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Abstract

The focus of this Master’s thesis is the analysis of multi-mode VCSEL and their
dynamics in the context of high data rate optical transmission. The study proposes
a particular emphasis on the contribution that the external optical feedback exerts
on the performances of the laser.
VCSEL is the acronym for Vertical Cavity Surface Emitting Laser, they are laser
diodes that can be pumped directly by an electrical current, the emission happens
in the grown direction, they have very small dimensions (∼ hundreds of µm) and
their cavity length is in the order of a few microns.

In the first part of the thesis, the behaviour of a single-mode and a multi-mode
VCSEL are numerically simulated.
In order to do that, the evolution of some quantities for different current injected
are simulated, such as the carrier density distribution and the output power.
Moreover, a time analysis has been conducted to highlight the temporal evolution
of the electric field modal intensities. This analysis reveals the switching on of
different modes, and after the transient phase, the attainment of a steady-state
condition.
Another important feature that has been analyzed is the Relative Intensity Noise
(RIN). It is a measure of the relative variation in time of an optical signal intensity,
it represents the intrinsic noise of the system that can degrade the optical trans-
mission.
For a single mode VCSEL, the RIN exhibits a characteristic peak at low frequency
due to the relaxation oscillation of the system. When more than one mode starts to
turn on in the laser, some spurious peaks appear in the spectra due to the spatial
overlapping of transverse modes.

After the characterization of the device itself, the contribution of the optical
feedback has been added to the analysis. The optical feedback originates from
the light reflected back into the VCSEL cavity from the optical fiber. Within the
cavity, the feedback combines with the output power, introducing a modulation
that is a periodic function of the phase of the back-reflected field. The effects of
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the feedback include variations in the emitted power and the threshold condition,
as well as changes in the carrier density and the emitted wavelength. In some
cases, this has as result a further increase of the noise and then degradation of the
VCSEL transmitter performances.

All these analysis are conducted using a MATLAB code to integrate an in house
model developed by the supervisor research group and consisting in a set of rate
equations, which is a set of differential equations that describes the evolution of
the electric field intensity and of the carrier density in time.

The purpose of the second part of the thesis is to validate the code and the
model used to simulate the device. In order to do that, two different approaches
have been followed. The first one concerns the qualitative reproduction of the
results obtained and published in the paper: "Effects of Optical Feedback on Static
and Dynamic Characteristics of Vertical-Cavity Surface-Emitting Lasers" by Joanne
Y. Law and Govind P. Agrawal, describing a similar system.
The second one includes the comparison between the code used to simulate the
VCSEL and the well known Lang-Kobayashi equations used to simulate a single
transverse mode semiconductor LASER under the application of simplifying hypoth-
esis and another MATLAB code that implements the Lang-Kobayashi equations.

In the appendix, using the simplified LK model, a mathematical model has been
developed to derive steady-state (continuous-wave, CW) solutions for the VCSEL
system and perform the linear stability analysis on these solutions. This approach
helps to identify the stability region of the CW solutions in presence of optical
feedback.
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Chapter 1

Introduction

VCSELs were introduced in 1990 and are used mainly for short link optical data
transmission in multi-mode fiber.
They are widely used due to their unique properties, such as requiring a small
driving current, which leads to low power consumption and high efficiency. They
exhibit excellent digital modulation behavior for high data rates and can oper-
ate effectively at high temperatures (up to 125 °C) without the need for cooling,
demonstrating very high reliability and long lifetime. Additionally, their production
costs are low, and they can be tested at the wafer level during the fabrication process.

Like every semiconductor lasers, VCSELs are composed by a cylindrical inner
cavity where the active region consists of an hetero-structure p-i-n junction where
carriers are confined in quantum wells, and an external metallizations for the supply
current. The layers stack placed around the active medium is epitaxially grown
perpendicular to the direction of propagation of the photons. It is composed by an
alternation sequence of low and high refractive index layers that are electrically
conductive and behaves as mirrors -distributed Bragg reflectors- with an high
average reflectivity. Mirrors are necessary for the system to reach the lasing action.
The layer structure of a VCSEL is shown in Figure 1.1.
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Introduction

Figure 1.1: Schematic layer structure and operating principle of a VCSEL [1].

The emission wavelengths depend on the physical and geometrical characteristics
of the structure. Because the VCSEL’s cavity length is comparable to a single
wavelength, the separation between consecutive peaks in the transmission spectrum
of the inner cavity (Free Spectral Range - FSR) is very large. As a result, typically
only one longitudinal mode reaches the lasing condition and is emitted.
Moreover, the transverse dimensions of the cavity determine the number of trans-
verse mode that can propagate. Multimode lasers can afford higher power, higher
robustness, and are more suitable for applications that require greater flexibility or
larger beam areas. Despite the advantages of working with a multimode VCSEL,
the beating between transverse higher order modes can be detrimental for error-free
transmission, since it contributes to the formation of undesired peaks in the RIN
spectrum [2]. The amplitude of the noise is measured through the Relative Intensity
Noise spectrum.
The coherent mode coupling produces spurious peaks in the RIN spectrum, and con-
sequently an increase in the integrated RIN measured over the receiver bandwidth.
As the transmission data rate continues to rise, the bandwidth of the receivers will
also need to expand. It is thus useful understanding the physical reasons behind
the increase of the RIN in order to limit and to shift the spurious peaks outside
the receiver’s bandwidth.
It has been shown that changing the geometrical characteristics of the VCSEL
allows to shift the beating’s frequency outside the receiver bandwidth maintaining
the advantages derived by the use of multi-mode device [3], [4], [5]. In particular,
it has been shown that the elliptical oxide aperture contributes to break the quasi-
degeneracy of the transverse mode associated with circular oxide aperture, shifting
the spurious peaks to higher frequency. In particular, controlling the oxide aperture
ellipticity and axes dimension, it is possible to modify the modal thresholds and
the frequency separation among different modes [2].

This thesis aims to simulate VCSELs free running multimode behavior and evaluate
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the effect of optical feedback in affecting the RIN performance. These analysis
are conducted through different tests carried out with an unpublished numerical
simulation code developed on MATLAB by the supervisors research group in col-
laboration with CISCO system.

3





Chapter 2

VCSEL dynamics

2.1 Model and equations
VCSELs dynamics relies on a set of differential equations describing the time
evolution of the carrier’s density and the electric field’s amplitude and phase. The
model presented in the following is taken from the paper "Impact of Coherent
Mode Coupling on Noise Performance in Elliptical Aperture VCSELs for Datacom"
written by Cristina Rimoldi, Lorenzo L. Columbo, Alberto Tibaldi, Pierluigi De-
bernardi, Sebastian Romero García, Christian Raabe and Mariangela Gioannini.

In all the following equations, the polar coordinate ρ is normalized to the beam
waist of the fundamental mode (called C1), ω0 = 2πc

λ0
is the angular frequency of

the fundamental mode, and ωm = 2πνm is the angular frequency detuning of mode
Cm with respect to the mode C1. [2].

Equation 2.1 is the carrier’s rate equation.

dN(ρ, ϕ, t)
dt

= ηiI(ρ, ϕ, t)
eV

− N(ρ, ϕ, t)
τe

−
n2

gϵ0GN

2ℏω0
[N(ρ, ϕ, t) −N0]

|E(ρ, ϕ, t)|2
1 + ϵNp(ρ, ϕ, t)

+D∇2
⊥N(ρ, ϕ, t)

(2.1)

The first term of the Equation 2.1 represents the carriers injection rate inside the
active region, which is the region where recombining carriers contribute to photon
emission. The current distribution is weighted by the injection efficiency ηi that
takes into account the leakage current flowing outside the active region. V is the
active region volume.
The second term represents the spontaneous emission rate, where τe is the carrier’s
lifetime.
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The third term of the equations takes into account the stimulated emission, GN =
gN · v where gN is the differential gain and v the group velocity, ng is the group
refractive index, Np(ρ, ϕ, t) = n2

gϵ0|E(ρ,ϕ,t)|
2ℏω0

is the photon density with ϵ0 the vacuum
permittivity and N0 is the transparency carrier density.
The last term accounts for diffusion mechanism, ∇⊥ is the transverse Laplacian
operator and D is the carrier diffusion coefficient.
The carrier density N(ρ, ϕ, t) is expanded on an orthonormal set of 91 real linear
combinations of Gauss-Laguerre functions Bk [2] according to

Nk(t) =
Ú ∞

0

Ú 2π

0
N(ρ, ϕ, t)Bk(ρ, ϕ)ρdρdϕ (2.2)

Also the current distribution can be projected on the modes Bk according to

Ik(t) =
Ú ∞

0

Ú 2π

0
I(ρ, ϕ, t)Bk(ρ, ϕ)ρdρdϕ (2.3)

Substituting the carrier density components Nk and the current Ik components
inside Equation 2.1 and using the orthonormality condition, it is possible to obtain
the final rate equation for the modal component of the carrier density as shown in
appendix A. The final rate equation is the Equation 2.4.

dNk(t)
dt

= ηiIk

eV
− Nk(t)

τe

−
n2

gϵ0GN

2ℏω0
gk(t) + dk(t) − 4DNk(t)qk (2.4)

qk terms are defined in Appendix A.

The same procedure can be applied for the electric field rate equation (Equa-
tion 2.5), expanded on a sub set of an orthonormal basis.

dẼ(ρ, ϕ, t)
dt

= −(1 + iα))
2τp

Ẽ(ρ, ϕ, t) + ΓGN(1 + iα)
2

Ẽ(ρ, ϕ, t)
1 + ϵNp(ρ, ϕ, t) [N(ρ, ϕ, t) −N0]

+ Ssp(ρ, ϕ, t)
(2.5)

The first term of Equation 2.5 is associated to mirror and waveguide losses, τp is
the photon lifetime inside the cavity which assumes different values according to
the considered transverse mode, and α is the linewidth enhancement factor (defined
in Equation 2.6).

α = −
dn
dN
dni

dN

= −4π
λ

dn
dN
dg
dN

(2.6)

The linewidth enhancement factor describes the relative variation between the real
and imaginary part of the refractive index caused by the carriers density variation.
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This parameter characterizes the relative variation of the gain with respect to the
refractive index.
The second term of the Equation 2.5 takes into account the stimulated emission
where Γ is the longitudinal confinement factor, which represents the ratio between
the power in the active region and the total power, and ϵ is the gain compression
factor that takes into account the spatial hole burning phenomenon.
The last term represents the spontaneous emission contribution.

The transverse electric field profile Ẽ(ρ, ϕ, t) can be expanded on an orthonor-
mal set of real Hermite-Gauss modes Cm that better approximate the elliptical
VCSEL aperture, according to Equation 2.7.

