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Summary

Fermented foods have become increasingly popular in recent years, but fermentation pro-
cesses are difficult to monitor because of their dynamic environment and the complexity
of volatile organic compounds (VOCs). Traditional fermentation monitoring methods
often neglect to detect VOCs, an important feature of the fermentation process. HS-
GC-IMS (Headspace Gas Chromatography-Ion Mobility Spectrometry) provides a non-
invasive and sensitive method for VOC detection, but generates large amounts of complex
data that are difficult to analyse manually.

To overcome this challenge, this study firstly optimises the pre-processing steps such as
region of interest (ROI) identification and threshold selection, then combines Persistent
Homology and Variable Importance Projection (VIP) scores of PLS-DA, and finally
succeeds in identifying the important peaks of VOCs generated during the fermentation
process. This approach reduces manual intervention and improves the efficiency and
accuracy of complex data processing.

The contribution of this thesis is the combination of HS-GC-IMS with ML and TDA,
which provides a new way for intelligent fermentation monitoring with potential appli-
cation in the fermented food industry.
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Chapter 1

Introduction

1.1 Research background
Studies over the years have shown that fermented foods have a role to play in good
health, improving nutrition and reducing the risk of disease[10]. This is why fermented
foods have become an essential part of our lives. Fermentation is a food processing
technology that utilizes the growth and metabolic activity of microorganisms (e.g. lactic
acid bacteria and brewer’s yeast)for the transformation of complex organic compounds
into simpler compounds[7], resulting in the production of a wide range of volatile organic
compounds(VOCs) with distinctive flavours.

Traditionally, the monitoring of the fermentation process has relied on the measurement
of pH and lactic acid content[7]. However, due to the dynamics of microorganisms and
the diversity of fermentation environments (e.g., temperature, pH, oxygen concentration,
etc.), these metrics do not provide a complete picture of microbial metabolic activity
during fermentation, and thus do not allow for accurate, real-time control of the fer-
mentation process. For this reason, the development of technologies that can detect
microbial metabolites (especially VOCs) during fermentation has become a major focus
of research.

1.2 Research objectives and significance
In recent years, Headspace Gas Chromatography-Ion Mobility Spectrometry (HS-GC-
IMS) has been widely used for the detection of VOCs. It works by feeding the VOCs in
the sample into the GC system through headspace injection, then the column separates
these compounds and finally enters the IMS system for detection. It has the following
advantages[9]:

• High sensitivity: it can detect VOCs at low concentrations, and can detect
fermentation dynamics more accurately.

• High efficiency: it can detect the samples in a few minutes and real-time moni-
toring can be achieved.
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• Non-Destructive Analysis: he technique is less destructive to the sample and
allows continuous sampling without affecting the fermentation process.

With the appearance of new technologies often comes a number of problems. Firstly, due
to the high sensitivity of the machine, HS-GC-IMS contains a large amount of compound
information with each data acquisition. As the fermentation time progresses, the data
detected at each time point is accumulated, resulting in a huge data set. It is difficult
to process this huge amount of data efficiently with traditional methods, so that the
data analysis process is slow and does not meet the requirement of rapid response in
production. Secondly, the number of peaks in the data is too high due to the continuous
production of new VOCs during the fermentation process. It is difficult for traditional
methods to automatically identify peaks that are significant to the fermentation process.
Especially when analysing fermentation processes in different media, critical peaks may
be masked by others that are not significant. Finally, since most of the analysis of data
is now done manually. The analyser needs to manually select region of interest (ROI)
in the data. This is not only time-consuming and labour-intensive, but also susceptible
to subjective factors. It may lead to inaccurate analyses.

In order to solve the above problems, this paper takes the following 2 points as the
objectives of the study:

1. Improving the methods of data pre-processing to enhance the automation of data
analysis.

Data pre-processing is crucial in the analysis of VOCs, which directly affects the
quality of the subsequent data and the reliability of the analysis results. Therefore,
this study will aim to develop and improve existing pre-processing methods, such
as drift time alignment, automatic threshold selection, baseline correction and
automatically selecting ROI.

2. Combining machine learning (ML) and topological data analysis techniques (TDA)
to analyse the dataset and select significant peaks (VOCs) from it.

The changes of VOCs during fermentation reflect the dynamics of microbial metabolic
activities. Therefore identification and extraction of representative peaks is crucial
to understand the fermentation state. In this study, ML methods, specifically VIP
(Variable Importance Projection) in Partial Least Squares Discriminant Analysis
(PLS-DA), will be used to quantify the contribution of individual peaks of fer-
mentation processification to the model. In addition, in order to compensate for
the shortcomings of traditional data analysis methods, the study will use TDA,
in particular Persistent Homology (PH), to deal with complex geometrical struc-
tures in high-dimensional data. PH can help us identify important features with
persistence in the dataset and ensure that the selected peaks are significant.

Automation of the preprocessing process is important because this step reduces human
intervention and subjective judgement. It can process a large amount of sample data in
a short period of time and after processing the samples all meet a uniform standard. It
facilitates the application of machine learning algorithms afterwards. At the same time,
it improves the accuracy and repeatability of data analysis. Secondly, the combination
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of PLS-DA and PH technology enables the precise identification of VOCs peaks in the
huge data set that are closely related to the fermentation process. This step not only
filters out unimportant VOCs, but also allows researchers to quantitatively assess the
fermentation status from the information of these key peaks. For example, when a
significant peak appears, it may be a VOC that is not favourable to fermentation. At
this point, researchers can change the temperature, humidity or oxygen concentration
in the fermentation environment to suppress the intensity of the peak.

In this study, by improving the automation and intelligence of the fermentation process
monitoring, not only the quality and stability of the products were improved, but also
the waste of raw materials was reduced. It provides some useful values for researchers
in the field of fermentation for practical application.

1.3 Thesis structure
The aim of this thesis was to optimise the pre-processing of HS-GC-IMS data, and then
to combine ML and TDA techniques to select and visualise significant peaks in the
pre-processed data. The overall framework of the workflow is depicted in Figure 1.1.

Figure 1.1: The workflow of HS-GC-IMS data analysis

We can observe that the workflow is divided into two main steps, pre-processing and
peak selection. These two parts are also the parts that the paper focuses on explaining.
The thesis is structured in the following chapters:
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• Chapter 1 Introduction

This chapter introduces the research background, objectives, and significance of
this thesis. It also includes the overall structure of the thesis.

• Chapter 2 Background and Literature

This chapter focuses on the principles of the HS-GC-IMS technique. The basic
concepts of ML and PH are also introduced.

• Chapter 3 Research Methodology

This chapter describes the experimental design and data processing methods in
detail. Firstly, the medium preparation and sampling conditions are described.
Secondly, the specific steps of pre-processing for HS-GC-IMS data analysis are
discussed, including drift time alignment, automatic selection of regions of interest,
automatic calculation of thresholds for denoising, and baseline correction. Finally,
the method of peak selection(PH), and analysis tools such as PLS-DA and VIP
score are introduced.

• Chapter 4 Results and discussion

This chapter demonstrates firstly the results of the data pre-processing are shown
and the results with the processing are analysed using PCA. Then the significant
peaks in each sample were shown. The final part shows how the high scoring peaks
in the VIP scores of the dataset changed during the fermentation process.

• Chapter 5 Conclusion

This chapter summarises the main findings of this study and discusses the limita-
tions of the study. Also, some recommendations are made for future research.

12



Chapter 2

Background and literature

2.1 HS-GC-IMS

HS-GC-IMS (Headspace Gas Chromatography-Ion Mobility Spectrometry) is an analyt-
ical technique mainly used for the detection of volatile organic compounds (VOCs).The
technique combines three techniques, Headspace Sampling, Gas Chromatography (GC)
and Ion Mobility Spectrometry (IMS), each of which performs a different function.

2.1.1 Headspace Sampling

Headspace sampling is a separation technique used to extract volatile compounds from
the gas phase of a liquid or solid sample, as shown in Figure 2.1 These volatiles pre-
cipitate out of the sample under specific temperature and pressure conditions and accu-
mulate in the headspace (the gas region above the sample) of the sample vessel and are
subsequently injected into a gas chromatograph for analysis.[13]

Headspace sampling is performed as follows: first, a solid or liquid sample is placed in a
headspace bottle and the bottle is sealed. The sample bottle is then heated in a heating
device so that volatile compounds precipitate out of the sample and accumulate in the
headspace region as the temperature increases. The bottle is then held for a certain
period of time to allow the volatile compounds to reach equilibrium in the headspace.
Finally, a headspace injector is used to extract the gas from the headspace and inject it
into the gas chromatograph for analysis.

Headspace sampling analyses only the volatiles in the sample, avoiding the need to anal-
yse non-volatile components in liquid or solid samples and therefore reducing column con-
tamination or interference. Compared to other sample preparation techniques, headspace
sampling usually does not require complex pre-treatment, reducing sample preparation
time and reagent consumption. For all these reasons we can conclude that the advan-
tages of this technique are fast, efficient and non-destructive analysis of volatiles, which
is why this technique is widely used.
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Figure 2.1: Diagram of headspace analysis

2.1.2 Gas Chromatography (GC)

Gas chromatography is a technique for separating mixtures. By injecting sample into
a gas carrier (Mobile phase) and passing it through a column (Stationary phase) the
chemicals in the mixture are separated. The retention time of each group of volatiles in
the column is unique and we can use this to determine their identity.

The main components of a gas chromatograph are the injector, the carrier gas system,
the column and Oven, the detector, as shown in Figure2.2.[18]

i. The injector is used to introduce the sample into the GC system, where it is then
mixed with the carrier gas and entered into the system for separation and analysis.
The injector must maintain consistent temperature and pressure to ensure that the
sample is injected uniformly into the gas stream.

ii. The carrier gas is the mobile phase of gas chromatography that serves to carry the
sample through the column. Carrier gases are usually helium, hydrogen or nitrogen
because they are inert and do not react chemically with the sample. In addition,
the purity of the carrier gas is very important to avoid introducing impurities that
interfere with the analysis of the sample.

iii. A column is the heart of a gas chromatography system and is used to separate
individual compounds in a sample. Its internal walls are coated with a stationary
phase material, and the components of the sample are separated according to their
different interaction behaviors with the stationary phase. Capillary columns are
widely used for high-efficiency separations, and they are usually very thin and long,
providing a high separation capacity.

iv. The column oven controls the temperature of the column. Temperature control is a
key factor because the separation of different compounds is temperature dependent.
With programmed temperature increase, the separation of different components in
complex samples can be optimized to help improve resolution.

v. The detector is the final component of a gas chromatograph and is responsible for
identifying and measuring the components passing through the column. Common
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detectors are Flame Ionization Detectors (FID) and Thermal Conductivity Detec-
tors (TCD) FID is very sensitive to organic compounds, while TCD is usually used
to detect inorganic compounds or simple gases.

