contains all the first-response waves. The colour-bar indicates the corresponding
energies.
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Figure 65: Same as above but for just one recording (recid3-18-01w.MP4). Note that
the colour range is different.

8.6 Conclusions:

This section of thesis allows to understand how complex the analysis of this biological
system really is. The introduction of the positions of the fish, which of course affects
the topology but it is only one of the competing factors in shaping the dynamics,
turned out to have a crucial role. In particular, the quadratic contagion mechanism,
which was suggested to be a possible way to discriminate between signal and noise,
has no more (or little) influence. The role of the linking is crucial. Moreover, with
the hexnut experiment section 8.5, we aimed tested the response of the shoals. By
varying the external stimulus, we estimated fraction of them reacting via the analysis
of videos. This is then qualitatively compared to the model, which allows to predict
exactly the same result. It seems that only in the ”sub-critical” regime, the model is
able to reproduce this behaviour.
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9 Discussion:

We now want to revisit some of the key concepts explored throughout this thesis, and
reflect on the underlying motivation that has driven our research. By summarizing the
central themes and objectives, we can better appreciate how the various components of
the study connect and contribute to a deeper understanding of the study system.

We started with the broad observation that social contagion behaviour within animal
groups is closely linked to their spatial organization. While interactions within these
collectives occur primarily on a local scale, the group as a whole exhibits emergent
patterns of self-organization [82].
With this framework in mind, we focused on a predator-prey system, involving large fish
shoals of sulphur mollies. These shoals inhabit a freshwater environment characterized
by high temperatures and low oxygen levels [22]. These conditions force them to stay
near the surface for aquatic respiration [70], making them more visible and thus vul-
nerable to fish-eating birds. As a defence mechanism, the shoals exhibit synchronized
and repeated dives [8], generating waves on the water surface. Notably, this diving
behaviour appears to act as a form of information transmission within the group. The
spatio-temporal characteristics of these waves can be mapped onto a network contagion
model, offering a valuable framework for analysing the dynamics of such collective be-
haviours.

To describe this system, we defined a spatially embedded network model with three
potential linking algorithms (section 4.2): the metric, the Voronoi, and the topological
network. Each of these algorithms successfully captures certain key properties of col-
lective biological systems like the one we are analysing, but it remains unclear which
gives the most accurate representation. It is possible, for instance, that the more suited
network is a hybrid of these models. Moreover, particularly when the empirical posi-
tions of the fish are used, the metric linking can overestimate connections in certain
areas due to the significant spatial variability in density.
Another possible description could be given by considering only the visual interaction,
which can be studied systematically from the experiments [90]. This would give a more
accurate linking, but as we know, sight is not the only mechanism of interaction.
The positions are initially estimated via a Poisson disk sampling which was designed
to obtain uniformly spaced nodes, with the density value obtained empirically from the
biological system. This approach generates a spatially homogeneous - which does not
correctly reproduce density fluctuations - but irregular graph.
In the latter part of the thesis, where we compared the model to the empirical data
(section 8), we focused on the Voronoi network, as it has been shown to closely resemble
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the visual network of the fish [90]. Let us note that, while positions are central to shap-
ing the dynamics, what truly makes a difference is the linking - a factor incorporated
in the model and that we will never be able to observe directly.
Additionally, we assumed the interaction network to be static: neither the positions of
the nodes, nor the links between them, change over time. This assumption is based on
the idea that individual fish within the shoal are interchangeable, and that the macro-
scopic structure of the shoal remains relatively constant, even though individual fish
may change their positions within the group. We implicitly assumed that the time scale
at which the network changes is much lower than that at which contagion occurs. One
natural evolution of this approach would be to track the positions over time, creating a
dynamic network. This is extremely challenging, if not impossible, with empirical data,
but can be done with simulations. Alternatively, another way to improve the model
would be to incorporate an adaptive network, as is done, for example, in modelling
neuronal processing networks [116].
Finally, a potential extension of the model involves implementing a weighted network,
as discussed in section 4.3. For instance, Rosenthal et al. [82] computed the planar
representation of each fish’s visual field, uncovering the visual information accessible
to each individual. By identifying the initiator and first responder of a startle event,
they examined social contagion dynamics, analysing how sensory input translates into
motor responses (evasion) and identifying the social cues that drive decision-making
in this behavioural context. This approach enabled them to calculate the probabil-
ity of a behavioural response by individual i when individual j exhibited behavioural
change. These probabilities could be introduced as weights in the network, adding an
empirical layer to the model that could significantly influence the dynamics, particu-
larly in real-world networks where sparsely connected zones might result in longer links.