Ẽm(t) =
Ú ∞

0

Ú 2π

0
Ẽ(ρ, ϕ, t)Cm(ρ, ϕ)ρdρdϕ (2.7)

Substituting the last expression inside Equation 2.5, and writing the the complex
temporal component of the electric field in the form Em(t) = Ẽm(t)e−iωmt, it is
possible to obtain the final rate equation for the modal component of the electric
field (detailed calculations are reported in Appendix A).

dEm(t)
dt

=
A
iωm − 1 + iα

2τp,m

B
Em(t) + ΓGN(1 + iα)

2 fm(t) + Ssp(t) (2.8)

Equations 2.8 and 2.4 are the set of complex coupled nonlinear differential equations
for the modal component of the electric field and carriers density, with

fm(t) =
Ú ∞

0

Ú 2π

0

E(ρ, ϕ, t)
1 + ϵNp(ρ, ϕ, t)Cm(ρ, ϕ)[N(ρ, ϕ, t) −N0]ρdρdϕ (2.9)

gk(t) =
Ú ∞

0

Ú 2π

0

|E(ρ, ϕ, t)|2
1 + ϵNp(ρ, ϕ, t)Bk(ρ, ϕ)[N(ρ, ϕ, t) −N0]ρdρdϕ (2.10)

dk(t) = 4D
Ø

n

Nn(t)
Ú ∞

0

Ú 2π

0
Bk(ρ, ϕ)Bn(ρ, ϕ)ρ3dρdϕ (2.11)

We observe that the integral term fm (Equation 2.9) contains the physical origin
for the spurious peaks in the RIN spectrum caused by the coherent overlap between
different propagating transverse modes. Since the carriers density N(ρ, ϕ, t) has a
non uniform spatial distribution and the gain compression factor ϵ is different from
zero, the transverse modes interact and influence each other.
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2.2 Single mode analysis

2.2.1 Parameters
The following analysis has been conducted using an in house Matlab code devel-
oped by the supervisors research group. The code has been developed to simulate
multi-transverse mode dynamics, but it is possible to properly set the parameter
that defines the number of propagating mode in order to obtain a single-mode
simulation. This condition is forced for the current analysis, but it is physically
unachievable considering the chosen pump current distribution, because the latter
will generate a carrier distribution that activates multiple modes.
The simulator is based on the rate equations (Equations 2.8 and 2.4) and thus it
accounts for the contribution of carrier diffusion in the transverse plane, coherent
frequency mixing effects and spatial hole burning [2]. We suppose that the emitted
field is linearly polarized.

The parameters used in the simulations are listed in Table 2.1, and comes from the
collaboration between the research group and the CISCO Systems Inc. that has
conducted experimental tests of real devices.

Parameter Value Parameter Value
DBR reflectivity 0.98 Detuning ν2 213 GHz

λ0 850 nm Detuning ν3 292 GHz
N0 2.37 × 1024 m−3 Detuning ν4 503 GHz

nr (GaAs) 3.4 nfiber 1.45
Active medium length 2 × 10−8 m V 7 × 10−19 m3

Waveguide losses αi 800 m−1 D 30 cm2s−1

GN 7.78 × 10−12 m3s−1 τp,1 1.67 ps
α 1 τp,2 1.2 ps
ηi 0.76 τp,3 1.13 ps
τe 0.92 ns τp,4 0.83 ps
Γ 0.0666 Inner cavity length 1 µm
ϵ 1.71 × 10−23 m3

Table 2.1: Parameters for dynamical simulations.

In Table 2.1, are reported the refractive index of the fiber (nfiber) which rep-
resents the external cavity medium, the background refractive index (nr), which
represents the internal cavity medium, and the waveguide losses (αi).

The supply current used to bias the VCSEL follows a supergaussian distribu-
tion, its characteristic parameters are reported in Table 2.2.
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Parameters Values
rh 4 µm

Beam waist W0 1.79 µm

Table 2.2: Supergaussian profile parameters.

Parameter rh is defined in Equation 2.12, where r represents the radius.

rh = 2ρ2 = 2
3
r

W0

42
(2.12)

Equation 2.13 expresses the bias current distribution.

I = Ibiase
− (2ρ2)6

106 (2.13)

The profile shape of the bias current distribution remains consistent, while the
magnitude of the flat top adjusts according to the injected current value Ibias. In all
the reported graphs, when a current dependence is present, the indicated current
value corresponds to Ibias.
Figure 2.1 represents the supergaussian distribution for a bias current of 8 mA.

Figure 2.1: Supergaussian distribution for an injected current I=8 mA.

2.2.2 Carrier’s density distribution
The quantity represented in Figure 2.2 corresponds to the difference between the
overall carrier density and the transparency carrier density (namely N −N0).
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Figure 2.2: Carrier density distribution for different bias current I = [1 mA,
6 mA].

The first mode is represented in Figure 2.3 and, according to this analysis, is
the only one that contributes to the emitted power.
The first mode distribution and carrier density distribution exhibit a clear corre-
spondence: carriers recombine more in regions of higher photon density. As the
injected current increases, the number of carriers within the active region rises.
Also the number of carriers that recombine increases, resulting in a corresponding
higher output power.

Figure 2.3: C1 function for the first mode.

In the first analysis, zero current is injected into the device. The quantity
represented in Figure 2.4 is N−N0, this leads to the distribution assuming negative

10



VCSEL dynamics

values given that N is lower than the transparency carrier density. The distribution
does not assume constant value (equal to N0) because random noise is added to
the normalized carrier density amplitude, independently of the input current.

Figure 2.4: Carrier density distribution for I = 0 mA.

2.2.3 Time analysis of the modal intensities
Figures 2.5 depicts the time evolution of the modal intensity for the fundamental
mode at different current values.

Figure 2.5: Modal intensity for an injected current going from 0 mA to 5 mA.

For zero current injected the device is below threshold, and the modal intensity
consists entirely of spontaneous emission. Increasing the current and overcoming
the threshold, the VCSEL switches on and starts to emit a certain amount of

11



VCSEL dynamics

optical power depending on the value of the bias current.

Figure 2.6 shows the zoom of the transient for I = 8 mA and highlights the
turn-on delay of the laser. After a transient dominated by under-damped relaxation
oscillations the photons reach the steady state condition.

Figure 2.6: Modal intensities transient for 8 mA.

2.2.4 Output power

The output power of the device can be computed according to Equation 2.14.

Pout = αmvgℏωVpNp (2.14)

In the previous equation Np corresponds to the photon density.
The square modulus of the normalized modal amplitudes is evaluated by summing
the square of the real and imaginary parts of the normalized modal amplitude of
the electric field within the specified time interval. To perform the computation, the
transient period during which the electric field distribution stabilizes is excluded,
and only the steady-state value is considered.
Evaluating both the real and imaginary parts of the electric field, squaring them,
and summing all contributions for each propagating mode, it is possible to derive
the output power characteristic as a function of the injected current.
Since the VCSEL is single mode, the normalized modal amplitude of the electric
field has the same shape of the total output power represented in Figure 2.7.
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Figure 2.7: Output power.

The threshold current is around 0.7 mA. Above threshold, the power exhibits
a linear dependence on the bias current as expected. The same power-current
characteristic is described, for example, in the book [6].

2.2.5 RIN

Relative Intensity Noise describes the instability of power emitted by a laser. It is
evaluated as the photon density fluctuations over the mean photon density squared.
It depends on the injected current through the mean output power.

RINHz = 10 log10
2SδP (ω)

P 2
mean

(2.15)

Equation 2.15 describes how the RIN is evaluated, Pmean is the mean power over
the time interval considered, SδP (ω) represents the spectral density of the power
fluctuations.
RIN spectra in Figures 2.8 are evaluated over a bandwidth of 200 GHz.
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Figure 2.8: RIN for an injected current going from 1 mA to 6 mA.

As expected, the RIN spectra presents a smooth peak in correspondence to the
resonance frequency due to the relaxation oscillations. The same behavior can be
observed, for example, in the book [6].
The resonance frequency is around 12.5 GHz.

2.3 Multimodal analysis
In the multi-mode analysis, the parameters used are the same as those listed in
Table 2.1. However, unlike in the previous section where only a single mode was
involved, the first four transverse modes contribute to the transmission.
Modes considered are Cm for m = 1 - 4, and can be built through linear combinations
of modes Bk [2].

C1(ρ, ϕ) = B1(ρ, ϕ) =
ó

2
π
e−ρ2 (2.16)

C2(ρ, ϕ) = B2(ρ, ϕ) =
ó

2
π

2ρ cosϕe−ρ2 (2.17)

C3(ρ, ϕ) = B3(ρ, ϕ) =
ó

2
π

2ρ sinϕe−ρ2 (2.18)

C4(ρ, ϕ) = B4(ρ, ϕ)√
3

−
ó

2
3B5(ρ, ϕ) (2.19)

Modes that are involved in the analysis are represented in Figure 2.10.
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Figure 2.9: B functions.

Figure 2.10: Modal distribution (C functions).

For each higher transverse mode is defined a reference frequency detuning with
respect to the fundamental mode. The self-heating of the VCSEL causes a red
shift of the lasing wavelengths that depends on the different transverse spatial
profile. Frequency detuning values are reported in Table 2.1 and are evaluated at
the threshold current for each mode [2].
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2.3.1 Carrier’s density distribution

Figure 2.11 shows the difference between the overall carrier density and the trans-
parency carrier density for the multimode VCSEL.

Figure 2.11: Carrier density distribution for an injected current going from 1 mA
to 10 mA.

The carrier density distribution is non-uniform due to diffusion and spatial hole
burning effects, which causes coupling among modes.
In order to analyze the competition between modes, the square modulus of the
normalized modal amplitudes (Figure 2.12) should be analyzed. Figure 2.12 has
been plotted taking into account the mean value of the modal amplitudes over the
time discarding the transient for each transverse mode and considering only the
steady-state condition.

Figure 2.12: Square modulus of the normalized modal amplitudes.
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From Figure 2.12 it is possible to observe that when the bias current is set to
1 mA, only the first mode contributes to the output power. For values between
2 mA and 4 mA, three lasing modes are present and only beyond 5 mA, the fourth
mode becomes active.
The mode distribution and carrier density distribution exhibit a clear correspon-
dence, with carriers recombining more in regions of higher photon density.
When the bias current is 1 mA, the fundamental mode’s profile has a complementary
spatial distribution with respect to the carrier’s density distribution (Figure 2.9).
As the second and third modes begin to be emitted, the carrier recombination
increases in the central region.
From 5 mA onward, the central part, the upper and lower regions of the carrier
distribution exhibit reduced carrier density following the C4 shape. The obtained
carrier’s density distribution includes the contribution of all the modes.

2.3.2 Output power
Figure 2.13 shows the total optical power for the multimode configuration. Graph
2.13 has been obtained as explained in the section 2.2.4, but since four modes
contribute to the output power, all of their normalized modal amplitudes should
be taken into consideration for the total power evaluation.

