
Capabilities and Applications of
Deep Learning Recurrent Models

Data Science and Engineering

Destiny Jarymaya Okpekpe

A.a. 2023/2024

Advisors:
Prof. Dr. Lia Morra, Politecnico di Torino
Prof. Dr. Thomas Hofmann, ETH Zürich

Dr. Antonio Orvieto, Max Planck Institute for Intelligent Systems & ELLIS Institute

, ETH Zürich

Abstract

Even with the major advances in Language Modeling (LM) in recent
years after the introduction of transformer architecture, reasoning is still
one of the unique skills of the human brain that Deep Learning models
struggle to replicate the most.

Since one of the main challenges is to efficiently recall information
seen in the past, the Associative Recall (AR) synthetic task has gained
importance for being a good proxy for language modeling and a suit-
able benchmark to select promising Large Language Models (LLM). A
series of recurrent-gated models (such as H3, Mamba and Hyena), built
to overcome the drawbacks of the O(L2) computational complexity of
the attention module, recently gained popularity for solving AR even
with long sequences (≥ 10, 000 tokens). However, when scaled and
trained on real language tasks, these models still cannot achieve the
performance of transformers. In the first part of this work, I investigate
the reason for this gap and find three main components responsible
for it: (1) the fact that AR is not challenging enough to be a proxy for
language, (2) the fact that recurrent models deeply relies on proper
optimization to efficiently update their hidden state and (3) the fact that
while transformers benefit the most from scaling in depth, recurrent
models benefit the most from scaling in width.

When reasoning with sequences, another difference between transform-
ers and recurrent models is the role of Positional Embedding (PE), since
in the latter models the relative position of tokens is given by their order
in the sequence (implicit causality). The question is how to reconcile
data modalities that are not sequential, such as in the 3D Vision domain,
with the inherently directional (or bi-directional) order-dependent pro-
cessing of recurrent models like Mamba. In the second part of this work,
I introduce a method to convert point clouds into 1D sequences that
maintain 3D spatial structure with no need for data replication, allowing
Mamba’s sequential processing to be applied effectively in an almost
permutation-invariant manner. In contrast to other works, this method
does not rely on positional embeddings and does not replicate the input
sequence length while still surpassing Transformer-based models in
both accuracy and efficiency.

i

Contents

Contents iii

1 Introduction 1

2 Background 3
2.1 Reasoning and Associative Recall 3
2.2 Attention Mechanism and Transformers 5
2.3 State Space Models . 6

2.3.1 S4 . 7
2.3.2 H3 . 8
2.3.3 Mamba S6 . 10

2.4 Reccurent Gated-Convolution Models 13
2.4.1 Hyena . 13
2.4.2 RWKV . 14

3 Explaining the Gap 17
3.1 Zoology and The Gap . 17
3.2 Multi-Query Associative Recall 19
3.3 Experimental Details . 20
3.4 Replication and Drawbacks of Zoology 21

4 Experiments 23
4.1 The Role of Optimization . 23
4.2 The Role of Depth and Width 25
4.3 Learning Curves . 28
4.4 Vocabulary Extension . 30
4.5 Limitations . 31

5 Recurrent models applied to 3D Vision 33
5.1 Deep Learning in 3D Vision . 33
5.2 Related Work in 3D Vision . 35

iii

Contents

5.3 Datasets . 38
5.4 Model Design . 38

5.4.1 Basic Strategies in Point Cloud Analysis 39
5.4.2 Attention and Mamba in 3D Vision 40
5.4.3 Positional Embeddings and arrow of time in Mamba

and Attention . 41
5.5 Experimental Results . 45

5.5.1 Object Classification . 46
5.5.2 Part Segmentation . 48
5.5.3 Ablations . 48

5.6 Limitations and Future Work 50

6 Conclusion 51

7 Acknowledgments 53

Bibliography 55

iv

Chapter 1

Introduction

When thinking about intelligence and what differentiates us from animals,
one of the main features of the human brain that comes to mind is the ability
to reason and to produce language.

In recent years, major improvements in the field of Natural Language Pro-
cessing (NLP) were led by the introduction of the transformer architecture
([1]), making it the de facto standard for language processing. However, such
models come with an O(L2) complexity bottleneck, where L is the length
of the sequence feed to the model, making it impossible to apply the trans-
former architecture with data modalities that have extremely long sequences
inherently, such as in 3D vision and DNA sequencing. To overcome this
drawback, a new category of models where introduced, such as State-Space
Models ([2], [3], [4]), RWKV ([5]) and Hyena ([6]), that use recurrence, gating
and convolution to reach the performances of transformers while still main-
taining linear complexity.

However, since training in language is an expensive task, it is becoming
popular to preliminary test new models’ capabilities on simpler synthetic
tasks that try to approximate language modeling (proxy). This is the case
of the Associative Recall (AR) task, which tries to mimic the ability to recall
tokens already seen in the past. As shown in previous works such as [2], [3],
[4], these recurrent models are extremely proficient in solving AR, especially
when the sequence length is in the order of tens of thousands of tokens.
However, these models still are not able to reach the performances (in terms
of perplexity) of transformers when trained in proper language (i.e. [7]).

In order to investigate better such behavior, my thesis is structured in the
following way:

1

1. Introduction

In Chapter 2, I give some background on what is reasoning, how the Asso-
ciative Recall (AR) task is used to test capabilities of Deep Learning Models,
and finally I show some of the most common and promising architectures
used in this field.

In Chapter 3, I present the work that inspired my thesis, Zoology ([7]),
and highlight its main drawbacks.

In Chapter 4, following the work of Zoology, I investigate the differences in
the reasoning capabilities of attention and recurrent models, leading to the
following contributions: (1) Finding a more challenging version of the AR
task that betters approximate language modeling, (2) understand the role of
optimization in recurrent models and how crucial a proper learning rate is
for these models to efficiently compress information in their hidden state,
and (3) how attention and recurrent models should be scaled differently,
since the first benefits the most when scaled in depth, whereas the others
benefit the most when scaled in width.

In Chapter 5, after understanding how the different nature of attention
and recurrent model impact their capabilities, I test these differences in a
field different from language. Specifically, I use a recurrent model in a 3D
computer vision application, a domain that usually prefers set operations
mechanism like attention. This work led to the following contributions:
(1) Reconcile the recurrent nature of the selective State-Space Model (SSM)
Mamba with point clouds, a data modality that is inherently a set, and (2)
understand the role of positional embeddings with causal models such as
SSMs.

Finally, in Chapter 6, I discuss my conclusion and future works.

2

Chapter 2

Background

2.1 Reasoning and Associative Recall

Natural Language Processing (NLP) is becoming an increasing central fields
in Artificial Intelligence (AI), especially after the introduction of the trans-
former architecture [1]. The standard procedure is to build a Large Language
Model (LLM) which is trained on producing text autoregressively: the goal is
to build a model that, given a context, outputs a distribution over the words
in the vocabulary. More formally, given a vocabulary of natural language
tokens, Language Modeling (LM) is the task of estimating a probability dis-
tribution over all possible sequences of tokens from that vocabulary. Let V
be a vocabulary of natural language tokens and let y = (y1, y2, ..., yT), yi ∈ V
be a sequence of natural language tokens, a language model estimates the
probability p(y) over all possible sequences of token with the following:

p(y) = p(EOS|y)
T

∏
t=1

p(yt|y<t)

where EOS is a special end-of-sequence token.

To estimate the quality of a language model, which is determined by how well
it approximates the probability of token given text sequence (context), it is
not recommended to use a binary metric such as accuracy. Instead, I present
here the definition of perplexity, a preferred metric to evaluate LLM perfor-
mance. One can think of this as minimizing the cross-entropy H of training
samples that were drawn from the empirical distribution p. The entropy of
the language model p on a given sequence of tokens y = (y1, y2, ..., yT) ∈ V
reads:

H(p) = − 1
T

T

∑
t=1

log(p(yt|y<t).

3

2. Background

Here, the quantity − log(p(yt|y<t) can be interpreted as a measure of how
the model is ”surprised” to see a specific token. If the model assigns a very
low probability to the sample, the measure of surprise will be large. This
indicates that the model could not estimate adequately the words distribution.
If instead p(yt|y<t) is close to one, the logarithm will be almost zero and
this indicates that the model was not surprised by the sample. The entropy
defines the average number of bits per token needed to encode it. Therefore,
the exponential of the entropy represents the average number of choices the
random variable has. For example, for a synthetic language with V words, if
all words can occur in each processing step with uniform probability, then
the entropy is log(V) and the exponential of the entropy is exactly the overall
number of tokens. If however, only a subset of size k of the tokens can occur
in each step, then the entropy will be log(k) and the number of choices is
exactly k. The exponential of the entropy is called perplexity.

However, even after all the advances in language modeling, there is still
a lack of actual reasoning capabilities in Deep Learning models, resulting
in a still noticeable difference in performances between humans and these
models. This gap becomes even more noticeable, as an example, when we
ask models to solve mathematical problems in which given an input, there is
a need to produce multiple intermediate reasoning steps before being able to
properly give a correct answer.

One of the main language skills that humans have is the ability to effi-
ciently recall information already seen in the past. Specifically, given the
sentence:

”Hakuna Matata”! It means no worries for the rest of your days”

when facing again the words ”Hakuna Matata”, we expect a reasonable
and intelligent agent to easily (with higher probability) recall the words ”no
worries”.

Based on this idea, the Associative Recall (AR) synthetic task ([8], [9], [10])
gained more and more relevance for being a suitable proxy for language
modeling in the first place, but also for being a task not so resource exhaust-
ing compared to proper language modeling. More formally, in the AR task,
we give as input a sequence of key-value pairs (letters and numbers in this
example) from a vocabulary

A 6 I 9 C 7 P 1 S 4 D 2

and we ask the model to recall the value of a key already seen before in the
sequence

C −→ ?

4

2.2. Attention Mechanism and Transformers

which in this case is 7.

Since performing associative recall is akin to reasoning, we expect that
models capable of solving such task are promising LLM when scaled and
trained on text datasets. In the next sections, I will introduce a list of famous
and promising models used to solve specifically the associative recall task
and that show some degree of reasoning capabilities.

2.2 Attention Mechanism and Transformers

The Transformer model, introduced in [1], represents a groundbreaking
approach to machine translation and more generally to Natural Language
Processing (NLP). It departs from the recurrent and convolutional architec-
tures that were standard in sequence transduction tasks by using a model
entirely based on the attention mechanisms to draw global dependencies
between input and output. By doing so, transformers achieve superior
performance and parallelization during training compared to previous state-
of-the-art models. Previously, most competitive neural sequence models had
an encoder-decoder structure, where the encoder maps an input sequence
(x1, ...xn) of symbols to a sequence of continuous representation z = (z1, ...zn).
Then, given z, the decoder generates an output sequence of symbols one ele-
ment at a time, in an autoregressive manner, using the previously generated
symbols as additional input.

In the transformer architecture, both encoder and decoder can be described
by 3 main components:

• The attention module: this is the main component of the transformer
architecture that allows each token in the sequence to attend to all the
others in order to predict the next token in the sequence. Firstly, the
input sequence u is projected by the learnable matrices WQ, WK and
WV to the query, key and value vectors by the following:

q = uWQ, k = uWK, v = uWV

then the key, query and values vectors are combined and scaled to
obtain the matrix output with the following:

Attention(Q, K, V) = softmax(
QKT
√

dk
)V

This module is also called sequence-mixer because it allows an exchange
of information (mixing) between the tokens in the input sequence;

• Position-wise Feed-Forward Networks: a standard Multilayer Percep-
tron (MLP) applied to all the tokens in the sequence independently in

5

2. Background

the following way:

FFN(x) = max(0, xW1 + b1)W2 + b2

This module is also called channel-mixer because it allows an exchange
of information (mixing) across the features dimension (channels) of the
tokens independently of the other tokens in the sequence;

• Positional encoding: since the attention mechanism is a set operation,
to give information about the order in the sequence, this particular
positional embedding is added to the input. In the original work
[1], sine and cosine functions were used to simulate such positional
information:

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel)

where pos is the position of the token in the sequence and i is the
dimension, but several other proposals became popular afterwards
such as Rotatory Positional Embedding (RoPE) in [11].

It is crucial to highlight that the transformer (and generally the attention
mechanism) explicitly computes all the interactions between all the tokens
in the sequence, resulting in a squared complexity wrt the length of the
sequence processed. This will be the main drawback of the architecture that
will inspire the other models described later in this work.

2.3 State Space Models

To tackle the quadratic bottleneck of the softmax function and the poor
performance on long-range (≥ 10, 000 steps) dependencies of transformers,
a promising novel approach was proposed by simulating the fundamental
State-Space Model (SSM):

x′(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

where u is the input, x is the hidden state and y is the output. Such mod-
els were already used in fields such as control theory and computational
neuroscience, but to use them in sequence modeling the main challenge is
to properly parametrize the state matrix A that would otherwise require
prohibitive computation and memory resources.

6

2.3. State Space Models

2.3.1 S4

Introduced in [3], Structured State-Space (S4) is the first efficient and perform-
ing implementation of SSM theory in sequence modeling, being the first to
solve the hardest task in the Long-Range Arena (LRA) benchmark [12] where
transformers always performed poorly or encountered memory error. The
main contribution in S4 is the efficient parametrization of the state matrix A
by decomposing it as the sum of a low-rank and normal term. Additionally,
instead of expanding the standard SSM in coefficient space, its truncated
generating function is computed in the frequency space, simplifying it as
a multipole-like evaluation. With these two ideas, S4 results in Õ(N + L)
computation and O(N + L) memory usage, where N is the state dimension
and L is the sequence length, which is essentially tight for sequence models.

