
POLYTECHNIC UNIVERSITY OF
TURIN

Master’s Degree in Data Science and Engineering

Master’s Degree Thesis

Reconstructing Human Gaze Behavior in
Stroop Test from EEG Data Using

Inverse Reinforcement Learning

Supervisors

Prof. Paolo GARZA

Prof. Soroush KORIVAND

Candidate

Ali ABBASI

December 2024



Abstract

This research investigates the reconstruction of human gaze behavior during Stroop
tests by integrating EEG data with Inverse Reinforcement Learning (IRL). Centered
on cognitive neuroscience, the study seeks methods that not only predict gaze
patterns but also elucidate the underlying motivations guiding attention shifts
in cognitively demanding tasks. Utilizing the Stroop test—a standard measure
of executive function and selective attention—eye-tracking and EEG data were
collected from ten participants across congruent and incongruent task conditions.
The study employed an IRL framework enhanced with Generative Adversarial
Imitation Learning (GAIL) and Proximal Policy Optimization (PPO) to model gaze
behavior through a reward-based approach. While the integration of EEG signals
aimed to capture cognitive load and inform fixation choices within a dynamic
visual model(Dynamic Contextual Beliefs), evaluation using metrics such as Target
Fixation Probability and MultiMatch Sequence Score revealed that models utilizing
fixation data alone (IRL-Image) performed comparably to those incorporating EEG
data (IRL-EEG). These findings suggest that fixation patterns possess substantial
predictive power in directing gaze toward task-relevant areas, even under high
cognitive load conditions, without the need for additional EEG data. This research
contributes to the development of efficient gaze prediction models in cognitive
neuroscience and highlights the potential for simplified approaches in clinical
diagnostics for conditions affecting executive function.





Summary

In the realm of cognitive neuroscience, eye-tracking and electroencephalography
(EEG) technologies have become invaluable tools for understanding how individuals
allocate attention in response to complex cognitive demands. The Stroop test,
extensively used in cognitive psychology, challenges participants’ executive functions
by presenting tasks that require the inhibition of automatic responses—essentially
testing selective attention, processing speed, and cognitive flexibility. Eye-tracking
captures observable attention shifts, while EEG provides neural correlates, together
offering a multidimensional view of cognitive engagement.

This study combines these technologies with an Inverse Reinforcement Learning
(IRL) framework to explore the underlying motivations driving gaze behavior in
the Stroop test. Traditional approaches often focus on predicting gaze patterns
through machine learning but lack interpretability concerning the reward structures
motivating these behaviors. In contrast, IRL enables the inference of reward-based
motivations, which is essential for understanding the dynamic adjustments in gaze
patterns as cognitive demands shift.

Participants and Experimental Setup: The study involved 10 participants
who completed 20 Stroop trials, designed with both congruent and incongruent
task conditions to induce varying cognitive loads. EEG data was captured at 250
Hz using a 64-channel system, while gaze data was recorded at 60 Hz. Each Stroop
stimulus was displayed for five seconds, followed by a five-second interval, balancing
cognitive engagement and resting periods.

Data Preprocessing: EEG and eye-tracking data underwent extensive pre-
processing. EEG signals were filtered to remove artifacts, and fixation points were
mapped to a grid of 640 patches. EEG feature extraction focused on power spectral
density and artifact suppression, while eye-tracking data was processed to identify
exact fixation locations and durations.

IRL Framework and Model Architecture: The IRL framework is designed
to model gaze behavior based on inferred reward functions within a structured en-
vironment. The model employs Generative Adversarial Imitation Learning (GAIL),
with a generator that synthesizes gaze paths and a discriminator that evaluates
their alignment with actual human gaze patterns. Proximal Policy Optimization
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(PPO) refines the generator’s policy by updating fixation probabilities based on
EEG-derived cognitive cues, enabling the model to adjust gaze predictions dynami-
cally. A Dynamic Contextual Belief (DCB) structure organizes the visual field into
low- and high-resolution regions, representing central (foveal) and peripheral vision
areas, respectively. EEG data further refines the gaze prediction model, making it
responsive to real-time cognitive shifts.

The model’s core functionality centers on accurately predicting human-like
scanpaths in response to EEG cues. States in the IRL environment are defined
by visual context and EEG data, dynamically updated to mirror human fixation
strategies. Actions represent fixation points within the grid, guided by EEG-
informed cues and reinforced by task-aligned rewards.

EEG Feature Integration: EEG data informs the policy network, allowing
the model to prioritize task-relevant areas during periods of high cognitive load.
By adjusting fixation probabilities according to EEG-derived attention markers,
the model emulates real-time cognitive adjustments, crucial for tasks involving
cognitive control like the Stroop.

Reward and Policy Learning: The discriminator provides reward feedback
by assessing the “realness” of generated scanpaths, reinforcing actions that mirror
human attention shifts. PPO facilitates stable learning by constraining updates
to fixation probabilities, allowing the model to replicate naturalistic gaze patterns
across iterations.

Model Evaluation: The model’s performance was evaluated using metrics
such as Target Fixation Probability Area Under the Curve (TFP-AUC), Probability
Mismatch, Sequence Score, MultiMatch Analysis, and Scanpath Ratio (SP Ratio).
Comparisons were made between EEG-enhanced models (IRL-EEG) and non-EEG
baselines (IRL-Image), highlighting the significance of EEG cues in predicting
gaze behavior under varying cognitive loads. However, the results indicated that
integrating EEG data did not lead to significant improvements in gaze prediction
accuracy compared to models utilizing fixation data alone. Both the IRL-EEG
and IRL-Image models exhibited comparable performances across most metrics,
suggesting that fixation patterns alone possess substantial predictive power in
directing gaze toward task-relevant areas, even under high cognitive load conditions
like incongruent Stroop trials.

Comparison with Baseline Models: The EEG-enhanced IRL model showed
similar or slightly better alignment with human gaze patterns in specific metrics,
such as Probability Mismatch and Sequence Score. However, overall, the inclu-
sion of EEG data did not provide a substantial advantage over the fixation-only
model, indicating that fixation data alone is sufficient for accurate gaze behavior
reconstruction in the context of the Stroop test.

Implications and Future Directions: The findings suggest that while EEG
data offers additional cognitive state information, its integration within the IRL
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framework does not significantly enhance gaze prediction in structured tasks like
the Stroop test. This has important implications for the design of gaze prediction
models, indicating that simpler models using only eye-tracking data can achieve
comparable accuracy without the added complexity of EEG integration. From
a clinical perspective, eye-tracking metrics alone could serve as an efficient and
cost-effective tool for assessing cognitive functions and detecting neurodegenerative
or attention-related disorders. Future research should explore alternative methods
for integrating neural data, expand participant diversity, and apply the framework
to a broader range of cognitive tasks to fully ascertain the potential benefits of
multimodal data integration in gaze behavior modeling.
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Chapter 1

Introduction

The neural overlap between cognitive control and eye movement regulation, includ-
ing saccadic shifts and fixation, implies a close association between task demands
and gaze patterns during the Stroop task. Cognitive load, as modulated by the
Stroop task, typically affects gaze behavior, influencing the strategies used to
manage competing cognitive demands. These eye movement patterns offer clues
about the cognitive load, attention allocation, and executive function, all vital
areas of study in both psychological research and potential clinical applications.
Studies have shown that Stroop task performance can reflect underlying cognitive
mechanisms and identify variations across individual cognitive capacities [1]. Con-
sequently, non-invasive methods like eye-tracking combined with EEG can serve as
powerful tools to explore these mechanisms with precision.

Recently, the integration of EEG with eye-tracking has emerged as a prominent
area of research, enabling a more nuanced analysis of cognitive processing during
attentionally demanding tasks. EEG provides rich data on neural activity, reflecting
real-time responses to task demands, while eye-tracking captures the observable
outcomes of these processes through gaze behavior. By employing EEG in the
Stroop test, it is possible to correlate eye movement patterns directly with neural
markers of cognitive load and attentional shifts. However, traditional diagnostic
approaches have often used machine learning models that may lack interpretability
and flexibility, relying on predefined statistical correlations to infer behavior. Such
approaches, while insightful, do not fully capture the adaptive nature of human
cognition in real-time.

In addressing these limitations, this project utilizes Inverse Reinforcement Learn-
ing (IRL) based on Generative Adversarial Imitation Learning(GAIL) algorithm
to model and reconstruct the human gaze behavior during the Stroop test based
on human gaze fixations and EEG data. IRL has shown promise in capturing
reward-based behavioral patterns across complex tasks by inferring the “reward”
functions underlying observed actions [2]. By applying IRL to gaze fixations
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Introduction

and EEG data from Stroop task trials, this project aims to infer the underlying
cognitive “reward functions” associated with managing interference, processing
speed, and attentional control. This approach allows for a dynamic interpretation
of gaze and neural patterns, offering insights into the interaction between task
demand and cognitive control mechanisms. In summary, the study introduces an
EEG-based IRL framework tailored to the Stroop test, integrating gaze data to
map cognitive strategies during task execution. This framework aims to enhance
our understanding of cognitive control and attentional mechanisms, providing a
novel methodological approach to studying gaze and EEG in cognitive neuroscience
and gain the ability of reproducing the human gaze during the Stroop test.

1.1 Background and Motivation
The investigation of cognitive processes through the lens of eye movement and brain
activity has revealed critical insights into how humans engage with complex tasks,
enabling a finer understanding of underlying cognitive mechanisms. Specifically, the
Stroop test, a cornerstone in neuropsychological research, challenges participants’
cognitive control by requiring them to identify the color of a word while ignoring
the word’s conflicting meaning. For example, writing the word “Blue” in red
color is wrong(incongruent), and writing the word “Yellow” in yellow color is
correct(congruent). This test evokes distinct cognitive responses, thereby serving
as an ideal basis for studying attention, executive function, and response inhibition.
Tracking gaze behavior during such tasks provides valuable data that can quantify
these cognitive processes and uncover the mental strategies individuals employ
to manage conflict, selective attention, and cognitive load. Besides, there’s the
potential of using this approach to use in the clinical atmosphere to detect disorders
particularly neurodegenerative mental disorders like Alzheimer or even ADHD.

