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Abstract

Achieving high-accuracy and robust navigation solutions is crucial in various domains,
such as autonomous vehicles, aviation, and mobile devices. In this context, Global Navi-
gation Satellite Systems (GNSS) play a pivotal role in modern navigation and positioning
applications due to their capability of providing absolute position fixes. However, many
target applications have strict safety and precision requirements, which standalone GNSS
is unable to achieve in harsh environments such as urban scenarios, thus requiring im-
provements in terms of accuracy and robustness.

Factor graphs have proven to be a powerful mathematical framework for modeling and
solving complex estimation and optimization problems such as Simultaneous Localization
and Mapping (SLAM). At its core, factor graphs represent relationships between variables
using nodes and factors, where nodes correspond to variables of interest, while factors en-
code constraints or dependencies between these variables. By leveraging the graphical
structure of the problem, factor graphs exploit sparsity and modularity to break down
large-scale problems into smaller, more manageable components. Furthermore, these fea-
tures allow for the seamless integration of additional constraint and measurement models
to implement more advanced estimation techniques. Due to their increased flexibility,
factor graphs have recently emerged as an alternative method for GNSS positioning with
respect to traditional methods such as Extended Kalman Filter (EKF).

Several algorithms can be found in literature that are proven to further increase the
accuracy and reliability in harsh environments, implemented on top of the GNSS solution
since due to the flexible structure of the factor graphs, it is possible to integrate other
methods. In this thesis, two robust estimation methods called Switch Constraints (SC),
and Gaussian Max-Mixtures (GMM) were implemented in order to mitigate the effects
of measurement outliers in urban environments. SC utilize switch functions that act like
weighting constants that handle the erroneous data and adjust their weight to be closer
to zero if the data deviates from the optimal. GMM introduces bi-modal or multi-modal
Gaussian distribution to help defining the characteristics of the erroneous data so that
they can fit into the model better and provide better accuracy. Those two methods were
implemented on MATLAB on top the already existing receiver structure, and experimental
datasets were collected in an urban scenario, in Torino, near Politecnico di Torino to test
the algorithms. The results have shown that the errors have been reduced thanks to
the robust estimation methods of SC and GMM in urban environment, compared to the
standalone factor graph framework results.
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Chapter 1

Introduction

Accurate and reliable positioning has become a fundamental requirement in many mod-
ern applications, ranging from autonomous driving, navigation, and logistics to disaster
management and precision agriculture. Global Navigation Satellite Systems (GNSS) have
become the backbone of Location Based Services (LBS), providing widespread access to
positioning information, and allowing users to determine their state. However, their per-
formance may often become compromised in challenging environments, such as urban
areas with signal reflections or blockages. In these situations, errors such as multipath
effects, signal interference can significantly degrade the reliability and accuracy of GNSS
positioning.

Traditional estimation techniques, such as least squares and Kalman filtering, are ef-
ficient under ideal conditions but struggle to handle outliers or corrupted measurements
effectively. Factor graphs (FG), a powerful probabilistic modeling framework, offer an al-
ternative way of filtering by allowing the representation of complex relationships between
variables while integrating measurement uncertainties [7]. Due to their flexible structure,
FGs also allow adding robust estimation methods to help decrease the localization error
which could be caused by multipath or signal blockage [8].

This thesis focuses on leveraging robust estimation methods within the FG frame-
work, which address the challenges posed by unreliable GNSS measurements Specifically,
the thesis aims to show that, by exploiting proper statistical modelling of the problem,
robust estimation techniques can reduce errors in the positioning solution compared to
the standalone factor graph optimization (FGO) solution.

The motivation for this research arises from the increasing need for GNSS solutions
capable of maintaining high accuracy and reliability levels under diverse operational condi-
tions. In pursuit of this objective, two key distinct robust estimation methods are explored
and the following original contributions are obtained from the work of this thesis:

• Switch Constraints (SC): Switch constraints provide a mechanism for the system
to evaluate the quality of each measurement and selectively reduce the influence of
unreliable data by introducing a switch variable to be optimized [8], ensuring that
erroneous measurements have minimal impact on the final position estimate. A SC
algorithm is implemented on top of the existing factor graph scheme.
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• Gaussian Max-Mixtures (GMM): Most applications only utilize uni-modal Gaus-
sian distribution to characterize the input data. However, when there is multipath
or other errors, a uni-modal distribution may become insufficient to filter the erro-
neous data, and GMM aims to solve this problem by introducing another distribution
specifically model the outliers, and selects the most likely Gaussian distribution by
maximizing it [11]. A mathematical formulation of GMM has been proposed in
literature and integrated onto the factor graph structure.

• Combination of SC and GMM (SC + GMM): So far, it has been observed
that many applications have successfully implemented SC and GMM approaches
separately and obtained successful results. Nevertheless, to the best of author’s
knowledge, it has not been seen that a combination of both methods applied at
the same time to filter a dataset. After making sure that both SC and GMM im-
plementations are successfully implemented and meaningful results are obtained, a
combination of SC + GMM filters were tested, and promising improvements were
obtained.

In order to test the robust estimation methods written above, two experimental datasets
were collected using a GNSS receiver: one static and one dynamic, to test the performances
of the SC, GMM and SC + GMM under different conditions (stationary and moving re-
ceiver). It has been shown that significant improvements were observed compared to the
plain FG solution, thanks to the robust estimation methods.

By integrating these advanced techniques, the thesis aims to contribute to the devel-
opment of navigation systems that can meet the demands of emerging technologies and
critical applications, providing consistent performance in challenging scenarios.
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Chapter 2

Satellite Navigation Systems

A satellite navigation system consists of a network of satellites to provide geo-positioning
and timing information to an end-user for it to locate itself in an absolute reference frame.
If that satellite navigation system covers the whole Earth, it is called Global Navigation
Satellite System (GNSS). Nowadays, many modern applications, such as transportation,
autonomous vehicles, precision agriculture, and logistics; rely on the usage of maps and
user location data to function effectively. Therefore, the accuracy and precision of satellite
navigation systems are of utmost importance.

In this first chapter, the history of the satellite navigation systems, a brief background
and working principles of GNSS and its theoretical calculations are given in details so
that the thesis can be fully grasped.

2.1 Global Navigation Satellite Systems (GNSS)
A GNSS network does not only consist of satellites orbiting the Earth; but it has three
different segments; space, control and user segments. Three segments work together so
that the applications that utilize GNSS can function properly [1].

Space Segment

The space segment of a given GNSS network is composed of a set of satellites (i.e. con-
stellation), orbiting the Earth at an altitude between 20,000 km and 37,000 km, usually at
the medium Earth orbit. The satellites transmit signals that contain information about
their position, velocity, orbit, and identification code that is related to the satellite (i.e.
Pseudorandom Noise (PRN) code). All the satellites in the constellation are expected to
be synchronized via a stable atomic clock so that there would be no discrepancy between
the transmission of the signal.

Control Segment

Control segment consists of stations on the ground that monitor the satellites in space.
Specifically, the control segment is composed of three different stations: data uploading
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stations, master stations and monitor station. Data uploading stations are responsible for
sending the updated data to the satellites, monitor stations are responsible for tracking
the health, orbital status of the satellite data and finally the master station processes the
data that is coming from the satellites, updates the satellite orbits and the time scale if
necessary.

User Segment

The user segment consists of the devices that have GNSS receivers. The bodies could be
transportation vehicles (such as ships, automobiles, aircrafts etc.), mobile devices, drones,
or even standalone GNSS receiver boards. The users are able to receive signal from the
satellites, which contain information regarding position, velocity and time info so that the
users can determine their location, which is called positioning.

In Figure 2.1, one can see all three GNSS segments and their communication scheme. It
should be noted that there is a bidirectional communication between the control segment
and the space segment of GNSS, whereas there is only one way of communication between
the users and the space segment; from satellites to users. The users cannot send a signal
to satellites, also there is no communication between the control stations and the users.

Figure 2.1: GNSS Architecture, that consists of space, control and user segments. [1]

2.2 GNSS Constellations
Currently, there are four satellite constellations that have global coverage; namely Global
Positioning System (GPS), GALILEO, GLObal’naya NAvigatsionnaya Sputnikovaya Sis-
tema (GLONASS) and BeiDou, developed by different regions around the world. Their
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brief histories are given below.

GPS
GPS is the GNSS system owned by United States of America. The GPS project started
to be developed in 1973 by the U.S. Department of Defense and the constellation that
consist of 24 satellites became fully operational in 1993. Even though it started as a
system reserved for the military use, then it also became public and opened to civilian
and commercial use. As of today, current number of usable GPS satellites are 31, which
include currently used and spare ones [12]. Each GPS satellite’s period is roughly 12
hours, thus rotates around the Earth twice a day and flies in the medium Earth orbit
(MEO), around 20,200 km altitude [12]. All of the GPS satellites broadcast the same
two frequencies: 1.57542 GHz (L1 band) and 1.2276 GHz (L2 band), and the newer GPS
satellites also broadcast 1.176 GHz (L5 band) [13]. The Coarse-acquisition (C/A) PRN
code, where each satellite has its own unique code to help them to be distinguished by
the receiver, is for civilian use only and transmitted through L1 band. Each PRN code is
orthogonal to each other, thus their cross-correlation is very low, so that the probability
of signals coming from different satellites thought to be the same is very small. The C/A
PRN codes have a frequency of 1.023 mega chips per second (Mchip/sec). The L2 band
also transmits the P-code for military use only, whose encrypted version is called the P(Y)
code.

One can see the GPS signal structure in Figure 2.2.

Figure 2.2: GPS Signal Structure [2]

GALILEO
GALILEO is the GNSS project developed and owned by the European Space Agency
(ESA) and operated by the European Union Agency for the Space Programme (EUSPA).
The GALILEO project started to be developed early 21st century and became operational
in 2016 [14]. Similar to GPS, GALILEO has 30 usable satellites in space; 24 of them being
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currently in use and 6 of them are spare. Its orbital height is higher than the GPS’, which
is about 23,222 km and the orbital period is about 14 hours. GALILEO broadcasts signals
in three main frequency bands: E1 (1575.42 MHz), E5 (1191.795 MHz) which consists of
E5a (1176.45 MHz) and E5b (1207.14 MHz) bands, and finally E6 (1278.75 MHz) [15].
Different from the GPS’ signal structure, GALILEO introduced a subcarrier for modula-
tion, called Binary Offset Carrier (BOC), in order to reduce mutual interference among
satellites.

GLONASS
GLONASS is the GNSS project of Russia, whose development began in 1976, for both
civilian and military usage. It has 24 satellites in nominal use, which are located in the
middle circular orbit around 19,100 km altitude, and an orbital period about 11 hours
[16]. The GLONASS constellation is especially useful for high latitudes measurements,
where other constellations’ satellite measurements may be insufficient. Unlike GPS, all
GLONASS satellites have the same PRN, but they use slightly different frequencies to be
distinguished in L1 and L2 bands, called frequency division-multiple access (FDMA). The
signals also are also modulated using Binary Phase Shift Keying (BPSK) similar to GPS.

BeiDou
BeiDou is the GNSS project developed and owned by China. At the beginning of the 21st

century, the experimental BeiDou system with three satellites started to be developed
as the first generation of BeiDou GNSS project. By 2012, second generation of BeiDou
(called BeiDou-2), started to offer regional services to China and neighboring regions. The
latest generation of BeiDou is the third one, called BeiDou-3, offers global coverage with
27 satellites MEO (global coverage), 3 satellites in inclined geosynchronous orbits (IGSO)
(Asia-Pacific region coverage), and 5 satellites in geostationary orbit (GEO), covering
China [17]. Its orbital period is approximately 13 hours.

2.3 Principles of GNSS
Since a brief history and the different constellations of GNSS throughout the globe have
been discussed, one can move on to the technical aspects of GNSS, its working principles,
main sources of errors.

2.3.1 Ranging and Triangulation/Trilateration

There are two most commonly used methods to determine a user’s location via the satel-
lites: which are called triangulation and trilateration [3]. In trilateration, the distances
measured by satellites are used to determine the user location, whereas in triangulation
the angles measured are user to determine the user location. GNSS constellations like
GPS use the trilateration system for user location to be determined, whereas triangula-
tion is usually used by surveyors in Earth applications to determine the location of an
object.
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In GNSS, satellites broadcast their signal that includes information related to naviga-
tion messages such as their location and time; and the GPS receiver tries to calculate its
own location via the messages received from the satellites. One of the most basic but fun-
damental methods to calculate the range between the two objects is to use the method of
Time of Arrival (ToA). The distance between the satellite (transmitter) and the receiver
(GPS receiver) can be found as [18]:

R = c(TRX − TT X) = c · τ (2.1)

If the transmission time TT X is known perfectly and the received time TRX is calculated
by the receiver, the range can be easily calculated. Under normal circumstances, the clock
of the receiver and the satellite is not perfectly synchronized, so a clock bias (bu) occurs,
but it can be fixed.

When the range between a satellite and the receiver is computed, the possible points
that the receiver can be located are on the circle with the radius R whose center is the
location of the satellite in 2D. So, any point that is R distance away from that satellite
could be the location of the receiver. For example, if the receiver is on the blue circle
around Satellite 1 in Figure 2.3 and the range is measured, no more information is gained
beyond that with only one satellite. Thus, in order to find a more precise position of the
receiver, signals from more satellites are required.

Figure 2.3: Satellite trilateration in 2D. Measurement from Satellite 1 is done and receiver
is estimated to be on the blue circle. [3]

If it is assumed that the receiver’s coordinates are in 2D, as in Figure 2.4 (right), and
two circles intersect, so there could be two intersection points, which are the possible
locations of the receiver. This is an improvement considering when there was only one
satellite, as in Figure 2.3, where infinite number of points could be the receiver’s location
on the blue circumference.

Nevertheless, in order to be able to obtain a unique solution in 2D, at least 3 satellites
are required. If the satellites are properly positioned around the receiver, the intersection
of three measurements could be at only one point, which corresponds to the user position,
as in Figure 2.4, right.
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Figure 2.4: Satellite trilateration in 2D. The intersection of two satellite measurements
(left) and the intersection of three satellite measurements (right). [3]

With three satellites in 2D as in Figure 2.4, the receiver can pinpoint its exact location
via trilateration.

Figure 2.5: Satellite trilateration in 3D. [3]

Now, if one considers 3D coordinate system, the satellites broadcast signals as if they
are in the center of a sphere. Thus, in order to obtain a a unique intersection point of the
spheres so that the exact location of the receiver could be estimated, at least 4 satellites
are needed, so that the trilateration algorithm could work. One could check Figure 2.5
for the intersection of four satellites.

Now that the trilateration procedure is given, one can move onto the acquisition and
tracking processes that the receiver performs in order to obtain and track signals from the
GNSS satellites.

2.3.2 Acquisition
In the acquisition process, the aim is to find from which satellites the receiver can obtain
measurements (detection), and estimate roughly the delay and the Doppler frequency
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shift of the signal. Without determining which satellites are available, the signal tracking
process becomes extremely difficult.

