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Summary

The aim of this thesis is to explore the possibility of observing time-sharing dynamics
in a biological system characterized by a limited resource pool. The interest in this
type of dynamics stems from the idea that competition for limited resources could
promote temporal coordination strategies that optimize resource use, potentially
benefiting protein synthesis and cell growth.

This research is based on the results of two scientific studies: "Coupling between
distant biofilms and emergence of nutrient time-sharing" by Liu et al. [1] and
"Nonmodular oscillator and switch based on RNA decay drive regeneration of
multimodal gene expression" by Nordick et al. [2].

In the first article, it is observed that two Bacillus subtilis bacterial biofilms can
coordinate their behavior through electrical signals and competition for glutamate, a
limited resource. Under limited concentration of nutrient, biofilms alternate in their
consumption of glutamate through a mechanism known as time-sharing, producing
anti-phase oscillations that enable more efficient growth despite competition. This
behavior suggests that temporal coordination in resource use may represent an
adaptive advantage under conditions of limitation.

In the second article, a particular post-transcriptional model is analyzed. The
model describes a set of reactions between mRNA and miRNA, resulting in sustained
oscillations in their concentrations and in the concentrations of their complexes for
specific sets of parameters. This model demonstrates that oscillation dynamics can
emerge even in the absence of explicit feedback loops.

The central hypothesis of this thesis is that, by modifying the post-transcriptional
model to include two independent systems sharing a single pool of ribosomes, it
will be possible to observe dynamics similar to those of the biofilms, with the
emergence of time-sharing. The analogy between ribosome competition and nutrient
competition suggests that temporal coordination could also emerge in this context,
optimizing protein synthesis efficiency.
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Chapter 1

Time-sharing in Biological
Systems

Time-sharing, a strategy often used in resource management, involves the allocation
of a limited resource in alternating intervals to different users, thus maximizing the
efficiency of its use.

This thesis begins by investigating observations reported in the article "Coupling
between distant biofilms and emergence of nutrient time-sharing" [1], which describes
how two bacterial biofilms (Bacillus subtilis) competing for the same nutrient
resource (glutamate) demonstrate time-sharing dynamics under nutrient-limiting
conditions.

In this biological context, biofilms alternate their nutrient uptake, reducing
direct competition and achieving increased growth efficiency through synchronized
intervals of activity and dormancy.

Furthermore, the work by Park et al. "Molecular Time Sharing through Dynamic
Pulsing in Single Cells" [3] describes similar dynamics at the molecular scale, where
regulatory factors manage enzymatic competition through repetitive stochastic
pulses, resulting in efficient time sharing of RNA polymerase (RNAP).

Inspired by these findings, this thesis aims to explore the dynamics of time-
sharing in other biological contexts, examining whether similar principles can be
applied across different scales of biological regulation. In this chapter we will
analyze the two papers mentioned above and identify the common and pivotal
characteristics necessary to have time-sharing of a limiting pool of resources.
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Time-sharing in Biological Systems

1.1 Time-sharing at the population level: cou-
pling between different biofilms

Bacterial communities can engage in complex interactions that coordinate collective
behavior in response to environmental conditions. One such interaction is the
coupling between biofilms, structured communities of bacteria embedded in a
self-produced matrix, which optimizes resource utilization and improves growth
efficiency under limiting conditions.

A striking example of this phenomenon is reported in the article "Coupling
between distant biofilms and the emergence of nutrient time sharing" [1], which
shows that two distant Bacillus subtilis biofilms can synchronize their metabolic
activities through electrical signaling and competition for shared nutrients. The
coupling between biofilms is mediated by potassium ion channels and shared
nutrient demand. Initially, when the concentration of glutamate is high, this leads
to in-phase metabolic oscillations.

However, as the concentration of glutamate is lowered, the biofilms switch from
in-phase to anti-phase oscillations to resolve this competition. Stochastically, one of
the biofilms will halt its growth. This allows the second biofilm to postpone halting
its own growth, thus increasing the phase difference between the biofilms. This
process destabilizes the in-phase dynamics, leading to anti-phase oscillations. This
switch allows each biofilm to take turns consuming nutrients, effectively engaging
in time-sharing. As a result, both biofilms achieve increased growth efficiency
under reduced nutrient conditions. By alternating nutrient uptake, they avoid
direct competition and optimize collective growth. This discovery underscores
the ability of bacterial communities to extend interactions across spatially distant
populations, coordinating to resolve conflicts and enhance survival—similar to
resource allocation strategies in engineered systems.

1.1.1 Experimental Setup

The experimental setup involved growing two distant biofilms in a microfluidic
chamber under controlled conditions. Bacillus subtilis biofilms were cultivated in a
medium with a steady flow of essential nutrients, primarily glutamate as the nitrogen
source. Time-lapse microscopy tracked the growth and metabolic oscillations of
each biofilm, while electrical signaling was monitored using a fluorescent voltage
indicator dye. Mathematical modeling complemented these observations, predicting
how nutrient competition and electrical communication contribute to the dynamics.
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Time-sharing in Biological Systems

Figure 1.1: Figures adapted from [1]. Biofilm Coupling and Nutrient Time-Sharing.
On the Left Panel: This schema illustrates the interaction between two distant
biofilms through both electrical communication (cyan signals) and competition
for nutrients (red arrows). On the Right Panel: Experimental results showing
metabolic oscillations of biofilm pairs under different glutamate concentrations. At
high glutamate concentrations (1x glu, top), biofilms exhibit in-phase oscillations
(phase difference close to 0). At lower glutamate concentrations (0.75x glu, bottom),
biofilms switch to antiphase oscillations (phase difference close to π). Each subpanel
includes a filmstrip depicting membrane-potential oscillations in a representative
biofilm pair (scale bars, 50 µm), corresponding time traces of membrane potential
(color-coded for each biofilm), and scatterplots showing the membrane potential
correlation of biofilm pairs across three experiments (one dot per time point).

1.1.2 Mathematical Model and Simulation Results

The results obtained in the work of [1] were based on direct laboratory observa-
tions. The authors conducted experimental studies to understand the dynamics of
nutrient sharing between two biofilms and observed that these biofilms displayed
distinctive oscillatory behavior in terms of nutrient uptake and growth rates. Fol-
lowing these observations, the authors employed mathematical modeling to validate
the observed behavior, specifically using Kuramoto-like oscillators—mathematical
models typically used to describe synchronization phenomena in coupled oscillatory
systems—to describe the interaction between biofilms.

3



Time-sharing in Biological Systems

dθ1

dt
= ω0 + ∆ω1 + K sin(θ2 − θ1)

dθ2

dt
= ω0 + ∆ω2 + K sin(θ1 − θ2)

dG

dt
= b − C1 − C2 − δG(r1 + r2)G

dr1

dt
= C1 − δrr1

kr + r1
dr2

dt
= C2 − δrr2

kr + r2

(1.1)

where θ1 and θ2 represent the phases of biofilm oscillations, G is the concentration
of available nutrients, r1 and r2 are the growth rates of the biofilms, and K, b,
C1, C2, δG, δr, kr, ω0, and ∆ω are system parameters, which have the following
meanings:

• K represents the maximum coupling strength (related to communication
efficiency between biofilms, which is modulated by glutamate concentration)

• b is the glutamate flow rate

• C1 and C2 are terms related to the glutamate consumption for biomass
production, which saturate with increasing glutamate concentration

• δG represents the glutamate consumption rate for metabolic tasks

• δr is the biomass degradation rate

• kr is the saturation threshold for biomass degradation

• ω0 is the basal intrinsic frequency of biofilm oscillations

• ∆ω represents the maximum glutamate-induced frequency shift, which reflects
how nutrient stress impacts oscillation frequency

We reproduced the mathematical results presented in the article [1]. Figures 1.2
and 1.3 show the plots obtained during the simulations that faithfully reproduce
those of the original article.

4



Time-sharing in Biological Systems

Figure 1.2: Growth rates r1 and r2 for Biofilm 1 and Biofilm 2 in in-phase
dynamics. The curves were obtained by numerically integrating in Python the
system of differential equations (1.1) under conditions of non-limiting glutamate
availability, over a time span of 300 units, with results presented for the last 50
time units.

Figure 1.3: Growth rates r1 and r2 for Biofilm 1 and Biofilm 2 in anti-phase
dynamics. The curves were obtained similarly to Figure 1.2, by numerically
integrating the system of equations (1.1), but under conditions of limiting glutamate
availability.

5



Time-sharing in Biological Systems

Moreover, the authors verified experimentally that anti-phase dynamics represent
a gain for the two biofilms when there is a limited quantity of glutamate available.
This anti-phase behavior allows for effective nutrient time-sharing, where each
biofilm benefits from enhanced nutrient uptake efficiency during the off-phase of the
other biofilm. The following figure provides a graphical and intuitive representation
of the nutrient allocation process and the benefits for the two biofilms.

Figure 1.4: Figure adapted by [1]. Graphical representation of nutrient allocation
and sharing between two biofilms. Antiphase oscillations (time-sharing) allow each
biofilm to take turns accessing the full quantity of supplied nutrients during its
growth phase. In contrast, in-phase oscillations (resource-splitting) only allow half
of the supplied nutrients to each biofilm during its growth phase.

1.2 Time-sharing at molecular level in single cells:
competition for RNA polymerase

The study “Molecular Time Sharing through Dynamic Pulsing in Single Cells” by
Park et al. [3] provides another example that inspired this work, demonstrating
that time-sharing dynamics can occur not only between biofilm communities but
also within individual cells at molecular scales.

To better understand the study, it is first necessary to specify what RNA
polymerase (RNAP) and sigma factors are, and what roles they play. The core
RNA polymerase (RNAP) is an enzyme that synthesizes messenger RNA (mRNA)
from a DNA template, which is a critical part of gene expression. In bacteria,
RNAP needs sigma factors to recognize and bind to specific promoter regions of
DNA, initiating transcription. In essence, RNAP is responsible for the conversion
of genetic information into mRNA, which then serves as the blueprint for protein
synthesis within the cell. Sigma factors are proteins that guide RNAP to specific
sets of genes by binding to promoter regions on the DNA. There are multiple types
of sigma factors, each of them controlling the expression of different genes, which
often help cells adapt to changing conditions, such as nutrient scarcity or stress.
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Sigma factors essentially act as the regulatory subunits of RNAP, determining
which genes are transcribed under various environmental conditions.

Figure 1.5: Figures adapted from [3]. Sigma factors compete for core RNAP,
potentially leading to time-sharing dynamics. Left Panel: The top figure illustrates
how sigma factors could share core RNAP through two modes: molecular sharing
(left), where sigma factors utilize a constant fraction of RNAP over time, and
time-sharing (right), where distinct sigma factors dominate RNAP use for specific
time periods before transitioning to others. In principle, molecular sharing involves
a stable partitioning of RNAP, while time-sharing creates dynamic changes with
periods of dominant sigma factor activity, as shown in Bacillus subtilis. Only
three sigma factor species are depicted for clarity. Right Panel: The figure further
compares molecular sharing (where sigma factors coexist in each cell) and time-
sharing (where individual sigma factors dominate in distinct intervals).