Formally, S4 is capable of efficiently compute and parallelize the four proper-
ties of SSMs:

• Continuous-time latent representation of SSMs: The 1-D input signal
u(t) is mapped to an N-D latent state x(t) before projecting it to a 1-D
output signal y(t) with the following system of equations:

x′(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

The matrices A, B, C, D are parameters learned by gradient descent as
usual. In particular, we can assume D = 0 and consider it as an easy to
compute skip connection;

• HiPPO matrix to address Long-range dependencies: Do to its sequen-
tial nature, SSMs also suffer from vanishing and exploding gradient
problem [13]. In [14], a specific initialization matrix, called the HiPPO
matrix and described as:

HiPPO Matrix Ank = −

(2n + 1)1/2(2k + 1)1/2 if n ≥ k
n + 1 if n = k
0 if n ≤ k

has demonstrated to increase the performance of SSMs compared to a
random initialized matrix A;

• Recurrent representation with discrete-time SSM: To apply SSM the-
ory, we need to convert the continuous-time u(t) representation to a
decrete-time one (u0, u1, ...). To do so, S4 introduces a step size ∆ to
approximate the state matrix A into:

xk = Axk−1 + Buk

7

2. Background

yk = Cxk

where:
A = (I − ∆/2 · A)−1(I + ∆/2 · A)

B = (I − ∆/2 · A)−1∆B

C = C

The discrete-time SSM is now just a function of the matrix A and the
step size ∆;

• Convolutional representation to train SSM: The previous representa-
tion is not practical for training on modern hardware such as GPUs that
leverage parallel computing. To solve this issue, S4 uses the well-known
connection between Linear Time-Invariant (LTI) SSMs and continuous
convolutions. In particular, by unrolling the sequence and considering
x−1 = 0 we obtain:

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A2Bu0 +ABu1 +Bu2 ...

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA2Bu0 +CABu1 +CBu2 ...

This can be vectorized as:

yk = CAkBu0 + CAk−1Bu1 + ... + CABuk−1 + CBuk

y = K ∗ u

where:
K = (CB, CAB, ..., CAL−1B)

where K can be very efficiently computed with Fast Fourier Transform
algorithm (FFTA).

2.3.2 H3

Introduced in [4], Hungry Hungry Hippo (H3) is a new SSM-based layer
designed to solve language modeling tasks to reduce the performance gap
between SSMs and transformers. To do so, H3 stacks two SSMs, with multi-
plicative interactions between their input and output projections. The SSMs
allow H3 to easily recall tokens already seen in the sequence, while the
multiplicative interactions allow comparisons across tokens in the sequence.

Next, to reduce the gap between attention and SSMs, H3 improves its
efficiency on modern hardware by introducing FlashConv, a hierarchical
algorithm for computing SSMs. The technical challenge is that SSMs require
an FFT-based convolution over the input sequence, which requires an FFT,
pointwise multiply, and inverse FFT. This operation incurs in expensive GPU

8

2.3. State Space Models

memory reads/writes, and cannot utilize the specialized matrix multiply
units available on modern hardware. To use specialized matrix multiply
units, the authors appeal to classical techniques that split the FFT into blocks
and compute it using a series of matrix multiplications. Combined with
kernel fusion, this “block” FFT solution increases hardware efficiency, but
only up to sequence length of 8K on modern A100. To scale to sequences
longer than 8K, H3 uses a state-passing algorithm specialized to SSMs where
the key insight is to leverage the recurrent properties of SSMs to process the
input in chunks. The state-passing algorithm splits the input into the largest
chunks that can fit into GPU SRAM, efficiently computes the FFT-based
convolution using block FFT and updates an intermediate state to start the
next chunk. In this way, FlashConv can scale SSMs to any sequence length
while still maintaining a near linear compute complexity.

More formally, H3 can be described by the following four main compo-
nents:

• Multiplicative Interaction: To remember tokens from the past, we want
the state xi to copy from the input ui, and then pass that information
to the next state xi+1. To compare tokens across the sequence, the
output of an SSM, containing information from previous time steps, is
multiplied by the input at the current time step, thus measuring the
similarity between tokens;

• Recurrence: H3 is loosely inspired by linear attention [15], where the
input u is projected to get three signals Q, K, V. Then, the non-linearity
φ(K) is replaced with an SSM where A is a shift matrix (SSMshi f t) and
the summation Si is replaced with an SSM with diagonal A (SSMdiag).
For the case of head dimension dh = 1 , the output is:

Q ⊙ SSMdiag(SSMshi f t(K)⊙ V)

where ⊙ denotes pointwise multiplication. This form can be viewed as
stacking two SSMs with multiplicative interaction (each is a “hungry
hippo”, hence the name of the layer);

• Remembering Key Tokens: The shift and diagonal SSMs are designed
to address the capability to log tokens after particular events. In the
shift SSM, A is constrained to:

Ai,j =

{
1 for i − 1 = j
0 otherwise

The action of this matrix on the hidden state xi is to shift each coordinate
down by one, thereby creating a “memory” of the previous states. The
diagonal SSM constrains A to be diagonal and initializes it from the

9

2. Background

diagonal version of HiPPO ([16]). This parameterization allows the
model to remember the state over the entire sequence. The shift SSM
can detect when a particular event occurs, and the diagonal SSM can
remember a token afterwards for the rest of the sequence;

• Multiplicative Interaction for Comparison: H3 takes multiplicative
interactions from linear attention [15], but provides another missing
capability when combined with a shift matrix: comparing tokens across
the sequence. The multiplicative interactions between the output of the
shift SSM and the V projection mimic local multiplicative interactions
in linear attention (depending on the size of the hidden state). Similarly,
multiplicative interactions with the Q projection and the output of
the diagonal SSM allow comparisons between tokens over the entire
sequence.

The H3 layer can be used to construct a model in the same style as Trans-
formers by interleaving it with MLPs, connected by residual connection and
layer normalization.

2.3.3 Mamba S6

Introduced in [2], Mamba (S6) is a State-Space Model (SSM) developed to
address the gap in performance between transformers and SSMs on impor-
tant modalities such as language, where the key weakness of the latest is
their inability to perform content-based reasoning. Mamba proposes several
improvements: firstly by simply letting the SSM parameters be functions of
the input, allowing the model to selectively propagate or forget information
along the sequence length dimension depending on the current token. Sec-
ondly, since this change prevents the use of efficient convolutions as in S4 [3],
Mamba implements a hardware-aware parallel algorithm in recurrent mode.
These selective SSMs are integrated into a simplified end-to-end neural net-
work architecture without attention, forming the Mamba architecture.

The architecture idea comes from the fundamental problem of sequence
modeling, which is compressing context into a smaller state. The tradeoffs of
popular sequence models can be understood in this way: for example, atten-
tion is both effective and inefficient because it explicitly does not compress
context at all. This comes from the fact that autoregressive inference requires
to store explicitly the entire context (i.e. the KV cache), which directly causes
the slow inference and training quadratic-time of Transformers. On the other
hand, recurrent models are efficient because they have a finite state, implying
constant-time inference and linear-time training. However, their effectiveness
is limited by how well the contex is compressed in the hidden state. The
efficiency vs. effectiveness tradeoff of sequence models is characterized by
how well they compress information into their hidden state: efficient models

10

2.3. State Space Models

must have a small state, while effective models must have a state that contains
all necessary information from the context.

The authors propose that a fundamental principle for building sequence
models is selectivity: the context-aware ability to focus on or filter out inputs
into a sequential state. In particular, a selection mechanism controls how
information propagates or interacts along the sequence dimension. One
method of incorporating a selection mechanism into models is by letting
their parameters that affect interactions along the sequence (e.g. the recurrent
dynamics of an RNN or the convolution kernel of a CNN) to be input-
dependent. In Mamba, the main difference is simply making the parameters
∆, B, C functions of the input, along with the associated changes to tensor
shapes throughout. In particular, these parameters now have a length dimen-
sion L, meaning that the model has changed from Linear Time-Invariant (LTI,
as all SSMs) to Linear Time-Varying. Specifically:

sB(x) = Linearn(x)

sC(x) = Linearn(x)

s∆(x) = BroadcastD(Linear1(x))

τ∆ = softplus

where Lineard is a parameterized projection to dimension d, where the choice
of s∆ and τ∆ is due to the connection to RNN gating mechanisms:

gt = σ(Linear(xt))

ht = (1 − gt)ht−1 + gtxt

The selection mechanism is designed to overcome the limitations of LTI
models, but this change does not allow the pre-computation trick of S4
since the matrices B and C are not constant in time. Mamba addresses this
problem with three classical techniques: kernel fusion, parallel scan, and
recomputation.

The main idea is to leverage the properties of modern accelerators (GPUs) to
materialize the state h only in the levels of the memory hierarchy that are
more efficient. In particular, most operations (except matrix multiplication)
are bounded by memory bandwidth and this includes SSMs scan operation.
So, instead of preparing the scan input (A, B) of size B, L, D, N in GPU HBM
(high-bandwidth memory), the SSM parameters (∆, A, B, C) are loaded di-
rectly from slow HBM to fast SRAM, the discretization and recurrence are
performed in SRAM, and then the final outputs of size (B, L, D) is written
back to HBM. The author noticed that, despite being linear, the sequential

11

2. Background

recurrence could still be parallelized with a work-efficient parallel scan algo-
rithm. Finally, to avoid saving the intermediate states, which are necessary
for backpropagation, Mamba carefully applies the classic technique of re-
computation to reduce the memory requirements: the intermediate states
are not stored but recomputed in the backward pass when the inputs are
loaded from HBM to SRAM. As a result, the fused selective scan layer has
the same memory requirements as an optimized transformer implementation
with FlashAttention [17].

The effect of the selection mechanism can be summarized in the follow-
ing three main ideas:

• Variable Spacing: Selectivity allows filtering out irrelevant noise tokens
that may occur between inputs of interest, which occurs ubiquitously
in common data modalities. This happens particularly for discrete data,
like the presence of language fillers such as “um”. This property arises
because the model can mechanistically filter out any particular input
xt;

• Filtering Context: It has been empirically observed that many sequence
models do not improve with longer context, despite the principle that
more context should lead to strictly better performance. An explanation
is that many sequence models cannot effectively ignore irrelevant con-
text when necessary. An intuitive example is global convolutions (and
general LTI models). On the other hand, selective models can simply
reset their state at any time to remove extraneous history, and thus their
performance in principle improves monotonically with context length;

• Boundary Resetting: In settings where multiple independent sequences
are stitched together, Transformers can keep them separate by instanti-
ating a particular attention mask, while LTI models will bleed informa-
tion between the sequences. Selective SSMs can also reset their state at
boundaries (e.g. ∆t −→ ∞).

Here instead I focus on the interpretation of particular parameters in Mamba:

• Interpretation of ∆: In general, ∆ controls the balance between how
much to focus or ignore the current input xt. Mechanically, a large ∆
resets the state h and focuses on the current input x, while a small ∆
persists the state and ignores the current input. SSMs can be interpreted
as a continuous system discretized by a timestep ∆, and in this context,
the intuition is that large ∆ −→ ∞ represents the system focusing on the
current input for longer (thus “selecting” it and forgetting its current
state) while a small ∆ −→ 0 represents a transient input that is ignored;

• Interpretation of A: While the A parameter could also be selective,
it ultimately affects the model only through its interaction with ∆ via

12

2.4. Reccurent Gated-Convolution Models

A = exp(∆A) (similarly to what was said before in S4). Thus selectivity
in ∆ is enough to ensure selectivity in (A, B), and is the main source of
improvement;

• Interpretation of B and C: The most important property of selectivity
is filtering out irrelevant information so that a sequence model’s context
can be compressed into an efficient state. In a SSM, modifying B and
C to be selective allows finer-grained control over whether to let an
input xt into the state ht , or the state into the output yt . These can be
interpreted as allowing the model to modulate the recurrent dynamics
based on content (input) and context (hidden states) respectively.

2.4 Reccurent Gated-Convolution Models

Inspired by the success of SSMs, other models started to leverage convolutions
and gating mechanisms in their recurrence to solve the quadratic complexity
of the softmax function in the attention mechanism while still performing
comparably to transformers.

2.4.1 Hyena

Introduced in [6], Hyena is a model that interleaves implicitly parametrized
long convolution and data-controlled gating to process long sequences of data
efficiently. Taking inspiration from [10], [4], in which it was suggested that
the attention mechanism only utilizes a small portion of its quadratic com-
plexity when applied in language processing, the authors questioned if it was
possible to achieve the quality of attention at scale with sub-quadratic opera-
tors. To do so, Hyena is defined as a recurrence of two efficient subquadratic
primitives: a long implicit convolution and element-wise multiplicative gat-
ing.

By mapping each step in the Hyena recurrence to its corresponding ma-
trix form, the model can be defined as a decomposition of a data-controlled
matrix, i.e. a matrix whose entries are functions of the input. To make this
process efficient, Hyena relies on fast convolution algorithms that do not
materialize the full matrix.

The main steps of Hyena can be summarized in the following way:

• Input Projections: First, a set of N+1 linear projections of the input
are computed (vt, x1

t , ..., xN
t), where one of the projections takes the role

of value, such that a linear input-output function can be defined as
y = H(u) for some H(u);

13

2. Background

• Long Convolutions: Then, the matrix H(u) can be described by inter-
leaving a series of implicit long convolutions and element-wise multi-
plication with one projection xi at a time. All of this is done without
materializing H(u), obtaining an efficient data-controlled operator as a
factorization of a matrix.

Formally, for an Order-N Hyena Operator, let (v, x1, ..., xN) be projections of
the input and let (h1, ..., hN) be a set of learnable filters. The HyenaN operator
is defined by the recurrence:

z1
t = vt

zn+1
t = xn

t (h
n ∗ zn)t n = 1, ..., N

yt = zN+1
t

Noticeably, Hyena can be also seen as a generalization of H3, where the
number of projections is three, for an arbitrary number of projections.

2.4.2 RWKV

Receptance Weighted Key-Value (RWKV) is a model architecture introduced
in [5] that combines the efficient parallelizable training of transformers and
the inference efficiency of RNN. The motivation behind RWKV is to balance
computational efficiency with expressive capacity in Neural Networks by
alleviating the memory bottleneck and quadratic scaling of Transformers.
To do so, the model reformulates the attention mechanism with a variant
of linear attention, replacing the traditional dot-product token interaction
with channel-directed attention. In this way, RWKV can be formulated as a
Transformer during training, allowing for parallelizable training and efficient
scaling, and as an RNN during inference, achieving constant computational
and memory complexity.

