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Summary

Safety and security requirements of embedded systems have become more and
more important over the years and various coding guidelines and standards have
been release, with the object of regulating and assessing the safety and security
of software running on these systems. But how to assess claimed compliance to a
certain standard if the source code is not publicly available?

The thesis discusses the possibility of verifying several MISRA C coding guide-
lines in the absence of source code. Firstly, we analyze each mandatory MISRA
rule in detail and assess whether it is possible to detect violations based on binary
analysis alone. In addition, we present some prototype applications, based on
binary analysis techniques, developed in order to detect these violations.
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Chapter 1

Introduction

1.1 Research goal

The safety and security of embedded systems is of paramount importance as of
today. Not only have these devices become drastically more numerous over the
years, but the number and the consequence of their functions has steadily increased;
that is to say, a mulfunction has very severe safety implications (e.g. embedded
systems in vehicles, embedded systems in medical equipment).

To address these safety concerns, various guidelines and constraints have been
placed on one of the most popular programming languages for embedded devices,
the C language; among these is the MISRA C set of guidelines.

Such guidelines are a tool for developers to have a higher degree of confidence
that the software they produce is safe and secure; but given that most software is
closed source, how can the user or a third party verify compliance?

This being the premise, the object of this thesis is to investigate the possibility
of checking MISRA C guidelines in the absence of the source code, based only on
the machine code that is effectively run on devices.

The rest of this chapter provides more details on the specifics of the problem at
hand, particularly the C langugage, MISRA C guidelines and the world of binary
analysis. In Chapter 2 we analyze in detail those guidelines that we deem fit
for analysis. In Chapter 3 we present the details of the analyses that we carried
out. In Chapter 4 we discuss the results of these analyses and outline possible
improvements and future directions.
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Introduction

1.2 What is MISRA C
The C language and undefined behavior
Despite being introduced over 50 years ago, C is still an important and widely
used programming language; even more so in the field of embedded systems. The
behavior of C code is regulated by the C Language Standard, which puts a set of
constraints on C compilers. The C standard, however, does not cover every case
and allows the compilers to "cut some corners", which allows them to be simpler to
implement and to generate faster code; on the downside, this introduces undefined
behavior. [1]
The official definition of undefined behavior implies that it’s a programming error,
however it is allowed and can lead to crashes, erratic behavior and is generally bad
for applications that have safety and security requirements. [2]

Introducing MISRA C
MISRA (Motor Industry Software Reliability Association) is a consortium of
manufacturers, component suppliers, engineering consultancies and academics,
which «seeks to research and promote best practice in developing safety- and
security-related electronic systems and other software-intensive applications», such
as embedded control systems on cars. One of the results of this collaboration is
MISRA C: a set of guidelines that aims at increasing the safety and security of
a product that uses the C language. It does this by defining a subset of C that
prevents the possibility of undefined behavior. Undefined behavior stems from the
fact that the C language standard is not completely defined, and the behavior of
certain bits of code is up to the compiler to decide. This creates code that may
behave unexpectedly under certain conditions or on certain architectures. MISRA
C helps developers avoid these unexpected behaviors, thus increasing the safety
and security of a product.

MISRA C is not entirely about placing constraints on the source code, however;
the adoption of MISRA C in a project must be accompanied by specific software
development activities, in the official documentation. [3]. As prof. Bagnara
explains, «a useful way to think about MISRA C and the processes around it is to
consider them as an effective way of conducting a guided peer review to rule out
most C language traps and pitfalls.» [2]

1.3 MISRA C details and terminology
MISRA C is, at its core, a list of detailed guidelines that apply not only to the
C source code of a product, but to some stages of the development process as
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Introduction

well. All of the guidelines must be followed for a product to claim compliance with
MISRA C, although some guidelines allow for deviations1 (a formal explanation
that justifies why it was deemed necessary to ignore a guideline).
Each guideline is either a rule or a directive:

• Rules provide a complete description of the requirement (that is, the limitations
that allow for safe code); compliance can be checked through a static analysis
tool.

