
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

Creation of a neuromorphic dataset for
low-power and privacy-aware gesture

recognition

Supervisors

Prof. Stefano DI CARLO

Prof. Alessandro SAVINO

Prof. Alessio CARPEGNA

Prof. Gianluca AMPRIMO

Candidate

Fabio QUAZZOLO

December 2024

Summary

In the context of telemedicine and telerehabilitation, activity recognition plays a
crucial role, especially in camera-based systems.
For example, in Parkinson’s disease, many camera-based systems for automatic
hand motor impairment assessment and rehabilitation, require an initial step
of gesture recognition. In addition, the privacy of these systems is crucial and
traditional RGB videos can be associated with significant privacy issues, especially
during data transmissions.
A new paradigm of cameras, such as event cameras, are promising solutions for
anonymous gesture recognition. Event cameras are neuromorphic devices inspired
by the human retina, acquiring only the information deemed useful, with a high
temporal resolution (in the order of microseconds), low consumption and a high
dynamic range. Combined with neuromorphic architectures such as spiking neural
networks, these systems may provide solutions for gesture recognition at the edge,
guaranteeing low consumption and compliance with privacy regulations.
This thesis aims at collecting a large-scale dataset for gesture recognition using
an event camera (DVXplorer Lite), together with some traditional RGB-Depth
devices (Azure Kinect) and a motion capture system (OptiTrack), for reference.
This dataset can be exploited for training robust spiking neural networks for hand
gesture recognition.
In further details, 25 subjects were recruited among the student population of
Politecnico di Torino and more than 6 hours of hand gestures were recorded,
with a 100 kHz sampling rate for events. Gestures were chosen from typical
movements assessed in Parkinson’s disease (e.g., finger tapping, hand opening-
closing, pronation-supination), to provide a large benchmark of healthy subjects
which may be exploited for further research in the field.
Finally, to provide an example of how this dataset may be exploited by future
researchers, a first attempt at training a spiking neural network using the collected
data was performed. Even if preliminary, results are encouraging and will provide
indications for future iterations.

ii

Acknowledgements

"L’ostacolo è la via"
E’ il modo in cui descriverei il mio percorso al Politecnico.
Un cammino lento ed imperfetto ma necessario, fortemente voluto e soprattutto
mio. Un maestro che mi ha insegnato molto. Ho imparato che attendere è diverso
da aspettare, che il confronto è solo con se stessi e che prendersi il proprio tempo
nelle cose non significa sprecarlo.
Lungo il cammino ho avuto il privilegio di conoscere persone come Stefano e
Alessandro, docenti appassionati, figure ispiratrici ma soprattutto umane, capaci
di creare un gruppo affiatato di talentuosi ragazzi come il Lab 6. Ricorderò con
affetto, Gianluca e Alessio, brillanti ingegneri sempre disponibili a dare consigli e
considerare le cose da un’altra prospettiva.
Riguardando indietro non posso non essere grato per tutte le persone che ne hanno
sempre fatto parte. Ringrazio i Drocchetti, biondi e bruni, per avermi accolto
in famiglia e mostrato l’importanza della disciplina e dell’avere fede. Ringrazio
Gabriella per avermi accompagnato qui per la prima volta ed essere sempre una
presenza costante sia nei momenti di gioia che in quelli difficili. Il maestro Galattico
per avermi dato modo di sfogare le ansie e le paure, insegnandomi a giocare a tennis.
Paoletta, Luisotta e le bimbe per i pranzetti dopo scuola, le cenette scintillanti e
le belle vacanze vissute insieme. Gli amici di una vita Jack, Andreino, Matteino,
Bobo, Dav, Sobre e Pitone siete stati una costante. Un grazie a Corins che mi ha
trasmesso l’importanza e la bellezza di credere nei propri sogni. Lo, Enri e Sorti,
doni preziosi del liceo che mi hanno insegnato che valgo molto più di un voto. Il
mio amico Martin, per la sua grande voglia di vivere e per il suo esemplare amor
fati. Un grazie a Mattia per avermi introdotto al mondo dei microcontrollori ed a
Piesse per aver reso le sessioni di studio un po’ più dolci.
Al mio migliore amico, compagno di avventure, da sempre figura di riferimento ed
esempio di umiltà e dedizione.
A mia sorella per avermi insegnato ad abbracciare la sconfitta, per il suo supporto
ed amore incondizionato e per aver creduto nella mia visione.
A chi non vedo, ma percepisco sempre con me

Siete la mia forza.

iii

Table of Contents

List of Tables viii

List of Figures ix

Acronyms xii

1 Introduction 1
1.1 Digital Healthcare and Telehealth 1
1.2 Gesture Recognition in Telerehabilitation 4
1.3 Research Objectives . 7

2 Background 8
2.1 Neurodegenerative Disorders . 8
2.2 Assessment and Rehabilitation of Parkinson Disease 10

2.2.1 The MDS-UPDR Scale . 10
2.2.2 The Rehabilitation . 11

2.3 Computer Vision . 13
2.3.1 Machine Learning . 14
2.3.2 Convolutional Neural Networks 16
2.3.3 Privacy concerns in camera-based system 19

3 Neuromorphic Systems 20
3.1 Neuromorphic Engineering . 20

3.1.1 Neuromorphic Sensing . 21
3.1.2 Neuromorphic Software . 22
3.1.3 Neuromorphic Hardware . 23

3.2 Event Cameras . 25
3.3 Spiking Neural Network . 27

3.3.1 LIF model . 27
3.3.2 Spikes Encoding . 29
3.3.3 SNN’s learning approches 31

v

3.4 Combining Event Camera and SNN 33
3.5 Existing Neuromorphic Datasets . 33

3.5.1 N-MNIST . 34
3.5.2 DVS Gesture . 34

4 Dataset Creation 35
4.1 Multi-camera Setup . 35

4.1.1 DVXplorer Lite . 38
4.1.2 Kinect Azure . 38
4.1.3 OptiTrack . 39
4.1.4 Camera Calibration . 40
4.1.5 Camera Synchronization . 40

4.2 Experiment Protocol . 43
4.2.1 Tasks . 44

4.3 Data Collection Process . 45
4.4 Dataset Organization . 46

5 Training SNN for Gesture Recognition 48
5.1 Data Preprocessing . 48

5.1.1 From aedat to numpy . 49
5.1.2 Recordings Split . 49
5.1.3 Dataset Split . 50
5.1.4 Tonic Transformations . 53
5.1.5 Applying Transformation and Caching 53

5.2 Model Architecture . 55
5.2.1 Original Net . 55
5.2.2 Simplified Net . 56
5.2.3 Dynamic Net . 57

5.3 Training . 58
5.4 Validation of the Model . 59

5.4.1 Cross Validation . 59
5.5 Hyperparameters Optimization . 60

6 Experimental Results 64
6.1 Original Net Performance . 64
6.2 Simplified Net Performance . 65
6.3 Dynamic Net Performance . 67

7 Discussion 71
7.1 Limitations of the Study . 71
7.2 Privacy and Energy Efficiency . 72
7.3 Future Works . 72

vi

7.4 Conclusion . 73

Bibliography 74

vii

List of Tables

1.1 Benefits of Telehealth . 2
1.2 Telehealth and Telemedicine Challenges 3

2.1 Machine Learning Models and Applications. 16

3.1 Frame based vs Event Camera . 27

4.1 Task combinations with different speeds (S, N, F), repeated twice
for each combination (22 tasks per hand). 46

5.1 Distribution of subjects between Training Set and Test Set. 52
5.2 Original Net Structure. 56
5.3 Simplified Net Structure. 57
5.4 Dynamic Net Structure. 58

viii

List of Figures

2.1 Convolutional Operation . 17
2.2 Hierarchical recognition: classifying a bicycle 18
2.3 CNN basic structure . 19

3.1 Frame vs Event based Cameras . 26
3.2 Biological membrane(a). RC membrane model(b)[7] 28
3.3 Behavior of a LIF neuron [7] . 29

4.1 Multicamera setup: DVXplorer Lite in the green circle, Azure Kinect
in the blue ones. Esync in yellow for camera synchronization 36

4.2 Lab setup: subject position in orange, optritrack cameras in pink
and operator positions indicated by blue arrows A and B. 37

4.3 GIF Checkerboard, inverting colours. 41
4.4 DVXplorer sync connectors . 42
4.5 Different GNDs were welded to have the same reference 42
4.6 Marker Configuration: A for Finger Tapping, B for Finger to Nose,

C for Open/Close, Tremor and Pronation/Supination. 44
4.7 Sequence of gestures represented by 4 frames each. All sequences

are accumulated at 30 fps. 47

5.1 Lab luminosity and hand size per subject 51
5.2 Hand Sizes . 51
5.3 Dispersion Graph with subject markers 52
5.4 Transformations sequence: original data, denoised, cropped, and

downsampled (1 frame illustrated). 54
5.5 Hyperparameter optimization pipeline 63

6.1 Original Net Performance . 65
6.2 Simplified Net Performance . 66
6.3 500 Neurons Net . 67
6.4 Dynamic Net Performance . 68
6.5 Validation loss trend over epochs 69

ix

6.6 Unfrozen Net with early stopping on underfitting runs 70
6.7 Promising run . 70

x

Acronyms

AI
Artificial Intelligence

HCI
Human Computer Interaction

ML
Machine Learning

DNN
Deep Neural Network

ANN
Artificial Neural Network

PD
Parkinson’s Disease

UPDRS
Unified Parkinson’s Disease Rating Scale

VR
Virtual Reality

CNN
Convolutional Neural Network

SNN
Spiking Neural Network

xii

LIF
Leaky Integrate and Fire Neuron

BPTT
Backpropagation Through Time

FT
Finger Tapping

NOSE
Finger To Nose

OC
Open Close Hand

TR
Tremor

PS
Pronation Supination

xiii

Chapter 1

Introduction

1.1 Digital Healthcare and Telehealth

The increase in chronic diseases, the aging of the population and, most notably, the
COVID-19 pandemic, have highlighted the limits and problems of the traditional
healthcare system, suggesting a new approach to medical practice based on the
adoption of digital systems [1].
The rapid evolution of information and communication technologies has in fact
led to the emergence of new models of digital healthcare that provide access to
medical care remotely, breaking down geographical and temporal barriers. Among
these there are "Telehealth" and "Telemedicine" but although they are often used
interchangeably, they refer to slightly different fields [2].

Telemedicine can be defined as using telecommunications technologies to sup-
port the delivery of all kinds of medical, diagnostic and treatment-related services
usually performed by doctors. For example, this includes conducting diagnostic
tests, closely monitoring a patient’s progress after treatment or therapy and facili-
tating access to specialists that are not located in the same place as the patient.
Telehealth is similar to Telemedicine but includes a wider variety of remote health-
care services beyond the doctor-patient relationship. It often involves services
provided by nurses, pharmacists or social workers, for example, who help with
patient health education and social support [2].
The introduction of these new models in the healthcare system has brought many
benefits to both the patient and the service provider. For patients, especially those
with reduced mobility, the elderly or living in remote locations, these technologies
have made it possible to bring clinical services directly to their homes, thus avoiding
costs in terms of time and travel and ensuring timely interventions.
In addition to reducing infrastructure and maintenance costs, this online approach

1

Introduction

also allows healthcare workers to reduce exposure to pathogens, improving the
safety of doctors and patients, especially during pandemics or lockdown periods [3].
Telemedicine platforms are also easily scalable, allowing to efficiently manage data
from many patients, storing their medical history, including diagnoses, past medical
prescriptions and progress over time, all accessible from a single application.

Patients as well as service providers are in favor of adopting and integrating

Benefits Description
Increased Accessibility Provides remote access to healthcare, especially

beneficial for people in rural areas or with mobility
impairments.

Cost Savings Reduces the need for travel, saving time and reduc-
ing costs for patients.

Continuous Monitoring Enables real-time monitoring of patients’ health
conditions via wearable devices or mobile apps.

Flexibility Patients can schedule visits at their convenience
with reduced wait times.

Improved Patient Engage-
ment

Encourages patients to take an active role in their
healthcare through access to online health data and
remote consultations.

Table 1.1: Benefits of Telehealth

telemedicine into the healthcare system, for all the benefits mentioned above. How-
ever, its widespread adoption is still hampered by a number of barriers, including
technology use among older adults, Internet bandwidth speeds in rural areas, and
potential security breaches that could jeopardize patient privacy and confidentiality
[2].
This last issue is particularly critical because it concerns strictly personal and
sensitive patient’s data that could be stolen and intercepted by malicious people
who could then sell or alter them. It is therefore essential to build platforms that
keep this data secure and at the same time develop encrypted communication
protocols that guarantee the transmission of private and complete information.
This also involves ensuring the validity and accuracy of the information transferred,
which may be compressed or reduced due to the limited bandwidth available.
Incomplete information may lead healthcare professionals to make clinical decisions
and treatment recommendations based on potentially inaccurate patient data that
invalidate the effectiveness of the treatment itself.
Despite the still numerous challenges, Telehealth is expected to continue evolving
as an integral part of routine care delivery.
Hybrid models combining in-person and virtual care could become more common,

2

Introduction

allowing for more flexible and patient-centered approaches. Furthermore, advance-
ments in artificial intelligence (AI), machine learning, computer vision and wearable
technologies are expected to further enhance telemedicine services, particularly in
the areas of diagnostics, telerehabilitation and personalized medicine.

Challenges Description
Technological Barriers Limited access to high-speed internet and lack of

familiarity with digital devices can prevent the
widespread use of telemedicine, especially in rural
or low-income areas.

Data Privacy and Security
Concerns

Ensuring the confidentiality and security of patient
data is critical. Cybersecurity risks, including po-
tential breaches of sensitive health information.

Lack of Standardization The lack of unified telehealth platforms and inter-
operability issues between healthcare systems.

Regulatory Issues Varying regulations policies across regions and
healthcare systems can make it difficult for
providers to offer telemedicine services consistently.

Patient Trust Some patients, particularly older adults or those
unfamiliar with technology, may be hesitant to
trust virtual healthcare platforms or may struggle
to use them effectively.

Table 1.2: Telehealth and Telemedicine Challenges

3

Introduction

1.2 Gesture Recognition in Telerehabilitation
Gesture recognition is the process of identifying and interpreting human gestures,
such as hand movements, through sensors or cameras.
This technology represents a fundamental piece in the new discipline of human-
computer interaction (HCI), which deals with making human-machine communica-
tion as simple as possible but at the same time efficient and satisfying for the user.
Movements are acquired by cameras or other sensors such as wearables and are
processed by a computer that, based on the application context, will interpret and
convert these into commands to interact with the software or control hand-freely
the device.
The process usually requires the following steps:

1. Data Acquisition: images or videoframes, representing users’s hand movements
or body gestures, are acquired through cameras or wearble sensors.

2. Pre-Processing: the acquired data is pre-processed, to remove the noise or to
improve the data quality.

3. Feature Extraction: relevant features are extracted from the pre-processed
data.

4. Gesture Recognition Algorithm: ML algorithms are employed to analyze the
extracted features and identify the specific gesture.

5. Mapping to Commands: recognized gestures are mapped to corresponding
commands or actions.

6. Feedback and Interaction: once the gesture is recognized, the system will
execute the corresponding command associated with the specific gesture.