Figure 2.13: Output power.
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2.3.3 Time analysis of the modal intensities

Figures 2.14 and 2.15 depict the time evolution of the modal intensity for each
mode at different current values, and Figure 2.16 shows the zoom of the transient
for I = 8 mA.

Figure 2.14: Modal intensities for an injected current going from 0 mA to 5 mA.

Figure 2.15: Modal intensities for an injected current going from 6 mA to 10 mA.
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Figure 2.16: Modal intensities transient for 8 mA.

Figure 2.16 highlights the different threshold of the four modes. C1 results par-
tially suppressed when the second and the third mode switch on. This phenomenon
can be explained by gain competition and spatial hole burning.
The gain medium in the laser has a limited amount of energy available for amplifi-
cation. When the second and the third mode switch on, they compete partially for
the gain resources as the first one. The fundamental mode suppression is partial
because the spatial distribution of the modes do not exactly overlap, and so the
spatial hole burning does not completely suppress the first mode. Moreover, as the
higher order transverse modes grow, they also affect the gain distribution, leading
to changes in the first mode’s intensity.
If the modes overlap spatially, as happens for the C2 and for the C4, their interaction
can reduces the effective gain for the other. The results is the reduced intensity in
the temporal evolution of the already present mode.
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2.3.4 RIN
Also in this case RIN is evaluated over a bandwidth of 200 GHz.

Figure 2.17: Relative intensity noise for an injected current going from 1 mA to
6 mA.

Figure 2.18 displays a superposition of two RIN spectra evaluated at low current
value (4 mA) and high current value (8 mA).

Figure 2.18: Integrated RIN for current values of 4 mA to 8 mA.

The RIN spectrum presents a smooth peak in correspondence to the resonance
frequency due to the relaxation oscillations and three additional peaks due to the
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spatial overlap of transverse modes. The spurious peaks appear as the current
increases.
The first spurious peak emerges at 159 GHz for I = 2 mA, coinciding with the
current value when the second and third modes initiate to be emitted. This peak
is the results of competition between the mode C2 and C3. It is in fact close to
the second harmonic of the frequency difference between C3 and C2 = 2|ν3 − ν2|
= 158 GHz ([2]). This peak represents the overlap between these modes and
the fundamental one. Detailed calculations are reported in the paper "Impact of
Coherent Mode Coupling on Noise Performance in Elliptical Aperture VCSELs
for Datacom" written by Cristina Rimoldi, Lorenzo L. Columbo, Alberto Tibaldi,
Pierluigi Debernardi, Sebastian Romero García, Christian Raabe and Mariangela
Gioannini.
Meanwhile, the second and third spurious peaks arise at 80 GHz and 83 GHz, re-
spectively, for I = 5 mA, corresponding to the onset of the fourth mode. They can
be associated to the frequency difference between C4 and C2 = |ν4 − 2ν2| = 80
GHz and between C4 and C3 = |ν4 − 2ν3| = 83 GHz [2].
Peaks in RIN spectrum are associated to the non linear frequency mixing phe-
nomenon, known as Four wave Mixing, whose efficiency depends on the spatial
overlap integral between modes [2].
The overlap between modes is mediated by the non-uniform carrier distribution in
the active region, as given by the term fm(t) (Equation 2.9) [2]. Spurious peaks
increase the integrated RIN, whose trend of grow can be observed in Figure 2.19.
Integrated RIN values for different current are also reported in Table 2.3.

Figure 2.19: Integrated RIN for current values going from 1 mA to 10 mA.
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Current [mA] Integrated RIN [dBc/Hz] Current [mA] Integrated RIN [dBc/Hz]
1 -159.00 6 -153.78
2 -158.70 7 -152.98
3 -157.74 8 -152.34
4 -156.94 9 -151.88
5 -154.98 10 -151.35

Table 2.3: Integrated RIN over a bandwidth of 200 GHz.

Integrated RIN values, listed in Table 2.3, are evaluated over a bandwidth of
200 GHz. Considering a receiver bandwidth of 40-50 GHz, even for high current
values (8-10 mA) the spurious peaks do not create any error in data’s transmission.

Changing the detuning values listed in Table 2.1, a worse-case scenario can be
achieved where the spurious peaks fall within the receiver bandwidth. Figure 2.20
shows the RIN spectrum for a current of 4.5 mA and 6 propagating modes, with
the corresponding detuning values provided in Table 2.4.

Figure 2.20: RIN spectrum.

Transverse mode Detuning [GHz] Transverse mode Detuning [GHz]
C1 0 C4 415.528
C2 193.521 C5 476.125
C3 262.111 C6 476.125

Table 2.4: Detuning values for the 6 transverse mode.
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With detuning values listed in Table 2.4 and a receiver bandwidth of 50 GHz,
error during the transmission are expected due to the spurious peak that can be
observed at low frequency.
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Chapter 3

VCSEL dynamics with
external optical feedback

The aim of this analysis is to determine how the feedback can be controlled by
varying different parameters and to identify the operating regions where feedback
has minimal impact on multimode VCSEL dynamics.

Physically, feedback arises from any optical elements introduced in the trans-
mission system or from the fiber facets and junctions. Optical feedback, in a
typical setup where the VCSEL is used as transmitter for optical communications,
originates, for example, from the light reflected back into the VCSEL cavity from
the optical fiber. Within the cavity, the feedback combines with the output power,
introducing a modulation that is a periodic function of the phase of the back-
reflected field.
The effects of the feedback include variations in the emitted power and the threshold
condition, as well as changes in the carrier density and the emitted wavelength.
Under certain conditions this may lead to an increase of noise (RIN).
Moreover, feedback introduces variation of the stationary solutions of the system,
it can be another CW solution or a dynamical regime. Dynamical regime should
be avoided for the transmission of information because the 1:1 correspondence
between current and power is lost due to the oscillating behavior.

3.1 Model and equations
In order to extend the model described in the previous chapter for the inclusion
of the external optical feedback, rate equations (Equations 2.8 and 2.4) should be
modified.
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The experimental setup for the feedback analysis is shown in Figure 3.1. This is
similar to the experimental set-up recently proposed by Cisco system to study the
effect of spurious back-reflections on the VCSEL dynamics and in particular on its
RIN.

Figure 3.1: Experimental setup for feedback analysis (in collaboration with
CISCO system).

The experimental setup is composed by the VCSEL, a beam splitter, a reflector
and a variable optical attenuator (VOA).
The beam splitter is used to deflect the light emitted by the laser inside the optical
fiber, it is included in the experimental model to prevent damage to the VCSEL
when directly coupled with the fiber. Diffraction between the laser and the fiber
isn’t included in the model. The lenses and the beam splitter introduce experimen-
tally a self-imaging configuration.
The reflector introduces a constant feedback inside the system, and according to
experimental data, the maximum feedback value included in the analysis corre-
sponds to -12 dB.
VOA tunes the quantity of back reflected radiation inside the system.

In the model we introduced the feedback parameter κ [7], which represents the
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feedback strength.
κm = ϵ

ñ
Rext

1 −R√
R

(3.1)

In expression 3.1, ϵ represents the mode overlap mismatch between the back re-
flected and the lasing mode, it may vary depending on the mode considered, but
in this model, it is assumed to be the same for all propagating modes. When ϵ is
set to 1, the feedback strength reaches its maximum, with -12 dB reinjected into
the system. While, when ϵ is set to 0, the configuration corresponds to that of a
free-running laser.
Rext is the power reflectivity of the external reflector, included in the model as
10 log10 Rext = −12 dB. R is the power reflectivity of the laser internal facets.
With Lext we indicate the effective length that separates the VCSEL from the
transmission system. In the external cavity, the modal spatial profile remains
unchanged, keeping the same characteristics it has when it goes out from the
VCSEL cavity. Only its modal amplitude can be modified by the feedback, this
means that the approximation of negligible diffraction phenomena is applied.

The external feedback effect depends mainly on two parameters that are the
κ coefficient and Lext. It is possible to define the Acket’a parameter C that
combines these two parameters [8].

C = κτext

√
1 + α2

τc

(3.2)

Starting from field rate equations (Equation 2.8), to account for the effect of
feedback, an additional time-delayed term is introduced, weighted by the coupling
coefficient κ.
dE(t)
dt

= (iωm− 1 + iα

2τp,m

)Em(t)+ ΓGN(1 + iα)
2 fm(t)+Ssp(t)+ κ

τc

Em(t−τext)e−iω0τext

(3.3)
In the time delayed differential equation (Equation 3.3), τc and τext are respectively
the internal and external laser cavity round trip times defined in Equation 3.4 and
3.5.

τc = 2Lcav

vg

(3.4)

τext = 2nfLext

c
(3.5)

The external cavity is formed by the external reflector and the VCSEL exit facet.
nf , in the Equation 3.5, is the refractive index of the external cavity medium that
is close to the effective refractive index of the fiber.
Equation 3.3 includes only a single round trip through the external cavity because
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the κ coefficient considered in the following analysis is small, it means that the
feedback is weak and multiple reflections can be neglected. This case of weak
feedback regime is the one considered during the following simulations.

The rate equation for the carrier’s density is not modified by the feedback parame-
ter, and remains the same written in Equation 2.4.

Reinjected radiation interacts with the intracavity laser field and depending on the
intensity of the feedback and the phase of the reinjected field this may produce very
different dynamical outputs. Figure 3.2 summarizes the five operating regimes of a
laser subjected to optical feedback, boundaries between different regimes depend
on the bias level and on the laser structure [8].

Figure 3.2: VCSEL’s dynamics [8].

Regime I corresponds to the lowest feedback level, the laser operates on a single
mode corresponding to the solitary laser mode narrowed or broadened depending
on the phase of the feedback.
Keeping fixed Lext and increasing the feedback strength, the dynamics of the VC-
SEL changes from single mode to multi-mode. Here the laser operates in Regime
II and the modal intensity goes from being constant to oscillate regularly. The
oscillation frequency of the system can be the relaxation frequency or the frequency
of the external cavity fc = c

2nf Lext
. Usually the relaxation oscillations are dumped,
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but due to the feedback contribution they become undamped. The rapid mode
hopping between two external cavity modes is caused by noise. Since the external
cavity is usually longer than the laser cavity, there is always a finite probability that
the laser will jump from one available mode into another. The transition between
the first and the second regime corresponds to the condition C = 1, this is related
to multiple solutions of the steady state equation that determines the frequency of
the laser [8]. The transition to the second regime is also possible keeping fixed the
feedback level and increasing the length of the external cavity. For values of Lext

higher than a certain threshold, the laser results always unstable.
In Regime III, the laser stabilizes in a single external cavity mode with constant
power output.
Increasing the feedback strength the coherence collapse region is reached. The
transition to Regime IV is independent of the length of the external cavity. This
Regime is characterized by a broadened optical and noise spectra and contains
many external cavity modes [8].
The Regime V corresponds again to a single, stable, narrow line that is usually
induced intentionally injecting inside the system high feedback levels.