The RWKV model architecture is defined by four fundamental elements
that are responsible for the time-mixing and channel-mixing blocks:

• R: The Receptance vector that acts as the receiver of past information;

• W: The Weight acts as the positional weight decay vector, a trainable pa-
rameter. Intuitively, we want past tokens to be (generally) less relevant
as time goes on;

• K and V: The Key and the Value vectors have an analogous role as in
the attention mechanism.

In this architecture, all linear projection vectors involved are obtained by
a linear interpolation of current and previous time steps tokens. For the
time-mixing computation, we have:

rt = Wr · (µr ⊙ xt + (1 − µr)⊙ xt−1)

14

2.4. Reccurent Gated-Convolution Models

kt = Wk · (µk ⊙ xt + (1 − µk)⊙ xt−1)

vt = Wv · (µv ⊙ xt + (1 − µv)⊙ xt−1)

While for the channel-mixing we have:

r′t = W ′
r · (µ′

r ⊙ xt + (1 − µ′
r)⊙ xt−1)

k′t = W ′
k · (µ′

k ⊙ xt + (1 − µ′
k)⊙ xt−1)

The computation of the WKV operation gets inspiration from the attention-
free transformer, but treats W as a channel-wise vector, and its update is
formalised with the following equation:

wkvt =
∑t−1

i=1 e−(t−1−i)w+ki ⊙ vi + eu+kt ⊙ vt

∑t−1
i=1 e−(t−1−i)w+ki + eu+kt

To conclude, the output vector after the WKV is given by:

ot = Wo · (σ(rt)⊙ wkvt)

while in the channel-mixing block we have a similar operation:

o′t = σ(r′t)⊙ (W ′
v · max(k′t, 0)2)

15

Chapter 3

Explaining the Gap

In this section, I explain and replicate the findings shown in Zoology [7] and
present its main drawbacks that inspired the experiments of my thesis.

3.1 Zoology and The Gap

So far I introduced two main categories of Deep Learning models: On one
hand, transformers model (or attention models), which explicitly compute all
the interactions between the tokens processed via the attention mechanism.
On the other hand, a series of recurrent-gated convolution models, that in-
stead update an hidden state h when processing the tokens in the sequence.

The latest are usually more efficient from a computational point of view
(compared to the O(L2) bottleneck of the attention mechanism) and have
incredible performance on the AR task (as show in [2], [3], [4]), even when
the sequence length is > 10, 000, where instead the transformer architec-
ture usually encounters memory errors. However, when these models are
compared in actual language modeling, the transformer architecture has a
significant edge in terms of perplexity (i.e. [7])). So the question that inspired
my thesis is:

”Why are recurrent model not capable of transferring their impressive performance in
Associative Recall in actual Language Modeling?”

Fortunately, Arora et al. asked themselves the same question and tried to give
an answer with their work Zoology [7], an in-depth comparison of attention
and non-attention models.

In their work, they investigate the performance of these two categories
of models in two specific scenarios: the first, in which they compute the

17

3. Explaining the Gap

Figure 3.1: Gap in performances with and without Associative Recall hits. The graph is taken
from the original work of Zoology[7].

perplexity with pieces of text similar to the one on the left of Figure 3.1.
These are simply the key-value pairs of the associative recall task that I men-
tioned in Chapter 2, but with proper words from a vocabulary. In Zoology,
the authors called these ”Associative Recall Hits” (AR Hits). The second
scenario (right of Figure 3.1) is instead a piece of text without AR hits, where
all the words in the text are seen for the first time or simply are not correlated
with others.

In Zoology, the authors noticed that while in the second case, the perfor-
mances of all the models are comparable, in the first case it seems like the
transformer architecture have a clear advantage. Apparently, when dealing
with AR hits seen fewer times in the sequence, attention is capable of recall-
ing tokens more effectively, while the recurrent models need multiple scans
before doing the same with confidence. The author claims that this skill
that the transformer has, is responsible for the overall gap in performance
in language modeling with recurrent models by a factor of 82%. From the
perspective of attention models, these results show that solving associative
recall is essential to being a good LLM. However, it is still unclear why recur-
rent models are not capable of transferring their impressive performance on
AR to proper language modeling.

From the point of view of the author of Zoology, the problem is the ac-
tual task of AR: from their perspective, the task is too easy and not a suitable
proxy for language modeling. This is due to two main problems:

18

3.2. Multi-Query Associative Recall

• Vocabulary size: In the associative recall task, the vocabulary size is in
the order of 50 tokens. This does not really represent natural language,
were there are thousands of words that could potentially be recalled
from a vocabulary;

• Number of key-value pair to be inferred: In the AR, the model needs
to infer just one value given a key, but again this does not reflect
what happens in natural language, where instead multiple words recall
multiple others.

3.2 Multi-Query Associative Recall

So far the authors claim that the AR task is not challenging enough, or in
other words it is not a good proxy for natural language. So what models
need to learn to solve this synthetic task, is not transferable to language
modeling. To solve this problem, the author proposed a more challenging
version of the AR task, the Multi-Query Associative Recall (MQAR) task, that
should be a more suited proxy for language. More specifically here are the
two main differences with AR:

• Vocabulary size: Now the vocabulary size is increased to almost 9, 000
tokens, making it extremely more challenging;

• Number of key-value pair to be inferred: Now given a sequence like

A 6 I 9 C 7 P 1 S 4 D 2

we ask the model to recall multiple tokens at the same time

C −→ ? A −→ ? D −→ ?

Given this new task, Zoology compares all the models in the MQAR task with
different sequence lengths, relative number of key-value pairs to recall and
different model dimensions. The models compared in this and the following
experiments are the ones already described in the Chapter 2 (Attention,
Hyena, H3 and RWKV) plus two ad-hoc models introduced by the authors
of Zoology:

• BaseConv: A naive implementation a of recurrent-gated convolutional
model. The idea is to use this model as a lower bound of the experi-
ments. In fact, if we are able to improve the performance of this model,
we expect to also increase the performance of other recurrent-gated
models;

• Based: A recurrent model that tries to mimic the computations of the
attention module.

19

3. Explaining the Gap

3.3 Experimental Details

In this section, I present the experimental details that were used in the
experiments replicated from Zoology and all the experiments conducted in
this work. In case of changes relative to architecture, hyperparameters or
similar, these will always be explicitly stated.

• MQAR task: Given the sequence of key-value pairs (context) and some
keys already seen in the sequence, the models need to infer the relative
values from the context. The models need to infer all the key-value
pairs requested in order to consider the data point correct;

• Graph explanation: In every experiments there will be four subgraphs,
one for each sequence length (64, 128, 256 and 512). Each subgraph will
contain 7 models in total, 2 attention-models (Attention and Based)
and 5 recurrent-models (Mamba, Hyena, H3, RWKV and BaseConv).
On the y-axis there is accuracy, while on the x-axis there is the model
dimension on log scale;

• Optimizer and Schedule: For each model, four learning rates in the
log space [10−4, 10−2] are swept. The optimizer used is AdamW with
weight decay 0.1, warm-up duration 10% and linear warm-up;

• Epochs and Batch size: All the models are trained for 150 epochs. The
batch size is 16 for sequence length ≥ 512, 32 for sequence length = 256
and 64 for sequence length ≤ 128;

• Width and Depth: Each of the models evaluated in the experiments
use two layers. Each layer is composed by one sequence mixer (specific
of the architecture), one Multilayer Perceptron and layer normalization
in between. The model dimensions used are 64, 128, 256 and 512. The
sequence length used and the corresponding key-value pair to infer are
(64; 4), (128; 8), (256; 16), and (512; 64) respectively;

• Position Information: Position Embedding is used for all the attention-
like models (Attention and Based), while it is not used for the other
recurrent models;

• Data: Models are trained and evaluated on a train set and a test set
with 100, 000 and 3, 000 data points respectively. I want to highlight
that the tokens used as key and value are always chosen randomly for
each sequence. In this way the models cannot learn a general key-value
mapping, but need to learn how to recall the key-value pairs seen in
context.

All the relative code can be found in the original work of Zoology [7] at
https://github.com/HazyResearch/zoology/tree/main.

20

3.4. Replication and Drawbacks of Zoology

3.4 Replication and Drawbacks of Zoology

Figure 3.2: Zoology reproduction. There are four subgraphs and each one keeps a fixed
sequence length (64, 128, 256 and 512). For each sequence length, 7 models are shown in total, 2
attention-models (Attention and Based) and 5 recurrent-models (Mamba, Hyena, H3, RWKV
and BaseConv). On the y-axis there is accuracy, while on the x-axis there is the model dimension
on log scale. Intuitively, we would expect bigger models to more easily solve the task.

In Figure 3.2, I show my replication of the Zoology experiments with the
addition of Mamba, which was not inserted in the original code. I want to
highlight that, intuitively, we would expect bigger models to more easily
solve the task.

The results of the simulation show three different patterns based on the
characteristics of the models involved:

• Recurrent models: These models show the behavior that we would
have expected. Recurrent models easily solve the task with shorter
sequences, while as soon as the sequence length increases, the task
is solvable only when the model dimension matches or surpasses the
sequence length. However, the hardest setting with a sequence length
of 512 seems almost impossible to solve for all the models of this kind;

• Attention models: On the opposite side, Attention and Based are
capable of always solving the task with perfect scores, regardless of
the sequence length and the model dimension. It seems like these
architectures are inherently capable of solving this specific MQAR task;

• Mamba: The selective SSM has a sort of hybrid behavior. When the
sequence length is smaller (≤ 256), Mamba has the same performances
of attention models, while with longer sequences it has instead a
wiggling behavior (see as an example how with sequence length of
512 the task is solvable with a model dimension of 256 but not with a
model dimension of 512).

These results follow the same gap in performance between attentions and
recurrent models in language modeling: apparently, the latter are not capable
of solving the MQAR tasks.

21

3. Explaining the Gap

However, in this work I investigates two main problems related to the experi-
ments proposed by Zoology:

• Lack of Optimization: The author did a poor grid search when tuning
the learning rates (just 4 values between 10−4 and 10−2 which are not
properly spaced). This represent a critical limitation since optimization
is one of the main challenges when dealing with recurrent models
and can make a significant difference in what task such models are
capable of solving. This insight is noticeable in the case of Mamba with
a sequence length of 512 at the right of Figure 1. In fact, the model
is capable of solving the task with a dimension of 256 but not with
a dimension of 512 (that should be more powerful and solve the task
more easily);

• Arbitrary use of 2 layers: The author always stacked two blocks when
creating the models. This choice comes from the discovery of induction
heads ([10]), a particular behavior of transformers with at least 2 layers
of attention that allows a significant gain in In-Context Learning (ICL)
capabilities. However, why this choice should be applied also in such a
setting is not clear.

22

Chapter 4

Experiments

In the following section, I investigate how these two factors (optimization
and scaling) influence the performance of models and what improvements
are needed to solve the MQAR task and generally to better solve language
modeling tasks.

4.1 The Role of Optimization

So far, one of the main problems of the experiments conducted in Zoology is
the lack of proper optimization, especially when looking at the grid search
for tuning the learning rate (lr) of the models. The author chose a too-narrow
range (between 10−4 and 10−2), too few values (just 4) and also values not
properly spaced in the range. This can be extremely harmful when dealing
with recurrent models, where the main challenge is to find a suitable lr, and
it can make a significant difference in which tasks such models are capable
of solving or not.

In this work, I proposes a better grid search for the learning rate to properly
tune each model that will also be used for all the experiments in this work:

• The range is set to be [0.3, 0.00001];

• The values chosen are 0.3, 0.1, 0.03, 0.01....0.00003, 0.00001. The good
property of these values is that given any value, the previous and
next one differ with a factor of 3, making them equally scaled on the
logarithmic scale;

• After trying all the values of the previous step, the best value lr∗ is
selected;

• Now a new more-fined grid search [lr∗
3 , lr∗

2 , lr∗, 2lr∗, 3lr∗] is set. All the
values are tried and if the new best lr is not the same as lr∗, a new grid

23

4. Experiments

search is made. This is done until the new best lr is equal to lr∗. Other
than confirming that lr∗ is the best lr, this process also ensures that lr∗

is not a boundary value (i.e. if we slightly increase or decrease its value
the training process does not overshoot);

• Finally, lr∗ is used with 3 different seeds and the results show the
average performances. In this case the used seeds are 123, 777 and 42.

Table 4.1 shows a comparison of the starting grid search used for choosing
the learning rates of the models. Figure 4.1 shows the results with a more

Authors Values
Zoology [0.01, 0.00214, 0.00047, 0.0001]
Me [0.3, 0.1, 0.03, 0.01, 0.003, 0.001, 0.0003, 0.0001, 0.00003, 0.00001]

Table 4.1: Learning rate grid search comparison.

optimized learning rate tuning, with also two new size of models, 1, 024 and
2, 048, to have an even further investigation.

Figure 4.1: Zoology reproduction with better learning rate tuning.

The results show a completely different behavior: now for a sequence length
≤ 256, recurrent models gets ≈ 100% accuracy, while even with a sequence
length of 512 these models achieve better results than before, especially
with Hyena. This significant improvement obtained by just choosing the
learning rate more carefully is deeply connected with the different nature
of transformer and recurrent models. In the first case, given a sequence of
tokens (x1, ...xn), the attention mechanism can compute all the interactions
between each token in the sequence explicitly through the matrices WQ, WK
and WV , assuming that the model has enough memory to do so. Instead,
recurrent models process information differently by updating their hidden
state ht with the information of each token processed implicitly. In other
words, the model needs to efficiently compress the current xt information
into a hidden representation ht and then retrieve the information needed
to make inference yt. Intuitively, the learning rate defines the size of the
steps for this compression-expansion process and without a proper choice

24

4.2. The Role of Depth and Width

of this hyperparameter, recurrent models cannot properly leverage their
fundamental component.