In the case studied in [3], different types of sigma factors in Bacillus subtilis
compete for the core RNA polymerase (RNAP), present in limited amounts, through
time-sharing dynamics. To effectively manage this competition, the sigma factors
are activated in repetitive stochastic pulses, essentially taking turns in a coordinated
manner. This pulsing behavior is a form of time-sharing that allows the cell to
distribute the activity of RNAP across different gene sets over time, rather than
trying to activate all at once. This strategy helps the cell optimize the use
of RNAP while maintaining the flexibility to respond quickly to environmental
signals—especially during times of energy stress.

Using time-lapse fluorescence microscopy, the authors observed the stochastic,
repetitive activation of different sigma factors in real time at the single-cell level.
This experimental approach allowed them to directly visualize the pulsatile behavior
of sigma factors as they competed for the limited RNAP. By tagging each sigma
factor with a specific fluorescent reporter, the researchers could monitor the activity
of each factor over time, providing concrete evidence of the alternating pulses and
their timings. These time-lapse experiments showed that different sigma factors
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rarely activated simultaneously, indicating a temporal separation that helps reduce
competition for RNAP.

1.3 Discussion
Time-sharing appears to be a general principle across multiple levels of biological
regulation, ranging from biofilm communities to individual cells at the intracellular
level. These findings provide context for understanding how dynamic allocation
of limited resources, such as glutamate or RNAP, might optimize biological func-
tions—a central theme of this thesis. Moreover, the two studies discussed above
highlight the key ingredients of time-sharing: (i) the presence of at least two
"oscillators" coupled by a limiting shared resource, and (ii) the fact that their
oscillations are out of phase, or in anti-phase, when the resource is scarse. In
the following chapters, we will discuss how these ingredients can combine at the
post-transcriptional level to allow for efficient time-sharing of a limited pool of
ribosomes, the machineries necessary for protein translation. In this case, the
two oscillators are represented by mRNAs, and the coupling resource is a fixed
pool of ribosomes. By using mathematical modelling, we propose that, in order to
efficiently use a few ribosomes, microRNAs induce mRNA oscillations through the
presence of multiple binding sites on their targets. Before moving to our modelling
strategy, in Chapter 3 we will briefly go over the different stages leading to gene
expression with a focus on microRNA-mediated post-transcriptional regulation.
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Chapter 2

Brief Summary in Gene
Expression and
Post-Transcriptional
Regulation

One of the starting points of this thesis is the work "Nonmodular oscillator and
switch based on RNA decay drive regeneration of multimodal gene expression" by
Nordick et al. [2], which demonstrates the presence of oscillatory dynamics in the
concentration of mRNA, microRNA (miRNA), and their complexes. Such findings
highlight the intricate regulatory mechanisms that govern gene expression at the
post-transcriptional level. Therefore, this chapter begins by reviewing key concepts
related to gene expression and post-transcriptional regulation, focusing on the roles
of miRNAs and ribosomes in regulating protein synthesis. This background is
crucial for understanding the mechanisms that give rise to the oscillatory behaviors
observed in mRNA-miRNA interactions, setting the foundation for the subsequent
analysis in this thesis.

2.1 Gene Expression
Gene expression is a multi-step process that begins with DNA being transcribed into
messenger RNA (mRNA), which is then translated into proteins [4]. The process
involves RNA polymerase synthesizing an RNA strand from a DNA template, after
which the mRNA is modified and transported for translation. During translation,
ribosomes read the mRNA to assemble proteins from amino acids.

Regulatory mechanisms, including post-transcriptional regulation, are crucial
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for ensuring that proteins are synthesized in the right quantities, at the appro-
priate times, and in the correct locations. These regulatory processes influence
mRNA stability, localization, and translation efficiency, often involving small RNA
molecules like miRNAs.

Figure 2.1: DNA to RNA to Protein Flowchart. Figure taken from "Genomics
101: RNA vs DNA - What’s the Difference" by Genomics England.

2.2 Role of miRNAs
MiRNAs are small, non-coding RNA molecules, typically about 20-24 nucleotides
long, that play a vital role in regulating gene expression after transcription has
occurred. Unlike mRNAs, which carry the information needed to make proteins,
miRNAs do not code for proteins themselves. Instead, they act as regulators by
interacting with mRNAs to influence how much protein is made and when.

miRNAs work by binding to specific sequences in target mRNAs, usually in a
region called the 3’ untranslated region (3’ UTR). This binding is often sequence-
specific, meaning that miRNAs are complementary to the target mRNA sequence.
Once a miRNA binds to its target mRNA, it can induce one of two outcomes:
signaling either that the mRNA is degraded or preventing the mRNA from being
translated by ribosomes into protein. In either case, the result is a decrease in the
amount of protein produced from that mRNA [5].

This regulatory activity allows miRNAs to serve as "fine-tuners" of gene expres-
sion, ensuring that protein levels are carefully controlled in response to different
developmental signals or environmental conditions. For instance, during embryonic
development, cells need precise amounts of specific proteins at the right moments.
miRNAs are essential for maintaining these exact levels, often by turning down the
production of proteins that are no longer needed or whose overexpression could be
harmful [6].
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Another key role of miRNAs is in the cellular response to stress. In situations
such as nutrient scarcity, disease, or environmental changes, miRNAs help the cell
quickly adjust its protein production. By targeting mRNAs for degradation or
preventing their translation, miRNAs allow the cell to conserve resources and ensure
that only the most essential proteins are synthesized. This ability to modulate gene
expression makes miRNAs vital players in maintaining cellular homeostasis [5].

Figure 2.2: Figure taken from [7]. Overview of miRNA biogenesis, showing the
steps from transcription of pri-miRNA in the nucleus, processing by Drosha/DGCR8
to pre-miRNA, export to the cytoplasm, and further processing by Dicer into a
mature miRNA duplex. The mature miRNA is then loaded into the RNA-induced
silencing complex (RISC) to regulate gene expression.

2.3 Role of Ribosomes in Translation
Ribosomes are molecular machines responsible for translating mRNA sequences
into functional proteins. They are composed of ribosomal RNA (rRNA) and
proteins, forming two subunits that come together during translation [8]. Ribosomes
move along an mRNA strand, reading its codons and recruiting corresponding
transfer RNAs (tRNAs) to assemble amino acids in the correct sequence to form a
polypeptide chain. In this way, ribosomes are essential for the final step of gene
expression, as they convert the genetic code into the structural and functional
molecules of the cell.

Ribosomes play a key role in gene regulation, particularly concerning resource
allocation within the cell. Since the number of ribosomes in a cell is finite, their
availability can directly influence translation efficiency, especially during times of
increased demand or stress [9]. The availability of ribosomes becomes an important
regulatory point when multiple mRNAs compete for translation, affecting how
efficiently proteins are synthesized.
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Figure 2.3: Structure of the ribosome, depicting the large and small subunits,
which come together to translate mRNA into proteins. The ribosome has three
main tRNA binding sites: the A site (aminoacyl), where new tRNAs bring in amino
acids; the P site (peptidyl), where the growing polypeptide chain is held; and the
E site (exit), where deacylated tRNAs leave the ribosome. The ribosome reads
the mRNA in the 5’ to 3’ direction, coordinating the correct matching of tRNAs
and forming peptide bonds to synthesize the polypeptide chain. Figure taken from
"https://www.geeksforgeeks.org/ribosomes/".

2.3.1 Ribosome Scarcity in Biological Systems

The concentration of ribosomes often becomes limiting under various physiological
and environmental conditions [10, 11, 12]. For instance, during times of cellular
stress, such as nutrient deprivation or exposure to toxins, ribosome synthesis can
be impaired, leading to a reduced pool of available ribosomes. Additionally, rapidly
proliferating cells, such as those found in tumors or during embryonic development,
can experience a shortage of ribosomes due to the high demand for protein synthesis,
which outpaces ribosome production. Such situations highlight the importance
of understanding how cells manage competition for ribosomes, especially under
constrained conditions.

A clear example of the impact of ribosome scarcity can be observed in genetic
engineering contexts, such as in E. coli engineered to produce large amounts of
recombinant proteins like insulin. In these engineered strains, ribosome scarcity
results from the significant metabolic burden of maintaining high-level expression of
non-native genes [13]. Specifically, the engineered E. coli must allocate a substantial
portion of its limited ribosomal pool to synthesize insulin, thereby reducing the
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availability of ribosomes for endogenous protein synthesis. This competition for
ribosomes can severely impair bacterial growth, leading to a reduction in overall
productivity due to slower cell division and increased metabolic stress.

The burden effect exemplifies the broader concept of resource competition,
where the production of target proteins in engineered systems results in a trade-off
between cellular growth and synthetic output. High expression levels of the insulin
gene can overwhelm the host cell’s ribosomal capacity, resulting in the accumulation
of misfolded proteins and activation of stress response pathways. This stress can
further exacerbate ribosome scarcity, triggering a cascade of metabolic costs that
limit both cellular viability and protein yield. Strategies such as using regulated
promoters, optimizing codon usage, and even engineering orthogonal ribosomes have
been developed to mitigate these effects, helping to alleviate the resource burden
and improve the balance between growth and recombinant protein production.

Investigating scenarios of low ribosome concentration helps capture the dynamics
that cells face in these common biological contexts, both in natural and engineered
systems. Such studies could reveal important principles of cellular regulation and
resource allocation, as cells often need to efficiently manage limited resources.
Understanding these dynamics is crucial not only for elucidating fundamental
biological mechanisms but also for optimizing synthetic biology applications, where
efficient resource utilization is key to maximizing productivity.
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Chapter 3

Introduction to the
Post-Transcriptional Gene
Expression Oscillatory
Model

The third chapter of this thesis introduces a post-transcriptional model of gene
expression regulation that exhibits sustained oscillatory behavior under specific
parameter sets. In particular, we demonstrate how miRNAs, which were introduced
in the previous chapter, can generate stable oscillations in their target genes. This
characteristic of miRNAs provides the first essential component for time-sharing: the
presence of oscillators. This model, originally presented in the article "Nonmodular
oscillator and switch based on RNA decay drive regeneration of multimodal gene
expression" by Nordick et al. [2], forms the foundation for the development of the
extended model explored in this thesis. The chapter will outline the structure of
the model and describe the results obtained, establishing a basis for subsequent
analysis and modifications.