The critical value of the feedback parameter κc defines the feedback level to
inject in order to reach the instability of the laser. If the condition of long cavity
regime (Equation 3.6) is verified, than κc can be written as Equation 3.7.

ωRτext >> 1 (3.6)

κc = τc

2τR

√
1 + α2

(3.7)

Where τR is defined as 1
ΓR

, with ΓR being the damping rate for free running laser.

ΓR = 1
τe

+ τpω
2
R (3.8)

Where ωR is the angular frequency for the free running laser.
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3.2 Simulation’s results

In this section, the study of the dynamical regimes of a single-mode VCSEL with
optical feedback is presented in terms of modal intensities temporal evolution and
RIN spectra for different values of the feedback coefficient at fixed bias current I =
8 mA, that represents a typical operative bias condition.
Parameters used for the simulation are reported in Table 2.1 and correspond to
parameters similar to VCSEL currently studied by CISCO system.

3.2.1 External cavity length Lext = 10cm

In this first analysis the length of the external cavity is set at 10 cm.

Attenuation parameter ϵ = 1 × 10−4

For very small values of attenuation (∼ 10−4), the RIN spectra and the temporal
evolution of the modal intensity tend to the one obtained for the free running
laser analysis. The same profile can be seen in Figures 3.3 and 3.4 for the modal
intensities and in Figures 3.5 and 3.6 for the RIN.

Figure 3.3: Modal intensity with ϵ = 0.
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Figure 3.4: Modal intensity with ϵ = 10−4.

Figure 3.5: RIN with ϵ = 0.
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Figure 3.6: RIN with ϵ = 10−4.

Figure 3.5 shows the RIN spectra without feedback contribution. The smooth
peak caused by the relaxation oscillation occurs around 22 GHz.

Attenuation parameter ϵ < 0.1

Figures 3.7 and 3.8 show the simulation’s results with ϵ = 0.04 for the modal
intensity and RIN spectrum. Similar evolution of the modal intensity and RIN
spectrum can be observed for ϵ = [0.01 - 0.03].

Figure 3.7: Modal intensity ϵ = 0.04.
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Figure 3.8: RIN spectrum ϵ = 0.04.

Figures 3.9, 3.10, 3.11 and 3.12 show the simulation’s results with ϵ = 0.05
for the modal intensity and RIN spectrum. With ϵ = 0.05 it becomes evident
the presence of higher peaks in the RIN spectrum at low frequencies due to the
feedback contribution.

Figure 3.9: Modal intensity ϵ = 0.05.
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Figure 3.10: Modal intensity transient zoom ϵ = 0.05.

Figure 3.11: Modal intensity ϵ = 0.05 zoom at 70 ns.
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Figure 3.12: RIN spectrum ϵ = 0.05.

Attenuation parameter ϵ = 0.1

Figure 3.13 shows the RIN spectrum with feedback contribution with an attenuation
of 0.1. At low frequencies, an increase in the RIN can be observed, along with the
appearance of additional peaks, which also raises the integrated RIN.
To remove the transient from the simulation, and to be sure that the simulation
has reached the steady state, the RIN spectra is evaluated for time instants above
70 ns.

Figure 3.13: RIN spectrum with feedback (ϵ = 0.1).
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Figure 3.14: RIN spectrum with feedback (ϵ = 0.1): low frequency zoom.

The external cavity frequencies correspond to values calculated using Equation
3.9.

FSR = c

2nfLext

= 3 × 108 m/s
2 · 1.45 · 0.1 m = 1.034 GHz (3.9)

From Figure 3.14, it is possible to estimate that the distance between peaks at low
frequency in the RIN spectra corresponds exactly to the FSR of the external cavity
modes.

Figure 3.15 shows the evolution of the modal intensity of the first transverse
mode with feedback contribution with an attenuation of 0.1. The spacing between
the spikes within the graph corresponds to the time it takes for the field to travel
twice the length of the external cavity.

τext = 2nfLext

c
= 0.967 ns (3.10)
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Figure 3.15: Modal intensity with feedback (ϵ = 0.1).

Figure 3.16 shows a zoom in the evolution of the modal intensity of the first
transverse mode with feedback contribution with an attenuation of 0.1.

Figure 3.16: Modal intensity with feedback (ϵ = 0.1): zoom at 70 ns.

Attenuation parameter ϵ > 0.1

As the feedback level injected into the system increases, the transient time of the
modal intensities becomes longer. Consequently, the simulation time needs to be
extended to reach the steady state.

37



VCSEL dynamics with external optical feedback

Figures 3.17, 3.18 and 3.19 show the simulation’s results with ϵ = 0.3 for the
modal intensity and RIN spectrum.

Figure 3.17: Modal intensity ϵ = 0.3.

Figure 3.18: Modal intensity zoom at 370 ns, ϵ = 0.3.
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Figure 3.19: RIN spectrum ϵ = 0.3.

Figures 3.20, 3.21 and 3.22 show the simulation’s results with ϵ = 0.5 for the
modal intensity and RIN spectrum.

Figure 3.20: Modal intensity ϵ = 0.5.
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Figure 3.21: Modal intensity zoom at 770 ns (ϵ = 0.5).

Figure 3.22: RIN spectrum ϵ = 0.5.
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Figures 3.23, 3.24 and 3.25 show the simulation’s results with ϵ = 0.7 for the
modal intensity and RIN spectrum.

Figure 3.23: Modal intensity ϵ = 0.7.

Figure 3.24: Modal intensity zoom at 770 ns, ϵ = 0.7.
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Figure 3.25: RIN spectrum ϵ = 0.7.

Figures 3.26, 3.27 and 3.28 show the simulation’s results with ϵ = 1 for the
modal intensity and RIN spectrum.

Figure 3.26: Modal intensity ϵ = 1.

42



VCSEL dynamics with external optical feedback

Figure 3.27: Modal intensity zoom at 770 ns ϵ = 1.

Figure 3.28: RIN spectrum ϵ = 1.

Concluding, the increase the feedback level injected inside the system causes an
increase of the RIN at low frequency with the appearance of peaks separated by
the FSR of the external cavity.
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Bifurcation Diagram

In order to evaluate the effect of the feedback on the system, bifurcation diagrams
are plotted considering the variation of the power as a function of the feedback
strength. Bifurcation diagram is useful to describe the VCSEL dynamics and its
stability. Specifically, in cases where the VCSEL exhibits multiple modes, the
bifurcation diagram can clarify which modes are most influenced by instability.

Bifurcation diagrams are obtained from the analysis of the time evolution of
the modal intensities for different values of the feedback parameter.
When the modal intensity has reached the steady-state condition, its time evolution
gives information about the stability of the system.
In order to obtain the bifurcation diagram, the relative maxima and minima of the
photon density time evolution should be found and plotted.
A single point in the bifurcation diagram represents CW operation (Figure 3.29a),
two points represent regular period-one oscillations (Figure 3.29b) and many points
represent the chaotic behavior (Figure 3.29c).

(a) (b)

(c)

Figure 3.29: Time evolution of the photon density: CW solution (a), regular
oscillations (b), chaotic behavior (c).
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Figure 3.30 depicts the bifurcation diagram plotted considering the data shown
in the previous section.
For each value of the feedback parameter the local maxima and minima of the
modal intensity evolutions are plotted. Only the last ns of the temporal evolution
are considered to avoid the transient state.

Figure 3.30: Bifurcation diagram.

According to Figure 3.30, the system exhibit a CW solution that differs for each
of the feedback levels considered, since the bifurcation is not present in the graph.
The amplitude of the oscillations of the modal intensities is not sufficient to enter
in the second Regime described in Figure 3.2, the relaxation oscillations remains
dumped, only the grow of the external cavity modes is observed.

Integrated RIN

Table 3.1 lists the evolution of the integrated RIN for different values of the
attenuation parameter ϵ and for two different bandwidth values: 40 GHz and 5
GHz.
The trend of the Integrated RIN variation is illustrated in Figure 3.31.
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Epsilon Integrated RIN (40 GHz) [dBc/Hz] Integrated RIN (5 GHz) [dBc/Hz]
0 -165.7264 -173.9684

0.01 -165.8577 -174.4116
0.02 -166.0013 -173.5837
0.03 -165.6071 -173.5198
0.04 -165.6557 -173.7567
0.05 -165.6323 -172.3745
0.06 -165.9908 -172.5034
0.07 -165.6967 -165.8121
0.08 -164.8759 -162.9030
0.09 -163.4616 -157.7332
0.1 -154.2921 -145.6216
0.2 -165.5516 -170.8341
0.3 -154.4743 -145.8013
0.4 -147.7510 -138.8529
0.5 -149.5513 -140.5738
0.6 -150.7029 -141.7400
0.7 -166.2190 -158.6617
0.8 -158.3964 -149.5157
0.9 -157.9679 -149.0556
1 -146.3291 -137.3837

Table 3.1: Integrated RIN.

Figure 3.31: Integrated RIN as a function of attenuation parameter.
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Until ϵ = 0.06 the integrated RIN evaluated over a bandwidth of 40 GHz remains
higher than the integrated RIN evaluated over a bandwidth of 5 GHz, and their
values are approximately constant. When the feedback effect starts to influence
the RIN spectra at low frequency, the value of the integrated RIN evaluated over
a bandwidth of 40 GHz becomes lower than the integrated RIN evaluated over a
bandwidth of 5 GHz.
The integrated RIN evolution as a function of the attenuation parameter presents
some relative maxima in correspondence of ϵ = 0.1, ϵ = 0.4 and ϵ = 1.3.
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Chapter 4

Model Validation

The aim of this chapter is to test the validity of the model by comparing its results
with those obtained using well tested approaches to describe semiconductor lasers
subject to optical feedback.

The first test concerns the reproduction of the results obtained and published
in the paper: "Effects of Optical Feedback on Static and Dynamic Characteristics of
Vertical-Cavity Surface-Emitting Lasers" by Joanne Y. Law and Govind P. Agrawal.

The second test concerns the reproduction of the results of the more basic Lang-
Kobayashi model under very simplifying hypotheses.