4.2 The Role of Depth and Width

Figure 4.2: In-Context Learning score of 1,2 and 3-layers transformers models. The graph is
taken from the original work of In-Context Learning and Induction Heads [10].

Figure 4.3: Training Loss of 1,2 and 3-layers transformers models. The graph is taken from the
original work of In-Context Learning and Induction Heads [10].

Another problem of the experiments conducted in Zoology is the choice of
the number of layers used to build the models. The author used 2 blocks
for each architecture, without properly explaining why and how this choice
affects performances in models. For instance, it would be more reasonable to
make experiments with just one block, in order to properly understand which
are the fundamental differences between attention and recurrent models.

25

4. Experiments

The idea of interleaving 2 blocks when building a transformer comes from
the literature related to Associative Recall and generally In-Context Learning
(ICL), in particular from the discovery of ”Induction Head” in [10], where the
authors were conducting experiments on the capabilities of transformer in
ICL tasks such as in few-shot learning. The main insight from this work was
that during training, with transformers with at least 2 layers, a special kind
of attention heads called ”Induction heads” is formed, giving a sudden boost
in performances in terms of:

• In-Context Learning scores: An ad-hoc score that computes the dif-
ference in loss between the 50th and the 500th tokens in a 512-length
sequence) as shown in Figure 4.2;

• Training loss: As shown in Figure 4.3.

More formally, induction heads are implemented by a circuit consisting of a
pair of attention heads in different layers that work together to copy or com-
plete patterns. The first attention head copies information from the previous
token into each token, making it possible for the second attention head to
attend to tokens based on what happened before them, rather than their own
content. Specifically, the second head (the proper ”induction head”) searches
for a previous place in the sequence where the present token A occurred and
attends to the next token (call it B), copying it and causing the model to be
more likely to output B as the next token. That is, the two heads working
together cause the sequence ...[A][B]...[A] to be more likely completed with
[B].

Induction heads are named by analogy to inductive reasoning, where we
might infer that if A is followed by B earlier in the context, A is more likely
to be followed by B again later in the same context. Induction heads are
capable of crystallizing that inference. They search the context for previous
instances of the present token, attend to the token which would come next in
the pattern repeated, and increase its probability in terms of logit. Induction
heads attend to tokens that would be predicted by basic induction (over the
context, rather than over the training data).

Notice that induction heads are implementing a simple algorithm, and are
not memorizing a fixed table of n-gram statistics. The rule [A][B] ... [A] →
[B] applies regardless of what A and B are. In fact, the rule [A] → [B] could
be used to understand the rule [A’] → [B’], where [A] ≈ [A’] and [B] ≈ [B’].
This means that induction heads can in some sense work out-of- distribution
(OOD), as long as local statistics early in the context are representative of
statistics later. This hints that they may be capable of more general and
abstract behavior.

26

4.2. The Role of Depth and Width

However, it is not clear why this choice, which was made on language
modeling task, should also be applied in the simpler task of MQAR. So, to
better understand the role of layers not only in attention models but also in
recurrent models, in this work I investigate what happens when models with
just 1 layer are evaluated in the MQAR task. The results are shown in Figure
4.4.

Figure 4.4: Results with just 1-layer models.

The results show something surprising and completely different from what
was seen before:

• On the one hand, attention models are not capable anymore of solving
the task and their general performance decreases as the sequence length
increases. This behavior however is different from the case of recurrent
models, because, when fixing the sequence length, attention models
have the same performances regardless of the dimension of the models,
whereas intuitively we would expect the bigger model to have some
sort of advantage;

• On the other hand, recurrent models have roughly the same results as
the 2-layer experiments, solving the task with a sequence length ≤ 256
but struggling with 512. However, when fixing the sequence length,
these models improve performances by increasing their dimension.

It seems like transformer models benefit the most from scaling in terms of
depth, as if there is a connection between the number of layers of attention
and the type of tasks solvable for the model, while recurrent models benefit
the most from scaling in terms of width.

I hypothesize that this is related to the different nature of the two mod-
els: attention models try to explicitly compute all the interactions between
each token and to do so the architecture needs more blocks to mix the infor-
mation across tokens. Whereas recurrent models need to efficiently compress
information in their hidden state and its dimension (or in other word, its
space) is related to the model dimension. So, by increasing the width of
the model, there is a bigger hidden representation state, allowing for easier
compressions.

27

4. Experiments

4.3 Learning Curves

After the results obtained so far, in this work I also investigate learning
curves more in depth, in order to better understand the differences in the
learning dynamic of the models presented to highlight their differences and
similarities. All the following experiments consider cross-entropy as loss
function.

• Attention models with 2-layer: In this case, the models are always ca-
pable of solving the MAQR task, achieving perfect accuracy regardless
of the sequence length. Figure 4.5 shows the loss dynamic typical of
attention models in this setting, where after an initial phase of constant
error, there is a significant drop, allowing the models to easily solve
the task after few epochs. As expected, this follows the phenomenon
of the induction head mentioned before, allowing attention models to
increase their performances in ICL tasks;

Figure 4.5: Loss curve of 2-layer attention models.

• Attention models with 1-layer: This is the case in which the models are
not capable of solving the MQAR task, with a decrease in performance
as the sequence length increases. In addition, when fixing the sequence
length, performances remain constant regardless of the dimension of
the model, whereas instead an increase in performance with bigger
models would be expected. What is interesting in this case, is the
typical behavior of the loss in this setting shown in Figure 4.6, that
even if too high to solve the task, still shows a big drop. It seems that
the attention model with 1-layer still tries to build something similar
to induction heads, but needs more blocks (or in other words, more
complex representations) to leverage them in ICL tasks;

28

4.3. Learning Curves

Figure 4.6: Loss curve of 1-layer attention models.

• Recurrent models: In this case, the models are capable of solving
the MQAR task just if properly optimized. Figure 4.7 shows the ex-
pected unstable learning behavior when the model learning rate is not
well-tuned. On the other hand, optimizing recurrent models gives the
smooth learning curve shown in Figure 4.8, where at each time step the
model becomes more capable of properly compressing information in
its hidden state. In particular, this becomes easier when the dimension
of the models is increased regardless of the number of layers used to
build the model, suggesting how recurrent models capabilities depends
on their efficiency in compress information rather than the complex-
ity of the recurrence. These two behaviors appears in the same way
regardless of the number of layers used to build the recurrent model.

Figure 4.7: Loss curve of non-optimized recurrent models.

29

4. Experiments

Figure 4.8: Loss curve of optimized recurrent models.

4.4 Vocabulary Extension

To investigate even further the capabilities of attention and recurrent models
in the 1-layer setting, in this section I show one more last experiment on the
influence of vocabulary size on performance.

Previous works ([18], [19]) showed that the transformer architecture ben-
efits from increasing the vocabulary size in terms of perplexity and general
performance. The goal of this experiment is to see if 1-layer attention models
can leverage augmentation that usually benefits transformer architectures. In
particular, in this experiment, I quadrupled the original vocabulary size of the
MQAR task (from 8, 192 to 32, 768) and also increased accordingly the train
set and test set size (respectively from 100, 000 to 400, 000 data points and
from 3, 000 to 12, 000 data points). All the others hyperparameters remain
unaltered. Results are shown in Figure 4.9.

Figure 4.9: Result with increased vocabulary size.

The results are almost identical to the one with the original vocabulary
size, both for attention and recurrent models, apart from RWKV, which

30

4.5. Limitations

interestingly is also the recurrent model most similar to attention, that got
a general decrease instead. So what is clear is that attention models with 1
layer are inherently different from attention models with 2 or more layers,
suggesting how scaling in depth has a crucial role in their capabilities.

4.5 Limitations

Even with the improvements proposed and the insights obtained, this part of
my work still has some limitations that could inspire future research:

• Optimization: Even with the learning rate grid search proposed, getting
the right value can still be challenging (i.e. Mamba is still unstable
when scaled to bigger dimensions). In the experiments proposed in
my work, the grid search was made from scratch every time and for all
the model dimensions and sequence lengths. It would be more useful
to find some correlation between learning rate, sequence length and
model dimension to more easily transfer suited hyperparameters with
different model settings;

• Scaling: All the experiments were made with models with at most 50
M parameters and with at most 2, 048 as model dimension and with
a maximum sequence length of 512. However, it would be interesting
to see how performance and behavior change when dealing with mod-
els with billions of parameters and sequence length in the range of
thousands of tokens, like in DNA sequencing.

31

Chapter 5

Recurrent models applied to 3D Vision

So far I gave some insights into the differences between attention and re-
current models, suggesting how the setting around these models should be
different in order to leverage their fundamental components. In this section,
I show an application of such insights in the field of 3D computer vision, in
particular on how to reconcile a recurrent model (Mamba) with data modali-
ties that are inherently sets. Parts of the work described in this chapter were
originally presented in [20].

5.1 Deep Learning in 3D Vision

The transformer architecture has become the dominant technology for pow-
ering large-scale deep learning systems. Since their introduction by [1],
transformers have seen widespread adoption across text [21, 22], image [23,
24, 25], and video [26, 27, 28, 29] domains, as well as in multimodal applica-
tions [30, 31]. In 3D vision, particularly for point cloud analysis, transformers
achieve state-of-the-art performance [32, 33, 34, 35], frequently outperforming
convolution-based methods [36, 37] at scale.

While the architecture of transformers is well-suited for modern hardware,
their softmax attention mechanism significantly impacts model complexity,
scaling quadratically with sequence length in text or the number of patches in
image, video, or point cloud data. This quadratic scaling has driven extensive
research into alternative sequence mixer strategies over the years, including
approaches like separable attention [38, 39, 40, 41, 42, 43, 44] and optimized
GPU implementations of softmax attention [17, 45, 46]. However, a major
breakthrough in addressing this issue came recently with the emergence of
state-space models (SSMs) like Mamba [2] and other parallelizable token
mixers [6, 47, 48, 49, 50, 51].

33

5. Recurrent models applied to 3D Vision

SSMs are RNN-like, highly parallelizable sequential blocks that trace back
to foundational work [14, 3], offering linear complexity with respect to se-
quence length. This efficiency enables them to handle long-context scenarios
effectively, which is crucial for tasks such as audio processing [52] and DNA
modeling [53]. Beyond their efficiency, models like Mamba, xLSTMs, and
other RNN/linear attention variants often demonstrate improved down-
stream performance [54] and enhanced reasoning capabilities in tasks such
as the long-range arena [12] and other challenging text benchmarks where
transformers may falter [51].

Following their success in text and audio, Mamba and similar models have
been extended to 2D vision [55, 56, 57] and various 3D data applications [58,
59]. Notably, they show promise in processing point clouds [60, 61, 62],
which often involve datasets like ScanNet [63] containing over 100k points.
In 1D domains such as text or audio, Mamba processes data sequentially
(left-to-right or bidirectionally) without requiring positional embeddings [54].
However, applying Mamba to 2D and 3D data introduces unique challenges.
Unlike sequential 1D data, 2D and 3D datasets are inherently unordered, and
positional information must be explicitly incorporated.

In non-causal attention-based models, these operations are treated as set op-
erations [64], with positional information encoded directly in features [1, 65]
or attention matrices [66]. For example, BERT-like encoders [67] without posi-
tional embeddings reduce to bag-of-words models, while causal self-attention
can recover positional information in deeper layers. Thus, although attention
mechanisms conceptually unify 1D, 2D, and 3D data by treating them as
sets with added positional information, the introduction of order-sensitive
sequential blocks like Mamba raises conceptual challenges. This motivates
my investigation, particularly in the context of 3D data processing.

How should a sequential model be applied to non-sequential data, e.g. a point cloud?

Exploring this question is scientifically fascinating, highly relevant, and
essential for unlocking the full potential of emerging efficient attention
mechanisms in the 3D domain. Upon reviewing the rapidly expanding body
of work on Mamba applications in 3D vision, two recurring patterns emerge1.

(A) 3D point cloud data has to be converted into an ordered sequence
before Mamba can be applied. This has been achieved with different
strategies such as reordering the points along axis and replicating the
sequence [60, 61] or scanning it from different directions [62].

1Similar discussion would hold for 2D data, see e.g. [55].

34

5.2. Related Work in 3D Vision

(B) Similar to transformers, positional embeddings are employed. However,
this information is conceptually redundant because (1) the features
themselves inherently contain positional information, and (2) Mamba
implicitly utilizes the patch ordering within the constructed sequence.
It is worth noting that in text applications, Mamba is often used without
positional embeddings [54].

Although Mamba’s performance on 3D data is already promising—frequently
exceeding transformers in both accuracy and processing speed—points A
and B above highlight significant challenges when applying Mamba to point
clouds. These challenges could impact its robustness and ability to generalize
to out-of-distribution data. To deepen our understanding and refine optimal
preprocessing strategies for Mamba-powered models in 3D applications, I
present the following contributions:

1. I draw attention to the problem of sequence construction when ap-
plying Mamba to 2D or 3D data. I complement the discussion with
both theoretical considerations on invariances and positional embed-
dings (Sec. 5.4.3) and ablations (Sec. 5.5).

2. I introduce NIMBA2, a Mamba-like model that feeds 3D data points
based on an intuitive 3D-to-1D reordering strategy that preserves the
spatial distance between points (Sec. 5.4.3). This strategy allows for safe
removal of positional embeddings without affecting (most times, improv-
ing) performance. This is in stark contrast to all previously introduced
Mamba strategies in point clouds where my ablation reveal a perfor-
mance drop when positional emebddings are not used. Along with
improved efficiency, my results (Sec. 5.5) showcase how principled or-
dering along a point cloud can improve performance of Mamba models
in this setting.

3. I show how our ordering strategy in NIMBA drastically improves
robustness of the model against data transformations such as rotations
and jittering (Sec. 5.5).

I compare my contributions with previous work in Table 5.1.

5.2 Related Work in 3D Vision

Point Cloud Transformers. Transformers, originally developed for natu-
ral language processing (NLP), have proven highly effective in point cloud
analysis due to their global attention mechanisms and inherent permutation
invariance. Early models like Vision Transformer (ViT) [23] showcased that

2The name NIMBA is derived from the combination of Nimbus (latin for “dark cloud”)
and Mamba.