Recent advancements in eye-tracking and EEG technologies have significantly
improved the granularity with which these processes can be analyzed. Eye tracking
records metrics like fixation duration, saccade patterns, and pupil dilation, all
of which offer insights into how attention shifts in response to stimuli. EEG, on
the other hand, captures neural correlates of cognitive engagement, providing an
avenue for examining brain activity in real-time. These tools, when used together,
offer a multidimensional perspective on cognitive functioning during tasks like the
Stroop test, where reaction time, attentional shifts, and cognitive load are key
components. This project aims to build upon these developments by using inverse
reinforcement learning (IRL) to model gaze behavior in the Stroop test, providing
an analytical framework for understanding the motivations and decision-making
processes underpinning gaze shifts during cognitive tasks. Thus, attempting to
reconstruct human gaze by combining gaze scanpaths with EEG data might provide
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valuable understanding for some mental disorders like Alzheimer or ADHD.

1.2 Problem Statement
In the realm of cognitive neuroscience, understanding the intricate mechanisms
that govern human gaze behavior during cognitively demanding tasks remains a
formidable challenge. Despite advancements in eye-tracking and EEG technolo-
gies, existing analytical models fall short in elucidating the underlying cognitive
processes that drive gaze patterns, especially in tasks that require high levels of
cognitive control, such as the Stroop test. Traditional machine learning approaches
predominantly focus on predicting gaze trajectories based on observable data
without delving into the motivations and reward structures that influence such
behaviors. These models often lack interpretability and fail to capture the adaptive
and goal-directed nature of human visual attention under varying levels of cognitive
load.

The Stroop test presents a unique opportunity to investigate these underly-
ing processes due to its inherent cognitive interference and demand for selective
attention. Participants must resolve conflicts between the semantic meaning of
words and their font colors, engaging executive functions and attentional control
mechanisms. However, current models inadequately address how individuals adapt
their gaze behavior in response to these cognitive demands. There is a significant
gap in our ability to infer the implicit reward functions that guide gaze shifts
and fixation patterns during the Stroop task, which is crucial for understanding
the cognitive strategies employed to manage interference and allocate attention
effectively.

Moreover, while EEG provides a rich source of data reflecting neural activity
and cognitive load, integrating this information with gaze behavior analysis has
proven to be complex. The dynamic interplay between neural signals and eye
movements during tasks involving cognitive interference is not fully understood.
Existing methodologies do not effectively leverage EEG data to inform predictions
about gaze behavior, thereby missing an opportunity to correlate neural markers
of cognitive load with visual attention strategies.

The central problem addressed in this dissertation is the development of a
framework that can effectively model and reconstruct human gaze behavior during
the Stroop test by integrating EEG data with inverse reinforcement learning
(IRL) techniques. Specifically, the challenge lies in decoding the complex interplay
between neural activity and gaze patterns to infer the underlying reward-based
motivations driving visual attention. By leveraging IRL, the goal is to move beyond
mere prediction of gaze trajectories and instead provide insights into the cognitive
processes and reward structures that underpin gaze behavior under varying levels
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of cognitive load.
This problem is significant for several reasons:

1. Lack of Interpretability in Existing Models: Traditional machine learning
models often act as black boxes, providing little insight into why certain gaze
patterns occur. Understanding the ’why’ behind gaze behavior is essential for
advancing theories of cognitive processing and attention.

2. Adaptive Nature of Human Gaze: Human gaze behavior is inherently
adaptive, constantly adjusting in response to changes in cognitive load and
task demands. Current models do not adequately capture this adaptability,
limiting their applicability in real-world scenarios where cognitive demands
fluctuate.

3. Integration of EEG Data: EEG offers real-time insights into cognitive
load and neural activity, but integrating this data into gaze prediction models
remains challenging. There is a need for frameworks that can seamlessly
combine EEG and eye-tracking data to provide a holistic view of cognitive
processes.

4. Clinical Implications: Understanding the reward-based motivations behind
gaze behavior has implications for diagnosing and treating neurodegenerative
disorders and attention-related conditions such as ADHD. Improved models
could lead to non-invasive diagnostic tools and interventions that monitor
gaze behavior and cognitive load.

5. Advancement of IRL Techniques: Applying IRL to cognitive neuroscience
represents an innovative approach that can enhance our ability to infer un-
derlying motivations from observed behaviors, providing a more nuanced
understanding of human cognition.

Addressing this problem involves several challenges:

• Data Complexity: EEG and eye-tracking data are high-dimensional and
noisy, requiring sophisticated preprocessing and feature extraction techniques
to be useful in modeling.

• Model Design: Developing an IRL framework that can handle the complexi-
ties of cognitive tasks like the Stroop test necessitates careful consideration
of state and action representations, reward functions, and policy learning
algorithms.

• Validation: Ensuring that the model accurately reflects human gaze behavior
and cognitive processes requires rigorous validation against empirical data,
including statistical analyses and possibly experimental replication.
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In summary, the problem this research tackles is the development of an inter-
pretable and adaptive computational framework that integrates EEG data with IRL
to model and reconstruct human gaze behavior during the Stroop test. By inferring
the implicit reward functions and cognitive motivations behind gaze patterns, the
research aims to provide deeper insights into the cognitive strategies individuals
employ under varying levels of cognitive load, with potential applications in both
theoretical and clinical domains.

1.3 Objectives and Contributions
The objective of this dissertation is to develop a novel framework that uses IRL to
model and decode the gaze behavior of individuals undertaking the Stroop test,
with combining gaze and EEG data providing additional depth to this exploration.
Specific aims include:

1. Developing an IRL model tailored to the Stroop task: This involves
constructing an IRL framework that can infer and reconstruct the reward
functions underlying gaze behavior during a task characterized by different
levels of cognitive load.

2. Integrating EEG and eye-tracking data to enhance model accuracy:
By synchronizing EEG data with gaze patterns, this project aims to correlate
neural activity with inferred gaze motivations, thereby adding a layer of neural
validation to the inferred reward functions.

3. Advancing understanding of attentional control and decision-making
strategies: This study seeks to shade a light on the motivations that guide
gaze shifts in the Stroop task, contributing valuable insights into cognitive
control mechanisms and attentional dynamics.

Through these objectives, this research contributes an IRL-based methodology
for gaze analysis, with applications in cognitive neuroscience, neuropsychological
assessments, and potential use in diagnostic settings for conditions involving
executive function deficits.

1.4 Structure of the Dissertation
This dissertation is structured as follows:

1. Chapter 2: Related Work – This chapter reviews relevant literature on
eye tracking in cognitive neuroscience, particularly for neurodegenerative and
cognitive disorders. It also explores studies integrating EEG and eye-tracking
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data, the application of IRL in behavioral analysis, and prior work on gaze
prediction and scanpath analysis.

2. Chapter 3: Materials and Method – This chapter describes the study’s
methodology, including details on participants, experimental design, EEG and
eye-tracking data collection, and data preprocessing. A thorough overview
of the Stroop test setup and the integration of EEG and eye-tracking data
are provided, followed by a description of the IRL framework and neural data
analysis methods.

3. Chapter 4: Scanpath Prediction Framework – This section presents the
design of the state and action models used in the IRL framework, explaining
how EEG features guide the gaze modeling process.

4. Chapter 5: Experiments – This chapter details the experimental setup,
comparing various scanpath prediction methods and evaluating their perfor-
mance with metrics such as target fixation probability and scanpath sequence
scoring.

5. Chapter 6: Results – The results chapter presents a detailed analysis of
gaze path prediction accuracy, model performance across different cognitive
loads, and the validation of inferred rewards with neural data correlations.

6. Chapter 7: Discussion – This chapter interprets the results, examining the
implications of the findings for cognitive control theories and potential clinical
applications, and discusses limitations and future research directions.

7. Chapter 8: Conclusion – The dissertation concludes with a summary of
key findings, contributions, and the anticipated impact of this research on
cognitive neuroscience and neuropsychology.
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Chapter 2

Related Work

In the interdisciplinary field examining cognitive processing through gaze and
EEG signals, extensive research has explored the integration of eye-tracking and
electroencephalography (EEG) to provide insight into cognitive control, attentional
shifts, and decision-making under varied cognitive loads. The utility of these
technologies is demonstrated across a spectrum of applications, from identifying
cognitive load during specific tasks to understanding neurological mechanisms in
health and disease. The Stroop test, a classic paradigm in cognitive psychology,
is widely recognized for its ability to evoke cognitive conflict and measure exec-
utive function. The incorporation of eye-tracking and EEG during the Stroop
test represents a novel avenue for decoding gaze patterns and underlying neural
mechanisms.

Current literature reflects the growing interest in understanding cognitive control
processes by leveraging inverse reinforcement learning (IRL) to infer the "reward"
systems guiding eye movement behaviors, and then give the ability of reproducibility
to the human gaze during this task. This method has gained traction due to its
capability to uncover underlying motivations in observed behavior, transcending
the limitations of traditional predictive models which often lack interpretability
in various cognitive scenarios. In the context of gaze behavior, IRL can provide a
powerful framework for modeling decision-making processes, particularly during
tasks like the Stroop test, where participants must frequently override instinctual
responses to manage conflicting information.

Studies integrating EEG and eye-tracking for behavioral analysis underscore
the distinct neural signatures associated with saccadic shifts, fixation durations,
and other gaze metrics in tasks involving varying levels of cognitive demand(in
this research the focus is only on the fixations location). However, while these
approaches have led to valuable findings, many rely on static correlations and do not
fully capture the adaptive, goal-directed nature of human gaze patterns. Integrating
IRL with EEG data in the Stroop task may bridge this gap by enabling a dynamic
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assessment of attention, executive function, and underlying neural processes as
individuals navigate task-induced cognitive interference.

2.1 Eye Tracking for Neurodegenerative Disor-
ders

Eye-tracking technology has shown promise as a non-invasive tool for identifying
early biomarkers of neurodegenerative disorders, particularly those affecting cog-
nitive control and visual processing[3]. Studies demonstrate that eye movement
metrics such as saccadic velocity, fixation duration, and pupil dilation are effec-
tive indicators of neurological status and cognitive load, allowing researchers to
infer cognitive impairment levels in disorders like Alzheimer’s and Parkinson’s
disease[4]. In recent years, eye tracking has been incorporated into various cognitive
assessments, including tasks like reading and arithmetic, to detect abnormal gaze
patterns that indicate executive function deficits and attentional shifts associated
with neurodegenerative disorders[5].