4.1 Comparison with another model for a multi-
mode VCSEL subject to optical feedback

The objective is to validate both the model and the numerical code adopted to per-
form the simulations reported in the previous chapter by qualitatively reproducing
the results in the paper titled "Effects of Optical Feedback on Static and Dynamic
Characteristics of Vertical-Cavity Surface-Emitting Lasers" by Joanne Y. Law and
Govind P. Agrawal, and to achieve comparable results.
A perfect match between the results obtained with the VCSEL model and those
reported in the article is not possible, as the equations employed in the two cases
differ slightly. In particular, the interference terms associated with modes competi-
tion are not properly taken into account in the Agrawal’ model that thus results
less accurate to describe multimode VCSEL operation.
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The model used in the paper consist in the resolution of the following rate equations:

dEi

dt
= 1

2[(1 − iα)Gi(t) − γi]Ei +
MØ

m=1
kmEi(t−mτ)eimωiτ (4.1)

Where Gi is the gain for the i-th mode [9].

∂N

∂t
= D∇2

TN + J(r, ϕ)
qd

− N

τe

−BN2 − 1
d

nmodesØ
i=i

Glocal|Ei(t)|2|ψi(r, ϕ)|2 (4.2)

In the previous equation, Glocal = σ(N − NT ) is the local gain defined in the
small-signal regime, N is the local carrier density and NT is the carrier density at
transparency [9].

Another difference consists in the fact that the model described in the paper
includes the effect of multiple round-trips of the optical feedback within the exter-
nal cavity. Specifically, in the Equation 4.1, km represents the feedback parameter
for the ith mode after m external cavity round-trips, with M being the total number
of round-trips included in the model. This is expected to not introduce qualitative
changes in the system behavior with respect to the case of m = 1 that corresponds
to our model [8].

Table 4.1 lists the parameters that characterize the device simulated in the paper.

Parameters Values
Laser cavity length 2 µm
Diffusion constant 30 cm2/s

Carrier lifetime (τe) 5 ns
Refractive index (GaAs) 3.4

Emission wavelength 895 nm
Carrier density at transparency (NT ) 2.2 × 1024 m−3

Linewidth enhancement factor (α) 3
Mirror reflectivity 0.995
Internal losses (αi) 2,000 m−1
Confinement factor 0.012

Bias current 2 Ith

Volume of the active region 3.01 × 10−19 m3

Differential gain coefficient · vg 1.714 × 10−12 m3/s
External cavity length 10 cm

Table 4.1: Simulation parameters.
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The main differences comparing Table 4.1 to the CISCO parameters discussed
in the previous chapter lie in three parameters: the linewidth enhancement factor,
which was set to 1 in the CISCO parameters but is set to 3 in the current analysis.
The GN factor, representing the product of the differential gain coefficient and
the group velocity that in the current analysis is 4.5 times smaller than the value
specified by CISCO; and the carrier lifetime that is 5 times the value used in the
CISCO analysis.

We observe that we did not manage to retrieve all the input parameters required
by our model from the paper. In order to complete the simulations, the missing
values are taken from CISCO parameters. Table 4.2 lists the missing values taken
from CISCO data.

Parameters Values
Internal quantum efficiency (ηi) 0.76

Gain compression factor ϵ 1.71 × 10−23 m3

Refractive index of the fiber nf 1.45

Table 4.2: Parameters taken from Table 2.1.

The current profile used to bias the simulated device is assumed to be super-
Gaussian as in our model, even if it’s not specified in the paper.
In the paper’s simulations, the bias current is set to twice the threshold current.
To determine the threshold current, a PI characteristic is plotted without feedback
and it is reported in Figure 4.1. The threshold current is 0.7 mA.

Figure 4.1: PI characteristic.
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4.1.1 Single mode analysis

As a first analysis, only the fundamental mode is considered (mode C1).
The threshold current obtained from the PI characteristic is 0.7 mA. Setting the
bias current to twice this threshold value produces Figure 4.2, which shows the
bifurcation diagram obtained from simulating the device using VCSEL code with a
bias current of 1.4 mA. The feedback parameter k varies from 5 × 10−5 to 8 × 10−4.

Figure 4.2: Bifurcation Diagram obtained from the simulation I = 1.4 mA.

Figure 4.3: Bifurcation Diagram obtained from the simulation I = 2.1 mA.
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Figure 4.3 presents the bifurcation diagram obtained with a bias current three
times the threshold value. The bifurcation diagram in Figure 4.3 reproduces better
the diagram of the paper (reported in Figure 4.4), in terms of critical feedback
parameter and individuation of different working Regimes.

Figure 4.4: Bifurcation diagram taken from the paper [9].

The critical feedback parameter observed in Figure 4.3 is very close to that
obtained in the paper results. The ranges of k that define the boundaries between
the three regions of the diagram are instead more different. However, the three
regimes can be identified:

• for κ < 1 × 10−4 the system exhibits a stable CW solution (Figure 4.5a);

• for 1 × 10−4 < κ < 2 × 10−4 the system oscillate regularly due to undamped
relaxation oscillations (Figure 4.5b);

• for κ > 2 × 10−4 the chaotic regime starts (Figure 4.5c).
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(a) k = 5 × 10−5.

(b) k = 1.5 × 10−4.

(c) k = 3.5 × 10−4.

Figure 4.5: CW state (a), regular oscillations (b), chaotic regime (c).
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4.1.2 Two mode analysis
It is possible to extend the analysis considering two transverse mode. The value
of the bias current used influences the modal amplitudes, and as a consequence,
different bifurcation diagrams can be obtained using different bias current even
if all the other parameters are left unchanged. In order to compare bifurcation
diagrams for different propagating modes, the same bias current should be used.
Two configurations are compared: in the first one the two propagating modes have
a small spatial overlap (modes C2 and C3, Figure 4.6). In the second configuration,
the spatial overlap between the two modes is much higher because the mode con-
sidered are C2 and C4 (Figure 4.7).

Figure 4.6: Modes C2 and C3.

Figure 4.7: Modes C2 and C4.

In order to choose a proper current value for which C2, C3 and C4 are on, we
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rely on the study of the evolution of the modal intensities for a current sweep as
reported in Figure 4.8.

Figure 4.8: Modal intensity evolution.

The chosen current value is 7.3 mA, at which all three modes are active.
Bifurcation diagrams for modes C2 and C3 and for modes modes C2 and C4 are
reported respectively in Figures 4.9 and 4.10.

Figure 4.9: Bifurcation diagrams for modes C2 (black dots) and C3 (red dots).

56



Model Validation

Figure 4.10: Bifurcation diagrams for modes C2 (black dots) and C4 (red dots).

Comparing the bifurcation diagrams obtained, it is evident that the critical
feedback parameter is placed at higher value in the case of the two modes with the
higher spatial overlap.
κc = 2 × 10−4 for the C2C3 configuration and κc = 2.5 × 10−4 for the C2C4 config-
uration.
In agreement with the results reported in the paper, due to strong coupling between
the two modes through SHB, self-pulsations and onset of chaos occur at much
higher feedback values [9]. We observe that a more satisfactory explanation of this
phenomenon would deserve a further investigation.

Concluding, despite the differences between our model and the Agrawal’s one,
the MATLAB code developed by the supervisor research group is able to repro-
duce correctly the expected operating regimes of the VCSEL subjected to optical
feedback.
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4.2 Comparison with the standard Lang-Kobayashi
approach

In this section, an analysis of a free-running laser is conducted using both the
VCSEL code and another MATLAB code that implements the Lang-Kobayashi
equations that describe a standard semiconductor laser subject to optical feedback
[7]. The comparison can be done under the application of simplifying hypothesis
listed in the following.

The differential equations for the modal amplitudes of the electric field and carrier
density implemented in our multimode VCSEL model are reported in Equations
2.8 and 2.4.
The classical Lang-Kobayashi equations can be obtained starting from the VCSEL
ones applying the simplified hypothesis of spatial uniform carriers density and
electric field profile, negligible carriers diffusion, negligible gain compression factor
and uniform pump profile.

The Lang-Kobayashi equations [7] are reported in the following.

dE(t)
dt

= −1 + iα

2τp

E(t) + ΓGN(1 + iα)
2 E(t)[N(t) −N0] (4.3)

dN(t)
dt

= ηiIk

eV
− N(t)

τe

−GN |E(ρ, ϕ, t)|2[N(t) −N0] (4.4)

The quantities used for comparing the two codes include the threshold current and
threshold carrier density, as listed in Table 4.3, while the relaxation oscillation
frequency and PI characteristics are presented in Figures 4.13 and 4.14.
In order to verify the consistency between the two descriptions, the VCSEL code is
executed assuming a Gaussian distribution of the electric field amplitude, carriers
density and current (single mode approximation) to better match the VCSEL
geometry.

LK model Simplified VCSEL model
Threshold current (Ibias value) 0.4 mA 0.6 mA

Threshold carrier density mean value 2.965 × 1024 m−3 2.537 × 1024 m−3

Threshold carrier density peak value 2.965 × 1024 m−3 5.110 × 1024 m−3

Table 4.3: Threshold current and carrier density for the VCSEL model.

We observe that the mean value of the carriers density, reported in Table 4.3 for
the VCSEL code, is an average taken over the spatial distribution of the carriers
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evaluated at the threshold current.

Figures 4.11 and 4.12 report the time evolution of the carriers density ampli-
tude for current value set to 8 mA.

Figure 4.11: Time evolution of the carriers density: VCSEL model with simplifying
hypothesis.

Figure 4.12: Time evolution of the carriers density: LK model.

Figures 4.13 and 4.14 show the comparison between the PI characteristics and
the relaxation oscillation frequency evaluated using the two different approaches.
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Figure 4.13: Power-Current characteristic.

Figure 4.14: Relaxation oscillation frequency for different bias current.

The relaxation oscillation frequency values are obtained plotting RIN spectra
and considering the frequency of the smooth peak for each current value.