In order to acquire which GNSS satellites are in visibility, the correlation functions
are used by the receiver. The GNSS receiver generated the local replicas of the satellite
PRNs, and performs the correlation with the incoming signal to be determined whether it
contains the specific PRN. Since the input signal is constantly received, circular correlation
is generally performed which is also related to Discrete Fourier Transform (DFT), that
is extensively used in signal processing [19]. The normalized circular correlation Rx,y of
signals x[n] and y[n] with length L can be expressed as:

Rx.y[m] = 1
L

L−1Ø
n=0

x[n]y[n+m] (2.2)

If the satellite PRN that has been searched is observed in the received signal, an
aurocorrelation value emerges from the rest of the correlated values on the plot. The
relation between circular correlation function Rx,y[m] and DFT is explained as:

IDFT {X[k]Y ∗[k]} = Rx.y[m] (2.3)
where Inverse Discrete Fourier Transform (IDFT) bridges the relation between circular

correlation of the signals time domain and their frequency domain functions, X[k] is the
Fourier Transform (FT) of the signal x[n] in the time-domain, Y ∗[k] is the conjugate of
the FT of the signal y[n] in the time-domain. Thus, the entire correlation function in the
acquisition stage can be obtained by Fast Fourier Transform (FFT) operations.

The general form of the received signal from the jth satellite can be expressed as [19]:

xj [n] = AD(nTs − τD)C(nTs − τ)cos(2π(fIF + fd)nTs + φ) (2.4)
where A is the signal amplitude, Ts is the sampling frequency, D(nTs − τD) is the

navigation data with delay τD, C(nTs − τ) is the PRN code with delay τ , φ is the phase
of the received signal, fIF is the intermediate frequency. The first step in the acquisition
phase is to estimate the delay τ and the Doppler shift fd. In order to achieve that, a
search space is needed. There are usually 1023 code phases for τ and ±5kHz to search
in the frequency bin (sufficient for all ground applications). Considering the fact that
for a stationary receiver, the Doppler shift can have a value for up to ±5kHz. A Cross
Ambiguity Function (CAF) is formed to observe the peak at the estimated delay τ̂ and
frequency f̂d. The formula for the CAF is as follows [20]:

Ry,r(τ̄ , f̄d) =
L−1Ø
n=0

yIF (nTs)ci(nTs − τ̄)ei2π(fIF +f̄d)nTs (2.5)

where ci(t) is the PRN sequence of the ith satellite that is being searched in the CAF
function. The resulting search space is in 3D, where x-axis represents the delay bins (τ̄),
y-axis represents the frequency shift (f̄d), and the z-axis represents the squared modulus
of the Ry,r(τ̄ , f̄d), where the relationship can be expressed as:

S2
y,r(τ̄ , f̄d) = |Ry,r(τ̄ , f̄d)|2 (2.6)
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An example CAF plot is given in Figure 2.6.

Figure 2.6: 3D CAF for GPS PRN 5. The peak is at delay bin = 6548, Doppler = 2 kHz.
Max correlation value is 0.8911. [4]

In Figure 2.6, a peak was observed at (τ̂ , f̂d) = (6548, 2kHz), where the value of the
peak is significantly higher than the noise floor of the CAF plot in 2.6, indicating the
result that the signal was obtained from the GPS satellite of PRN 5. In order to properly
determine the existence of a certain PRN in a CAF plot, the peak must be significantly
higher than the noise floor, above a certain threshold. If that threshold is passed for
a specific delay code and frequency value in a CAF plot, those values are taken as the
estimated values for (τ̄ , f̄d). If a sufficiently high peak is observed in a given CAF plot,
the estimated values from the Sy,r(τ̄ , f̄d) can be found via the Maximum-Likelihood (ML)
approach:

(τ̂ , f̂d) = argmax
{τ̄ ,f̄d}

|Sy,r(τ̄ , f̄d)| (2.7)

where the estimated values τ̂ , f̂d are the maximizing values of the CAF function of
Si(τ̄ , f̄d). After the rough values are estimated, the receiver can begin the tracking stage
[21].

2.3.3 Tracking
The tracking stage aims to ensure that the local PRN codes in the receiver are perfectly
synchronized with the incoming signals from the satellites. After the acquisition stage
provides the initial estimate of τ̂ and f̂d, the tracking loops lock into the detected satellites
to continuously track the signals for the finer estimate of the code and carrier parameters,
so that the receiver can determine its location via trilateration.
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To keep track of the incoming satellites, the receiver replicates the observed satellites’
PRN and adjusts its parameters to guarantee the synchronization [5]. One can see the
basic schematic of the tracking stage in the receiver in Figure 2.7.

Figure 2.7: Basic structure of the tracking loop in the receiver [5]

The first block in the tracking stage can be listed as the integrate and dump (I&D)
units, which collect the correlators’ outputs and separate them into the in-phase (I) and
quadrature (Q) components. The E,P and L subscripts on the I and Q components refer
to the Early, Prompt and Late correlators respectively [22]. Prompt (P) correlator is the
aligned replica with the input signal whereas early (E) and late (L) correlators are either
shifted earlier or later later replica with the incoming signal respectively. Depending on
the correlator result, the receiver can detect whether the local replica is perfectly aligned
or if it is not, how much correction is needed.

Then, the discriminators in the tracking stage process the I-Q components from the
previous stage and provide measurable quantities such as code and carrier phase informa-
tion. The filters try to remove the unwanted noise from the resulting signal coming from
the discriminators. At last, Numerical Control Oscillators (NCO) take the filter outputs
and then convert them into correction factors for Doppler shift and code delay, which are
fed back to the Doppler wipe-off and local code generators blocks for fine estimation of
the parameters [5].

For code tracking loop, the receivers commonly use the Delay Lock Loop (DLL). By
observing the incoming signal’s delay, the DLL provides a correction to the local replica
code generators, to keep the local replica as much as aligned as possible with the trans-
mitted signal, since an error of a millisecond may result in hundreds of kilometers [23],
thus the precision is of utmost importance.

Carrier tracking loops may consist of only Phase Lock Loop (PLL), only Frequency
Lock Loop (FLL) or a combination of both, depending on the receiver type. The PLL
keeps track and tries to estimate the misalignment between the prompt correlator and
the incoming signal phase, within the tracking loops in Figure 2.7 [24]. A common PLL
is the Costas loop, which is a type of dicriminator indifferent to bit transitions [24]. On
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the other hand, FLL ignores the change or the difference in the phase and tries to catch
up with the Doppler shift in the signal and provides frequency corrections [25].

2.4 GNSS Position, Velocity, and Time (PVT) Solu-
tions

As the GNSS architecture, acquisition and tracking stages were laid out in the previous
part, one can move onto the mathematical background of the user position and velocity
calculation procedures. This is called the Position, Velocity, Time (PVT) solution, since
along with the position and velocity, the variables regarding time, such as the clock bias
and clock drift are also estimated. Timing information is also crucial in the GNSS systems,
since most of the time the receiver time and the GNSS time is not synchronized, thus the
difference is needed to be calculated. Below, the user position and velocity calculations
are elaborated and the concept of Dilution Of Precision (DOP) is also explained.

2.4.1 User Position Calculation
The calculation of the user position can be estimated by knowing the range between the
satellite and the user, which can be done via the pseudorange measurement model. The
pseudorange from the jth satellite to the user can be expressed as follows [26]:

ρj = rj + c(tu − tj) + Ij + Tj + ϵj (2.8)
where ρj is the pseudorange between the satellite and the user, rj is the true geometric

range (Euclidean distance) between the satellite and the user, c is the speed of light in
vacuum (299,792,458 m/s), tu is the receiver clock bias, tj is the clock bias of the satellite
j, Ij and Tj are the ionospheric and tropospheric errors delays that result in measurement
errors, ϵj represents the remaining errors which can be caused by not limited to multipath,
noise and hardware errors. The reason why ρj is called pseudorange instead of range can
be understood via the pseudorange measurement model in (2.8), since there is a mismatch
between the measured distance and the actual range, due to the user and the satellite clock
bias.

The actual range between the user and the satellite rj can be formulated via Euclidean
distance as follows:

rj =
ñ

(xj − xu)2 + (yj − yu)2 + (zj − zu)2 (2.9)

where pj = [xj , yj , zj ] is the satellite position and pu = [xu, yu, zu] is the user position
in Cartesian coordinate system. The term ctu can be replaced by bu and all the remaining
errors can be collected inside ϵj for concision. One can assume the function the pseudor-
ange only consist of the position and clock bias variables to solve it, since the errors in ϵj
are not of interest for now, as below:

ρj = f(xu, yu, zu, bu)

=
ñ

(xj − xu)2 + (yj − yu)2 + (zj − zu)2 + bu

(2.10)
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In order to have an approximation of the user position, one can assume that the
function of the pseudorange for satellite j can be defined as follows [27]:

ρ̂j = f(x̂u, ŷu, ẑu, b̂u)

=
ñ

(xj − x̂u)2 + (yj − ŷu)2 + (zj − ẑu)2 + b̂u

(2.11)

Thus the approximated range is as follows:

r̂j =
ñ

(xj − x̂u)2 + (yj − ŷu)2 + (zj − ẑu)2 (2.12)

The relationship between the approximated variables (x̂u, ŷu, ẑu, b̂u) and actual vari-
ables (xu.yu, zu, bu) of the user position is as follows:

xu = x̂u + ∆x
yu = ŷu + ∆y
zu = ẑu + ∆z
bu = b̂u + ∆b

(2.13)

where p̂u = [x̂u, ŷu, ẑu, b̂u] denotes the approximated user location and ∆x,∆y,∆z,∆b
denote the difference. Thus, one can also apply change of variables to (2.8) via (2.13) as
below:

f(xu, yu, zu, bu) = f(x̂u + ∆x, ŷu + ∆y, ẑu + ∆z, b̂u + ∆b) (2.14)

Nevertheless, (2.11) is non-linear in the user position p̂u, thus one has to apply the
Taylor series expansion around a linearization point of (x̂u, ŷu, ẑu, b̂u) to linearize the
(2.11). The partial derivatives w.r.t to the approximated variables of the user position
[x̂u, ŷu, ẑu, b̂u] are:

∂f(x̂u, ŷu, ẑu, b̂u)
∂x̂u

= −xj − x̂u

r̂j

∂f(x̂u, ŷu, ẑu, b̂u)
∂ŷu

= −yj − ŷu

r̂j

∂f(x̂u, ŷu, ẑu, b̂u)
∂ẑu

= −zj − ẑu

r̂j

∂f(x̂u, ŷu, ẑu, b̂u)
∂b̂u

= 1

(2.15)

Now, one can write the Taylor expansion to (2.14) as follows:
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f(x̂u + ∆x, ŷu + ∆y, ẑu + ∆z, b̂u + ∆b) =f(x̂u, ŷu, ẑu, b̂u) + ∂f(x̂u, ŷu, ẑu, b̂u)
∂x̂u

∆x

+ ∂f(x̂u, ŷu, ẑu, b̂u)
∂ŷu

∆y + ∂f(x̂u, ŷu, ẑu, ẑu)
∂ẑu

∆z

+ ∂f(x̂u, ŷu, ẑu, b̂u)
∂b̂u

∆b

(2.16)
Plugging the partial derivatives in (2.15), (2.8) and (2.11) to (2.16) one obtains:

ρj = ρ̂j −
xj − x̂u

r̂j
∆xu −

yj − ŷu

r̂j
∆yu −

zj − ẑu

r̂j
∆zu + bu (2.17)

Rearranging the expression in (2.17) to obtain the difference between the approximated
pseudorange ρ̂j and the actual pseudorange ρj , one can obtain:

ρ̂j − ρj = xj − x̂u

r̂j
∆xu + yj − ŷu

r̂j
∆yu + zj − ẑu

r̂j
∆zu − bu (2.18)

To make the expression (2.18) simpler, one can apply the change of variables one more
time, as follows:

∆ρj = ρ̂j − ρj

ax,j = xj − x̂u

r̂j

ay,j = yj − ŷu

r̂j

az,j = zj − ẑu

r̂j

(2.19)

Thus, (2.18) becomes:

∆ρj = ax,j∆xu + ay,j∆zu + az,j∆zu − bu (2.20)

Now, the pseurange equation for the jth satellite is linear in ∆x,∆y,∆z and bu in (2.20)
and it can be solved via Least Squares (LS). If one collects the pseudorange equations
regarding n visible satellites, one can obtain:

∆ρ1 = ax,1∆xu + ay,1∆zu + az,1∆zu − bu

∆ρ2 = ax,2∆xu + ay,2∆zu + az,2∆zu − bu

...
∆ρn = ax,n∆xu + ay,n∆zu + az,n∆zu − bu

(2.21)

The equations in (2.21) can be put in the matrix and vector form as follows:
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∆ρ =


∆ρ1
∆ρ2

...
∆ρn

 , H =


ax,1 ay,1 az,1 1
ax,2 ay,2 az,2 1

...
...

...
...

ax,n ay,n az,n 1

 , ∆x =


∆xu

∆yu

∆zu

−∆bu

 (2.22)

Thus, (2.21) can be expressed in matrix form via (2.22) as follows:

∆ρ = H∆x (2.23)
In the (2.23), the unknowns are ∆x and the ∆ρ term is computed using the pseudorange

measurements, thus one would like to calculate ∆x. If n = 4, thus only 4 satellites are
used for the measurement, H is a square matrix. If the rows of H are linearly independent
in that situation, H is invertible, thus one can obtain ∆x directly as follows:

∆x = H−1∆ρ (2.24)
Nevertheless, if a reliable measurement is desired, it would be expected to have more

than 4 satellites. In that case, H becomes a rectangular matrix, with number of rows
(measurements) being higher than the number of columns (unknowns); and one can use
the Moore–Penrose inverse (pseudoinverse) of matrix H.

∆x = (HTH)−1HT ∆ρ (2.25)
It should also be reminded that there are 4 unknowns in the unknown vector ∆x, being

(∆xu,∆yu,∆zu,∆bu); first three of them being the position coordinates of the user and
the last one is the receiver clock bias. Thus, at least 4 equations are needed to find a
unique solution, which means at least 4 visible satellites are needed too.