Figure 2.2: Simplified Structure of a Gas Chromatograph

The analysis process of the gas chromatograph is shown in Figure2.3. The mixture(shown
in pink), made up of two components (A and B), is injected into the system through
the injector port. This sample is carried by a gas through the chromatography column.
Inside the column, the two components start to separate due to their different chemical
properties, which affect how they interact with the stationary phase inside the column.

Figure 2.3: The analysis process of the gas chromatograph

As the components move through the column, component B (shown in orange) moves
faster than component A (shown in blue), meaning it exits the column first. Once each
component reaches the detector, it generates a signal, which is recorded as a peak on
the chromatogram. The time it takes for each component to travel through the column
and reach the detector is called the retention time.

In the lower part of the image, a graph shows the peaks for components A and B. Peak
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B appears first, representing the faster eluting component, while Peak A appears later.
The time difference between the peaks shows how the components were separated by the
gas chromatography system. This method allows for the analysis and identification of
the individual components in a mixture based on their retention times, as indicated by
the formula (2.1) where tm is the residence time of the compound in the mobile phase
and ts is the residence time of the compound in the stationary phase.

tr = tm + ts (2.1)

2.1.3 Ion Mobility Spectrometry (IMS)

Ion Mobility Spectrometry (IMS) is an analytical technique for the characterisation of
chemical ionic compounds based on the difference in migration rates of different gas-
phase ions in an electric field[19]. The mobility of an ion K is defined as the drift
velocity vd of the ion per unit electric field strength E, and is given by:

K = vd

E
(2.2)

where:

• K is the ion mobility (in cm2/V · s),

• vd is the drift velocity (in cm/s),

• E is the electric field strength (in V/cm).

The time it takes for an ion to travel through the drift tube, known as the drift time td,
can be expressed as:

td = L

K · E
(2.3)

where L is the length of the drift tube.

The ion mobility (K) depends on the gas density (N) and temperature (T )[6], and is
often expressed in reduced form:

K0 = K · N

N0
= K ·

(︃
p

p0

)︃ (︃
T0
T

)︃
(2.4)

where:

• K0 is the reduced mobility (standardized at 760 Torr and 273.16 K),

• N0 is the standard gas density,

• p0 and T0 are the standard pressure and temperature.
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2.1 – HS-GC-IMS

Another key aspect of IMS is the collision cross section (CCS), denoted as Ω, which
provides structural information about the ion[6]. It is linked to ion mobility through the
equation:

K = 3ze

16N

√︄
2π

µkBT
· 1

Ω (2.5)

where:

• z is the ion’s charge state,

• e is the elementary charge,

• N is the gas number density,

• µ is the reduced mass of the ion-gas pair,

µ = mM

m + M
(2.6)

where m is ion mass (analyte) and M is molecular mass(drift gas).

• kB is the Boltzmann constant,

• T is the gas temperature.

Although the above formulas seem to be very complicated, in fact, in our operation, the
length of the drift tube is fixed, and the flow rate and temperature of the drift gas are
fixed, the ion mobility is only related to its own ion mass m and the CCS (Ω) (which is
a constant), and this is the basis for the construction of ion mobility spectra.

Then we can understand the specific working principle of ion mobility spectroscopy
through the following figure2.4. The drift tube is divided into two main regions, an
ionization and reaction region and a drift region. The sample molecule first enters the
system through the gas inlet. They are transformed into ions in the presence of β rays
as they pass through the ionization source. From the ionization and reaction region,
a constant electric field is applied in the IMS, which is used to drive the ions through
the device. The ions then enter the drift region through the periodically opening Ion
shutter. In this region, the ions move towards the Faraday plate on the right side under
the influence of the electric field. The drift region is filled with drift gas(Nitrogen),
and this gas provides resistance that causes the particles to move at different speeds in
the drift region. The drift speed of the ions depends on their mass, shape and charge.
Therefore, lighter or smaller ions will usually reach the end of the drift region faster
than heavier and larger ions. Since the ionisation process is not 100% successful, there
will always be some un-ionised molecules that enter the drift zone and interfere with the
detection, and the drift gas will blow these molecules out of the gas outlet. In the drift
tube we can see that there are several drift rings, which help to maintain the uniformity
of the electric field and keep the molecules and ions in regular motion throughout the
drift. The detector, usually a Faraday plate, is at the end of the drift zone. The Faraday
plate is able to detect ions that reach the end point and generate a signal. The strength
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of the signal is related to the number of ions, while the time it takes for the ions to reach
the Faraday plate (drift time td) depends on the mobility of the ions K[12].

Figure 2.4: Ion Mobility Spectrometry (IMS) Schematic working principle

In IMS, the drift gas (nitrogen) is ionized in the ionization and reaction region at
atmospheric pressure to produce a positively charged nitrogen ion and release elec-
trons(equation2.7). After a series of reactions(from equation 2.8 to 2.12) these electrons
is transferred to a trace amount of water, which is contained in the nitrogen itself, and
finally a hydrated hydrogen ion(H+(H2O)3) is formed. These hydrated hydrogen ions
continue to accumulate in the drift zone and produce a stable peak on the IMS detector
- the reactive ion peak (RIP).

Formation of Reactant Ions - Hydrated Proton[3]

N2 + e− −−→ N2
+ + 2 e− (2.7)

N2
+ + 2 N2 −−→ N4

+ + N2 (2.8)
N4

+ + H2O −−→ 2 N2 + H2O+ (2.9)
H2O+ + H2O −−→ H+(H2O) + OH (2.10)

H+(H2O) + H2O + N2 −−→ H+(H2O)2 + N2 (2.11)
H+(H2O)2 + H2O + N2 −−→ H+(H2O)3 + N2 (2.12)

The RIP peak is the background peak in the IMS and is used for calibration and ref-
erence. It provides a stable signal that can be used as a reference point in the absence
of sample analytes. By observing the position and intensity of the RIP peak, you can
ensure the consistency and accuracy of the IMS instrument under different conditions.
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Combining the advantages of HS, GC and IMS technologies has made HS-GC-IMS one
of the most popular analytical tools for the detection of volatile organic compounds in
recent years. The advantages of this application are high sensitivity, non-destructive de-
tection, fast response and the ability to handle complex sample matrices, which makes
it particularly suitable for monitoring fermentation processes. HS-GC-IMS accurately
captures the diverse and dynamically complex changes in VOCs produced during fer-
mentation, helping to analyse key compounds and quality changes in the fermentation
process, and contributing to the optimisation and control of the fermentation process.

The latest research in the analysis of GC-IMS data is the development of a python pack-
age gc-ims-tool by Joscha Christmann [2]. It provides reading of .mea files, preprocessing
methods (drift time alignment, baseline alignment, etc.) and visualisation. However, it
still uses manual parameter input for region of interest selection and threshold selection,
which will make the subsequent analysis affected by subjective judgement. This thesis
optimises the pre-processing process according to this problem by automating the ROI
and threshold selection process. This reduces human intervention and allows all samples
to be under a uniform standard.

2.2 Machine Learning
Machine learning is a subject that uses algorithms to automatically learn regularities
from data and make predictions or classifications. Its algorithms can usually be divided
into two main categories: supervised learning and unsupervised learning. Supervised
learning uses labelled data for training to predict labels for new data and to discover po-
tential relationships in labelled data; unsupervised learning is used to discover potential
structures or patterns in unlabelled data. In food chemistry and fermentation research,
high-dimensional data such as HS-GC-IMS often have complex multivariate features
from which traditional analytical methods have difficulty extracting useful features, and
machine learning can help to analyse such complex data. Through unsupervised learn-
ing, samples can be analysed exploratively to explore the internal structure of the data;
through supervised learning, different types of fermentation samples can be classified and
important features can be extracted, which in turn can explain the changes of chemicals
during the fermentation process. Thus, machine learning helps to reveal in depth the
chemical changes in the food fermentation process.

2.2.1 Unsupervised learning

Unsupervised learning is an analysis method that does not rely on labelled data and
can help to discover underlying patterns and structures from data. One important part
of unsupervised learning is Exploratory Data Analysis (EDA).At its core, EDA is the
exploration of data without excessive preconceived assumptions or a priori knowledge
to better understand patterns in the data, detect outliers or systematic errors, and
potentially uncover unexpected relationships.A key element of EDA is visualisation, as
through graphical presentations, users can intuitively understand trends, clusters, and
correlations in the data. Communicating results through visualisation is often more
succinct and efficient than just numbers[2].
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In this thesis, Principal Component Analysis (PCA) has been chosen as the main tool for
EDA. PCA is an algorithm that projects high dimensional data into a low dimensional
space, preserving the direction of the largest variance in the data and reducing the
dimensionality, thus visualising the data and making it easy for us to observe potential
correlations in the data. Through the PCA score plot, we can visualise the similarity
or difference between different fermentation samples, thus providing important hints for
following analyses.

2.2.2 Supervised learning

Supervised learning is another large class of methods in machine learning, mainly used to
learn predictive models from labelled datasets and to classify or regress new data. Com-
mon supervised learning algorithms include linear regression, support vector machines
(SVM), decision trees, neural networks, and partial least squares discriminant analysis
(PLS-DA). Supervised learning is trained by mapping relationships between input data
(independent variables) and output labels (dependent variables), with the goal of finding
models that best predict the labels of new data.

In my thesis, I chose PLS-DA (Partial Least Squares Discriminant Analysis) as the
supervised algorithm to fit my data.PLS-DA is an algorithm commonly used for high-
dimensional, multivariate data, and is especially suited for working with data that are
highly correlated between the variables, which is typical of HS-GC-IMS data.PLS-DA is
able to effectively dimensionality reduction of the data. At the same time, the VIP (Vari-
able Importance Projection) of PLS-DA can extract the most important variables for
classification, which provides the basis for subsequent chemical interpretation[2]. There-
fore, PLS-DA can help HS-GC-IMS data to identify the key components of chemical
changes during fermentation.

2.3 Persistent Homology

Persistent Homology (PH) is a topological tool for analysing the structure of data and
can help us understand the shape and important features in the data. Unlike traditional
analysis methods, PH focuses on the topological changes in data at different scales,
especially those of persistent structures, and is unique in its ability to track features such
as connectivity in data, which are "born" or "die" as a result of a change in a parameter
(e.g., filtering threshold)[17]. PH evaluates the persistence of these topological features
by recording their "birth" and "death". Persistent features mean that they are significant
at multiple scales and therefore usually represent meaningful signals, while features that
appear briefly may be noise or irrelevant information.