The dynamics we defined are based on a quadratic SIR contagion model applied to
our spatially embedded, static network (section 5). Two analyses were developed: the
study of the percolation transition (section 6.1) and the mean-field analysis (section 7).
Regarding the latter, it is clear that the approximation of treating all individuals as
identical agents is quite rough. This approach could be improved: by introducing an
individual-based mean-field framework [16], we would achieve a better characterization
of the network’s final state. With this approach, the local topology of the network is
taken into account.
The choice of SIR dynamics was primarily driven by our goal of studying the escape
wave, which is the initial wave observed following the external stimulation of the sys-
tem. Moreover, to capture a more realistic social contagion dynamic that includes
reinforcement mechanisms, we incorporated a quadratic contagion mechanism in which
contagion spreads both via links and through triangles, each with distinct rates.
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That said, other modelling alternatives are also possible and may be better suited for
describing certain aspects of the system. One such alternative is a drift-diffusion model
[115]. In this approach, the system is defined by a three-state dynamics on a spa-
tially embedded network, similar to our model, but with different state transition rules.
Specifically, each node is associated with an excitatory variable that increases as a result
of social interactions, generating a drift term. Once the excitation exceeds a certain
threshold, the node changes state. This model is likely to align more closely with the
biological system under study, as it offers a more individual-based perspective on the
dynamics; however, it introduces a greater number of variables, which could complicate
the analysis and make it more challenging to explore all possible combinations of these
variables.
One important aspect to consider when justifying the choice of the model is that, ex-
cept for some general information - such as typical densities and a few pre-annotated
networks - the empirical data for this system only became available towards the end of
this thesis. Initially, it was not anticipated that such data would be accessible, and thus
the model was not designed to be directly data-driven. Instead, it was primarily an
abstract, theoretical framework, which was only later compared to the available empir-
ical data. Thus, the initial focus of this project was the analysis and exploration of the
model itself, with a relatively distant connection to the specific biological system under
investigation. This allowed us to work in a more controlled and simplified manner,
without being constrained by the complexities of empirically measured data.

The comparison between the model and the biological system revealed that some as-
pects of real-world dynamics cannot be fully captured by the chosen model mechanisms.
One notable discrepancy is the geometry of the waves. In the model, the escape waves
are essentially circular in shape. This is due to the assumptions of an undirected in-
teraction network and point-like agents, which do not account for agent orientation or
possible asymmetric interactions, and also due to the fact that we typically assume
the stimulus to be in the centre. In contrast, in the natural environment, waves of-
ten exhibit a variety of shapes, depending on the specific configuration of the shoal.
However, it is worth noting that when focusing specifically on the escape wave, like in
the case of our study, its shape approximates a circular pattern, as can be observed
by inspecting the x-y shapes in Fig.64. This could suggest that, in shaping the escape
wave, the polarization plays a marginal role. As a consequence, seeing as the visual
interaction strongly depends on the orientation of the individuals, it can not be the
only mechanism to consider when building the networks. It is worth noticing however,
that using the empirical positions sometimes causes the waves to have highly irregu-
lar and non-circular shapes, even when the stimulus is applied at the centre (see Fig.66).
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Figure 66: Final state of the network in case of Voronoi and metric network built
on the same fish positions; blue indicates recovered nodes, while the green indicates
susceptible nodes. In both cases, we started with only 4 individuals infected at the
centre.