35

5. Recurrent models applied to 3D Vision

Model Backbone Seq len Bidirectional Pos emb

PCT Transformer N × ✓
PointMAE Transformer N × ✓
PointMamba Mamba 3N × ✓
Point Cloud Mamba Mamba 3N ✓ ✓
OctreeMamba Mamba N ✓ ✓
Point Tramba Hybrid N ✓ ✓
PointABM Hybrid N ✓ ✓
NIMBA (Ours) Mamba N × ×

Table 5.1: Comparison of Models based on Architecture, Sequence Length, Directionality and
Positional Embedding. I denote with N number of points in the point cloud. The Table is taken
from the original work of NIMBA [20].

transformers could surpass convolutional neural networks (CNNs) in classi-
fication tasks by directly applying attention to image patches. This success
paved the way for their adoption in point cloud processing, where modeling
global features is essential.

Point-BERT [33] adapted BERT’s masked modeling approach to 3D data
by employing a discrete tokenizer to convert point patches into tokens and
using self-supervised pre-training to reconstruct masked points. Building
on this, Point-MAE [34] introduced masked autoencoding to learn latent
representations by reconstructing missing regions from masked inputs. These
methods leveraged large unlabeled datasets and achieved superior perfor-
mance compared to traditional models, though the quadratic complexity of
self-attention posed scalability challenges.

OctFormer [68] tackled this limitation by incorporating octree-based atten-
tion, reducing computational overhead through local window partitioning
while maintaining strong performance on large-scale tasks. PointGPT [69]
adopted an autoregressive framework inspired by GPT, treating point patches
as sequential data to predict subsequent patches. This pre-training approach
demonstrated robust generalization in few-shot and downstream tasks, fur-
ther showcasing transformers’ adaptability for point cloud processing. Simi-
larly, PCT [32] utilized a transformer architecture designed with permutation
invariance to process unordered point sequences. By integrating farthest
point sampling and nearest neighbor search, PCT effectively captured local
context, achieving state-of-the-art results in tasks such as shape classification
and part segmentation.

Point Cloud State Space Models. The application of state space models
(SSMs) to point cloud analysis has recently garnered attention as a promis-
ing solution to the computational challenges faced by transformer-based

36

5.2. Related Work in 3D Vision

architectures. While transformers excel at capturing global dependencies,
their quadratic complexity hinders their scalability for high-resolution point
clouds. In contrast, SSMs, such as the Mamba architecture, provide linear
complexity and efficient long-range modeling. However, a significant chal-
lenge in applying SSMs to point clouds lies in the unordered nature of the
data, which conflicts with the sequential processing requirements of SSMs.
To address this, researchers have developed methods to transform point
clouds into sequences.

A prevalent strategy in recent research involves designing ordering methods
that preserve spatial relationships during sequence conversion. For instance,
PointMamba [60] and Point Cloud Mamba (PCM)[61] employ axis-wise re-
ordering techniques and sequence replication to enhance SSMs’ ability to
capture both local and global structures. Other approaches use hierarchical
data structures to reflect spatial hierarchies. OctreeMamba[62], for example,
adopts an octree-based ordering scheme, organizing points in a z-order se-
quence to preserve spatial relationships while capturing multi-scale features.
While maintaining spatial relationships during serialization is vital, improv-
ing local feature extraction within SSMs is equally crucial for point cloud
analysis. Although SSMs efficiently model long-range dependencies, captur-
ing fine-grained local details remains a challenge. Mamba3D [70] addresses
this by introducing a Local Norm Pooling block to enhance local geometric
representation and employs a bidirectional SSM to model both tokens and
feature channels, balancing local and global structure representation without
increasing computational complexity.

Building on work such as [54, ?], another research direction combines the
strengths of Transformers and SSMs to achieve improved performance and
efficiency. PoinTramba [71], for example, uses Transformers to capture de-
tailed dependencies within point groups, while Mamba models relationships
between groups using a bidirectional importance-aware ordering strategy.
By reordering group embeddings based on importance scores, this method
mitigates random ordering issues in SSMs and enhances performance. SSMs
have also found applications in point cloud completion and filtering. 3DMam-
baIPF [72] leverages Mamba’s selection mechanism with HyperPoint modules
to reconstruct point clouds from incomplete inputs, preserving local details
that Transformers often miss. For filtering, it combines SSMs with differ-
entiable rendering to reduce noise in large-scale point clouds, improving
alignment with real-world structures and efficiently handling datasets with
hundreds of thousands of points—scenarios where other methods often falter.

These advancements underscore the effectiveness of SSMs in addressing
critical challenges in point cloud analysis, offering efficient and scalable
solutions for various tasks. With ongoing innovations in serialization, feature

37

5. Recurrent models applied to 3D Vision

extraction, and hybrid architectures, SSMs are proving to be a valuable tool
in advancing 3D vision applications. In this work, I aim to further build
on these results by presenting a simple, robust, and principled solution for
constructing input sequences tailored for Mamba-like models.

5.3 Datasets

In my experiments, I evaluate the performance of my model using three pub-
licly available 3D datasets: ModelNet40, ScanObjectNN and ShapeNetPart.

ModelNet40 [73]: It is a widely used benchmark synthetic dataset used to
evaluate 3D object classification models. It consists of 12,311 CAD models
across 40 categories, representing clean and noise-free 3D shapes, such as
airplanes, chairs, and cars, offering a diverse set of 3D shapes.

ScanObjectNN [74]: It presents a more challenging real-world scenario by
offering around 15,000 objects across 15 categories, scanned from real-world
indoor scenes. Unlike the controlled environment of CAD datasets, the
objects in ScanObjectNN are captured in cluttered and noisy environments,
introducing additional complexity due to background noise, occlusion, and
deformation. The diversity of real-world settings in this dataset makes it
particularly suited for evaluating the robustness of models in practical object
classification tasks. The dataset comes in three variants with different degree
of difficulty:

• OBJ-ONLY: the easiest variant in which there is only the object in the
scene. This is the most similar variant to a CAD analogous.

• OBJ-BG: an intermediate variant in which there is also the background.
I focused mostly on this variant since it is the most similar to the real
world.

• PB-T50-RS: the hardest version that adds some perturbations to the
objects and can be used as a benchmark to test the robustness on the
classification task

ShapeNetPart [75] It is a widely recognized benchmark for 3D shape seg-
mentation tasks. This dataset is a subset of the larger ShapeNet repository
and includes 31,693 3D CAD models categorized into 16 common object
classes such as chairs, planes, and tables. Each model is richly annotated
with detailed geometric and semantic labels, providing valuable information
for training and evaluating segmentation algorithms.

5.4 Model Design

I start in Sec. 5.4.1 by overviewing the processing strategies common in the
point cloud literature. In Sec. 5.4.2 I recall the basic properties of Mamba

38

5.4. Model Design

and self attention, highlighting their connections. I continue in Sec. 5.4.3
by describing how Mamba-like processing of point cloud data leads to
interesting considerations around the effects of assigning an order to patches
in 3D space. Then I analyze the PointMamba strategy in Sec. 5.4.3 and in
Sec 5.4.3 I describe the proposed methodology.

5.4.1 Basic Strategies in Point Cloud Analysis

I outline the typical pipeline used for point cloud analysis in recent deep
models. These are not specific to my model, but will allow me to make
connections and simplify the discussion.

Preprocessing. The objective of the preprocessing stage is to reduce the
number of points in the point cloud while maintaining the data’s structural
integrity, enabling more efficient computations in later steps. Formally, let
P = {pi | pi ∈ R3, i = 1, . . . , N} represent the point cloud, where N is the
total number of points, and pi = (xi, yi, zi) denotes the 3D coordinates of
each point. Following normalization, the process typically involves two steps:

1. Center Selection: A total of nc points are chosen using the Farthest Point
Sampling (FPS) algorithm. FPS works by iteratively selecting points that
are maximally distant from one another, ensuring the sample effectively
represents the original point cloud. These selected points, referred to
as ”centers” {Ci}nc

i=1, capture global information about the object.

2. Patch Creation: For each center, the np closest points are selected using
the k-Nearest Neighbors (kNN) algorithm. This process generates a set
of patches {Pi}nc

i=1, with each patch centered around one of the selected
centers, thereby capturing more localized information about the object.

The values of nc and np are hyperparameters of this preprocessing stage.

Patch Embedding. Each patch Pi is transformed into a fixed-dimensional
vector pi via a series of expansions, convolutions, and linear projections. This
embedding process represents a pointwise transformation from RBS×np×3

to RBS×np×de . In this context, BS denotes the batch size, np refers to the
number of points per patch, and de represents the embedding dimension.
The embedding effectively captures the local geometric details within each
patch, which are essential for comprehending the finer aspects of the object’s
structure.

Center Embedding. Each center Ci is mapped to a fixed-dimensional vector
ci to encode global positional information and offer context for the interactions
between various patches. This embedding process constitutes a pointwise
transformation from RBS×nc×3 to RBS×nc×de .

In line with the approach used in transformer-based models [1], the center
embedding plays a role similar to that of positional embeddings in point

39

5. Recurrent models applied to 3D Vision

cloud analysis. By emphasizing the capture of spatial relationships through-
out the entire point cloud, it is thought to offer a complementary perspective
to the local information captured by patch embeddings.

5.4.2 Attention and Mamba in 3D Vision

In this subsection, I want to recall some key aspects of attention and recurrent
models that plays a major role in 3D vision modeling.

To begin, I represent a generic input as X ∈ RN×d, consisting of N elements
in d dimensions. In the context of Sec. 5.4.1, X refers to the sequence of patch
embeddings, potentially augmented with positional embeddings. I use Xi to
denote the i-th row of X, which corresponds to an input token in text or a
patch/point cluster in vision. I then describe the attention and Mamba-like
processing applied to X, resulting in updated representations Y ∈ RN×d.

Attention. The standard self-attention block [1] consists of three matrices:
WQ, WK, and WV , which are the learnt parameters of the model. These
matrices, when multiplied with the input X ∈ RN×d, yield the queries
Q ∈ RN×d, keys K ∈ RN×d, and values V ∈ RN×d: Q = XWQ, K = XWK,
V = XWV . These are combined to produce the output Y ∈ RN×d.

Y = softmax
(

QK⊤
√

d

)
V, (5.1)

where softmax is applied row-wise. Assuming for simplicity WV is the
identity matrix, we get

Y = ΦX
SDPA · X, (5.2)

where ΦSDPA ∈ RN×N mixes tokens as follows:

ΦX
SDPA = softmax

1√
d

X0WQW⊤
K X⊤

0
1√
d

X0WQW⊤
K X⊤

1 · · · 1√
d

X0WQW⊤
K X⊤

N
1√
d

X1WQW⊤
K X⊤

0
1√
d

X1WQW⊤
K X⊤

1 · · · 1√
d

X1WQW⊤
K X⊤

N
...

...
. . .

...
1√
d

XNWQW⊤
K X⊤

0
1√
d

XNWQW⊤
K X⊤

1 · · · 1√
d

XNWQW⊤
K X⊤

N

 .

(5.3)
In causal self-attention, used e.g. in language modeling, the upper triangular
portion of ΦSDPA is set to 0. For vision application, ΦSDPA is often used
without masking.

Mamba. Architectures based on state-space models (SSMs) [3, 2, ?] compute
the output Y through a dynamic recurrence of input signals. X is seen as a
time-series where time flows from left to right: X1, X2, . . . , XN . Starting from
Zi−1 = 0 ∈ Rn

Zi = AiZi−1 + BiXi (5.4a)
Yi = CiZi + DiXi, (5.4b)

40

5.4. Model Design

where Zi is the hidden state of the system, and the dynamic matrices of
appropriate dimensions Ai, Bi, Ci, Di are functions of the model parameters
as well as the input. The S6 block [2, ?] parametrizes the recurrence as

Ai = e−∆iWA , Bi = ∆iWBXi, Ci = WCXi, Di = WDXi (5.5)

and ∆i = softplus(W∆Xi + b∆), with W∆, WA, WB, WC, WD are learnt matrices
of appropriate dimensions, and b∆ is a learnt bias. It is well known [15, 76, ?,
77] that this system can be cast into an attention matrix representation 3, also
known in the SSM literature as convolutional representation [78]:

Y = ΦX
S6 · X, (5.6)

where

ΦX
S6 =

C0B0 + D0 0 · · · 0

C1A1B0 C1B1 + D1 · · · 0
...

.
...

CN ∏N
k=1 AkB0 · · · CN AN BN−1 CN BN + DN

 . (5.7)

Architecture. Attention and S6 layers are commonly employed in deep
networks, interspersed with MLPs, normalization components, and skip
connections. In this work, I adopt the backbone of the Mamba architecture [2]
and refer the reader to the original paper for further details, as well as to the
appendix ??.

5.4.3 Positional Embeddings and arrow of time in Mamba and
Attention

There are two crucial macroscopic differences between ΦSDPA and ΦS6:

• ΦS6 is lower triangular, while ΦSDPA is not.

• ΦSDPA has an isotropic structure: entries close to the diagonal are com-
puted similarly to entries far from the diagonal. Instead, in ΦS6 the
distance to the diagonal affects computation: it affects in the number of
Ais multiplied together in the formula for each entry.

This divergence between Mamba and Softmax attention is quite deep, and
implications are strictly related to the two propositions below:

Proposition 5.1 (Softmax Attention) Y = ΦX
SDPA · X is invariant to row-wise

permutations Π of the input. For all X, Π and model parameters, we have ΦΠ(X)
SDPA ·

Π(X) = Π(ΦX
SDPA · X).

3In modern variants of Mamba such as Mamba2 [?], the hidden dimension of Z in Eq. 5.4
is such that ΦS6 ∈ RN×N . For earlier variants, the transformation is conceptually similar but
has to be written in a slightly different form.