Hand tracking and gesture recognition technology is revolutionizing entire industries
from automotive to retail and customer service, from manufacturing to gaming and
entertainment, improving the user experience in human-machine communication
by facilitating contactless and intuitive interactions.

A sector that can greatly benefit from the application of this technology is modern
healthcare. By taking advantage of the contactless nature of this technology, for ex-
ample, surgeons can consult crucial medical records and diagnostic images without
physically touching the interfaces with their hands, thus avoiding contamination
during surgical operations.
In this context, gesture recognition and hand tracking can also be very valuable for
remote monitoring and rehabilitation, especially in those cases where patients have
particular motor deficits, allowing doctors to visit them and track improvements in

4

Introduction

real time and without the need for physical presence.
A promising application could therefore be the assessment of hand impairment,
which is an essential practice for monitoring neurodegenerative diseases, such as
Parkinson’s, over time [4].
This procedure is currently performed in presence and under the supervision of
a physician. The patient is asked to perform certain tasks with both hands and
the physician evaluates dexterity, range of motion, and any freezing to detect the
severity and progression of the disease.
However, this in-person care, in addition to having shown all its vulnerabilities
during the pandemic, may not be the best way to assess the patient’s manual dex-
terity since it relies on short appointments, which are poorly assigned in outpatient
clinics where patients behave differently than they would do at their home. In
addition, neurologists assess disease progression using well-established rating scales
and patient-reported questionnaires, which have interpretability problems and are
subject to recall bias [5].

In this scenario, Telerehabilitation has emerged as a promising alternative.
Based on computer-vision solutions and ML algorithms, it has the potential to
improve patient care and support physicians to manage PD more effectively.
By capturing and analyzing hand gestures through cameras, these systems are able
to monitor the severity and progression of motor symptoms, such as tremors and
rigidity, and evaluate the patient’s response to therapy directly within their home
environment and in an objective manner.
The data on the patient’s hand gesture movements are indeed captured and then
processed using ML algorithms that can classify different types of movements and
assess their quality, possibly providing direct feedback to the patient.
This allows therapists to monitor patients’ progress remotely and asynchronously
and adapt rehabilitation plans accordingly. Likewise, this approach allows the
patient to carry out their tasks comfortably from home, at any time of the day,
without having to book a hospital visit and without long waiting times.
Besides, the patient is more involved in his rehabilitation path, having platforms
available to consult his progress.

Telerehabilitation solutions, that use gesture recognition and machine learning
algorithms, offer numerous benefits to Parkinson’s patients and caregivers.
In addition to all the benefits of adopting telehealth solutions, it further provides an
objective way to evaluate the patient’s task performance, reducing the subjectivity
that can arise from human assessments.

Despite the many benefits and great potential of this technology, there are still
many challenges that limit its widespread adoption. Some of the most important

5

Introduction

challenges to consider are:

• Data privacy and security.

• Power Consumption.

Indeed, the collection of remote sensitive health data raises concerns about patient
privacy and personal information security. Many of the cameras usually used in
image acquisition are common RGB sensors that capture detailed frames, including
sensitive data regarding the patient’s physical characteristics and surroundings
(home, family, or even personal documents) which are not relevant for the analysis.
Advanced encryption and secure data management protocols are therefore essential
to ensure secure data transmission and storage.
The second challenge regards the energy demands required by RGB cameras and
the computational power demanded for running common machine learning algo-
rithm such as ANN which could become a critical issue if the adoption of these
technologies becomes global.

In recent years, thanks to the enormous technological progress, new models of
artificial neural networks and sensors have been developed that can process and
acquire information by imitating the behavior of the human brain and eye, and
perform these operations very efficiently and with minimal energy expenditure.
This new discipline is called Neuromorphic Engineering and promises great improve-
ments in applications involving gesture recognition, object tracking and machine
learning with a focus on privacy and low energy consumption.

6

Introduction

1.3 Research Objectives
The advent of neuromorphic engineering has introduced new ways of acquiring and
processing data with particular attention to the efficiency of these processes in
terms of energy and computation.
In recent years, neuromorphic sensors have been developed for the first time, special
cameras capable of acquiring events rather than classic frames.
Commonly called "event cameras", these sensors emulate the behavior of the human
eye by recording only the information deemed useful with a high temporal resolution
and a high dynamic range. These characteristics make them particularly suitable
for applications related to gesture recognition, object tracking or artificial vision in
the robotic field, as they are able to capture everything that "moves" in the order
of microseconds and in very extreme lighting conditions.
Similarly, artificial neural networks evolved by drawing inspiration from the human
brain and the way it processes information and learns.
Spiking Neural Network are based on a new model of neuron that, if and only
if sufficiently stimulated, emits a spike, thus exploiting the advantages of the
asynchronicity and sparsity of input information such as events.
The union of these technologies promises great improvements in terms of security,
privacy of the acquired data and energy consumption in all those applications
related to the tracking of hands or objects and their recognition.
Despite the growing interest in the event cameras field, there are still too few
neuromorphic datasets available online with which to train SNN models, especially
in the medical and rehabilitation domain.
The goal of this thesis is precisely the creation of a large-scale dataset of hand
gestures typically used in the assessment of Parkinson’s disease, using a particular
neuromorphic sensor called DVXplorer-lite.
The dataset just created has been used to train and test a spiking neural network
model to better understand the compatibility between the data produced by this
type of sensor and the neuromophic model adopted.
The good results obtained want to be a starting point for future research studies
and applications having neuromorphic systems at their center.

7

Chapter 2

Background

2.1 Neurodegenerative Disorders

In recent decades, thanks to scientific and technological discoveries in the medical
and pharmaceutical fields, the average life expectancy has increased significantly,
leading to a significant aging of the population.
These improvements have certainly brought many benefits since cures have been
found for many diseases and technological machinery has let doctors to operate
in a non-invasive, safe and very precise way on patients. The introduction of
vaccines has also allowed to prevent many epidemics by blocking them at birth and
containing their expansion.
All this has undoubtedly improved the general well-being of the population but
at the same time the increase in life expectancy leads to the introduction of new
diseases that are a natural consequence of aging.
Among the most common are Parkinson’s and Alzheimer’s, which currently affect
millions of people around the world and whose incidence estimates are growing
year after year.
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized
by the gradual loss of dopaminergic neurons in the substantia nigra of the midbrain,
which results in an unbalance between inhibitory and excitatory mechanisms. It
is the second most common neurodegenerative disorder after Alzheimer’s disease
affecting 6 million people worldwide and it is predicted to be doubled by 2040 [6].
There is a lot of research going on to understand the causes of the disease, the
possible correlations with a particular lifestyle or a possible genetic inheritance in
order to develop an effective cure but, despite the many studies, we are still far
from having a full understanding of it.
Current criteria used in the diagnosis of PD include the presence of bradykinesia
(slowness of movements) as well as the presence of rest tremor in the hands, arms,

8

Background

legs, jaw, and face but also difficulties with balance, speech, coordination and
rigidity. These symptoms, which are considered "motor-symptoms" and are visible
to the human eye, begin slowly and then gradually worsen over time.
On the other hand, even more important are those symptoms defined as "non-motor"
and not easily visible, as they can occur many years before the disease is clearly
diagnosed at a clinical level. Examples of these are depression, cognitive decline
and sleep disorders.
Detecting these would be very crucial to diagnose PD at its inception, many years
before the motor symptoms negatively affect the life of patients. Furthermore, it
would be possible to start treatments that are able to limit or alter the normal
course of the disease, although these "disease-modifying" treatments are not yet
available.
Currently, there are no diagnostic tests available to detect Parkinson’s disease
before symptoms appear. Physicians assess disease progression in patients using a
variety of clinical evaluations, often measured with the Unified Parkinson’s Disease
Rating Scale (UPDRS)[5].
The most commonly used treatment is levodopa, a drug that helps increase dopamine
levels, temporarily alleviating symptoms. However, finding the right dosage of
levodopa is complex, and as the disease advances, the drug’s effectiveness diminishes
(known as "wearing off").
At present, there is no cure to stop or reverse the progression of Parkinson’s
disease. Therefore, all available treatments aim to enhance patients’ quality of life
by managing symptoms.

9

Background

2.2 Assessment and Rehabilitation of Parkinson
Disease

Recent studies conducted by the Parkinson’s Foundation Rehabilitation Medicine
Task Force have shown that constant and continuous assessment and rehabilitation
play a very important role in improving symptoms, functionality and quality of life
and in reducing disability in patients with Parkinson’s.
These practices, according to studies, are introduced into treatment only in the
already advanced stages of the disease, when motor symptoms are already evident
and limit the patient in daily activities.
According to the Parkinson’s Foundation, the patient should instead undertake
rehabilitation services in the early stages of the disease and constantly monitor its
progress, modifying treatments based on its evolution.
The assessment therefore does not only serve to diagnose the disease, but plays a
crucial role throughout the treatment and rehabilitation process.

2.2.1 The MDS-UPDR Scale
Assessment plays a key role in Parkinson’s care, as periodic evaluations allow
changes in the patient’s condition to be monitored and the rehabilitation program
to be adapted.
Assessment scales such as the MDS-Unified Parkinson’s Disease Rating Scale (UP-
DRS), the Hoehn and Yahr Scale, or the Freezing of Gait Questionnaire (FOG-Q)
are commonly used for this practice. The choice of scale depends on the objectives
of the assessment, which can range from assessing motor symptoms to quality of
life, non-motor symptoms, and functional risks, allowing doctors to create targeted
treatment plans based on the situation.

The MDS-UPDRS is often preferred over other assessment scales because it pro-
vides a more complete and detailed picture of the condition of the patient with
Parkinson’s (PD). It is divided into four sections:

1. Non-motor symptoms: assesses cognitive, behavioral, and mood problems such
as depression, anxiety, and other cognitive alterations.

2. Activities of daily living: to assess difficulty in performing daily activities,
such as eating, dressing, and walking.

3. Motor examination: to measure motor symptoms such as tremor, muscle
stiffness, bradykinesia (slowness of movement), and balance problems.

4. Complications of therapy: to evaluate side effects of medications such as
dyskinesia and motor fluctuations.

10

Background

The doctor guides the patient through all the phases of the experiment, assigning
to each section of the questionnaire a score from 0 (no symptoms) to 4 (severe
symptoms). All the scores of each section will be added together and will help to
determine the overall level of disability of the patient.
This scale, as already mentioned, has been developed and validated through a
rigorous process of international standardization, which involved experts and
patients. The strengths, which make it the global standard used today, lie in its
multidimensional nature as it provides an extremely detailed analysis of motor
symptoms and not, unlike other scales that often focus on one dimension at a time.
In this thesis-project, some tasks, belonging to the analysis of the motor part of
this scale, were taken into consideration as part of our experiment such as finger
tapping, pronation and supination and tremor of the hand. These and other tasks
will be introduced in more details in the following chapters.

2.2.2 The Rehabilitation
The rehabilitation process of patients with PD is complementary to the assessment
and fundamental in the treatment and limitation of the disease, as it is able to
improve the motor symptoms, mobility and balance of those who suffer from it.
The complexity of the disease requires a multidisciplinary approach that involves
neurologists, physiotherapists, speech therapists, occupational therapists and psy-
chologists, in order to address the many facets of this.
Among the most common practices we can mention:

• Physical exercise: muscle strengthening and aerobic exercises to increase
strength, decrease stiffness and improve cardiovascular resistance. Stretching
and balance and coordination exercises are also useful to improve balance and
postural stability, reducing the risk of falls.

• Occupational therapies: all those activities that aim to promote health and
well-being through occupation. The goal is to help patients improve the skills
needed for common daily activities such as walking, writing, eating and more
generally ensure safety and ease of movement in the home environment.

• Speech Therapy Rehabilitation: Difficulties in speaking and swallowing are
common in patients with PD. Therefore, there are exercises to improve vocal
tone, as well as exercises for safe swallowing to prevent the risk of choking.

In recent years, therapies based on virtual reality (VR) have been successfully
tested through which patients are free to practice complex movements in complete
safety and interact with visual and auditory stimuli in a protected environment.
These innovative therapies, better known as "exergames", in addition to improving
motor skills through specific exercises, exploit their "game" effect to increase the

11

Background

patient’s motivation and adherence to treatment through challenges, scores and
goals to be achieved [6].
Many studies confirm that practicing sports or physical exercises in general help to
increase brain plasticity by raising the levels of neurotrophic factors such as BDNF.
To further enhance the benefits of physical activity, non-invasive therapies have
been developed, based on transcranial direct current stimulation (tDCS) that use
weak electrical currents to modulate brain activity.
The increasingly common use of wearable devices, such as motion sensors and
biofeedback systems, allows for constant monitoring of the patient, providing
objective data on progress and allowing for therapeutic program adaptation.
Furthermore, the large amount of data collected by these devices can be used
to train complex algorithms and models to recognize possible patterns and help
doctors predict the development of the disease.

12

Background

2.3 Computer Vision
Computer vision is a branch of artificial intelligence that aims to enable computers
to see, recognize, and understand the world around them, through images, videos,
and other visual inputs.
To achieve this, computer vision uses algorithms and models based on machine
learning that, when subjected to a large amount of data, are able to learn from it
to identify relevant features and generalize to new data.
Among the most efficient and high-performance models are artificial neural net-
works, whose operation is directly inspired by the human brain. These networks are
made up of several layers placed in sequence, each of which is composed of many
neurons. These neurons can be modeled in different ways based on the desired
behavior and the application that is to be implemented. Neurons are the basic
units of an ANN, being able to exchange information between each other through
interconnections called "synapses", to which are associated "weights" that indicate
the importance of the connection.
In the following subchapters, some of these models will be explored in more detail
and how they are able to understand and interpret an image will be explained.
These computer vision algorithms can analyze the image in various aspects, depend-
ing on the techniques used, the type of image and the task performed. Possible
tasks include:

• Image classification: understanding which class the subject represented in the
image belongs to, assigning it a label (example: it is a cat, it is a dog etc.).

• Object detection: using image classification to detect if one or more classes
can be found in a given image (example: detecting the possible presence of
damage on a surface, a machine or a product).

• Image segmentation: dividing the image into meaningful sections, called
segments, to make image processing more efficient and faster.

• Face Recognition: recognition of people’s faces for biometric security or auto-
matic identification applications.

• Action Recognition: recognition of particular sequences of images that represent
movements, signals, gestures. It is the basis of object tracking, that is, following
an object, appropriately recognized, in space and time.

The ability to correctly perform these activities has opened the doors to multiple
applications in as many sectors.
In the manufacturing and industrial sector, with the use of computer vision, it
is possible to establish quality and recognize any defects in products. Similarly,

13

Background

by analyzing images relating to the machinery itself and the production lines, it
is possible to implement predictive maintenance mechanisms, avoiding machine
downtime and delays in production. By monitoring the production environment, it
is also possible to identify any risk situations that could compromise the safety of
workers and prevent them from occurring.
In the automotive sector, more specifically in autonomous driving, artificial vision
is essential for detecting obstacles, recognizing road signs and pedestrians. It allows
the vehicle to accurately understand the surrounding environment and allows it to
make safe decisions.
Finally, in medicine and telemedicine, it is useful in recognizing diseases such as
tumors and other pathologies through the analysis of magnetic resonances and
tomographies, allowing the doctor to operate with greater precision and adapt the
therapy based on the patient’s personal situation.
In addition to assessment and telerehabilitation applications, it is useful in rec-
ognizing gestures or other movements of interest to monitor the progress of the
disease or simply to support the patient in his rehabilitation therapy by providing
real-time feedback and helping him in exercises.
To achieve these goals, computer vision uses advanced techniques, often based on
machine learning models that will be introduced in more detail in the following
paragraphs.