• Directives, on the other hand, are often more broadly defined and cannot be
checked through the source code alone; requirements, specifications, or design
documents are needed to verify compliance.

Each guideline can belong to one of three categories:
• Mandatory guidelines are the most important, and must all be followed, always.

Deviation is not allowed.

• Required guidelines must be followed, unless a deviation is provided.

• Advisory guidelines should be followed when possible. No formal deviation is
required, although non-compliance cases still need to be documented.

Every rule can in turn be on of the following:
• Decidable rules are such that there exists (theoretically) a way to check

compliance every time. This is a nice property, because it excludes the
possibility of false positives or negatives.

• For Undecidable rules, on the other hand, this doesn’t apply; therefore, there
may be cases where it’s impossible to statically verify if the rule has been
violated or not. The best a tool can do, for such rules, is to adopt a broader
approximation of the rule that guarantees no false negatives, at the cost of
some false positives.

In addition, rules are also classified according to their scope:
• Single Translation Unit (STU) rules are such that the lowest amount of

translation units (e.g a C file) required to detect a violation is one.

• System rules, on the other hand, are such that more than one translation unit
is required in order to check it; possibly the entirety of the source code.

MISRA C:2012, which is the third version of the guidelines and the one this
thesis is based on (before the addenda), contains 16 directives — of which 9 required
and 7 advisory — and 143 rules — 10 mandatory, 101 required and 32 advisory. [3]

1All MISRA C core terminology used in this section will be marked by italics
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Introduction

1.4 Why binary analysis
As seen in the previous section, MISRA C rules apply to the C source code; they can
be checked by using a combination of static analysis tools and manual inspection.

There are, however, cases where the source code is not available, but it is still
desirable to assess the safety and security levels of the software: closed source
projects and third-party libraries, for instance. The approach presented in this
thesis applies in those cases where the "traditional" method just isn’t viable.

There are apparent downsides to this approach. Source code and binary code
are two radically different beasts. Aside from not being human-readable, binary
code is just a sequence of instructions and data and carries no semantic information
at all, compared to the source code it was generated from, or even the low-level
assembly language used to represent it. This has two implications for us:

• not all MISRA C rules can be checked through binary code analysis. For
some rules we can observe the behavior of the source code and infer some
characteristic of the corresponding source code, and then judge whether that
rule was violated or not; for other rules this is not possible, because the source
code’s characteristics that they regulate do not carry over to the binary code
version.

• even in those cases where a rule can in fact be checked on the binary, since
binary code does not have a 1:1 correspondence with source code, we will
have to make assumptions and apply approximations in our analysis. This
introduces the possibility of false positives and false negatives, which means
the result of the analysis cannot be considered sound and complete.

At the end of section 2.1 is a table with a selection of MISRA rules that we
believe can and cannot be checked by analysis binary code.

1.5 Existing work
When it comes to verifying MISRA C compliance on source code there is no
shortage of proprietary and libre tools for the job; most of these are general-purpose
static code analyzers that can be enabled to check MISRA C rules as well. On
the contrary, relation between binary analysis and MISRA C has barely been
considered; to the best of our knowledge, there are no academic resources on the
subject.

The field of binary code analysis (BCA), however, is quite vast and its techniques
can be useful for the problem at hand; these can generally be applied to different
tasks, such as vulnerability detection, malware classification, reverse engineering
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etc. Such techniques vary greatly and are usually classified in three categories:
static analysis, dynamic analysis, and hybrid analysis.

[4] provides a good summary of binary analysis concepts, techniques and appli-
cations; it also introduced the powerful angr analysis engine.

There has also been a lot of effort to develop machine learning-based techniques
for BCA [5]. Among these, we found the approach shown in [6] to be promising
and we adopted it for one of our practical analyses. It is focused on the recognition
of weaknesses in binary code at the function level, classified according to MITRE’s
CWE scheme.

5



Chapter 2

Discussion of rules

2.1 Selection of rules
We chose to limit our discussion to the 10 mandatory rules present in MISRA:2012.
This provides a good starting point or our analysis, and we believe that the findings
can be extended to the remaining rules without trouble. In view of what was said
in section 1.4), the question we want to answer is: for which of these rules is it
possible to detect a violation by looking just at binary code?