It should also be mentioned that the errors still exist in the calculation, denoted as ϵj in
(2.8). If we also denote the errors in the pseudorange ρ as dρ, the errors in the estimation
vector x can be denoted as dx. The computation of dx can be found as follows, using the
(2.25):

dx = [(HTH)−1HT ]dρ (2.26)
The matrix in the brackets ((HTH)−1HT ) in (2.26), defines the relationship between

the pseudorange errors dρ and errors in the computation of the user position (x, y, z) and
the clock bias (b). It should also be noted that the same matrix only depends on the
geometry of the satellites and the user. Both of dρ and dx are considered to be vectors of
Gaussian random variables with zero mean. The covariance of the dx can be computed
as the expectation of dxdxT . As a result, it can be found as:

cov(dx) = E[(HTH)−1HTdρdρTH(HTH)−1] = (HTH)−1HT cov(dρ)H(HTH)−1

(2.27)
The covariance matrix of the pseudoranges cov(dρ) appears in the calculation of the

covariance of the positions too (2.27), and the general assumption regarding cov(dρ) is that
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the errors between the measurements of the different satellites are not related, assumed
to be independent, i.e. the errors are i.i.d (independent identically distributed). Thus,
the covariance matrix of the error of the pseudorange measurements is diagonal, and the
entries represent the variances which are the square of the satellite User Equivalent Range
Error (UERE). Thus, the covariance matrix of the dρ can be written as:

cov(dρ) = In×nσ
2
UERE (2.28)

where In×n is the identity matrix whose size is determined by the number of satellites
(n), and σ2

UERE is the variance of the satellite measurements. Since the covariance matrix
in (2.28) is diagonal, the calculation of the covariance matrix dx in (2.27) reduces to:

cov(dx) = (HTH)−1HTH(HTH)−1cov(dρ)
= (HTH)−1cov(dρ)

(2.29)

The structure of (HTH)−1 determines the errors in the determined position of the user.
As a result, (HTH)−1 is a 4× 4 matrix, the square root of each diagonal entry represents
the DOP of each variable of position (namely xu, yu, zu and bu). The matrix (HTH)−1

can be expressed in the following form:

(HTH)−1 =


d11 d12 d13 d14
d21 d22 d23 d23
d31 d32 d33 d44
d41 d42 d43 d44

 (2.30)

where dii, i ∈ {1,2,3,4} correspond to the diagonal terms of (HTH)−1 in (2.30). One
can find the DOPs using the diagonal elements of (HTH)−1. The most general form of
DOP is Geometric Dilution Of Precision (GDOP), where it can be expressed as the square
root of the trace of the (HTH)−1 matrix:

GDOP =
ð
d11 + d22 + d33 + d44 (2.31)

GDOP denotes the geometry factor that contributes to the error in the estimation of
the position, and it is only a function of satellite and user geometry. Other DOP pa-
rameters are as follows: Position Dilution Of Precision (PDOP) (which considers x, y, z
coordinates), Horizontal Dilution Of Precision (HDOP) (which considers only x, y coordi-
nates in ENU reference frame)), Vertical Dilution Of Precision (VDOP) (which considers
only z coordinate in ENU reference frame), Time Dilution Of Precision (TDOP) (which
considers only the clock bias variable b). The formulation of the aforementioned DOPs
are given as follows:

PDOP =
ð
d11 + d22 + d33 (2.32)

HDOP =
ð
d11 + d22 (2.33)

V DOP =
ð
d33 (2.34)
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TDOP =
ð
d44 (2.35)

Thanks to the given DOP definitions from (2.32) to (2.35), one can also calculate the
standard deviation in the position (σx), as the following:

σx = GDOP · σUERE (2.36)

Depending on the magnitude of the value of the GDOP, it is possible to comment
on the reliability of the position estimation, based on the satellite-user geometry. The
smaller the GDOP value is, the more reliable the estimation. Under ideal circumstances,
the GDOP is smaller than 1, indicating the highest quality of estimation [6]. Between
the GDOP values of 1-5, it can be said that the estimation results are highly reliable and
meet most of the nonsensitive application requirements. If GDOP value is between 5-10,
the estimation could be used nevertheless post-processing fix may be needed and an open
sky condition is recommended to avoid more errors related to multipath, ionospheric and
tropospheric errors. If GDOP values are larger than 10, the position estimations are poor
and could be discarded unless a rough estimate is accepted.

Figure 2.8: An example of the effect of GDOP on the precision of position estimation.
a) The satellite user position vectors are orthogonal to each other resulting in a smaller
area of intersection, and low DOP. b) The satellites are closer to each other, resulting in
a larger area of intersection, and a higher DOP. [6].

One can see the geometrical example of high and low DOP geometries in Figure 2.8. It
can be inferred that if the satellite positions are very close to each other, the intersection of
the pseudorange uncertainties’ area increases, which decreases the precision (i.e. dilutes)
as a result the GDOP value increases.

Weighted Least Square (WLS) Estimation

During the LS estimation of the user position, it is assumed that the satellite measurements
are i.i.d, but in real life that is hardly the case. Under those circumstances, the LS estimate
becomes inadequate and there may be a need to make further improvements. It is shown
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that a weighting process can be implemented to the pseudorange measurements, on top
of LS based on environmental conditions such as the noise level.

Again, if it is assumed that the pseudorange errors are Gaussian and the covariance
of UEREs for the utilized satellites are given by the matrix R, the optimized solution for
the user position can be found as follows, instead of (2.25):

∆x = (HTR−1H)−1HTR−1∆ρ (2.37)

The matrix R in (2.37) is still diagonal, with different values in each diagonal entry,
representing the reliability of each measurement. If the estimated variance of the noise
is low, the weight would be high since one would like to prioritize precise measurements.
Thus, in (2.37), the matrix R helps the estimation process by weighting each measurement
and obtaining more precise results.

2.4.2 User Velocity Calculation
Similar to the user position calculation, the user velocity can be also calculated through the
satellite measurements. Theoretically, the user velocity can be calculated as the derivative
of the user position w.r.t time, as follows:

u̇ = du

dt
≈ u(t2)− u(t1)

t2 − t1
(2.38)

where u is the user position, u̇ is the user velocity, and the latter approximation holds
if (t2 − t1) is small enough. Due to the relative velocity between the satellite and the
user, a shift in the frequency occurs on the received frequency, called the Doppler shift.
The received frequency fR approximation can be expressed in terms of the transmitted
frequency fT as follows:

fR = fT (1− (vr · a)
c

) (2.39)

where vr is the satellite-to-user relative velocity vector, a is the unit vector that points
from the satellite to user along the Line of Sight (LOS) (which is calculated in the previous
subsection when dealing with the LS estimation), and c is the speed of light (in vacuum,
299,792,458 m/s) or if not in the vacuum, the speed of propagation.

The dot product between the vr and a represents the radial component of the vr, where
vr can be expressed as the difference of the velocity vectors of the satellite (v) and the
user; vr = v− u̇. The Doppler shift caused by the relative frequency can be expressed as:

∆f = fR − fT = −fT
(v − u̇) · a

c
(2.40)

Thus, one can write the received frequency from the jth satellite considering the
Doppler shift in (2.40), combining (2.39) and (2.40) as follows for the jth satellite (re-
lated variables are subscripted as j):

fRj = ∆fj + fTj = fTj

;
1− [(vj − u̇) · aj ]

c

<
(2.41)
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However, the received signal frequency may be still subject to the error caused by
the clock drift of the receiver (ṫu). If the measured estimate of the signal frequency is
expressed as fj , the received signal frequency fRj can be written as:

fRj = fj(1 + ṫu) (2.42)

Substituting (2.42) into (2.40) and after some algebraic manipulations, one can obtain
the following:

c(fj − fTj )
fTj

+ vj · aj = u̇ · aj −
cfj ṫu
fTj

(2.43)

Expanding the dot product into the vector components of vj = (vxj , vyj , vzj ) and
u̇ = (ẋu, ẏu, żu) results the following:

c(fj − fTj )
fTj

+ vxjaxj + vyjayj + vzjazj = ẋuaxj + ẏuayj + żuazj −
cfj ṫu
fTj

(2.44)

where the definition of at,j (t ∈ {x, y, z} for the jth satellite, and j ∈ {1, ..., n} for
n observed and fixed satellites) was given in (2.19), and can be calculated during the
position estimation in the receiver. The elements of the vj vector can be obtained via
the ephemeris data. fTj is known since it represents the nominal satellite transmission
frequency, for example for GPS it is L1 (1575.42 MHz). fj is expressed in terms of the
receiver measurements. Thus, all the terms on the left hand side are known and can be
replaced by a new term dj , as a result, it can be written as follows:

dj =
c(fj − fTj )

fTj

+ vxjaxj + vyjayj + vzjazj (2.45)

where dj is also equal to the following expression, considering the fact that fj

fTj
≈ 1,

one can remove them from the last term in (2.44) and obtain (2.46):

dj = ẋuaxj + ẏuayj + żuazj − cṫu (2.46)

And one can apply the change of variables once again as ḃu = cṫu since it was already
defined that bu = ctu at the beginning of this chapter. So it could be thought that ḃu = cṫu
is the derivative of bu = ctu.

It can be noticed that the (2.46) and (2.20) are very similar to the other, and the rest
of the solution is very similar to user position calculation. Instead of linearized position
(∆x = [xu, yu, zu]) and pseudorange (∆ρ) variables in (2.20), now one can see the variables
related to satellite and user velocity (d and ẋu, ẏu, żu; respectively). The vector/matrix
form of (2.46) for observations coming from n satellites can be found below:

d =


d1
d2
...
dn

 , H =


ax1 ay1 az1 1
ax2 ay2 az2 1
...

...
...

...
axn ayn azn 1

 , u̇ =


ẋu

ẏu

żu

−ḃu

 (2.47)
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It should be noted that the H matrix in (2.47) and (2.22) are the same. Thus, the
user velocity equations become:

d = Hu̇ (2.48)

Using the pseudo-inverse of H, the user velocity vector u̇ can be written as:

u̇ = (HTH)−1HTd (2.49)

It can also be noted that the (2.25) and (2.49) are very similar to each other and the
matrix H plays a crucial role in finding both the user position and the user velocity.

Up till now, the background of the satellite navigation systems, the working principle,
and how to find PVT solutions are thoroughly discussed in this chapter. Now, one can
move onto the Factor Graph Optimization (FGO), its structure and how it can be utilized
in finding a solution in GNSS systems, filtering and smoothing operations.
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Chapter 3

Factor Graph Optimization

In this chapter, the general structure of the Factor Graph (FG) will be discussed so that
the theoretical background of the thesis work can be fully understood. A FG is a pow-
erful framework for representing and solving complex systems by breaking them down
into simpler components. It allows the modeling of various probabilistic structures, such
as Bayesian networks and Markov chains, by leveraging the known physical relationships
between variables. One of the key advantages of a FG is its ability to express a large,
complex objective function involving multiple variables as a combination of smaller, con-
nected local functions. This simplification makes FG easier to solve graphical structures
with a robust method, and makes it suitable to use in GNSS problems. FGs consist of
two types of nodes: one being the variable nodes (i.e., the state vectors), which are the
states to be estimated and initially unknown, and the other being the factor nodes (i.e.
measurements, such as GNSS pseudorange), that encode the necessary equations and con-
straints on the variable node. The FGs started to be used in robotic applications [7], but
thanks to their convenient structure, it is possible to extend the use case of FGs to GNSS
PVT solution, signal processing, deep learning, computer vision and more. In the next
sections, a more detailed approach to the background of the FGs and their use in GNSS
scenarios are discussed.

3.1 Probabilistic modeling
In order to understand the FGs, one must have a firm grasp of probabilistic modelling, and
especially the Bayesian networks in general. Since there is almost always an uncertainty in
the sensor data in robotics and many other applications, it became a widespread practice
to use the probability distributions to model the belief about the robot pose and estimation
of its state. Thus, a continuous multivariate random variable x ∈ Rn is used to denote
the related models, whose Probability Density Function (PDF) p(x) ≥ 0 satisfies the
following: Ú

p(x)dx = 1 (3.1)

31



Factor Graph Optimization

In Simultaneous Localization and Mapping (SLAM) applications, which is a typical
problem in robotics that is going to be used as an example in this chapter [7], one would
like to model a set of unknowns X (such as the robot and landmark positions) that are
based on the set of observations Z, which are the measurements provided by the sensors.
In this case, that can be modelled as a conditional probability function:

p(X|Z) (3.2)

Equation (3.2) implies the probability of X (of the robot position being at a certain
point), given (conditioned) the measurements of Z (the sensor measurements). This
procedure is called probabilistic inference, and that is where the probabilistic graphical
models becomes beneficial [7]. Those models offer us a way to represent the complex
probability distributions by leveraging their underlying structure. To elaborate more on
the graphical models on the SLAM example which is in Figure 3.1, Bayesian networks
will be the focus of the next subsection. In Figure 3.1, the x1, x2, x3 represent the robot
poses in time, whereas the l1, l2 represent the landmarks, whose positions are measured
and will help determine the states.

Figure 3.1: Toy SLAM example, where x1, x2, x3 are robot poses and l1, l2 are landmarks

3.1.1 Bayesian Networks
Bayesian Networks (Bayesian Net), are a directed graphical model that exploits the
conditional probability density to estimate the nodes using the set of random variables
Θ = {θ1, ..., θn}. The joint probability density p(Θ) can be defined as:

p(Θ) ≜
Ù

j

p(θj |πj) (3.3)

where the variable πj is related to the parent nodes of θj . The random variable set
Θ is composed of states X as well as the measurements set Z, which can be shown that
Θ = {X,Z}. The Bayes net structure of the toy SLAM example in Figure 3.1 can be seen
in Figure 3.2. The measurement variables z1, z2, z3, z4 shown in the boxes in Figure 3.2,
represent the conditional relationship between the robot poses x1, x2, x3 and landmarks
l1, l2 when they become observed.
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Figure 3.2: Toy SLAM example as Bayes Net

Thus, the joint density function p(X,Z) can be obtained via the conditional probability
density functions of the Bayes net in Figure 3.2 can be written as below:

p(X,Z) = p(x1)p(x2|x1)p(x3|x2)
× p(l1)p(l2)
× p(z1|x1)
× p(z2|x1, l1)p(z3|x2, l1)p(z4|x3, l2)

(3.4)

The four lines in the (3.4) can be described as below in order:

• Markov chain p(x1)p(x2|x1)p(x3|x2) on the poses x1, x2, x3

• Probability density functions p(l1), p(l2) on the landmarks

• Conditional probability p(z1|x1) about the absolute measurement of x1

• Conditional probabilities p(z2|x1, l1)p(z3|x2, l1)p(z4|x3, l2) with respect to the mea-
surements of the landmarks (l1, l2) and robot poses (x1, x2, x3, x4)

While modelling the graphical models, usually a multivariate Gaussian distribution is
assumed, whose probability function is [7]:

N (θ;µ,Σ) = 1
|2πΣ| exp

î
−1

2 ||θ − µ||
2
Σ

ï
(3.5)

where Σ is the n × n covariance matrix, and µ ∈ Rn is the mean of the multivariate
Gaussian distribution in (3.5). The inside of the exponent in (3.5) indicates minus one
half of the squared Mahalanobis distance, which will be used further in this study in FGO:

||θ − µ||2Σ ≜ (θ − µ)⊺Σ−1(θ − µ) (3.6)
In order to estimate the states, one of the most used methods in statistics is Maximum

A-Posteriori (MAP) inference to obtain information about the surroundings, which looks
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for the maximum of the posterior probability of p(X|Z). Since in (3.4), the joint proba-
bility of p(Θ) = p(X,Z) is calculated, one can try to see which state or states in X allow
p(X,Z) to reach highest probability, given the set of measurements Z. The states in X
may correspond to robot poses or the landmarks in the toy SLAM example in Figure 3.2.
In order to compute the MAP estimate:

XMAP = argmax
X

p(X|Z) (3.7)

Using Bayes’ Law:

XMAP = argmax
X

p(Z|X)p(X)
p(Z) (3.8)

Nevertheless, one can manipulate the terms of Bayes’ Law to explain it in better terms
and then adapt it to other graphical models such as the FGs. It is known that the
measurements Z are given, thus the p(Z) in (3.8) is just a scaling factor and it can be
dropped since it does not affect the XMAP value. Moreover, the conditional probability
term p(Z|X) is assumed to be a normalizing Gaussian density function in Z, not in X,
which is in the scope of the interest. Thus, using the likelihood function l(X;Z) in the
MAP estimation is a more proper way to express what one would like to maximize (which
are the states X) with respect to the constraints (which are the measurements Z). Since
the likelihood function l(X;Z) is related to the conditional probability of p(Z|X), so that
one could replace p(Z|X) with l(X;Z), as follows:

l(X;Z) ∝ p(Z|X) (3.9)

Replacing the (3.8) with the (3.10) enables us to represent MAP as the function of X,
not Z, which is just a parameter. Thus, one could rewrite the Bayes’ Law as below [7]:

XMAP = argmax
X

l(X;Z)p(X) (3.10)

Now, since required theoretical explanation for the graphical modelling has been set
out, one can move onto the FGs to the next section.

3.2 Factor Graphs
Although Bayesian Net could be excellent for graphical modeling in many cases, FGs offer
us a more effective method to carry out inference problem thanks to their properties.