The Stroop task, with its demands on cognitive control, presents a unique frame-
work for eye-tracking applications. In such tasks, discrepancies in eye movement
patterns can reveal deficits in selective attention and response inhibition—symptoms
common to neurodegenerative diseases. Research on using eye-tracking for moni-
toring cognitive function underscores its potential for early diagnosis and tracking
disease progression, especially when combined with EEG data to observe neural
responses to visual stimuli and cognitive interference[6]. This integration provides
a comprehensive toolset for assessing neural function and cognitive control in both
clinical and research settings, facilitating detailed analysis of cognitive responses to
interference and the ability to suppress automatic responses, which are core aspects
of executive function evaluated by the Stroop task.

2.2 Studying Eye Movement and Brain Activities
Using EEG

Combining eye tracking with EEG has enriched research on cognitive and neural
responses to visual and attentional tasks, offering an in-depth view of how gaze
patterns and brain activity align during decision-making and attention regulation[7].
This dual-modality approach allows researchers to correlate gaze shifts with neural
markers of cognitive load, providing a real-time assessment of attention allocation
and cognitive processes. EEG measures, such as event-related potentials (ERPs),
have proven effective in capturing the brain’s immediate response to visual stimuli,
facilitating a more nuanced understanding of the neural underpinnings of eye
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movement control, especially in tasks requiring complex cognitive processing like
the Stroop task[8].

For cognitive tasks like the Stroop, EEG can capture frontal and parietal
activations associated with cognitive interference and response inhibition, while
eye-tracking data elucidates the gaze behavior corresponding to these neural events.
Research in this area has shown distinct EEG signatures tied to decision-making and
cognitive control, particularly in tasks where participants must manage conflicting
stimuli, such as color-word incongruence. The joint analysis of EEG and eye-
tracking data in cognitive tasks not only enriches the understanding of neural
dynamics but also provides diagnostic insights into cognitive function, making this
approach valuable for studying both healthy cognition and cognitive impairments.

2.3 Eye Movement Data Analysis
The analysis of eye movement data has evolved significantly, with advanced compu-
tational methods enhancing the extraction and interpretation of gaze metrics across
various cognitive tasks. Machine learning techniques, ranging from basic classifiers
to sophisticated deep learning architectures, are increasingly utilized to identify
and predict patterns in eye movement data, focusing on metrics such as fixation
duration, saccadic speed, and scanpath regularities[9]. In the context of cognitive
assessments like the Stroop task, eye movement data analysis can offer insights
into how cognitive interference impacts gaze behavior, revealing adaptations in
attention and visual processing strategies.

Despite progress, traditional machine learning approaches often lack flexibility
in modeling the adaptive nature of human gaze, particularly under the cognitive
demands posed by tasks like the Stroop. Analyzing scanpaths and gaze patterns
during Stroop tasks requires algorithms that can handle variability across individuals
and cognitive states. These limitations highlight the need for dynamic and context-
sensitive methods, such as inverse reinforcement learning (IRL), which is more
adept at capturing the evolving reward-based strategies underpinning gaze shifts
in response to cognitive interference and attentional demands.

2.4 IRL for Human Behavior Data Analysis
Inverse Reinforcement Learning (IRL) is emerging as a powerful tool for decoding
complex human behaviors, allowing researchers to infer the reward structures driving
observed actions in various settings, from robotics to cognitive science[10]. By
applying IRL to human gaze data, researchers can identify the implicit “rewards” or
motivations behind gaze behaviors, facilitating a deeper understanding of decision-
making and attentional strategies. This methodology is particularly relevant
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for studying tasks that require frequent shifts in cognitive strategy, as in the
Stroop test, where participants must override automatic responses to achieve task
objectives. Also the combination of IRL with GAN has been used for replicating
and understanding human behaviors[11].

IRL’s application to EEG and eye-tracking data enables researchers to construct
a model that interprets gaze behavior as a product of both task demand and
cognitive control, making it suitable for exploring reward-based adaptations in
the Stroop task. For example, by associating EEG markers of cognitive load with
gaze trajectories, IRL frameworks can dynamically infer the cognitive “reward
functions” that guide attentional shifts, providing insights into how individuals
manage interference and attentional demands. This approach is especially valuable
in cognitive neuroscience, where understanding the interaction between cognitive
goals and visual attention patterns has implications for clinical diagnosis and
intervention.

2.5 Prior Work on Gaze Prediction and Behav-
ioral Scanpath Analysis

Gaze prediction and scanpath analysis have become critical areas of study in
understanding how cognitive processes shape visual exploration patterns. Scan-
path analysis provides a window into task-related visual strategies, with research
increasingly focusing on computational models that predict gaze trajectories based
on underlying cognitive processes [12]. This approach is highly applicable in the
Stroop task, where gaze paths can indicate how individuals allocate attention to
resolve cognitive conflicts.

Prior studies have utilized both traditional machine learning and IRL frameworks
to analyze and predict gaze behavior, often focusing on visual attention models
that simulate human scanpaths in tasks of varying complexity. In tasks with high
cognitive load, such as the Stroop, incorporating EEG data enhances the predictive
accuracy of these models by providing neural context to gaze behavior. This
enables a deeper analysis of how cognitive control and reward dynamics drive gaze
patterns, shedding light on the ways individuals manage attention and response
inhibition. The integration of EEG with gaze prediction models thus represents a
step forward in capturing the interplay between neural processes and observable
behaviors, particularly in challenging cognitive tasks. Fig 2.1
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Figure 2.1: Prior work on arithmetic tasks
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Chapter 3

Materials and Methods

This section outlines the methodological framework of the study, detailing the
participant selection, data gathering procedures, and data preprocessing techniques
adapted from established approaches in EEG and eye-tracking-based cognitive load
assessments. The study follows a design informed by previous research on decoding
cognitive behaviors through multimodal data integration, using eye-tracking and
EEG to interpret gaze and brain activities.

3.1 Participants
11 adult participants were initially recruited for this study, comprising a mix of
graduate and undergraduate students at the University of Alabama. All individuals
had normal or corrected vision, ensuring minimal visual interference, except for
one participant who required eyeglasses; due to corrupted data attributed to visual
artifacts, their data was excluded from further analysis. After excluding this
participant, data from 10 individuals (eight males and two females) were retained.
The mean age of these participants was 29.11 years, with a standard deviation of
3.62 years. All participants were informed of the study’s aims, methodology, and
any potential risks, consistent with ethical standards for research involving human
subjects. The study design received prior approval from the Institutional Review
Board (IRB) at the University of Alabama.

3.2 Data Gathering
Data collection was conducted in a controlled laboratory setting, where participants
completed a set of 20 Stroop trials, while their neural and ocular responses were
recorded using EEG and eye-tracking devices. The Stroop task required participants
to identify the color of presented words, which were either congruent (color and
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word matched) or incongruent (color and word did not match), thus creating
conditions for assessing cognitive load and selective attention. To collect the EEG
data the 64-channel EEG g.tec Nautilus Pro integrating with an EEG cap has been
used, and for tracking the subjects’ gaze, GP3 eye tracking device and GazePoint
software has been used.

During each trial, slides were presented for 5 seconds, followed by a 5-second
inter-stimulus interval, allowing participants time to reset visually and cognitively.
Each participant completed 20 tasks (combination of congruent and incongruent
tasks). This experimental design allowed a balanced analysis of both cognitive load
conditions. Eye-tracking was facilitated by a GazePoint device, capturing pupil
diameter variations and fixation metrics at a frequency of 60 Hz. EEG signals were
recorded using a 64-channel g.tec Nautilus Pro EEG system, with a sampling rate of
250 Hz. This setup enabled high-resolution data collection necessary for subsequent
analysis of cognitive load through EEG and eye-tracking synchronization. Fig. 3.1

Figure 3.1: Stroop task process

3.3 Data Preprocessing
The initial phase of data preprocessing involved synchronization across the multi-
modal data streams, aligning EEG and eye-tracking data using timestamps recorded
at the onset of the experiment. The data window extracted for analysis extended
from 5 seconds before the start to 5 seconds after the experiment’s conclusion, thus
encompassing all relevant cognitive activity periods.

EEG Data Preprocessing
EEG data preprocessing was conducted using Brainstorm software, following
standard procedures to minimize artifacts and enhance signal clarity. A high-pass
filter (0.2 Hz) and a low-pass filter (32 Hz) were applied to maintain frequency
ranges relevant to cognitive processing while eliminating low-frequency drift and
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high-frequency noise, including muscle artifacts. Using power spectral density
analysis, bad channels were identified and removed from the dataset, while blink
and heartbeat artifacts were suppressed using signal projectors based on the
statistical characteristics of these physiological noise sources. Remaining EEG data
were re-referenced to the instantaneous average of all active channels, ensuring
consistent baseline signals across trials. In the next step, the solution used was
calculating top-3 important features that yielded a 3-member set of numbers for
each task for each user separately. Fig. 3.2

Figure 3.2: G.Tec Nautlilus Pro EEG System

Eye-Tracking Data Preprocessing

Eye-tracking data, specifically the position on the screen, was used as a primary
indicator of cognitive load. Using the csv file provided by GazePoint there were
the ability of accessing relative location of fixation on the screen (“FPOGX” and
“FPOGY” which are scaled by 1), time of the fixation (“FPOGS”), the duration
of the fixation (“FPOGD”) and other valuable data. Among all of these data we
should convert the relative location of the fixation to the exact location. Then
convert to find the corresponding patch from the 32x20 patches of each image (640
patches at all and the size of each path was 16x16 pixels) to be able to work with
the IRL environment efficiently. Fig. 3.3
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Figure 3.3: GazePoint Analyzer Software

Feature Extraction
EEG Feature Extraction

The EEG preprocessing employs a combination of high-pass and low-pass filters to
isolate the frequency bands most relevant to cognitive processing (0.2–32 Hz). The
key features are extracted using:

1. Power Spectral Density (PSD):PSD analysis helps identify frequency-
based activity and noise removal by analyzing power across various frequency
bands.

2. Artifact Rejection:The data undergoes artifact rejection, including the
suppression of blink and heartbeat artifacts via signal projectors to focus on
cognitive signal quality.

3. Re-referencing:Channels are re-referenced against the mean signal of the
active channels to ensure consistent baseline signals across trials.