The data generated by HS-GC-IMS often have a complex two-dimensional structure
containing two dimensions, retention time and drift time, as well as accompanying noise
and background signals. Conventional peak detection methods may have difficulty in
effectively distinguishing the true signal from the noise, especially in the case of high
background signal interference. PH, on the other hand, is able to automatically extract
the most persistent features from the topology of the data, helping to identify the true
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signal peaks in a complex noise environment.

Hadi Parastar [17] successfully applied the PH algorithm to a single sample in his study.
But HS-GC-IMS generates a large number of datasets with different peaks for each data.
It becomes a challenge to apply this technique to huge datasets and to select meaningful
peaks in the dataset. To solve this problem, this thesis combines this technique with the
VIP score of PLS-DA, which will efficiently and accurately select the significant peaks
in the dataset.
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Chapter 3

Research methodology

This chapter presents the research methodology and experimental steps used in this
thesis. From the collection and pre-processing of data, to the use of machine learning
techniques to evaluate and analyse the data. By describing these processes in detail it
provides the basis for the following analysis of the results. The data used in this thesis
were provided by Professor Bordiga from the Universiá del Piemonte Orientale.

3.1 Preparation of Culture Medium and Sampling

3.1.1 Preparation of Culture Medium

The culture medium utilized was the classical sterilized MRS broth (Condalab, Madrid,
Spain). Fermentation was conducted in three different set-ups simulating possible con-
tamination. The bacterial strain used was Lactobacillus paracasei ATCC 6134, at an
initial concentration of 1 × 106 CFU. Contamination was performed using a classical
Saccharomyces cerevisiae (for bakery use) at a final concentration of 100 mg/L and
a third contamination set-up where fermentation was conducted without sterility (no
microbiological fume hood or sterile equipment).

• MRS: L. paracasei (1 × 106 CFU)

• MRS + SC: L. paracasei (1 × 106 CFU) + S. cerevisiae (100 mg/L)

• MRS + X: L. paracasei (1 × 106 CFU) + no sterility

Fermentation was carried out in a final volume of 100 mL in Erlenmeyer flasks. The
flasks were placed in a shaking incubator at 37 ◦C, 200 rpm.

3.1.2 Sampling

During the experiments, sampling was carried out under a fume hood at 0 h, 2 h, 4 h, 6
h, and 24 h. For each sampling, 1 ml of the sample liquid was placed in a 20 ml glass vial
using aseptic handling for subsequent HS-GC-IMS analysis. As shown in the table3.1,
four different media and their combinations were used in the experiments, namely, a
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single medium (MRS), a medium with Lactobacillus Paracasei (MRS + L), a medium
with Lactobacillus Paracasei and Saccharomyces cerevisiae (MRS + L + S), and medium
with the addition of Lactobacillus Paracasei and contaminated swabs (MRS + L + X).
All samples were taken at the same time point to ensure comparability and accuracy of
the experimental data.

Table 3.1: Sampling Time Points and Codes for Various Culture Medium Conditions

3.2 HS-GC-IMS analysis

The HS-GC-IMS analysis of the fermentation samples was conducted using a GC-IMS
instrument (FlavourSpec®, Dortmund, Germany). In order to ensure the accuracy of
the experimental results, the parameters of the instrument were finely set and adjusted.
Figures 3.1 and 3.2 show the workflow of the instrument and the specific parameters set,
respectively.

As shown in Figure 3.1, the samples entered the gas chromatography column (GC Col-
umn) through the injection port, after which they were separated and analysed by ion
mobility spectrometry (IMS). To ensure the accuracy of the analysis, nitrogen (N2) was
used as the carrier gas and drift gas, and the relevant temperature and pressure param-
eters were adjusted by electronic pressure controllers (EPC1 and EPC2). The heaters
(T1-T5) labelled in the figure were used to heat the different experimental components
to ensure proper temperature conditions.

Figure 3.2 shows the specific parameter settings used during the experiment. The drift
gas flow rate (EPC1) was set to 75.0 ml/min, the carrier gas flow rate (EPC2) was set to
2.0 ml/min, and for the temperature settings, the temperatures of the IMS, the GC, the
injection port, and the transfer tube were set to 45 ◦C, 45 ◦C, 80 ◦C, and 45 ◦C, respec-
tively.These parameters were optimised in the pre-experiments to ensure the stability of
the experimental process and the reliability of the data.
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Figure 3.1: The workflow of the GC-IMS

Figure 3.2: The specific parameters of GC-IMS
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3.2.1 Headspace Sampling Conditions

• Sample Preparation: 1 mL fermentation samples were put into a 20 mL headspace
glass sampling vial.

• Incubation: Incubate the sample at 40 ◦C for 5 minutes with a shaking speed of
500 rpm.

• Injection: The injection needle temperature is 80 ◦C, and the injection volume is
300 µL.

3.2.2 GC Conditions

• Column: MXT-5; low-polar capillary column (15 m × 0.53 mm, 1 µm film thick-
ness).

• Column Temperature: 45 ◦C.

• Analysis Time: 10 minutes.

• Carrier Gas: Nitrogen (purity ≥ 99.999%).

• Flow Rate:

– 0–3 min: 2 mL/min.

– 3–7 min: 2–150 mL/min.

– 7–10 min: 150 mL/min.

3.2.3 IMS Conditions

• Drift Tube Length: 5 cm.

• Drift Tube Voltage: 400 V/cm.

• Drift Gas: Nitrogen (purity ≥ 99.999%) at a flow rate of 75 mL/min.

• IMS Temperature: 45 ◦C.

3.3 Software
GC-IMS data export was performed using Vocal software (G.A.S.,Germany). After
exporting the data, we used Python (version 3.11.2) to handle the subsequent processing
and analysis, utilizing various libraries such as gc-ims-tools (version 0.1.7)for key
pre-processing tasks. It is a package specifically designed for GC-IMS data. There
are two important classes in it. The first one is the Spectrum class, which is used
to represent and process individual spectra, containing all methods for input/output,
preprocessing (such as cutting axes and visualization). The other is the Dataset class,
which is used to manage multiple GC-IMS spectra, including sample names and labels.
Methods that require multiple spectra, such as alignment or calculation of averages, are
implemented here. Additionally, it provides tools for indexing, selecting, or deleting
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samples, ensuring compatibility with other data science libraries, mainly using NumPy
array formats. This package was also crucial for exploratory data analysis (PCA) and
Supervised learning(PLS-DA), allowing for the rapid generation of heatmaps, PCA score
plots, and VIP scores of the samples, clearly illustrating the differences between them.
This laid the foundation for subsequent machine learning analyses[2].

For the post-preprocessing results, the following libraries were utilized:

NumPy: Used for efficient array computations, particularly effective in handling large
GC-IMS datasets.

Pandas: Employed for data input/output (I/O) operations and manipulation of tabular
data.

Matplotlib and Seaborn: Used for data visualization, aiding in the clear representa-
tion of the analysis results.

3.4 Data Pre-processing

We exported all HS-GC-IMS data as .mea files. In these files, each sample contains three
main data matrices: a two-dimensional intensity matrix, a one-dimensional matrix for
retention times (RTs), and another one-dimensional matrix for drift times (DTs). The
size of the RTs matches the number of rows in the intensity matrix, while the size of the
DTs corresponds to the number of columns in the intensity matrix, as shown in Table3.2.
These data can also be used to generate a plot as figure 3.3 for further analysis.

Table 3.2: Data structure of MRS 0h.mea file

Analysing this data involves a number of steps, which I have divided into two main
parts pre-processing and peak selection. As shown in the figure1.1, pre-processing usually
includes data compression, RIP processing and alignment, selection of regions of interest,
denoising, baseline correction, scaling and normalisation. After preprocessing we use
PCA score plots to analyse the performance of our pre-processing results. Finally we
put the data into PLS-DA model to train it and select the important peaks by getting
VIP scores.
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Figure 3.3: GC-IMS chromatogram of raw data (MRS 0h)

3.4.1 Binning and Drift time alignment

Binning

Binning techniques are widely used in food chemistry and play an important role in data
pre-processing, especially when complex spectral data are involved, binning can greatly
simplify data[14].

After we extract the intensity matrix from .mea, binning reduces the size of the matrix
by combining every 2*2 neighbouring pixel points in the matrix into one value (their
average). In our data from table3.2 we can see that the original data size is 4082*3150,
after we applied binning the intensity matrix is reduced to 4082/2*3150/2(2041*1571).
Thus the number of features is reduced to a quarter of the original.

Drift time alignment

After binning the data, I used the alignment of the drift times with the RIP as the
reference signal. In subsection 2.1.3, when introducing the working principle of IMS,
we introduced the concept of RIP that is a stable peak formed by the accumulation of
hydrated hydrogen ions in the drift region.

There are several reasons why drift times need to be aligned. From the viewpoint of
chemical analysis, after the alignment of each sample, the same chemical compounds
will exhibit consistent drift times in different samples, avoiding the peaks from being
misaligned during subsequent analyses. From the data analysis point of view, drift
time alignment reduces the dimension of the data and thus improves the computational
efficiency; on the other hand, since the RIP is represented in the intensity matrix as a
high intensity value within a certain drift time interval, as shown in figura 3.3, these
high values usually correspond to hydrated hydrogen ions and not to the compounds
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that we are interested in. Therefore, this part of the data needs to be removed. After
drift time alignment, the high intensity values of RIP may be reduced to a few columns
or even disappear completely, thus reducing unnecessary interference and improving the
accuracy and reliability of the subsequent algorithms. In summary, using RIP as a
reference signal to align the drift time not only improves the consistency of the data,
but also significantly enhances the accuracy and efficiency of data analysis.

To align the drift time based on the RIP, I performed the following steps:

1. Searched for the index of the maximum intensity along the drift time axis in the
intensity matrix for each sample.

2. Took the median of all peak indices as the position of the RIP index.

3. Calculated the average drift time at this index position to determine the drift time
of the RIP.

4. Used the formula (3.1) to normalize the drift time, obtaining a drift time relative
to the RIP. This ensures that the drift time of each sample is aligned relative to
the RIP.

trel = tdrift
tRIP

(3.1)

5. Create a new drift time axis using cubic spline interpolation.

After normalization, the drift times of different samples are relatively consistent,
but the data points of each sample may still have slight differences, meaning that
the sampling points of the drift time are not completely identical. To solve this
problem, I established a new drift time axis and aligned all samples to this new
axis. In order to map the intensity values to the new drift time axis, I used cubic
spline interpolation to recalculate the intensity values for each sample at the same
time points. This method provides a smooth and continuous way to interpolate
these new time points, ensuring that the data is not distorted during the alignment
process.