Similar to Bayes net, in FGs one specifies the joint distribution functions as the product
of factors. Nevertheless, the FGs can be used on more general cases since the functions
can be any type of factorized functions ϕ(X), not only probability densities. In order to
demonstrate the formulation of the FGs, one may take the toy SLAM example in Figure
3.1 and write the MAP estimation based on it. As a first step, the posterior function
p(X|Z) can be written as follows thanks to the Bayes’ Law [7]:
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p(X|Z) ∝ p(x1)p(x2|x1)p(x3|x2)
× p(l1)p(l2)
× l(x1; z1)
× l(x1, l1; z2)l(x2, l1; z3)l(x3, l2; z4)

(3.11)

It is apparent that the conditional probability in (3.11), is a function of the unknowns
only; namely the states and the landmarks.

Furthermore, one can also visualize the FGs easily, as in Figure 3.3, which is a FG
representation of the toy SLAM example firstly introduced in Figure 3.1.

Figure 3.3: Toy SLAM example as a FG, where x1, x2, x3 are robot poses and l1, l2 are
landmarks, black dots represent the factors

Here, in Figure 3.3, instead of the explicit representation of the measurements Z as
boxes and conditional densities in Figure 3.2, one can see the additional type of nodes
called factors as black dots, between regarding states. It is worthy to note that the
factors are only connected to the states that they are a function of. Considering this fact,
it becomes very easy to associate 9 factors in (3.11) and 9 black dots in Figure 3.3 where
there is a direct correspondent.

In mathematical terms, FG is a bipartite graph F = {U,V , E} that consist of two
types of nodes: variable nodes xj ∈ V and the factor nodes ϕi ∈ U. An edge eij ∈ E can
only exist between a factor node and a variable node, which makes the FG a bipartite
graph. The neighboring variable nodes of a factor ϕi can be written as N (ϕi), where the
assignment of the variable nodes surrounding a factor is denoted as Xi, since they will be
made of variable nodes -states and the landmarks- in the set X. Thus, the global function
of a FG can be written as:

ϕ(X) =
Ù

i

ϕi(Xi) (3.12)

In other words, the independency property in the FGs are encoded by the edges between
a node and the factors, where each factor ϕi is a function of only the variables Xi in its
adjacency set N (ϕi) [7].

Considering the (3.12), one can write the global function in Figure 3.3 as below:
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ϕ(l1, l2, x1, x2, x3) = ϕ1(x1)ϕ2(x2, x1)ϕ3(x3, x2)
× ϕ4(l1)ϕ5(l2)
× ϕ6(x1)
× ϕ7(x1, l1)ϕ8(x2, l1)ϕ9(x3, l2)

(3.13)

As it can be seen from the Figure 3.2 and 3.3, all Bayes net graphs can be easily
converted into a FG, and vice versa, since there is a direct correspondence between the
equations 3.4 and 3.13, line by line and factor by factor. It should also be noted that the
functions ϕi do not have to adhere a specific type of function: they could be Gaussian,
non-Gaussian, linear or non-linear etc., which is also another of the advantageous points
of FGs compared to Bayesian networks. Thus, one can say that FGO is highly flexible
since many kinds of factors can be added to the graph, based on the measurements.

3.2.1 MAP Inference for Nonlinear FGs

Since the global function ϕ(X) that defines the FG is constructed, now one can move onto
the MAP estimation of it. Similar to what is done in Bayes net, one can also maximize the
global function in FGs with respect to the states, which is the product of FG functions.

XMAP = argmax
X

ϕ(X)

= argmax
X

Ù
i

ϕi(Xi) (3.14)

If a Gaussian prior and likelihood is assumed, which is caused by the noise corrupting
the measurements in the factors, the factor function can be written in the following form:

ϕi(Xi) ∝ exp
î
−1

2 ||hi(Xi)− zi||2Σi

ï
, (3.15)

where ||.||Σi is the Mahalanobis norm. The derivation of the MAP estimation steps
using logarithm are indicated below:
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XMAP = argmax
X

ϕ(X)

= argmax
X

Ù
i

ϕi(Xi)

= argmax
X

Ù
i

(exp
î
−1

2 ||hi(Xi)− zi||2Σi

ï
)

= argmin
X

Ù
i

(exp
î1

2 ||hi(Xi)− zi||2Σi

ï
)

= argmin
X

log
Ù

i

(exp
î1

2 ||hi(Xi)− zi||2Σi

ï
)

= argmin
X

Ø
i

(1
2 ||hi(Xi)− zi||2Σi

)

= argmin
X

Ø
i

(||hi(Xi)− zi||2Σi
)

(3.16)

To make the optimization easier, after plugging in the (3.15) into (3.13), one can take
the negative logarithm of (3.13), drop the minus sign and 1/2 coefficient, and try to
minimize the argument because the absence of the minus sign implies the negation of the
objective function, and now the value that minimizes the function in (3.16) can be tried
to found. Since taking the logarithm does not change the value that makes the XMAP

optimal, one can proceed to use that because it makes the optimization procedure simpler.
One should also note that the function h(Xi) in (3.15) is usually a non-linear function,

and in order to make the optimization procedure more straightforward, one may need to
linearize the term h(Xi) in (3.16). This procedure is elaborated in the next subsection.

3.2.2 Linearization
Thanks to the Taylor’s expansion formula, one can linearize non-linear functions around a
given linearization point. Using linearization methods, one can obtain the solution to the
MAP estimation by solving a linear system rather than a nonlinear one, which in general
is easier to solve. Considering the h(.) nonlinear function, one can use the expansion
below:

hi(Xi) = h(X0
i + ∆i) ≈ h(X0

i ) +Hi∆i, (3.17)

where the Hi is the multivariate partial derivative of the hi(Xi) at the linearization
point X0

i , and ∆i is the state update vector, where Xi = X0
i + ∆i. The mathematical

definition of Hi, which is the Jacobian of the measurement functions is as follows:

Hi ≜
∂hi(Xi)
∂Xi

-----
X0

i

(3.18)
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If one plugs the Taylor expansion in (3.17) into the nonlinear MAP estimation 3.16,
one can obtain the state update vector ∆∗ as:

∆∗ = argmin
X

Ø
i

(||hi(Xi)− zi||2Σi
)

= argmin
X

Ø
i

(||h(X0
i ) +Hi∆i − zi||2Σi

)

= argmin
X

Ø
i

(||Hi∆i −
î
zi − h(X0

i ))
ï
||2Σi

)

(3.19)

where the ∆∗ is the solution to the locally linearized problem. As it was already
described in (3.6), the norm used is (3.19) is a Mahalanobis norm, and there is an easy
way to convert it to the l2 norm to be used in the computations. Given a generic term e
, one can convert it to l2 using (3.6) and some algebra:

||e||2Σ ≜ e⊺Σ−1e = (Σ−1/2e)⊺(Σ−1/2e) = ||Σ−1/2e||22 (3.20)

where Σ−1/2 can be found via the Cholesky factorization of Σ. Now, again using the
change of variables one can put the (3.19) in order.

∆∗ = argmin
X

Ø
i

||Σ−1/2
i Hi∆i − Σ−1/2

i

1
zi − h(X0

i ))
2
||22 (3.21)

To make the form of the (3.21) more compact, one could apply the change of variables
as follows:

Ai = Σ−1/2Hi

bi = Σ−1/2(zi − h(X0
i ))

(3.22)

In that way, one can to turn the Mahalanobis form into l2 norm in (3.19) and put the
equation in a compact form. Thus, the (3.19) has become:

∆∗ = argmin
∆

Ø
i

(||Ai∆i − bi||22)

= argmin
∆

(||A∆− b||22)
(3.23)

The structure of the information matrix A shows how the FG is constructed. Its rows
reflect how the factors encode equations and constraints in the FG, and the number of
rows are equal to the number of factors in general. The columns of A, represent the
variables in the FG, which are usually states and landmarks to be determined, as in the
toy SLAM example in Figure 3.3. The vector b corresponds to the prediction error at
each stage. Due to the FGs’ nature, the factor nodes are only connected to the variables
nodes that they constrain. Thus, a factor is only connected to a few states, which makes
the matrix A a sparse one (i.e. matrix A is not fully connected). Sparsity becomes an
important factor in solving matrices, since it may result in more efficient computations
and provide better accuracy for algorithms. That is one of the advantages of the FGs:
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thanks to its sparsity property, it becomes easier to express and add constraints into the
information matrix A.

An example of the matrix A and the prediction error b is provided below related to
the toy SLAM example, which was provided in the Figure 3.3.

[A|b] =

∆l1 ∆l2 ∆x1 ∆x2 ∆x3 b
ϕ1
ϕ2
ϕ3
ϕ4
ϕ5
ϕ6
ϕ7
ϕ8
ϕ9



A13 b1
A23 A24 b2

A34 A35 b3
A41 b4

A52 b5
A63 b6

A71 A73 b7
A81 A84 b8

A92 A95 b9


(3.24)

The information matrix A and prediction error b related to the factor and variable
nodes in the FG in 3.3 can be written in (3.24). Each ϕ, factor, which corresponds to
a black dot in Figure 3.24, turns into a row of equation in matrix A. Thus, a total of
9 black dots, 9 factors, became 9 rows of matrix A. Moreover, matrix A has 5 columns,
which correspond to 5 states to be estimated in Figure 3.3, namely x1, x2, x3, l1 and l2.
They were denoted adding a ∆ on top of the matrix, because of the linearization process
elaborated in the previous part.

How to construct and solve such a system in (3.24) will be explained in details, in the
next subsection.

3.2.3 The Elimination Algorithm
There are many algorithms that can solve a FG, but a commonly used scheme exists
under the name of the elimination algorithm. The elimination algorithm eliminates one
variable at the time of a FG, thus it is computationally efficient and the MAP estimate of
a sparse FG can be easily found. The algorithm basically converts a FG into a Bayes net,
nevertheless only on the unknowns of the FG, which results in a straightforward MAP
inference. This algorithm can be applied to any FG.

Thanks to the elimination algorithm, one can turn a FG in the following form:

ϕ(X) = ϕ(x1, ..., xn) (3.25)

into a Bayes net in the following form:

p(X) = p(x1|S1)p(x2|S2)...p(xn|Sn) =
Ù

i

p(xi|Si) (3.26)

The Si indicates the set separator, where the variable xi is conditioned. It should be
noted that in the elimination algorithm, the order of elimination is important because it
also affects the remaining separators of other variables. If a variable is eliminated from a
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FG, the variable will not be used in the rest of the factorized products in (3.26). When a
variable xi is eliminated, a single conditional probability p(xi|Si) occurs as a factor.

When all variables become eliminated, the global function of the FG in (3.25) turns
into a Bayes net an the probability function in (3.26). Thus, one can also say that the
elimination algorithm turns ϕ(X) into p(X) in n local factorization steps, n being the
number of variable nodes.

Figure 3.4: Elimination algorithm applied to the FG of the toy SLAM example in Figure
3.3. The elimination order is l1, l2, x1, x2, x3 [7]. The eliminated variable at the indicated
state is shaded gray. The red dots at each step represent the factors that are being
added to the information matrix A regarding neighboring states, as a result of elimination
algorithm.

In mathematical terms, when xi is eliminated, the remaining partial FG is denoted as
Φj:n ≜ ϕ(xj , ..., xn), which includes the variables that are not eliminated yet (from xj to
xn). Given a partially eliminated FG in the form of Φj:n, one must remove all the factors
that are neighboring xj , and multiply them with the joint probability of ϕ(xj , Sj), which
can be written using the conditional probability p(xi|Si) as:

ϕ(xj , Sj) = p(xi|Si)τ(Sj) (3.27)

where τ(Sj) is the newly formed factor. When all the factors are eliminated, thus the
separator S(xn) will be empty, thus the final variable yet to be eliminated will not be
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conditioned on any other node and the conditional probability function of xj will just be
the prior of it, solely p(xn).

A graphical example of the elimination algorithm in a FG is provided in Figure 3.4,
in the order of (l1 → l2 → x1 → x2 → x3). Thus, the resulting Bayes net probability
function factorization from ϕ(X) is as follows:

p(X) = p(l1, l2, x2, x2, x3)
= p(l1|x1, x2)p(l2|x3)p(x1|x2)p(x2|x3)p(x3)

(3.28)

As a reminder, in the problem outlined by the matrix in (3.24), the factors are in the
form as in (3.23), which is:

ϕi(Xi) = exp
î
− 1

2 ||AiXi − bi||22
ï

(3.29)

where Ai is a matrix similar to the one in (3.24), which includes terms that connects
states to its neighboring ones, via the encoding factors. Depending on at which step the
elimination algorithm is, Ai may be composed of smaller set of state variables Xi, because
of the already eliminated states.

In order to run the elimination algorithm on a variable xj , one must remove all factors
from ϕi(Xi) in (3.29), neighboring xj and produce the intermediate factor of ψ(xj , Sj) as
follows:

ψ(xj , Sj)←
Ù

i

ϕi(Xi)

= exp
î
− 1

2
Ø

i

||AiXi − bi||22
ï

= exp
î
− 1

2 ||Āj [xj ;Sj ]− b̄j ||22
ï (3.30)

where Āj and b̄j are the accumulated versions of Ai and bi into one large matrix and
one large vector respectively. In order to factorize ψ(xj , Sj) one can use many methods,
but in this work, QR factorization will be used. The augmented matrix implied in (3.30)
[Āj |b̄j ] can be written using partial QR factorization as follows:

[Āj |b̄j ] = Q

C
Rj Tj dj

Ãτ b̃τ

D
(3.31)

where Rj , Tj , and Ãτ are matrices and dj and b̃τ are vectors in the system of equa-
tions. Specifically, Rj is an upper triangular matrix in (3.31) as a result of partial QR
factorization. By plugging (3.31) into (3.30), ψ(xj , Sj) can be further factorized using QR
factorization as follows:

41



Factor Graph Optimization

ψ(xj , Sj) = exp
î
− 1

2 ||Āj [xj ;Sj ]− b̄j ||22
ï

= exp
î
− 1

2 ||Rjxj + TjSj − dj ||22
ï

exp
î
− 1

2 ||ÃτSj − b̃τ ||22
ï

= p(xi|Si)τ(Sj)

(3.32)

As a result, the formula in (3.27) is obtained via the steps in (3.32). Here, the matrix
Q is not incorporated since it does not change the norm of the matrix R since Q is
orthonormal, thus discarded for this operation. The operation in (3.32) can be done until
all variables are eliminated.

If Gaussian linearized factors are assumed as in (3.26), using the QR factorization,
conditional densities can be written as:

p(xj |Sj) ∝ exp
î
− 1

2 ||Rjxj + TjSj − dj ||22
ï

(3.33)

Thus, the inner part of the exponential can be written as below considering the distri-
bution is multivariate Gaussian function:

||Rjxj + TjSj − dj ||22 = (xj − µj)⊺R⊺
jRj(xj − µj) ≜ ||xj − µj ||2Σj

(3.34)

It can be further reduced to:

||Rjxj + TjSj − dj ||22 = ||xj − µj ||2Σj

||Rjxj − (dj − TjSj)||22 = ||Σ−1/2
j xj − Σ−1/2

j µj ||22
(3.35)

As a result, the solutions to the covariance matrix Σj and the mean vector µj become:

Σj = (R⊺
jRj)−1

µj = R−1
j (dj − TjSj)

(3.36)

After the elimination algorithm is finished, the MAP estimation of each variable can
be found via the back substitution since after the last variable is eliminated, it does not
depend on any other variables and it can directly be computed. Going in the reverse
direction of the elimination algorithm order, each state can be found MAP estimation,
which is the mean (i.e. µj) in (3.36).

x∗
j = R−1

j (dj − TjS
∗
j ) (3.37)

Since the main theory of how to construct and solve FGs has been laid out theoretically
in this chapter, now one can move onto the specific FGs employed in a GNSS scenario in
the very next subsection.
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3.2.4 Factor Graphs for GNSS
In the FGs that are specifically used for GNSS applications, usually the states that are
estimated could be the receiver position, receiver velocity, tropospheric delay, carrier phase
bias, the receiver clock bias and clock drift [8]. The factors that constrain the states in
a typical GNSS application could be the pseudorange, prior state estimates, the dynamic
equations. In this thesis; the receiver position and velocity, and the receiver clock bias
and the clock drift (i.e. the derivative of the clock bias) are estimated; and comparisons
were made based on the ground truth trajectory that is collected using another device.
Thus, the state vector to be estimated becomes the following:

∆x =
è
∆xk ∆yk ∆zk −∆bk ∆ẋk ∆ẏk ∆żk −∆ḃk

éT
(3.38)

where the first 4 variables are related to the receiver position (first 3 variables) and the
last being the negative of the clock bias (∆xk,∆yk,∆zk,−∆bk) and the latter 4 variables
are related to the receiver velocity and the clock drift (∆ẋk,∆ẏk,∆żk,−∆ḃk) in (3.38).
One can see a FG representation of a GNSS application in Figure 3.5.