3.1 Introduction to the Model
The model describes the regulatory dynamics occurring at the post-transcriptional
level, particularly focusing on interactions between mRNA and miRNA. It involves
an mRNA molecule with two binding sites for miRNA, where each binding site
can independently engage with miRNA, resulting in the formation of two types
of complexes: C1, which involves a single bound miRNA, and C2, where both
binding sites are occupied. The presence of two binding sites is crucial, as it leads
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to sustained oscillatory behavior, which is absent in simpler versions of the model
where only a single binding site is present.

Figure 3.1: Dynamics of the MMI1 Model. (A) Left: Diagram illustrating the
reaction network of the MMI1 model, which includes mRNA (represented by the
purple box) and microRNA (represented by the orange box). Degradation processes
are indicated by horizontal arrows, synthesis processes by vertical straight arrows,
and binding by curved arrows. Right: Eight reactions associated with the MMI1
model, describing the formation and dissociation of mRNA-microRNA complexes
under the law of mass-action. (B) Signal-response curves showing the steady state
levels of unbound mRNA (R) in response to transcription rate constant σR. The
green arrows illustrate the nature of these steady states: straight arrows indicate
stable nodes, while spiral arrows represent spiral sinks. The blue curve illustrates
the microRNA-free steady state response. (C) Time-course simulation illustrating
transient oscillations that occur near a spiral sink steady state (using parameter
set 1). The x-axis represents time in arbitrary units, approximately equivalent to
1.44 × t1/2, where t1/2 is the half-life of mRNA. (D) Parameter space illustrating
the distribution of parameter sets: those capable of generating spiral sinks (yellow
regions, as in parameter set 1) and those without (gray regions, as in parameter set
2). The parameter axes α and β represent degradation rate constants governing
the behavior of the network. Representative diagrams of the two parameter sets
are depicted on the right.

The model is built on two primary components: miRNA binding to mRNA at
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the two interaction sites, and the regulated degradation of RNA. These processes
alone, without the involvement of explicit feedback loops, are sufficient to produce
sustained oscillations. This oscillatory behavior emerges from a dynamic balance
among the synthesis, binding, and degradation of both mRNA and miRNA, with
miRNA-mediated degradation playing a central role. Bifurcation analysis and
numerical simulations have demonstrated that the model can exhibit multistabil-
ity and regenerate gene expression heterogeneity, potentially influencing cellular
differentiation and providing cells with the ability to adapt to stress conditions.

This "heterogeneity restoration" means that the system can regenerate diverse
patterns of gene expression across a population of cells, even if they start in a
more uniform or synchronized state. The oscillatory dynamics produced by the
interactions between mRNA and miRNA, particularly due to the presence of two
miRNA binding sites, introduce temporal fluctuations in the levels of mRNA and
miRNA. These fluctuations naturally lead to variations in gene expression among
individual cells.

Such oscillatory behavior provides a mechanism for creating differences in expres-
sion levels across cells, contributing to heterogeneity. Moreover, in a population,
even small differences in initial conditions or stochastic events can cause cells to
fall out of sync with each other. Over time, this leads to a diverse set of expression
states, restoring heterogeneity within the population. This property is highly
relevant for biological functions like cellular differentiation and adaptation to stress,
where maintaining a diverse range of cellular states increases the likelihood of
survival and successful adaptation to changing conditions.

In the original paper, this model is referred to as MMI2, where "M" stands for
mRNA, "M" for microRNA, and "I2" denotes the presence of two interaction sites.
From now on, this thesis will refer to it as the MMI2 model.

3.1.1 Variants of the MMI2 Model and the Choice of the
MMI2-SSB Model

There are several variants of the MMI2 model mentioned in the original paper by
Nordick et al. [2], each providing a different perspective on the dynamics of mRNA
and miRNA interactions. These variants include:

• MMI2-SSB (Sequentially Symmetrical Binding): This variant assumes
symmetric binding at both miRNA interaction sites, making it the simplest and
most concise version. This model is chosen for its simplicity and effectiveness
in capturing the complex dynamics with reduced computational complexity.

• MMI2-ASB (Sequentially Asymmetrical Binding): Unlike the MMI2-
SSB, this model assumes asymmetry in the binding characteristics of the two
miRNA binding sites, which leads to potentially different kinetic behaviors
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between the sites. This asymmetry adds additional complexity but can provide
a more nuanced understanding of regulatory mechanisms.

• MMI2-DMI (Dual miRNAs): This model incorporates interactions with
two distinct miRNA species, which adds another layer of regulation. The
dual miRNA binding can allow for more complex patterns of regulation and
potentially diverse cellular responses.

In this thesis, the MMI2-SSB variant was chosen, as it represents the simplest
and most concise version of this class of models. This simplified representation
effectively captures the complex dynamics of the interactions while minimizing
computational complexity.

Figure 3.2: Figure adapted from [2]. Diagram of the MMI2-SSB model illustrating
the interactions between mRNA (indicated as R and represented by a purple box),
miRNA (indicated as r and represented by an orange box), and the formation of
complexes C1 and C2. The complex C1 is formed by the binding of R and r, and
is represented in the figure as an intermediate complex. Similarly, C2 is formed
through further interaction involving C1 and additional miRNA molecules. The
arrows represent different reaction processes: the black arrows indicate complex
formation and dissociation, while the colored arrows (purple and orange) represent
activation and repression interactions, represented by different colors in order to
distinguish between the interactions mediated by mRNA and miRNA, respectively.
Parameters such as σR, α1, β1, α2, and β2 represent various rate constants governing
the reactions. The right side of the figure provides a detailed representation of the
reactions and the corresponding rate constants.

3.2 The Mathematical Model
The reactions in our MMI2-SSB model represented by Figure 3.2 can be summarized
as follows:

1. mRNA Synthesis:
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• Reaction: ∅ → R

• Rate: sR (M/hr)

2. mRNA Degradation:

• Reaction: R → ∅
• Rate: k0

R (1/hr)

3. miRNA Synthesis:

• Reaction: ∅ → r

• Rate: sr (M/hr)

4. miRNA Degradation:

• Reaction: r → ∅
• Rate: k0

r (1/hr)

5. Association (mRNA and miRNA binding to form complex C1):

• Reaction: R + r → C1

• Rate: kon (1/(Mhr))

6. Dissociation (Complex C1 breaks into mRNA and miRNA):

• Reaction: C1 → R + r

• Rate: koff (1/hr)

7. Degradation of mRNA in Complex C1:

• Reaction: C1 → r

• Rate: k1
R (1/hr)

8. Degradation of miRNA in Complex C1:

• Reaction: C1 → R

• Rate: k1
r (1/hr)

9. Formation of Complex C2 (binding of another miRNA to complex C1):

• Reaction: C1 + r → C2

• Rate: kon (1/(Mhr))

10. Dissociation of Complex C2:
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• Reaction: C2 → C1 + r

• Rate: koff (1/hr)

11. Degradation of mRNA in Complex C2:

• Reaction: C2 → 2r

• Rate: k2
R (1/hr)

12. Degradation of miRNA in Complex C2:

• Reaction: C2 → C1

• Rate: k2
r (1/hr)

The mathematical model is formulated using ordinary differential equations
(ODEs) that describe the temporal evolution of the concentrations of mRNA (R),
miRNA (r), and the related complexes (C1 and C2). The approach used is based
on the law of mass action, which allows modeling the reaction rate as a function of
the concentrations of the reactants. This approach enables precise representation
of molecular interactions and facilitates the study of the dynamics of emerging
oscillations.

dR̂

dt
= sR − k0

RR̂ − 2konR̂r̂ + 2koff Ĉ1 + 2k1
r Ĉ1

dr̂

dt
= sr − k0

r r̂ − 2konR̂r̂ + 2koff Ĉ1 + 2k1
RĈ1 − 2konĈ1r̂ + 2koff Ĉ2 + 2k2

RĈ2

dĈ1

dt
= konR̂r̂ − koff Ĉ1 − k1

RĈ1 − k1
r Ĉ1 − konĈ1r̂ + koff Ĉ2 + k2

r Ĉ2

dĈ2

dt
= 2konĈ1r̂ − 2koff Ĉ2 − k2

RĈ2 − 2k2
r Ĉ2

(3.1)

The factor 2 in the differential equations of the MMI2-SSB model is present
because the mRNA has two identical microRNA binding sites. Each site can bind or
unbind independently, effectively doubling the rate of these interactions compared
to a single-site model.

3.2.1 Adimensionalization
In this section, we proceed with adimensionalization similarly to the approach used
in the referenced paper [2]. The purpose of adimensionalization is to simplify the
mathematical analysis by removing dependence on specific units, making the model
easier to work with and more generalizable. This process reduced the complexity
of mathematical computations, making it easier to analyze the system’s behavior
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and derive insights. To make this explicit, all parameters and variables have been
rescaled in terms of the target’s half-life (specifically, the mRNA degradation rate).

R = R̂ × k0
R

sr
r = r̂ × k0

r

sr
C1 = Ĉ1 × k0

R

sr
C2 = Ĉ2 × k0

R

sr

Table 3.1: Variables transformations used for adimensionalizing the equations.

sR → σR σR = sR

sr

k0
R → γR γR = 1

sr → σr σr = 1
k0

r → γr γr = k0
r

k0
R

kon → κon κon = kon×sr

(k0
R)2

koff → κoff κoff = koff

k0
R

k1
R → α1 α1 = k1

R

k0
R

k1
r → β1γr β1 = k1

r

k0
r

k2
R → α2 α2 = k2

R

k0
R

k2
r → β2γr β2 = k2

r

k0
r

Table 3.2: Parameter transformations used for adimensionalizing the equations.

After adimensionalizing the system, the resulting differential equations describe
the dynamics of mRNA (R), miRNA (r), and their associated complexes (C1 and
C2) in a dimensionless form:

dR

dt
= σR − γRR − 2κonRr + 2κoff C1 + 2β1γrC1

dr

dt
= σr − γrr − 2κonRr + 2κoff C1 + 2α1C1 − 2κonC1r + 2κoff C2 + 2α2C2

dC1

dt
= κonRr − κoff C1 − α1C1 − β1γrC1 − κonC1r + κoff C2 + β2γrC2

dC2

dt
= 2κonC1r − 2κoff C2 − α2C2 − 2β2γrC2

(3.2)

3.3 Parameter Estimation
In this section, is described the process of parameter selection to render the models
biologically plausible. The procedure involves using estimated median values based
on experimental measurements, with the addition of a wide range of values to

20



Introduction to the Post-Transcriptional Gene Expression Oscillatory Model

represent biological variability and measurement errors, covering at least two orders
of magnitude for each parameter.

3.3.1 Basal Degradation Constants
• mRNA:

– The mean half-life of mRNA without post-transcriptional control has
been estimated to be approximately 4 hours in mammals [14]. The
corresponding basal degradation constant k0

R is calculated as:

k0
R = ln 2

4 hr = 0.17 hr−1.