2.3.1 Machine Learning
Machine Learning is a branch of artificial intelligence that aims to teach machines
to learn something.
Unlike classic deterministic algorithms implemented by programmers by writing
code, ML uses models and techniques that allow the algorithm to "learn" from the
data itself provided as input.
There are various models capable of learning from data, each with its own charac-
teristics and applications, summarized in Tab 2.1.
The model, appropriately chosen based on the desired task, is subjected to a large
amount of data, such as images, videos, text or any other form of structured or
unstructured information, this phase is called Training. During training, the model
adapts its internal parameters in order to improve its predictions or decisions.
This process is based on the optimization of a cost function that measures the
discrepancy between the model’s predictions and the actual input data, allowing
the model to learn and improve based on its errors.
There are three main types of machine learning that differ in that they use different
learning approaches:

• Supervised machine learning

14

Background

• Unsupervised machine learning

• Reinforcement learning

Supervised machine learning uses rigorously labeled training datasets, which means
that each input element to the model will be accompanied by its label representing
the class to which the element belongs.
The model receives as input both the question (the data to be classified) and
the correct answer to that question (the class to which it belongs). In this way,
the model is constantly supervised during the training phase and, receiving the
correct output, is able to modify its parameters to improve future predictions. This
approach is particularly suitable for object classification problems.

In unsupervised machine learning, on the other hand, only the input (the data) is
given to the model without providing it with any correct answers or labels. The
model explores the data, analyzes it, and tries to group similar elements together.
Based on these similarities in the data, the model then creates groups (called
clusters) without knowing exactly what they represent. This type of approach is
particularly useful when having large amounts of data that are difficult to analyze
manually and not having labels for the data. Furthermore, the unsupervised nature
is particularly advantageous for finding new patterns and correlations in the data,
thus uncovering any hidden structures.

Reinforcement learning aims to make a model learn through trial and error mecha-
nisms in a given environment, which involves rewards and penalties based on the
resulting actions. Unlike the two approaches presented above, this type of learning
is based on sequential decisions, where the action to be performed depends on the
current state of the system and influences the future state. The agent behaves like
a chess player during a game, each move and current situation of the environment
influences future choices. This type of approach is particularly useful and promising
in fields such as robotics where the environment is constantly evolving or in all
those applications where it is important to optimize the long-term goal, such as
finance and personalized marketing.

ML is the basis of many current applications, being able to exploit the large
amount of data available to train models. Among these, it is particularly useful in
Computer Vision because it allows computers to identify and interpret patterns
in images and videos, tasks that would require complex programming, giving the
model the ability to generalize to new inputs similar to those on which it was
trained.
For this purpose, convolutional neural networks, a ML model, are very suitable due
to their architecture proper to the recognition and processing of spatial patterns in

15

Background

images. These will be briefly introduced in the following paragraph.

Model Description Application
DeepLearning Mod-
els

Models based on deep neu-
ral networks (ANN, CNN,
RNN, SNN) capable of learn-
ing complex patterns.

Facial recognition, au-
tonomous driving, medical
diagnostics

Decision Trees and
Random Forests

Sequential choice based mod-
els that divide data into
segments; random forests
combine multiple trees for
greater accuracy.

Medical diagnosis, coded
risk prediction, image clas-
sification

K-Nearest Neigh-
bors (KNN)

Simple classification algo-
rithm that assigns a label
based on the most similar
neighbors in the dataset.

Product recommendations,
pattern recognition, image
analysis

Support Vector Ma-
chines (SVM)

Algorithm that finds a hy-
perplane to separate cate-
gories of data, used for classi-
fication and regression prob-
lems.

Object recognition, text cat-
egorization, bioinformatics

K-Means Cluster-
ing

Unsupervised algorithm that
groups data based on sim-
ilarities, forming distinct
clusters or groups.

Image segmentation, market
analysis, anomaly detection

Table 2.1: Machine Learning Models and Applications.

2.3.2 Convolutional Neural Networks
Convolutional neural networks, abbreviated CNN, are a type of deep neural net-
works that are particularly capable of identifying patterns and recognizing images
and objects.
Their deep nature is motivated by the presence of several hidden layers called
"convolutional layers", responsible, as the name suggests, for convolution operations.
The convolution operation involves the application of filters, called "kernels", to the
pixel matrix representing the input image. More specifically, each filter is run over
the input matrix, multiplying each value (of the filter) by the corresponding values
in the portion of the image below and adding the result to obtain a single value for
each position of the filter. This process, shown in Fig.2.1 generates a submatrix

16

Background

called activation map (or feature map).
Each filter is responsible for detecting certain features, such as edges, and simple
shapes for the first levels, up to increasingly complex and abstract features, such
as entire objects, in the deeper layers.
This process of breaking down the problem into subproblems and recomposing

Figure 2.1: Convolutional Operation

the simple solutions to arrive at recognizing and classifying a given image, is
metaphorically comparable to solving a puzzle. You start by identifying the tiles
representing the edges of the various figures, you join these in order to give shape
to the figures and gradually you proceed to join them to create the final image. A
bottom-up approach as shown in Fig.2.2.
To reduce the dimensionality of the data produced, the so-called pooling layers

are placed between the various convolutional layers, which have the objective of
sub-sampling the feature maps by summarizing the information they represent.
The alternation between convolutional layers and pooling layers constitutes that
part of the network dedicated to feature extraction.
Subsequently, the feature maps are flattened to form a single large one-dimensional
vector, this phase is called "Flattening". At this point the vector is mapped into
what is called the "Fully Connected Layer" in which all the neurons belonging to a
layer are connected to all the other neurons of the previous and subsequent layers.
This layer is typical of ANN networks and is responsible for the actual classification
phase, at the end of which the network returns its prediction in the form of a
percentage.
In order for the network to be able to learn complicated relationships and approx-
imate complex functions, activation functions have been introduced, which are

17

Background

Figure 2.2: Hierarchical recognition: classifying a bicycle

mathematical functions that introduce non-linearity in the model. Without them,
each layer of the network would be just a linear combination of the inputs.
These functions are applied to the output of each neuron in all convolutional layers
and in fully connected layers. There are many activation functions to choose
from, which have specific characteristics that can influence the learning speed, the
representation capacity of the network and the risk of some problems. Among the
most used we must mention:

• ReLU : stands for "Rectified Linear Unit" and is the most used function in
CNNs. It is defined as f(x) = max(0, x), so it only passes positive values and
makes negative values zero.

• Sigmoid and Tanh: used in the simplest models, especially in the final layers.

• Softmax : typically used in the last layer of classification networks, it normalizes
the output in a probability distribution for each class.

In general, the choice of the most suitable activation is guided by the complexity
of the network and the task to be performed. Compared to Sigmoid and Softmax,
which require exponential calculations, ReLU are very fast and easy to calculate
and for this reason more commonly used.
In Fig.2.3 a summary diagram of the structure of a typical CNN.

18

Background

Figure 2.3: CNN basic structure

2.3.3 Privacy concerns in camera-based system
In order to function, computer vision requires many images and therefore acquisition
systems that are sufficiently fast and have good temporal and spatial resolution.
Among these, RGB cameras have been widely used for their ability to acquire
detailed color images, which allow an accurate representation of scenes, thus
facilitating the recognition of objects, faces and characteristics of the environment.
The large amount of visual details captured in the image also makes it easier to
train ML models.
However, this comes at a high cost, especially considering the applications and
contexts in which these systems operate: privacy and security.
Since RGB images include sensitive data, such as people’s faces and physical
features, there is a possibility that specific subjects may be identified, especially in
public spaces or in personal monitoring applications.
This is particularly relevant if the data is transferred or stored in cloud systems,
where it may be exposed to risks of unauthorized access, violations, or used for
unforeseen purposes.
The risk is also accentuated by the possibility of associating images with location
data and the acquisition of information regarding patients’ home environments,
including any relatives or family members of the same.
To address this problem, sensors have been developed that are able to capture
only the information considered necessary, thus avoiding capturing the surrounding
environment or details that are not essential to the analysis, such as colors or
features.
Examples of these sensors are the event cameras and the depth sensors, both used
in this project will be discussed in more detail in the following chapters.

19

Chapter 3

Neuromorphic Systems

3.1 Neuromorphic Engineering

Neuromorphic engineering is an interdisciplinary subject that takes inspiration
from biology, physics, mathematics, computer science and electronic engineering
that aims to design artificial neural systems whose architecture and operation are
based on those of biological nervous systems[7].
Although it is a subject of study and research today, its invention dates back many
years and a first application of its principles was proposed by Carver Mead in 1980.
Mead proposed using the principles of biology to design electronic circuits that
mimic neuronal functions. His goal was to overcome the limitations of traditional
computing architectures, improving energy efficiency and real-time processing
capabilities.
In traditional computing systems, in fact, information processing and storage occur
in separate areas (Von Neumann architecture) thus leading to a continuous transfer
of data between these two entities that is inefficient in computational and energy
terms, causing a lot of bottleneck issues.
Especially nowadays with the widespread diffusion and adoption of AI and its
applications across all sectors, the issue of energy consumption is one of the main
problems to be addressed.
With traditional computers training neural network models, or performing complex
tasks on large amounts of data, is becoming increasingly energy-intensive and these
are often not very flexible in adapting to changing conditions. A human brain is
estimated to use just 20 watts to perform complex tasks, unlike these power hungry
computers that require much more for the same operation.
In this context neuromorphic systems try to solve these problems through parallel
and asynchronous processing that emulates the brain’s neural networks.
At the base of these systems are neurons, or rather artificial versions of biological

20

Neuromorphic Systems

neurons. These are the fundamental units of the human brain responsible for
processing and transmitting signals through electrical impulses called "spikes".
In an attempt to emulate the behavior of the human brain, two different approaches
have been explored, software side and hardware side, that will be introduced in the
following paragraphs.

3.1.1 Neuromorphic Sensing
Neuromorphic sensing is an approach to data acquisition and processing inspired by
the functioning of the biological sensory system, where sensors mimic the behavior
of neurons in capturing and transmitting information efficiently [7].
Unlike traditional sensors that generate a continuous stream of data at a constant
sampling rate, neuromorphic sensors produce asynchronous events that are gener-
ated only in response to significant changes in the environment.
The asynchronous nature of these sensors, based on the acquisition and processing
of events, significantly reduces the amount of data to be processed, thus improving
their energy efficiency and real-time capability.
This new approach makes neuromorphic sensing particularly useful and suitable in
sectors such as robotics, augmented reality and gesture recognition applications as
in our case.

A prime example of a neuromorphic device is the event camera, commonly referred
to as a dynamic vision sensor. These devices excel at capturing "events," which
correspond to changes in brightness at individual pixels as they occur.
This new type of camera was developed taking inspiration from the human bio-
logical eye that is able to capture only the information deemed useful in a highly
responsive and low-energy way [8].
Tactile, acoustic, and olfactory devices have also been developed, all designed to
mimic the biological processing of sensory information, but will not be explored
further as they are not relevant to this project.

Although their use is not yet widespread in common applications, these sensors
offer numerous advantages over traditional sensors including:

• Reduction of energy consumption: as explained above, there is less data to
process but more relevant in terms of importance of the information acquired,
leading to improved energy efficiency.

• Low latency: these sensors are extremely reactive to environmental changes,
being able to acquire information on the order of microseconds.

• Ability to operate in dynamic environments: they can be used in extreme
environmental conditions, such as too little or too much light, in motion, etc.

21

Neuromorphic Systems

In the following chapters the event camera sensor will be explained and explored
in more detail, as it was directly used in the creation of the dataset.

3.1.2 Neuromorphic Software
The problem of excessive energy consumption by artificial neural networks has led
to the development of new network models, called Spiking Neural Networks [7].
As in normal artificial neural networks, SNNs are made up of several interconnected
layers, each of which is composed of neurons.
Spiking neurons, as the name suggests, receive and emit "spikes", binary signals
very similar to those exchanged in our brain, replacing the floating point values
exchanged in the most common ANNs.
The advantage of having discrete values, 1 or 0, as signals removes the computa-
tional complexity due to the multiplications between weights and high-precision
activations values, typical of ANNs, that are responsible for high consumption and
also delays.
Instead of having floating point values that encode information based on intensity,
SNNs work with single-bit binary activations that encode information over time.
The concept of time is very important and represents a fundamental difference
from normal models.
Spike neurons operate on a weighted sum of inputs, spikes trains of other neurons,
which are generated over time just when certain conditions are met. Rather than
passing the result to a sigmoid or relu function, as in ANNs, this weighted sum
contributes to the time-dependent membrane potential U(t) of the neuron itself.
If sufficiently stimulated the membrane potential of the spiking neuron exceeds
the potential threshold and, when this condition is reached, the neuron emits an
output spike that will be transmitted as input to all the other neurons connected
to it.
On the contrary, if the membrane potential does not reach the threshold, its value
will tend to decrease over time, until it returns to a stable state. This effect is
called "Leakage effect".
The neuron model just described is called "Leaky Integrate and Fire" neuron,
abbreviated LIF, and emulates well the real behavior of biological neurons.

In the following chapters SNNs will be further explored along with the possi-
ble learning methods available, with more attention to the design choices used in
this work.

22

Neuromorphic Systems

3.1.3 Neuromorphic Hardware

To make the most of the advantages and features of neuromorphic software, hard-
ware architectures have been developed over the years that draw direct inspiration
from the physical structure of the biological brain and its functioning [9].
The structure and functioning of these devices are based on the neuron, the basic
computational unit, and the synapses, connections between neurons, which allow
the transmission of information.
The information is encoded through spikes, which are events generated by neurons
asynchronously, that is, only when certain conditions occur.
A fundamental difference compared to the classic architectures commonly used lies
in the location of processing and memory.
In Von Neumann architectures, in fact, the data is processed by a CPU that recalls
them from a memory and stores them in the same memory at the end of the
processing.
The limitation of these architectures is that very often the CPU and memory
are on different chips and the transfer of information between the two parts is
energy-intensive and can cause bottlenecks that reduce speed.
Neuromorphic devices have been developed precisely to solve these problems. As
already explained above, these neuromorphic chips are made up of many neurons
that communicate with each other via synapses. The novelty lies in the fact that
the processing and storage of information takes place in the same place, inside the
neuron, avoiding the normal exchanges between memory and computational units
of normal computers.
In addition to improving performance and reducing consumption, this approach
introduces other advantages.
Each neuron, being a computational unit in itself and having its own independent
memory, can work in parallel with the others without dependencies of any kind.
Furthermore, their distributed nature allows easy scalability and high fault toler-
ance.
If you want to increase the network, you will simply need to add new chips to
the existing ones. Likewise, if a particular chip fails, the system can still function
properly because the information is distributed across many places.
Because of these characteristics, these chips are well suited to running machine
learning algorithms at the edge, where there are physical limits of space and energy.
Other potential applications of this technology include self-driving cars, drones,
robots, smart home devices, and voice and image processing.
Furthermore, creating systems that emulate the human brain could help us better
understand how they actually work and thus create systems that are ever closer to
their biological counterparts in nature.