41

5. Recurrent models applied to 3D Vision

Proposition 5.2 (Mamba) Y = ΦX
S6 · X is not invariant to row-wise permuta-

tions Π of the input: there exists X, Π and model parameters such that ΦΠ(X)
S6 ·

Π(X) ̸= Π(ΦS6 · X).

Proposition 5.1 directly follows from the fact that attention is a set operation [1],
and proposition 5.2 is also easy to prove:

The general formula describing S6 computation is Yk = Ck ∑k
j=0(∏

k
k=j+1 Ak)BkXj.

Let us pick N = 2, we have Y0 = C0B0X0 and Y1 = C1A1B0X0 + C1B1X1. Let
Π swap the first and second inputs. For the reversed sequence, we have
Ŷ0 = Ĉ0B̂0X1 and Ŷ1 = Ĉ1Â1B̂0X1 + Ĉ1B̂1X0. We have to prove that for any
realized value of A, B, C, Â, B̂, Ĉ, there exists a sequence X such that Y1 ̸= Ŷ0,
i.e. C1A1B0X0 + C1B1X1 ̸= Ĉ0B̂0X1. It is clear that converse would imply
C1A1B0X0 = (Ĉ0B̂0 − C1B1)X1, i.e. a strong relationship between the values
of X0 and X1.

Pros of being sequential. [79] proved that S6 – with no need for positional
embeddings – can simulate any autonomous nonlinear dynamical system
evolving in the direction i → i + 1. This result is rooted in more general
statements regarding Turing Completeness of RNNs [80, 81]. Indeed, in
language modeling, Mamba is used without positional embeddings [54], in
contrast to Softmax Attention without masking which requires positional
embedding information capture distance information within X4.

Cons of being sequential. While in the language modeling is convenient
to drop positional embeddings, in the 2D and 3D applications, the notion
of “position” cannot be easily captured by 1D ordering in a sequence: when
processing data X where each Xi relates to a precise position in space, the
output Y crucially depends on the chosen order the Xis are arranged into – in
contrast with softmax attention (see propositions above). In a point cloud, we
might order along the principal axis in 3D space and feed point clusters one
at a time along these axes [60] or along an octree-determined path [62]. The
output of S6, in this case, still depends on the processing order, regardless
of the inclusion of additional positional embeddings in X and despite the
potential bidirectional application of such models.

In this work, my goal is to work towards a principled strategy for process-
ing point clouds with inherently sequential models such as Mamba. I first
describe in-depth one existing approach [60] in Sec. 5.4.3 and then propose
a patch reordering strategy that is able to match or improve performance
compared to existing approaches, without requiring positional embedding
but relying solely on the sequential patch ordering I introduce. This both re-

4[64] recently proved that causal self-attention can instead recover positional information
in 1D structures. Yet, modern practice still adopts positional embeddings by default also in
this setting.

42

5.4. Model Design

veals sensitivity to Mamba in sequence construction and potential for future
developments using our strategy.

PointMamba Strategy

1 2 3 45 6 78 1 2 3 4 5 6 781 2 34 5 6 78

1 2 3 4 5 6 7 8

y

x

z NIMBA Sequence

PointMamba Sequence

x-axis reorder y-axis reorder z-axis reorder

Figure 5.1: Ordering Strategy of NIMBA and PointMamba. The image is taken from the original
work of NIMBA [20].

Despite the conceptual difficulty in processing 3D data with a sequential
models, several approaches have been tested in the literature (see Sec. 5.2).
Here I present the strategy proposed by PointMamba [60]: Following the
notation of Sec. 5.4.1, centers {Ci}nc

i=1 are first sorted along each axis (x, y, z)
independently, resulting in three separate ordered sequences: (Cx

i)
nc
i=1, (Cy

i)
nc
i=1,

and (Cz
i)

nc
i=1. For each axis-sorted sequence, the corresponding patch embed-

dings {pi} and center embeddings {ci} are obtained and then concatenated
in the three orders above to form the input sequence X.

This strategy allows for successful processing, as I report in Sec. 5.5, yet has
several weaknesses:

• The method results in the sequence length being tripled, introducing
redundancy and negatively affecting efficiency.

• Centers that are close in the 3D space may not be adjacent in the
sequence, which can affect the model’s robustness and ability to capture
spatial relationships effectively

• As I show in Sec. 5.5, this method is highly sensitive to the presence
of positional embedding information. While this is common in stan-
dard attention-based architectures, it is less natural in Mamba-based
models. In addition, it increases number of parameters and introduces
additional redundancy.

NIMBA Strategy

To address the limitations of the PointMamba strategy, I introduce the
NIMBA approach, which is designed to more effectively preserve geometric
relationships by ensuring that consecutive centers in the 1D sequence input
to the model remain close in 3D space. The NIMBA strategy is built around
the principle of local proximity preservation:

43

5. Recurrent models applied to 3D Vision

Input point cloud

FPS & KNN
Embedding Layer MAMBA LayersTask Head

Reordering

Order the centers along the y-axis

Check the distance between consecutive
centers

?

?

Figure 5.2: Overview of NIMBA pipeline. The image is taken from the original work of NIMBA
[20].

1. Initial Axis-Wise Ordering: Initially, centers are flattened by ordering
them along the y-axis. While any initial order could be used, I chose
the y-axis because empirical results showed that this ordering helps
reduce the computational cost in the subsequent phase.

2. Proximity Check: I scan the previously obtained sequence and iteratively
check the distance between the current and the next center. If the
distance exceeds a predefined threshold r, I search for a center along
the sequence that is sufficiently close to the starting center and place
it next to it. If no suitable center is found within the threshold, the
sequence moves on to the next center without modification. This
process ensures that consecutive centers in the sequence are within a
distance of r.

Mathematically, the proximity check can be expressed as ∥Ci − Ci+1∥ < r,
where ∥ · ∥ denotes the Euclidean distance in 3D space. The choice of r is
critical: a large threshold value (e.g., r ≥ 2

√
3, the diagonal of a unit cube)

ensures that the sequence remains close to the initial order, as the condition
will always be satisfied. On the other hand, a small threshold (e.g., r = 0)
is computationally expensive, as each center would need to be compared
with all others in the sequence, leading to an ordering identical to the initial
axis-wise order, since no centers would be considered close enough to trigger
any reordering. In my experiments, I found r = 0.8 to strike a good balance
between the quality of the reordered sequence and computational cost. Other
than efficiency reasons, the choice of the threshold r is related to the nature
of point cloud datasets. Indeed, in ModelNet and Scanobject datasets the
objects are contained in a [−1, 1]3 cube. The literature confirms that this
comes from the nomalization step, which is a standard procedure in similar
works and datasets. The choice of r can be interpreted as a portion of the
distance between the center of the scene and the border of the scene, which
should be 40%. Figure 5.2 illustrates the complete NIMBA pipeline.

Figure 5.1 shows the sequence created from the two strategies. When com-
paring to the PointMamba approach, NIMBA does not rely on positional
embeddings and does not replicate the sequence: the reordering strategy

44

5.5. Experimental Results

proposed leverages the spatial relationships of points, allowing the model to
rely only on the patch embedding, thus enhancing accuracy and stability.

5.5 Experimental Results

In this section, I give more details on the training setting that I used for my
experiments.

To make a fair comparison, I followed the work proposed by PointMamba
[60], PointMAE [34] and PCT [32] and I show the specific settings for
the 3 different datasets and tasks: object classification on the synthetic
ModelNet40 in Table 5.2, object classification on ScanObjectNN in Table
5.3 and segmentation on ShapeNet in Table 5.4. Instead of fine-tuning a
pre-trained model, I trained from scratch to better highlight the differences
between each setting. The main hyperparameter that I tuned in all the
experiments reproduced is the learning rate and I did it with the criteria
already explained in Chapter 4. I used a model of dimension 384 with 12
encoder layers and 6 heads across all experiments. There are some slight
differences in the number of points sampled, number of patches and number
of points per patch across the experiments, but still following the works
mentioned above. For all methods I reproduce, I applied the same tuning
efforts as for NIMBA, repeating all experiments three times and reporting
the results as mean accuracy ± standard deviation.

Configuration Details Value

Model Configuration Transformer Dimension 384
Num. of Encoder Layers 12
Num. of heads 6

Points Configuration Num. of Points 1024
Num. of Patches 64
Num. of Point per Patches 32

Training settings Optimizer AdamW
Learning Rate 1e-4
Weight Decay 5e-2
Scheduler Type Cosine
Num. of Epochs 300
Num. of Warm-up Epochs 10
Batch Size 32
Seeds 0, 123, 777

Table 5.2: Training configuration for classification on ModelNet40. The table is taken from the
original work of NIMBA [20].

45

5. Recurrent models applied to 3D Vision

Configuration Details Value

Model Configuration Transformer Dimension 384
Num. of Encoder Layers 12
Num. of heads 6

Points Configuration Num. of Points 2048
Num. of Patches 128
Num. of Point per Patches 32

Training settings Optimizer AdamW
Learning Rate 5e-4
Weight Decay 5e-2
Scheduler Type Cosine
Num. of Epochs 300
Num. of Warm-up Epochs 10
Batch Size 32
Seeds 0, 123, 777

Table 5.3: Training configuration for classification on ScanObjectNN. The table is taken from
the original work of NIMBA [20].

Configuration Details Value

Model Configuration Transformer Dimension 384
Num. of Encoder Layers 12

Points Configuration Num. of Points 2048
Num. of Patches 128
Num. of Point per Patches 32

Training settings Learning Rate 1e-4
Weight Decay 5e-2
Scheduler Type Cosine
Num. of Epochs 300
Num. of Warm-up Epochs 10
Batch Size 16
Seeds 42, 123, 777

Table 5.4: Training configuration for classification on ShapeNetPart. The table is taken from
the original work of NIMBA [20].

5.5.1 Object Classification

I evaluate our proposed model, NIMBA, against various baseline models on
multiple object classification benchmarks, including ModelNet [73] and three
versions of ScanObjectNN (OBJ-BG, OBJ-ONLY, and PB-T50-RS from [74]).
Results are summarized in Table 5.5.

46

5.5. Experimental Results

Model Backbone Param. (M)↓ Accuracy (%)↑

ModelNet OBJ-BG OBJ-ONLY PB-T50-RS

PointNet [82]∗ Neural Network 3.5 89.2 73.3 79.2 68.8
PointNet++ [83]∗ Neural Network 1.5 90.7 82.3 84.3 77.9
PCT [32]∗ Transformer 2.9 90.17 - - -

Point Mamba† Mamba 12.3 92.08 ± 0.16 87.80 ± 0.72 87.20 ± 0.88 82.20 ± 0.45
(My) Mamba 12.3 92.10 ± 0.14 89.06 ± 0.42 89.29 ± 0.23 83.91 ± 0.38

Point-MAE† Transformer 22.1 92.30 ± 1.02 86.77 ± 0.91 86.83 ± 0.78 81.23 ± 0.77
PointMamba† Mamba 23.86 92.08 ± 0.19 88.01 ± 0.77 86.49 ± 0.49 83.01 ± 0.82
(My) Mamba 23.86 92.10 ± 0.14 89.80 ± 0.36 89.76 ± 0.37 84.21 ± 0.65

Table 5.5: Accuracy on classification tasks. Different scales are reported. ∗ are values reported
from the PointMamba paper [60], while † are my reproducing choosing the best-performing
learning rate for each model and task. The table is taken from the original work of NIMBA [20].

Transformer-based Models. Transformer-based models such as PCT and
Point-MAE achieve competitive accuracies on these benchmarks. However,
NIMBA surpasses these models by up to ≈ 2% on several datasets while
using fewer parameters. Importantly, NIMBA achieves these improvements
without employing positional embeddings.

Mamba-based Models. For Mamba-based architectures, the baseline Point-
Mamba achieves strong performance. NIMBA exceeds PointMamba across
all datasets, with accuracy improvements of up to 1.5%. Additionally, when
scaling up to 23.86 M parameters, NIMBA continues to enhance its perfor-
mance, surpassing the larger PointMamba model. These results demonstrate
that NIMBA effectively leverages additional parameters to improve accuracy
while maintaining efficiency.

Models Param.(M)↓ Time (m)↓

ModelNet ScanObjectNN

PointMamba† 17.4 500 240
NIMBA(My) 17.4 430 200

Table 5.6: Training time comparison after 300 epochs. The table is taken from the original work
of NIMBA [20].

Training Efficiency. Beyond accuracy, I also assess the training efficiency of
NIMBA compared to PointMamba. As shown in Table 5.6, NIMBA reduces
the training time by ≈ 14% on ModelNet and ≈ 17% on ScanObjectNN after
300 epochs of training. This improvement in training speed further highlights
the efficiency of our model.

Overall, NIMBA outperforms both transformer-based and Mamba-based
baseline models without relying on positional embeddings, demonstrating
its effectiveness in object classification tasks.

47

5. Recurrent models applied to 3D Vision

5.5.2 Part Segmentation

Models Param.(M)↓ Cls. mIoU(%)↑ Inst. mIoU(%)↑

PointNet∗ - 80.39 83.7
PointNet++∗ - 81.85 85.1
Point-MAE† 27.1 83.91 ± 0.43 85.7 ± 0.23
PointMamba† 17.4 83.37 ± 0.17 85.07 ± 0.12
NIMBA(My) 17.4 84.36 ± 0.06 85.54 ± 0.05

Table 5.7: Performance comparison on the ShapeNetPart segmentation task. ∗ indicates values
reported in the PointMamba paper [60], while † denotes my reproduced results using the best-
performing learning rates for each method. The table is taken from the original work of NIMBA
[20].

I evaluate NIMBA on the part segmentation task using the ShapeNetPart
dataset. As shown in Table 5.7, I report the mean IoU (mIoU) for both class-
level (Cls.) and instance-level (Inst.) metrics. NIMBA achieves higher Cls.
mIoU compared to both Transformer-based and Mamba-based models and
demonstrates competitive performance in Inst. mIoU. Specifically, NIMBA
outperforms the Mamba-based baseline, PointMamba, by ≈ 1% in class-level
accuracy while maintaining similar instance-level performance. Since all
models are tuned to best independently, I attribute this performance boost to
our improved reordering strategy.