Eye-Tracking Feature Extraction

Eye-tracking feature extraction in the study includes:

1. Fixation Location and Duration:The gaze coordinates (FPOGX, FPOGY)
are converted to exact screen locations. The fixations are mapped to one of
640 grid patches for further analysis.
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3.4 Overview of Experimental Design and Ap-
proach

This section provides a detailed overview of the experimental design, including
the setup of the Stroop test and the integration of electroencephalography (EEG)
and eye-tracking with GazePoint technology. By combining EEG and eye-tracking
data, this study aims to investigate the cognitive load and attentional dynamics
associated with Stroop task performance, thereby offering insights into neural and
behavioral responses under conditions of cognitive interference.

3.4.1 STROOP Test Setup
The Stroop test is a widely recognized task in cognitive neuroscience, known for
its utility in measuring executive functions such as selective attention, cognitive
flexibility, and response inhibition. In this study, the Stroop test is designed
to involve congruent and incongruent trials to induce varying levels of cognitive
load. Each participant is presented with a color word displayed in a colored font,
where the task requires identifying the font color while disregarding the semantic
meaning of the word. Congruent trials present the word in a matching color (e.g.,
"Red" displayed in red font), whereas incongruent trials display the word in a
non-matching color (e.g., "Red" displayed in blue font), thus creating conditions
that require increased attentional control to suppress automatic reading responses.

Participants in this study consist of 11 adults; however, due to the eye-tracking
setup requirements, one participant was excluded due to visual impairments that
could affect gaze data quality. Consequently, data from 10 participants were
retained for analysis. Each participant completed a total of 20 tasks that contained
congruent and incongruent tasks, yielding comprehensive data for both congruent
and incongruent conditions. This setup aims to elicit cognitive interference, allowing
for a robust analysis of attentional and cognitive load metrics through eye-tracking
and EEG.

3.4.2 Integration of EEG and Eye-Tracking with GazePoint
The integration of EEG and eye-tracking technologies enables a multifaceted
analysis of cognitive load and gaze behavior during the Stroop test, capitalizing on
the temporal precision of EEG and the spatial tracking capabilities of GazePoint.
Eye-tracking data, captured at a frequency of 60 Hz, provides real-time metrics
on pupil dilation, fixation duration, and saccadic movements—features indicative
of the participant’s cognitive engagement and attention allocation. GazePoint
technology is calibrated to ensure accurate tracking, while it is able to record a
lot of metrics like pupil diameter, fixation duration and others, the only ocular
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Figure 3.4: Incongruent Task Figure 3.5: Congruent Task
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value that employed in this research was fixation location that firstly was defined
in a relative location, and afterward it changed to height and width pixel and then
patch number.

EEG data acquisition utilizes a 64-channel g.tec Nautilus Pro system sampled
at 250 Hz, providing high-resolution insights into neural activity during task per-
formance. The EEG signal is preprocessed following standard protocols, including
a 0.2–32 Hz band-pass filter to retain frequencies relevant to cognitive processing
while removing noise and artifacts such as muscle movement and heartbeat interfer-
ence. Data alignment between EEG and eye-tracking streams is performed using a
synchronized timestamp, allowing for precise correlation between gaze patterns and
neural responses. As previously explained after removing artifacts and noises, the
top-3 important features have been chosen as follows: mean, standard deviation,
and the number of peaks. These features were sampled and calculated over each
distinct task of each subject.

3.5 Dataset Collection and Preprocessing
This section outlines the methods employed for dataset collection and preprocessing
in a study combining EEG and eye-tracking data to analyze gaze behavior and
cognitive load during Stroop tasks. We structured this approach based on protocols
aligned with prior work from Gong et al. (2024)[13] and Zhu et al. (2022)[14],
enhancing it with tailored experimental conditions for Stroop tasks. The methods
span participant selection, EEG and eye-tracking data acquisition, and prepro-
cessing steps, ensuring that the datasets are robust for analysis through Inverse
Reinforcement Learning (IRL).

3.5.1 Participants and Experimental Conditions
Eleven participants were initially recruited for the study, comprising graduate and
undergraduate students with normal or corrected vision. Due to specific visual
requirements, data from one participant who wore glasses were excluded, resulting
in a final sample of ten participants (eight males and two females) aged 29.11 ±
3.62 years. This participant cohort aligns with studies from Gong et al. (2024)[13],
which utilized samples of similar demographics to control for variability in cognitive
load responses.

Each participant performed 20 Stroop tests per session, yielding data across both
congruent (color and word align) and incongruent (color and word conflict) task
conditions. This setup allowed for evaluating cognitive interference and attentional
control across two levels of task complexity, a design inspired by cognitive load
studies such as those from Zhu et al. (2022)[14], which examined responses across
tasks of varying cognitive demands. Each task was displayed for 5 seconds with a

18



Materials and Methods

5-second inter-stimulus interval, providing participants with a rest period between
trials to minimize cognitive carryover effects. This protocol aims to balance cognitive
load, providing a robust foundation for analyzing both high and low-interference
tasks.

3.5.2 EEG Data Acquisition and Preprocessing
EEG data acquisition was conducted using a 64-channel g.tec Nautilus Pro EEG
system with a 250 Hz sampling rate, as applied in similar neurophysiological studies
by Gong et al. (2024)[13] and Zhu et al. (2022)[14]. EEG signals were recorded
to capture neural responses to both congruent and incongruent Stroop stimuli,
focusing on the frontal and parietal regions associated with attentional control and
interference resolution.

The preprocessing pipeline, consistent with methods outlined in Zhu et al.
(2022)[14], involved:

1. High-pass filtering at 0.2 Hz and low-pass filtering at 32 Hz to eliminate muscle
artifacts and physiological noise.

2. Power spectral density analysis to remove channels with excessive noise.

3. Artifact rejection processes to suppress blink and heartbeat noise through
independent component analysis.

After these preprocessing steps, each task segment was re-referenced to the
average of all channels, establishing a uniform baseline across participants. Following
Gong et al. (2024)[13], key EEG features, including mean and peak activity within
task windows, were extracted for each task to facilitate a nuanced analysis of
cognitive load associated with Stroop conditions.

3.5.3 Eye-Tracking Data Acquisition and Processing
Eye-tracking data were collected using the GP3 eye-tracking device, recorded at 60
Hz to capture fixation duration and location. Following the methods of Gong et al.
(2024)[13], gaze coordinates (FPOGX, FPOGY) were recorded, and the data were
processed for further analysis.

The fixation data were mapped onto a 640-grid matrix, representing screen
positions as 32x20 patches of 16x16 pixels each. Fixations were then converted to
specific patch numbers to synchronize with EEG data, aiding in the alignment with
IRL-based gaze modeling. This mapping approach ensures that fixation points are
accurately represented, enabling scanpath analysis and subsequent integration with
EEG data. The Dynamic Contextual Belief (DCB) map is a critical feature within
the model, representing the spatial focus of gaze by mapping fixated locations
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within a defined foveal radius. This DCB map dynamically updates after each
fixation to capture areas of cognitive engagement, reflecting changes in visual
attention over time and providing a structured map for gaze modeling.

3.5.4 Scanpath and Dataset Structuring
Following Zhu et al. (2022)[14] and Gong et al. (2024)[13], scanpaths for each
Stroop trial were created by aggregating fixation sequences aligned with EEG data.
Data were organized into time-segmented blocks, capturing EEG and eye-tracking
metrics for both congruent and incongruent trials. This structuring provides a basis
for the IRL framework, enabling dynamic modeling of gaze shifts under cognitive
load and facilitating the reconstruction of gaze behaviors.

The dataset structure includes:

1. Eye-tracking vectors: Fixation coordinates

2. EEG feature vectors: Encapsulating mean, peak, and standard deviation
for each task.

3. Trial metadata: Task type

4. DCBs: Low-res and High-res Dynamic Contextual Belief(DCB) maps for
each task.

3.6 Inverse Reinforcement Learning(IRL) Frame-
work

The Inverse Reinforcement Learning (IRL) framework developed in this study
provides an environment (based on Yang et al. (2020)[12] project) that leverages
EEG and eye-tracking data to decode and reconstruct gaze behavior during Stroop
task trials. By defining and training an IRL-based system, this framework uses a
multi-layered approach—specifically integrating Generative Adversarial Imitation
Learning (GAIL) algorithm for behavioral replication, Proximal Policy Optimization
(PPO) for policy refinement, and Dynamic Contextual Belief (DCB) for state
representation. Together, these components contribute to modeling and predicting
gaze trajectories as they respond to neural and task-specific cues.

Within this IRL framework, the environment is central, structured to represent
the visual field in distinct low- and high-resolution regions, based on where the
gaze is focused. This segmentation supports efficient processing by refining high-
resolution details only in focal areas, which are derived from participant fixation
data. Observations within this environment are designed to capture both state
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information from fixation points and EEG signals, creating a comprehensive dataset
that reflects cognitive and visual processing in response to Stroop task demands.

The training process incorporates task-specific constraints and metrics to ensure
alignment with human behavioral patterns observed in Stroop trials. These metrics
include Target Fixation Probability (TFP) at various temporal stages, probability
mismatch between model-predicted and human eye-tracking data, and cumulative
fixations on target locations. Each metric is critical for evaluating the model’s
ability to replicate human-like gaze paths and adjust dynamically based on EEG
signals.

By iteratively optimizing the generator (policy) and discriminator (reward
estimator), this IRL framework progresses through a series of policy adjustments,
where PPO is employed to refine fixation probabilities and action selection, closely
mirroring EEG-guided gaze behaviors. Additionally, GAIL-driven adversarial
training enables the model to discriminate between synthetic (model-generated)
and real (human) gaze paths, using this feedback to enhance the fidelity of gaze
prediction. Through these methods, the IRL framework achieves a robust simulation
of attention-driven gaze behaviors under varying cognitive load conditions, as
exemplified in the Stroop task.

3.6.1 GAIL: Generative Adversarial Imitation Learning
Generative Adversarial Imitation Learning (GAIL) serves as a core component of
this framework, driving the replication of human-like gaze patterns by learning
from real fixation sequences collected during Stroop task trials. Within the GAIL
model, a generator-discriminator setup is used to mimic observed human behavior,
where the generator synthesizes gaze paths and the discriminator evaluates their
authenticity by comparing them against real human data. This adversarial structure
enables the model to refine its gaze trajectory predictions iteratively, ensuring that
generated scanpaths increasingly resemble actual human gaze paths.