– Although the parameter k0
R is not present explicitly in the adimensionalized

ODEs—since in the dimensionless ODEs we use t̂ = t/k0
R—it is important

to consider its plausible range to establish the time unit in simulations.
This corresponds on average to 5.88 hours but can vary from 7.14 minutes
to 34.6 hours, depending on the stability of the mRNA [15, 16].

• microRNA:

– The mean half-life of microRNAs has been estimated to be about four
times that of mRNAs [17, 18]; therefore:

k0
r = ln 2

16 hr = 4.3 × 10−2 hr−1.

– The basal degradation constant in the dimensionless model, γr, is thus
calculated as γr = 1/4. Since in the dimensionless ODEs the parameter γ
is sampled, an interval of [10−1/4, 101/4] was chosen using a log-uniform
distribution to account for biological variability [2].

3.3.2 Synthesis Constants
• mRNA:

– The synthesis constant of mRNA (sR) is a control parameter that was
varied to explore different dynamical behaviors of the model. The authors
of [2] did not explicitly estimate sR. But we investigated a range of
biologically plausible values. First, the cytoplasmic volume of a murine
myoblast was estimated as V = 1.8 × 10−12 L (1700 µm3) [19, 20], and
average copy numbers for mRNA (in bacteria, yeast, and mammal cells
were considered): nbacteria = 5.1 × 103 [21], nyeast = 1.22 × 104 [22],
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and nmammal = 6.0 × 105 copies per cell [23]. Therefore, the estimated
concentration is in the range:

r̂ = n

NAV
= 4.7 × 10−9 M to 5.5 × 10−8 M,

where NA is Avogadro’s constant.
– Assuming that the mRNA has a degradation constant k0

r = 0.17 hr−1, the
estimated synthesis constant is in the range:

sR = k0
r r̂ = 8.0 × 10−10 M · hr−1 to 9.4 × 10−9 M · hr−1.

The range of values is consistent with the range in which the authors of
the article [2] vary the rate of mRNA synthesis.

• microRNA:

– The synthesis constant of microRNA (sr) is a scaling factor that does
not explicitly appear in the dimensionless ODEs. To relate the scaled
variables and parameters to realistic biological quantities, a representative
value of sr for a relatively abundant microRNA was considered. First, an
average copy number of two highly expressed microRNAs was estimated as
n = 9.7 × 103 copies per cell [24]. Therefore, the estimated concentration
for an abundantly expressed microRNA is:

r̂ = n

NAV
= 9.5 × 10−9 M,

where NA is Avogadro’s constant.
– Assuming that the microRNA has a degradation constant k0

r = 4.3 ×
10−2 hr−1, the estimated synthesis constant is:

sr = k0
r r̂ = 4.1 × 10−10 M · hr−1.

3.3.3 Association and Dissociation Constants
• The dissociation constant of the microRNA was estimated to be 3.7 pM [25].

The scaled dissociation constant K was then estimated using:

K = koff

kon
· k0

R

sr

= 3.7 × 10−12 M × 0.17 hr−1/(4.1 × 10−10 M hr−1) ≈ 1.5 × 10−3,

where κoff and κon represent the scaled dissociation and association rates,
respectively. Given the significant variation in cell volume, RNA half-lives,
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microRNA concentration, and binding affinity, in [2] K were sampled from a
range covering four orders of magnitude, i.e. [1.5×10−5, 1.5×10−1], using a log-
uniform distribution to account for biological variation and measurement errors.
This range effectively encompasses scenarios in which there are approximately
10 copies of microRNA available for reactions in a cell, either due to low total
concentration or occupancy by other mRNA targets.

• In order to estimate kon, first consider the diffusion limit for kon, i.e., kon ≈
3.6 × 1013 M−1 · hr−1 [26, 27]. However, to capture biological variability
and measurement uncertainties, kon was instead sampled from a range of
values. A log-uniform distribution was used, ranging from 1012 M−1 · hr−1

to 1014 M−1 · hr−1, covering possible variations due to differences in diffusion
conditions, local concentration effects, or changes in reaction environment [2].

• The scaled association rate constant κon was then calculated as:

κon = konsr/(k0
R)2,

using the sampled range of kon. Consequently, κon was also sampled from
an interval calculated based on the kon range, resulting in κon values ranging
approximately from 5.1 × 104 to 5.1 × 106. This approach ensures that the
variability in kon propagates to the estimation of κon.

• The value of κoff was subsequently estimated based on the representative value
of κon and the estimated range of K mentioned above, i.e., [7.7, 7.7 × 104].

3.3.4 Regulated Degradation Factors (RDFs)
Regulated Degradation Factors (RDFs), denoted as α and β, are key parameters
that regulate the degradation of mRNA and microRNA within molecular complexes,
thereby influencing post-transcriptional gene expression dynamics. Specifically,
α represents how fast mRNA is degraded in the complex relative to its unbound
form, and β is the corresponding factor for microRNA. These RDFs are important
because the gene regulatory function of microRNA primarily depends on the target
mRNA degradation upon binding [28], and similarly, the target mRNA can alter
the degradation rate constant of the mRNA-bound microRNA [29].

The assumption is made that mRNA and microRNA are degraded independently
in the complex, supported by previous observations [29, 30, 31]. Such dynamics
are crucial because they determine the system’s ability to transition from simple
dynamics to more complex behaviors, such as oscillations or bistability.

For instance, dynamics involving high ratios of degradation factors (α2/α1
and β2/β1) suggest significant functional cooperativity or synergy between the
microRNA binding sites. A high α2/α1 ratio indicates that degradation is much
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faster when two binding sites are occupied compared to just one. This implies
that when two microRNAs are bound, they collaborate more effectively to degrade
mRNA, exhibiting positive cooperativity. Such behaviors can support oscillation,
even without classic feedback circuits.

Experimental evidence highlights the importance of RDFs in shaping these
dynamics. For example, mRNA destabilization driven by microRNA binding
has been well-documented [28], and highly complementary targets can induce
potent degradation of neuronal microRNAs [29]. Moreover, kinetic analyses reveal
the complex interplay of microRNA and target degradation dynamics [30], and
endogenous transcripts have been shown to control microRNA levels via target-
directed degradation [31].

The regulated degradation factors α and β were sampled within the interval
[1/8, 16]:

• The interval was chosen based on previous experimental data to cover a wide
range of biological possibilities.

• Rare situations were also considered where the binding of the microRNA
decreases the stability of the mRNA.

• Values were chosen using a log-uniform distribution to represent the variability
of biological reactions.

• The median values of α and β are 1.4 and 0.35, respectively, at least two
orders of magnitude smaller than κoff.

Scaled parameter Biological meaning Estimated range
σR Synthesis rate constant of mRNA [0, 25]
γ Degradation rate constant of miRNA [10−1/4, 101/4]

κon Association constant 5.1 × 105

κoff Dissociation rate constant [7.7, 7.7 × 104]
α and β Regulated degradation factor [1/8, 16]

Table 3.3: Summary of scaled parameter values, their biological meaning, and
estimated ranges used in the model.

Finally, sustained oscillations were identified using numerical bifurcation analysis
and parameter sampling. By applying the total quasi-steady-state assumption
(tQSSA) to complexes C1 and C2, the system reduced to a 2D Jacobian matrix,
simplifying stability analysis. Stability was assessed by confirming that the eigen-
values of the 2D Jacobian matrix could be complex conjugates with negative real
parts. Initial conditions were determined by performing phase plane analysis. The
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findings emphasized the importance of regulated degradation factors (RDFs) for
both mRNA and miRNA, with cooperativity between binding sites being crucial.
Oscillations were prevalent at high RDF ratios, while low RDF ratios required a
high γ to induce oscillations [2].

3.4 Deterministic Results
The time-course trajectories presented in Figure 3.4 illustrate the sustained os-
cillations of mRNA (R), miRNA (r), and their complexes (C1, C2) over time.
These results are consistent with the findings discussed in the paper "Nonmodular
oscillator and switch based on RNA decay drive regeneration of multimodal gene
expression" [2].

To reproduce the results presented in the paper, the following parameters and
initial conditions were used in the MMI2-SSB model:

• Parameters:

– σR = 3.58

– γR = 1

– σr = 1

– γr = 0.25

– κon = 105

– κoff = 102

– α1 = 1

– β1 = 1

– α2 = 12

– β2 = 7

• Initial conditions:

– R(0) = 3

– r(0) = 0.75

– C1(0) = 0

– C2(0) = 0
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Figure 3.3: Sustained oscillations of mRNA, miRNA, and their complexes (R,
r, C1, C2) as observed in the MMI2-SSB model. The curves were obtained by
numerically integrating in Python the system of differential equations 3.2 over a
time span of 100 units, with results presented for the last 30 time units.

3.5 Stochastic Results
In this work, the Gillespie algorithm was implemented to stochastically simulate
the behavior of the MMI2-SSB model. This algorithm allows for the simulation
of individual reaction events and the temporal evolution of the system, providing
insight into the inherent variability of biological processes.

The Gillespie algorithm operates by simulating each reaction event individually,
determining which reaction occurs next and how much time passes between reactions.
The steps involved are:

1. Calculate Propensities: The propensity functions for each possible reaction
are computed. These functions represent the likelihood of each reaction
occurring in a very short time interval, given the current state of the system.
The propensities used in this study for the twelve reactions of the MMI2-SSB
model are as follows:

• sR: Production of R

• kR0R: Degradation of R

• sr: Production of r

• kr0r: Degradation of r
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• konRr: Formation of complex C1A

• konRr: Formation of complex C1B

• koffC1A: Dissociation of complex C1A

• koffC1B: Dissociation of complex C1B

• kR1C1A: Degradation of R in complex C1A

• kr1C1A: Degradation of r in complex C1A

• kR1C1B: Degradation of R in complex C1B

• kr1C1B: Degradation of r in complex C1B

• kon(C1A + C1B)r: Formation of complex C2

• koffC2: Dissociation of complex C2

• kR2C2: Degradation of R in complex C2

• kr2C2: Degradation of r in complex C2

For the Gillespie algorithm, we differentiated between C1A and C1B, which
represent complexes of mRNA with one miRNA, bound to the first and the
second binding site respectively. This differentiation does not affect the overall
dynamics, as both complexes function similarly, but it was necessary in the
stochastic implementation to correctly simulate the binding events and ensure
accurate tracking of the molecule states throughout the reactions.

2. Determine Time to Next Reaction: The time to the next reaction event
is sampled from an exponential distribution, with a rate given by the sum
of all propensities (a0 = qN

i=1 ai). The probability density function for the
waiting time ∆t is P (∆t) = a0e

−a0∆t, where a0 is the total propensity. This
allows for the correct stochastic timing of reaction events.