Another important limitation of the model concerns the size of the shoals. Our
analysis was conducted on a small subset of the shoal, which may not fully represent
the characteristics of a larger, more complex group. Shoals in nature are typically much
larger, and it is often difficult to precisely define the boundaries of a single shoal, as
more of them can exist in close proximity and even overlap. The physical boundary for
the shoals is the river itself, and thus their shape is usually elongated along the river-
bank. This elongated configuration is not accounted for in our model, which assumes a
more abstract, simplified representation of the shoal. This limitation should be taken
into account when interpreting the model’s results in relation to the biological system.
Despite all these observations and the simple assumptions we made in the model, we
showed that a spatial interaction model can qualitatively reproduce some features of
this complex biological system, and we demonstrated that the network topology plays
a critical role in shaping its dynamics.

Certainly, there are several possible refinements we could introduce to the model. For
example, one important direction for future work would be to extend the model to
capture the dynamics of repeated waves. While the escape wave serves as an important
starting point for understanding the collective behaviour of the fish shoals, focusing
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solely on this initial wave represents a limitation of the current study. The repeated
wave behaviour, which is crucial for the survival of these shoals, must be incorporated
to provide a more comprehensive view of the system’s dynamics. These waves are con-
sidered in other works on the same biological system [115, 46]. By considering these
successive waves, we would be able to better model the ongoing, adaptive nature of the
shoals’ responses to external threats, which is essential for understanding the long-term
survival strategies of the fish.

Another important aspect is the depth of the diving: thanks to some underwater film-
ing, we noticed this could be a key parameter in allowing the fish to distinguish between
signal and noise. In a field survey, Lukas et al. [95] showed that fish dive deeper, faster,
and for longer periods of time when both visual and mechano-acoustic cues stimuli are
available simultaneously. To incorporate this additional feature we could, for example,
distinguish between two levels of infection, if we wanted to keep our model as it is.
This point is also relevant to another factor: the waves are spatially limited. Each
time the shoal is stimulated, a reaction of varying intensity is observed. However, only
for very strong stimuli—such as predator attacks—do all the fish perform a diving re-
sponse. What determines the criterion at which the fish stop diving, causing the wave
to halt? A decisive factor could lie in the dynamics of the diving behaviour itself, such
as its speed and depth. It is worth noting that, despite not explicitly incorporating
this type of characterization, the model successfully reproduces the finite nature of the
contagion waves.

Finally, another significant aspect that could be integrated into the model is the con-
sideration of fish orientation and the polarization of the shoals. As mentioned in the
introduction, one of the key features of collective animal behaviour, particularly in the
study of biological collectives as critical systems, is flocking—where individuals within
a group align their movements and form orientational order. This emergent order plays
a critical role in the dynamics of the collective, as it allows for coordinated responses
and efficient movement. In the case of sulphur mollies, the orientation of individual
fish within the shoal is likely influenced by external factors, such as the flow of water in
their environment. Given that these fish live in a river, where there is a constant flow in
one direction, it is plausible that they tend to align themselves with the current. This
alignment could significantly affect the way the shoal reacts to stimuli and performs
collective actions, such as diving. Investigating how this alignment and polarization
evolve before and after a diving event would offer valuable insights into the dynamics
of the shoal. It would also allow for a better understanding of the potential link be-
tween the spatial configuration of the fish and the overall collective response to external
threats. By incorporating these elements into the model, we would be able to explore
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how orientational order influences the system’s behaviour and how it changes over time
in response to environmental conditions or behavioural cues from other members of the
shoal. This would help bridge the gap between the simplified model used in the current
study and a more realistic representation of the biological system.
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10 Conclusions:

Let us now summarize the key steps of our work. The first step in our analysis, af-
ter having understood the relevant aspects of the biological system, was to define the
model. We implemented SIR contagion dynamics on a spatially embedded network.
After defining this general framework, we investigated the percolation transition (sec-
tion 6.1) - essentially, the conditions (in terms of dynamics parameters and network)
under which contagion can spread throughout the entire network. This allowed us to
identify a measure of susceptibility by examining the difference between noise detection
(just one fish diving) and coincidence detection (two connected fish diving). Even if
the spontaneous startling is probable, it is infrequent. Then it is reasonable to assume
that two spontaneous startles occur in case of true danger.
By comparing these two cases, we were able to gain deeper insight into the contagion
mechanisms at play. Specifically, this analysis helped us highlight the significance of the
quadratic contagion mechanism, which operates via both links and triangles within the
network. We showed that this quadratic contagion mechanism plays a crucial role in
determining the final outcome of the network’s response and could be a key mechanism
in the discrimination ability of the agents between actual signal and noise.
Moreover, by systematically varying the parameters, we were able to pinpoint the con-
ditions that maximize the susceptibility measure, shedding light on the factors that
influence the spread of contagion within the system. These findings provided valuable
insights into the dynamics of collective behaviour, especially in the context of how
network structure and contagion mechanisms interact to shape the overall dynamics.
Ultimately, our work demonstrates the importance of these interactions in the study
of collective systems and lays the groundwork for further investigation into the factors
that drive contagion processes in spatially embedded networks.
Linking this analysis to the biological system, the goal was to study the escape wave,
the first wave after any attack, which can be described in terms of “diving” area, and
may be compared to the size of the entire shoal to estimate the fraction of diving indi-
viduals. The analysis of the size of the epidemic as a percolation process allows us to
obtain a directly comparable measure from the model.

By delving deeper into the role of the spatial network, we employed a mean-field anal-
ysis (section 7) by assuming that each agent is included in the same number of links
and triangles, which were fixed to be equal to the corresponding averages of the net-
work. We also introduced the triadic approximation as a closure for the equations. This
analysis allowed us to uncover the critical role that local heterogeneities in interactions
play in the system’s overall responsiveness to external stimuli. The results showed that
the mean-field is not able to describe the system under study. Indeed, while in the
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mean-field description we observe the appearance of a discontinuous transition for large
values of the quadratic contagion (thus the non-linearity), this is not present in the
analysis of the model, which shows only continuous transition. This emphasizes once
more the importance of accounting for spatial structure when studying the dynamics
of collective systems.

Finally we introduced some empirical data (section 8). Firstly, the detected posi-
tions of the fish, which allowed us to build new networks and repeat the same analysis
(percolation and mean-field) on these new structures. The comparison between the
Poisson-sampled network (which represents a more uniform structure) and the real
empirical network (which reflects the observed spatial heterogeneities) highlighted sub-
stantial differences in the way contagion spreads through the system. In particular, the
empirical network, with its inherent local clustering and spatially structured interac-
tions, exhibited a more nuanced response to external stimuli, compared to the more
homogeneous network generated via Poisson sampling. This revealed that the spatial
distribution of links—such as the clustering of interactions or the presence of isolated
regions—can profoundly alter the dynamics of contagion processes, making the study of
systems with explicit spatial embedding crucial for accurately capturing the behaviour
of said processes.
Furthermore, our findings suggest that these local heterogeneities—whether in the form
of tightly-knit clusters or sparsely connected regions—play a key role in determining
the effectiveness of contagion transmission and the overall resilience of the network to
disruptions. This underscores the importance of not only considering the global net-
work structure, but also paying close attention to the localized interactions within the
system. In conclusion, our analysis demonstrates that explicit spatial modelling is es-
sential for a more realistic and detailed understanding of the dynamics which govern
complex, spatially embedded systems, such as those observed in collective animal be-
haviour.