23

Neuromorphic Systems

Some examples of neuromorphic hardware are:

• IBM’s TrueNorth chip: a neuromorphic chip developed by IBM that simulates
one million neurons and 256 million synapses. It uses a spiking neuron network
and an event-based structure, enabling highly parallel processing with very low
energy consumption. It is 10,000 times more energy-efficient than conventional
microprocessors and only uses power when necessary.

• Intel Lab’s Loihi 2 : has two million synapses and over one million neurons per
chip. They are optimized for SNNs and support real-time learning through
synaptic plasticity mechanisms such as Spike-Timing-Dependent Plasticity
(STDP).

• SpiNNaker : a neuromorphic supercomputer developed by the University of
Manchester, designed to simulate large-scale neural networks. Each SpiNNaker
chip contains 18 processing cores capable of simulating neurons in real time. It
has been used to simulate detailed models of the brain, such as the mammalian
cerebral cortex.

24

Neuromorphic Systems

3.2 Event Cameras
Event cameras are the most representative example of a neuromorphic sensor.
Also called "Dynamic Vision Sensors", their development takes inspiration directly
from the human retina and its particular sensitivity in detecting rapid changes
in the scene and in leaving out everything that is immobile and devoid of useful
information.
The main difference compared to normal visual acquisition systems, such as RGB
cameras, concerns precisely this characteristic: the ability to record useful informa-
tion only when it occurs.
Traditional cameras record videos in the form of sequences composed of different
frames, or snapshots of the current scene, captured at regular intervals with a fixed
frequency defined in frames per second (fps).
A synchronous approach of this type has limitations in terms of redundancy of
the information acquired, with consequent high flow of data generated, and energy
consumption that can be expensive especially in static scene situations.
In event cameras each pixel, composing the sensor, is independent from the oth-
ers and is able to generate information when the pixel itself detects a change in
brightness in the scene, in a completely asynchronous manner. The information
generated by the individual pixels is called "event" and is encapsulated in a packet
containing:

• the coordinates (X,Y): spatial coordinates of the pixel within the matrix.

• the polarity: can be positive or negative, indicates the direction of the detected
change in brightness.

• the timestamp: instant in time in which the detection occurs.

These sensors record the scene in the form of a series of events, which are generated
only if changes in brightness have occurred at the level of individual pixels. The
variations in brightness signal that the subject is moving or the scene is changing,
situations in which the camera must record.
In addition to energy efficiency and the reduction of redundant data, event cameras
have two major advantages: a high temporal resolution and a high dynamic range.
They are capable of recording scene changes in the order of microseconds, which
makes them ideal for applications that require high speed and temporal precision,
avoiding unwanted phenomena such as blurring.
Furthermore, having a high dynamic range, they are able to operate in low-light
and high-contrast scene situations, since they detect changes rather than static
scenes, offering greater adaptability to different lighting conditions.
In Fig.3.1 a comparison is shown between the two outputs acquired respectively by
a frame based camera and an event camera.

25

Neuromorphic Systems

The subject is a rotating disk of uniform color with a black dot drawn on it whose
movement is to be traced over time. The frame camera captures frames at fixed
time intervals, including the rotating disk in the images, irrelevant and redundant
information, but failing to accurately track the trajectory of the black dot, which
appears to jump in time due to the lack of intermediate frames.
Looking at the output of the neuromorphic sensor, can be observed how the dot is
accurately tracked in time, represented as a continuous series of events, while the
information regarding the disk is completely absent, as it is perceived as static and
therefore irrelevant for the purposes of capture.
The above-mentioned features make event cameras particularly suitable for appli-

Figure 3.1: Frame vs Event based Cameras

cations that require a rapid response and at the same time a detailed and accurate
representation of movement.
Robotics, drones and autonomous driving benefit from them, allowing real-time
detection of obstacles in extremely variable lighting conditions.
The high temporal resolution and the ability to filter movement from other sen-
sitive information, that is not of interest, make these sensors very suitable also
for diagnostic and monitoring applications in which it is of primary interest to
guarantee privacy and security of the information acquired regarding the patient.

26

Neuromorphic Systems

Feature Frame based camera Event Camera
Temporal Resolution 33 ms (30 fps) 1 µs
Spatial Resolution Up to 12 MP Around 0.3 - 1.2 MP
Energy Consumption 1-10 W 10-100 mW
Dynamic Range 60-70 dB 120-140 dB
Pixel Bandwidth Constant, up to 1 Gbps Variable, 10-100 Mbps

Table 3.1: Frame based vs Event Camera

3.3 Spiking Neural Network
Spiking neural networks are part of what are called neuromorphic algorithms, that
is, artificial networks and models that simulate the principles of brain functioning,
capable of working and processing information through spikes.
Unlike floating point values, commonly used by neurons in ANNs, spikes are single-
bit binary activations that encode information in time rather than intensity and
represent the most plausible explanation to date of how the brain is able to process
and exchange information.

3.3.1 LIF model
SNNs are formed by groups of interconnected neurons organized in layers, having
inputs and an output that are encoded in spike trains. In Fig.3.3 a schematic
model of a spiking neuron is shown.
There are many mathematical models able to describe the temporal evolution of
the membrane potential of the biological neuron, among these the most used is the
Leaky Integrate and Fire model, abbreviated "LIF".
The first to hypothesize a model of this type was Lapicque in 1907 [10] who tried
to stimulate the nerve fiber of a frog’s leg using a current source and observing how
long it took to contract based on the amplitude and duration of the current.
From his experiment he concluded that the behavior of a spike neuron was similar to
a low-pass filter circuit RC, composed precisely of a resistance R and a capacitance
C.
In Fig.3.2 [7] can be observed in (a) the bilipid membrane of a neuron that separates
the intracellular medium from the extracellular medium, which is represented in (b)
as the capacitance C of the circuit, and an ion channel that allows charge carriers
to diffuse through the membrane by opening and closing. The latter is represented
in (b) as the resistance of the circuit.
The membrane dynamics, modeled using an RC circuit, can be represented as:

τ
dU(t)

dt
= −U(t) + Iin(t)R (1)

27

Neuromorphic Systems

Figure 3.2: Biological membrane(a). RC membrane model(b)[7]

By solving (1), considering the case of constant current and making a series of
approximations not reported here, we obtain the expression of the membrane
potential:

U [t] = βU [t − 1]ü ûú ý
decay

+ WX[t]ü ûú ý
input

− Sout[t − 1]θü ûú ý
reset

. (2)

This expression represents the membrane potential of a neuron that varies over
time based on the input, the current membrane potential and a possible reset due
to the activation of the neuron at the previous step.
As can be observed from (2) 3 terms can be identified:

• Decay: represents the membrane decay with respect to the value at the previous
step U[t-1]. The parameter β is defined as "membrane decay factor", it takes
values between 0 and 1 and indicates how quickly the potential dissipates over
time. It represents the "Leaky" behavior of the LIF model.

• Input: WX[t] represents the current input arriving at the neuron. W represents
the synaptic weight associated with X[t] which represents the value of the
input at time t. For simplicity both X[t] and W refer to the weight of a single
input to a single neuron. Normally the input is vectorized and the weights are
represented using a matrix.

• Reset: this term represents the reset of the membrane potential that occurs
when the neuron has generated a spike at the previous step. In fact, if the
membrane potential exceeds a certain threshold defined as θ, the neuron
activates and at the next time step it will subtract its threshold from the
current membrane potential, so that the neuron returns to the inactive state
and does not emit unnecessary spikes. This term has no effect if Sout[t − 1] = 0.

28

Neuromorphic Systems

If it happens that U [t] > θ at time t, the neuron will be activated and generate a
spike:

Sout[t] =

1, if U [t] > θ

0, otherwise.
(3)

Otherwise the membrane potential will be updated based on the current inputs
and weights and the neuron output will have value 0.
The behavior described above is summarized in Fig.3.3.

Figure 3.3: Behavior of a LIF neuron [7]

3.3.2 Spikes Encoding
SNNs, like the human brain, acquire information from the outside world and
forward it to neurons in the form of spikes.
In order for these spikes to carry information, they must be encoded appropriately.
It is therefore necessary to introduce the concepts of:

• Input encoding: conversion of data, in input to the network, into meaningful
spikes.

• Output decoding: training the network to emit output in the form of spikes
that are meaningful and informative.

In our experiment, the input data to the network were generated by an event
camera, a neuromorphic sensor that, as already introduced, produces events having
the same nature as spikes since they are generated asynchronously when a change
in brightness is detected.
For these reasons, input encoding is not necessary, however, for completeness, the
most commonly used input encoding methods will be introduced:

29

Neuromorphic Systems

• Rate coding: in this approach, the intensity of the information to be converted
is translated into the frequency of the spikes. The greater the intensity, the
greater the frequency with which the spikes are launched. This encoding is
very similar to the functioning of the human retina: the photoreceptor cells
absorb the light and translate it into spikes. A greater brightness corresponds
to a high firing rate.

• Temporal coding: also known as "latency coding", in this encoding the number
of spikes in time is no longer relevant, but what matters is when a spike is
generated. In this approach, a particularly intense information (such as a high
brightness) is encoded through a single spike generated immediately, with a
low latency, hence the name. On the contrary, a dark input will be encoded
with a spike generated with a certain delay or not generated at all. This type
of encoding gives much more importance to the individual spikes.

• Delta modulation: this type of encoding is very similar to the operation of
event cameras since it focuses on variations rather than absolute values of the
signal. Every time the signal varies and exceeds a certain threshold, a spike is
generated.

The same coding techniques presented above can be used to decode the output
generated by the network in a meaningful and interpretable way.
Taking as an example a classification problem, with N possible classes, and applying
an input to the network, how can the spikes generated by the neurons of the output
layer be interpreted?
Using a rate coding policy the predicted class will be represented by the neuron
with the highest firing rate that therefore presents the highest number of spikes
generated.
On the contrary, using a temporal approach such as latency coding the predicted
class will be that relating to the neuron that fired first.
Another technique used for output decoding is called membrane potential decoding,
in which the output is determined by analyzing the membrane potential of the
output neurons, rather than counting or timing the spikes.
The choice of the encoding method that best suits your needs depends on many
factors such as the type of data that the network receives as input, the noise that
characterizes this data, the computational resources available and the robustness
of the model that you want to obtain.
For example, a rate code policy promotes robustness by creating a model with a
higher error tolerance, since if a neuron fails to fire at a certain time, other spikes
will still be generated. Furthermore, having more spikes also implies that the model
will learn more, especially when using error propagation-based learning methods as
we will see later. However, this entails limitations in terms of energy consumption

30

Neuromorphic Systems

and speed, which would not be the case when adopting a time-based approach with
fewer spikes, such as latency code.

In order to learn, SNNs need an objective function that measures how far the
predicted result is from the desired target. These are also called "loss functions"
and vary based on the decoding that has been chosen.
Among the most common and used objective functions are:

• cross entropy loss

• mean squared error (MSE)

Taking into consideration the case of rate decoding, the cross-entropy loss is applied
to the number of spikes produced by the neurons in the output. The goal is for
the neuron associated with the correct class to emit the greatest number of spikes,
while those of the wrong classes produce few or none. A very similar approach is
applied to membrane potentials, encouraging the membrane potential of the correct
class to increase and that of the neurons representing the wrong classes to decrease.
Instead, considering the mean squared error, a target spike rate is assigned to
each class by specifying the expected number of spikes for each. For example, the
correct class is set to fire during 80% of the total timestamps, while the remaining
classes are expected to fire during the remaining 20%. This approach is effective in
keeping neurons active and close to the firing threshold.
The final goal is to minimize and use these functions so that the network improves
in the task to which it has been assigned.

3.3.3 SNN’s learning approches
There are two main learning techniques that operate with very different principles
and approaches: BPTT and STDP.

Backpropagation Through Time, abbreviated BPTT, is a supervised algorithm
that allows the network to learn by exploiting the loss function calculated for each
prediction during training. In fact, at each iteration, the network has the desired
target and is able to calculate how far the current prediction is from the correct
one.
Once this error is obtained, the network is unrolled in time and its gradient is
calculated for each time step. The gradient, whose expression is in (4), is a vector
of partial derivatives of the error L with respect to each weight wij of the network
and indicates how much a given weight contributes to the error and, consequently,
how this must be modified to reduce the final loss function. As the name itself
suggests, the gradient is then back propagated by updating the weights in order to

31

Neuromorphic Systems

reduce the error along all the steps.

∂L

∂wij

= ∂L

∂Sout
· ∂Sout

∂U
· ∂U

∂wij

(4)

However, in order for the technique described above to be used in SNNs, it is
necessary to make a consideration: spikes, as discrete impulses, are not differentiable
so the term ∂Sout

∂U
in (4) is 0.

It is therefore necessary to introduce the concept of surrogate gradient, i.e. a
gradient of a continuous surrogate function, that approximates the behavior of
the spikes of a given neuron. In this way, the network can use a continuous,
differentiable signal to calculate the gradient.
Common surrogate functions include:

• Sigmoid Function:
σ(z) = 1

1 + e−β(z−θ)

where β is a slope parameter and θ is the threshold. It is a continuous function
that approximates the behavior of the spike around the threshold.

• Hyperbolic Tangent:
σ(z) = tanh(β(z − θ))

Provides a value between -1 and 1, and allows for a more gradual variation of
the gradient.

• Gaussian Function:
σ(z) = e−α(z−θ)2

It is centered on the threshold θ and controlled by a parameter α that adjusts
the width of the bell. It works well for more localized gradients around the
threshold.

The other learning approach bases its operation on the most plausible mechanism
to date with which the human brain learns, namely synaptic plasticity.
Spike-Timing-Dependent Plasticity, abbreviated STDP, is an unsupervised
learning technique in which the relative timing of spikes between pre and post-
synaptic neurons plays a major role.
More specifically, if a pre-synaptic neuron sends a spike immediately before the post-
synaptic neuron, the synaptic weight tends to strengthen (synaptic potentiation);
vice versa, if the post-synaptic neuron fires before the pre-synaptic neuron, the
connection weakens (synaptic depression).
Following this mechanism, the network is able to learn temporal patterns without
having an objective function to minimize and without the need to specify the target
as input. However, since this technique is not suitable for classification problems,
it was not used in our network.

32

Neuromorphic Systems

3.4 Combining Event Camera and SNN
As already introduced in the previous paragraphs, the asynchronous and temporal
nature of SNNs, based on spikes, combines perfectly with the data produced by
neuromorphic sensors such as event cameras.
The reason behind this compatibility is due to the fact that the events themselves,
generated by these sensors, are asynchronous and do not contain redundant infor-
mation unlike continuous frames.
The combined use of neuromorphic sensors and SNNs therefore allows to drastically
reduce the amount of data to be processed, improving processing speed and energy
efficiency. Unlike ANNs, where each neuron calculates a numerical value at each
time step, in SNNs neurons activate and fire only when the membrane potential
reaches a certain threshold, thus reducing the number of calculations performed.
Furthermore, the binary nature of the individual spikes simplifies and speeds up
the multiplications between the weights and the input signals to the neurons.
The acquisition speed and energy efficiency of these sensors, combined with the
computational efficiency of SNNs, makes these systems particularly suitable for
real-time applications, such as robotics and autonomous driving systems, where
it is essential to acquire and process information as quickly as possible with low
response latency.
Edge applications where computing power and resource availability are limited also
benefit from this, thanks to the reduced amount of information acquired and the
lower energy consumption to process it.
Despite these technologies being promising thanks to their intrinsic advantages,
there are still too few neuromorphic datasets in circulation and they are often
limited to controlled scenarios and not representative of complex real applications.
In the next paragraph, some of the most used ones for training and evaluating
SNNs will be introduced, from which we took inspiration for the creation of our
dataset.