The results obtained using the LK and VCSEL simplified approach are thus
in good qualitative agreement. We observe in fact that the code used for the VC-
SEL simulation in the previous chapter has been developed to simulate multimode
dynamics in presence of a spatially non uniform current profile. The single mode
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simulations presented in this section were performed using a gaussian electric field,
carriers density and current profile.
In the LK code, instead, the working hypothesis are uniform carriers profile and
uniform injected current and electric field profile.
The different starting hypothesis may explain the observed differences between the
results shown in Figures 4.11, 4.12, 4.13 and 4.14.
For example the integral of the gaussian current distribution leads to a smaller
overall injected current with respect to a uniform current distribution for the same
value of Ibias.
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Modal rate equations

A.1 Carriers equation
Nk(ρ, ϕ, t) =

Ø
k

Nk(t)Bk(ρ, ϕ)

dN(ρ, ϕ, t)
dt

= ηiI(ρ, ϕ, t)
eV

− N(ρ, ϕ, t)
τe

−
n2

gϵ0GN

2ℏω0
[N(ρ, ϕ, t) −N0]

|E(ρ, ϕ, t)|2
1 + ϵNp(ρ, ϕ, t) +D∇2

⊥N(ρ, ϕ, t)

Projecting N(ρ, ϕ, t) on the Bk(ρ, ϕ) mode, remembering that Bk is a real base (B∗
k(ρ, ϕ) = Bk(ρ, ϕ))

Nk(t) =
Ú ∞

0

Ú 2π

0
N(ρ, ϕ, t)B∗

k(ρ, ϕ)ρdρdϕ =
Ú ∞

0

Ú 2π

0
N(ρ, ϕ, t)Bk(ρ, ϕ)ρdρdϕ

Also the current can be projected on the same modal base

Ik(t) =
Ú ∞

0

Ú 2π

0
I(ρ, ϕ, t)B∗

k(ρ, ϕ)ρdρdϕ =
Ú ∞

0

Ú 2π

0
I(ρ, ϕ, t)Bk(ρ, ϕ)ρdρdϕ

• L.H.S.: Ú ∞

0

Ú 2π

0

A
dN(ρ, ϕ, t)

dt

B
Bk(ρ, ϕ)ρdρdϕ = d

dt
Nk(t)

• R.H.S.: Ú ∞

0

Ú 2π

0

A
ηiI(ρ, ϕ, t)

eV
− N(ρ, ϕ, t)

τe

B
Bk(ρ, ϕ)ρdρdϕ = ηiIk(t)

eV
− Nk(t)

τe

Ú ∞

0

Ú 2π

0

n2
gϵ0GN

2ℏω0
[N(ρ, ϕ, t) −N0]

|E(ρ, ϕ, t)|2
1 + ϵNp(ρ, ϕ, t)ρdρdϕ =

n2
gϵ0GN

2ℏω0
gk(t)

Ú ∞

0

Ú 2π

0
D(∇2

⊥N(ρ, ϕ, t))Bk(ρ, ϕ)ρdρdϕ =
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= D
Ú ∞

0

Ú 2π

0
Bk(ρ, ϕ)

C
∇2

⊥

AØ
n

Nn(t)Bn(ρ, ϕ)
BD

ρdρdϕ =

= D
Ú ∞

0

Ú 2π

0
Bk(ρ, ϕ)

CØ
n

Nn(t)
1
∇2

⊥Bn(ρ, ϕ)
2D
ρdρdϕ

For the property written in the supplementary of the paper [2], it is possible to write

∇2
⊥Bn(ρ, ϕ) = 4[ρ2 − (2ρ+ |m| + 1)]Bn(ρ, ϕ)

With 2ρ+ |m| + 1 = qn.

Ú ∞

0

Ú 2π

0

è
D∇2

⊥N(ρ, ϕ, t)
é
Bk(ρ, ϕ)ρdρdϕ =

= D
Ú ∞

0

Ú 2π

0

CØ
n

Nn(t)4(ρ2 − (2ρ+ |m| + 1))Bn(ρ, ϕ)
D
Bk(ρ, ϕ)ρdρdϕ =

= 4D
Ø

n

Nn(t)
Ú ∞

0

Ú 2π

0
(ρ2Bn(ρ, ϕ)Bk(ρ, ϕ)) − 4D

Ø
n

Nn(t)
Ú ∞

0

Ú 2π

0
qnBn(ρ, ϕ)Bk(ρ, ϕ)ρdρdϕ =

= dk(t) − 4D
Ø

n

Nn(t)qn

Ú ∞

0

Ú 2π

0
Bn(ρ, ϕ)Bk(ρ, ϕ)ρdρdϕ =

With
s∞

0
s 2π

0 Bn(ρ, ϕ)Bk(ρ, ϕ)ρdρdϕ = δnk,

= dk(t) − 4DqkNk(t)

The complete equation is

d

dt
Nk(t) = ηiIk(t)

eV
− Nk(t)

τe

+
n2

gϵ0GN

2ℏω0
gk(t) + dk(t) − 4DqkNk(t)
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A.2 Electric field equation
dẼ(ρ, ϕ, t)

dt
= −(1 + iα))

2τp

Ẽ(ρ, ϕ, t) + ΓGN(1 + iα)
2

Ẽ(ρ, ϕ, t)
1 + ϵNp(ρ, ϕ, t) [N(ρ, ϕ, t) −N0] + Ssp(ρ, ϕ, t)

Projecting Ẽ(ρ, ϕ, t) on Cm(ρ, ϕ) modes

Ẽm(t) =
Ú ∞

0

Ú 2π

0
Ẽ(ρ, ϕ, t)C∗

m(ρ, ϕ)ρdρdϕ

• L.H.S.:Ú ∞

0

Ú 2π

0

A
d

dt
Ẽ(ρ, ϕ, t)

B
Cm(ρ, ϕ)ρdρdϕ = d

dt

Ú ∞

0

Ú 2π

0
Ẽ(ρ, ϕ, t)Cm(ρ, ϕ)ρdρdϕ = dẼm(t)

dt

• R.H.S.:
−
Ú ∞

0

Ú 2π

0

(1 + iα)
2τp

Ẽ(ρ, ϕ, t)Cm(ρ, ϕ)ρdρdϕ = −(1 + iα)
2τp

Ẽm(t)

Ú ∞

0

Ú 2π

0

ΓGN(1 + iα)
2

Ẽ(ρ, ϕ, t)
1 + ϵNp(ρ, ϕ, t) [N(ρ, ϕ, t) −N0]ρdρdϕ = ΓGN(1 + iα)

2 f̃m(t)

Ú ∞

0

Ú 2π

0
S̃sp(ρ, ϕ, t)Cm(ρ, ϕ)ρdρdϕ = S̃sp(t)

The final equation is

dẼm

dt
= −(1 + iα)

2τp

Ẽm(t) + ΓGN(1 + iα)
2 f̃m(t) + S̃sp(t)

Substituting Em(t) = Ẽm(t)eiωmt and assuming that ωm are all equal

dẼm(t)
dt

= e−iωmtdEm(t)
dt

+ e−iωmt(−iωm)Em(t) = −(1 + iα)
2τp

e−iωmtEm(t) + ΓGN(1 + iα)
2 f̃m(t) + S̃sp(t)

It is possible to write

dEm(t)
dt

=
A

−(1 + iα)
2τp

+ iωm

B
Em(t) + ΓGN(1 + iα)

2 eiωmtf̃m(t) + eiωmtS̃sp(t)

Considering the term f̃m(t)

eiωmtf̃m(t) = eiωmt
Ú ∞

0

Ú 2π

0

Ẽ(ρ, ϕ, t)
1 + ϵNp(ρ, ϕ, t) [N(ρ, ϕ, t) −N0]ρdρdϕ =
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=
Ú ∞

0

Ú 2π

0
eiωmt

1q
m Ẽm(t)Cm(ρ, ϕ)

2
1 + ϵNp(ρ, ϕ, t) [N(ρ, ϕ, t) −N0]ρdρdϕ =

=
Ú ∞

0

Ú 2π

0
eiωmt (qm Em(t)e−iωmtCm(ρ, ϕ))

1 + ϵNp(ρ, ϕ, t) [N(ρ, ϕ, t) −N0]ρdρdϕ =

dEm(t)
dt

=
A

−(1 + iα)
2τp

+ iωm

B
Em(t) + ΓGN(1 + iα)

2 fm(t) + Ssp(t)

Taking into account that

• Different mode families exist, they have different thresholds and different detuning;

• Due to the elliptical aperture, also modes belonging to the same family can have different thresholds
and different detuning.

Assuming that ωm are all different and that they have different τp,

dEm(t)
dt

=
A

−(1 + iα)
2τp,m

+ iωm

B
Em(t) + ΓGN(1 + iα)

2 fm(t) + Ssp(t)

65



Appendix B

Stability Analysis

In this section, the Lang-Kobayashi model introduced earlier is applied to highlight
the dynamics expected when a semiconductor laser is subjected to optical feedback.
There will be some differences with the VCSEL model because the LK model
accounts for only a single mode, whereas the VCSEL description includes the
analysis of multiple transverse modes.
Using the LK code, bifurcation diagrams can be obtained and a stability analysis
can be conducted to find out the instability boundaries of the system and one
might think to extend these techniques to the more complex model of a multimode
VCSELs subjected to optical feedback presented in Chapter 2.

The first step for the application of the stability analysis is to find out the CW
(Continuous Wave) solutions of the LASER, which are monochromatic solutions.
The second step involves determining the instability boundaries of these CW so-
lutions, which means identifying the current values at which the CW solution
becomes unstable. For the VCSEL case, the stationary solution is represented by a
transverse mode because of optical feedback.
Once the stationary solutions are evaluated, the linear stability analysis can be
applied. It consists in perturbing the CW solution (all the dynamical variable are
perturbed, i.e. the electric field and the carriers) and writing the equation for the
temporal evolution of the perturbations [8]. In doing so, and neglecting the terms
of order higher than one in the perturbations, the dynamical system is linearized
and standard technique for the resolution of dynamical systems are applied.
One of these methods consists in finding the eigenvalues of the matrix written
from the system of equations. The derived Jacobian matrix contains elements
depending on the stationary solutions (electric field and carriers evaluated at a
certain frequency). From the diagonalization of the Jacobian matrix, the complex
eigenvalues can be evaluated. The real and the imaginary part of the eigenvalues
give information on the temporal evolution of the perturbations.

66



Stability Analysis

If there is any eigenvalue with positive real part, than the stationary solution is
unstable because the perturbation increases exponentially.
The eigenvalues depend on the matrix elements that depend on the systems pa-
rameters. The threshold condition depends on the current distribution.

Parameters used for the stability analysis are listed in Table B.1.

Parameter Value Parameter Value
DBR reflectivity 0.98 Rext 0.06

λ0 850 nm Lext 0.3 m
N0 2.37 × 1024 m−3 Current 2 mA
nr 3.4 nfiber 1.45
α 3 V 7 × 10−19 m3

GN 7.78 × 10−12 m3s−1 τp 3.24 ps
ηi 0.76 τe 0.92 ns
Γ 0.0666 Cavity length 1 µm

Table B.1: Parameters for stability analysis.

Stationary solution

Starting from parameters listed in Table B.1, the stationary solution can be evalu-
ated.
The stationary value of the angular frequency ωs can be found solving the tran-
scendental equation B.1.

ωs = ωsol − ( κ
τc

) ·
√

1 + α2 · sin(ws · τext + atan(α)) (B.1)

Where ωsol = 2πc
λ0

.
Fixing the value of the feedback parameter (κ = 7.8 × 10−6), Equation B.1 can be
solved graphically.
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Figure B.1: Stationary solution for the angular frequency for κ = 7.8 × 10−6.