During field studies on the sulphur molly system, carried out during the local dry
season in May 2024, we also set up an experiment whose goal was to test the response
of the system under external stimulations of increasing strength. We called it the hexnut
experiment (section 8.5) since the stimuli of increasing strength correspond to hexnuts
of increasing weight. Defining an easily reproducible set-up and filming the response
of the shoals at different location and time of day, we were able to estimate the escape
wave area as a function of the strength of the stimulus, which was measured as the final
kinetic energy of the hexnuts. Moreover, it was possible to estimate the first response
area and gain a clear distinction between the fraction of fish reacting to the stimulus,
and the fraction of fish diving due to behavioural contagion.
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To connect these results to the model, we have estimated the final fraction of recovered
nodes as a function of the number of initially infected nodes, which should be compared
to an increasing external stimulus. What we found is that only by considering values of
the infection rates in the so-called sub-critical region the curves are comparable; they
present a linear increase. This observation raises the possibility that our measure of
susceptibility may not be fully accurate or, more fundamentally, that the criticality
hypothesis might not be applicable to this system. Naturally, our model is relatively
simple, and it would be unrealistic to expect it to fully capture the complexity of the
biological system or yield definitive conclusions. Nevertheless, with specific parameter
combinations, the model successfully replicated the qualitative trends observed in the
system. This outcome highlights the potential for further exploration in this direction,
with the aim of refining the model and possibly achieving more quantitatively robust
results.

These findings contribute to advancing our understanding of large animal collectives,
showcasing the power of physics in predicting and explaining the behaviour of biological
systems.
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11 Appendices:

11.1 Square Lattice and Hexagonal Lattice:

We repeat the analysis we did in section 6.1 in two very known and regular structures:
the square lattice and the hexagonal lattice.
A square lattice in 2D consists of nodes arranged in a regular grid pattern, where each
node is connected to its four immediate neighbours and this structure lacks triangular
connections. The absence of triangles simplifies the contagion dynamics, as interactions
are primarily between directly adjacent nodes, reducing the likelihood of clustering ef-
fects that might accelerate contagion. On the other hand, a hexagonal lattice in 2D is
formed by arranging nodes so each has six neighbours, creating a honeycomb pattern.
Like the square lattice, the hexagonal lattice is triangle-free.

Both the square and hexagonal lattices provide valuable insight into how network struc-
ture affects the spread of infection. Due to their lack of triangles, these networks exhibit
no quadratic contagion effects. In such networks, it is also common to observe some
isolated nodes remaining susceptible even after the majority of nodes are infected, high-
lighting their unique contagion-resistance properties. Here we see that these models are
not able to distinguish between N=1 and N=2 and we can not identify a region of pa-
rameters where the susceptibility peaks. I report only the results for the regular lattice,
since the same results are obtained for the hexagonal lattice.
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Figure 67: Results in lattice network with 2500 individuals.

When comparing cases, in the susceptibility measure, we observe that the network
with N=1 often experiences higher infection rates than the one with N=2.

11.2 Susceptibility measure for metric and KNN:

In section 8, I focused exclusively on the Voronoi linking algorithm to avoid making
things too complex. However, it is equally interesting to analyse the other two algo-
rithms, particularly the metric linking, which exhibits markedly different characteristics
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in terms of degree and triangle distributions. In both cases, the results remain consis-
tent with the Voronoi network, showing little to no dependence on α2 However, while
in the Voronoi case susceptibility is maximized at low values of α2, the parameter re-
gion for maximum susceptibility becomes broader for both the metric and alternative
algorithms, leading to an even weaker dependence on the quadratic contagion.

0.0 0.2 0.4 0.6 0.8 1.0
alpha_1

0.0

0.2

0.4

0.6

0.8

1.0

al
ph

a_
2

0.3

0.2

0.1

0.0

0.1

0.2

0.3

di
ff_

re
co

ve
re
d

0.0 0.2 0.4 0.6 0.8 1.0
alpha_1

0.0

0.2

0.4

0.6

0.8

1.0

al
ph

a_
2

0.3

0.2

0.1

0.0

0.1

0.2

0.3

di
ff_

re
co

ve
re
d

Figure 68: Suscpetibility measure for metric (radius 0.05) and knn (k=6) networks built
with fish positions.
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