3.5 Existing Neuromorphic Datasets
Although many hand gesture datasets have been created in recent years, most
of them have been realized using common sensors such as standard RGB color
cameras.
The importance of neuromorphic datasets to advance research in event-based
computer vision has prompted Hu et al. [11] to fill this gap by converting four
frame-based datasets into event-based representations using a DVS camera pointed
at a screen displaying frame-based images intermittently.
A similar approach to the one described above involves converting frame-based

33

Neuromorphic Systems

datasets while keeping the image static and moving the neuromorphic sensor. This
method is biologically more realistic as it simulates the saccadic movements of
the human eye, performed to acquire information, reducing the loss of temporal
resolution and the introduction of unwanted artifacts caused by the monitor refresh.
With this technique the N-MNIST was created, the neuromorphic version of the
more famous MNIST, a dataset representing images of handwritten digits.
The alternative to the conversion of frame-based datasets, already created, is the
creation from scratch using neuromorphic sensors directly. This is what Amir et
al. did in [12] for the creation of DVSGesture, a pure neuromorphic hand gesture
dataset created using the DVS128 camera.
In the following paragraphs a brief introduction of the above-mentioned datasets
will be provided.

3.5.1 N-MNIST
The N-MNIST is a spiking version of the traditional frame-based MNIST dataset.
It contains the same 60,000 training examples and 10,000 test examples as the
original MNIST and is kept at the same visual scale (28x28 pixels).
It was created using an ATIS sensor mounted on a motorized pan-tilt unit, which
moved while observing MNIST examples displayed on an LCD screen.

3.5.2 DVS Gesture
The DVS Gesture Dataset is designed for the recognition of human gestures cap-
tured with a DVS128 event camera.
It includes 11 categories of gestures performed by 29 subjects in different lighting
conditions.

34

Chapter 4

Dataset Creation

As discussed in the previous chapters, the scarcity of neuromorphic datasets limits
the research, development and diffusion of event-based computer vision applications.
The aim of this thesis is to fill this gap, creating a large scale neuromorphic hand
gestures dataset in order to make it available for future research in promising fields
such as telemedicine or more generally in applications based on human computer
interaction.
In this chapter, the dataset creation process will be presented. We will start by
describing the cameras used, the setup and their synchronization, and then we will
delve into the structure of the experiment with a particular focus on the selected
tasks.
The acquisition process will also be illustrated in detail, including the various
steps to collect the data while maintaining the synchronization between the various
devices. Finally the numerical characteristics of the dataset obtained and its
organization will be presented.

4.1 Multi-camera Setup
The main objective of this work concerns the creation of a large neuromorphic
dataset, obtained through the use of a particular camera, introduced in chapter 3,
known as neuromorphic sensor.
To make the dataset in question comparable with other traditional acquisition
forms, it was decided to combine the neuromorphic sensor with two devices capable
of recording depth information and RGB frames, together with a marker-based
system commonly used as a reference in motion tracking applications.
The entire process of acquisition of the tasks was held in a limited access laboratory
granted by the National Research Council (CNR) and the setup of the cameras
remained unchanged for the entire duration of the collection, in order to guarantee

35

Dataset Creation

uniformity of conditions throughout the acquisition process.
The sensors used in the experiment, which will be introduced briefly in the following
paragraphs, were:

• 1 DVXplorer Lite (neuromorphic sensor)

• 2 Kinect Azure (depth sensor)

• 1 Optitrack (motion capture system)

The cameras were arranged as shown in Fig.4.1, with the DVXplorer in the center
and the two Kinects on the side at equal distance from the event camera. The chair

Figure 4.1: Multicamera setup: DVXplorer Lite in the green circle, Azure Kinect
in the blue ones. Esync in yellow for camera synchronization

used by the subject during the tasks was positioned in front of the event camera.
The distance between the camera and the chair was always fixed with adjustments
in the order of +/- 10 cm based on the length of the subject’s arm, in order to
maintain the movement of the hand central to the field of view of the cameras.
Everything was designed to have the subject in the center of the room so that he
was equidistant from the six cameras fixed to the walls that make up the optitrack

36

Dataset Creation

system.
In Fig.4.2 the participant’s chair is shown in the orange box, 3 of the 6 cameras that
make up the optitrack in the pink circles and the two operator stations indicated
by the blue arrows.
The windows were darkened to maintain the same lighting values between various

Figure 4.2: Lab setup: subject position in orange, optritrack cameras in pink and
operator positions indicated by blue arrows A and B.

recordings and any reflective surface was covered so that it was not perceived as a
marker by the motion capture system.
The kinects and the neuromorphic camera were connected to the computer man-
aged by operator B who controlled their correct functioning, while operator A had
control over the optitrack and the esycn shown in figure Fig.4.1.
The esync, a hardware device directly connected to the optitrack system, was in

37

Dataset Creation

turn connected to the kinects and the event camera via BNC connectors so that it
acted as a master clock and sent them signals for correct synchronization.

4.1.1 DVXplorer Lite
The DVXplorer Lite was the main sensor of our experiment. It is a neuromorphic
camera developed by a Swiss company, Inivation, specialized in the production of
event cameras.
The sensor has a spatial resolution of 320x240 pixels, a temporal resolution of 200
µs and a dynamic range >90dB.
These characteristics give it an extremely low latency (in the order of microseconds)
and at the same time allow it to operate effectively in variable lighting conditions.
The neuromorphic event nature, based on the detection of variations in light
intensity rather than on a constant acquisition of frames, allows it to reduce energy
consumption. In fact, the average energy consumption is around 140/150 mW
during normal operation.
The sensor can be interfaced with a PC from which it can be configured and
controlled through a proprietary software called "DV". The software is equipped
with a graphical interface and allows you to visualize, record and play back data.
It is possible to define customized projects based on needs, characterized by a
structure formed by logical blocks called "DV modules". These modules can be
added, removed and connected to each other, allowing you to aggregate, filter and
convert the stream of events, acquired by the camera, based on needs.
The files are in a custom format called AEDAT (Address Event Data) designed to
store the event data and its timestamp information:

(timestamps, polarity, x, y)

The advantages of this format include compactness, time precision and high effi-
ciency of the generated files which can then be processed easily and precisely in
real-time applications and embedded systems.

4.1.2 Kinect Azure
The Kinect Azure, developed by Microsoft, is a multifunctional camera designed
for depth tracking, motion capture, and high-resolution RGB image acquisition
[13].
It uses Time-of-Flight (ToF) technology to accurately measure distances, providing
a depth resolution of 1024x1024 pixels with a range of 0.5 to 4 meters.
This technology is able to estimate the distance between the camera and the
objects in the frame by calculating the time it takes for a light pulse to travel the

38

Dataset Creation

camera-object-camera path.
The RGB sensor offers a resolution of up to 3840x2160 pixels, allowing for detailed
scene acquisition.
The device also includes a microphone array (not used in this context) to capture
spatial audio and has a wide field of view (FoV), equal to 120°x120° for the depth
camera.
For the purposes of the experiment, it was decided to use two Kinects triangulated
with the subject, in order to capture in detail every facet of the movement performed.
Both cameras were connected to a PC via USB connector and driven by two different
bash scripts that, once executed, made them wait for the signal coming from the
master (the OptiTrack).

4.1.3 OptiTrack

The OptiTrack system is a motion capture platform designed for precise motion
tracking applications.
It is composed of a network of high-speed infrared cameras capable of detecting
the position of markers in space with submillimetric precision.
The markers used in this experiment are small spherical objects with an adhesive
base defined as passive, meaning they do not emit their own light but are coated
with a highly reflective material that reflects the infrared light emitted by the
system’s cameras.
The operation can be divided into 3 phases:

1. Emission and detection: once a recording has started, each camera emits
infrared rays and captures the visible markers in its field of view as light dots.

2. Triangulation: this process allows the position of the markers in space to
be detected using the 2D coordinates of a given marker detected by at least
two cameras. These coordinates are processed by the system to calculate the
precise 3D position of the marker in space.

3. Assignment: the Motive software maps the markers on a predefined model (in
our case a human skeleton) to track the movements performed by the subject.

Due to its high precision, this system is often used as ground truth in scientific
research, especially to evaluate the performance of other devices.
The system is also equipped with a hardware module, the eSync, which allows
precise temporal synchronization between different cameras, making it perfect for
multimodal experiments.

39

Dataset Creation

4.1.4 Camera Calibration
In a multimodal context like ours, consisting of several sensors, the camera calibra-
tion process is very important as it allows to align the devices by synchronizing
their spatial coordinates.
It consists in performing a series of recordings by placing a checkerboard, a simple
grid printed on paper, in front of the cameras at different distances and angles.
The frames relating to the same test, acquired by different cameras, will then be
aligned using specific software.
In this section, only the acquisition process of these tests will be described, while
the mapping of the data in the same global coordinate system was not part of this
work.
For the Kinect and OptiTrack it was decided to reuse the calibration scripts, as
they had already been implemented during other projects.
For the DVXplorer it was necessary to create a new project within the DV software,
cascading the Dvxplorer, Accumulator and Calibration modules.
As a checkerboard a 6x9 with a square size of 30 mm was used, which was printed
on a sheet and shaken back and forth during the acquisition, so that the events
were generated.
However, it was found that the DV software was not able to align the checkerboard
patterns precisely enough and, by analyzing the intrinsic parameters generated
within the calibration file, it was found that the calibration error was too high (a
parameter that indicates the quality of the calibration).
It was therefore decided to create a GIF, alternating two images of chessboards
with inverted black and white colors, and showing it to the cameras through a
monitor positioned on a pedestal Fig.4.3.
In this way the DVXplorer was able to generate events more precisely and the
accumulated frames were sharper, especially the edges of the squares .
The calibration process was repeated correctly for 40 poses, varying the distance
and angle of the monitor with respect to the cameras.

4.1.5 Camera Synchronization
Creating a multimodal dataset using different types of sensors involves prioritizing
the synchronization of devices with each other and ensuring that recordings start
at the same instants in time or with at most a small known delta.
In the synchronization process, OptiTrack was considered as the master because, as
previously mentioned, it was designed and studied specifically for use in multimodal
contexts.
The eSync, integrated into the system, allows it to act as a master clock and
synchronize external devices by distributing reference signals.
The kinects in turn were previously synchronized during past research work and

40

Dataset Creation

(a) Checkerboard 1 (b) Checkerboard 2

Figure 4.3: GIF Checkerboard, inverting colours.

configured so that, once the related scripts were launched, they went into a waiting
state and started recording only when a recording was started by the master
(OptiTrack).
The synchronization of the DVXplorer was instead part of this work and the process
will be described below.
As can be seen in Fig.4.4, the event camera has an extra SYNC_IN port that
allows it to interface with third-party cameras.
This port can be configured, through the DV software, to detect rising edges of
signals from external devices or cameras. When this happens, a trigger event of
type EXTERNAL_SIGNAL_RISING_EDGE is generated.

The eSync was then connected via an HR10A cable to the SYNC_IN port and a
recording was started, by the DVXplorer and by the OptiTrack simultaneously.
The signal generated by the eSync is a train of 30Hz pulses, whose rising edge
represents the instant of the OptiTrack acquisition start.
The file generated by the event camera, in aedat4 format, was then analyzed via a
python script. However, by analyzing the individual packets of the file, it was found
that too few triggers had been fired and it was assumed that the few detected were
spurious and due to other causes.
By connecting the device to an oscilloscope we verified that the 30 Hz signal was
actually generated and it was.
It was then discovered that the detection circuit, present inside the DVXplorer, is

41

Dataset Creation

Figure 4.4: DVXplorer sync connectors

electrically isolated from the rest of the camera and, in order for the camera to
detect signals, coming from external cameras, it is necessary that Vdd is supplied
to the circuit itself.
Vdd was therefore supplied with the same voltage as the SIGNAL_IN signal. Since
this voltage comes from an external source, the grounds were connected together
so as to have a common ground Fig.4.5.
The synchronization process was then repeated and the aedat4 file was generated
and analyzed again: the DVXplorer and the OptiTrack were correctly synchronized.

Figure 4.5: Different GNDs were welded to have the same reference

42

Dataset Creation

4.2 Experiment Protocol
In this section, the protocol used to create the dataset will be explained in detail
and the tasks performed by the subjects during the experiment will be illustrated.
The experiment involved 25 healthy people, recruited from the student population,
whose hands were measured in order to collect useful information during the
splitting phase of the dataset or for future research.
Each participant was asked to remove clothing or reflective objects so that they
did not interfere with the detection of the markers. The subject was then made to
sit at the station in front of cameras and the markers were applied to the hand.
The positioning of the markers varied based on the task to be performed, and the
order of the tasks was designed to minimize the movements of the markers. The
Fig.4.6 illustrates the arrangement of the markers relative to each task.
The tasks analyzed were 5:

• Finger Tapping

• Finger To Nose

• Open/Close Hand

• Tremor

• Pronation/Supination

Each participant was asked to perform the tasks in the order above at 3 different
speeds, each repeated 2 times.
For the Finger To Nose and Tremor tasks, speed was not considered relevant for
the experiment.
The speeds were marked by means of a digital metronome set to:

• Slow (S): 75 bpm

• Normal (N): 115 bpm

• Fast (F): 140 bpm

The use of the metronome was integrated as a reference for the subject, helping
him to keep a constant rhythm in the execution of the task.
The duration of each task was set to 20s, at the end of which the subject could
rest his arm while the operators verified that all the recordings had been generated
and saved correctly. Any movements of the markers were performed in this time
interval.
Once the 22 recordings for the right hand were completed, the entire procedure
was repeated for the left hand, ensuring that the markers were still attached to the

43

Dataset Creation

skin after the move.
If one of these had come off during the execution of a test or one of the cameras
had not started, the task was repeated.
At the end of the experiment, it was checked that all 44 recordings had been
generated and saved correctly and the brightness of the room was measured using
a luxmeter, information that was correlated with the dimensions of the subject’s
hand.
The entire procedure lasted on average 40 minutes per person.

Figure 4.6: Marker Configuration: A for Finger Tapping, B for Finger to Nose, C
for Open/Close, Tremor and Pronation/Supination.

4.2.1 Tasks
The tasks analyzed in this experiment are commonly used for the assessment of
Parkinson’s disease in the MDS-UPDRS scale (Movement Disorder Society - Unified
Parkinson’s Disease Rating Scale) [14].
The aim of these gestures is to evaluate the motor function, speed and coordina-
tion of a patient, allowing to detect and monitor over time the progression of 3
Parkinson’s symptoms: bradykinesia, rigidity and tremor [15].
They will be described below:

• Finger Tapping (FT): consists in the simultaneous movement of thumb and
index finger, from an initial open position (thumb and index finger distant) to
a final closed position (thumb and index finger touching) alternatively. This
task allows to measure the slowness of the movement as well as the amplitude
and loss of rhythm due to a possible deterioration of motor coordination.