Figure 3.5: A typical FG for GNSS application [8]. The boxes represents factors and circles
represent the states. Different colors of boxes indicate different types of factors. Red boxes
indicate prior factors, grey boxes indicate motion factors, and blue boxes indicate GNSS
factors.

In a typical GNSS FG as in Figure 3.5, the factors related to states to be estimated
can be divided into three groups. Referencing to the Figure 3.5, the factors can be listed
as follows:

Prior factor ψp
i : The prior belief about the state xi, before other observations. The

prior belief may depend on environmental characteristics or the specific dataset.

Motion factor ψb
i−1,i: The factor related to two successive states, a constraint that

connects two state variables: xi−1 and xi. May also be called the dynamic factor. This
kind of factor can either be predicted or it can be observed via Inertial Measurement Unit
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(IMU) sensors or wheel odometry [8].

GNSS factor ψm
i,1:n: The factor that relates each state to a GNSS observable, which

could be pseudorange measurements or carrier phase measurements.
As it was detailed in the previous chapter, the aim is to integrate the related formulas

of the factors into the information matrix A and prediction error b, so that one can conduct
the MAP estimate of each state, in the form of ϕ = ||A∆−b||22, as in (3.23). Matrix A and
column vector b will be constructed as in the (3.24), Then, the elimination algorithm will
be run in order to find the optimum values of the states X. Thus, the objective function
that is going to be minimized as a result of FG becomes the following equation:

X = argmin
x

(
Ø

ψprior +
Ø

ψdynamics +
Ø

ψGNSS) (3.39)

It should be noted that, so far the robust estimation methods (which are in the scope
of this thesis) have not been discussed or integrated yet. Firstly, a thorough analysis
of typical factors will be completed in this chapter, then in addition to what is built,
the robust estimation methods such as the Switch Constraints (SC) and Gaussian Max-
Mixtures (GMM) methods will be analyzed and integrated in the next chapter.

Below, one can find the necessary formulations of the prior, dynamic and GNSS factors
elaborated.

Prior Factor

The prior factor reflects what is best known of the current state based on the estimate
of the previous state. Thus, one can deduce the prior factor estimation of the xth

i state
from previous state xi−1’s covariance matrix Σi−1 and the expected value E(xi−1). In
mathematical terms, the prior factor becomes the following:

ψp
i = ψprior = (||xi−1 − x̂i−1||2Σi−1)

= (||x̂i−1 + ∆xi−1 − x̂i−1||2Σi−1)
= (||∆xi−1||2Σi−1)
= (||(Σi−1)1/2∆xi−1||22)

(3.40)

Thus, it yields to:
Aprior = Σi−1

bprior = 0
(3.41)

It should be noted that in this formulation of the prior factor, the coefficients in the
matrix A and vector b are related to ∆xi−1, i.e. the previous state, not the currently
estimated state of ∆xi.

Dynamic Factor

As it can be seen in the Figure 3.5, the dynamic factor ψb
i−1,i, is between two successive

states of ∆xi−1 and ∆xi, so it might be expected that the information matrix A and the
vector b will include coefficients of both of the variables ∆xi−1 and ∆xi. In this factor
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estimation, a general definition of the dynamic factor ψb
i−1,i will be used, which is detailed

below:

ψb
i−1,i = ψdynamics = (||f(xi−1)− xi)||2Qi−1) (3.42)

where the f(.) is the dynamic model function and the Qi−1 is the related process noise
covariance matrix. Since in some GNSS applications, there is not a direct approach to
obtain the exact dynamic model of the vehicle, the model has to be chosen a-priori through
research. One of the most used dynamic model to simulate the dynamics of a vehicle is the
constant-velocity model, which assumes that the velocity is constant between two time
instances [28], [29]. Through constant-velocity model, the relation between two successive
time instances can be modelled as:

x̂i = Fi−1x̂i−1 (3.43)
where Fi−1 is the state transition matrix [29], and it can be expressed as:

Fi−1 =

∆xi−1
∆yi−1
∆zi−1
−∆bi−1

∆ẋi−1
∆ẏi−1
∆żi−1
−∆ḃi−1



1 0 0 0 T 0 0 0
0 1 0 0 0 T 0 0
0 0 1 0 0 0 T 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


(3.44)

As it can be seen in (3.44), Fi−1 is a square matrix, where columns and rows correspond
to the same variable at the diagonal, and T is the sampling period, in this context time
interval between two epochs. The constant velocity dynamics model adjusts the position
variables (which are the first 3 variables of the ∆x vector: ∆xi−1, ∆yi−1, ∆zi−1) according
to the velocity of the receiver (which are the 5th, 6th and the 7th variables of the ∆x vector:
∆ẋi−1, ∆ẏi−1, ∆żi−1) by the time between two successive epochs: T . Thus the factor
becomes:

ψdynamics = (||Fi−1xi−1 − xi||2Qi−1)
= (||Fi−1x̂i−1 + Fi−1∆xi−1 − x̂i −∆xi||2Qi−1)
= (||[Fi−1,−I][∆xi−1,∆xi]T − (x̂i + Fi−1∆xi−1)||2Qi−1)
= (||[Fi−1,−I][∆xi−1,∆xi]T ||2Qi−1)

= (||[Q−1/2
i−1 Fi−1,−Q−1/2

i−1 I][∆xi−1,∆xi]T ||22)

(3.45)

where I is the identity matrix. If the change of variables is applied to simplify the
notation, one can obtain FQ = [Q−1/2

i−1 Fi−1], and IQ = [−Q−1/2
i−1 I], the information matrix

A and vector b related to the dynamics factor become as follows:

Adynamics = [FQ, IQ];
bdynamics = 0

(3.46)
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It should also be noted that the the information matrix A includes the coeffiecients for
both ∆xi and ∆xi−1, as it can be seen in (3.45).

GNSS Factor

Last but not the least, there will be factors related to the GNSS measurements, coming
from each visible and utilized satellite at that moment, a total of n satellites. In Figure
3.5, the blue boxes refer to the GNSS factors, measurements coming from n satellites.
The factors were shown as from ψm

i,1 to ψm
i,n for xth

i state. In Chapter 2, the details of how
to obtained the PVT solution were thoroughly discussed, and the same approach for the
FGs will be followed here.

The satellite measurements that come from jth satellite in the ith state were denoted
as ζi,j = [ρi,j , ˙ρi,j ]T , which are related to satellite’s pseudorange measurement and its rate
of change, and the observation function can be defined as hi(.), which is already detailed
in Chapter 2. Thus, the GNSS factor for the jth satellite can be written as below:

ψm
i,j = ψj

GNSS = (||hi,j(xi)− ζi,j ||2Ri,j
)

= (||Hi,j∆xi − hi,j(x̂i) + ζi,j)||2Ri,j
)

= (||Hi,j∆xi − (ζ̂i,j − ζi,j)||2Ri,j
)

= (||R−1/2
i,j Hi,j∆xi −R−1/2

i,j (ζ̂i,j − ζi,j)||22)

(3.47)

where Ri,j is the observation noise covariance associated to the jth satellite, and can
be estimated or found depending on the case. Hi,j is the observation matrix, related to
the PVT solution, already covered in Chapter 2. Applying the change of variables for the
observation vector zi,j = ζ̂i,j − ζi,j , one can obtain the following GNSS factor for the jth

satellite:

ψj
GNSS = exp(||R−1/2

i,j Hi,j∆xi −R−1/2
i,j zi,j ||22) (3.48)

Thus, the information matrixA and vector b becomes for the GNSS factor the following:

AGNSS,j = R
−1/2
i,j Hi,j ,

bGNSS,j = R
−1/2
i,j zi,j

(3.49)

One can also combine all of the factors for n satellites into a single matrix AGNSS and
vector bGNSS , obtaining the following for the ith state:

AGNSS = R
−1/2
i Hi,

bGNSS = R
−1/2
i zi

(3.50)

For the sake of completeness, the full Hi and zi that include observations coming from
total of n satellites, are reported below:
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zi =



ρ̂i,1 − ρi,1
...

ρ̂i,n − ρi,n

ˆ̇ρi,1 − ρ̇i,1
...

ˆ̇ρi,n − ρ̇i,n


, Hi =



aT
i,1 1 0 0
...

...
...

...
aT

i,n 1 0 0
0 0 aT

i,1 1
...

...
...

...
0 0 aT

i,n 1


(3.51)

where ai,j = [(xi,j−x̂i,j

r̂i,j
), (yi,j−ŷi,j

r̂i,j
), ( zi,j−ẑi,j

r̂i,j
)]T is the unit vector that points towards to

the jth satellite at the ith state for ∆xi.

Running Elimination Algorithm

So far, a typical FG in a GNSS application and how to form related information matrix A
and vector b is discussed in the previous subsections. Now, after forming the information
matrix A and vector b, one can move onto solving them via the elimination algorithm
discussed earlier.

In the scope of this thesis, a multifrontal QR factorization algorithm will be pre-
ferred, meaning that the factorization of ∆xi−1 and ∆xi will be done using the QR
factorization, instead of partial QR factorization method, in which one estimates ∆xi−1
and ∆xi at two separate QR factorization steps. Using multi-frontal QR factorization
decreases the number of steps by doing all the factorization at one step, instead of the
number of sta, so it is computationally more efficient.

As it was elaborated in the previous subsections, there are three types of factors in a
typical FG related to a GNSS example: namely prior factor, dynamic factor and GNSS
factor. If one collects all three types of factors in the information matrix A and vector b,
the following form is obtained:

[A|b] =

 Aprior bprior

FQ IQ bdynamic

AGNSS bGNSS

 (3.52)

where the individual terms were already introduced. It is worthy to note that the first
column of A corresponds to the information regarding the previous state ∆xi−1, and the
second column corresponds to the current state ∆xi.

Applying QR factorization to the matrix system [A|b], one can obtain the following:

QR([A|b]) = QR

 Aprior bprior

FQ IQ bdynamic

AGNSS bGNSS

 (3.53)

QR

 Aprior bprior

FQ IQ bdynamic

AGNSS bGNSS

→ 5
Rk−1 Tk−1 dk−1

Rk dk

6
(3.54)

As a result of the QR factorization, an upper triangular matrix is formed, which
contains the information regarding the states ∆xi−1 and ∆xi. Using formulas (3.36) and
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(3.37) and algebraic manipulations to the (3.54), one can determine the solution to the
state ∆xi and its covariance matrix Σi as follows:

∆xi = R−1
i di

Σi = (RT
i Ri)−1 (3.55)

Plugging ∆xi which was found in (3.55) to (3.54), which was also mentioned in (3.37),
one can also determine the previous state of ∆xi−1 as following:

∆xi−1 = R−1
i−1(di−1 − Ti−1∆xi) (3.56)

In fact, smoothing via back substitution is possible for many states using (3.56), if
a fixed-lag number has been set and previous values have been stored. Since the values
for R, T and d are stored and after the current state value of ∆xi has been found, the
corrections regarding previous states can be performed via the smoothing process. Thus,
if a new variable representing the fixed-lag number lag = 1:m, m being the number of
stored states, one can perform the smoothing via back substitution as follows:

∆xi−lag = R−1
i−lag(di−lag − Ti−lag∆xi−lag+1) (3.57)

So far, the construction and details regarding how to solve a generic FG regarding the
GNSS application has been elaborated in this chapter with mathematical descriptions and
related background. Now, one can move onto the methods of how to build more robust
estimation for GNSS applications using FG in the next chapter.
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Chapter 4

Robust Estimation Methods
Using FGs in GNSS

So far, how to construct a FG for a typical GNSS application has been discussed in the
previous chapter. As it was mentioned, thanks to the flexible structure of the FGs, it is
easy to add new constraints, such as new terms in the objective function to minimize; to
reduce the errors caused by multipath, atmospheric errors, or spoofing attacks [8]. This
thesis investigates two robust methods that are shown to be effective against localization
errors in degraded environments; namely Switch Constraints (SC) and Gaussian Max-
Mixtures (GMM). Below, one can see the detailed theoretical background for both of the
methods, and how to integrate them to an already existing FG, i.e. a FG formed in the
last chapter.

4.1 Switch Constraints (SC)
Switch Constraints (SC) initially developed for the false loop closures problem in SLAM,
nevertheless it has been shown that it can also be applied to the GNSS framework when
dealing with multipath mitigation in urban environments [8], [30].

SC method introduces a new kind of variable node to be estimated, called switchable
constraint to be optimized along with the position states in the FG. Every switchable
constraint is connected to a factor in the graph. Switchable constraints can be thought
of observation weights that can adjust the contribution level of each factor, depending
on their reliability [11]. As a result, one needs to add switchable constraint terms to the
objective function and introduce the switch constraint states, denoted as S.

The modified cost function will include the term related to switch constraints, the most
important one shown below:

ψi
switch = ||Ψ(si,j).(hi,j(xi)− ζi,j)||2Σi

(4.1)

where the (hi,j(xi) − ζi,j) term is related to the GNSS pseudorange factor in (3.47),
Ψ(si,j) is the switch function that depends on the switch variable si,j . Switch functions

49



Robust Estimation Methods Using FGs in GNSS

Ψ(si,j) are used in the cost function to adjust the weight of a measurement and the switch
variables si,j become the nodes in the factor graph to be estimated. The switch variables,
si,j are not directly used in the cost function because they may introduce discontinuities in
the solution, which is unsuitable for optimization problems [30], thus a continuous switch
function is defined. Ψ(si,j) is a linear function of si,j , Φ : R → [0,1] that maps it from
continuous real number to the interval of [0,1] [30]. A commonly used and effective switch
function can be found as follows:

Ψa(si,j) : R→ [0,1] =


0 : si,j < 0
1
asi,j : 0 ≤ si,j ≤ a

1 : si,j > a

(4.2)

where a = 1 is shown to be a suitable choice [30]. The aim of the switch constraint is
as follows: the lower the switch constraint si,j , lower the switch function Ψa(si,j), which
adds a weight to its related factor and decreases its contribution to the calculation of the
position state if necessary. Thus, FG with SC can be seen in Figure 4.1.

Figure 4.1: A FG with SC. The boxes represent the factors, whereas the circles represent
the states to be estimated. Red boxes indicate prior factors, grey boxes indicate motion
factors, and blue boxes indicate GNSS factors. Purple circles are switch nodes, connected
to the GNSS factors. Each GNSS factor has its own switch state to be estimated.

In order not to make all switch variables si,j zero, another term will be added to
objective function, as follows:

ψinitialSwitch = ||γi − si||2Ξ (4.3)

where γi is the initial switch variable value (generally 1) and Ξ is the covariance matrix
associated with the switch variables of the factors in the specified position state.