In order to determine that, for each rule, we wrote a handful of source code
"testcases", with different data- and control-flow characteristics; each of these
"testcases" in turn has two variants, one that violates that rule and one that doesn’t.
All of these variants are then compiled. If, when comparing the disassembled
machine code that corresponds to the compliant and non-compliant variants,
there are any meaningful differences (e.g. instructions in different order, different
instructions or groups of instructions altogether etc.), analysis is deemed possible.

Here follows a list of the 10 mandatory rules, with each with a short description
and the rationale behind them, and an explanation of whether we think analysis is
possible or not. To better help understanding, Appendix A contains code examples,
both source and binary, for the rules we determined to be verifiable.

Rule 9.1
Description This rule requires objects with automatic storage duration (that is
to say, local variables allocated on the stack) to be initialized before being used.

Rationale Local variables in C are not automatically initialized, as opposed to
objects with static storage duration; attempts to access uninitialized variables will
result in using leftover memory content ("garbage") with unintended values, thus

6
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leading to undefined behavior.

Detection The use of uninitialized variables is a common problem, and one that
is not exclusive to C; one of the strategies that were devised to tackle it is ’definite
assignment analysis’, which uses and approximation that ensures no false negatives,
at the cost of introducing some false positives. Another approach is to simply check
that every stack location is written to before it is read; while simple, no guarantees
can be made about false negatives and positives. While the concept of ’variable
type’ is lost on binary code, variables are still present simply as memory locations;
we believe that by analyzing how memory locations are accessed, we can draw some
conclusions about violations of this rule.

Rule 13.6
Description This rule prohibits using expressions that have side effects as
arguments of the sizeof() operator. A few examples of side effects are accessing
a volatile object, modifying an object, modifying a file, calling a function.

Rationale This rule exists because expressions inside the sizeof() operator are
hardly ever evaluated at runtime; in the vast majority of cases the compiler itself
does the math for us and replaces the expression with the correct value. Therefore,
one cannot safely assume that the expression inside the operator will be executed
(undefined behavior occurs).

Detection Unfortunately, we observed that in the majority of cases the sizeof()
instruction translates to something as simple as storing a value in a general-purpose
register; this is too generic an operation, therefore we can’t reliably detect violations
to this rule in binary analysis.

Rule 17.3
Description This rule prohibits implicit function declarations.

Rationale When the compiler can’t find the declaration of a function, due to
not including the proper header file, or due to omitting the declaration in the
same source file, the compiler will generate a warning and assume that function’s
signature to have a return value of type int and parameters of type int as well.
For most functions this assumption is obviously wrong; when those functions are
called, undefined behavior occurs.

7
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Detection Much like the previous rule, we did not observe meaningful differences
in the disassembled code that can hint at a violation of the rule. This is because
the typing system and the notion of ’return type’ does not translate to binary code.
Therefore, violations to this rule are not detectable in binary analysis.

Rule 17.4
Description This rule requires that:

• control do not reach the end of a non-void function without encountering a
return statement;

• each return statement in a non-void function be followed by an expression1.

Rationale As those who have encountered the "control reaches end of non-void
function" GCC warning know, it’s possible to compile code where some a function’s
control flow paths don’t end with a return statement; if one of those paths is taken
and the caller function uses the (nonexistent) return value, undefined behavior
arises.

Detection The way C return values are handled by the processor is as follows: if
the value’s size is small enough, it will be stored in a specific register, right before
the end of the function (e.g. in x86, that register is RAX); if it is a larger structure,
it will be returned in the stack. The mechanics of return statements, therefore,
leave a fair bit of traces in binary code; we believe these can be used to detect
violations to this rule.

Rule 17.6
Description This rule prohibits the use of the static keyword between [] when
declaring an array.