• Finger To Nose (NOSE): This test consists of touching your nose and a
target placed in front of the patient (often the examiner’s finger). In our case,
the target was not present but the patient was asked to: fully extend the arm
towards the camera placed in front (the DVXplorer) and bring the index finger
as close as possible to the nose without touching the marker positioned there.

44

Dataset Creation

• Open/Close Hand (OC): consists of opening and closing the hand, until
it forms a fist. In this task, the subjects were instructed not to force the
closure too much so as not to compromise the visibility and adherence of the
positioned markers.

• Tremor (TR): consists of fully extending the arm at shoulder height in front
of the camera. To make the assessment more realistic, the subjects were asked
to keep their eyes closed for the entire duration of the task so as to make any
movement involuntary.

• Pronation and Supination (PS): consists of the alternating movement of
the hands from a pronation position (palm facing the camera) to a supination
position (palm facing the subject). This task highlights not only bradykinesia,
but also potential signs of rigidity and difficulty in motor coordination.

4.3 Data Collection Process
Once the protocol was explained, the markers were positioned and the cameras
were confirmed to be ready and capturing the entire scene, we moved on to the
actual data acquisition process.
The bash scripts for the two Kinects were launched from two different terminals,
invoked in this way:

» REGISTRATORE_KINECT_1 X01_R FTS1
» REGISTRATORE_KINECT_2 X01_R FTS1

Where the individual fields have the following meaning:

• RECORDER_KINECT_X: indicates the script used by kinect 1 and 2 to record
data. The script automatically creates a folder, named based on the subject
and the current task, in which it will save the completed recording. Once
launched, the script will put the relative kinect in waiting state for the master.

• X01_R: represents the subject’s identifier and the hand used R (right), L (left).

• FTS1: specifies the type of task recorded (FT, NOSE, OC, TR, PS), the speed
(S, N, F) and the test (1 or 2).

Similar procedure for the DVXplorer: at the end of each task, if necessary, the
current folder was manually changed and the next recording was named.
The notation followed was:

E:\DVX_Recs\X03\X03_LEFT\OC\dvSave_OCF1.aedat4

45

Dataset Creation

With the kinects waiting, the metronome was started and the subject began to
perform the current task.
At this stage, operator A initiated the OptiTrack recordings (along with the Kinect
devices), while operator B started the DVXplorer recordings.
The synchronization of the start was achieved through a loud verbal countdown.
After 20s, the recordings were automatically ended and saved in the appropriate
folders with the correct names. A summary of all the task combined with the
different speed is reported in Tab.4.1.

Task S (Slow) N (Normal) F (Fast)
FT FTS1, FTS2 FTN1, FTN2 FTF1, FTF2

NOSE / NOSE1, NOSE2 /
OC OCS1, OCS2 OCN1, OCN2 OCF1, OCF2
TR / TR1, TR2 /
PS PSS1, PSS2 PSN1, PSN2 PSF1, PSF2

Table 4.1: Task combinations with different speeds (S, N, F), repeated twice for
each combination (22 tasks per hand).

4.4 Dataset Organization
The resulting dataset can be summarized with the following numbers:

• Participants: 25 subjects performed 5 tasks, each at 3 different speeds
and repeated 2 times for each combination.

• Recordings: for each participant, 22 recordings were made per hand, for a
total of 44 recordings per subject and 1100 total recordings per camera.

• Duration: each task lasted 20 seconds, accumulating a total of over 6 hours
of recordings.

• DVXplorer dataset size: 73 GB, containing all the data acquired by the
DVXplorer.

• Total size: 6 TB, considering the entire set of recordings from all cameras
(DVXplorer, Kinect and OptiTrack).

46

Dataset Creation

(a) Finger Tapping: sequence of 4 frames accumulated at 30 fps.

(b) Finger To Nose: sequence of 4 frames accumulated at 30 fps.

(c) Pronation/Supination: sequence of 4 frames accumulated at 30 fps.

(d) Tremor: sequence of 4 frames accumulated at 30 fps.

(e) Open/Close Hand: sequence of 4 frames accumulated at 30 fps.

Figure 4.7: Sequence of gestures represented by 4 frames each. All sequences are
accumulated at 30 fps.

47

Chapter 5

Training SNN for Gesture
Recognition

Training an artificial neural network to recognize gestures, with good accuracy, is a
complex process as it involves multiple steps, iterated over and over again.
First, it is essential to ensure that the data provided as input to the network
are compatible and interpretable by the chosen model. This involves applying
transformations and preprocessing to the raw data collected.
Next, the network model must be defined, specifying its layers, neuron types,
learning methods, parameters, and the metrics to monitor the learning process.
Then comes the training and validation process, in which the chosen model is
trained using the preprocessed data and validated on new data, in order to measure
its learning and ability to generalize on data never encountered before.
In this chapter, the various steps will be examined in order, from the pre-processing
of the dataset, introducing the Tonic library, to the definition of the network using
snnTorch. Finally, it will be illustrated how the hyperparameter search process was
carried out and optimized using wandb.

From this section onwards, the analysis will be focused exclusively on the neuromor-
phic version of the dataset. Data acquired through Kinect and OptiTrack will no
longer be considered, as the goal is to train an SNN using exclusively neuromorphic
data.

5.1 Data Preprocessing
Data preprocessing is the set of techniques and operations applied to the raw data
of a dataset to best prepare them for training a ML model.

48

Training SNN for Gesture Recognition

In the case of event-based datasets, this process is particularly important to elimi-
nate spurious events caused by sensor noise, reduce the spatial/temporal dimension
and extract regions of interest, reducing computational costs and any superfluous
data.
Furthermore, it is common practice to accumulate events in more classic formats,
such as frames or voxel grids, to be able to exploit the consolidated architectures
and techniques of convolutional neural networks.
For this purpose, Tonic comes to the rescue, a python library specifically developed
to work with neuromorphic datasets. Among the main features offered are data
preprocessing and representation techniques, ready-to-use neuromorphic datasets,
provided with related classes, and dataloaders optimized to work with large neuro-
morphic datasets.

5.1.1 From aedat to numpy
A first change made to the entire dataset was the conversion of the recording
formats from aedat4 to numpy.
Tonic does not recommend working directly with aedat for reasons of efficiency and
practicality due to complex formatting, high computational weight and above all
for reasons of compatibility with machine learning models and third-party libraries.
Numpy files solve these problems by offering faster loading, greater compatibility
and better storage.
A python script was therefore developed that can automatically explore each record-
ing in the starting dataset and convert it to the desired format.
The script keeps the original structure of the dataset intact, including folders and
subfolders, also preserving the file names to ensure consistency and ease of access.

Event example in aedat4 :

Timestamp: 1234567890, X: 35, Y: 40, Polarity: 1

Array NumPy of events:
Timestamp X Y Polarity
1234567890 35 40 1
1234567891 36 41 0

...

5.1.2 Recordings Split
The dataset was acquired by recording each task for a duration of 20 seconds, with
each recording representing the subject performing a specific task for the entire

49

Training SNN for Gesture Recognition

period.
To increase the amount of data available for training the model, it was decided to
split each 20-second recording into 10 shorter recordings, each lasting 2 seconds.
A python script was then developed that transforms the original 1100 recordings
of the dataset, already converted to NumPy format, into 11000 recordings of 2
seconds each.
The script keeps the original structure of the dataset intact, including folders and
subfolders while the resulting recordings were renamed as follows:

• Original recording name: dvSave_FTS1.npy

• Generated segment names:

– dvSave_FTS1_segment_1.npy

– dvSave_FTS1_segment_2.npy

– . . .
– dvSave_FTS1_segment_10.npy

In this way the task label is kept intact, which is fundamental in the extraction
phase for the calculation of accuracy and loss metrics.
After the splitting is completed, the resulting dataset can be summarized as follows:

• 440 recordings per subject.

• 25 subjects.

• 11000 total recordings.

5.1.3 Dataset Split
The resulting dataset, after being converted and divided as described in the previous
paragraphs, was then split into Training Set and Test Set, respectively used to
train and test the model.
It is essential to underline that the Test Set was used exclusively at the end of
the training process, as a final phase to evaluate the model’s ability to generalize
on data never seen during training. In this way it was possible to obtain a realistic
evaluation of the model’s performance on new data and not related to those already
used during training.
Furthermore, the division of subjects between the Training Set and the Test Set
was made to be as uniform as possible, in terms of the size of the subjects’ hands
and the lighting conditions present during data collection.
To this end, the data collected during the creation of the dataset were used,
regarding the size of the subject’s hand and the lighting measured in the laboratory

50

Training SNN for Gesture Recognition

Figure 5.1: Lab luminosity and hand size per subject

at the time of the acquisitions Fig.5.1.
The size of each subject’s hand was obtained by recording two main dimensions:

the distance from the tip of the middle finger to the beginning of the wrist, indicated
by h, and the distance between the beginning of the little finger and the beginning
of the thumb, indicated by p, as illustrated in Fig.5.2. The surface of the palm was

Figure 5.2: Hand Sizes

calculated approximately as:

PalmArea = p · h [cm2]

and was averaged for the right and left hand to obtain Median Area.
With this information, a scatter plot with subject marker was then created, relating
the brightness and surface values of the hand for each subject Fig.5.3.
Analyzing the graph, the dataset was divided according to the proportion 70%

Training and 30% Test. The division was carried out in order to obtain a balanced

51

Training SNN for Gesture Recognition

Figure 5.3: Dispersion Graph with subject markers

representation of the subjects in all areas of the graph. In Tab.5.1 can be observed
the division of the subjects.

Training Set Test Set
1, 3, 5, 6, 7, 8, 9, 10, 2, 4, 11, 15, 17, 18, 20
12, 13, 14, 16, 19, 21,
22, 23, 24, 25

Table 5.1: Distribution of subjects between Training Set and Test Set.

52

Training SNN for Gesture Recognition

5.1.4 Tonic Transformations
To make the input events to the model more understandable, a series of transfor-
mations, belonging to the Tonic library, have been applied.
The transformations and their parameters have been defined starting from the size
of the neuromorphic sensor 320x240 and will be briefly described.

Denoise: this transformation removes noisy events that occur in isolation in
time and space. The filter_time parameter specifies a time window within which
the events are considered valid, in our case set to 10000 µs (10 ms).

CenterCrop: reduces the spatial dimensions by focusing on the most signifi-
cant area, the center in our case. A central crop is then performed on the event
matrix in order to obtain a final resolution of 200x200.

Downsample: performs a further resizing of the cropped area bringing it to
a lower resolution of 64x64.

ToFrame: this transformation accumulates the sequence of events along time, so
as to obtain 60 frames resulting from a 2 s recording. The representation in frames
was chosen because it adapts very well to convolutional layers, useful for feature
extraction during the model training process.

In Fig.5.5 the transformation process after each single transformation.

5.1.5 Applying Transformation and Caching
Tonic allows to work with some of the most popular neuromorphic datasets, such
as N-MNIST and DVSGesture, each with a specific Dataset class. These classes
provide an interface to load, manage and transform the related event datasets.

Since our dataset was created from scratch, it was necessary to define a cus-
tom class called DVXdataset, inspired by the DVSGesture dataset class, which is
the most similar to ours. This new class includes a custom function dedicated to
extracting labels directly from the name of the recordings, respecting their notation.
Furthermore, being compatible with the PyTorch DataLoader, the class allows to
perform batching (splitting the data into batches), shuffling (mixing the data) and
applying transformations, all simultaneously with the training phase.

To simplify the application of transformations to the whole dataset, a separate
script has been developed. This script has the exclusive task of loading the training
and test data, applying the defined transformations and saving each transformed

53

Training SNN for Gesture Recognition

(a) No transformation (b) After Denoising

(c) After CropCenter (d) After Downsample

Figure 5.4: Transformations sequence: original data, denoised, cropped, and
downsampled (1 frame illustrated).

54

Training SNN for Gesture Recognition

record in cache in the hdf5 format, using the DataLoader.
The conversion to hdf5 format is commonly used for managing large amounts of
data as it allows rapid access, is optimized for parallelism and allows persistent
saving, avoiding repeating the transformation process. At the end of the process
the entire transformed dataset was correctly saved on the lab server, ready to be
used.

Listing 5.1: Cached Dataset
1 DVXplorer_Dataset/
2 t r a i n /
3 0 . hdf5
4 . . .
5 7920 . hdf5
6

7 t e s t /
8 0 . hdf5
9 . . .

10 3080 . hdf5

5.2 Model Architecture
Once the pre-processing phase was completed, we moved on to the definition of
the Spiking Neural Network (SNN).
The models described below are based on the Pyhton library called snnTorch,
designed to simplify the construction and training of SNNs using the PyTorch
framework. This library allows the use of neuron models plausibly similar to their
biological counterparts, such as the Leaky Integrate and Fire abbreviated LIF.
The LIF neuron has the ability to model temporal dynamics thanks to its intrinsic
temporal memory (membrane potential and decay). This allows the network to
temporally correlate consecutive frames, which contain partial information of the
gesture, and to recognize patterns that emerge in the sequence.
This neuron model has been used in all the networks presented below and is
described in chapter 3.
In addition to the description of the tested networks, this chapter will illustrate
the training, validation and search process for the best hyperparameters.

5.2.1 Original Net
As a starting point, the network described in Tab.5.2 was tested, whose structure
is inspired by a model already validated and correctly trained on the DVSGesture
dataset.
The only changes made concern the fully connected layer, increasing the number of

55

Training SNN for Gesture Recognition

neurons from 800 to 5408 and reducing the output neurons from 11 to 5, like the
classes of our dataset.
The network receives 64x64 frames as input, extracts spatial features through
the two convolutional layers and finally maps the extracted features into final
predictions thanks to the fully connected layer.
The LIF neuron also allows capturing temporal dependencies between the various
frames. The activation threshold th, i.e. the value of the membrane potential
beyond which the neuron activates, was set to 1 (standard value). While β, the
decay rate of the membrane potential over time, has been set to 0.5 which leads to
a 50% decay in the potential value between one step and the next.

Layer Type In Dim Out Dim Params
1 Conv2D [2, 64, 64] [12, 60, 60] Kernel 5 × 5
2 MaxPool [12, 60, 60] [12, 30, 30] Pool 2 × 2
3 LIF [12, 30, 30] [12, 30, 30] β = 0.5, th = 1.0
4 Conv2D [12, 30, 30] [32, 26, 26] Kernel 5 × 5
5 MaxPool [32, 26, 26] [32, 13, 13] Pool 2 × 2
6 LIF [32, 13, 13] [32, 13, 13] β = 0.5, th = 1.0
7 FullyConn [5408] [5] Output=True
8 LIF [5] [5] β = 0.5, th = 1.0

Table 5.2: Original Net Structure.