5.5.3 Ablations

Here, I present a series of ablation studies to investigate the impact of the
different components even further. In particular, in Sec. 5.5.3 I show and
compare the effects of positional embedding, in Sec. 5.5.3 I test the robustness
of models when noise is applied and in Sec. 5.5.3 I show how a bidirectional
implementation of Mamba affects performances. All the ablations were made
on the classification task on the ScanObjectNN dataset OBJ-BG variation.

Effect of Positional Embedding

To investigate the impact of positional embedding, I conducted a series of
experiments comparing transformer, Mamba, and hybrid models. As shown
in Table 5.8, performance generally declines when positional embedding
is removed, affecting both models with attention blocks and Mamba-based
models. This includes PoinTramba, which, despite outperforming NIMBA
under normal conditions, relies heavily on positional embedding. Without it,
NIMBA achieves better results. I observed that many Mamba-like models
using positional embedding often replicate sequences or add bidirectionality
to maintain performance. My hypothesis is that this phenomenon is due to

48

5.5. Experimental Results

Models Acc. with PE(%)↑ Acc. without PE(%)↑ Gap(%)↓

Point-MAE† 86.77 ± 0.91 80.24 ± 0.87 6.53 ± 1.78
PointMamba† 87.80 ± 0.72 83.69 ± 0.76 4.11 ± 1.48
PoinTramba† 92.42 ± 0.48 86.46 ± 0.34 5.96 ± 0.82
NIMBA(My) 89.80 ± 0.36 88.12 ± 0.54 1.68 ± 0.90

Table 5.8: Influence of Positional embedding (PE) on performance. ∗ indicates values reported
in the PointMamba paper [60], while † denotes my reproduced results using the best-performing
learning rates. The table is taken from the original work of NIMBA [20].

redundancy: when sequences are insufficiently meaningful, the model scans
them multiple times for better information retrieval. In contrast, NIMBA’s
reordering strategy preserves sequence length and performs well without
positional embedding.

Robustness

Figure 5.3: Results of applying noise to the training set, test set, or both. NIMBA demonstrates
greater robustness compared to PointMamba, particularly when the noise does not alter the
spatial distances between points, such as in the case of rotation. The image is taken from the
original work of NIMBA [20].

To further explore the differences between PointMamba and NIMBA, I tested
both models by applying the following noise injections to the input point
clouds:

• Rotation: A random 3D rotation of the object;

• Random Horizontal Flip (RHF): A random flip along the horizontal
axis;

• Jittering: Points in the point cloud are perturbed with Gaussian white
noise;

• Random Input Dropout (RID): Points are randomly removed with a
probability p;

• All: A combination of all the noise types listed above.

49

5. Recurrent models applied to 3D Vision

Each type of noise was applied to the training set, the test set, or both. As
shown in Figure 5.3, my method NIMBA generally exhibits greater robust-
ness to noise, particularly in the case of rotation, where there is even an
improvement in performance. This confirms that the reordering strategy
employed by NIMBA is resilient to noise that preserves pairwise distances
between points, such as after a rotation.

Hydra

Models Param.(M)↓ Accuracy(%)↑

PointMamba with hydra 12.85 86.23
NIMBA with hydra 12.85 86.4

Table 5.9: Results when substituting the Mamba block with the Hydra block in the architecture.
The table is taken from the original work of NIMBA [20].

Building on previous works that utilize scanning different directions [61, 62,
71], I explored the impact of replacing the Mamba block with Hydra [84], a
bidirectional extension of Mamba using a quasiseparable matrix mixer, in
both PointMamba and NIMBA. Hydra scans sequences in both directions
simultaneously, meaning PointMamba still processes a sequence of length 3N,
while NIMBA still processes length N. As shown in Table 5.9, performance
generally declined in both cases, likely due to the shift to Hydra, which is
based on Mamba2 [85]. I encourage future research to focus on optimizing
Mamba2 in these contexts, as optimization remains a key challenge with such
models.

5.6 Limitations and Future Work

While NIMBA successfully tackles several challenges in point cloud analy-
sis with SSMs, some limitations persist. From an optimization perspective,
the model shows limited improvement when scaled. Furthermore, when
replacing the Mamba block with Mamba2 or integrating NIMBA into hybrid
architectures, I observed a decline in performance, suggesting potential is-
sues with integration. I encourage further research into optimizing SSMs
and exploring their integration with transformer architectures for point
cloud analysis. I believe this work provides a fresh perspective on apply-
ing non-transformer models in fields beyond natural language processing,
emphasizing the potential of SSMs in 3D vision applications.

50

Chapter 6

Conclusion

In this work, I compare the capabilities of new deep recurrent models.

In the first part of this work, I investigate the reasoning capabilities of
attention and recurrent-gated convolutional models in language modeling
using the Associative Recall task as a proxy for language. However, since
there is a gap in the performance of such models when trained on proper
language, I studied in more depth the Multi-Query Associative Recall task, a
more challenging version of AR that better approximate language modeling.
At first sight, it seems that only attention models are capable of solving such
a task, but this work highlights two key aspects to consider. Firstly, how
crucial optimizing these models is to efficiently compress information in
their hidden state and secondly, how attention and recurrent models benefit
differently from scaling in depth and width. In fact, even if attention is
capable of leveraging induction heads with a 2-layer architecture, it is not
capable of solving the task with just 1-layer. However, the loss curve shows
how the model still somehow tries to build induction heads during training.
On the other hand, recurrent models benefit the most from scaling in width,
by increasing their hidden state dimension that can compress information
more easily.

In the second part of this work, I introduced NIMBA, a robust and principled
approach for point cloud processing using state space models (SSMs). When
using such casual models, a key challenge is to effectively convert a 3D set
of data into a 1D sequence for proper analysis. To address this, I propose
a spatially-aware reordering strategy that preserves spatial relationships
between points. Differently from others, this method eliminates the need
for positional embeddings and sequence replication, enhancing both effi-
ciency and performance. My experimental results demonstrate that NIMBA
matches or surpasses transformer-based and other Mamba-based models

51

6. Conclusion

on benchmark datasets such as ModelNet, ScanObject, and ShapeNetPart in
classification and segmentation tasks.

52

Chapter 7

Acknowledgments

Isaac Newton once said, “If I have seen further, it is by standing on the
shoulders of giants.” This phrase deeply resonates with me since every
achievement I have reached is built on the foundation of those who came
before me and those who have supported and guided me along the way. This
thesis, and indeed the person I have become, is a collective result of their
contributions.

I thank the Politecnico di Torino for funding part of this journey and my
advisor Prof. Lia Morra for her advice, constructive feedback, and guidance
throughout these months.

I owe a special thanks to Dr. Antonio Orvieto, who first introduced me
to the world of scientific research and inspired me to embrace it as a fu-
ture path. His boundless curiosity and depth of knowledge were infectious,
sparking my own enthusiasm. I am especially thankful for his trust and the
freedom he gave me to explore ideas, fostering an environment of creativity
and intellectual growth. My gratitude extends to the entire ELLIS and Max
Planck communities, for the invaluable human and computational resources
that made this journey and work possible. Particularly, thanks to the Deep
Models and Optimization group, for their warm welcome, guidance, and
unwavering support.

My appreciation goes further to Prof. Thomas Hofmann from ETH Zurich,
my advisor abroad, for his confidence in my abilities, his enthusiasm for my
research and his illuminating insights. Thanks to the Data Analytics lab for
providing a vibrant, inclusive environment, filled with engaging discussions
and invaluable suggestions that enriched this work immeasurably.

Outside of academic circles, I extend my gratitude to my ”less technical

53

7. Acknowledgments

colleagues”, my friends and roommates, who made my time abroad un-
forgettable. To Tübingen, thank you for immersing me in the richness of
German culture and leaving me with fond memories. Special thanks to
Culmannstrasse, both the permanent residents and exchange students, for
sharing their cultures, laughs, and patience, creating lifelong memories. I
truly hope our paths will cross again in the future.

Back home, my deepest thanks go to my Italian friends, who have been
my constant pillars of support. To the San Remigio and Safa communities,
thank you for helping me develop my character and interpersonal skills,
traits I consider as vital as academic knowledge. To my high school and uni-
versity friends, who stood by me even during the challenges of the COVID-19
pandemic. In particular, thanks to ”Varie ed Alcool” for all the laughter,
unforgettable nights, and support, which have kept my spirits high even
while I was kilometres away.

I must also thank the incredible educators who inspired me from the very
beginning. Thank you, Maestra Silvana, for sparking my curiosity and shap-
ing me as a student. To Prof. Martinotti and Prof. Genna, your dedication
to nurturing my passion for mathematics equipped me with the tools and
confidence to explore this fascinating field.

I express my deepest gratitude to my families, yes, in plural. To my bi-
ological mother Pat and siblings, thank you for all the immense sacrifices
you made and the unwavering love you gave me. To my foster parents,
Daniela and Enrico, thank you for opening your hearts and home to me and
for ensuring I never lacked anything. To my foster siblings, thank you for
accepting me as a brother and for inspiring me to step outside my comfort
zone and embark on this incredible journey abroad.

Lastly, To Georgiana, the love of my life, thank you for teaching me the
meaning of love, for the unavailable day-to-day support even during these
difficult months, and for the countless beautiful memories we’ve created
together.

54

Bibliography

[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention
is all you need. Advances in Neural Information Processing Systems, 2017.

[2] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with se-
lective state spaces, 2023. Available at https://arxiv.org/abs/2312.00752.

[3] Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long
sequences with structured state spaces. In International Conference on
Learning Representations, 2022.

[4] Daniel Y. Fu, Tri Dao, Khaled K. Saab, Armin W. Thomas, Atri
Rudra, and Christopher Ré. Hungry hungry hippos: Towards
language modeling with state space models, 2023. Available at
https://arxiv.org/abs/2212.14052.

[5] Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcad-
inho, Huanqi Cao, Xin Cheng, Michael Chung, Matteo Grella, Kran-
thi Kiran GV, et al. Rwkv: Reinventing rnns for the transformer era.
arXiv preprint arXiv:2305.13048, 2023.

[6] Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y Fu, Tri Dao,
Stephen Baccus, Yoshua Bengio, Stefano Ermon, and Christopher Ré.
Hyena hierarchy: Towards larger convolutional language models. In
International Conference on Machine Learning, pages 28043–28078. PMLR,
2023.

[7] Simran Arora, Sabri Eyuboglu, Aman Timalsina, Isys Johnson, Michael
Poli, James Zou, Atri Rudra, and Christopher Ré. Zoology: Measur-
ing and improving recall in efficient language models. arXiv preprint
arXiv:2312.04927, 2023.

55

Bibliography

[8] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines,
2014. Available at https://arxiv.org/abs/1410.5401.

[9] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normal-
ization, 2016. Available at https://arxiv.org/abs/1607.06450.

[10] Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova
DasSarma, Tom Henighan, Ben Mann, Amanda Askell, Yuntao Bai,
Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli, Zac Hatfield-
Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion,
Liane Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark,
Jared Kaplan, Sam McCandlish, and Chris Olah. In-context learning and
induction heads, 2022. Available at https://arxiv.org/abs/2209.11895.

[11] Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and
Yunfeng Liu. Roformer: Enhanced transformer with rotary position
embedding, 2023. Available at https://arxiv.org/abs/2104.09864.

[12] Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri,
Philip Pham, Jinfeng Rao, Liu Yang, Sebastian Ruder, and Donald
Metzler. Long range arena: A benchmark for efficient transformers. In
International Conference on Learning Representations, 2020.

[13] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the dif-
ficulty of training recurrent neural networks, 2013. Available at
https://arxiv.org/abs/1211.5063.

[14] Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré.
Hippo: Recurrent memory with optimal polynomial projections. Ad-
vances in neural information processing systems, 33:1474–1487, 2020.

[15] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François
Fleuret. Transformers are rnns: Fast autoregressive transformers with
linear attention. In International conference on machine learning, pages
5156–5165. PMLR, 2020.

[16] Albert Gu, Ankit Gupta, Karan Goel, and Christopher Ré. On the
parameterization and initialization of diagonal state space models. arXiv
preprint arXiv:2206.11893, 2022.

[17] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré.
Flashattention: Fast and memory-efficient exact attention with io-
awareness. Advances in Neural Information Processing Systems, 35:16344–
16359, 2022.

56

Bibliography

[18] Chaofan Tao, Qian Liu, Longxu Dou, Niklas Muennighoff, Zhongwei
Wan, Ping Luo, Min Lin, and Ngai Wong. Scaling laws with vocab-
ulary: Larger models deserve larger vocabularies, 2024. Available at
https://arxiv.org/abs/2407.13623.

[19] Sho Takase, Ryokan Ri, Shun Kiyono, and Takuya Kato. Large vo-
cabulary size improves large language models, 2024. Available at
https://arxiv.org/abs/2406.16508.

[20] Nursena Köprücü, Destiny Okpekpe, and Antonio Orvieto. Nimba:
Towards robust and principled processing of point clouds with ssms,
2024. Available at https://arxiv.org/abs/2411.00151.

[21] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy
Yang, Angela Fan, et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

[22] Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan Schalkwyk, Andrew M
Dai, Anja Hauth, et al. Gemini: a family of highly capable multimodal
models. arXiv preprint arXiv:2312.11805, 2023.

[23] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-
senborn, Neil Houlsby, Sylvain Gelly, Xiaohua Zhang, and Jakob Uszkor-
eit. An image is worth 16x16 words: Transformers for image recognition
at scale. arXiv preprint arXiv:2010.11929, 2020.

[24] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa,
Alexandre Sablayrolles, and Hervé Jégou. Training data-efficient image
transformers & distillation through attention. In International conference
on machine learning, pages 10347–10357. PMLR, 2021.

[25] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang,
Stephen Lin, and Baining Guo. Swin transformer: Hierarchical vision
transformer using shifted windows. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 10012–10022, 2021.

[26] Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is space-time
attention all you need for video understanding? In ICML, volume 2,
page 4, 2021. Available at https://arxiv.org/abs/2102.05095.