The GAIL training process here uses human scanpath data as a reference, with
real fixation sequences segmented based on task and congruence level, allowing the
model to learn from distinct conditions of cognitive load inherent in the Stroop task.
The generator model synthesizes gaze sequences by selecting fixation points within
a patch-based environment, with each patch representing a discrete visual field
location. In each training iteration, the generator produces a trajectory, which is
then assessed by the discriminator in terms of its "realness" (i.e., similarity to human
behavior). This evaluation guides the generator’s updates, using PPO-based policy
optimization to refine fixation probabilities, thereby helping it produce increasingly
accurate gaze sequences that adapt to EEG-informed cognitive cues.

The discriminator, on the other hand, calculates the probability of each generated
gaze sequence being "real" or human-like. It does so by analyzing state-action pairs,
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which encapsulate fixation points, EEG-derived cognitive states, and task conditions.
Through the inclusion of EEG data, the discriminator is better informed about
the cognitive state driving each gaze pattern, enhancing its ability to distinguish
authentic behaviors from synthetic ones. This EEG integration thus aligns the
GAIL model more closely with the nuanced cognitive demands observed during the
Stroop task, reinforcing its predictive accuracy for gaze behavior across varying
task conditions.

Training the generator with GAIL also includes specific metrics, such as the
probability mismatch and Target Fixation Probability (TFP) at key stages, which
assess how well the synthetic gaze matches human data. These metrics are essential
for refining the generator’s ability to focus on task-relevant areas of the visual field,
adapting gaze based on task dynamics. By iteratively optimizing these metrics, the
GAIL model effectively learns to generate gaze paths that are not only statistically
similar to human data but also responsive to the cognitive cues embedded in EEG
signals, providing a nuanced replication of attention and visual exploration under
cognitive load.

3.6.2 PPO: Proximal Policy Optimization for Policy Learn-
ing

Proximal Policy Optimization (PPO) is employed within this framework to opti-
mize the generator’s policy, enabling it to model gaze trajectories that respond
adaptively to real-time cognitive and environmental cues derived from EEG data
and task conditions. PPO is particularly well-suited for this setup due to its
stability and efficiency in high-dimensional action spaces, such as those found in
gaze prediction, where the model must select fixation points within a grid-like
environment representing the visual field.

PPO enhances the generator’s policy by balancing the exploration of new fixation
strategies with the exploitation of previously learned patterns. During training,
PPO constraints policy updates within a specified range (the "clip" parameter),
preventing overly large changes in action probabilities between iterations. This
approach ensures that the model does not deviate too drastically from effective
fixation strategies, thereby improving its convergence toward realistic gaze sequences
that align with EEG-guided cognitive cues.

In each iteration, PPO calculates the advantage estimates, representing the
benefit of taking specific fixation actions over baseline options. These advantage
estimates guide the selection of subsequent fixation points, informed by the EEG
data reflecting the participant’s cognitive state. PPO then adjusts the policy based
on the gradient of these advantage estimates, refining the likelihood of fixations that
align with areas of cognitive interest as indicated by EEG signals. This iterative
process allows the generator to learn fixation paths that dynamically adapt to
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shifts in attention driven by Stroop task demands.
Key metrics, such as Target Fixation Probability (TFP) and probability mis-

match, are used to evaluate and fine-tune the policy at specific intervals. TFP, for
instance, assesses the model’s accuracy in directing gaze to relevant task regions
within early steps of each gaze sequence. By optimizing for high TFP values,
PPO encourages the generator to prioritize task-relevant areas that align with
EEG-based cognitive load indicators, ultimately producing gaze paths that reflect
both task demands and cognitive states.

Overall, PPO contributes to this framework by ensuring that the generator’s
policy is both responsive to EEG-informed attentional shifts and stable across
training epochs. This stability is critical for capturing the nuanced dynamics of
human gaze behavior under cognitive load, enabling the model to generate gaze
paths that mirror the decision-making and attentional strategies observed in real
participants during the Stroop task.

3.6.3 Dynamic Contextual Belief (DCB) in State-Action
Modeling

In the context of state and action modeling, Dynamic Contextual Belief (DCB)
provides a method to structure state representations by leveraging high-level
contextual cues that change dynamically as the agent interacts with the environment.
DCB integrates information from multiple perspectives to generate a comprehensive
view of both the static context and the evolving understanding of the agent’s
environment during task completion. This approach enables more effective learning
and adaptation in reinforcement learning models, particularly in applications like
visual search.

Components of DCB

DCB (Fig. 3.7)includes three main components, each essential for building an
effective state representation:

1. Fovea: This component emulates the high-resolution central area of the
human visual field, capturing detailed information around a fixation point. It
models how visual information is accumulated, enabling the agent to focus
attention on specific image regions iteratively. Fig. 3.6

2. Contextual Beliefs: These beliefs represent the agent’s high-level knowledge
of object locations and spatial relationships within the environment. This
component guides attention toward task-relevant areas, even before they are
directly observed. For example, when searching for a TV(Or in the current
case ”wrong” or “correct” buttons), DCB might prioritize areas of the scene
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Figure 3.6: Foveal Vision

likely to contain it, such as walls or specific regions known to house the target.
In this project, Meta Detectron2 framework is used.

3. Dynamic Updating: As the agent gathers information over successive
interactions, the state representation is refined. This dynamic update process
ensures that new information from each action (such as fixating on a new
region) is integrated, updating both the contextual beliefs and the agent’s
understanding of the environment.

Implementation in Visual Search

In visual search, DCB enables more efficient fixation patterns by using a layered
approach to represent both known and discovered areas. The initial state is
constructed from contextual beliefs at a low resolution, representing peripheral
visual inputs. As the agent selects fixation points, the relevant high-resolution
information is incorporated into the belief state, enhancing the agent’s knowledge
base for subsequent actions.

1. State Initialization: The model initializes with a low-resolution contextual
belief map that represents the broader scene.

2. Belief Updating: With each fixation, a new belief state is generated by
combining high-resolution details from the fovea with existing low-resolution
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Figure 3.7: DCBs Mask Concept

beliefs. The belief state is adjusted using a mask specific to each fixation
location, with high-resolution details updating only within the fixation region
while the remaining area retains the lower-resolution context.

3. Task-Specific Augmentation: DCB can incorporate task-specific cues as
part of the belief state, enhancing the state representation to reflect task
priorities dynamically. For instance, when tasked with finding a specific object
category, the state includes cues that prioritize relevant scene areas, making
search more efficient.

Role of DCB in Reinforcement Learning

In reinforcement learning applications, DCB contributes to a richer state representa-
tion that enhances decision-making. By dynamically incorporating new information
with each action, DCB refines the policy, improving the agent’s ability to identify
reward-optimizing actions based on evolving contextual cues.

3.7 Network and Model Architecture
Through an integration of GAIL and IRL, the architecture is designed to process
visual data, human fixations, and EEG inputs to reproduce gaze behavior that
reflects task-specific demands and neural responses. The overarching framework is
structured to support a layered, context-sensitive model that adapts gaze predic-
tions based on EEG-informed insights, offering a nuanced understanding of visual
attention under cognitive load.

25



Materials and Methods

Central to this framework is the interaction between the generator and discrimi-
nator models, trained in a Generative Adversarial Imitation Learning (GAIL) setup
to ensure generated gaze trajectories closely resemble authentic human behavior.
The generator, or policy network, leverages Proximal Policy Optimization (PPO)
to dynamically update gaze probabilities, informed by both fixation data and
EEG signals, which enrich the model’s ability to adapt to cognitive load and task
complexity. This integration of EEG data—captured and processed in both training
and validation—adds a significant layer of contextual understanding, allowing gaze
patterns to respond adaptively to neural indicators of cognitive engagement.

The training pipeline is built around a robust dataset preparation and training
loop that includes:

1. Data Preprocessing and Storage: EEG data is systematically associated
with specific fixation points and processed alongside gaze trajectories. This step
enables synchronized learning from EEG patterns linked to visual attention
during each single task.

2. Dynamic Belief Representation (DCB): Low- and high-resolution Dy-
namic Contextual Belief (DCB) maps are used within the environment, en-
abling selective attention to critical visual regions while maintaining computa-
tional efficiency.

3. Training Process: Both models—generator and discriminator—are itera-
tively refined through PPO and adversarial learning in GAIL, adjusting action
probabilities based on task requirements. The training also includes advanced
metrics such as Target Fixation Probability (TFP) and probability mismatch,
ensuring that predicted gaze paths align with observed human data.

The architecture’s modularity and data-centric approach to gaze and EEG
integration set a foundational model for decoding gaze in the Stroop task, leveraging
IRL to gain insights into the neural correlates of cognitive control and attentional
behavior.

3.7.1 Discriminator Network Structure
The discriminator network is designed to evaluate and distinguish between authentic
human gaze paths and those generated by the policy network, thereby refining the
accuracy of the model’s gaze trajectory predictions. This discriminator functions
within the Generative Adversarial Imitation Learning (GAIL) setup, where it
assigns rewards to generated gaze paths based on their similarity to real human
scanpaths, integrating contextual and neural cues from the EEG data associated
with each fixation.
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The discriminator is a conditional model tailored for the Stroop task environment,
built with convolutional layers that incorporate task-specific information through
one-hot encoded task vectors. This task vector is appended to each layer, ensuring
that the model learns task-relevant features in relation to gaze behavior:

1. Input Layer: The input consists of feature maps with dimensions (batch_size,
channels, height, width) where:

• Channels include belief maps and task-related information.
• Task vectors are represented in a one-hot encoding format and modulate

feature maps in each layer, preserving task-specific distinctions.

2. Convolutional Layers:

(a) Conv1: The initial convolution layer accepts the concatenated input of
belief maps and task vectors, producing 128 feature maps. This layer
includes:
• Filter size: 3 × 3
• Padding: 1 (to maintain spatial dimensions)
• Output channels: 128

(b) Conv2: The output from Conv1 is concatenated with the task vector
and passed through a second convolutional layer.
• Filter size: 3 × 3
• Padding: 1
• Output channels: 64

(c) Conv3: Similar to previous layers, task information is appended again,
and features are convolved.
• Filter size: 3 × 3
• Padding: 1
• Output channels: 32

(d) Conv4: This final convolutional layer reduces the feature maps to a single
channel.
• Filter size: 1 × 1
• Output channels: 1 (produces a reward map)

3. Pooling Layers:

• A MaxPool layer is optionally applied after the first two convolutional
layers, which is activated based on input spatial dimensions (e.g., when
height = 80).
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4. Task Modulation Mechanism:

• Each layer leverages task modulation by concatenating the one-hot en-
coded task vector with feature maps, forming a multi-channel input. This
modulation ensures that the discriminator learns to identify task-specific
gaze patterns and differentiate them from generic gaze behavior.