For κ = 7.8 × 10−6, there are three possible solutions for the angular frequency.
These solutions correspond to either modes or anti-modes of the cavity, depending
on whether the feedback and the field inside the cavity overlap in phase (mode)
or in counter-phase (anti-mode). Modes are marked with yellow dots in Figure
B.1, and the stationary solution is identified as the mode closest to the angular
frequency of the free-running laser. The stationary angular frequency is found to
be 352.941 THz.
The correctness of the stationary solution can be verified using the ’fzero’ function
in MATLAB.
The second method for validating the solution involves using the LK code with a
feedback parameter that destabilizes the system by altering the stationary solution
compared to that of a free-running laser. However, this is done such that the
system remains within the first dynamical regime.
In order to evaluate the stationary value of the angular frequency, the optical
spectrum is plotted taking into account the power emitted excluding the transient
frame. The resulting peak is in correspondence of the frequency detuning of the
stationary solution with respect to the ω0 (ws − w0).
The optical spectrum, within the evolution of the carriers density, photon density
and RF spectrum are reported in Figure B.2.
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Figure B.2: LK solution for κ = 7.8 × 10−6.

Once the ωs has been determined, also the stationary value of the square modulus
of the electric field (Is) and the stationary value of the carrier’s density (Ns) can
be evaluated respectively through Equations B.4 and B.2.

Ns = Nsol − κ

ℜ(ξ)τc

cos(ωsτext) (B.2)

Where Nsol is the value of the carrier density at threshold for the solitary laser,
and it’s evaluated through Equation B.3.

Nsol = N0 + 1
ΓτpGn

(B.3)

Is = (ηiI

qV
− Ns

τe

) 1
Gn(Ns −N0)

(B.4)

Values obtained from Equations B.2 and B.4 matches the results of the LK analysis
reported in figure B.2.
Table B.2 listed the stationary solution obtained with the LK code and the one
obtained through the stability analysis.

LK code Stability Analysis
ωs−wsol

2π
0.1 GHz 0.1 GHz

Ns 2.966 × 1024 2.966 × 1024

Is 2.231 × 1021 2.227 × 1021

Table B.2: Stationary solution evaluated through the LK code and stability
analysis
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Jacobian matrix definition

For fixed values of ωs, Is and Ns, the stability analysis can be implemented.
Equations B.5 represent the system of equations obtained at the end of the derivation
reported in Appendix B.



δİ(t) = 2Isℜ(ξ)δN(t) − κ
τc

[δI(t) − δI(t− τext)] cos(ωsτext)+
−2Is

κ
τc

[δΦ(t) − δΦ(t− τext)] sin(ωsτext)

δΦ̇(t) = ℑ(ξ)δN(t) − κ
τc

[δΦ(t) − δΦ(t− τext)] cos(ωsτext)+
− κ

τc

δI(t−τext)−δI(t)
2Is

sin(ωsτext)

δṄ(t) = −ΓNδN(t) − vggn

N0
(Ns −N0)δI(t)

(B.5)

In the frequency domain the system B.5 can be written as Equations B.6.

iω̃δI(ω̃) = − κ
τc

(1 − e−iω̃τext) cos(ωsτext)δI(ω̃)+
−2Is

κ
τc

(1 − e−iω̃τext) sin(ωsτext)δΦ(ω̃) + 2Isℜ(ξ)δN((ω̃))

iω̃δΦ(ω̃) = − κ
τc

(1−e−iω̃τext )
2Is

sin(ωsτext)δI(ω̃)+
− κ

τc
(1 − e−iω̃τext) cos(ωsτext)δΦ(ω̃) + ℑ(ξ)δN((ω̃))

iω̃δN(ω̃) = −vggn

N0
(Ns −N0)δI(ω̃) − ΓNδN((ω̃))

(B.6)

The Jacobian matrix can be derived from system B.6 in the form

M =



− κ
τc

(1 − e−iω̃τext) cos(ωsτext) −2Is
κ
τc

(1 − e−iω̃τext) sin(ωsτext) 2Isℜ(ξ)

− κ
τc

(1−e−iω̃τext )
2Is

sin(ωsτext) − κ
τc

(1 − e−iω̃τext) cos(ωsτext) ℑ(ξ)

−vggn

N0
(Ns −N0) 0 −ΓN


Where

ΓN = 1
taue

+ GnN0Is

Ns

(B.7)

ξ = ΓGN
(1 + iα)

2 (B.8)

In order to evaluate the eigenvalues of the matrix M , the zero of the determinant
(Equation B.9) should be found.

det(M − λI) = 0 (B.9)
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In this analysis, the eigenvalues are expressed as λ = iω̃. This implies that an
unstable CW solution will be associated with ℑ(iω̃) < 0.
The purpose of the analysis is to understand how the ℑ(iω̃) varies with the feedback
coefficient κ.

Instability boundaries

In order to find out the instability boundaries, it is sufficient to impose that
ℑ(iω̃) = 0 , which means supposing that ω̃ is a real variable:

• when ℑ(iω̃) < 0, the solution is unstable;

• when ℑ(iω̃) > 0, the solution is stable;

By fixing the value of the external cavity length, it is possible to identify the κ
values corresponding to the existence of a solution.
The instability boundaries are identified by the value of κcrit, which corresponds to
the transition from stable to periodic regime.

B.1 Mathematical derivation
In the following derivation, some approximations are applied:

• Single mode approximation,

• Negligible gain compression factor,

• Negligible diffusion,

• Constant current and constant carriers distribution. With this approximation,
the electric field distribution also remains spatially constant.

The two equations that describe the evolution of the electric field and the carriers
density are

dE(t)
dt

=
A

− 1
2τp

(1 + iα)
B
E(t) + Γ

2Gn(1 + iα)E(N −N0) + κ

τc

E(t− τext)e−iω0τext

dN(t)
dt

= ηiI

eV
− N

τe

−Gn(N −N0)|E(t)|2

Writing E(t) = ρ(t)eiϕ(t), the equation for the modulus and for the phase of the
electric field can be obtained.
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• LHS :
d
è
ρ(t)eiϕ(t)

é
dt

= dρ(t)
dt

eiϕ(t) + ρ(t)de
iϕ(t)

dt

• RHS : A
− 1

2τp

(1 + iα)
B
ρ(t)eiϕ(t) + Γ

2Gn(1 + iα)ρ(t)eiϕ(t)[N −N0]+

+ κ

τc

ρ(t− τext)eiϕ(t−τext)e−iω0τext

By separating modulus and phase, the result is:
• Modulus:

dρ(t)
dt

eiϕ(t) = (− 1
2τp

+ Γ
2Gn[N −N0]

B
ρ(t)eiϕ(t) + κ

τc

ρ(t− τext)eiϕ(t−τext)e−iω0τext

dρ(t)
dt

=
A

− 1
2τp

+Γ
2Gn[N −N0]

B
ρ(t) + κ

τc

ρ(t− τext)eiϕ(t−τext)e−iω0τexteiϕ(t)

• Phase:

ρ(t)eiϕ(t)dϕ(t)
dt

=
A
α

2τp

+ Γ
2 Gn α[N −N0]

B
ρ(t)eiϕ(t) + κ

τc

ρ(t− τext)eiϕ(t−τext)e−iω0τext

dϕ(t)
dt

= α

2τp

+ Γ
2Gnα[N −N0] + κ

τc

ρ(t− τext)
ρ(t) eiϕ(t−τext)e−iω0τexteiϕ(t)

Writing the exponential terms with the Euler’s formula:
dρ(t)
dt

=
A

− 1
2τp

+ Γ
2Gn[N −N0]

B
ρ(t) + κ

τc

ρ(t− τext) cos[ϕ(t− τext) − ω0τext − ϕ(t)]

dΦ(t)
dt

= α

2τp

+ Γ
2Gnα[N −N0] + κ

τc

ρ(t− τext)
ρ(t) sin[ϕ(t− τext) − ω0τext − ϕ(t)]

Since the cos is an even function cos(−x) = cos(x) and the sin is an odd function
sin(−x) = − sin(x), the two equations can be written as

dρ(t)
dt

=
A

− 1
2τp

+ Γ
2Gn[N −N0]

B
ρ(t) + κ

τc

ρ(t− τext) cos [ω0τext + ϕ(t) − ϕ(t− τext)]

dϕ(t)
dt

= α

2τp

+ Γ
2Gnα[N −N0] − κ

τc

ρ(t− τext)
ρ(t) sin [ω0τext + ϕ(t) − ϕ(t− τext)]

Starting from these equations, the more general equations describing the stability
analysis can be derived. The case under consideration is the Fabry-Perot configuration, in
which

γL =
A

2L∂ Re(κ(ω,N))
∂ω

B−1

= 1
τin

= 1
τc
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So ϕγL = 0 and ργL = 1
τin

.
In order to obtain the more general Lang-Kobayashy equations, it is necessary substituting
the two terms

1
τp

= vg gNΓ
2N0

(Nsol −N0) and GN = vg gn

N0

dρ(t)
dt

=
A

−vggnΓ
2N0

(Nsol −N0) + Γ
2
vggn

N0
[N −N0]

B
ρ(t)+

+ κ

τc

ρ(t− τext) cos[ω0τext + ϕ(t) − ϕ(t− τext)]

dρ(t)
dt

=vggnΓ
2N0

(N −Nsol)ρ(t) + κ

τc

ρ(t− τext) cos [ω0τext + ϕ(t) − ϕ(t− τext)]

In the equations, ω0 = ωsol is the solitary laser frequency = 850 nm.

dΦ(t)
dt

=αvggNΓ
2N0

(Nsol −N0) + Γ
2
vggN

N0
α(N −N0)+

− κ

τc

ρ(t− τext)
ρ(t) sin[ω0τext + ϕ(t) − ϕ(t− τext)]

dΦ(t)
dt

=αvggNΓ
2N0

(N −Nsol) − κ

τc

ρ(t− τext)
ρ(t) sin[ω0τext + ϕ(t) − ϕ(t− τext)]

These equations are formally equal to the Lang-Kobayashy ones. The linear gain model
has been applied, in which

ξ = vggn

2N0
Γ(1 + iα)

ξ depends on ωsol and Nsol, but the explicit dependence on N is eliminated.
Substituting ξ in the two equations for the modulus and phase

dρ(t)
dt

= Re[ξ](N(t) −Nsol)ρ(t) + κργL
ρ(t− τext) cos [ωsolτext + ϕ(t) − ϕ(t− τext) + ϕγL

]

dϕ(t)
dt

= Im[ξ](N(t) −Nsol) − κργL

ρ(t− τext)
ρ(t) sin[ωsolτext + ϕ(t) − ϕ(t− τext) + ϕγL

]

The solitary laser solutions are wsol and Nsol, while the stationary solutions ws and Ns are
evaluated in presence of feedback.