As a result, the objective function of the FG with SC can be written as follows [30],
[11]:
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X,S = argmin
x,s

(
Ø

ψprior +
Ø

ψdynamics +
Ø

ψGNSS +
Ø

i

ψswitch +
Ø

ψinitialSwitch)

(4.4)
Thus, along with switch function term ψswitch and the term that forces the switch

variables not to become all zero
q

i ψinitialSwitch, two terms are added on top of the initial
FG structure.

4.2 Gaussian Max Mixtures (GMM)
The typical FG example and SC were subject to a uni-modal Gaussian distribution, mean-
ing that only one Gaussian distribution function is used to characterize the behavior of
the receiver position or velocity state. Nevertheless, in some cases, especially when there
is multipath error, uni-modal Gaussian distribution becomes insufficient when trying to
capture the true nature of the data. A proposed solution to this problem is to use the
Gaussian mixture models, where multi-modal distributions are used (i.e. combination of
more than one Gaussian distributions with different mean values µ, and variances σ2 or
covariance matrices Λ). One type of multi-modal Gaussian mixture models is the sum of
multiple Gaussian components, as following [11]:

p(zj |x) = ΣjwjN (µj ,Λj) (4.5)

where wj is the weight for the jth component to normalize the probability function
p(zi|x). Nevertheless, the sum operator is not useful and usually complicates the operation
since the logarithm of sums is not equal to the sum of logarithms (unlike the logarithm of
products is equal to the sum of logarithms, as in (3.16)), even though the sum of Gaussian
distributions may be sufficient to characterize the data. One solution to this problem is
to use the max operator instead of sum, thus the distribution becomes [9]:

p(zi|x) = max
j
wjN (µj ,Λj) (4.6)

where N (µj ,Λj) for every j represents a different Gaussian distribution in (4.6). By
using (4.6), one can put it inside the logarithm, and find the MAP solution in a straight-
forward fashion. One can see the difference between the bi-modal Gaussian, max-mixture
and sum-mixture Guassian multi-model (bi-modal in this case) distributions in Figure
4.2.

4.3 Integration of Robust Estimation Techniques to
FGs

In this chapter, two robust methods of SC and GMM were explained, nevertheless in order
to integrate them to the already existing FG scheme, further steps are needed, which can
be found below.
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Figure 4.2: Comparison of Gaussian bi-modal, sum-mixture and max-mixture distribu-
tions [9]

4.3.1 Integration of Switch Constraints (SC)
As it was mentioned in (4.4), there are two additional terms regarding SC to be added to
the objective function compared to the typical FG’s, which is stated in (3.39). Those are:

1. ψswitch: This term modifies the pseudorange residual, which is denoted as bGNSS

previously, by scaling it with ψ(s), which depends on the switch variable. Formulated
in (4.1).

2. ψinitialSwitch: This terms acts as a regularization terms for the switch variables and
typically pulls them towards the initial estimate of γ, which is usually 1, to prevent
all switch variables from being 0. Formulated in (4.3).

In order to properly add those terms to the information matrix A, one may need to
apply linearization process to both of the terms, since they are not linear in ∆x, as it was
shown in 3.2.2 to the factors in FG. The procedure for each term and adjusted information
matrix A can be found below.

Adding ψswitch Term

The switch function ψswitch modifies the residuals and adjusts them if they cause a lot
of errors in the estimation process. The formulation of ψswitch, which was given in (4.1),
includes the pseudorange residuals, which was elaborated in (3.47) and (3.48). Combining
the terms, the ψswitch term could also be written as:

ψi
switch = ||Ψ(si,j).(hi,j(xi)− ζi,j)||2Σi

= ||Σ−1/2
i Ψ(si,j).(hi,j(xi)− ζi,j)||22 (4.7)

Nevertheless, it must be noted that the information matrix does not only include
∆xi−1 and ∆xi variables anymore, but they also include ∆si,j , and Ψ(si,j) depends on
the switch variable si,j . Thus, one also needs to find the coefficients for ∆si.j . Using
the Taylor expansion in (3.17) and finding the Jacobian in (3.18), one can also calculate
the coefficients in the information matrix A for the switch variables si,j . In order to find

52



4.3 – Integration of Robust Estimation Techniques to FGs

the Jacobian for the switch variable ∆si,j , let’s denote it as JSi.j one can take the partial
derivative of the function inside the norm in (4.7).

JSi,j = ∂(Ψ(si,j)(hi,j(xi)− ζi,j))
∂si,j

= ∂Ψ(si,j)
∂si,j

(hi,j(xi)− ζi,j)) (4.8)

Since (hi,j(xi)−ζi,j) does not depend on si,j , one can take it out of the partial derivative.
Switch function Ψsi,j was defined in (4.2), when a = 1 as it was shown in [30] this
parameter provides a suitable switch function, its derivative becomes 1 when the switch
variable is between 0 and 1, otherwise 0. Thus, JSi,j becomes (hi,j(xi)− ζi,j) in the linear
region of Ψsi,j , and 0 if outside. Thus, the coefficients for ∆si,j in the information matrix
A related to ψi

switch term, denoted as As,switch can be found below:

As,switch = Σ−1/2
i JSi,j =

I
Σ−1/2

i (hi,j(xi)− ζi,j) : 0 ≤ si,j < 1
0 : o/w

(4.9)

For the coefficients of ∆xi in the ψi
switch term, one can again calculate the Jacobian

using partial derivative, let’s call it JXi .

JXi = ∂(Ψ(si,j)(hi,j(xi)− ζi,j))
∂xi

= Ψ(si,j)
∂(hi,j(xi)− ζi,j)

∂xi

= Ψ(si,j)
∂(hi,j(xi))

∂xi

(4.10)

where the term ∂hi,j(xi)
∂xi

, Jacobian was defined as Hi,j , the observation matrix related
to the GNSS measurements. It can easily be realized that the covariance matrix Σi = Ri,j

is the observation covariance matrix in (3.47), thus the coefficients for the ∆xi related to
switch term ϕswitch, denoted as Ax,switch becomes:

Ax,switch = Σ−1/2
i JXi = R

−1/2
i,j Ψ(si,j)Hi,j

= Ψ(si,j)R−1/2
i,j Hi,j

(4.11)

Applying the change of variables, written in (3.50), one can obtain:

Ax,switch = Ψ(si,j)AGNSS (4.12)

Similarly, the vector bswitch can be found as below:

bswitch = Ψ(si,j)bGNSS (4.13)

where SC scales the pseudorange measurements and related coefficients by the switch
function, Ψ(si,j).
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Adding ψinitialSwitch Term

For the ψinitialSwitch term, defined in (4.3), one needs the initial switch value of γ (generally
1) and the covariance matrix associated with the switch variables of the factors in the
specified position state, Ξ.

ψinitialSwitch = ||γi − si,j ||2Ξ
= ||Ξ−1/2γi − Ξ−1/2si,j ||22

(4.14)

The term si can be written as:

si,j = s0
i,j + ∆si,j (4.15)

where s0
i.j is the current switch value and ∆si,j the difference, where the coefficients in

the information matrix A depends on ∆si,j . Thus, the ψinitialSwitch becomes:

ψinitialSwitch = ||Ξ−1/2γi − Ξ−1/2(s0
i,j + ∆si,j))||22

= ||Ξ−1/2γi − Ξ−1/2s0
i,j − Ξ−1/2∆si,j)||22

= ||Ξ−1/2∆si,j − Ξ−1/2(γi − s0
i,j)||22

(4.16)

There is not a term related to ∆xi in (4.16), thus in the information matrix A, there
will be zeros. The terms related to ∆si,j are the coefficients of it, as shown in (4.16). The
rest of the terms, which are Ξ−1/2(γi − s0

i,j), form the vector binitialSwitch. Thus:

AinitialSwitch = Ξ−1/2

binitialSwitch = Ξ−1/2(γi − s0
i,j)

(4.17)

In conclusion, the final form of matrix-vector system of [A|b] including the SC terms
is as follows:

[A|b] =


Aprior bprior

FQ IQ bdynamic

AGNSS bGNSS

Ax,switch As,switch bswitch

AinitialSwitch binitialSwitch

 (4.18)

The columns of A correspond to [∆xi−1,∆xi,∆si], indicate the states to be determined
in the FG structure. Again, this system can be solved via the multi-QR factorization,
detailed in the last chapter.

4.3.2 Integration of Gaussian Max-Mixtures (GMM)
Unlike SC, GMM does not require an additional term to be added to the objective function
of the typical FG. GMM is interested in finding the parameters for the multi-modal
distributions that define the characteristics of the faulty and non-faulty data.

In GNSS data processing, when using bi-modal GMM, it is assumed that each observ-
able can be modeled using two independent distributions: one distribution defines the
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data which is free of the outliers, while a second distribution represents the faulty data
(i.e., the null hypothesis). The null hypothesis can be modeled as a Gaussian distribution
centered at the mean of the error-free observable distribution, but with a larger variance
caused by the errors such as multipath [11].

In the FG that is defined in the previous function, the estimated parameters are user
position ([∆x,∆y,∆z,−∆b]) and velocity states ([∆ẋ,∆ẏ,∆ż,−∆ḃ]). In order to charac-
terize the user position and the velocity, an observation covariance matrix Ri,j is assigned
in (3.47) for the ith state node and jth satellite. Ri,j is a diagonal 2× 2 matrix where the
position variance is defined on the first diagonal and the velocity variance is defined on
the second diagonal element. GMM aims to select the parameters that result in less error
in each satellite observed measurement, which are position and velocity measurements of
each satellite.

In the cases where uni-modal Gaussian distribution is used, the parameters are se-
lected considering the non-faulty data, so they may not adequately represent the outliers.
GMM defines another Gaussian distribution with another set of variances for position and
velocity for them to define faulty data. It is recommended that the latter distribution can
be modeled as a Gaussian distribution centered at the mean of the error-free observable
initial distribution, but with a larger variance [11]. The variance parameters for position
and velocity belong to the satellite measurements, which are the pseudorange and satellite
velocity.

In the scope of this work, two sets variances were defined for position and velocity:
σx,1, σx,2 and σv,1, σv,2. It is assumed that σx,1, σv,1 defines the characteristics of non-
faulty measurement and σx,2, σv,2 defines the faulty measurement’s characteristics. After
pseudorange and velocity between the satellite and the user is measured and received by
the receiver, the residual is calculated as follows:

ei = zi − h(xi) (4.19)

where ei is the residual vector between zi and h(xi), zi is the vector of measurements
of pseudorange or velocity of the ith satellite, h(xi) is the vector of expected quantity of
the measurements. In GMM, aim is to select the parameters that minimizes the error,
where it can be formularized using the Mahalanobis distance, as follows:

(σ̂x, σ̂v) = min
σx,σv

1
2(eiΣ−1

i eT
i )− log(wi) (4.20)

where Σi is the 2×2 diagonal covariance matrix consisting the variances for pseudorange
(σx,1 or σx,2) and velocity (σv,1 or σv,2). The minimizing variances for pseudorange and
velocity values were selected and put in the covariance matrix Σi to proceed with the
addition of the measurement factor to the FG. The aforementiones covariance matrix is
actually equal to the Σi = Ri,j noise covariance matrix, and it is already used in the
elimination algorithm of the node of the FG, as from (3.47), to (3.50).

wi, i ∈ {1,2} is the weight assigned to the probability to the non-faulty and faulty
data distribution, given in (4.6). Since it is a probability distribution, the sum of all the
weights (total of 2 in this case, since it is bi-modal distribution) is equal to 1.
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2Ø
i

wi = w1 + w2 = 1 (4.21)

It is a common practice to choose the weight of non-faulty distribution higher (around
0.9) and faulty data to be lower (around 0.1) since the probability of obtaining too much
faulty data is usually lower, nevertheless the weights can be also adjusted case by case.

So far, the integration of robust estimation methods of SC and GMM, and their inte-
gration to the FG structure are elaborated in this chapter. In the next chapter, the field
testing that includes the experimental dataset collection and the results of the robust
estimation methods are discussed. In addition to applying SC and GMM robust methods
individually, a combination of them (denoted as SC + GMM) is also applied and the
results were reported.
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Chapter 5

Field Testing

In the previous chapters, from Chapter 2 to Chapter 4, a general overview of satellite
navigation systems and how to find a PVT solution of the user given the satellite mea-
surements using FGs and robust estimation methods using SC and GMM were given. In
order to test the theory, an experimental set-up is constructed to collect GNSS data to be
processed by the algorithms written. Thus, in order to collect GNSS data and complete
the field testing, an experimental hardware setup is constructed and data was collected
on October 23rd, 2024. One can see the experimental setup in Figure 5.1 (a) and (b).

(a) Experimental setup front view with power
supply, antenna, RTK device, GNSS receiver

(b) Experimental setup side view (same
equipment)

Figure 5.1: Experimental Setup to collect GNSS data, photos taken on Oct. 23, 2024.

The equipment was placed on a moving tray to make it easier to collect data in an open
environment. The hardware setup consists of an antenna, a GNSS receiver, an Real Time
Kinematic (RTK) device that provides precise positioning results, a power supply and
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computers to initialize and control the data collection. The GNSS receiver is the yellow
device on the blue cart in Figure 5.1, Swift Duro by Carnegie Robotics, whose manual
can be found in [10], [31]. It supports the following frequency bands and constellations:
GPS L1/L2, GLONASS G1/G2, BeiDou B1/B2 and Galileo E1/E5b [31]. Even though
only GPS constellation is utilized for this thesis work, it can be applied to other types of
constellations as well.

Figure 5.2: Swift Duro GNSS receiver by Carnegie Robotics [10]

The RTK corrections were provided by the SPIN3 GNSS, which is the Interregional
GNSS Positioning Service (SPIN3 GNSS) of the Piedmont Region, the Lombardy Region
and the Autonomous Region of Valle d’Aosta [32]. This interregional network consists of
39 permanent GNSS stations distributed homogeneously across the Piedmont, Lombardy
and Aosta Valley regions in Italy, and equipped with multi-constellation geodetic receivers
open to the use of GPS, GLONASS and GALILEO constellations [32]. It is also able to
provide RTK corrections, which is used as a true trajectory on the scope of this thesis
work.

Several datasets were collected in order to test the performance of the algorithms writ-
ten. The datasets were collected both in the static and dynamic conditions, so that the
extent of the robust estimation becomes fully understood. The datasets were collected
in Costo Castelfidardo, near Politecnico di Torino on October 23rd, 2024. Two datasets
were selected, one static and one dynamic, to test the robust estimation methods. The
datasets were analyzed, acquisition and tracking stages were completed, and PVT esti-
mation methods are performed to obtain results, which one can find below in the next
two sections.

5.1 Static Dataset
For the static dataset, the moving cart with the necessary equipment was moved to an
outdoor space where the data collection started. One can see the actual location of the
static data collection in Figure 5.3 obtained from the RTK device. The aim is to obtain
a result as accurate as possible, close to the solution of the RTK device which is plotted
in Figure 5.3.
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 200 ft 

 50 m 

Static Data Location

Figure 5.3: Static dataset location, near Politecnico di Torino, Corso Castelfidaro
(45°03’53.7"N, 7°39’40.0"E)

Since the cart has not moved and was stable throughout the measurement duration, the
single location point in Figure 5.3 will be taken as the true reference point when calculating
errors. The true location spot of the static dataset obtained via Google Earth software
can be also found in Figure 5.4 and Figure 5.5, where the environmental conditions can
be better observed.