Training and Loss Calculation

The discriminator is trained to output a probability score that reflects the likelihood
of a gaze path being authentic. It calculates a binary cross-entropy loss between
real and generated gaze paths, using the following metrics for gradient adjustments:

• Real Loss: Probability score for actual human gaze paths.

• Fake Loss: Probability score for generated gaze paths, with added regular-
ization from a gradient penalty to enforce smooth decision boundaries.

The network’s training procedure incorporates gradient penalty for stability,
particularly when training with small datasets or high-dimensional data:

• Milestones for learning rate adjustment: 5

This architecture, with task-conditional modulation and convolutional layers, forms
a discriminator capable of discerning between EEG-guided, human-authentic gaze
trajectories and those generated by the policy network. Its design emphasizes
contextual relevance by incorporating task vectors at every layer, improving the
discriminator’s sensitivity to task-dependent gaze behaviors.

3.7.2 Policy Network Structure
The policy network serves as the generator within the GAIL framework, tasked
with producing gaze trajectories that mimic human scanpaths in the Stroop task.
This network is structured to integrate both visual and EEG data, enabling it to
model gaze paths that adapt to the cognitive demands of the task. The Proximal
Policy Optimization (PPO) algorithm is employed to update the network’s action
probabilities in response to real-time observations, EEG signals, and task-specific
details.

Network Architecture

The policy network is a conditional model with dedicated components for actor
(action selection) and critic (value estimation) pathways, allowing it to predict gaze
actions and estimate their expected rewards. EEG features are integrated into
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the network to guide gaze decisions based on cognitive load signals, enhancing the
model’s alignment with real human behavior.

1. Input Layer:

• Input dimensions: (batch_size, channels, height, width),where:
– Channels include low- and high-resolution belief maps and task-specific

one-hot vectors.
– EEG data, processed separately through a fully connected layer, is

later combined with other features in the critic pathway.
– Task vectors are appended as one-hot encodings to modulate feature

maps in each layer, maintaining task relevance throughout the network.

2. Feature Encoding Layer:

• Feature Encoder (Conv): The initial convolutional layer processes the
concatenated input (belief maps + task vector), producing 128 feature
maps.

– Filter size: 5 × 5
– Padding: 2 (to preserve spatial dimensions)
– Output channels: 128

3. Actor Pathway (Action Selection):

(a) Actor Conv1: The first convolution in the actor pathway receives the
output of the feature encoder with appended task vectors.
• Filter size: 3 × 3
• Padding: 1
• Output channels: 64

(b) Actor Conv2: Another convolutional layer that continues feature refine-
ment.
• Filter size: 3 × 3
• Padding: 1
• Output channels: 32

(c) Actor Output (Conv3): Produces the final action logits, reshaped to a
single-channel output for action probabilities.
• Filter size: 1 × 1
• Output channels: 1
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(d) Softmax Activation: Logits are converted into action probabilities
across available gaze actions using a softmax function, ensuring the output
reflects a probability distribution over gaze locations.

4. Critic Pathway (Value Estimation):

(a) Critic Conv0: Initial convolution that feeds into the critic pathway,
followed by a max-pooling layer.

• Filter size: 3 × 3
• Output channels: 128

(b) Critic Conv1: Further feature refinement for value estimation.

• Filter size: 3 × 3
• Output channels: 256

(c) Fully Connected Layer (Critic2): Following the convolutional layers,
a fully connected layer reduces the feature map to 64 units.

• Input size: 256 (or as determined by the previous layer’s flattening)
• Output size: 64

5. EEG Processing Layer:

• EEG Fully Connected Layer: A fully connected layer specifically
processes EEG features.

– Input size: 3 (assuming three critical EEG features)
– Output size: 32

• This EEG-derived output is concatenated with features from the critic
pathway, enhancing value estimation with real-time cognitive state indi-
cators.

6. Final Critic Layer:

• Critic Output Layer: The concatenated EEG and task features are
passed through a final fully connected layer to output the state value
estimate.

– Input size: 64 + 32 (concatenated from critic pathway and EEG
features)

– Output size: 1
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Training and Hyperparameter Details
The policy network’s training is driven by the PPO algorithm, which balances
stability and exploration in gaze path predictions:

• Clipping Parameter: Ensures stable updates by limiting the changes in action
probability across iterations. 0.2

• Learning Rate: 1e-05

• Batch Size and Epochs: 2

The policy network leverages EEG data and task-specific modulation to dynamically
adapt gaze predictions to cognitive demands. Its structure integrates attention-
guiding features while maintaining spatial relevance, ensuring that gaze actions align
with the Stroop task’s attention requirements. Through the combination of actor-
critic architecture and EEG-informed adaptation, this model successfully generates
gaze paths that reflect realistic human-like decision-making under cognitive load.

3.7.3 Training Process and Hyperparameter Tuning
The training process for the gaze prediction model is designed to iteratively refine the
generator (policy network) and discriminator within a GAIL framework, utilizing
PPO to optimize gaze trajectories based on EEG and visual data. This detailed
pipeline ensures that the model learns to generate human-like gaze paths that are
both task-specific and sensitive to cognitive demands. The following subsections
provide a granular breakdown of the steps, processes, and configurations used in
training.

1. Data Loading and Preprocessing:

• The dataset is divided into training and validation sets, containing gaze
trajectories annotated with EEG data for each fixation point.

• Input images are segmented into 32×20 patches (patch_num) to cover the
entire 512×320 image (im_w and im_h). Each patch represents a potential
fixation region, forming a grid of 640 gaze points. This segmentation
allows the model to predict gaze locations at a fine-grained level.

• Each gaze path consists of a maximum of 6 fixations (max_traj_length),
restricting trajectories to concise, task-relevant paths.

2. Batch Processing:

• Training is conducted with mini-batches of 4 images (batch_size), where
each batch includes both EEG and gaze data for joint processing.
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• EEG data is preprocessed and linked to each gaze trajectory, providing
additional cues for fixation decisions based on cognitive load.

3. GAIL Framework:

• Policy Network (Generator): The policy network generates potential
gaze trajectories in response to the input data and is updated through
PPO. It samples fixation points from a probability distribution over all
patches, influenced by task demands and EEG indicators.

• Discriminator Network: The discriminator evaluates the authenticity
of each generated gaze trajectory, comparing them against real human
scanpaths. It assigns rewards to trajectories that closely resemble hu-
man behavior, thus guiding the policy network to refine its predictions
iteratively.

4. Action Collection and State-Action Pairs:

• For each batch, the policy network samples actions (fixations) based on
the current state representation (visual and EEG data). These sampled
actions form state-action pairs representing the model’s gaze choices under
task-specific conditions.

• Trajectory Generation: The generator samples a complete trajectory
of fixations for each image in the batch, constrained to a maximum of 6
fixations per path. This step simulates a sequence of gaze shifts, allowing
the model to approximate human scanning behavior.

5. Policy Network Update with PPO:

• Advantage Estimation: Advantages are computed using Generalized
Advantage Estimation (GAE) with a smoothing factor τ of 0.96. This
method calculates the expected return for each action, adjusting for both
immediate rewards and long-term value.

• Reward Discounting: The cumulative reward is discounted at a rate of
0.9 (gamma), favoring immediate fixations while capturing long-term visual
goals. This discount factor encourages the policy to focus on immediate
task-relevant regions while maintaining awareness of the broader task
context.

• Clipping and Gradient Updates: The PPO algorithm limits updates
to the policy network by clipping policy changes to a maximum of 0.2
(clip_param), ensuring stable learning and preventing drastic shifts in
gaze predictions across iterations. After each mini-batch, the policy is
updated by backpropagating the gradients computed from the advantage-
weighted loss function.

32



Materials and Methods

6. Discriminator Network Update with GAIL:

• Real and Fake Data Discrimination: The discriminator network
receives both real human trajectories and generated trajectories from the
policy network. It assigns higher rewards to paths that align with human
patterns, guiding the policy toward more realistic gaze behaviors.

• Gradient Penalty: To improve stability, the discriminator applies a
gradient penalty with a coefficient λ (0.15), enforcing smooth decision
boundaries between real and generated trajectories. This penalty reduces
overfitting and ensures that the discriminator generalizes well to both
authentic and synthetic gaze paths.

• Learning Rate Adjustment: The learning rate for the discriminator is
adjusted at milestone epochs (gail_milestones: [5]), enhancing training
stability and allowing for gradual improvements over time.

7. Environment Interaction and Reward Calculation:

• Dynamic Contextual Belief (DCB): The environment’s DCB maps
modulate focus between high- and low-resolution regions based on the
agent’s current fixation. This dynamic adjustment is guided by the foveal
radius (fovea_radius: 2) and inhibition of return (IOR) size (IOR_size:
1), preventing repeated fixation on previously viewed areas and promoting
exploration of new regions.

• Stop-On-Target Criterion: The training process incorporates a Stop-
On-Target (SOT) criterion (stop_criteria: "SOT") that halts fixation
sampling once the gaze reaches the target. This criterion aligns the
model’s behavior with human tendencies to cease search efforts upon
locating relevant stimuli.

8. Checkpointing and Evaluation:

• Checkpointing: Model checkpoints are saved after every single epoch
(checkpoint_every: 1), allowing incremental progress tracking and model
state recovery. Only one checkpoint is retained (max_checkpoints: 20)
to manage storage while keeping the 20 latest model states and access
previous models after early stopping.