[27] Zhan Tong, Yibing Song, Jue Wang, and Limin Wang. Videomae: Masked
autoencoders are data-efficient learners for self-supervised video pre-
training. Advances in neural information processing systems, 35:10078–10093,
2022.

57

Bibliography

[28] Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin,
and Han Hu. Video swin transformer. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 3202–3211,
2022.

[29] Limin Wang, Bingkun Huang, Zhiyu Zhao, Zhan Tong, Yinan He,
Yi Wang, Yali Wang, and Yu Qiao. Videomae v2: Scaling video masked
autoencoders with dual masking. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages 14549–14560,
2023.

[30] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel
Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin,
Jack Clark, et al. Learning transferable visual models from natural
language supervision. In International conference on machine learning,
pages 8748–8763. PMLR, 2021.

[31] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual
instruction tuning. Advances in neural information processing systems, 36,
2024.

[32] Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang Mu, Ralph R.
Martin, and Shi-Min Hu. Pct: Point cloud transformer. Computational
Visual Media, 7(2):187–199, April 2021.

[33] Xumin Yu, Lulu Tang, Yongming Rao, Tiejun Huang, Jie Zhou, and
Jiwen Lu. Point-bert: Pre-training 3d point cloud transformers with
masked point modeling. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 19313–19322, 2022.

[34] Yatian Pang, Wenxiao Wang, Francis EH Tay, Wei Liu, Yonghong Tian,
and Li Yuan. Masked autoencoders for point cloud self-supervised learn-
ing. In European conference on computer vision, pages 604–621. Springer,
2022.

[35] Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu,
Yu Qiao, Wanli Ouyang, Tong He, and Hengshuang Zhao. Point trans-
former v3: Simpler faster stronger. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 4840–4851,
2024.

[36] Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep convo-
lutional networks on 3d point clouds. In Proceedings of the IEEE/CVF
Conference on computer vision and pattern recognition, pages 9621–9630,
2019.

58

Bibliography

[37] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan
Chen. Pointcnn: Convolution on x-transformed points. Advances in
neural information processing systems, 31, 2018.

[38] Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao
Ma. Linformer: Self-attention with linear complexity. arXiv preprint
arXiv:2006.04768, 2020.

[39] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou
Song, Andreea Gane, Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz
Mohiuddin, Lukasz Kaiser, et al. Rethinking attention with performers.
arXiv preprint arXiv:2009.14794, 2020.

[40] James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, and Santiago On-
tanon. Fnet: Mixing tokens with fourier transforms. arXiv preprint
arXiv:2105.03824, 2021.

[41] Yifan Chen, Qi Zeng, Heng Ji, and Yun Yang. Skyformer: Remodel
self-attention with gaussian kernel and nyström method. Advances in
Neural Information Processing Systems, 34:2122–2135, 2021.

[42] Mitchell Wortsman, Jaehoon Lee, Justin Gilmer, and Simon Kornblith.
Replacing softmax with relu in vision transformers. arXiv preprint
arXiv:2309.08586, 2023.

[43] Simran Arora, Sabri Eyuboglu, Michael Zhang, Aman Timalsina, Silas
Alberti, Dylan Zinsley, James Zou, Atri Rudra, and Christopher Ré.
Simple linear attention language models balance the recall-throughput
tradeoff. arXiv preprint arXiv:2402.18668, 2024.

[44] Jason Ramapuram, Federico Danieli, Eeshan Dhekane, Floris Weers, Dan
Busbridge, Pierre Ablin, Tatiana Likhomanenko, Jagrit Digani, Zijin Gu,
Amitis Shidani, et al. Theory, analysis, and best practices for sigmoid
self-attention. arXiv preprint arXiv:2409.04431, 2024.

[45] Tri Dao. Flashattention-2: Faster attention with better parallelism and
work partitioning. arXiv preprint arXiv:2307.08691, 2023.

[46] Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ra-
mani, and Tri Dao. Flashattention-3: Fast and accurate attention with
asynchrony and low-precision. arXiv preprint arXiv:2407.08608, 2024.

[47] Soham De, Samuel L. Smith, Anushan Fernando, Aleksandar Botev,
George Cristian-Muraru, Albert Gu, Ruba Haroun, Leonard Berrada,
Yutian Chen, Srivatsan Srinivasan, Guillaume Desjardins, Arnaud
Doucet, David Budden, Yee Whye Teh, Razvan Pascanu, Nando De

59

Bibliography

Freitas, and Caglar Gulcehre. Griffin: Mixing gated linear recurrences
with local attention for efficient language models, 2024. Available at
https://arxiv.org/abs/2402.19427.

[48] Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon
Kim. Gated linear attention transformers with hardware-efficient train-
ing. arXiv preprint arXiv:2312.06635, 2023.

[49] Zhen Qin, Songlin Yang, Weixuan Sun, Xuyang Shen, Dong Li, Weigao
Sun, and Yiran Zhong. Hgrn2: Gated linear rnns with state expansion.
arXiv preprint arXiv:2404.07904, 2024.

[50] Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim.
Parallelizing linear transformers with the delta rule over sequence length.
arXiv preprint arXiv:2406.06484, 2024.

[51] Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer,
Oleksandra Prudnikova, Michael Kopp, Günter Klambauer, Johannes
Brandstetter, and Sepp Hochreiter. xlstm: Extended long short-term
memory. arXiv preprint arXiv:2405.04517, 2024.

[52] Karan Goel, Albert Gu, Chris Donahue, and Christopher Ré. It’s raw!
audio generation with state-space models. International Conference on
Machine Learning, 2022.

[53] Eric Nguyen, Michael Poli, Marjan Faizi, Armin Thomas, Michael
Wornow, Callum Birch-Sykes, Stefano Massaroli, Aman Patel, Clay-
ton Rabideau, Yoshua Bengio, et al. Hyenadna: Long-range genomic
sequence modeling at single nucleotide resolution. Advances in neural
information processing systems, 36, 2024.

[54] Roger Waleffe, Wonmin Byeon, Duncan Riach, Brandon Norick, Vijay
Korthikanti, Tri Dao, Albert Gu, Ali Hatamizadeh, Sudhakar Singh,
Deepak Narayanan, et al. An empirical study of mamba-based language
models. arXiv preprint arXiv:2406.07887, 2024.

[55] Yue Liu, Yunjie Tian, Yuzhong Zhao, Hongtian Yu, Lingxi Xie, Yaowei
Wang, Qixiang Ye, and Yunfan Liu. Vmamba: Visual state space model,
2024. Available at https://arxiv.org/abs/2401.10166.

[56] Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu
Liu, and Xinggang Wang. Vision mamba: Efficient visual represen-
tation learning with bidirectional state space model. arXiv preprint
arXiv:2401.09417, 2024.

60

Bibliography

[57] Kunchang Li, Xinhao Li, Yi Wang, Yinan He, Yali Wang, Limin Wang,
and Yu Qiao. Videomamba: State space model for efficient video under-
standing. arXiv preprint arXiv:2403.06977, 2024.

[58] Zhaohu Xing, Tian Ye, Yijun Yang, Guang Liu, and Lei Zhu. Segmamba:
Long-range sequential modeling mamba for 3d medical image segmen-
tation. arXiv preprint arXiv:2401.13560, 2024.

[59] Zeyu Zhang, Akide Liu, Ian Reid, Richard Hartley, Bohan Zhuang,
and Hao Tang. Motion mamba: Efficient and long sequence motion
generation with hierarchical and bidirectional selective ssm. arXiv
preprint arXiv:2403.07487, 2024.

[60] Dingkang Liang, Xin Zhou, Wei Xu, Xingkui Zhu, Zhikang Zou,
Xiaoqing Ye, Xiao Tan, and Xiang Bai. Pointmamba: A simple
state space model for point cloud analysis, 2024. Available at
https://arxiv.org/abs/2402.10739.

[61] Tao Zhang, Xiangtai Li, Haobo Yuan, Shunping Ji, and Shuicheng Yan.
Point could mamba: Point cloud learning via state space model. arXiv
preprint arXiv:2403.00762, 2024.

[62] Jiuming Liu, Ruiji Yu, Yian Wang, Yu Zheng, Tianchen Deng, Weicai Ye,
and Hesheng Wang. Point mamba: A novel point cloud backbone based
on state space model with octree-based ordering strategy. arXiv preprint
arXiv:2403.06467, 2024.

[63] Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas
Funkhouser, and Matthias Nießner. Scannet: Richly-annotated 3d re-
constructions of indoor scenes. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 5828–5839, 2017.

[64] Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan Natesan Rama-
murthy, Payel Das, and Siva Reddy. The impact of positional encoding
on length generalization in transformers. Advances in Neural Information
Processing Systems, 36, 2024.

[65] Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and
Yunfeng Liu. Roformer: Enhanced transformer with rotary position
embedding. Neurocomputing, 568:127063, 2024.

[66] Ofir Press, Noah A Smith, and Mike Lewis. Train short, test long:
Attention with linear biases enables input length extrapolation. arXiv
preprint arXiv:2108.12409, 2021.

61

Bibliography

[67] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language un-
derstanding, 2019. Available at https://arxiv.org/abs/1810.04805.

[68] Peng-Shuai Wang. Octformer: Octree-based transformers for 3d point
clouds. ACM Transactions on Graphics, 42(4):1–11, July 2023.

[69] Guangyan Chen, Meiling Wang, Yi Yang, Kai Yu, Li Yuan, and Yufeng
Yue. Pointgpt: Auto-regressively generative pre-training from point
clouds, 2023. Available at https://arxiv.org/abs/2305.11487.

[70] Xu Han, Yuan Tang, Zhaoxuan Wang, and Xianzhi Li. Mamba3d:
Enhancing local features for 3d point cloud analysis via state space
model, 2024. Available at https://arxiv.org/abs/2404.14966.

[71] Zicheng Wang, Zhenghao Chen, Yiming Wu, Zhen Zhao, Lup-
ing Zhou, and Dong Xu. Pointramba: A hybrid transformer-
mamba framework for point cloud analysis, 2024. Available at
https://arxiv.org/abs/2405.15463.

[72] Qingyuan Zhou, Weidong Yang, Ben Fei, Jingyi Xu, Rui Zhang, Keyi Liu,
Yeqi Luo, and Ying He. 3dmambaipf: A state space model for iterative
point cloud filtering via differentiable rendering, 2024. Available at
https://arxiv.org/abs/2404.05522.

[73] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang
Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d shapenets: A
deep representation for volumetric shapes, 2015. Available at
https://arxiv.org/abs/1406.5670.

[74] Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua, Duc Thanh
Nguyen, and Sai-Kit Yeung. Revisiting point cloud classification: A new
benchmark dataset and classification model on real-world data, 2019.
Available at https://arxiv.org/abs/1908.04616.

[75] Li Yi, Vladimir G Kim, Duygu Ceylan, I-Chao Shen, Mengyan Yan, Hao
Su, Cewu Lu, Qixing Huang, Alla Sheffer, and Leonidas Guibas. A
scalable active framework for region annotation in 3d shape collections.
ACM Transactions on Graphics (ToG), 35(6):1–12, 2016.

[76] Ameen Ali, Itamar Zimerman, and Lior Wolf. The hidden attention of
mamba models. arXiv preprint arXiv:2403.01590, 2024.

[77] Jerome Sieber, Carmen Amo Alonso, Alexandre Didier, Melanie N
Zeilinger, and Antonio Orvieto. Understanding the differences in foun-
dation models: Attention, state space models, and recurrent neural
networks. arXiv preprint arXiv:2405.15731, 2024.

62

Bibliography

[78] Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri
Rudra, and Christopher Ré. Combining recurrent, convolutional, and
continuous-time models with linear state space layers. Advances in neural
information processing systems, 34:572–585, 2021.

[79] Nicola Muca Cirone, Antonio Orvieto, Benjamin Walker, Cristopher
Salvi, and Terry Lyons. Theoretical foundations of deep selective state-
space models. arXiv preprint arXiv:2402.19047, 2024.

[80] Hava T Siegelmann and Eduardo D Sontag. On the computational power
of neural nets. In Proceedings of the fifth annual workshop on Computational
learning theory, pages 440–449, 1992.

[81] Stephen Chung and Hava Siegelmann. Turing completeness of bounded-
precision recurrent neural networks. Advances in neural information
processing systems, 34:28431–28441, 2021.

[82] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Pointnet:
Deep learning on point sets for 3d classification and segmentation, 2017.
Available at https://arxiv.org/abs/1612.00593.

[83] Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. Pointnet++:
Deep hierarchical feature learning on point sets in a metric space, 2017.
Available at https://arxiv.org/abs/1706.02413.

[84] Sukjun Hwang, Aakash Lahoti, Tri Dao, and Albert Gu. Hydra: Bidi-
rectional state space models through generalized matrix mixers, 2024.
Available at https://arxiv.org/abs/2407.09941.

[85] Tri Dao and Albert Gu. Transformers are SSMs: Generalized models
and efficient algorithms through structured state space duality, 2024.
Available at https://arxiv.org/abs/2405.21060.

63

	Contents
	Introduction
	Background
	Reasoning and Associative Recall
	Attention Mechanism and Transformers
	State Space Models
	S4
	H3
	Mamba S6

	Reccurent Gated-Convolution Models
	Hyena
	RWKV

	Explaining the Gap
	Zoology and The Gap
	Multi-Query Associative Recall
	Experimental Details
	Replication and Drawbacks of Zoology

	Experiments
	The Role of Optimization
	The Role of Depth and Width
	Learning Curves
	Vocabulary Extension
	Limitations

	Recurrent models applied to 3D Vision
	Deep Learning in 3D Vision
	Related Work in 3D Vision
	Datasets
	Model Design
	Basic Strategies in Point Cloud Analysis
	Attention and Mamba in 3D Vision
	Positional Embeddings and arrow of time in Mamba and Attention

	Experimental Results
	Object Classification
	Part Segmentation
	Ablations

	Limitations and Future Work

	Conclusion
	Acknowledgments
	Bibliography