Rationale When declaring a function’s parameters, the static keyword can be
used to place a constraint on an array parameter that requires a minimum length;
a call to such a function must provide an array with at least as many elements as
indicated within the subscript operator [] in the function declaration. This allows
for some compiler optimization, but if the programmer ignores the constraint and
provides an array with fewer elements, undefined behavior occurs.

1return statements with no return value in non-void functions are only possible in C90
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Detection The standard says that «a call to function may perform compile-time
bounds checking and also permits optimizations such as prefetching»2. If such
optimizations can be detected in binary code, and if they can be shown to be
univocal with the use of the static keyword in an array declaration, then there
would be a case for the detection of this rule. However, in the testcases we examined,
we found no difference between versions that violate the rule and ones that don’t;
therefore we can conclude that violation may be detectable in some specific cases,
but certainly not in all cases.

Rule 19.1
Description This rule prohibits copying or assigning an object to another, when
the two objects’ memory areas overlap. There are two exceptions however: either
memmove is used, or the two objects overlap completely.

Rationale The rationale behind this rule is that, depending on how the memory
areas overlap and how the copying process is implemented by the compiler (e.g.
front-to-end, end-to-front), the result will be different; there is no way of knowing
for sure what the result will be, and that is undefined behavior. This could happen
when using C unions; it could also happen when copying using memcpy. The use of
memmove is allowed because that function behaves as if using a temporary memory
area for the copy, which is safe.

Detection We believe it’s possible to detect violations similarly to rule 9.1. At
the very least, usages of memcpy and memmove are easily detectable.

Rule 22.2
Description This rule prohibits double free()s, using free() on a block of mem-
ory that wasn’t allocated with malloc() or calloc(), as well as using realloc()
after a free().

Rationale The rationale for this rule is self-evident: it bans incorrect usage of
the dynamic memory management functions.

Detection If one can retrieve the names of function calls, it’s possible to detect
violations to this rule.

2https://en.cppreference.com/w/c/language/array
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Rule 22.4
Description This rule prohibits writing to a read-only stream.

Rationale Writing data into a stream that is intended only for reading data is
not described in the standard, therefore it results in undefined behavior. Streams,
of course, are «a fairly abstract, high-level concept representing a communications
channel to a file, device, or process»3, described in C by the FILE data structure.

Detection Since it’s possible to retrieve from the disassembled code the mode
used to open a stream ("r", "w" etc.), we believe it’s possible to detect violations
to this rule with similar techniques to the previous rules.

Rule 22.5
Description This rule prohibits dereferencing pointers to a FILE object, as well
as copying the FILE objects directly (not the pointers).

Rationale The rationale for this rule is that one should only interact with FILE
objects through the intended library functions and through pointers; manipulating
the objects directly results in undefined behavior.

Detection This rule requires a double check:

• checking that the address returned by a fopen() is not accessed directly (a
giveaway is its use in the base + offset memory access mode);

• checking that the address returned by a fopen() is not used as an argument
for function calls other than the appropriate stream I/O library functions.

Rule 22.6
Description This rule prohibits any use of a pointer to a FILE object after the
corresponding stream has been closed with fclose().

Rationale Since the value of a FILE pointer is indeterminate after closing the
stream, using it results in undefined behavior.

3https://www.gnu.org/software/libc/manual/html_node/I_002fO-on-Streams.html
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Detection We believe violations to this rule can be detected similarly to the
previous rule.

2.2 Summary
After this preliminary analysis, we expect to be able to detect violations of 7 of
the 10 mandatory rules (the table below provides a concise summary). There is
something important to note here: all 7 of these rules we deem detectable are
undecidable rules, while the remaining 3 are all decidable. This is not entirely
surprising, however, since decidability depends entirely on syntactical aspects of
the source code; these aspects are no longer present in binary code, which makes
us unable to check these rules. It’s safe to assume that this applies to the rest of
the rules in MISRA.

Rule no. Detectable
9.1 ✓
13.6 x
17.3 x
17.4 ✓
17.6 x
19.1 ✓
22.2 ✓
22.4 ✓
22.5 ✓
22.6 ✓

Table 2.1: Summary of mandatory rules

11



Chapter 3

Practical analysis

Now that we have closely examined the mandatory rules, we turn our attention
to using known analysis techniques to develop tools that can perform automated
analysis of binaries, in order to detect rule violations.