3. Choose Which Reaction Occurs: A specific reaction is chosen based on its
propensity relative to the sum of all propensities. Specifically, the reaction is
selected such that more likely reactions occur more often. This is achieved by
generating a uniform random number between 0 and the total propensity (a0),
and then comparing this random value to the cumulative sum of propensities
for each reaction. The reaction is chosen when the cumulative sum surpasses
the random value, ensuring that reactions with higher propensities are more
likely to be selected.

4. Update State: The state of the system is updated by changing the number
of molecules involved in the chosen reaction. For example, if a complex is
formed, the counts of the individual reactants are decreased, while the count
of the complex is increased accordingly.
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5. Repeat: Steps 1-4 are repeated until the simulation reaches a predefined
stopping time, providing a temporal profile of the system’s evolution.

In this work, Gillespie’s algorithm was implemented using Python, allowing
for the stochastic simulation of the twelve chemical reactions described above.
The parameters and initial conditions used were the same as those outlined in
the previous section, and the implementation relied on the known rate constants
for production, degradation, association, and dissociation of the involved species.
This allowed us to stochastically explore the behavior of the MMI2-SSB system
and compare it with deterministic results obtained through ordinary differential
equations (ODEs).

3.5.1 Changes in Variables
The Gillespie algorithm works with the number of individual particles. In this
work, scaled parameters and variables were adapted so they would be compatible
with the Gillespie algorithm.

• Scaled to Real Parameters and Variables: The parameters and concen-
trations were initially represented in a scaled, dimensionless form to simplify
the mathematical modeling. These scaled values were then converted back to
real biological units to enable meaningful biological interpretation.

• Molar Concentrations to Number of Particles: The molar concentrations
were converted to actual molecule counts for each species. This conversion used
known biological parameters such as the cytoplasmic volume and Avogadro’s
constant to translate concentrations into the number of particles for each
molecular species.

• Scaled Time to Real Time: The scaled time was converted back to real
time (in hours).

Multiple stochastic simulations were performed to observe variability in system
behavior and compare these results with deterministic solutions. The number of
stochastic simulations (N) was kept small due to computational challenges posed
by the system’s stiffness.

A stiff system has reactions with vastly different timescales, leading to a wide
range of reaction rates. In the MMI2-SSB model, stiffness results from significant
differences in reaction propensities. This makes accurate simulation with Gillespie’s
algorithm difficult, as it must handle very fast and slow reactions simultaneously,
leading to inefficient and costly simulations.

Despite these challenges, the stochastic simulations show that the MMI2-SSB
model exhibits rhythmic RNA concentration oscillations with notable variability,
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indicating that the model’s oscillatory dynamics are robust even with molecular
noise and stiffness.

Figure 3.4: Stochastic trend showing the variability in concentration from 50 to
100 scaled hours for multiple stochastic simulations, using the Gillespie algorithm.
The plot illustrates fluctuations around the deterministic trend, highlighting the
effects of molecular noise. The average trend is obtained by averaging over N = 100
simulations.

3.6 Discussion of the Results
The observed oscillations highlight the intrinsic capacity of the MMI2-SSB model to
produce rhythmic fluctuations in RNA species concentrations, even in the absence
of explicit regulatory feedback loops [2].

In the next chapter, we will explore the possibility of having resource time-
sharing when two of these miRNA-induced oscillators are coupled through a shared
and limiting resource. In particular, we will analyze two independent MMI2-SSB
systems in the presence of a shared pool of ribosomes. By systematically varying the
ribosome concentration from low to abundant, we aim to investigate the behavior
of these systems under shared-resource constraints. This exploration will focus
on determining whether a time-sharing mechanism or other coordinated dynamics
emerges between the two miRNA targets, particularly under conditions of limited
ribosome availability.

29



Chapter 4

miRNA-mediated oscillators
coupled through the
ribosomal pool

4.1 Introduction

In this chapter, we will illustrate the model we developed to investigate the
possibility of ribosome time-sharing induced by two miRNA-mediated oscillators.
Indeed, the model consists of two independent MMI2-SSB systems, coupled through
a fixed pool of ribosomes. This setup was designed to explore the dynamics
that emerge from the competition between two systems that share a limited
resource, specifically ribosomes, to determine if it is possible to observe time-
sharing oscillations similar to those seen in other biological contexts [1, 3].

The reactions of this model are presented in Table 4.1.

The molecular species of type A and type B, if considered separately, present
oscillatory dynamics resulting from post-transcriptional interactions via two miRNA
binding sites. However, the innovative aspect of this model lies in introducing
a fixed pool of ribosomes shared between the two systems. The two mRNAs of
type A and B, will each "try to bind" ribosomes for protein translation, thus being
effectively coupled through this shared pool.
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System A System B
Synthesis of mRNA ∅ −→

sR
RA ∅ −→

sR
RB

Degradation of mRNA RA −→
k0

R

∅ RB −→
k0

R

∅

Synthesis of miRNA ∅ −→
sr

rA ∅ −→
sr

rB

Degradation of miRNA rA −→
k0

r

∅ rB −→
k0

r

∅

Formation of complex C1 RA + rA −−−→
kon,A

C1A RB + rB −−−→
kon,B

C1B

Dissociation of C1 C1A −−→
koff

RA + rA C1B −−→
koff

RB + rB

Degradation of mRNA in C1 C1A −→
k1

R

rA C1B −→
k1

R

rB

Degradation of miRNA in C1 C1A −→
k1

r

RA C1B −→
k1

r

RB

Formation of complex C2 C1A + rA −−−→
kon,A

C2A C1B + rB −−−→
kon,B

C2B

Dissociation of C2 C2A −−→
koff

C1A + rA C2B −−→
koff

C1B + rB

Degradation of mRNA in C2 C2A −→
k2

R

2rA C2B −→
k2

R

2rB

Degradation of miRNA in C2 C2A −→
k2

r

C1A C2B −→
k2

r

C1B

Formation of C RA + Ribo −−−−→
kon,Ribo

CA RB + Ribo −−−−→
kon,Ribo

CB

Dissociation of C CA −−−−−→
koff,Ribo

RA + Ribo CB −−−−−→
koff,Ribo

RB + Ribo

Table 4.1: Reactions of the model describing two miRNA targets coupled through
a shared pool of ribosomes.

Our goal is to study whether competition for the fixed ribosomal pool can lead to
time-sharing mechanisms, similarly to what observed in other biological contexts [1,
3]. If this is the case, such time-sharing mechanism could represent an advantageous
strategy for resource allocation, allowing each mRNA to use ribosomes alternately
thus reducing direct competition.

4.2 Mathematical Formalization of the Model
The mathematical model is formulated using ordinary differential equations (ODEs)
that describe the temporal evolution of the concentrations of mRNA, miRNA, and
their complexes for molecular species of type A and B, as well as the interactions
with the shared ribosome pool. The equations have been extended from the original
MMI2-SSB model in Chapter 3 to account for the simultaneous presence of two
mRNAs competing for ribosomes, introducing terms that describe the binding and
release rate of ribosomes by the two mRNAs.
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dRA

dt
= σR − γRRA − 2κonRArA + 2κoffC1,A + 2β1γrC1,A − κon,RiboRA Ribo + κoff,RiboCA

drA

dt
= σr − γrrA − 2κonRArA + 2κoffC1,A + 2α1C1,A − 2κonC1,ArA + 2κoffC2,A + 2α2C2,A

dC1,A

dt
= κonRArA − κoffC1,A − α1C1,A − β1γrC1,A − κonC1,ArA + κoffC2,A + β2γrC2,A

dC2,A

dt
= 2κonC1,ArA − 2κoffC2,A − α2C2,A − 2β2γrC2,A

dRB

dt
= σR − γRRB − 2κonRBrB + 2κoffC1,B + 2β1γrC1,B − κon,RiboRB Ribo + κoff,RiboCB

drB

dt
= σr − γrrB − 2κonRBrB + 2κoffC1,B + 2α1C1,B − 2κonC1,BrB + 2κoffC2,B + 2α2C2,B

dC1,B

dt
= κonRBrB − κoffC1,B − α1C1,B − β1γrC1,B − κonC1,BrB + κoffC2,B + β2γrC2,B

dC2,B

dt
= 2κonC1,BrB − 2κoffC2,B − α2C2,B − 2β2γrC2,B

dCA

dt
= κon,RiboRA Ribo − κoff,RiboCA

dCB

dt
= κon,RiboRB Ribo − κoff,RiboCB

dRibo
dt

= −κon,Ribo(RA + RB) Ribo + κoff,Ribo(CA + CB)
(4.1)

The species and rates are labeled as described in Section 3.2. Compared to
3.2, we introduce new variables: Ribo, representing free ribosomes, as well as
complexes formed by ribosomes and mRNA species, along with their associated
rates. Specifically, CA and CB represent complexes formed by ribosomes bound to
the mRNA species RA and RB, respectively. The parameters κon,Ribo and κoff,Ribo
denote the association and dissociation rates of ribosomes to and from the mRNA.

The total quantity of ribosomes, denoted as Ribotot, remains constant. Thus,
we have the conservation equation:

Ribotot = Ribo + CA + CB = constant (4.2)

4.2.1 Parameters Estimation and Biologically Plausible Val-
ues for kon,Ribo and koff,Ribo

This model extends the previous MMI2-SSB model discussed in Chapter 3 by
including the association and dissociation reactions between free mRNA and
ribosomes. Therefore, in this model, there are three additional chemical species:
CA, CB, and Ribo, which represent the complex formed by type A mRNA with
the ribosome, the complex formed by type B mRNA with the ribosome, and the
ribosomes themselves, respectively. Additionally, there are two extra parameters,
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κon,Ribo and κoff,Ribo, which are the scaled versions of kon,Ribo and koff,Ribo. These
represent the association rate between mRNA and ribosome and the rate of
premature dissociation of the ribosome from the mRNA, respectively.

Estimation of kon,Ribo

• The average cell volume is V = 1.8 × 10−12 L (1700 µm3) as estimated in
previous Chapter 3.

• The average number of ribosomes per cell is NRibo = 5 × 106 [32].

• The concentration of ribosomes is calculated as:

[Ribo] = NRibo

NA × V
≈ 4.61 µM

where NA = 6.022 × 1023 mol−1 is Avogadro’s number.

• The initiation rate of translation is kinit = 0.017 to 0.167 s−1 [33, 34].