• Evaluation Frequency: Every 5 steps (evaluate_every: 5), the model
is evaluated on validation data using metrics such as Target Fixation
Probability (TFP) and probability mismatch, which gauge the model’s
ability to replicate human-like gaze paths and track alignment with
observed behaviors.
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Algorithm 1 Inverse Reinforcement Learning (IRL) Framework
Require: Human scanpaths Shuman, bounding boxes B, configuration C
Ensure: Trained policy πθ

1: Initialize generator πθ and discriminator Dϕ;
2: Load and preprocess datasets Strain and Svalid;
3: Set hyperparameters (learning rates, batch size, max steps, etc.);
4: for each epoch do
5: for each batch Bimg in Strain do ▷ Generate trajectories
6: Reset environment with batch Bimg;
7: while not done do
8: Sample action at ∼ πθ(st);
9: Execute action and collect (st, at, rt, st+1);

10: end while
▷ Update discriminator

11: Sample fake and real scanpaths;
12: Compute loss LD = −E[log Dϕ(Shuman)] − E[log(1 − Dϕ(Sgen))];
13: Update ϕ using gradient descent;

▷ Update generator
14: Compute advantages A(st, at) using GAE;
15: Compute PPO loss Lπ;
16: Update θ using gradient descent;

▷ Evaluate policy
17: if step mod eval_interval = 0 then
18: Generate validation scanpaths Sgen;
19: Compute evaluation metrics (TFP, Multimatch, etc.);
20: end if
21: end for
22: end for
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This structured training process, combining PPO and GAIL within a task-
specific framework, enables the model to iteratively improve its gaze predictions
by leveraging both visual cues and EEG data. Each component—from reward
calculations to gradient penalties and checkpointing—contributes to building a
robust, accurate gaze prediction model that closely mimics human gaze behavior
in the Stroop task.
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Scanpath Prediction
Framework

This section presents a comprehensive framework for predicting human gaze paths
within the Stroop task, guided by EEG signals and informed by inverse reinforcement
learning (IRL) principles. The framework builds upon advanced reinforcement
learning strategies, combining Proximal Policy Optimization (PPO) and Generative
Adversarial Imitation Learning (GAIL) to enable a dynamic model capable of
capturing and predicting attention-driven scanpaths under cognitive load. This
approach integrates neural markers from EEG data, providing real-time insights
into participants’ cognitive states and refining the gaze predictions to align closely
with human-like behaviors.

The framework is designed to train a policy network (generator) and a discrimi-
nator, each tailored to recognize and replicate gaze patterns within a high- and
low-resolution environment. The model employs Dynamic Contextual Belief (DCB)
maps to structure the visual field into regions of varying importance, allowing it to
adaptively prioritize areas based on the participant’s cognitive goals, as indicated
by EEG cues. By using these belief maps, the framework effectively mimics human
visual attention, focusing on areas likely to capture gaze during complex Stroop
tasks.

During training, the policy network learns to generate sequences of fixation
points informed by EEG data, structured through a custom environment that
simulates the participant’s visual experience. The EEG data is preprocessed and
integrated with the model, shaping the predicted scanpaths based on real-time
cognitive feedback. Through iterative optimization, PPO refines the network’s
policy by balancing exploration of novel gaze paths and exploitation of learned, task-
aligned patterns, adjusting fixation probabilities to optimize cognitive engagement
indicators.
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The discriminator network, in contrast, operates by distinguishing generated
scanpaths from human-generated paths, providing feedback that the generator
leverages to better replicate human-like gaze behaviors. By dynamically updating
based on EEG cues, the model’s reward structure enables it to mirror the cognitive
adjustments individuals make during the Stroop task, capturing not only fixation
points but the nuanced strategies driving gaze behavior under cognitive interference.

Through this framework, the model achieves robust prediction of gaze patterns
that mirror human attentional shifts, producing scanpaths that align with observed
cognitive states and the demands of the Stroop task. This EEG-driven IRL approach
thus provides a refined tool for gaze behavior modeling, advancing applications
in cognitive neuroscience and clinical diagnostics where attention and response
inhibition are critical markers.

4.1 State-Action Modeling
State and action modeling form the foundation of this gaze prediction framework,
with states representing the visual and cognitive contexts of gaze behavior and
actions representing fixation choices within these states. This framework captures a
dynamic interplay between the participant’s cognitive state (inferred through EEG
data) and the visual environment (modeled as a spatial grid of potential fixation
points). By leveraging Dynamic Contextual Belief (DCB) maps, the framework
structures the visual field into discrete low- and high-resolution patches, dynamically
updating based on the participant’s fixation history and neural responses.

State Representation
In this framework, the state encapsulates both the visual features within a scene
and cognitive markers associated with each task condition. Each state includes:

• DCB Map Layers: High-resolution representations are reserved for fixation
points, while peripheral regions are rendered in lower resolution. This approach
mimics human vision, where the fovea captures detailed information while the
periphery maintains a lower resolution. These maps adjust based on fixation
history, allowing the model to retain contextual awareness of previously viewed
regions.

• EEG-Informed Cognitive Cues: EEG data, processed to extract cognitive
load indicators, is integrated with the visual state, providing a real-time
measure of the participant’s attentional engagement and cognitive load. This
EEG-driven approach enables the model to adjust its fixation choices in
response to dynamic cognitive shifts, a feature crucial in tasks like the Stroop
test that involve cognitive interference.
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The state is therefore a multi-layered representation combining spatial attention
with cognitive context. By integrating EEG data, the framework enhances its
sensitivity to cognitive demands, enabling it to differentiate between high and
low-load conditions and to prioritize fixation points accordingly.

Action Modeling
In this framework, actions are defined as discrete fixation choices on a grid-like
structure, where each grid cell represents a potential fixation region within the
DCB map. The choice of fixation points is guided by the reward-based motivations
inferred through inverse reinforcement learning. By applying EEG-derived cognitive
cues, the framework identifies areas of interest that align with cognitive engagement
markers, effectively predicting fixation locations in a manner that reflects human
attentional priorities during the Stroop task.

The environment module provides a central mechanism for action modeling by:

1. Masking Previously Fixated Regions: To prevent repetitive fixations on
recently observed areas, the environment applies inhibition of return (IOR),
dynamically updating action availability based on past fixations.

2. Dynamic Task-Dependent Reward Calculation: The environment gener-
ates rewards based on task alignment and visual context, using EEG-informed
state updates to identify areas of high cognitive relevance. This approach allows
actions to adapt based on task-specific demands, with the model prioritizing
regions associated with higher cognitive load during the Stroop task.

4.2 EEG Feature-Guided Modeling
In this framework, the EEG Feature-Guided Modeling approach focuses on leverag-
ing EEG signals exclusively within the policy network to guide gaze predictions.
This component is crucial, as it aligns gaze actions with the participant’s cognitive
state, captured through EEG data recorded during the Stroop task. By incorporat-
ing EEG features into the policy network, the model dynamically adjusts fixation
choices based on real-time cognitive load, effectively enhancing the alignment
between gaze behavior and neural responses.

EEG Data Processing and Integration in the Policy Network
The EEG data serves as a rich source of information about the participant’s cognitive
load, which influences attention and visual exploration. In this framework:
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• Feature Extraction and Preprocessing: EEG data is processed to extract
features that reflect cognitive states, including indicators of attentional engage-
ment and cognitive load. The extracted features focus on relevant frequency
bands known to correlate with task-related cognitive processing.

• Policy Network Integration: Within the policy network, the EEG features
are incorporated to shape action selection probabilities. This integration is
implemented through a fully connected layer that processes EEG data and
combines it with visual and task-specific cues. By incorporating EEG features,
the policy network gains sensitivity to shifts in cognitive load, allowing it
to prioritize fixation locations that align with attentional demands during
high-interference Stroop trials.

EEG-Informed Action Selection
The policy network’s EEG integration enables the framework to adaptively select
fixation points that reflect cognitive engagement in real-time:

• Dynamic Adjustment of Gaze Behavior: EEG signals are mapped
directly into the policy network’s decision-making process, allowing fixation
probabilities to fluctuate based on EEG-informed cognitive cues. For example,
when EEG data indicates heightened cognitive load, the policy network may
increase fixation probability on task-relevant areas, emulating human focus on
critical information under cognitive strain.

• Enhanced Reward Sensitivity: Although the EEG data is not directly
incorporated into the reward function, the EEG-informed policy network
adjusts action selection in a way that indirectly affects the reward outcomes.
By prioritizing regions associated with cognitive load, the network aligns
gaze paths with the Stroop task’s demands, optimizing for realistic fixation
sequences without altering the discriminator’s learning process.

Training Process and EEG Integration in Policy Optimiza-
tion
In the training phase, EEG data informs the policy network, guiding it to produce
gaze paths that align with observed human behavior under cognitive load:

• PPO-Based Policy Updates: The Proximal Policy Optimization (PPO)
algorithm is employed to update the policy network, utilizing advantage
estimates that indirectly benefit from EEG-informed action choices. By
adjusting action probabilities based on EEG features, the policy network
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refines its gaze path predictions, increasing the accuracy of fixation patterns
that mirror human attention shifts in the Stroop task.

• EEG-Driven Realism in Generated Paths: The EEG-guided policy
enhances the realism of generated gaze paths by ensuring that action selection
reflects real-time cognitive states. This alignment with neural data results in
a model that can more accurately predict gaze patterns that resemble human
behavior, offering insights into how cognitive load and attention impact visual
exploration during the Stroop test.

In summary, EEG Feature-Guided Modeling in this framework is achieved by
embedding EEG data directly within the policy network, allowing adaptation of
gaze predictions based on cognitive state. This targeted integration supports the
generation of realistic gaze paths that respond dynamically to the Stroop task’s
cognitive demands, providing a powerful tool for studying gaze behavior through
the lens of EEG-informed cognitive processes.

4.3 Reward and Policy Learning
The Reward and Policy Learning component is the core of the IRL-based gaze
prediction framework, where the model learns to replicate human-like gaze patterns
in response to task demands and cognitive cues. This section utilizes both reward-
based mechanisms and EEG-guided policy updates to enable a dynamic model
capable of accurately predicting gaze behavior under the Stroop task’s cognitive
load. By employing a combination of Proximal Policy Optimization (PPO) and
Generative Adversarial Imitation Learning (GAIL), the framework refines fixation
predictions through an iterative learning process that balances action selection
with realistic behavioral modeling.

Reward Structure and Discriminator Role
The reward structure in this framework is designed to reinforce fixation choices
that align closely with human gaze patterns, utilizing a discriminator network to
assess the quality of generated gaze paths:

• Discriminator Network as a Reward Estimator: The discriminator
operates within the GAIL framework, distinguishing between real human gaze
paths and those generated by the policy network. It assigns higher rewards to
fixation sequences that resemble authentic human behavior. By treating gaze
trajectories as state-action pairs, the discriminator’s feedback encourages the
policy network to adapt its fixation patterns to match human-like exploration
behaviors during the Stroop task.
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• Implicit Reward Mechanism: Unlike traditional IRL approaches that
define explicit rewards based on predefined features, this framework utilizes
the discriminator’s feedback as an implicit reward signal. The discriminator’s
assessment incentivizes the generator (policy network) to produce gaze paths
that align with the cognitive demands of the Stroop task, focusing on fixation
points that accurately reflect attentional strategies.