3.1 Machine Learning approach
We followed the method used by [6] to train a binary classificator model that can
analyze some binary code and provide a yes/no answer to the question: is a specific
rule being violated? We took rule 9.1 as our reference, but we are confident the
process can be extended to the other rules.
In short, the model is trained using supervised learning, based on a Recurrent
Neural Network that learns from the features of binary code that are provided by
the word2vec algorithm. The following sections provide a summary of the process,
from the data used to the classification results.

The dataset
Similarly to [6], we use the Juliet Test Suite for C/C++1, version 1.3, part of
the Software Assurance Reference Dataset published by NIST. The Juliet Test
Suite for C/C++ is a collection of source code created with automatic tools by the
NSA’s Center for Assured Software as a benchmark for static analysis tools. The
source code in this database is subdivided in 118 categories according to MITRE’s
Common Weakness Enumeration scheme; within each category are many testcases,
bits of compilable code that exhibit the same weakness, but differ from each other

1available at https://github.com/arichardson/juliet-test-suite-c
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in terms of control-flow and data types. Most testcases can be compiled so that a
non-flawed version is produced, although some cannot (bad-only testcases).

The preprocessing
We closely follow the steps taken by [6] to implement feature extraction and feature
encoding.

Build Firstly, we use the accompanying Python script to compile the testcases
that belong to CWE-457 (Use of Uninitialized Variable) since it corresponds
prefectly with the semantics of rule 9.1.

Decompile Then, we use the command line tool RetDec to decompile the binary
code into LLVM Intermediate Representation. From this, we got 540 non-flawed,
"good" code representations and 540 flawed ones.

Parse The Intermediate Representation code needs to be treated before it can
be used for any sort of learning; so we built a custom parsing script in Python that
performs 3 actions:

• filtering of functions that are not directly related to the weakness, as well as
comments and global data, leaving only the functions that carry information
about the weakness; it also filters functions with fewer than 300 tokens, and
functions that exceed 1000 tokens.

• tokenization: splitting the remaining functions into individual syntactic tokens,
adding End-of-Line tokens, removing whitespaces and the sort.

• name translation: replacing functions’ and variables’ names with generic
names, so that there can be no correlation between them and the presence or
absence of a weakness.

For each LLVM IR file, the parser transforms each relevant function into a list
of strings, where each string represents a token. When parsing with a minimum
function length of 300 tokens, we obtain a total of 1235 features: 921 of which are
’good’ functions (no fault), and the remaining 314 ’bad’ functions (with a fault).
The larger number of good functions is due to the fact that the majority of ’good’
files contain a few variants of the non-flawed implementation, while the ’bad’ files
always contain only one.
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Encode Next, the relevant functions extracted by the parses need to be trans-
formed into a numerical format, so that a learning algorithm can be applied to
them. For this, we apply the word2vec algorithm, using the gensim library, with
its default parameters (that is, a vector size of 100, a window of 3, and sample rate
of 0.001). First, we train the word2vec model on our corpus of tokens; then, we
use the trained model to encode each token in each function, transforming it from
a string to a 100-dimensional vector of floats.

With the processing stage complete, we obtained a corpus of numerical data that
represents the essential elements of the binary code and is ready to be fed to a ML
classificator. The entire corpus has the following dimensions: (1235, 100, 1000).

The classificator
The proposed machine learning algorithm follows the approach of [6], in that we
train a binary classificator based on a RNN architecture. We use pytorch for the
algorithm implementation, and scikit-learn for handling the data.

The dataset

The algorithm being a binary classificator, we only work with 2 labels. We give
the non-flawed, "good" functions in our dataset the label ’0’, and ’1’ to the flawed
functions, as the term ’positive’ in this context refers to the presence of a flaw.
When dividing the data between ’train’ and ’test’ sets, we apply a Stratified K-Fold
Cross Validation scheme with 5 folds.