5.2.2 Simplified Net

The second model, implemented and tested, is grafted onto the previously explained
network, simplifying its complexity especially related to the last fully connected
layer.
Having a high number of neurons in input to the last layer, as we will see, can lead
to Overfitting problems, that is, the model adapts too well to the data with which
it is trained but is not able to generalize on new ones.
The Simplified Net reduces the complexity by using pre-trained components for the
initial convolutions and introducing a new convolutional layer and 2 fully connected
ones.
The initial convolutional layers, trained on the DVSGesture, are frozen, that is, the
weights are not updated during the training process. The structure of the network
is summarized in Tab.5.3

56

Training SNN for Gesture Recognition

Layer Type In Dim Out Dim Params
1 Conv2D [2, 64, 64] [12, 60, 60] Kernel 5 × 5
2 MaxPool [12, 60, 60] [12, 30, 30] Pool 2 × 2
3 LIF [12, 30, 30] [12, 30, 30] β = 0.5, th = 1.0
4 Conv2D [12, 30, 30] [32, 26, 26] Kernel 5 × 5
5 MaxPool [32, 26, 26] [32, 13, 13] Pool 2 × 2
6 LIF [32, 13, 13] [32, 13, 13] β = 0.5, th = 1.0
7 Conv2D [32, 13, 13] [64, 12, 12] Kernel 3 × 3
8 MaxPool [64, 12, 12] [64, 6, 6] Pool 2 × 2
9 LIF [64, 6, 6] [64, 6, 6] β = 0.5, th = 1.0
10 FullyConn [2304] [128] Weights 2304 → 128
11 LIF [128] [128] β = 0.5, th = 1.0
12 FullyConn [128] [5] Weights 128 → 5
13 LIF [5] [5] β = 0.5, th = 1.0, Output=True

Table 5.3: Simplified Net Structure.

5.2.3 Dynamic Net
The Simplified Net turned out to be a simpler network than the original, but it
had an opposite problem known as Underfitting: the network was unable to learn
meaningfully from the input data.
Although this model did not produce the expected results, together with the original
Original Net model, it allowed to identify the two extremes of complexity in the
network design.
A new dynamic model Dynamic Net was then developed, capable of exploring the
search space between the two extremes. The goal was to identify the optimal num-
ber of neurons, balancing the complexity to avoid both overfitting and underfitting.
To this end, a network was defined whose number of neurons, at the input of the
last fully connected layer, was dynamic. Furthermore, a dropout layer was added
between the later fully connected layers, whose task is to deactivate a percentage
of the neurons, taken randomly, at each forward pass. In this way, the learning
process is more robust and less subject to overfitting.
The network is summarized in Tab.5.4. As can be seen from the table, some
dimensions are expressed as variables: neurons_fc1 and dropout_rate.
The values assumed by these were set as search parameters in the model optimiza-
tion process, using wandb. The search will be explained in the next paragraphs but
it is anticipated that the ranges were:

neurons_fc1 ∈ [128, 500], dropout_rate ∈ [0.2,0.3,0.4,0.5]

57

Training SNN for Gesture Recognition

Layer Type In Dim Out Dim Params
1 Conv2D [2, 64, 64] [12, 60, 60] Kernel 5 × 5
2 MaxPool [12, 60, 60] [12, 30, 30] Pool 2 × 2
3 LIF [12, 30, 30] [12, 30, 30] β = 0.5, th = 1.0
4 Conv2D [12, 30, 30] [32, 26, 26] Kernel 5 × 5
5 MaxPool [32, 26, 26] [32, 13, 13] Pool 2 × 2
6 LIF [32, 13, 13] [32, 13, 13] β = 0.5, th = 1.0
7 Conv2D [32, 13, 13] [64, 11, 11] Kernel 3 × 3
8 MaxPool [64, 11, 11] [64, 5, 5] Pool 2 × 2
9 LIF [64, 5, 5] [64, 5, 5] β = 0.5, th = 1.0
10 FullyConn [1600] [neurons_fc1] Weights 1600 → neurons_fc1
11 LIF [neurons_fc1] [neurons_fc1] β = 0.5, th = 1.0
12 Dropout [neurons_fc1] [neurons_fc1] p = dropout_rate
13 FullyConn [neurons_fc1] [5] Weights neurons_fc1 → 5
14 LIF [5] [5] β = 0.5, th = 1.0, Output=True

Table 5.4: Dynamic Net Structure.

5.3 Training

In this paragraph, the training process, common to all network models trained in
this project, will be described.
The goal was, starting from the train dataset, to train a subset of users train_subset
and validate the model on another subset val_subset, to evaluate its generalization
ability during learning.
This process is called Validation and will be illustrated in more detail in the next
paragraph.
Each generated subset was loaded via a special DataLoader, having set the number
of samples per batch batch_size to 32 and enabled shuffle in order to mix the data
at each epoch.
The number of epochs n_epochs, i.e how many times the entire train_subset is
passed through the model during training, was varied based on the simulations
between 100 and 200.
To simplify the feature extraction process, the weights of a model already trained on
the DVSGesture dataset were loaded and transferred to the first two convolutional
layers of the instantiated network, which were then frozen.
Adam was chosen as the optimizer, configured with variable learning_rate and
weight_decay, as they belong to the search space too. The ranges of values that
can be assumed by these parameters were included in wandb.
To refine the learning as the epochs passed, a scheduler was instantiated, responsible
for reducing the lr by a factor γ every so many epochs.

58

Training SNN for Gesture Recognition

To calculate the loss, the Cross Entropy Loss was used as it is well suited to the
nature of the problem. The loss is calculated on all the time steps and samples of
the batch, quantifying the discrepancy between the membrane potentials, returned
after the forward, and the correct labels.
During the training loop the forward function, belonging to the instantiated net
class, receives as input a batch of 32 recordings. Each recording is composed of
temporal sequences of 60 frames, representing snapshots of the same gesture, which
are processed in an orderly fashion by the network. At the end of the sequence
the function returns the membrane potentials for each class accumulated over time
that will then be used to calculate the loss and accuracy.
At this point the gradients related to the previous batch are deleted and the new
gradients of the loss are calculated with respect to the weights of the network, using
the backpropagation technique. Finally the weights of the network are updated.

5.4 Validation of the Model
The validation process consists of evaluating the model on a separate dataset, called
val_subset, that was not used during training. This step aims to monitor metrics
such as accuracy and loss (loss) during training, providing an estimate of how well
the model generalizes to unseen data.
It is important to distinguish validation from the testing process: the Test dataset
is in fact used exclusively at the end of training and does not affect training.

In our case, the 18 subjects of the Training dataset were split into two subsets:
12 subjects for the train_subset and 6 for the val_subset. During each epoch, the
model was trained on the train_subset and validated on the val_subset, recording
the respective performance metrics to monitor the training progress.
However, this approach is sensitive to the specific data split. If the val_subset does
not adequately represent the distribution of the complete dataset, the obtained
metrics may be inaccurate.
To overcome this problem, the Cross Validation technique was implemented, which
will be explored in the following paragraph.

5.4.1 Cross Validation
Cross Validation is a technique that splits the dataset into K folds, used in turn
for training and validation of the model.
In each iteration, the model is trained on K −1 folds and validated on the remaining
fold, rotating between the folds used for training and validation.
During the process, validation metrics are recorded for each fold and, at the end of
all iterations, they are averaged to provide an overall estimate of the robustness of

59

Training SNN for Gesture Recognition

the model.
In our case, we decided to implement a 3-Fold Cross-Validation (3CV), that is,
the 18 subjects were split into 3 folds, each containing 6 subjects. An example of
subdivision is the following:

Fold1 = {S1, S2, S3, S4, S5, S6}

Fold2 = {S7, S8, S9, S10, S11, S12}

Fold3 = {S13, S14, S15, S16, S17, S18}

Iteration 1: train_subset = Fold2 ∪ Fold3, val_subset = Fold1

Iteration 2: train_subset = Fold1 ∪ Fold3, val_subset = Fold2

Iteration 3: train_subset = Fold1 ∪ Fold2, val_subset = Fold3

5.5 Hyperpameters Optimization
Training a network is a very complicated process given the large number of param-
eters to configure.
Different combinations of parameters significantly affect both the speed of conver-
gence and the ability of the model to generalize.
Finding the right combination of these to maximize performance therefore requires
numerous iterations.
To facilitate this process, Weights&Biases has been integrated into the code, a
platform that allows to automate the search for hyperparameters through a tool
called Sweep.
A Sweep is an iterative process that explores different combinations of hyperpa-
rameters, called runs, applies them to the model and analyzes the results, in order
to maximize/minimize a specific metric of our interest.
The search ranges of these parameters must be set within a python dictionary
named sweep_config containing:

• The method of exploration of the search space

• The goal to achieve

• The parameters to explore to reach the objective

The search method indicates how the hyperparameters of each run should be
chosen, either randomly (random search), exhaustively (grid search), or in a more
optimized way (bayesian search). In our case, we decided to opt for a bayesian
search, an advanced search method, which builds a probabilistic model to try to
find the optimal combination, based on the objective metric of the previous runs.

60

Training SNN for Gesture Recognition

The choice of this method derives from the numerous hyperparameters and the
consequent large search space; an approach of this type allows us to direct the
search on regions of our interest without exploring all the possible combinations.
The objective instead indicates the metric that we want to optimize, minimizing or
maximizing it. It is very important because it guides the exploration process of
the combination space, especially in the case of bayesian search.
For our experiments, the validation loss val_loss was set trying to minimize it.
Optimizing on this metric is a common practice because it gives a good idea of how
the model is able to generalize on new data. However, we also tried to maximize
the validation accuracy and the balanced accuracy, the latter being particularly
useful in the case of unbalanced classes (the NOSE and TR classes contain fewer
samples than the others).

sweep_config = {
"method": "bayes", # Optimization Method
"metric": { # Metric to optimize

"goal": "minimize",
"name": "val_acc"

},
"parameters": { # Parameters to explore

"lr": {
"min" : 0.0001,
"max" : 0.001

},
"neurons_fc1": {

"min" : 128,
"max" : 500,
"distribution": "int_uniform"

},
"weightdecay": {

"values": [1e-6, 1e-5, 1e-4, 1e-3]
},
"dropout": {

"values": [0.2, 0.3, 0.4, 0.5]
}
"lr_decay_epcs": {

"values": [5, 10, 20]
}

}
}

61

Training SNN for Gesture Recognition

The search parameters were as follows:

• Learning rate: represents the rate at which the model updates its weights
during the learning process, influencing how quickly the model learns.

• Neurons_fc1: indicates the number of neurons in the first fully connected
layer, increasing or reducing the complexity of the network.

• Weight decay: is used to regularize the weights of the network, penalizing
weights that are too large.

• Dropout: the probability that neurons are dropped (turned off) during
training was indicated.

• Lr_decay_epcs: indicates after how many epochs to decay the learning
rate.

The number of neurons in the fully connected layer and the dropout are parameters
that directly influence the structure and behavior of the network, for this reason
they are called intrinsic parameters.
The number of runs, and consequently the number of different combinations applied
to the model, is configurable a priori and has been varied based on the experiment
in progress (usually between 100 and 200).
A summary diagram of the described pipeline can be observed in Fig.5.5.

62

Training SNN for Gesture Recognition

Sweep Start

main Call

3 Fold-CV Split

CV Loop

Epochs Loop

Train Loop Validation Loop

Log metrics W&B

End Run

New Run

Figure 5.5: Hyperparameter optimization pipeline

63

Chapter 6

Experimental Results

In this section, the results obtained following the simulations of the previously
described models will be presented.
The structure used for training, validation and optimization of the parameters was
common to all the models and can be summarized with the pipeline presented in
Fig.5.5.
The intrinsic parameters of the networks and the ranges of the hyperparameters
have been modified based on the results learned from the previous simulations.

6.1 Original Net Performance
Original Net was the starting model.
This network has been successfully tested on DVSGesture, in previous projects to
this one, and the weights file was available for use.
The changes made concern the last fully connected layer, increasing the input
neurons from 800 to 5408 and reducing the output neurons to 5, like the classes of
our dataset.
The resulting structure is observable in Tab.5.2.

After loading the weights of the trained model, the network was instantiated
by freezing the first 2 convolutional layers so that the weights were not updated
during training.
The only trainable layer was therefore the fully connected one.
The results of the model are observable in Fig.6.1.
Since the first epochs the model has performed anomalously, showing an extremely
high train accuracy that reached 100% after only 4/5 epochs. The validation
accuracy remained low and the relative loss increased as the epochs passed.

64

Experimental Results

This behavior was repeated for most of the runs generated by sweeps, regardless
of the combinations of parameters tested and allowed us to understand that the
model was in overfitting mode, that is, it was not learning from the data but rather
memorizing them.
This usually occurs when the defined network is too complex compared to the task
to be performed or the dataset used.
We therefore came to the conclusion that 5406 neurons were too many and we
proceeded to simplify the network.

Figure 6.1: Original Net Performance

6.2 Simplified Net Performance
Following the analysis of the performance of the Original Net, we moved on to
define a less complex network Simplified Net. This new model is grafted onto the
previous one, keeping the two convolutional layers unchanged, provided with the
starting weights, which remain frozen throughout the training process.
The changes made concern the introduction of a third convolutional layer (trainable)
and two fully connected layers (trainable).
To avoid overfitting problems, 128 input neurons were assigned to the last fc layer,
mapped on the 5 output neurons representing the classes of the dataset.
The complete structure of the network is represented in figure Tab.5.3.
Looking at the simulation logs, it was immediately possible to notice how the model
metrics were static despite the passing of the epochs.
The train accuracy as well as the validation accuracy remained at 27%, regardless

65

Experimental Results

of the values assumed by learning rate and weight decay, for more than 100 epochs
Fig.6.2.
It was therefore concluded that the network was in full underfitting mode, a situa-
tion completely opposite to that which occurred in the first model.
The instantiated network, lacking sufficient complexity, is unable to detect mean-
ingful patterns necessary for making accurate predictions.
This experiment, however, allowed us to understand and define the two extremes

Figure 6.2: Simplified Net Performance

of complexity of the network, near which the model is in overfitting and underfitting
regime. The search space regarding the number of neurons needed in the fully
connected layers was therefore narrowed.
To confirm this analysis, a network with 500 neurons was defined. The results
of the runs were encouraging, with train and validation accuracy increasing from
epoch to epoch by a few percentage points but with a constant trend. The train
accuracy reached the peak of 95%/97% only at the end of the experiment around
epoch 100.
The validation accuracy stopped between 50% and 60% but with a very variable
validation loss Fig.6.3.
These last results allowed us to further narrow the search field between 500 and
128 neurons, leading us to define the network Dynamic Net.

66

Experimental Results

Figure 6.3: 500 Neurons Net

6.3 Dynamic Net Performance
The results of the performance analyses of previous models led to the definition of
the Dynamic Net.
As the name itself suggests, it was decided to simulate the network on a dynamic
number of neurons, variable from run to run, between 500 and 128.
Therefore, the following were added as search parameters to sweep:

• the number of neurons in layer fc1

• the dropout, specifying the values: [0.2, 0.3, 0.4, 0.5]

• the number of epochs, after which the learning rate is decreased: [5, 10, 20]

The graph in Fig.6.4, represents the results of 100 runs performed for 100 epochs.
As can be observed, most of the runs tested by sweep converge on the same values
of train accuracy and validation loss (gray curves). This is a bias of the sweep
optimizer that, having to minimize the value of the validation loss, continues to try
combinations of similar parameters that underfit.
However, if we focus on the colored curves, interesting combinations have been
found. As can be observed, the train accuracy after 100 epochs is between 50%
and 70% while the validation continues to decrease.
Considering the trend of the val loss over 100 epochs of some of these runs Fig.6.4, it
seems that the network is learning little by little and still has room for improvement.