For the carriers equation

dN(ρ, φ, t)
dt

= ηiI(ρ, φ, t)
eV

− N(ρ, φ, t)
τe

−GN [N(ρ, φ, t) −N0] |E(ρ, φ, t)|2
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The starting point is the non projected equation and substituting N(ρ, φ, t) =
N(t) e I(ρ, φ) = I,

dN(t)
dt

= ηiI

eV
− N(t)

τe
− vggn

N0
[N(t) −N0]ρ2(t)

B.2 Stationary solution evaluation
In order to find the stationary solutions, the modulus of the electric field and the
carriers should be fixed at a stationary value. For the phase, a detuning with
respect to the angular frequency of the solitary laser should be introduced.

ρ(t) = ρs N(t) = Ns ϕ(t) = (ωs − ωsol) t



dρ(t)
dt

= vggnΓ
2N0

(N −Nsol)ρ(t) + κ
τc
ρ(t− τext) cos[ωsolτext + ϕ(t) − ϕ(t− τext)].

dΦ(t)
dt

= αvggnΓ
2N0

(N −Nsol) − κ
τc

ρ(t−τext)
ρ(t) sin[ωsolτext + ϕ(t) − ϕ(t− τext)]

dN(t)
dt

= ηiI
eV

− N(t)
τe

− vggn

N0
[N(t) −N0] ρ2(t)

Substituting

0 = vggnΓ
2N0

(Ns −Nsol) ρs + κ

τc

ρs cos [ωsolτext + ϕ(t) − ϕ(t− τext)]ü ûú ý
ωsolτext + (ωs − ωsol)t− (ωs − ωsol)(t− τext) =
= ωsolτext + ωsτext − ωsolτext = ωsτext

Substituting


0 = vggnΓ
2N0

(Ns −Nsol) ρs + κ
τc
ρs cos[ωsτext]

ws − wsol = ΓαvggN

2N0
(Ns −Nsol) − κ

τc

ρs

ρs
sin[ωsτext]

0 = ηiI
eV

− Ns

τe
− vggN

N0
[Ns −N0] ρ2

s

From the carriers equation is it possible to obtain ρ2
s.
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ηiI

eV
− Ns

τe

= vggN

N0
[Ns −N0] ρ2

s

ρ2
s =

5
ηiI

eV
− Ns

τe

6
N0

vggN [Ns −N0]

From the equation of the modulus it is possible to obtain Ns.

ΓvggN

2N0
(Ns −Nsol) ρs = − κ

τc

ρs cos[ωsτext]

NS = Nsol − 2N0

ΓvggN

κ

τc

cos[ωsτext]

Substituting the Ns value inside the ωs − ωsol equation

ωsol = ωs + κ

τc

[α cos(ωsτext) − sin(ωsτext)]

using

sin(ωsτext + arctanα) = sin((ωsτext) cos(arctanα) + cos((ωsτext) sin(arctanα))

=sin(ωsτext)√
1 + α2

+ cos(ωsτext)
α√

1 + α2

The resutl is
ωsol = ωs + κ

τc

√
1 + α2[sin(ωsτext + arctanα)]

The equation obtained links the solitary laser frequency with the stationary solution.

B.3 Stability Analysis
Considering perturbations δρ(t), δϕ(t) e δN(t) with respect to the stationary state.
The starting point is the following system

dρ(t)
dt

= R[ξ](N −Nsol)ρ(t) + κ
τc
ρ(t− τext) cos[ωsolτext + ϕ(t) − ϕ(t− τext)]

dϕ(t)
dt

= Im[ξ](N −Nsol) − κ
τc

ρ(t−τext)
ρ(t) sin[ωsolτext + ϕ(t) − ϕ(t− τext)]

dN(t)
dt

= ηiI
ev

− N(t)
τe

− vggN

N0
[N(t) −N0] ρ2(t)
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and substituting 

ρ(t) = ρs + δρ(t)

ϕ(t) = ϕs+ δϕ(t) = (ωs − ωsol)t+ δϕ(t)

N(t) = Ns + δN(t)

d

dt
[ρs+δρ(t)] = Re(Ns + δN(t) −Nsol)[ρs + δρ(t)] + κ

τc

[ρs + δρ(t− τext)]·

· cos[ωsolτext + (ωs − ωsol) t+ δϕ(t) − (ωs − ωsol) (t− τext) − δϕ(t− τext)]
= cos[ωsτext + δϕ(t) − δϕ(t− τext)] =
≃ cos(ωsτext) − [δϕ(t) − δϕ(t− τext)] sin(ωsτext)

In order to obtain this equality, it is necessary to use the formula

cos(A+B) = cosA cosB − sinA sinB con
I
A = ωsτext

B = δϕ(t) − δϕ(t− τext)

Using the small angle approximationI
cos θ = 1 − θ2

2 ≃ 1, (first-order approximation)
sin θ = θI
cos[δϕ(t) − δϕ(t− τext)] = 1
sin[δϕ(t) − δϕ(t− τext)] = δϕ(t) − δϕ(t− τext)

δρ̇(t) = Re ξ(Ns + δN(t) −Nsol)[ρs + δρ(t)] + κ

τc

[ρs + δρ(t− τext)]·

· {cos (ωsτext − [δϕ(t) − δϕ(t− τext)] sin(ωsτext)}

δρ̇(t) = Re ξ[(Ns −Nsol)δρ(t) + ρsδN(t)] + κ

τc

[δρ(t− τext) cos(ωsτext)+

- ρs[δϕ(t) − δϕ(t− τext)] sin(ωsτext)]

Writing I(t) = ρ2(t)

δI(t) = (ρs+ δρ(t))2 = ρ2
s + (δρ(t))2 + 2ρsδρ(t)

δρ(t) = δI(t)
2ρs

and δI(t) = 2ρsδρ(t)
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Deriving δI(t)

δİ(t) =2Is
A
δρ̇(t)
ρs

B
= 2Is

Re ξ
C
(Ns −Nsol)

δρ(t)
ρs

+ δN(t)
D

+

+ κ

τc

C
δρ(t− τext)

ρs

cos(ωsτext) − [δϕ(t) − δϕ(t− τext)] sin(ωsτext)
D

Substituting δρ(t) = δI(t)
2ρs

δİ(t) =Rξ[(Ns −Nsol)δI(t) + 2IsδN(t)] + κ

τc

[δI(t− τext) cos(ωsτext)+

− 2Is[δϕ(t) − δϕ(t− τext)] sin(ωsτext)]

Remembering the stationary solutions

Ns −Nsol = − 1
Re ξ

κ

τc

cos[ωsτext]

δİ(t) = Re ξ
C
− 1

Re ξ
κ

τc

cos[ωsτext]δI(t) + 2IsδN(t)
D

+

+ κ

τc

[δI(t− τext) cos(ωsτext − 2Is[δΦ(t) − δΦ(t− τext)] sin (ωsτext)]

δİ(t) = 2IsRe ξδN(t) − κ

τc

[δI(t) − δI(t− τext)] cos(ωsτext)+

− 2Is
κ

τc

[δϕ(t) − δϕ(t− τext)] sin (ωsτext)

Substituting the perturbations in the phase equation

d

dt
[Φs + δΦ(t)] = Im ξ(Ns + δN(t) −Nsol) − κ

τc

ρs + δρ(t− τext)
ρs + δρ(t) ·

· [(δϕ(t) − δϕ(t− τext)) cos(ωsτext) + sin(ωsτext)]

δϕ̇(t) = Im ξ (Ns + δN(t) −Nsol) − κ

τc

C
1 + δρ (t− τext) − δρ(t)

ρs

D
·

· [(δϕ(t) − δϕ(t− τext)) cos (ωsτext) + sin (ωsτext)]
Substituting the stationary solution and the current

δϕ̇(t) = Im ξ

C
− 1

Re ξ
κ

τc

cos[ωsτext] + δN(t)
D

− κ

τc

C
1 + δI(t− τext) − δI(t)

2ρs · ρs

D
+

+ [(δϕ(t) − δϕ(t− τext)) cos (ωsτext) + sin (ωsτext)]
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Remembering that ξ = Γvggn

2N0
(1 + iα) → Re ξ = vg gnΓ

2N0

→ Im ξ = vg gnαΓ
2N0

J
Im ξ
Re ξ

= α

δϕ̇(t) = Im ξδN(t) − κ

τc

[(δϕ(t) − δϕ(t− τext)) cos(ωsτext)]+

− κ

τc

δI(t− τext) − δI(t)
2Is

sin(ωsτext)

Substituting the perturbations in the carriers equation

d

dt
[Ns + δN(t)] = ηiI

eV
− Ns + δN(t)

τe

− vggn

N0
[Ns + δN(t) −N0](Is + δI(t))

δṄ(t) = −ΓNδN(t) − vggN

N0
(Ns −N0)δI(t)

With ΓN = 1
τe

− vggnIs

Ns
.

The obtained system is the following one

δİ(t) = 2Is Re ξδN(t) − κ

τc

è
δI(t) − δI(t− τext)

é
cos(ωsτext)

− 2Is
κ

τc

è
δΦ(t) − δΦ(t− τext)

é
sin(ωsτext),

δϕ̇(t) = Im ξδN(t) − κ

τc

è
δΦ(t) − δΦ(t− τext)

é
cos(ωsτext)

− κ

τc

δI(t− τext) − δI(t)
2Is

sin(ωsτext),

δṄ(t) = − ΓNδN(t) − vggN

N0
(Ns −N0)δI(t).

Going to the frequency domain

d

dt
→ iω̃

f(t− τext) → F (ω̃)e−iωτext

ıω̃δI(ω̃) = 2IsRe ξδN(ω̃) − κ

τc

è
δI(ω̃) − δI(ω̃)e−iω̃τext

é
cos(ωsτext)+

− 2Is
κ

τc

è
δΦ(åω) − δΦ(åω)e−iω̃τext

é
sin(ωsτext)

iω̃δI(ω̃) = 2IsRe ξδN(ω̃) − κ

τc

1
1 − e−iω̃τext

2
δI(ω̃) cos(ωsτext)+

− 2Is κ
τc

1
1 − e−iω̃τext

2
δϕ(åω) sin (ωsτext)
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ıω̃δϕ(ω̃) = Im ξδN(ω̃) − κ

τc

1
1 − e−iω̃τext

2
δϕ(åω) cos (ωsτext) +

− κ

τc

(1 − e−iω̃τext) δI(ω̃) sin (ωsτext)
2Is

iω̃δN(ω̃) = −ΓNδN(ω̃) − vg gN

N0
(Ns −N0)δI(ω̃)

The Jacobian matrix will be

M(δI(ω̃), δΦ(ω̃), δN(ω̃)) = 0

M =



− κ
τc

(1 − e−iω̃τext) cos(ωsτext) −2Is
κ
τc

(1 − e−iω̃τext) sin(ωsτext) 2Isℜ(ξ)

κ
τc

(1−e−iω̃τext )
2Is

sin(ωsτext) − κ
τc

(1 − e−iω̃τext) cos(ωsτext) ℑ(ξ)

−vggn

N0
(Ns −N0) 0 −ΓN
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