The model

The model is comprised of a Recurrent Neural Network with 4 layers, an input
size of 100 (same as the word2vec encoding dimensions) and a hidden size of 64;
the output of the RNN goes through a simple Linear readout layer with 2 output
nodes. The classificator’s prediction is considered to be the maximum value of the
2 output nodes. Training takes place in batches of 64, and stops at the 40th epoch.

Results
With an accuracy of 90% and a recall of 96.74% on the ’0’ class, the model is quite
capable of recognising non-flawed instances. With a recall of 71% on the flawed
class, we can deduce that the model introduces a lot of false positives.
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Figure 3.1: Flow chart of the Machine Learning process
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Execution time was 1 hour, 42 minutes and 44 seconds with no GPU acceleration2.

Fold TN FP FN TP accuracy (baseline)
1 182 3 19 43 91.09% (73.68%)
2 172 12 18 45 87.85% (69.63%)
3 176 8 21 42 88.26% (71.25%)
4 179 5 15 48 91.90% (72.46%)
5 182 2 16 47 92.71% (73.68 %)

average 178.2 6 17.8 45 90.36% (72.14 %)

Table 3.1: Results of ML classification tests

Class ID Precision Recall F1-score
0 (non-flawed) 90.91% 96.74% 93.73%

1 (flawed) 88.23% 71.65% 79.08%

Table 3.2: Statistics

2ASUS X756UXK (Intel Core i7-7500U CPU), 8 GB of RAM, 2 GB of swap RAM, SSD
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Figure 3.2: Plot of training loss against epoch
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3.2 Algorithmic approach
We conducted a test using the tool angr to simulate the execution of binaries
and detect violations of rule 9.1. angr [4] is a powerful software that incorporates
various analysis tools in one package; its draws are support for several architectures,
and built-in analysis techniques. It was designed to allow for easy reproducibility,
and it’s a useful tool for automating analyses.

Description
In order to detect violations to rule 9.1 automatically, we use a simple strategy
that consists in tracking the reads and writes to the stack memory area for each
function; we can detect a violation to the rule if a read over an untouched area of
the stack occurs.

Each binary file that the algorithm analyzes is loaded to angr to obtain a
Project, which is the main interface used to manipulate it. Through this, we get a
list of the functions that were recognize din this binary; we initialize a collection of
’variable tables’, where we will store the stack addresses touched by each function.
Before starting the emulation, we set up 2 callback functions that are triggered
when there are reads and writes to the stack; the ’write’ function records on the
appropriate ’variable table’ the address written to, and the ’read’ function checks
whether the address being read is present in the ’variable table’; if not, it reports a
violation.

Results
When testing this algorithm on the same dataset used for the previous test; we
achieved an accuracy of 80%. However, we found that all the false positives we
had were caused by the same specific condition (related to arrays and unrelated to
the flaw); when that issue is isolated and accounted for, accuracy raises to 92.70%.
Execution time was 28 minutes and 46 seconds3.

TN FP FN TP accuracy (baseline)
1650 309 182 358 80.51% (78.34%)

Table 3.3: Results of angr tests

3ASUS X756UXK (Intel Core i7-7500U CPU), 8 GB of RAM, 2 GB of swap RAM, SSD
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Algorithm 1 Pseudocode for rule 9.1 violation detection
▷ Initialization
initialize angr project
initialize variable tables

▷ Execution
start emulation
repeat

if function call f() then
tf = init(”f”) ▷ initialize new table for function f

end if

if in function f , write operation to stack location a then
add entry a to tf ▷ write operation is recorded

end if

if in function f , read operation from stack location b then
if tf contains b then

valid read
else

report violation
end if

end if

until emulation ends

19



Chapter 4

Discussion of results and
future directions

4.1 Machine Learning approach

Positives
The Machine Learning approach to this analysis has some advantages:

• it is relatively easy to implement, and the analysis is easy to carry out;

• the same learning algorithm can be applied to target different rules, provided
that a dataset of binary code can be supplied.

• the process can be easily extended to the other rules that we deemed fit for
analysis in Chapter 2.