Figure 5.4: Static dataset location (yellow pin) on Google Earth, near Politecnico di
Torino, Corso Castelfidaro (45°03’53.7"N, 7°39’40.0"E)
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Figures 5.4 and 5.5 show the same geodetic location, from two different angles. It can
be clearly seen that around the point of the true location, dense foliage and obstruction
caused by the buildings can be observed; which are the characteristics of an urban area.
These properties of urban areas may cause the signals to be reflected, or scattered through
the reflective surface or the tree leaves; which ultimately causes multipath or even signal
blockage; and results in erroneous data. The effects of these properties will be discussed
later, along with the results of the filters.

Figure 5.5: Static dataset location (yellow pin) on Google Earth, near Politecnico di
Torino, Corso Castelfidaro (45°03’53.7"N, 7°39’40.0"E)

The static dataset collected consists of 2700 epochs to be processed, by 6 different
methods:

1. LS

2. Extended Kalman Filter (EKF)

3. FG

4. FG with SC (denoted as only SC)

5. FG with GMM (denoted as only GMM)

6. the combination of SC and GMM filters together (denoted as SC + GMM)

It is worth noting that, to the best of the author’s knowledge, a study that combined
both of the SC and GMM at the same time has not been found in the literature so far,
thus it is an original contribution of this thesis. All of the 2700 epochs were processed
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by the aforementioned methods, and the time-series, Cumulative Distribution Function
(CDF) plots and percentile bars are given, along with a discussion. One can also find the
parameters that are used in the processing of the static dataset in Table 5.1.

Parameter Name Method Value
Epoch number all 2700

Epoch Rate all 0.1
Window size (ws) FGO, SC, GMM, SC + GMM 10

Position variance (σ2
x,1, unit : m2) all 20

Second positional variance (σ2
x,2, unit : m2) GMM, SC + GMM 100

Velocity variance (σ2
v,1, unit : m2/s2) all 0.01

Second velocity variance (σ2
v,2, unit : m2/s2) GMM, SC + GMM 0.1

Initial Switch Value (γ) SC, SC + GMM 1
Switch Variable Covariance Matrix (Ξ) SC, SC + GMM diag(1)

Table 5.1: Parameters used in the Static Dataset Processing

For the FG based algorithms, a window size (ws) of 10 is used throughout the pro-
cessing; since it was observed that higher window size values did not provide a significant
improvement, thus making 10 an optimal choice. The second velocity and position vari-
ances for GMM based methods were chosen at least 5 times or their original values to
represent erroneous measurements for the static dataset.

Figure 5.6: Horizontal (E+N) positioning error CDF of the static dataset in ENU reference
frame

In Figure 5.6 and 5.7, one can observe the horizontal and vertical error CDFs of the
static dataset in ENU reference frame respectively. For horizontal errors, the LS algorithm
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alone results in a maximum error of 39.85 m, as it can be inferred from the Figure 5.6.
Nevertheless, EKF and FGO reduced the maximum error in horizontal positioning to 15.23
m and 17.78 m respectively. Robust estimation methods; SC, GMM and the combination
of both (SC + GMM) further reduce the horizontal error of FGO as well, which can be
seen on the zoomed portions of the percentiles on Figure 5.6. The maximum horizontal
error of the SC algorithm was found to be 17.20 m, whereas for GMM the maximum
horizontal error was 17.19 m. Nevertheless, the combination of SC and GMM algorithms
gave us the most improved result in terms of the maximum error with 15.71 m (except
EKF), a total of 1.49 m decrease and 9% improvement compared to the standalone FG
implementation.

Figure 5.7: Vertical (U) positioning error CDF of the static dataset in ENU reference
frame

If one checks the vertical error CDF in Figure 5.7, a similar plot can be seen. However,
it can be noticed that the vertical errors were more than the horizontal errors for this static
dataset. The maximum error for LS resulted in 241.7 meters. Nevertheless, the maximum
error of EKF and FGO filters were found to be 83.89 m and 81.04 m respectively. It
is also worth noting that even though EKF’s performance was the best in horizontal
error in Figure 5.6, in vertical errors except for the LS algorithm, EKF’s total CDF error
is the largest, with FGO following. Moreover, it is still possible to clearly observe the
improvements provided by the robust estimation methods. The maximum vertical error
of SC and GMM are 59.84 m and 55.6 m respectively, where the combination of SC and
GMM performs even better with a maximum error of 48.55 m. The performances of robust
estimation methods (SC, GMM and SC + GMM) were similar for other percentiles as well
(such as 50 and 75) for vertical errors, reducing the error of the standalone FGO, which
shows the effectiveness of the robust estimation methods. It can be calculated that the
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combination of SC and GMM (with a maximum vertical error of 48.55 m) provided a
decrease of approximately 60% compared to FGO’s solution (with a maximum error of
81.04 m).

A more detailed analysis can be done on time series of the horizontal and vertical
errors of the static dataset, which are in Figure 5.8 and 5.9. Since the main objective of
this thesis is to show the improvement of robust estimation methods compared to FGO,
the Figures 5.8 and 5.8 only provides the plots for FGO, SC, GMM and SC + GMM and
the comparisons will be made against FGO’s performance.

Figure 5.8: Horizontal (E+N) time series error for static dataset for 2700 Epochs, in ENU
reference frame

It can be seen that the horizontal errors in time series for FGO and the robust meth-
ods follow a similar trend most of the time in Figure 5.8. Nevertheless, in the region
represented with a rectangle A in Figure 5.8, the error of FGO is significantly higher than
the rest, wherein the region B in Figure 5.8, FGO’s error was 13.04 m and SC + GMM’s
error at in region B was found to be 5.94 m, a decrease of more than 54%. Moreover, in
region B, the FGO’s, SC’s and GMM’s error were approximately the same around 17 m,
FGO’s being 17.78 m, however SC + GMM’s error was at 14.96 m in region B, indicating a
difference of 2.82 m and a decrease of 15.9%, which is an improvement in the performance.

For the vertical errors in time series, the performance improvements thanks to the
robust estimation methods even become more obvious in Figure 5.9. In the regions indi-
cated as C, D and E in Figure 5.9, the FGO’s errors peaked comparably higher than the
robust estimation methods’ peaks. In region C, FGO’s error is around 38.47 m whereas
SC + GMM’s peak is around 21.38 m, which is a 39% improvement. Similarly in region
D, FGO’s error is around 52.68 m whereas the SC + GMM’s peak is at 21.62 m, which
indicates a 59% performance improvement. In region E, FGO’s error is the highest being
81.05 m and SC + GMM’s error is at 46.25 m, which also indicates a 43% performance im-
provement. It can be said that the robust estimation methods become more obvious and
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Figure 5.9: Vertical (U) time series errors for static dataset for 2700 Epochs, in ENU
reference frame

effective in vertical positioning and decrease the errors more compared to the horizontal
positioning results, as in Figure 5.8.

One can see the bar plots for horizontal and vertical errors of the static dataset in ENU
reference frame in Figure 5.10 and Figure 5.11 respectively. The reported percentiles are
25, 50, 75, 95 and 100 (which is the maximum error). The LS method is excluded and
only EKF, FGO and robust estimation methods (SC, GMM, SC + GMM) results were
provided since the errors of LS are significantly higher than the others’ as already shown
in Figure 5.6 and Figure 5.7. Thus, there would be no need for further comparison against
LS in the bar plots in Figure 5.10 and Figure 5.11.

As it can be seen in Figure 5.10, EKF performs the best in terms of horizontal errors.
On the other hand, compared to FGO only, the least amount of errors belongs to the
combination of SC + GMM method (except the 75th percentile, with a small margin)
among the robust estimation methods. Nevertheless, SC and GMM alone also performs
well, decreasing the overall error in almost all percentiles. In 25th percentile, the errors
are more or less similar for FGO and robust estimation methods, with FGO’s error being
a little less than the others’ nevertheless since it is a very low percentile it may not reflect
the main characteristics of the filtering abilities of the methods. It can be seen that the
robust estimation methods like SC, GMM and especially the combination of SC and GMM
helped reduce the horizontal error.

The difference between the results of FGO and robust estimation methods becomes
more obvious in vertical error percentile bar plots in Figure 5.11. As it was explained in
the vertical error CDF in Figure 5.7 and vertical error time series in Figure 5.9, the EKF
and FGO perform relatively more poorly in vertical axis compared to horizontal axis,
where in horizontal axis the maximum error of FGO was 17.78 m whereas the maximum
error in vertical axis of FGO was found to be 81.04 m. Thanks to the robust estimation
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Figure 5.10: Percentiles for horizontal errors of the static dataset in ENU reference frame
(for 25, 50, 75, 95 and 100th percentiles)

Figure 5.11: Percentiles for vertical errors of the static dataset in ENU reference frame
(for 25, 50, 75, 95 and 100th percentiles)

methods, a substantial decrease can be observed in almost all percentiles in vertical axis
in Figure 5.11. In 95th percentile, SC method decreased the error of FGO’s from 72.94
m to 52.02 m, whereas in the same percentile GMM managed to decrease FGO’s error
to 48.09 m, and the combination of SC and GMM succeeded in reducing the error to
43.50 m; performing the best among all robust estimation methods. It can be said that,
the EKF and FGO could not capture the true behavior of the static data in vertical axis
and robust estimation methods managed to mitigate the errors especially in terms of the
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altitude.
It was also mentioned that the location where the static dataset was collected (45°03’53.7"N,

7°39’40.0"E), is prone to errors such as dense foliage and blocking caused by the nearby
buildings, as they can be seen in Figure 5.4 and in Figure 5.5. Especially, the reflective
surfaces on the buildings and scattering through the tree leaves may cause multipath and
distort signals coming from the satellites and the PVT solution obtained by the GNSS re-
ceiver. It has been shown that the SC, GMM and the combination of both (SC + GMM)
implemented on top of the FGO structure reduced the overall horizontal and vertical
errors in the urban environment successfully.

In the next section, the results of the dynamic dataset will be analyzed.

5.2 Dynamic Dataset
For the dynamic dataset collection, the tray with the equipment was moved along the
Corso Castelfidardo road, and the data was collected during the movement. One can
see the trajectory of the dynamic dataset in Figure 5.12, collected by the RTK device.
When the tracking results from the satellites were analyzed, it was seen that the dynamic
dataset is composed of 1300 epochs, one can see the corresponding RTK trajectory in
Figure 5.12. It should be noted that when the receiver gets closer to between the two
bridges of Politecnico di Torino, signal distortions occurred in the RTK device, thus it
should be kept in mind while evaluating the results obtained and filtered from the receiver.
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Dynamic Dataset Trajectory
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Figure 5.12: Dynamic Dataset RTK solution.

One can also see the dynamic trajectory on Google Earth application in Figure 5.13
and in Figure 5.14 in a slightly different angle.

The starting point of the dynamic dataset is the same as the static dataset location,
which was (45°03’53.7"N, 7°39’40.0"E). The end point of the dynamic dataset corresponds
to a location between two bridges of Politecnico di Torino in Corso Castelfidaro. As one
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Figure 5.13: Dynamic dataset trajectory labeled with black boxes on Google Earth, near
Politecnico di Torino, Corso Castelfidaro

can notice, the line of sight of the area, and especially the line of sight of the bicycle and
walking road between two bridges is susceptible to be blocked by the nearby buildings, so
it is not totally surprising that the dynamic trajectory became more erratic.

Similarly to the static dataset, six different methods are used to process the dynamic
dataset, namely: LS, EKF, FGO, SC, GMM and the combination of SC and GMM. Unlike
the static data set, in addition to the CDFs and error time series analyses, the trajectories
found using the six filtering methods are separately shown in Figure 5.15 since the GNSS
receiver was moving. One can also see the parameters used in the filters in the dynamic
dataset processing in Table 5.2. Compared to the static dataset in Table 5.1, higher values
of variances were selected for position and velocity. Since the receiver was moving this
time, the uncertainty of erroneous measurement increases.

The results were successfully obtained, and the trajectories and the error plots are
shown in the following figures separately. Firstly, one can see the six different trajectories
obtained via different methods in Figure 5.15, along with the true trajectory obtained
using the RTK device, plotted in black.

It can be easily realized from Figure 5.15 that, the shape of the trajectories of EKF,
FGO, GMM and SC + GMM are similar to each other, and started to deteriorate when the
receiver gets closer to the point between two bridges. However, it is possible to observe
that in Figure 5.15, the trajectory obtained via SC follows a more straight trajectory
compared to other estimation methods even though it slowly deviates through the end of
the trajectory.

It is also possible to notice the gap between the true trajectory and the estimated
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Figure 5.14: Dynamic dataset trajectory labeled with black boxes on Google Earth, near
near Politecnico di Torino, Corso Castelfidaro

Parameter Name Method Value
Epoch number all 1300

Epoch Rate all 0.1
Window size (ws) FGO, SC, GMM, SC + GMM 10

Position variance (σ2
x,1, unit : m2) all 50

Second positional variance (σ2
x,2, unit : m2) GMM, SC + GMM 200

Velocity variance (σx,1v
2, unit : m2/s2) all 10

Second velocity variance (σv,2v
2, unit : m2/s2) GMM, SC + GMM 50

Initial Switch Value (γ) SC, SC + GMM 1
Switch Variable Covariance Matrix (Ξ) SC, SC + GMM diag(1)

Table 5.2: Parameters used in the Dynamic Dataset Processing

trajectories between the EKF and FGO methods, nevertheless this gap reduces thanks to
the robust estimation methods such as GMM and SC + GMM; even though the shape of
the trajectory remains similar.

To obtain more insights regarding the performance of the estimation methods, one
should check the error plots regarding horizontal and vertical errors, CDF and time-
series plots. One can check the horizontal CDF of the EKF, FGO, SC, GMM and the
combination of SC and GMM methods in Figure 5.16. LS is not shown on the plot in
Figure 5.16 due to the fact that its errors were already shown to be very large compared
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Figure 5.15: Trajectories obtained via the estimation methods for the dynamic dataset
and the true trajectory. Used estimation methods are: LS, EKF, FGO, SC, GMM, SC +
GMM.

to other methods in Figure 5.6.
As it can be seen in Figure 5.16, similarly to the static dataset, the SC + GMM

performed the best among all 5 estimation methods of EKF, FGO, SC and GMM, in the
50th, 75th, 95th percentiles. In the 95th percentile, there is a 4 m difference between the SC
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Figure 5.16: Horizontal CDF graph of EKF, FGO, SC, GMM and SC + GMM methods
in ENU reference frame for dynamic dataset. The 50th, 75th, 95th percentiles are zoomed
and shown on the plot.

+ GMM method and the EKF (which is the worst performing one) in the horizontal error
CDF’s 95th percentile, where SC + GMM’s error is 78 m and EKF’s error is around 82 m.
GMM alone’s performance in this percentile is also similar to SC + GMM’s performance,
with an error of 78.69 m. The maximum difference increases at the 75th percentile, to
18.59 m, by a large margin. It can also be seen that the SC and GMM methods alone also
perform better than the standalone FGO here, as almost in all percentiles, showing the
effectiveness of the robust estimation methods. The error of FGO at the 75th percentile is
found to be 52.26, whereas SC’s and GMM’s errors are 47.57m and 45.58m respectively,
indicating a performance improvement of 9% and 12% respectively at the 75th percentile.

To specifically comment on the performance of SC: Even though its trajectory shape
seems to be more straight than the others, because of the diversion towards the end
of the trajectory, the maximum error increased and it may have caused extra errors.
Nevertheless, it should also be noted that more than 40% of the horizontal errors of SC
are within 20 m, higher than other estimation methods.

During static dataset horizontal estimation, EKF’s performance was better than the
other estimation methods, whereas during the dynamic set, EKF does not perform better
than any other method here. It can be said that FGO based algorithms may work better
than EKF under dynamic conditions based on horizontal errors. One can also see the
vertical error CDF in 5.17.