In cubic spline interpolation, the relationship between intensity I(trel) and drift
time trel is represented through the interpolation function (3.2).

I(trel) = S(trel) (3.2)

where S(t) is the interpolation function, constructed based on the given relative
drift time trel and the corresponding intensity values I(trel).

The function S(t) is a piecewise polynomial function. Each segment can be written
as:

Si(t) = ai(t − ti)3 + bi(t − ti)2 + ci(t − ti) + di for ti ≤ t ≤ ti+1 (3.3)

To project the intensity values I(trel) of each sample onto a unified drift time axis
tnew, we need to perform interpolation calculations.
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The formula is:

I(tnew) = S(tnew) =
∑︂

i

[︂
ai(tnew − ti)3 + bi(tnew − ti)2 + ci(tnew − ti) + di

]︂
(3.4)

where ai, bi, ci, di are determined through the following conditions[8]:
1. Interpolation Conditions
For each cubic spline Si(t) in the interval [ti, ti+1], the spline must pass through the
given data points (ti, Ii) and (ti+1, Ii+1). This leads to two interpolation conditions:

Si(ti) = Ii and Si(ti+1) = Ii+1

These conditions provide two equations for the spline coefficients.
2. First Derivative Continuity
To ensure smooth transitions between adjacent spline segments, the first derivatives
of the splines must be continuous at the internal points ti:

S′
i(ti) = S′

i+1(ti)

3. Second Derivative Continuity
For further smoothness, the second derivatives of the adjacent splines must also
be continuous at each internal point ti:

S′′
i (ti) = S′′

i+1(ti)

4. Boundary Conditions
Two common boundary conditions are used to finalize the system of equations:

• Natural Boundary Condition: The second derivative at the endpoints t0 and
tn is set to zero, i.e.,

S′′
0 (t0) = 0 and S′′

n(tn) = 0

• Clamped Boundary Condition: The first derivative at the endpoints is speci-
fied, e.g.,

S′
0(t0) = f ′(t0) and S′

n(tn) = f ′(tn)

After the above processing steps, I aligned all the feature values along an axis named
"Drift time RIP relative." Since the RIP peak is located at the beginning of this new
axis, I selected the range between 1.05 and 2.5 to remove the RIP signal. This range
approximately corresponds to a drift time of 6 to 21 milliseconds.
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3.4.2 Calculate Means and Region of interest (ROI) selection

Calculate means

By averaging the intensity matrices of all the samples, I was able to obtain a repre-
sentative intensity matrix that would contain common features across all the samples.
Averaging reduces noise interference and thus highlights those feature peaks that occur
consistently in the region of interest. In this way, it is guaranteed that the region of
interest is selected to cover the characteristic points of all samples.

Let Ii represent the intensity matrix of the i-th sample, and let N be the total number
of samples. The average intensity matrix I across all samples can be expressed as:

I(x, y) = 1
N

N∑︂
i=1

Ii(x, y)

I have presented the obtained mean intensity matrix in the form of a Spectrum as in
Figure 3.4. By comparing Figure3.4 with the plot of sample MRS 0h (Figure 4.2), we
can see that the features contained in Figure 3.4 are significantly larger than those in
Figure 4.2. That is to say, we have all the features of the samples represented in the
intensity matrix of the mean values.

Figure 3.4: GC-IMS chromatogram of the average intensity matrix

Region of interest (ROI) selection

In order to achieve automation the ROI selection process. First I use the iterative
adaptive thresholding algorithm to compute a threshold that distinguishes between the
foreground and background of the chromatograms of the mean intensity matrix.Then a
binarized matrix is obtained by binarising the intensity matrix based on the calculated
threshold. Finally the ROI is selected based on the binarised matrix.
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The steps of the iterative adaptive thresholding algorithm are as follows:

• Initialize the threshold T0 as the average of the maximum and minimum pixel
values in the image:

T0 = max(I(x, y)) + min(I(x, y))
2 (3.5)

where max(I(x, y)) and min(I(x, y)) represent the maximum and minimum inten-
sity values of the image I(x, y).

• Define two regions, A and B, based on the current threshold Tn:

A = {I(x, y)) | I(x, y)) ≥ Tn} (3.6)

B = {I(x, y)) | I(x, y)) < Tn} (3.7)

• Compute the mean intensity values for regions A and B, denoted as gA and gB,
respectively:

gA = 1
|A|

∑︂
(x,y)∈A

I(x, y)) (3.8)

gB = 1
|B|

∑︂
(x,y)∈B

I(x, y)) (3.9)

where |A| and |B| are the number of pixels in regions A and B.

• Update the threshold to the average of gA and gB:

Tn+1 = gA + gB

2 (3.10)

• The iterative process continues until the difference between the current threshold
Tn and the previous threshold Tn+1 is smaller than a small constant ϵ:

|Tn+1 − Tn| < ϵ (3.11)

where ϵ is a predefined tolerance value that controls the convergence precision. I
chose it to have a value equal to 0.00001, in order to ensure the accuracy of the
threshold.

• Once the threshold has converged, the final threshold T is returned as:

Th = Tn+1 (3.12)

In the second step of automating the ROI selection process, I used the final threshold
to construct a binarized matrix, where the regions containing 1 represent the ROI. The
task was to extract all the regions in the matrix that contain 1. First, by scanning
each column, we identified the last column that contains a 1 and recorded its index as
index_dts_end. Since the drift time alignment has been completed, there is no need
to process the left part of the matrix further. Next, by scanning each row, we found
the first and last rows containing 1, and recorded their indices as index_rts_start and
index_rts_end, respectively. Finally, based on these indexes, we sliced the intensity
matrix to obtain our ROI.
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3.4.3 Denoising and Baseline correction

Denoising

In addition to being used for ROI selection, the threshold calculated in the previous step
serves another crucial purpose: denoising, particularly in data with high noise levels,
where noise can interfere with subsequent peak extraction. In this case, a threshold
of 750 was automatically calculated and applied to all samples. Any intensity values
below 750.8 were considered noise and set to 0 in the intensity matrix. This approach
significantly reduces data volume, retaining only the values relevant to the actual signals,
such as chemical feature peaks.

Baseline correction

The baseline is the signal level when no compounds are detected in the HS-GC-IMS,
and it is usually a more stable signal. The baseline primarily reflects the background
level of noise and represents the minimum response of the detection system. When
there is no substance to be measured, the system still picks up some ambient noise or
background signals that make up the baseline[16]. This baseline level may vary slowly
due to fluctuations in temperature, pressure or the instrument itself in the experimental
environment, so baseline correction is essential. Especially during long experimental
periods, signal drift and instrument fluctuations can affect the stability of the baseline,
resulting in a gradual increase in the difference between the detected signal and the
baseline.

The main purpose of Baseline correction is to ensure that the peak signal ultimately
obtained is the true signal of the target compound and not a false signal caused by
noise or baseline drift. Uncorrected baselines may cause fake peaks to appear, which in
turn can interfere with the analysis results. With baseline correction, the interference
of ambient noise can be effectively eliminated and the true signal of the compound
can be made clearer and more reliable, thus improving the accuracy of the data. A
corrected baseline brings the peak signal closer to the actual concentration change of
the compound, reducing the effect of noise on the data, and effective baseline correction
ensures that each peak feature is accurately identified.

Asymmetric Least Squares (ALS) is a baseline correction technique primarily used for
signals like spectra[16]. In GC-IMS data, there are often irregular or high-intensity peaks
that require effective handling while ignoring noise below the baseline. The goal of ALS
is to estimate a baseline that is smoother than the observed signal y, while preserving
the essential peak features.

The ALS optimization function is defined as:

s =
∑︂
ij

ωijd2
ij + λ

∑︂
ij

(∆2zij)2 (3.13)

• The first term measures the deviation between the observed signal yij and the
estimated baseline zij ∑︂

ij

ωijd2
ij
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where dij = yij − zij

• The weight ωij controls the influence of the peak signal on the baseline correction
and is defined as:

ωij =
{︄

p if dij > 0
1 − p otherwise

• where p is typically set between 0.001 and 0.1. By adjusting the weight p, the
influence of the peaks on the baseline fitting can be controlled, preventing overcor-
rection that might distort the signal.

• The second term is a smoothness penalty to ensure the baseline zij is continuous
and smooth

λ
∑︂
ij

(∆2zij)2

.

• The smoothness term is given by:

∆2zij = zij − 2zij−1 + zij−2

This term ensures smooth transitions in the baseline between consecutive points.

• The parameter λ, which controls the degree of smoothness, ranges from 102 to
109. A larger λ results in a smoother baseline. By adjusting λ, ALS can balance
between fitting the baseline tightly to the observed data and maintaining peak
integrity.

The key to ALS correction is balancing the deviation between the signal and baseline
while ensuring smoothness in the baseline. This method is particularly effective in
handling spectral data with irregular peaks or high-intensity noise, allowing for accurate
extraction of chemical signal features by reducing baseline drift.

3.4.4 Scaling

Before applying PCA (Principal Component Analysis) and PLS-DA (Partial Least Squares
Discriminant Analysis), data scaling is necessary because different variables may have
different units and ranges. Without scaling, variables with larger numerical values may
dominate the results, while those with smaller values may be overlooked. By scaling
the data, we ensure that each variable is analyzed on the same scale, allowing PCA and
PLS-DA to more accurately capture the underlying structure and characteristics of the
data.

The scaling formula is as follows:
x′ = x − µ

σ
(3.14)

Where:
-x is the original data value
-µ is the mean of the variable
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-σ is the standard deviation of the variable
-x′ is the scaled data value
Through this formula, a variable with different scales can be transformed into a standard
normal distribution with a mean of 0 and a standard deviation of 1.as shown in figure3.5..
In this way, the effects of variables with different scales on the results of PCA and PLS-
DA can be avoided, and the analysis can be ensured to be fair and accurate.

Figure 3.5: Histogram of data distribution after Scaling (MRS 0h)

To make the data available for analysis by machine learning algorithms, after scaling
the data, I need to construct a matrix X to ensure that all the samples have aligned
features and have the same dimensions.
The process involves the following key steps:

• First, convert each sample’s two-dimensional intensity matrix into a one-dimensional
vector. This means flattening the sample’s features (e.g., ion drift time and re-
tention time intensity values) into a single row, with each row representing all
the features of a sample. This process retains the original feature information,
preparing it for further analysis.