• Calculate kon,Ribo using:
kon,Ribo = kinit

[Ribo]
• For the minimum value:

kon,Ribo = 0.017
4.61 × 10−6 ≈ 3.69 × 103 M−1s−1

• For the maximum value:

kon,Ribo = 0.167
4.61 × 10−6 ≈ 3.62 × 104 M−1s−1

• Converting to 1/(M*hr) by multiplying by 3600:
kon,Ribo ≈ 1.06 × 107 to 1.04 × 108 1/(M*hr)

Estimation of koff,Ribo

• The premature dissociation rate of the ribosome from the mRNA, denoted as
koff,Ribo, has been estimated [35] as:

koff,Ribo = 0.24 min−1

• To convert this value to units of hr−1:
koff,Ribo = 0.24 min−1 × 60 min/hr = 14.4 hr−1

• We will consider a biologically plausible range for koff,Ribo that spans two orders
of magnitude:

koff,Ribo ≈ 1.44 to 144 hr−1
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4.2.2 Adimensionalization
As done in the Section 3.2.1, the new variables in this model are also rescaled in
the same way to make the ODEs 4.1.

CA = ĈA × k0
R

sr

CB = ĈB × k0
R

sr

Ribo = ˆRibo × k0
R

sr

Table 4.2: Variable transformations used for adimensionalizing the equations 4.1.

The new parameters are also rescaled accordingly.

kon,Ribo → κon,Ribo κon,Ribo = kon,Ribo × sr

(k0
R)2

koff,Ribo → κoff,Ribo κoff,Ribo = koff,Ribo

k0
R

Table 4.3: Parameter transformations used for adimensionalizing the equations
4.1.

Calculation of Scaled Parameters

For κon,Ribo:

• Using sr = 4.1 × 10−10 M/hr and k0
R = 0.17 hr−1.

• For kon,Ribo = 1.062 × 107 1/(M*hr):

κon,Ribo = 1.062 × 107 × 4.1 × 10−10

(0.17)2 ≈ 1507

• For kon,Ribo = 1.044 × 108 1/(M*hr):

κon,Ribo = 1.044 × 108 × 4.1 × 10−10

(0.17)2 ≈ 14796

For κoff,Ribo:

• Using k0
R = 0.17 hr−1:

• For koff,Ribo = 1.44 hr−1:

κoff,Ribo = 1.44
0.17 ≈ 8.47
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• For koff,Ribo = 144 hr−1:
κoff,Ribo = 144

0.17 ≈ 847

Therefore, the scaled parameters are:

• κon,Ribo ≈ 1507 to 14796

• κoff,Ribo ≈ 8.5 to 847

Parameter Scaled Range of Values
κon,Ribo 1507 to 14796
κoff,Ribo 8.47 to 847

Table 4.4: Scaled parameters based on the adimensionalization shown in table
4.3.

4.3 Simulations and Results
In this section, we present the results obtained by numerically integrating the
system of ODEs described in the System 4.1 from the previous section. We used
Python 3.12.4 for the numerical integration within a time range of 0 to 300 time
units, starting with the following initial conditions:

• R(0) = 3

• r(0) = 0.75

• C1(0) = 0

• C2(0) = 0

• C0(0) = 0

All the parameters and initial values, except for the new ones introduced here,
are exactly the same as those used in the simulations described in Section 3.2.
Specifically, we added new binding/unbinding parameters for the ribosome pool,
denoted as κon,Ribo and κoff,Ribo, as well as varied the initial concentration of the
ribosomal pool itself (Ribo(0) = Ribotot).

The initial concentration of the ribosomal pool was varied across three represen-
tative values:

• Ribo(0) = Ribotot = {0, 0.5, 20}
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This variation helps to analyze how changes in resource availability impact
the dynamics of the system, particularly focusing on the emergence of oscillatory
behavior.

The additional binding and unbinding parameters for the ribosomal pool, κon,Ribo
and κoff,Ribo, were selected to ensure biological plausibility. The complete list of
scaled parameters used in the simulations is as follows:

• σR = 3.58

• γR = 1

• σr = 1

• γr = 0.25

• α1 = 1

• β1 = 1

• α2 = 12

• β2 = 7

• κon,A = 10000

• κoff,A = 7.7

• κon,B = 10000

• κoff,B = 7.7

• κon,Ribo = 15000

• κoff,Ribo = 7.7

Figure 4.1 shows two independent mRNA species, RA and RB, with two miRNA
binding sites each, regulated by two independent miRNA, rA and rB respectively.
The total amount of ribosomes is set to 0, Ribo(0) = Ribotot = 0. In this scenario,
the trends corresponding molecular species A and B are undistinguishable, indeed
they are equivalent, sharing the same parameters and initial conditions. In Figures
4.2 and 4.3, the two mRNAs are coupled by the presence of a ribosomal pool,
which is greater than 0 (Ribo(0) = Ribotot > 0). We observe, however, that even
in these scenarios the behaviors over time of the molecular species A and B are
undistinguishable. Figure 4.2 shows the dynamics in presence of a limited (scaled)
pool of ribosomes, Ribo(0) = Ribotot = 0.5, whereas Figure 4.3 shows the dynamics
in presence of an abundant (scaled) ribosomal pool, Ribo(0) = Ribotot = 20. These
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results suggest that the presence of a ribosomal pool, regardless of its size, does
not induce any observable difference between the two mRNA species A and B
and their corresponding complexes, if they are completely indistinguishable from a
deterministic point of view.

To investigate whether symmetry breaking between molecular species A and B
could lead to different dynamic behaviors, asymmetry was introduced using two
different values for κon,Ribo for mRNA A and B.

We set:

• κon,A = 10000

• κon,B = 5000

Figure 4.1: Dynamics of molecular species A and B with no initial ribosome
pool (Ribo(0) = Ribotot = 0). Initial conditions and parameters were set to ensure
complete symmetry between the two molecular species, leading to indistinguishable
behavior in their dynamics. The plots were generated using Python 3.12.4 by
numerically integrating the system of equations over the time interval [0, 300] and
visualizing the results in the interval [250, 300].
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Figure 4.2: Dynamics of molecular species of type A and B with an initial
ribosome pool of 0.5 (Ribo(0) = Ribotot = 0.5). The simulations were performed
using the same method of Figure 4.1. Despite the limited ribosome pool, the
dynamics of molecular species A and B remain synchronized and indistinguishable.
This is because, in the absence of distinguishing factors, molecular species of type A
and B behave as if they were identical entities arbitrarily assigned different labels,
even under resource competition.

Figure 4.3: Dynamics of molecular species of type A and B with an initial
ribosome pool of 20 (Ribo(0) = Ribotot = 20). The simulations were performed
using the same method of Figure 4.1. Initial conditions and parameters were
set to ensure complete symmetry between the two molecular species, leading to
indistinguishable behavior in their dynamics.
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Figures 4.4, 4.5, 4.6, illustrate the dynamics of molecular species A and B
under different initial conditions for the ribosomal pool. These conditions include
no availability of ribosomes, (Ribo(0) = Ribotot = 0), a limited ribosome pool
(Ribo(0) = Ribotot = 0.5), and an abundant ribosome pool (Ribo(0) = Ribotot = 20).
By comparing these scenarios, we can observe how the availability of ribosomes
affects the synchronization and competition between molecular species A and B.

In Figure 4.4, RA and RB are once again decoupled by setting Ribo(0) =
Ribotot = 0. However, in this case, the variation of the parameter κon,Ribo,B with
respect to κon,Ribo,A has generated trends that are no longer overlapping. Instead,
we observe differences in initial amplitude, period, and phase between molecular
species A and B.

In Figures 4.5 and 4.6, the presence of a common pool of ribosomes, whether
limiting or abundant, has eliminated the differences in period and phase between
type A and type B for all chemical species, except for CA and CB. Specifically,
when the ribosomal pool is limited (Ribo(0) = Ribotot = 0.5), as seen in Figure
4.5, there is a clear phase difference between CA and CB, indicating that RA and
RB compete for the limited ribosome resource, and this results in a time-sharing
mechanism in the dynamics of the complexes CA and CB. As expected, when the
ribosomal pool is abundant (Ribo(0) = Ribotot = 20), as shown in Figure 4.6, the
phase difference between CA and CB vanishes.

Figure 4.4: Dynamics of molecular species A and B with no initial ribosome pool
(Ribo(0) = Ribotot = 0). The simulations were performed using the same method
of Figure 4.1. Parameter asymmetry between κon,A and κon,B generates differences
in the amplitude, period, and phase of the dynamics.
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Figure 4.5: Dynamics of molecular species A and B with a limited ribosome
pool (Ribo(0) = Ribotot = 0.5). The simulations were performed using the same
method of Figure 4.1. The introduction of a shared, limited ribosome pool induces
competition between RA and RB, resulting in a phase difference in the dynamics of
the ribosome-bound complexes CA and CB. This time-sharing behavior highlights
resource allocation effects under constrained conditions.

Figure 4.6: Dynamics of molecular species A and B with an abundant ribosome
pool (Ribo(0) = Ribotot = 20). The simulations were performed using the same
method of Figure 4.1. The availability of an excess ribosome pool eliminates
phase differences between CA and CB, leading to synchronized dynamics across all
molecular species. The effects of competition observed in Figure 4.5 are no longer
present, as the ribosome resource is no longer limiting.
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However, we expected that introducing asymmetry might lead to an anti-phase
trend in the dynamics of the mRNAs themselves, RA and RB, when the molecular
species A and B share a limited pool of ribosomes. Surprisingly, the results do not
show a significant phase difference between the mRNAs RA and RB in presence
of a limited pool of ribosomes. Instead, what emerges is an anti-phase dynamics
involving only the mRNA-ribosome complexes, CA and CB. This suggests that the
ribosome-mRNA interactions induce phase differentiation at the level of the mRNA-
ribosome complexes, while the free mRNAs RA and RB remain largely synchronized.
This finding highlights that the ribosome binding competition primarily affects the
dynamics at the level of the complexes CA and CB, rather than altering the phase
relationship of the free mRNAs.

Then, we reproduced the same plots as those presented previously, but with
different parameter values that are not necessarily biologically plausible. This
exploration aims to determine if these parameter changes result in similar oscillatory
dynamics. In particular, we used the following parameter values:

• κon,A = 200

• κoff,A = 0.1

• κon,B = 300

• κoff,B = 0.1

• κon,Ribo = 1000

• κoff,Ribo = 1

These parameter values are easier to handle computationally since they do not
differ significantly in terms of orders of magnitude, making the system less stiff.
A less stiff system facilitates numerical integration and reduces computational
challenges, such as convergence issues or excessively small time steps that would
otherwise be required for a highly stiff system. Despite these modifications, the
results show that the oscillatory dynamics observed earlier are still present.

The results are shown in Figures 4.7, 4.8, and 4.9. These plots illustrate
the dynamics of molecular species A and B for different initial concentrations
of the ribosome pool: Ribo(0) = Ribotot = 0, Ribo(0) = Ribotot = 0.5, and
Ribo(0) = Ribotot = 20, respectively.