Similarly to the static dataset, vertical errors are greater than the horizontal errors
overall in the dynamic dataset, as it can be seen in Figures 5.6 and 5.7 for static, and
Figures 5.16 and 5.17 for dynamic. Nevertheless, it is possible to observe more performance
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Figure 5.17: Vertical CDF graph of EKF, FGO, SC, GMM and SC + GMM methods in
ENU reference frame for dynamic dataset.

improvements of robust estimation methods compared to FGO. For the vertical errors,
SC and SC + GMM perform better in all percentiles shown in Figure 5.7. At the 95%
percentile, the error of the SC + GMM is 116.17m, SC’s error is 139.35m, GMM’s error is
152.72m; whereas the FGO’s error is 164.47 m. Thus, it is again possible to observe the
improved performance thanks to the robust estimation methods. SC, GMM and SC +
GMM improved standalone FGO’s performance by 15%, 7% and 29% at 95th percentile
respectively.

One can also check the horizontal and vertical error time series plots to gain more
insight on the error distribution of different estimation methods at all the epochs, in
Figures 5.18 and 5.19 respectively.

In Figure 5.18, one can see the horizontal errors in the dynamic dataset for the methods
of EKF, FGO, SC, GMM and SC + GMM respectively. It can be seen in Figure 5.18
that EKF’s horizontal errors are greater than FGO’s, GMM’s and SC + GMM’s after
the 200th epoch until the end. SC’s performance seems to be the most improved until
around the 650th epoch for both horizontal and vertical errors in the dynamic dataset in
Figures 5.18 and 5.19, then most likely caused by the linear deviation which can be seen
on the trajectory plot the error of SC increased rapidly. Nevertheless, all methods’ errors
increase in the last 100 epochs in both horizontal and vertical error time series plots, most
likely to be caused by the satellite signal blockage.

In the first 200 epochs, SC + GMM’s error in both horizontal and vertical error plot
seems to be the most among the five estimation methods, nevertheless after 200 epochs, SC
+ GMM has one of the most consistent performances. Its errors are less than standalone
FGO and GMM throughout all the epochs after the 200th. It can be said that after the
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Figure 5.18: Horizontal (E+N) time series error for dynamic dataset for 1300 Epochs, in
ENU reference frame

initial adjustment period, SC + GMM grasps the behavior of the trajectory. A similar
explanation can be made for GMM as well, since it performed better than standalone
FGO at all epochs as well, nevertheless still producing errors higher than SC + GMM’s.
It can be said that the integration of SC improved the performance of the estimation and
made it more robust against potential errors, both in horizontal and vertical axes.

Figure 5.19: Vertical (U) time series error for dynamic dataset for 1300 Epochs, in ENU
reference frame
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In order to make a better comparison of all methods, bar charts representing the
percentiles of horizontal and vertical errors of the dynamic dataset were provided in Fig-
ures 5.20 and 5.21 respectively. 25th, 50th, 75th, 95th and the 100th percentile results were
shown as before for the methods of EKF, FGO, SC, GMM and SC + GMM. As it can
be confirmed from the figure, the robust estimation methods, namely SC, GMM and the
combination of them (SC + GMM), almost always decreased the error of FGO at all
percentiles, except for SC at the 50th and the 100th percentile. But a similar situation was
already observed with the static dataset’s horizontal error results in Figure 5.10, where the
SC’s error was more than FGO’s in 95th percentile and other’s error values were similar
to each other, so it was likely that a situation could occur for the dynamic dataset results
as well. Nevertheless, it is possible to observe a significant decrease for the vertical error
results, as in Figure 5.21.

Figure 5.20: Percentiles for horizontal errors of the dynamic dataset in ENU reference
frame (for 25, 50, 75, 95 and 100th percentiles)

In vertical axis errors, all robust estimation methods managed to decrease the error of
FGO’s, where the lowest errors belong to SC + GMM. At 95th percentile, FGO’s error
was 164.48m whereas SC + GMM’s error is 116.18m, resulting in a 29.37% performance
improvement. In the same percentile, SC’s error was 139.35m and GMM’s error is found to
be 152.7m, improving the performance of standalone FGO once again. At 100th percentile,
FGO’s total vertical error is found to be 196.28m, whereas SC’s, GMM’s and SC +
GMM’s error were 180m, 189.2m and 165.37m respectively; improving the result by at
least 7 meters. It is worth mentioning that SC has the smallest errors in 25th and 50th

percentiles, meaning that 50% of SC’s errors are within 57.24 meters, followed by SC +
GMM, whose error value in 50th percentile is 67.02 meters, compared to FGO’s 92.82
meters.

Considering all the results, it could be said that the robust estimation methods; namely
SC, GMM and SC + GMM, improved the performance of FGO in GNSS applications,
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Field Testing

Figure 5.21: Percentiles for vertical errors of the dynamic dataset in ENU reference frame
(for 25, 50, 75, 95 and 100th percentiles)

both in static and dynamic scenarios. The performance improvement is more significant
and observable in vertical axis than in horizontal axis, considering the results obtained.

In the next section, the comparison of FGO and the robust estimation methods (SC,
GMM and SC + GMM) could be found in details.

5.3 Final Comparison of Robust Estimation Methods
against FGO

Since the aim of this thesis was to show the improvements of the robust estimation methods
of SC, GMM and combination of two (SC + GMM) compared to the plain FGO solution,
comparative tables reporting the errors and improvement percentages are given in this
section. The improvement percentages of robust estimation methods compared to plain
FGO solution are calculated as follows:

δ = eF GO − eRobust

eF GO
∗ 100 (5.1)

where δ is the percentage of improvement of the indicated robust estimation method
in a given same percentile, eF GO is the FGO’s error (in meters), eRobust is the error of the
robust estimation method (SC, GMM or SC + GMM). A positive δ implies that the robust
estimation method’s error is less than the FGO’s, whereas if δ is negative, it means that
FGO’s error is smaller than robust estimation method’s error in that given percentage.
In the following sections, you can find the analyses for the static and dynamic datasets.
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5.3 – Final Comparison of Robust Estimation Methods against FGO

Static Dataset

From Table 5.3 to 5.6, the static dataset’s horizontal and vertical errors in meters (Table
5.3 and Table 5.5 respectively) and improvement percentiles (Table 5.4 and Table 5.6
respectively) are given.

% 25 50 75 95 100
FGO 4.27 7.57 11.38 15.44 17.78
SC 4.39 7.43 10.49 15.59 17.20

GMM 4.42 7.32 10.50 15.18 17.19
SC + GMM 4.41 7.03 10.85 14.98 15.71

Table 5.3: Horizontal Error (in m) of static dataset of FGO, SC, GMM and SC + GMM

% 25 50 75 95 100
SC -2.71 1.94 7.85 -1 3.26

GMM -3.7 3.24 7.75 1.66 3.31
SC + GMM -3.23 7.16 4.68 3 11.65

Table 5.4: Horizontal Error Improvement (in %) of static dataset of SC, GMM and SC +
GMM compared to FGO

The values in Table 5.3 and Table 5.5 can also be found in the bar plots of Figure 5.10
and 5.11, so they will not be elaborated further. Nevertheless, the Table 5.4 and Table 5.6
reflect the improvements in percentages. Even though there are negative improvements
in lower percentiles like 25 in Table 5.3 and in Table 5.4, the improvements increase, and
reach the maximum at 75th percentile for SC and GMM. The SC + GMM algorithm
managed to decrease the maximum error (i.e. 100th percentile) by 11.65% for horizontal
errors in static dataset, which is a great improvement.

The improvements become even more visible in vertical axis for all robust estima-
tion methods in static dataset, where at the 95th percentile SC, GMM and SC + GMM
managed to decrease FGO’s error by 28.68%, 34.08% and 40.36%; which is a significant
number and higher than any of the horizontal percentage improvement values in Table
5.4. Once again, it may be an indication of the improvement capabilities of robust es-
timation methods in vertical axis. SC, GMM and SC + GMM also manage to decrease
the maximum error of FGO by 26.17%, 31.39% and 40.09% respectively; similar to 95th

percentile vertical improvement results.

75



Field Testing

% 25 50 75 95 100
FGO 6.65 21.18 35.73 72.95 81.04
SC 7.95 19.83 30.39 52.02 59.84

GMM 8.06 19.00 28.97 48.09 55.60
SC + GMM 9.62 17.70 30.89 43.51 48.55

Table 5.5: Vertical Error (in m) of static dataset of FGO, SC, GMM and SC + GMM

% 25 50 75 95 100
SC -19.50 6.38 14.94 28.68 26.17

GMM -21.20 10.28 18.92 34.08 31.39
SC + GMM -44.56 16.43 13.53 40.36 40.09

Table 5.6: Vertical Error Improvement (in %) of static dataset of SC, GMM and SC +
GMM compared to FGO

Dynamic Dataset

One can see the tables for horizontal and vertical errors in Table 5.7 and Table 5.9, and
percentage improvements in Table 5.8 and Table 5.10 respectively, compared to the FGO.
It was presumed that the amount of errors could be greater in the dynamic dataset than
the static dataset since the receiver was in motion, which happened as expected. In terms
of percentages in Table 5.7, GMM provided the best performance improvement in 100th

percentile in horizontal axis with 3.31% improvement, and SC + GMM provided the best
performance improvement in 95th percentile in horizontal axis with 4.74% improvement.

SC’s improvement is rather unstable throughout the percentages in Table 5.8, due
to the deviations in its trajectory, thus the percentages going from negative to positive,
nevertheless SC provided a more straightforward trajectory and its performance could be
further improved in a further study.

The vertical errors of FGO, SC, GMM and SC + GMM for the dynamic dataset
could be found in Table 5.9 and the percentages of improvement in vertical axis could be
found in Table 5.10. The improvement percentages are smaller than in static dataset’s
as expected since the target was moving, but it is still possible to observe a significant
improvement. Unlike the horizontal percentages, vertical percentages are all positive for
all robust estimation methods. It may be another indication that the robust estimation
methods are especially successful in the vertical axis on the dynamic dataset as well. The
minimum improvement ratio for SC + GMM method is 15.74%, and it provides almost
30% improvement for the 95th percentile. GMM’s improvement ratios are smaller, but
they still improve the results.

Considering all the information obtained from static and dynamic datasets, one can
deduce that the combination of SC and GMM (SC + GMM) could be an promising choice
since it mostly reduced the errors among all robust estimation methods tested.
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5.3 – Final Comparison of Robust Estimation Methods against FGO

% 25 50 75 95 100
FGO 15.03 36.27 52.27 82.11 96.97
SC 8.67 37.25 47.57 82.22 101.36

GMM 15.19 31.04 45.58 78.69 95.30
SC + GMM 16.92 26.24 37.01 78.23 96.25

Table 5.7: Horizontal Error (in m) of dynamic dataset of FGO, SC, GMM and SC +
GMM

% 25 50 75 95 100
SC 42.28 -2.70 8.97 -0.1 -4.53

GMM -1.08 14.41 12.79 4.17 3.31
SC + GMM -12.63 27.66 29.20 4.74 0.74

Table 5.8: Horizontal Error Improvement (in %) of dynamic dataset of SC, GMM and SC
+ GMM compared to FGO

% 25 50 75 95 100
FGO 47.34 92.82 122.11 164.48 196.28
SC 15.28 57.24 116.87 139.35 180.01

GMM 43.59 81.56 111.75 152.72 189.22
SC + GMM 35.18 67.02 84.97 116.18 165.37

Table 5.9: Vertical Error (in m) of dynamic dataset of FGO, SC, GMM and SC + GMM

% 25 50 75 95 100
SC 67.72 38.33 4.28 15.28 8.28

GMM 7.91 12.12 8.47 7.14 3.59
SC + GMM 25.68 27.79 30.41 29.37 15.74

Table 5.10: Vertical Error Improvement (in %) of dynamic dataset of SC, GMM and SC
+ GMM compared to FGO

77



78



Chapter 6

Conclusion

GNSS is a powerful technological system that consist of satellites that allow the users de-
termine their own location, which became a crucial element for many modern applications
in recent years due to the increasing demand to LBS. Thus, obtaining accurate and reli-
able positioning services became essential for users. Nevertheless, in urban environments
with tall buildings and dense foliage that cause dense multipath, traditional filters like
least-squares and Kalman filtering may be insufficient to provide a stable and accurate
PVT solution. A new estimation framework, which is able to provide more accurate and
reliable solutions based on the graphical probabilistic model has emerged in recent years,
called the factor graphs. Factor graphs consist of two types of nodes, one is the variable
nodes to be estimated (such as the user position) and the other is the factor nodes (i.e.
GNSS measurements) that encode the necessary equations and constraints on the vari-
able node to be solved. Factor graphs are very flexible, and it is easy to integrate new
factors to the states. These factors may come from various sensor measurements or prior
information regarding the states. Since every factor in the graph represents a probabilistic
constraint, the factors are expressed as terms in the cost function to be minimized, which
makes the factors graphs easy to solve. This property of factor graphs also supports the
integration of robust estimation methods for outlier mitigation.

The main aim of this thesis was to implement and integrate two robust estimation
methods, namely Switch Constraints (SC) and Gaussian Max-mixtures (GMM) on top of
the factor graph structure that was designed to solve positioning problem. The Switch
Constraints method introduces switch variable states to be estimated, and dynamically
adjusts the influence of potentially unreliable measurements in a factor graph that de-
termines whether a measurement should influence the final state estimation, enhancing
robustness against outliers. Whereas the Gaussian Max-Mixtures method introduces mul-
timodal uncertainties by representing a measurement as a weighted combination of multi-
ple Gaussian components, enabling the factor graph to account for complex error scenarios
such as multipath effects. Both methods, and their combination (SC + GMM) were tested
on experimentally collected static and dynamic datasets, and improvements were shown
in this thesis.

To summarize, for both of the static and dynamic datasets, the improvements were
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Conclusion

observed both in horizontal and vertical axes compared to standalone factor graph op-
timization (FGO) solution. However, horizontal errors were less than the vertical errors
and all of the robust estimation methods SC, GMM and SC + GMM were more successful
in improving the vertical errors compared to standalone FGO solution. In vertical axis,
SC showed improvements up to 28% percent, whereas GMM showed improvements up
to 34%, and finally SC + GMM showed improvements up to 40% for the static dataset.
For the dynamic dataset, in the 75th percentile, SC showed 8.97% improvement, GMM
showed 12.79% improvement, and SC + GMM showed 29.2% improvement horizontally.
Also in the vertical axis, in the 95th percentile of errors, SC showed 15.28% improvement,
GMM showed 7.14% improvement, and SC + GMM showed 29.37% improvement in the
dynamic dataset. The robust estimation methods also performed better than EKF, espe-
cially in the vertical axis in static and dynamic datasets. As a result, even though all of
the robust estimation methods showed improvement in terms of percentages compared to
standalone FGO, more significant improvements are observed when using both methods
at the same time (SC + GMM), thus one can conclude that the most successful robust
estimation method was the combination of SC and GMM (SC + GMM).

Future research can be done and implemented in this area. Another robust estimation
method of Dynamic Covariance Scaling (DCS) is developed as an extension of SC, where
the switch variables are not part of the optimization method, but variables calculated
separately using the residual, current measurement uncertainty and a prior switch uncer-
tainty [8]; which can be applied to GNSS applications as well. Different M-estimators
could be used in the cost functions to enhance the robustness of the factor graphs. Also,
the integration of different sensors, such as the inertial measurement units (IMU) could
be added on top of the robust estimation methods to improve accuracy and reliability of
positioning.
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