• Next, stack the feature rows of all samples together to form a complete X ma-
trix. Each row of matrix X represents a sample, and each column represents a
specific feature. This ensures that the features of all samples are aligned consis-
tently and that each sample has the same number of features, avoiding dimensional
inconsistency issues.

• Finally, the resulting matrix X has dimensions N × J , where N is the number of
samples and J is the number of features per sample. The X matrix is then used
as input for machine learning algorithms, such as PCA (Principal Component
Analysis) or PLS-DA (Partial Least Squares Discriminant Analysis).
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3.4.5 Evaluation of pre-processing results in combination with PCA

As you can see from Table 3.1 that each of our data is grouped and labeled, I wanted to
use visualization tools in EDA to evaluate whether or not the results of the pre-processing
are somehow related to the data labels. The reason for choosing the score plot of the
PCA algorithm to evaluate the pre-processing results is that PCA is able to extract and
project the main variation information in the data into a low-dimensional space, usually
two or three dimensions, through dimensionality reduction. Through this projection,
score plots are able to visualize similarities and differences between samples. Ideally, the
pre-processing result should make the relationship between samples more explicit, e.g.,
similar samples should be clustered together, while more differentiated samples should
be spread far apart. Therefore, score plots can be used as a visual tool to assess the
effectiveness of pre-processing and to verify that the preprocessing steps have improved
the quality of the data by observing whether the data points form a reasonable clustering
or distribution pattern.
The steps to get the PCA score plot are as follows:

1. The input data matrix X is an N × J matrix, where:

• N is the number of samples,

• J is the number of features.

To capture the relationships between different features, we calculate the covariance
matrix C, which describes the linear relationship between each pair of features.
The covariance matrix is calculated as follows:

Cjk = 1
N − 1

N∑︂
i=1

(Xij − µj)(Xik − µk) (3.15)

where:

• Xij and Xik are the j-th and k-th feature values of the i-th sample,

• µj and µk are the means of the j-th and k-th features,

• Cjk represents the covariance between the j-th and k-th features.

By calculating the covariance for all feature pairs, we obtain a J × J covariance
matrix C. The simplified computation for the covariance matrix is:

C = 1
N − 1XT X (3.16)

where XT is the transpose of the input data matrix X.

2. The covariance matrix is decomposed to obtain eigenvalues λ and eigenvectors
v. Eigenvalues and eigenvectors provide important information about the vari-
ance in the data. Eigenvalues represent the amount of variance explained by each
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principal component, while eigenvectors represent the direction of the principal
components[15].

The eigenvalue decomposition is expressed as:

det(C − λI) = 0 (3.17)

(C − λI)vi = 0 (3.18)

where:

• λ is the eigenvalue of the covariance matrix C,

• I is the identity matrix,

• vi is the eigenvector corresponding to the eigenvalue λi.

Larger eigenvalues indicate that the corresponding principal component explains
more variance in the data.

3. Typically, we select the eigenvectors corresponding to the largest eigenvalues as
the principal components (PCs). By selecting a few principal components, we
can effectively reduce the dimensionality of the data while retaining most of the
important information[15].

4. After determining the principal components, we project the original data onto
these components to calculate the scores for each sample. Scores represent the
position of each sample in the principal component space, and the calculation is
as follows:

Scorex,i = X · vi (3.19)

where:

• X is the original data matrix,

• vi is the eigenvector corresponding to the i-th principal component.

This formula projects the data matrix X onto the principal components, generating
a score matrix S, where each row represents the coordinates of a sample in the
principal component space.

5. Finally, the score plot helps us visualize the distribution of samples in the princi-
pal component space. By observing the score plot, we can identify clustering or
separation between samples, revealing patterns or structures in the data.
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3.5 Peak selection

This section discusses the peak selection methods employed in HS-GC-IMS data anal-
ysis. Peak selection is a critical step in extracting important features from GC-IMS
chromatogram data that can help provide deeper knowledge of the chemical composi-
tion of the sample. Several methods can be used to identify and select relevant peaks,
including persistent homology, uncertainty analysis, and multivariate analysis techniques
(e.g., PLS-DA).

3.5.1 Topological data analysis

Topological Data Analysis (TDA) is a method for extracting information about the
whole structure and shape from complex, high-dimensional data. By analyzing the
geometric features of data, TDA helps us discover patterns and trends that are difficult
to identify with traditional statistical methods[17]. In practical applications, data often
contains some kind of geometric shape that carries important information in the data.
For example, in a topographic map, topographic features such as mountains and valleys
can be extracted by analyzing the geometric structure of the data.

3.5.2 Persistent Homology

One of TDA’s core tools is Persistent Homology(PH), which is designed to quantify
topological features in different dimensions of the data and determine their significance
by analyzing the ’persistence’ of these features[17]. In PH, a simplicial complex is a
fundamental tool used to represent the geometric and topological structure of data. It
provides a way to discrete complex geometric spaces, enabling the analysis of topological
features within data using computational algorithms[1].

A simplex is the basic building block in geometry. An n-dimensional simplex is the
convex hull of n + 1 points, with the most common examples being[11]:

• 0-simplex: a point, representing an individual point.

• 1-simplex: a line segment, formed by two points.

• 2-simplex: a triangle, formed by three points.

• 3-simplex: a tetrahedron, formed by four points.

Figure 3.6: N-dimensional simplex[20]

The dimension of a simplex is determined by the number of vertices it has, and each
n-dimensional simplex’s face is an (n − 1)-dimensional simplex, as shown in figure3.6.
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For instance, the faces of a triangle are line segments, and the faces of a tetrahedron are
triangles.

A simplicial complex is a collection of simplices that satisfies the following two properties[1][11]:

• If a simplex is in the complex, all its faces must also be included in the complex.

• If two simplices intersect, their intersection must be a common face of both sim-
plices.

This structure allows us to build complex topological spaces using simple geometric
objects, which can be used to analyze features like connectivity and holes within the
data.

In PH, simplicial complexes are utilized to convert data points into computable topolog-
ical structures, as shown in figure3.7. By connecting points, line segments, triangles, and
other simplices into a simplicial complex[1], Algorithm can capture essential topological
features of the data, such as:

• Connected components: distinct regions or clusters in the data (captured by 0-
dimensional simplices).

• Holes: enclosed but unfilled areas in 2D space (captured by 1-dimensional sim-
plices).

• Tunnels or cavities: voids or tunnels in 3D space (captured by 2-dimensional sim-
plices and higher).

Figure 3.7: Simplicial complexes[20]

Persistent homology analyzes the topological features of simplicial complexes over a
filtration process, tracking the birth and death of these features and quantifying their
persistence, which helps identify the most significant shape patterns within the data.

3.5.3 Persistence diagram

Persistence Diagram (PD) is an important tool for Persistent Homology (PH) technique
in topological data analysis, which records the process of generation and disappearance of
topological features as a function of scale, thus revealing the deep structural information
of the data.

Each data point in the GC-IMS data can be regarded as a 0-simplex (point), which con-
stitutes a simplex complex by connecting neighboring points to generate 1-simplexes (line
segments).The simplex complex gradually expands and changes as the data gradually
decreases the signal strength (Values of the intensity matrix) threshold. In this process,
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different topological features (e.g., connectivity components) are ’born’ or ’die’. Specif-
ically, ’birth’ refers to the scale at which the connected component first appears, while
’death’ is the scale at which the feature merges with other features or disappears[17].
Let us take the sea as an example, as shown in figure3.8. The water level at an altitude
of 300 is constantly decreasing. At the highest localised point, islands(0-simplex) appear
(birth). As the water level decreases (intensity matrix threshold decreases), two islands
are connected (connected component): the lower island is connected to the higher is-
land (death). The so-called persistence graph represents the death value of all islands
compared to the birth value.

Figure 3.8: Persistence plot corresponding to the upper-level set filtration of GC-IMS
data as an example.[17]

By calculating the birth and death scales of features, PH can determine the duration of
each topological feature. Features with long durations are often considered important
structures in the data, while features with short durations may be noise. The duration
graph plots the duration of these topological features on a two-dimensional plane, where
the x-axis represents the birth scale of the feature and the y-axis represents the death
scale of the feature. Each feature is represented as a point in the figure3.8, and the
vertical distance of the point reflects its duration. Points that are farther away from
the diagonal line indicate longer durations of features and are usually considered more
stable or important. Continuity diagrams not only help analyze the robust topology
in the data, but also enhance the understanding of the data by identifying persistent
features.

3.5.4 Application of the PH algorithm

Before applying the persistent homology (PH) algorithm to generate the persistence dia-
gram, several pre-processing steps were necessary to prepare the GC-IMS chromatogram
data for analysis. These pre-processing steps included color scaling, conversion to
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grayscale, and subsequent feature extraction using the PH algorithm. The following
steps, described in detail, lay the foundation for building persistent charts.

• Color Scaling and Grayscale Conversion:

The original GC-IMS chromatogram contains rich color information, with pixel
intensities representing the strength of the detected signals. To facilitate further
analysis, we first rescaled the color pixel values to ensure they fall within the range
of [0, 255]. The following algorithm was applied to achieve this scaling:

Ximg′ = Ximg ×
(︃ 255

max(Ximg)

)︃
(3.20)

Here, Ximg represents the original pixel values of the image(intensity matrix), and
max(Ximg) is the maximum pixel value in the image. This scaling adjusts all pixel
values to a 0-255 range, making the color contrast more pronounced. Enhancing the
contrast was crucial for correctly identifying features like peaks and valleys, as it
allowed the PH algorithm to detect significant topological features more efficiently.

Once the pixel values were rescaled, the next step was to convert the image to
grayscale. Grayscale conversion simplified the image by reducing it to intensity
values only, with brighter pixels representing higher intensities and darker pixels
indicating lower intensities. This transformation made the image more suitable for
topological analysis by removing the complexity introduced by color.

• Peak Extraction Using the PH Algorithm:

After the image was rescaled and converted to grayscale, we applied the PH al-
gorithm to extract significant features, specifically the peaks in the GC-IMS chro-
matogram. The PH algorithm detects topological features by tracking their "birth"
and "death" times, effectively identifying regions where notable features such as
peaks appear and disappear.

For each identified peak, several key parameters were recorded:

– Drift time: Corresponding to the horizontal axis of the chromatogram, rep-
resenting the ion mobility spectrometry (IMS) drift time.

– Retention time: Representing the vertical axis of the chromatogram, indi-
cating the retention time during gas chromatography (GC) separation.