67

Experimental Results

Figure 6.4: Dynamic Net Performance

As a further attempt, the number of epochs was changed, increasing it to 200
and the second convolutional layer was unfrozen so that the relative weights were
updated during training.
Furthermore, an early stopping mechanism was implemented for the runs that
underfit so that the relatively low values of validation loss did not negatively
influence the process of finding the best hyperparameters.
Validation accuracy values around 27% (+/- 3%) for more than 5 epochs indicate
that the model, with the parameters of the current run, underfits. When this
condition occurs, the run is stopped and the metrics are not logged on wandb, thus
not contributing to giving a wrong direction in the exploration of the search space.
The results Fig.6.6 were promising: the underfitting runs did not contribute to
the research while the validation accuracy reached values around 60% gradually
increasing with the passing of the epochs. The validation loss is still at slightly high
values but, observing the trend of this metric for some runs, it can be observed
how the curve decreases over time Fig.6.7.

68

Experimental Results

(a) Run 4 (b) Run 17

(c) Run 26 (d) Run 48

Figure 6.5: Validation loss trend over epochs

69

Experimental Results

Figure 6.6: Unfrozen Net with early stopping on underfitting runs

Figure 6.7: Promising run

70

Chapter 7

Discussion

7.1 Limitations of the Study

This project led to the creation of a large multimodal dataset of hand gestures,
commonly used in the assessment and therapy of subjects affected by Parkinson’s
and neurodegenerative diseases.
However, it is important to underline that the participants in the experiment are
healthy subjects and not actually affected by the disease.
Involving real patients would have been complicated for a number of reasons:

• ethical and regulatory: it would have been necessary to obtain authoriza-
tions from hospital institutions, a very long process.

• medical supervision required: a specialized medical figure would have
had to supervise the entire data collection work, providing assistance to the
patient if necessary, adding organizational complexity and costs.

• logistical and organizational: collecting a good number of patients would
have required time and greater organization, also considering their transporta-
tion.

• physical limitations: these tasks, although designed to test the physical
conditions of real patients, create fatigue especially if performed according to
a protocol like ours.

However, this work, although not having clinical value, represents a fundamental
preliminary step for future studies and research conducted with real patients.

71

Discussion

7.2 Privacy and Energy Efficiency
The use of event cameras has proven to be a promising solution both in terms of
privacy and security and energy efficiency.
The nature of the data acquired by these sensors, consisting of local variations in
brightness, significantly reduces the risk of exposing sensitive personal information
compared to traditional RGB video-based systems.
This approach gives greater importance to relevant movements, ignoring useless
details such as colors, static subjects or background objects.
This feature makes them particularly suitable for applications where privacy pro-
tection is essential such as in the telemedicine field.
Furthermore, thanks to their asynchronous operating principle, a reduced energy
consumption is also guaranteed.
This benefit is further amplified by the use of SNNs that use binary spikes, in-
stead of complex multiplication operations, and exploit the concept of spatial and
temporal sparsity, i.e. only a portion of the neurons is active at a given time.

7.3 Future Works
The multimodal nature of the dataset created and the gestures considered make it
usable in numerous applications ranging from clinical research to the technology
industry, as well as in gestural interfaces and robotic systems.

The dataset could in fact be extended to train models capable of distinguish-
ing between healthy subjects and patients affected by the disease. Similarly, it can
be used to develop home telemonitoring systems.
In the robotics field, neuromorphic sensors are particularly promising, since they
allow efficient and low-energy processing. Our neuromorphic dataset could be used
to train robots to recognize in real time the gestures performed by a human being
and respond accordingly with a specific action.
In the research field, it can be used to train and optimize SNN or, more generally,
as a benchmark to evaluate the performance of different models.

72

Discussion

7.4 Conclusion
This thesis project contributed to the creation of a large multimodal dataset of
hand gestures, commonly used in the assessment of neurodegenerative diseases.
The data collection was made possible thanks to the use of different type of sensors,
which provided different types of acquisition, from RGB frames to depth infor-
mation, up to neuromorphic events. The integration of a motion capture system
as a ground truth reference adds significant value, allowing accurate comparisons
between different versions of the dataset in future research studies.
The neuromorphic dataset was pre-processed to maximize the quality and utility
of the recordings, applying, after several tests, the transformations provided by the
Tonic library. A custom class for interfacing with the dataset was also developed,
specifically designed to facilitate its publication on Tonic and sharing with the
scientific community, thus favoring further projects in the field of spiking neural
networks and neuromorphic research.
To demonstrate a first practical use of the dataset, different Spiking Neural Net-
works (SNN) models were developed and a structured pipeline for hyperparameter
optimization, training and cross-validation was implemented. The trained models
were tested in the recognition of gestures present in the dataset, and the preliminary
results, although improvable, are encouraging and offer useful indications for future
iterations and improvements.

73

Bibliography

[1] Jimmy Phuong, Patricia Ordóñez, Jerry Cao, Mira Moukheiber, Lama Moukheiber,
Anat Caspi, Bonnielin K. Swenor, David Kojo N. Naawu, and Jennifer Mankoff.
«Telehealth and digital health innovations: A mixed landscape of access». In:
PLOS Digital Health 2.12 (Dec. 15, 2023), e0000401. issn: 2767-3170. doi:
10.1371/journal.pdig.0000401. url: https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC10723719/ (visited on 08/20/2024) (cit. on p. 1).

[2] Shilpa N. Gajarawala and Jessica N. Pelkowski. «Telehealth Benefits and
Barriers». In: The Journal for Nurse Practitioners 17.2 (Feb. 2021), pp. 218–
221. issn: 1555-4155. doi: 10.1016/j.nurpra.2020.09.013. url: htt
ps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7577680/ (visited on
10/07/2024) (cit. on pp. 1, 2).

[3] Marziye Hadian, Zahra Khakdel Jelodar, Mohammadreza Jabbari Khanbe-
bin, Pezhman Atafimanesh, Ali Sarabi Asiabar, and Seyed Mehdi Hejazi
Dehagani. «Challenges of Implementing Telemedicine Technology: A system-
atized Review». In: International Journal of Preventive Medicine 15 (Feb. 29,
2024), p. 8. issn: 2008-7802. doi: 10.4103/ijpvm.ijpvm_48_23. url:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10982727/ (visited on
10/09/2024) (cit. on p. 2).

[4] Gianluca Amprimo, Giulia Masi, Gabriella Olmo, and Claudia Ferraris. «Deep
Learning for hand tracking in Parkinson’s Disease video-based assessment:
Current and future perspectives». In: Artificial Intelligence in Medicine 154
(Aug. 1, 2024), p. 102914. issn: 0933-3657. doi: 10.1016/j.artmed.2024.
102914. url: https://www.sciencedirect.com/science/article/pii/
S0933365724001568 (visited on 08/20/2024) (cit. on p. 5).

[5] Foivos S. Kanellos et al. «Clinical Evaluation in Parkinson’s Disease: Is
the Golden Standard Shiny Enough?» In: Sensors (Basel, Switzerland) 23.8
(Apr. 7, 2023), p. 3807. issn: 1424-8220. doi: 10.3390/s23083807. url:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10145765/ (visited on
09/26/2024) (cit. on pp. 5, 9).

74

https://doi.org/10.1371/journal.pdig.0000401
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10723719/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10723719/
https://doi.org/10.1016/j.nurpra.2020.09.013
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7577680/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7577680/
https://doi.org/10.4103/ijpvm.ijpvm_48_23
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10982727/
https://doi.org/10.1016/j.artmed.2024.102914
https://doi.org/10.1016/j.artmed.2024.102914
https://www.sciencedirect.com/science/article/pii/S0933365724001568
https://www.sciencedirect.com/science/article/pii/S0933365724001568
https://doi.org/10.3390/s23083807
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10145765/

BIBLIOGRAPHY

[6] Jennifer G. Goldman et al. «Delivering Multidisciplinary Rehabilitation Care
in Parkinson’s Disease: An International Consensus Statement». In: Journal of
Parkinson’s Disease 14.1 (Jan. 23, 2024), p. 135. doi: 10.3233/JPD-230117.
url: https://pmc.ncbi.nlm.nih.gov/articles/PMC10836578/ (visited
on 10/23/2024) (cit. on pp. 8, 12).

[7] Jason K. Eshraghian, Max Ward, Emre Neftci, Xinxin Wang, Gregor Lenz,
Girish Dwivedi, Mohammed Bennamoun, Doo Seok Jeong, and Wei D. Lu.
Training Spiking Neural Networks Using Lessons From Deep Learning. Aug. 13,
2023. arXiv: 2109.12894[cs]. url: http://arxiv.org/abs/2109.12894
(visited on 04/10/2024) (cit. on pp. 20–22, 27–29).

[8] Guillermo Gallego et al. «Event-Based Vision: A Survey». In: IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 44.1 (Jan. 2022). Confer-
ence Name: IEEE Transactions on Pattern Analysis and Machine Intelligence,
pp. 154–180. issn: 1939-3539. doi: 10.1109/TPAMI.2020.3008413. url:
https://ieeexplore.ieee.org/document/9138762/?arnumber=9138762
(visited on 10/25/2024) (cit. on p. 21).

[9] Riccardo Massa, Alberto Marchisio, Maurizio Martina, and Muhammad
Shafique. An Efficient Spiking Neural Network for Recognizing Gestures with
a DVS Camera on the Loihi Neuromorphic Processor. May 16, 2020 (cit. on
p. 23).

[10] Nicolas Brunel and Mark van Rossum. «Quantitative investigations of electri-
cal nerve excitation treated as polarization: Louis Lapicque 1907 · Trans-
lated by:» in: Biological Cybernetics 97 (Dec. 1, 2007), pp. 341–349. doi:
10.1007/s00422-007-0189-6 (cit. on p. 27).

[11] Yuhuang Hu, Hongjie Liu, Michael Pfeiffer, and Tobi Delbruck. «DVS Bench-
mark Datasets for Object Tracking, Action Recognition, and Object Recogni-
tion». In: Frontiers in Neuroscience 10 (Aug. 31, 2016). doi: 10.3389/fnins.
2016.00405 (cit. on p. 33).

[12] Arnon Amir et al. «A Low Power, Fully Event-Based Gesture Recognition Sys-
tem». In: 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). Honolulu, HI: IEEE, July 2017, pp. 7388–7397. isbn: 978-1-5386-
0457-1. doi: 10.1109/CVPR.2017.781. url: https://ieeexplore.ieee.
org/document/8100264/ (visited on 04/16/2024) (cit. on p. 34).

[13] Gianluca Amprimo, Claudia Ferraris, Giulia Masi, Giuseppe Pettiti, and
Lorenzo Priano. «GMH-D: Combining Google MediaPipe and RGB-Depth
Cameras for Hand Motor Skills Remote Assessment». In: 2022 IEEE In-
ternational Conference on Digital Health (ICDH). 2022 IEEE International
Conference on Digital Health (ICDH). July 2022, pp. 132–141. doi: 10.1109/

75

https://doi.org/10.3233/JPD-230117
https://pmc.ncbi.nlm.nih.gov/articles/PMC10836578/
https://arxiv.org/abs/2109.12894 [cs]
http://arxiv.org/abs/2109.12894
https://doi.org/10.1109/TPAMI.2020.3008413
https://ieeexplore.ieee.org/document/9138762/?arnumber=9138762
https://doi.org/10.1007/s00422-007-0189-6
https://doi.org/10.3389/fnins.2016.00405
https://doi.org/10.3389/fnins.2016.00405
https://doi.org/10.1109/CVPR.2017.781
https://ieeexplore.ieee.org/document/8100264/
https://ieeexplore.ieee.org/document/8100264/
https://doi.org/10.1109/ICDH55609.2022.00029
https://doi.org/10.1109/ICDH55609.2022.00029

BIBLIOGRAPHY

ICDH55609.2022.00029. url: https://ieeexplore.ieee.org/document/
9861059 (visited on 08/16/2024) (cit. on p. 38).

[14] Joel S. Perlmutter. «Assessment of Parkinson Disease Manifestations». In:
Current protocols in neuroscience / editorial board, Jacqueline N. Crawley ...
[et al.] CHAPTER (Oct. 2009), Unit10.1. issn: 1934-8584. doi: 10.1002/
0471142301.ns1001s49. url: https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC2897716/ (visited on 09/05/2024) (cit. on p. 44).

[15] Gianluca Amprimo, Irene Rechichi, Claudia Ferraris, and Gabriella Olmo.
«Objective Assessment of the Finger Tapping Task in Parkinson’s Disease
and Control Subjects using Azure Kinect and Machine Learning». In: 2023
IEEE 36th International Symposium on Computer-Based Medical Systems
(CBMS). 2023 IEEE 36th International Symposium on Computer-Based
Medical Systems (CBMS). ISSN: 2372-9198. June 2023, pp. 640–645. doi:
10.1109/CBMS58004.2023.00293. url: https://ieeexplore.ieee.org/
document/10178872/?arnumber=10178872 (visited on 08/20/2024) (cit. on
p. 44).

76

https://doi.org/10.1109/ICDH55609.2022.00029
https://doi.org/10.1109/ICDH55609.2022.00029
https://doi.org/10.1109/ICDH55609.2022.00029
https://ieeexplore.ieee.org/document/9861059
https://ieeexplore.ieee.org/document/9861059
https://doi.org/10.1002/0471142301.ns1001s49
https://doi.org/10.1002/0471142301.ns1001s49
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2897716/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2897716/
https://doi.org/10.1109/CBMS58004.2023.00293
https://ieeexplore.ieee.org/document/10178872/?arnumber=10178872
https://ieeexplore.ieee.org/document/10178872/?arnumber=10178872

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Digital Healthcare and Telehealth
	Gesture Recognition in Telerehabilitation
	Research Objectives

	Background
	Neurodegenerative Disorders
	Assessment and Rehabilitation of Parkinson Disease
	The MDS-UPDR Scale
	The Rehabilitation

	Computer Vision
	Machine Learning
	Convolutional Neural Networks
	Privacy concerns in camera-based system

	Neuromorphic Systems
	Neuromorphic Engineering
	Neuromorphic Sensing
	Neuromorphic Software
	Neuromorphic Hardware

	Event Cameras
	Spiking Neural Network
	LIF model
	Spikes Encoding
	SNN's learning approches

	Combining Event Camera and SNN
	Existing Neuromorphic Datasets
	N-MNIST
	DVS Gesture

	Dataset Creation
	Multi-camera Setup
	DVXplorer Lite
	Kinect Azure
	OptiTrack
	Camera Calibration
	Camera Synchronization

	Experiment Protocol
	Tasks

	Data Collection Process
	Dataset Organization

	Training SNN for Gesture Recognition
	Data Preprocessing
	From aedat to numpy
	Recordings Split
	Dataset Split
	Tonic Transformations
	Applying Transformation and Caching

	Model Architecture
	Original Net
	Simplified Net
	Dynamic Net

	Training
	Validation of the Model
	Cross Validation

	Hyperparameters Optimization

	Experimental Results
	Original Net Performance
	Simplified Net Performance
	Dynamic Net Performance

	Discussion
	Limitations of the Study
	Privacy and Energy Efficiency
	Future Works
	Conclusion

	Bibliography