Drawbacks
• one of the weaknesses of this approach is that only those rules for which a

substantial database can be supplied may be studied. The database examined
in the examples we presented were assembled for different purposes, and they
happened to fit well with the goal of our analysis.

• artificial code, as used in our examples, may come short of code found "in
the wild". As [7] puts it: «Test cases are simpler than natural code. Some
test cases are intentionally the simplest form of the flaw being tested. Even
test cases which include control or data flow complexity are relatively simple
compared to natural code.»
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• since the learning process in non-deterministic, using a classification algorithm
as shown in the example can’t demonstrate the absence of faults. At best, it
can be used to highlight critical code for further examination. 1

Improvements
The first step in improving the results obtained in our test would be to improve
the Machine Learning architecture itself; for instance, [6] observed that SRNN
(Structural RNN) typically perform better, followed by LSTM (Long Short-Term
Memory) Recurrent Neural Networks.

Secondly, the same Machine Learning process would be applied to the other
rules for which we have a database and verify if accuracy stays high; using the
same Juliet database, we would be able to analyze Rule 22.2 («A block of memory
shall only be freed if it was allocated by means of a Standard Library function»)
by combining code from testcases of CWE-415 (Double Free) and CWE-590 (Free
of Memory not on the Heap).

Thirdly, we would extend the current model to make it a multi-class classificator,
capable of recognizing different types of flawed and non-flawed implementations.
Alternatively, domain adaptation techniques can be investigated to extend the
model to other rules.

4.2 Algorithmic approach

Positives
The algorithmic approach has, in principle, the possibility of not having any false
negatives, if the correct approximation is chosen. This advantage, although hard
to achieve, is crucial, as it ensures the soundness of the analysis.

Drawbacks
An algorithmic approach is generally harder to implement and requires very detailed
knowledge of computer architectures, binary code execution and compilers.

The algorithmic approach is less scalable than the ML one; since, in general,
every rule deals with different semantics, there is no one-size-fits-all approach.
Every rule requires an ad-hoc algorithm that for every peculiarity of each rule.

1That might not be less of an issue as it appears to be. As [2] notes, the core of the compliance
checking is not the pinpoint accuracy, but rather that violations are apparent and should not
take long to be confirmed.
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This is somewhat mitigated by the fact that many rules (e.g. all 22.* rules) are
related and share the same semantics.

Improvements
Firstly, we wish to improve accuracy by eliminating the array issue that we identified,
but couldn’t get rid of due to a somewhat limited knowledge of the angr tool.

Secondly, we believe a more robust algorithm can be devised by employing
concepts introduced by [8]; in particular, they perform concept assignment on
binary code, utilizing formal analysis methods. They obtain good results in
analyzing buffer overflow vulnerabilities, but are confident their approach can apply
to other vulnerabilities as well.
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Appendix A

Code snippets of MISRA
rules

Figure A.1: Simple testcase for rule 9.1

Figure A.2: Rule 9.1 compliant version binary
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Figure A.3: Rule 9.1 non-compliant version binary

Figure A.4: Simple testcase for rule 17.4

Figure A.5: Rule 17.4 compliant version binary
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Figure A.6: Rule 17.4 non-compliant version binary

Figure A.7: Simple testcase for rule 19.1

Figure A.8: Rule 19.1 compliant version binary
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Figure A.9: Rule 19.1 non-compliant version binary

Figure A.10: Simple testcase for rule 22.2
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Figure A.11: Rule 22.2 compliant version binary

Figure A.12: Rule 22.2 non-compliant version binary
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Figure A.13: Simple testcase for rule 22.4

Figure A.14: Rule 22.4 compliant version binary
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Figure A.15: Rule 22.4 non-compliant version binary

Figure A.16: Simple testcase for rule 22.5

Figure A.17: Rule 22.5 compliant version binary
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Figure A.18: Rule 22.5 non-compliant version binary

Figure A.19: Simple testcase for rule 22.6

Figure A.20: Rule 22.6 compliant version binary
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Figure A.21: Rule 22.6 non-compliant version binary
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