– Pixel position (x, y): The coordinates of the peak in the image matrix.

– Birth level: The grayscale intensity value where the peak begins to emerge.

– Death level: The grayscale intensity value where the peak disappears.

• Construction of the Persistence Diagram: Using the birth and death values
from the table, we proceeded to construct the persistence plot. In the figure, each
point represents a topological feature (in this case, a peak and valley).
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3.5.5 Uncertainty analysis of HS-GC-IMS

After completing the peak detection, the uncertainty analysis of HS-GC-IMS is per-
formed to estimate and quantify the sources of error in the experiment and to ensure
the accuracy and reliability of the results. Uncertainty analysis helps us to identify
potential problems in the detection process, such as instrumental errors, environmental
effects, and instabilities in data processing. By evaluating parameters such as drift time,
retention time and intensity of each peak, the precision and confidence interval of the
assay can be clarified. This process is essential to optimise the experimental process and
improve data repeatability, as well as to ensure that statistically significant peaks are
screened to reliably reflect the chemical composition of the sample.

For this purpose, Professor Bordiga provided a data set. This dataset consists of ten
samples, each of which is a coffee roasted and brewed from the same variety of coffee
beans. This dataset was chosen because the aroma compounds in coffee show a high
degree of stability after the beans have been roasted. Therefore, this data set is well
suited for assessing the measurement uncertainty of the instrument. By repeating mea-
surements on these samples, possible random errors of the instrument under different
experimental conditions can be more clearly identified.

Describe the calculation process in the following:

• Data Preprocessing and Analysis:

In this study, for each coffee sample, we applied the same pr-eprocessing techniques
described in section 3.4 as well as the methods detailed in section 3.5. During the
peak selection process, each sample generated a corresponding peak table that
included the drift time, retention time, and the coordinates of the peaks in the
matrix. The results were then visualized using GC-IMS chromatograms, as shown
in the figures 3.9.

• Comparison of Peaks Across Samples:

By comparing the peak positions across the ten samples in the chromatograms,
it became clear that the locations of the first ten peaks were generally similar.
To simplify the analysis, one sample was randomly chosen as a reference sample,
and its peak positions were used as a reference value. The peak coordinates of
the other nine samples were then compared against this reference.To ensure that
peaks selected across different samples corresponded to the same physical peak, a
threshold was defined: peaks within a distance of 10 pixels from the reference peak
were considered to represent the same peak.

• Standard Deviation Calculation:

After identifying corresponding peaks across samples, we calculated the uncertainty
between these peaks using the formula for standard deviation. The standard de-
viation formula is as follows:
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Figure 3.9: Top 10 significant peaks in all coffee samples

σ =

⌜⃓⃓⎷ 1
N

N∑︂
i=1

(xi − µ)2 (3.21)

where σ is the standard deviation, N is the number of samples, xi is the value of
the i-th sample, and µ is the mean of the sample values. Standard deviation mea-
sures the spread of the peak positions across samples; a higher standard deviation
indicates greater variation and, thus, greater measurement uncertainty.

3.6 PLS-DA and VIP scores

Through the above techniques, we can successfully extract relatively significant peaks
from a sample. However, to determine which peaks or features are important for the
whole database, further analysis is required with the help of machine learning methods.
In particular, we assess which peaks or features have a greater effect on the classifica-
tion and prediction of a sample by training a machine learning model. In this way, it
is possible to identify the features that are most discriminating to the samples. The
ultimate goal of this task is to extract key peaks from the database and further analyse
the pattern of change of these peaks during the fermentation process, in order to better
understand and control the key factors in the fermentation process, and thus optimise
the production process and product quality.
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3.6.1 PLS-DA (Partial Least Squares Discriminant Analysis)

PLS-DA (Partial Least Squares Discriminant Analysis) is one of the commonly used algo-
rithms in GC-IMS data analysis, which is particularly suitable for dealing with datasets
with high dimensionality and a small number of samples. Since GC-IMS data usually
have a much larger number of peaks than the number of samples, PLS-DA is able to
extract the key features by dimensional reduction for effective sample classification. The
advantage of this algorithm is its supervised learning property, which enhances the sep-
aration between different classes, allowing even small changes in chemical signals in the
samples to be detected. Combined with appropriate data pre-processing methods, PLS-
DA not only improves classification accuracy, but also enhances the interpretation of
results, demonstrating excellence in applications such as fermentation process monitor-
ing. The main idea of PLS-DA is to extract Latent Variables (LVs) that can differentiate
different classes by finding the linear relationship between the input variable X and the
output label Y [5]. These latent variables can help us to reduce the dimensionality of the
data while maintaining as much separation as possible between the sample categories to
achieve classification. We can obtain LVs from the following steps:

1. Input Data

Input data matrix X (N × J) that obtained in section 2.4.4.
- N : the number of samples
- J : the number of features.
Output matrix y (N × 1), represents the classification labels for each sample.

2. Calculating Weight Vector w
wT = XT y (3.22)

- XT : the transposed input matrix
- y : the output vector.
-The resulting weight vector w (J × 1), indicates the contribution of each feature
to the model.

3. Calculate and normalize scores vector t

t = Xw√
wT XT Xw

(3.23)

-wT : the transposed wright vector
- t (N × 1) : A vector representing the projection of each sample in LV space

4. Calculate the X loadings vectors

p = XT t (3.24)

- p (1 × N): The coefficients to indicate the measure in which each input feature
X contributes to each LV.

5. Calculate the Y loading Calculate Regression coefficient - q (1×1): The coefficients
to indicate the misuse in which Y contributes to each LV.
- yT : the transposed Output matrix
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6. Update the X and y residuals vector

rex_x = X − tp (3.25)

res_y = y − tq (3.26)

- The variables rex_x and rex_y replace the initial X and Y in the calculation of
the following latent variable.
- Back to step 2 with rex_x and rex_y.

7. Calculate Regression coefficient

b = w
(︂
pT w

)︂−1
qT (3.27)

- b : The coefficients are used to construct the relationship between X and y.

To ensure model accuracy I chose n_LV= 3. Our goal is to find a set of LVs such that
the covariance between X and Y is explained at most by a linear combination of these
variables.

3.6.2 VIP (Variable Importance Projection)

The variable importance projection (VIP) scores generated by the PLS-DA model plays
a pivotal role in the analyses.The VIP scores are used to assess the contribution of
each variable to the model, allowing for the identification of chemical peaks or other
feature variables that have the most discriminatory power in the classification task[4].
Specifically, a higher VIP score means that the corresponding feature has a greater
impact on the model in the differentiation of classes, thus providing information on which
features have a key role in the classification process of the samples. In addition, VIP
scores not only summarise the contribution of each variable to all potential variables
in the PLS-DA model, but also combine the regression coefficients and variables in
describing response Y (i.e., the output category) variance in significance. Therefore, the
VIP score becomes is a tool critical for feature selection and model interpretation. It
effectively filters out redundant information and focuses on those features that have a
significant impact on the classification results.

The VIP score for a given variable j is calculated using the following formula[4]:

V IPj =

⌜⃓⃓⃓
⎷

J ·

∑︁A
a=1

(︃
SSYa ·

(︂
wja

∥wa∥

)︂2
)︃

∑︁A
a=1 SSYa

(3.28)

Where:

• V IPj is the VIP score for the j-th feature.

• J is the total number of features.

• A is the number of latent variables (LVs) in the model.

45



Research methodology

• SSYa is the explained variance of the response variable y for the a-th latent vari-
able.

• wja is the weight of the j-th variable for the a-th latent variable.

• ∥wa∥ is the norm of the weight vector for the a-th latent variable.

The explained variance for each latent variable a, denoted as SSYa, can be computed
using the following formula[4]:

SSYa = b2
a ·

(︁
t′
ata

)︁
(3.29)

Where:

• ba is the regression coefficient for the a-th latent variable.

• ta is the score vector for the X-variables corresponding to the the a-th latent
variable.

• t′
ata represents the sum of squares of the score vector, indicating the contribution

of the component to the X-variables.

Each feature j has a corresponding weight wja for each latent variable a. This weight
reflects how much the feature contributes to the latent variable. The squared normalized
weight

(︂
wja

∥wa∥

)︂2
ensures that features with higher contributions to the latent variables

receive higher VIP scores. The sum over all latent variables A ensures that the VIP
score incorporates the contributions of the feature across all components of the model.
Normalization by the total explained variance

∑︁A
a=1 SSYa ensures that the VIP scores

are comparable across different features, even when the latent variables explain different
amounts of variance.

VIP scores are a critical tool in PLS-DA for evaluating the importance of features in
the model. By combining the contribution of each feature across all latent variables and
considering the explained variance of the response y, VIP scores help identify the most
influential variables for classification. This is particularly useful in high-dimensional
datasets, where VIP scores can aid in feature selection, model optimization, and result
interpretation. Variables with higher VIP scores should be considered crucial for the
model’s performance, while those with lower scores can potentially be excluded.

3.6.3 K-fold cross-validation method

Since PLS-DA is a classification algorithm, it is necessary to divide the dataset into
a training set and a test set when using it. However, my main purpose of using the
algorithm is to obtain VIP scores, and after directly dividing the dataset, I can only
obtain the VIP scores of the training set part, and cannot extract the features of the
test set. In order to solve this problem, I used the K-fold cross-validation method,
and specifically chose K=5 for the 5-fold cross-validation.In each validation round, one
sample from each sample group (for instance, one from a specific time point) is selected
as the test set, while the remaining samples from the other four groups are used as the
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training set. The process is repeated 5 times, rotating the sample selection such that
each sample group is used as the test set once.

The steps for K-fold cross-validation are as follows:

1. For each fold, select 1 sample (e.g., from a specific time point) from the dataset as
the test set.

2. Use the remaining 4 sample groups as the training set.

3. Train the model and calculate the corresponding VIP scores for each fold.

4. Rotate the sample selection so that each sample group is used as the test set once,
ensuring balanced validation.

After completing the training for each fold, a set of VIP scores is generated. I then
sum the VIP scores obtained from each fold, resulting in a comprehensive VIP score
based on all samples. This approach not only ensures that the features from both the
training and test sets are utilized, but it also provides a more accurate assessment of
each variable’s importance across the entire dataset. By using 5-fold cross-validation, I
am able to overcome the limitation of only extracting VIP scores from the training set.
This method ensures that VIP scores are generated based on the entire dataset, while
maintaining the balance between the sample groups during each validation fold.
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Chapter 4

Results and discussion

In this chapter I will show in detail the experimental results of the analytical study.