Despite the less biologically plausible parameter values, the trends remain quali-
tatively similar to those obtained with biologically accurate parameters. We still
observe synchronized dynamics for all chemical species under high ribosome avail-
ability and anti-phase behavior of ribosome-mRNA complexes when the ribosome
pool is limited. These findings reinforce the robustness of the observed dynamics,
which seem to persist across a wide range of parameter values.
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Figure 4.7: Dynamics of molecular species A and B with no initial ribosome
pool (Ribo(0) = Ribotot = 0) using modified parameter values. The simulations
were performed with the same method as Figure 4.1. The parameter asymmetry
generates distinct oscillatory dynamics with no shared ribosome competition.

Figure 4.8: Dynamics of molecular species A and B with a limited ribosome pool
(Ribo(0) = Ribotot = 0.5) using modified parameter values. The simulations were
performed using the same method as Figure 4.1. The competition for ribosomes
results in anti-phase behavior of the ribosome-mRNA complexes CA and CB.
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Figure 4.9: Dynamics of molecular species A and B with an abundant ribosome
pool (Ribo(0) = Ribotot = 20) using modified parameter values. The simulations
were performed using the same method as Figure 4.1. The high availability of
ribosomes eliminates competition effects, leading to synchronized dynamics.

To better illustrate the initial dynamics before reaching a steady state, we
focused on the initial time units. The following figures depict the behavior of the
complexes CA and CB for the same initial ribosome concentrations as above (0.5
and 20), but zoomed in on the initial phase.

Figure 4.10: Initial dynamics of CA and CB with an initial ribosome pool of 0.5
(Ribo(0) = Ribotot = 0.5). A hierarchy is established during the initial time units
where the least repressed mRNA (type A in this case) binds first and forms the
majority of the complexes.
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Figure 4.11: Initial dynamics of CA and CB with an initial ribosome pool of 20
(Ribo(0) = Ribotot = 20). Both complexes rapidly reach a in-phase dynamics.

What one can observe is that, when the initial ribosomal pool concentration is
low, a sort of hierarchy is established, whereby the least repressed mRNA (which for
the first set of parameters is A and for the second it is B) immediately begins to bind
to the ribosome, ensuring the largest fraction of ribosomes forming the complex,
while the second mRNA gradually binds as more ribosomes become available. This
initial dynamics creates an imbalance that can persist for a significant portion of
the transient period, leading to the observed phase differences.

Additionally, it is notable that the second mRNA predominantly starts to
binding during the dissociation period of the first mRNA. This means that when
the complexes formed by the initially bound mRNA begin to dissociate, ribosomes
become available, allowing the second mRNA to bind and form new complexes. This
sequence of dissociation and binding further reinforces the observed time-sharing
mechanism between the two mRNAs. This interplay of binding during dissociation
allows the second mRNA to use the ribosomal pool when it becomes transiently
free, leading to the staggered oscillatory behavior seen in the early stages.

When the available ribosomal pool is abundant (Ribo(0) = Ribotot = 20), the
initial dynamics is characterized by rapid binding of both mRNAs, leading to
synchronized complex formation. The competition for ribosomes is effectively
mitigated, and the molecular species of both type A and type B proceed with
nearly identical concentrations. This behavior suggests that an ample supply of
ribosomes effectively removes the competitive edge that one mRNA might have
over the other, resulting in synchronized dynamics without a significant hierarchical
advantage.
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Figure 4.12: Initial dynamics of CA and CB with an initial ribosome pool of 0.5
(Ribo(0) = Ribotot = 0.5) using different parameter values. The least repressed
mRNA (type B in this case) binds first, establishing a dominance in ribosome
usage.

Figure 4.13: Initial dynamics of CA and CB with an initial ribosome pool of
20 (Ribo(0) = Ribotot = 20) using different parameter values. Despite the initial
differences, synchronization is achieved quickly due to ample ribosome availability.

Then, we focused on the coupling between type A and type B species-except for
CA and CB that we analyzed before-due to the presence of ribosomes by calculating
the change in period. The following results summarize the periods of different
species for different initial ribosome pool concentrations.
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Set Ribotot RA RB rA rB C1A C1B C2A C2B

Set 1
0 7.748 7.511 7.748 7.511 7.748 7.511 7.748 7.511

0.5 7.721 7.721 7.721 7.721 7.721 7.721 7.721 7.721
20 9.107 9.108 9.107 9.107 9.107 9.108 9.108 9.107

Set 2
0 7.035 7.578 7.035 7.575 7.035 7.575 7.036 7.575

0.5 7.332 7.332 7.332 7.332 7.332 7.332 7.332 7.332
20 7.485 7.485 7.485 7.485 7.485 7.485 7.485 7.485

Table 4.5: Periods for different Ribo(0) = Ribotot values and parameter sets.

These results highlight that the introduction of the ribosome pool affects the
synchronization and period of the oscillatory behavior of type A and type B species.
For both sets of parameters, before introducing the ribosomal pool, there is a
difference in period between type A and type B for each species induced by the
specific miRNA-mRNA binding rates. However, once the two mRNA molecules are
coupled through the ribosomes, the signals become synchronized with a period that
lay between the two original periods. Indeed, the shared ribosomal pool effectively
couples the dynamics of molecular species A and B, leading to their synchronized
oscillations.

To further illustrate our findings, we present a set of summary plots that help
visualize the phase differences across different initial conditions of the ribosome
pool for both parameter sets.

The first plot (Figure 4.14) corresponds to the first set of biologically plausible
parameters, while the second plot (Figure 4.15) represents the results for the second
set of parameters, which are not necessarily biologically plausible. Despite the
differences in parameter sets, both plots show qualitatively similar behavior. As
ribosome availability increases, the phase difference between the complexes CA and
CB decreases in both cases, suggesting the transition from an anti-phase oscillation
to an in-phase oscillation. This indicates the robustness of the dynamics and the
consistency of the system’s response to increased ribosomal pool, regardless of the
parameter set.
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Figure 4.14: Phase difference between the complexes CA and CB as a function of
the initial ribosomal pool concentration (Ribo(0)) for the first set of parameters.
The phase difference is computed in Python using the Fourier Transform (FFT) to
determine the phase angles of the dominant frequency components of CA and CB.
The red point represents the phase difference when Ribo(0) = 0, while the orange
curve illustrates the decreasing phase difference trend with increasing ribosome
availability.

Figure 4.15: Phase difference between the complexes CA and CB as a function of
the initial ribosome pool concentration (Ribo(0) = Ribotot) for the second set of
parameters. The phase difference is computed exactly as described in Figure 4.14.
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4.4 Proteins Production
In our study, we focused on analyzing the trends of CA and CB, which are the
complexes formed by type A and type B mRNAs with ribosomes. These complexes
are crucial intermediates that directly lead to protein production. By analyzing
the dynamics of CA and CB, we can therefore infer the behavior of the proteins
produced from these mRNAs.

Under certain conditions, especially when the amount of ribosomes is limited
(e.g., Ribo(0) = 0.5), the trends of CA and CB exhibit time-sharing dynamics. This
suggests that type A and type B proteins are produced alternately.

On the other hand, when ribosome availability is abundant (e.g., Ribo(0) = 20),
the CA and CB dynamics become in-phase, leading to simultaneous production of
both type A and type B proteins. In this case, ribosome competition is minimal,
and both mRNAs can be translated concurrently, resulting in synchronized protein
production [36].

Thus, we can assume that under these conditions—whether with limited or
abundant ribosome availability—the dynamics of the produced proteins (both type
A and B) follow exactly those of the ribosome-mRNA complexes (CA and CB).
This highlights the critical role of ribosome availability in determining whether
protein production follows an alternating or concurrent mode.

It makes sense to hypothesize that the trend of the produced proteins faithfully
follows that of the complexes CA and CB, but this depends on the rates of protein
production and degradation, denoted by σP (rate of production) and γP (rate of
degradation), respectively. Specifically:

• If the rate of protein production (σP ) is sufficiently high compared to the
dynamics of complex formation, and the degradation rate (γP ) is moderate
or low, then the protein concentration will closely follow the trend of the
complexes, with a slight delay due to the time required for translation [37].

• When γP is low, proteins accumulate and maintain a concentration profile
that reflects the dynamics of the complexes over time, though with a small
delay [37].

• If γP is high (indicating rapid protein degradation), the protein levels may
not faithfully mirror the dynamics of CA and CB, as degradation may outpace
production, leading to dampened oscillations or reduced amplitude [37].

Therefore, the dynamics of protein production will be consistent with those
of CA and CB, with the main difference being a slight delay, provided that σP is
sufficiently high and γP is not excessively large. This slight delay is an intrinsic
feature of the translation process, as it takes time for ribosomes to produce proteins
after forming the complexes.
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4.5 Discussion
The emergence of anti-phase oscillatory behavior in this coupled mRNA-ribosome
system is an adaptation, particularly for the more repressed mRNA. Under condi-
tions of limited ribosome availability, the dynamics of competition between type A
and type B mRNAs lead to an outcome where each type takes turns in binding
with the shared ribosome pool.

When both mRNAs oscillate in phase, they compete simultaneously for ribo-
somes. In this scenario, the more repressed mRNA is inherently at a disadvantage
because it has a lower likelihood of ribosome recruitment compared to the less
repressed mRNA. Since both mRNAs are actively seeking ribosomes at the same
time, the less repressed mRNA tends to dominate ribosome binding, resulting in a
reduced share of ribosomes for the more repressed mRNA. Essentially, simultaneous
competition skews resource allocation in favor of the mRNA that can initiate
complex formation more effectively.

In contrast, the anti-phase oscillatory behavior provides an opportunity for the
more repressed mRNA to gain access to ribosomes when the less repressed mRNA is
in its dissociation phase. This temporal separation mitigates the direct competition
between the two mRNAs. By oscillating out of phase, the more repressed mRNA
can effectively "wait" until the ribosomes become available again, during the time
when the less repressed mRNA’s complexes are dissociating. This means that
ribosomes are freed from one mRNA at the same time as the other mRNA becomes
primed to bind, creating a rhythm of alternating usage.
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Chapter 5

miRNA Sharing Model

In this chapter, we analyze a new system consisting of two types of mRNA that
share the same type of miRNA. Unlike Chapter 4, where mRNA types A and B
were regulated by separate miRNAs, here both mRNA type A and type B share the
same miRNA. This model aims to reflect the reality of cellular environments, where
the same miRNA often regulates multiple distinct mRNAs [38], thus eliminating
the separation between different types of miRNAs. The model setup involves two
mRNAs, coupled through a shared miRNA and a common pool of ribosomes.