4.1 Results of Data Pre-processing

Firstly the results of each step in the pre-processing will be shown and discussed through
images and tables. Then the results of the pre-processing will be analysed using the PCA
score plot.

4.1.1 Results of binning and Drift time alignment

I plotted two histograms (figure 4.1) in order to better observe the changes in the dis-
tribution of the data after binning. The horizontal coordinates of the plots represent
the values in the HS-GC-IMS intensity matrix, and the vertical coordinates represent
the frequency of appearance of these values. In the left histogram4.1a, a large number
of intensity values are concentrated between 0 and 1000. And the frequency (y-axis)
reaches an extremely high magnitude, close to 8 × 106. This means that the intensity
values of raw data has a highly concentrated in the lower range of intensities. In the right
histogram (after binning) 4.1b, the whole shape of the data distribution keeps similar.
It is still mainly concentrated between 0 and 1000, but the frequency values significantly
decrease. The maximum frequency value is approximately 1.75 × 106. This shows that
the binning approach effectively reduces the size of the intensity matrix while retaining
the key features needed for further analysis.

After I aligned the drift times, the results are shown in the figure4.2.By comparing Figure
3.3, we can clearly see that the left part of the GC-IMS chromatogram of raw data was
completely excised and the RIP was successfully removed. Then by observing the drift
time axis, it can be seen that all the features in Figure 4.2 correspond to a new timeline
relative to the RIP. This shows the successful application of the three-spline interpolation
method to our data. It means that the same peaks in all samples correspond consistently
at the time points.
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(a) Histogram of raw data distribution
(b) Histogram of data distribution after
binning

Figure 4.1: Comparison of raw data distribution and data distribution after binning

Figure 4.2: GC-IMS chromatogram of MRS 0h after drift time alignment

4.1.2 Results of ROI selection

Putting the average intensity matrix into the terative adaptive thresholding algorithm
allows me to calculate a threshold value of 1904.45. Then I build a binarized matrix
with this threshold value. The values in the mean intensity matrix that were larger
than 1904.45 were set to 1 and the values that were lower than 1904.45 were set to 0,
as shown in Figure 4.3a. We can find that many features are filtered out, by comparing
the binarized matrix to the original matrix Figure 3.4. This result does not reach our
expectations. Therefore, in the case of using the algorithm for the whole intensity matrix,
it will lead to a threshold that will be too high.

I found two main reasons for this problem by watching the histogram of the mean
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(a) Binarized Matrix (Th=1904.45) (b) Binarized Matrix(Th=750.8)

Figure 4.3: Binarized matrices

intensity matrix distribution, as shown in figure 4.4a. Firstly, the large difference between
the maximum value (5393) and the minimum value (150) makes the initial threshold too
high. This is influenced by the high values in the matrix. Secondly, the number of high
values in the matrix is significantly less than the number of low values. This results in
the number of values in region B (below the threshold) greatly exceeding the number
of values in region A (above the threshold). Thus, limiting the threshold to decrease
significantly during the iteration process.

To solve this problem . I divided the raw intensity matrix into four regions equally:
upper left, upper right, lower left and lower right, as shown in figure 4.4b. Then i
calculated the corresponding thresholds for each region. The thresholds for the upper-
left, upper-right, and lower-right regions are 356.41, 401.02, and 371.63, respectively.
The thresholds for these regions are close to the background values. Because there are
no significant features in these regions. Since most of the features appear in the lower
left region, the threshold value for this region is 1874.15. Finally, I calculated the average
of the four thresholds as 750.81 and used this value to construct a binarized matrix. By
comparing the features in figure4.3b and 3.4, we can see that the feature regions are
approximately the same, so we can selecte 750.81 as the final threshold.

By recording the indices of the upper, lower, and right boundaries, I can map the corre-
sponding times from the drift time and retention time arrays (as dts_end, rts_start, and
rts_end). The average intensity matrix calculates these values as follows(dts_end=1.42,
rts_start=111.72 s, rts_end=191.69 s). Then, I can cut our GC-IMS chromatogram
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(a) Histogram of the distribution of the av-
erage intensity matrix

(b) GC-IMS chromatograms of the average
intensity matrix with 4 regione

Figure 4.4: The process of average threshold analysis

based on these times. The figure4.5b shows the ROI region of the average intensity
matrix. By comparing it with Figure3.4, we can see that the automatically selected ROI
successfully extracted all the feature values, significantly reducing the matrix dimensions
and background noise, which greatly facilitates subsequent data processing.

(a) Binarized matrix of
ROI(Th=750.8)

(b) ROI of GC-IMS chromatogram with aver-
aged intensity matrices

Figure 4.5: Results for automatically selected regions of interest
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4.1.3 Results of denoising and baseline correction

The result of denoising shown in the figure 4.6b. By observing Figure 4.6, there are a
lot of white noise points in the left plot, while the white area of the right plot is almost
completely removed leaving only the characteristic peaks.

(a) GC-IMS chromatogram of MRS 0h after
ROI selection

(b) GC-IMS chromatogram of MRS 0h after
denoising

Figure 4.6: The process of MRS 0h denoising

In most cases, baseline drift is caused by fluctuations in retention time. This is because,
in GC-IMS, retention time is directly related to the separation process of compounds in
the gas chromatography column. During sample analysis, as retention time progresses,
experimental conditions such as temperature, pressure, or flow rate may experience slight
changes, leading to gradual shifts in the baseline signal. In contrast, drift time is mainly
determined by the migration speed of molecules under the influence of an electric field,
making it less susceptible to external interference. Therefore, drift time contributes
minimally to baseline fluctuations.

To better observe the impact of baseline correction on the signal, I selected the first
column of the intensity matrix, which corresponds to the intensity values varying with
retention time. The left figure4.7a shows the original signal before baseline correction
and denoising, where significant noise and baseline drift are evident. In contrast, the
right figure4.7b shows the signal after baseline correction and noise removal. Through
my many tests of different combinations of λ and p, I finally chose λ equal to 50000 and
p equal to 0.01 to bring into the algorithm. In the corrected signal, the baseline has
been effectively adjusted, noise has been significantly reduced, and the individual peaks
are clearer, with the background intensity approaching zero. This process ensures that
the extracted peaks in subsequent analyses are more reliable, reducing the interference
of noise on the signal.
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(a) The first column data of MRS 0h
(b) The first column data of MRS 0h
after baseline correction

Figure 4.7: The process of MRS 0h baseline correction

4.1.4 Results of PCA score plot

The following conclusions can be reached from PCA score plots 4.8:

• In the PCA score plot of the original data (figure4.8a), PC1 explains 60.5% of
the variance and PC2 explains 21.3% of the variance. This indicates that these
two principal components effectively capture the main variation trends in the data.
However, the distribution of data points is more dispersed, reflecting the variability
among different categories. For example, “Culture Medium+L+S” (green squares)
is far away from the other groups, while “Culture Medium+L” (orange crosses)
and “Culture Medium+L+X” (red crosses) are clustered relatively close together.
“Culture Medium” (blue dots) is more concentrated, but not clearly separated
from the other categories.

• In the PCA score plot after pre-processing(figure4.8b), PC1 explains 48.9% of the
variance and PC2 explains 17.1% of the variance. The decrease in variance ex-
plained by the principal components compared to the first plot suggests that the
pre-processing may have removed some of the uncorrelated variables but retained
the main trends in the data. The pre-processing resulted in a more centralized and
compact distribution of data points. For instance, “Culture Medium” (blue) al-
most completely overlap, suggesting less internal variation in this sample category
or effective removal of irrelevant noise. “Culture Medium+L” (orange) and “Cul-
ture Medium+L+X” (red) show more distinct distribution and are more clearly
separated from the other categories. “Culture Medium+L+S” (green), although
still slightly distant from the other groups, exhibits a more regular distribution
compared to the unprocessed data.

• Furthermore, in Figure4.8b, some sample points from the “Culture Medium+L”
and “Culture Medium+L+X” groups are closely aligned with “Culture Medium”
points, and one “Culture Medium+L+S” point is near the “Culture Medium”
sample point. In Figure4.8c, these sample points correspond to the 0-hour exper-
imental time point. This can be attributed to the fact that all Culture Medium
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samples were in the same state before fermentation began, resulting in minimal
differences.

• Overall, the raw data has high variance, potentially influenced by noise or external
factors, leading to a more dispersed distribution across categories. After pre-
processing, noise and unrelated features are effectively removed, resulting in clearer
clustering between sample groups. This highlights the importance of pre-processing
in removing confounding factors from the data.

(a) PCA score plot of raw data (b) PCA score plot after pre-processing

(c) Annotated PCA score plot after pre-processing

Figure 4.8: Comparison of PCA score plots

4.2 Results of Peak selection and machine uncertainty anal-
ysis

Thirdly, the PH technique was applied to select peaks on each sample. And the coffee
data set was used to determine the uncertainty of the machine in the selection of peak
locations.
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4.2.1 Results of Peak selection

Results of PH and Peak table

The peak information detected by the PH algorithm is systematically recorded in a
table(Example table 4.1, data from MRS 0h sample). This table provided the data
necessary for the construction of the persistence plots. The table includes drift times,
retention times, pixel coordinates, and birth and death levels for each peak, providing a
comprehensive summary of the important features in the chromatogram.

Table 4.1: Peak table of MRS 0h

Persistence plot

We used this table to build a persistence plot, as shown in figure 4.9 By observing this
plot, we can find that the peak points are mainly distributed in the first and third
quadrants that represent peaks and valleys in the data, respectively. A point in the first
quadrant indicates that the feature is positive from a level of births and deaths, forming
a more significant peak; while a point in the third quadrant with negative levels of births
and deaths indicates the corresponding valley feature. In other words, PH can help us
detect not only peaks but also valleys in our data. The distance from the diagonal line
(where birth equals death) indicates the persistence of the feature. The farther the point
is from the diagonal, the more significant the feature.

The first 20 significant peaks of GC-IMS chromatogram

In the analysis of the GC-IMS chromatogram (Figure 4.10a), the red areas represent
regions that may contain peaks. By applying the PH algorithm, I repeatedly tested and
filtered out the most important peaks, and ultimately settled on a peak value of 20.
This is because at this value there is at least one peak detected in each red region of the
GC-IMS chromatogram. These peaks are not only characterised by their persistence in
the data, but they are also the most analytically significant parts.
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4.2 – Results of Peak selection and machine uncertainty analysis

Figure 4.9: Persistence plot of MRS 0h sample

The table of peaks shows further details of each of the first 20 significant peaks (see
table 4.2). Each row in the table represents a peak, providing the drift time, retention
time, coordinate position in the matrix (x, y), and the birth and death levels for the
peak. For example, peak 0 has the highest level of births (254.05) and 0 deaths, which
means that it is the most persistent peak and is of extremely high importance. Whereas
a peak like peak 19 has lower levels of births and deaths, indicating that it is relatively
less stable. We can go ahead and construct the persistence graph based on this table.
In the persistence plot (Figure 4.10b), these peaks are presented visually through the
relationship between birth level and death level. We can observe that the death level of
most of the peaks is on a horizontal line(death level= 34), meaning that these signalling
features disappear at the same level. This is due to the fact that we have performed the
baseline correction preprocessing which makes the baseline of these signals at the same
level.

By combining the information in the icons above, we were able to determine that these
20 peaks were the most analytically significant portion of the sample. The information
on drift times and retention times, as well as their persistence, helped us to get a more
complete picture of the chemical composition of the sample. In subsequent analyses, we
can focus on these most important peaks while filtering out unimportant or noisy data.

In order to observe how the first 20 significant peaks of each sample varied at different
levels of fermentation in different media. I applied the PH algorithm to all the samples
as shown in the figure4.11. There are four rows in the figure representing four different
media which are MRS, MRS_L,MRS_L_S and MRS_L_X respectively. Each row has
five columns corresponding to 0, 2, 4, 6, and 24 hours of sampling time. Each peak is
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(a) GC-IMS chromatogram of MRS 0h and
first 20 significant peaks

(b) Persistence plot of MRS 0h sample and
first 20 significant peaks

Figure 4.10: MRS 0h sample and first 20 significant peaks

Table 4.2: Peak table of the first 20 significant peaks of MRS 0h

represented by a small yellow square.

In the MRS medium, there were no significant new peaks generated with time changes
because no microorganisms were added. In MRS_L_S medium. at 0 hours, it can be
seen that the areas of the detected peaks are all smaller. In the 2-4 hour samples, it can
be seen that the area of the previous peaks has become larger and several new peaks have
appeared. In the 6-24 hour samples, some of the peaks that were previously detected as
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4.2 – Results of Peak selection and machine uncertainty analysis

Figure 4.11: First 20 significant peaks in each sample

significant diminished in intensity over time. And some new peaks increased in intensity,
replacing the previous peaks in the top 20 significant peaks. Since MRS_L_X is a
control, we can compare it to MRS_L together. The two groups of samples present a
similar peak distribution in the initial phase (T0). With time, the MRS_L_X group
has some peaks with more intensity than the MRS_L group in the later time (T6 and
T24), and some new peaks appear. This also makes the first 20 significant peaks in the
sample not exactly in the same position.

Overall the PH technique can successfully help us to identify the peaks in the samples
and helps us to observe the changes in the peaks in the samples. But it is very inefficient
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to compare the peaks in the samples manually so we next used machine learning to
identify the significant peaks in the dataset.

4.2.2 Result of machine uncertainty analysis

By using the standard deviation formula 3.21, the final results are summarized in the
table 4.3. The last four columns of the table 4.4 show the standard deviation for each
peak, including the deviations in the x and y coordinates, drift time, and retention time.
We can observe that the results obtained are very small . It shows that the position of
the peak does not change much after similar samples have been repeatedly tested by the
machine. Depending on the type of sample (roasted coffee, which does not change its
properties during the measurement), the variation of the peaks provides the instrumental
uncertainty (no change in the sample itself). Therefore, the uncertainty we calculated is
the uncertainty of the machine (HS-GC-IMS) during various measurements. With this
data we can conclude that the machine we are using performs very consistently.

Table 4.3: Position of the first 10 peaks in all samples

Table 4.4: Results of the standard deviation of the positions of the first 10 samples

4.3 Results with significant peaks in VIP scores and their
visualisation

Finally, the VIP score and PH were combined to select the important peaks and con-
firm their drift and retention times. Areas of these times were selected in all samples
to generate visualisations for observing the variation of significant peaks in different
samples.
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4.3 – Results with significant peaks in VIP scores and their visualisation

I converted the VIP scoring data into the GC-IMS chemical mapping phase data format
and visualised it as shown in Figure 4.12a. With the added drift time and retention time,
the location of each characteristic peak can be more accurately located. By adding drift
times and retention times, it was possible to more precisely locate the position of each
feature peak. The red areas in the figure represent feature peaks with higher scores.
These feature peaks are more capable of distinguishing between different samples, which
indicates that they appear to be more important in the model with high contribution.
This visualisation helps us to visually identify which peaks play a key role in sample
classification.

(a) VIP plot after 5-fold cross validation (b) The first 20 peaks of VIP plot

Figure 4.12: VIP plots

Subsequently, We then filtered and ranked these peaks using the PH technique. The
results are shown in Table 4.5. In this table, we can see detailed information about each
peak (drift time, retention time, coordinates in the picture, normalised birth and death
levels, respectively). The peak number is sorted according to the score of the peak,
in other words according to the importance of the peak. Peak 1, whose position is at
drift time 1.1 retention time 122.3s, has a score of 245.08. It means that he is the most
important peak in our whole dataset.

Then, I marked the selected peaks on the VIP graph by using the drift times and
retention times provided in the table. As shown in the figure 4.12b. To ensure that
each high score region in the graph contains at least one selected peak. Through several
experiments, I eventually determined that 20 peaks were chosen as the optimal number
to analyse. If more than 20 peaks are selected, the same region may contain multiple
peaks, resulting in redundant information; However, if less than 20 peaks are selected,
some important high scoring regions may be missed. Therefore, the selection of 20 peaks
ensures both the brevity of the data and that all key regions are effectively characterised.
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Table 4.5: Peak table of VIP Scores

To better observe how these 20 peaks change in each sample, I used the following ap-
proach. Firstly, the drift time and retention time of each peak in the table 4.5 was used
as a centre point. Then I chose a small range interval around this centre point. Specifi-
cally, I set the drift time range for each peak to plus or minus 0.03, while the retention
time range was set to plus or minus 5 seconds. These two parameters together construct
a small rectangular region in which we can more easily visualise the shape of the peaks.
These two parameters are the best results after I have adjusted the parameters many
times. Through repeated adjustments, I found that this range not only captures the
full picture of the peaks clearly, but also effectively reduces other irrelevant peaks from
entering the region and avoiding them to interfere with the judgement. Next, I applied
this region to all 20 peaks. These small rectangular regions are then further applied to all
samples in turn. In this way, we can capture the shapes of these 20 peaks in each sample
and be able to compare how they vary across samples. Finally, I have summarised the
regions of the top 20 peaks from all the samples, as shown in figure 4.13. The purpose
of this is to show more clearly how the individual peaks change as the fermentation time
increases. Additionally it is possible to observe how the same peaks behave in different
media.
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4.3 – Results with significant peaks in VIP scores and their visualisation

Figure 4.13: The first 20 peaks of each sample

In this figure, each row represents a sample and each column represents a significant
peak. We can get the following conclusions by observing this this figure:

1. We can see that all the samples with T=0 h (codes MRS, MRS_L, MRS_L_S,
and MRS_L_X respectively) have very similar areas and colours of their peaks.
This is because these samples were sampled before the fermentation started and
the particular VOCs had not been produced in the medium.

2. we can also see that peak 1 maintains a very high area and dark colour in all the
samples. It means that this VOC will not change with the medium and time, it is
a stable peak.

3. Peak 2, Peak 4, peak 8 and peak 13 are not present in the MRS medium or have
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very low intensity. However, in MRS_L, MRS_L_S, and MRS_L_X medium, the
area and intensity of these three peaks increase as the fermentation time passes.
Among them, the changes of peak 2 peak 8 and peak 13 are the most obvious. This
means that these VOCs are metabolites of microorganisms, which can be used as
one of the bases for us to judge the degree of fermentation.

4. Peak 3, Peak 4, Peak10, Peak 17, Peak 19, Peak 20 grew slowly during the fermen-
tation of MRS_L and MRS_L_X. But these peaks were highly variable during the
fermentation of MRS_L_S. This indicates that these VOCs may be metabolites
of brewer’s yeasts. So the intensity of these VOCs will be much higher than the
other groups as time increases.

5. There are also some peaks that are very intense and large at MRS and T = 0
h, but with the addition of microorganisms and fermentation, they become less
intense and smaller than before. For example peak 6 and peak 14. This is because
this type of VOCs may be consumed during the fermentation process and their
intensity slowly becomes lower as the fermentation progresses. However, in Peak 6,
when brewer’s yeast was added to the medium, the intensity and area of this peak
increased instead. This situation may be due to the fact that, this VOC is one of
the metabolites of brewer’s yeast. But it is not the case for Peak 6, when brewer’s
yeast was added to the medium, the intensity and area of this peak increased
instead. This situation could be because, this VOC is one of the metabolites of
brewer’s yeast.
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Chapter 5

Conclusion

5.1 Research summary

With the increasing popularity of fermented foods, automation and intelligent monitor-
ing of the fermentation process has become one of the popular research issues.

This thesis focuses on the potential application of machine learning and topological data
analysis for solving this problem and discusses its results.This study is based on sampling
data from four different sets of media at different fermentation time points and evaluates
the results of the data after pre-processing using PH and PLS-DA to select peaks.The
variation of peaks over the duration of fermentation was analysed by constructing peak
sample plots. The results show that we can see in Figure 4.13 how the selected peaks
changed over time in different media. Among them, peak 2, peak 3 and peak 13 showed
the most obvious changes.

This study represents the possibility of monitoring fermentation by selecting character-
istic peaks. It indicated that this technique will have the potential to be applied in the
production industry in the future.However it is necessary to validate it by more data to
confirm its stability.

5.2 Limited discussion

This study automated most of the steps in the GC-IMS data process. However, there are
still some parameters that need to be manually adjusted (e.g., parameters for baseline
correction) that cannot be selected automatically by the data. And the number of
samples was limited to do a more in-depth study. Therefore, the number of samples
should be expanded in the future so that there is more data to train the model to achieve
full automation of this technique. This will reduce the manipulation of researchers and
operators and results can be obtained from a more objective point of view.
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5.3 Future research directions
Future research could be done by identifying the specific chemical composition of im-
portant VOCs. Then observe how these VOCs change by changing the fermentation
environmental parameters. This will lead to the control of fermentation.

And we can incorporate advanced machine learning models such as deep learning or
ensemble methods. The selected peaks will be classified to know which VOCs are positive
feedbacks for fermentation and which are unfavourable for fermentation to proceed.
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