5.1 Mathematical Formalization of the Model
The following ODEs represent the dynamics of the model:

dRA

dt
= σR − γRRA − 2κon,ARAr + 2κoff,AC1,A + 2β1γrC1,A − κon,RiboRARibo + κoff,RiboCA

dRB

dt
= σR − γRRB − 2κon,BRBr + 2κoff,BC1,B + 2β1γrC1,B − κon,RiboRBRibo + κoff,RiboCB

dr

dt
= σr − γrr

− 2κon,ARAr + 2κoff,AC1,A + 2α1C1,A − 2κon,AC1,Ar + 2κoff,AC2,A + 2α2C2,A

− 2κon,BRBr + 2κoff,BC1,B + 2α1C1,B − 2κon,BC1,Br + 2κoff,BC2,B + 2α2C2,B

dC1,A

dt
= κon,ARAr − κoff,AC1,A − α1C1,A − β1γrC1,A − κon,AC1,Ar + κoff,AC2,A + β2γrC2,A

dC1,B

dt
= κon,BRBr − κoff,BC1,B − α1C1,B − β1γrC1,B − κon,BC1,Br + κoff,BC2,B + β2γrC2,B

dC2,A

dt
= 2κon,AC1,Ar − 2κoff,AC2,A − α2C2,A − 2β2γrC2,A

dC2,B

dt
= 2κon,BC1,Br − 2κoff,BC2,B − α2C2,B − 2β2γrC2,B
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dCA

dt
= κon,RiboRARibo − κoff,RiboCA

dCB

dt
= κon,RiboRBRibo − κoff,RiboCB

dRibo
dt

= −κon,Ribo(RA + RB)Ribo + κoff,Ribo(CA + CB)

(5.1)

The species and rates are labeled as described in Sections 3.2 and 4.2.
As seen in Section 4.2, the total quantity of ribosomes, denoted as Ribotot,

remains constant:

Ribotot = Ribo + CA + CB = constant (5.2)

5.2 Simulations and Results
For the simulations, we used the two sets of parameters from the Chapter 4, along
with the same initial conditions. The initial conditions and the parameter sets are
summarized below.

Initial Conditions:

• R(0) = 3

• r(0) = 0.75

• C1(0) = 0

• C2(0) = 0

• C0(0) = 0

Common Parameters:

• σR = 3.58

• γR = 1

• σr = 2

• γr = 0.25

• α1 = 1

• β1 = 1

• α2 = 12

• β2 = 7

Parameter Set 1 (Biologically Plausible) Set 2 (Biologically Implausible)
κon,A 10000 200
κoff,A 7.7 0.1
κon,B 10000 300
κoff,B 7.7 0.1

κon,Ribo 15000 1000
κoff,Ribo 7.7 1

Table 5.1: Values of the different scaled parameters of the two sets.

51



miRNA Sharing Model

In this model, compared to the previous one, given that we have a single miRNA
that binds to both mRNAs, it was necessary to double the value of the miRNA
synthesis rate, σr = 2, in order to obtain sustained oscillations. Following this
adjustment, we varied σr in the simulations to observe how the system behaved
under different conditions.

We then simulated the system using Set 2, the biologically implausible parameter
set, and observed different behaviors compared to those in Chapter 4. Specifically,
we noticed that for σr = 1.8 and σr = 1.9, the dynamics of CA and CB could not
be unequivocally classified as in-phase or anti-phase, whereas this distinction was
clearer for σr = 1.7 and σr = 2.0.

The consistency in in-phase or anti-phase dynamics for σr = 1.7 and σr = 2.0,
irrespective of the variation in the ribosome pool concentration, highlights the
impact of miRNA-mediated coupling. The shared miRNA exerts a competitive
effect, providing a strong coupling mechanism between CA and CB, despite ribosome
availability. This robustness points to a more rigid regulatory link compared to
the behavior observed in Chapter 4, where separate miRNAs resulted in greater
sensitivity to ribosome pool changes and less stable phase relationships.

Figure 5.1: Dynamics of molecular species A and B with no initial ribosome pool
(Ribo(0) = Ribotot = 0) for Set 1 parameters. The plots were obtained through
numerical integration of the ODEs in Python, covering 0 to 300 time units, and
focusing on the time range from 250 to 300 to highlight oscillatory behavior. Unlike
what was observed in Chapter 4, miRNA sharing here couples all chemical species,
effectively eliminating differences in period and phase.

52



miRNA Sharing Model

Figure 5.2: Dynamics of molecular species A and B with no initial ribosome
pool (Ribo(0) = Ribotot = 0) for Set 2 parameters. The numerical integration
method and time range are the same as in Figure 5.1. Unlike what was observed in
Chapter 4, miRNA sharing here couples all chemical species, effectively eliminating
differences in period and phase.

Figure 5.3: Dynamics of molecular species A and B for Set 2 parameters with
σr = 1.7 and a limited ribosome pool (Ribo(0) = Ribotot = 0.5), showing anti-phase
behavior between CA and CB. The plots were generated using numerical integration,
similar to Figure 5.1.
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Figure 5.4: Dynamics of molecular species A and B for Set 2 parameters with
σr = 2.0 and Ribo(0) = Ribotot = 0.5), showing in-phase behavior between CA and
CB despite the presence of a limited pool of ribosomes. The integration method is
consistent with that used in Figure 5.1.

Figure 5.5: Phase difference between CA and CB as a function of ribosome pool
concentration for different values of σr. Points represent simulation data, while
lines show interpolated trends for σr = 1.7 and σr = 2.0. Green and red dots
correspond to σr = 1.8 and σr = 1.9, respectively. Integration was performed from
0 to 300 time units, with phase differences calculated in the last 50 time units.

We also attempted to simulate the system for Set 1 of parameters, the biologically
plausible set. However, for this set, the identification of in-phase and anti-phase

54



miRNA Sharing Model

dynamics remained ambiguous due to the signal shapes as one can see in Figures
5.6, 5.7, 5.8, 5.9.

Figure 5.6: Dynamics of the system for Set 1 parameters with σr = 1.9 and
a limited ribosome pool (Ribo(0) = Ribotot = 0.5). The signal shapes make
it challenging to determine whether the dynamics are in-phase or anti-phase.
Numerical integration was conducted as in Figure 5.1.

Figure 5.7: Dynamics of the system for Set 1 parameters with σr = 2.0 and a
limited ribosome pool (Ribo(0) = Ribotot = 0.5). The ambiguous signal shapes per-
sist, making it difficult to determine the phase relationship. Numerical integration
was performed similarly to Figure 5.1.
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Figure 5.8: Dynamics of the system for Set 1 parameters with σr = 1.9 and an
abundant ribosome pool (Ribo(0) = Ribotot = 20). The unclear phase relationships
persist, complicating the determination of in-phase or anti-phase behavior. Integra-
tion was performed in the same manner as in Figure 5.1.

Figure 5.9: Dynamics of the system for Set 1 parameters with σr = 2.0 and
an abundant ribosome pool (Ribo(0) = Ribotot = 20). As in previous cases, the
complex oscillatory dynamics make it difficult to classify the phase relationship
as either in-phase or anti-phase. The integration was conducted using the same
approach as described in Figure 5.1.
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5.3 Discussion
The analysis of the shared miRNA model reveals a more robust phase-locking
behavior compared to the model presented in Chapter 4. The shared miRNA
introduces a stronger coupling between CA and CB, resulting in consistent phase
relationships that are less sensitive to variations in the ribosome pool. This is
particularly evident in the biologically implausible parameter set, where either
in-phase or anti-phase behavior was consistently maintained for specific values of
σr, regardless of ribosome concentration.

In contrast, for the biologically plausible parameter set, the signals exhibited
complex shapes that prevented a clear identification of the phase relationship.
This suggests that, under more biologically realistic conditions, the system may
operate in a regime where the miRNA-induced regulation results in more intricate
dynamic behaviors that do not readily conform to simple in-phase or anti-phase
classifications.
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Conclusions

This research began with the observation of time-sharing dynamics at both pop-
ulation and molecular levels. Liu et al. [1] demonstrated how bacterial biofilms,
under nutrient-limiting conditions, achieve optimized growth through anti-phase
oscillations in metabolic activities. Similarly, Park et al. [3] observed time-sharing
in the competition for RNA polymerase within single bacterial cells. These studies
identified the key ingredients of time-sharing: the presence of at least two oscillators
coupled by a limiting shared resource.

Inspired by these findings, we extended the work of Nordick et al. [2], who
identified sustained oscillations in mRNA, miRNA, and their complexes within
a post-transcriptional circuit. To investigate time-sharing further, we expanded
this model by introducing two types of mRNAs, each regulated by its respective
miRNA, and coupled them through a shared ribosome pool. To observe time-sharing
dynamics in the presence of a limited ribosome pool, we introduced differences in
miRNA binding rates. This adjustment was necessary because molecular species
of types A and B, with identical parameter sets, were unable to exhibit time-
sharing dynamics—they effectively represented identical entities arbitrarily assigned
different labels, even under conditions of resource competition.

Under limited ribosome availability, our models revealed anti-phase oscillations
in mRNA-ribosome complexes (CA and CB) showcasing alternating access to the
shared resource. This temporal separation reduced competition and enabled efficient
resource utilization by both systems. When ribosome availability increased, the dy-
namics shifted to in-phase oscillations, reflecting simultaneous resource access. The
asymmetry was necessary to create a dynamic hierarchy where the more repressed
mRNA initially lagged in ribosome recruitment but later exploited dissociation
phases of the dominant mRNA. This staggered binding enabled the more repressed
mRNA to establish anti-phase oscillations as ribosomes became transiently avail-
able. These results underscore the critical role of resource constraints in driving
time-sharing dynamics and demonstrate the potential for synchronization under
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abundant resources.
We also modeled a shared miRNA scenario, where both mRNA types were

regulated by the same miRNA. This configuration, reflecting some real cellular
conditions, introduced a strong coupling mechanism between CA and CB. The
shared miRNA led to robust and consistent phase relationships, with either in-
phase or anti-phase dynamics depending on the miRNA synthesis rate but not
sensitive to ribosome availability. However, with biologically plausible parameters,
the dynamics became complex and resisted simple phase classification, suggesting
additional regulatory layers introduced by shared miRNA interactions.

Overall, our findings reveal that time-sharing dynamics are a generalizable
principle for optimizing limited resources in biological systems. The interactions
between mRNAs, miRNAs, and ribosomes illustrate how resource constraints and
coupling mechanisms shape oscillatory behaviors. Robust anti-phase dynamics
under constrained conditions align with principles observed in biofilms and molecu-
lar systems, while the transition to in-phase dynamics with abundant resources
highlights the adaptability of biological networks.

Future work should incorporate stochastic elements to understand the role of
noise in oscillatory reliability and validate the models experimentally to confirm
theoretical predictions. This research provides a unified perspective on time-sharing
across biological scales, advancing our understanding of how cells balance competi-
tion and cooperation to maintain homeostasis under resource-limited conditions.
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