EEG-Guided Policy Network and PPO Optimization
The policy network leverages EEG data to refine fixation choices, with PPO
providing an efficient framework for updating action probabilities in response to
cognitive state changes:

• Policy Network Integration with EEG Data: The policy network, guided
by EEG-informed state representations, adjusts fixation probabilities to reflect
cognitive load indicators. By dynamically adapting to EEG signals, the policy
network is able to prioritize gaze locations that align with task-relevant areas,
capturing the shifts in attention typical of Stroop task performance.

• Proximal Policy Optimization (PPO) for Stability and Efficiency:
PPO is applied to optimize the policy network’s action probabilities within a
stable update range, ensuring smooth adjustments in fixation decisions across
training iterations. PPO’s clipping mechanism restricts drastic changes in
policy updates, allowing the model to refine its gaze predictions incrementally.
This incremental approach ensures that fixation probabilities evolve in a
manner consistent with both EEG-informed cognitive cues and the human-like
gaze patterns encouraged by the discriminator.

Training Process and Reward-Policy Interaction
The training process balances the EEG-informed policy updates and reward signals
from the discriminator, iterating through steps that refine gaze prediction accuracy:

• Training Loop with GAIL and PPO: The training loop iterates between
generating gaze trajectories through the policy network and evaluating them
using the discriminator. With GAIL’s adversarial structure, the discriminator
provides feedback on the “realness” of generated paths, guiding the policy
network to adapt its predictions. Each PPO update step leverages advantage
estimates, calculated based on the discriminator’s reward, to refine policy
parameters. This back-and-forth refinement process ensures that the model’s
gaze predictions evolve to reflect realistic gaze paths in response to EEG-
informed cognitive states.

41



Scanpath Prediction Framework

• Cumulative Rewards and Advantage Estimation: Advantage estima-
tion, critical in PPO, computes the expected return for each fixation action,
integrating both immediate and longer-term rewards. Although EEG data
does not directly influence the reward structure, the EEG-guided fixation
choices indirectly shape advantage values, reinforcing gaze paths that are
cognitively aligned with the Stroop task’s demands. By estimating advantages
with EEG-informed actions, the policy network refines fixation choices in a
manner that optimally reflects cognitive engagement.

Outcome: Near Realistic and Cognitively Aligned Gaze
Predictions
Through the combination of reward and policy learning, this framework produces
gaze predictions that mirror human attentional patterns under cognitive load. The
reward signals from the discriminator incentivize human-like fixation sequences,
while the EEG-guided policy network ensures that these predictions are responsive
to real-time cognitive states. This integration of GAIL and PPO with EEG-informed
action selection results in a gaze prediction model capable of dynamically adapting
to cognitive demands, offering an advanced tool for studying the interaction between
visual attention and cognitive processes.
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Experiments

This section delineates the experimental framework, which leverages a sophisticated
integration of EEG signals, eye-tracking data, and IRL mechanisms to model and
reconstruct human gaze behavior in the Stroop task. The experimental setup
involves a dynamic and adaptive IRL environment built around GAIL and PPO
methodologies, tailored to predict and analyze gaze patterns in response to task-
specific cognitive load and reward structures.

The codebase implements several notable techniques to ensure accurate, adaptive
gaze modeling within this environment:

1. EEG-Driven State Modeling and Action Selection: A primary focus
of the experiment is the incorporation of EEG data to drive both state
representation and action selection within the model. Through preprocessing,
EEG signals are extracted and fed directly into the IRL framework, specifically
modulating the generator’s (policy network’s) action probabilities. This EEG
integration ensures that gaze predictions are not only responsive to visual
context but are also dynamically adapted based on real-time cognitive states,
which are pivotal in the Stroop task.

2. Dynamic Contextual Belief (DCB) Maps and Foveal Masking: The
IRL environment is designed with DCB maps that dynamically adjust visual
resolution around each fixation point, mimicking human visual processing.
These maps include both low-resolution peripheral and high-resolution central
areas, where the high-resolution region shifts according to the latest fixation,
allowing the model to accumulate scene information similarly to human
attention mechanisms. The DCB maps are further enhanced through a
foveal masking approach, where fixation history dictates inhibition of return to
previously visited regions, promoting naturalistic gaze patterns by encouraging
exploration of novel areas within the visual field.
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3. Generative Adversarial Imitation Learning (GAIL) and Proximal Pol-
icy Optimization (PPO): The experimental structure utilizes a dual-model
setup, combining GAIL’s generator-discriminator structure with PPO-based
optimization. GAIL enables adversarial learning by having the discriminator
assess the realism of generated gaze paths against actual human data, pro-
viding reward feedback that drives the generator to refine its fixation choices
iteratively. PPO, employed within the policy network, ensures stable learn-
ing through clipped policy updates, adapting fixation decisions in line with
cognitive engagement cues from EEG data. This hybrid approach balances
exploratory behavior and exploitation of learned gaze strategies, aligning
generated paths closely with human data under Stroop task conditions.

4. Adaptation to Task-Specific Rewards and Human-Like Gaze Pat-
terns: The experimental environment applies a flexible reward structure that
reflects task-specific demands, essential for tasks involving cognitive control
like the Stroop. Task-based rewards guide gaze patterns toward areas that
yield higher cognitive relevance as per EEG indicators, helping the model
mimic attentional shifts characteristic of Stroop tasks. The PPO’s advantage
estimation further aligns fixation choices with regions of interest by dynami-
cally recalculating benefits of actions in light of EEG-driven state updates,
thereby refining the model’s focus on critical task regions.

5. Evaluation Pipeline for Gaze Prediction Accuracy: The experimental
framework includes an evaluation mechanism that computes metrics such as
Target Fixation Probability, Probability Mismatch, and MultiMatch Sequence
Score. These metrics serve to quantify the alignment between model-generated
scanpaths and actual human data. Additionally, the experimental setup
evaluates the EEG-guided policy network’s ability to adapt to changes in
cognitive load, allowing a nuanced comparison between gaze paths generated
with and without EEG input.

Through these methodological components, the experiment provides a robust
testbed for analyzing gaze behavior under cognitive load and demonstrates the
effectiveness of EEG-integrated IRL frameworks in reconstructing realistic gaze
patterns in cognitively demanding tasks. The results from this experimental
framework are intended to yield insights into the interaction between cognitive
control, reward-driven attention mechanisms, and visual processing under task-
induced cognitive demands.
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5.1 Compare Scanpath Model
In this subsection, we present a comparative analysis of various scanpath models
evaluated within the Stroop task environment. The experimental setup leverages
both EEG-enhanced and non-EEG baselines to investigate the impact of cognitive
state information on scanpath prediction accuracy and realism.

The comparison framework centers on evaluating models’ ability to replicate hu-
man scanpaths across key metrics. By implementing multiple configurations—such
as EEG-guided policies, purely visual models, and reward-modulated IRL frame-
works—the experiment assesses each model’s competency in capturing human-like
gaze patterns under the Stroop task’s cognitive demands.

1. EEG-Enhanced IRL Model vs. Non-EEG Models:

• EEG-Enhanced IRL Model: The EEG-informed model leverages EEG
signals as direct input into the IRL framework, specifically influencing state
representations and fixation probability distributions within the PPO-
driven policy network. This approach allows the model to adapt gaze
predictions in real-time based on participants’ cognitive load, reflecting
shifts in attention associated with Stroop task interference.

• Non-EEG IRL Models: To evaluate the contribution of EEG data, we
compare the EEG-enhanced model with non-EEG counterparts that rely
solely on visual context and reward structures derived from GAIL. These
models do not have access to real-time cognitive cues, relying instead on
static gaze behavior rules within the IRL framework. By contrasting these
approaches, we measure the added value of EEG integration for realistic
gaze behavior replication.

2. Scanpath Sequence Fidelity:

• Temporal Sequence Analysis: For each model, gaze sequence fidelity is
assessed by comparing the temporal order of fixations to human scanpaths
using metrics like MultiMatch. This comparison enables insights into
how well each model reproduces the step-by-step progression of human
gaze as it adapts to task demands and visual stimuli. The EEG-enhanced
model is hypothesized to better capture human temporal fixation patterns,
especially under high cognitive load.

• Probability Distribution Matching: The probability of fixating on
key regions (Target Fixation Probability, TFP) is another core metric,
calculated at various stages in the scanpath sequence (steps 1, 3, and
6). These results reveal whether each model directs attention toward
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task-relevant areas consistently with human patterns, particularly under
incongruent (cognitively challenging) Stroop trials.

3. Reward Sensitivity and Policy Adaptation:

• Each model’s policy network adaptation is examined to understand how
reward sensitivity shapes scanpath generation under different cognitive
loads. The EEG-enhanced model incorporates cognitive states into its
reward structure, potentially yielding fixation sequences that dynamically
adjust to the Stroop task’s interference conditions. In contrast, non-EEG
models adhere to a more static reward interpretation, likely resulting
in less adaptive scanpaths. This comparison provides insight into how
EEG integration fosters policy refinement within the PPO framework,
emphasizing areas of cognitive engagement aligned with EEG markers. ]

4. Action Selection and Inhibition of Return (IOR):

• The scanpath models also differ in how they handle the inhibition of return
(IOR) mechanism, a core component for promoting human-like exploration
by discouraging repeated fixations. The EEG-informed model utilizes
cognitive load signals to further modulate IOR, adapting action selections
to emphasize task-relevant yet previously unexplored regions. Non-EEG
models, while incorporating IOR, lack real-time cognitive inputs, poten-
tially leading to less optimal and more repetitive fixation patterns. This
aspect of comparison illuminates the role of cognitive state information in
maintaining naturalistic gaze behavior.

5. Performance Evaluation and Metrics Summary:

• A summary of quantitative comparisons across Target Fixation Probability
(TFP), Sequence Score, Probability Mismatch, and MultiMatch metrics is
provided to highlight each model’s strengths and limitations in mirroring
human gaze patterns. This summary underscores the utility of EEG-
informed gaze modeling for high cognitive-load tasks, validating the
EEG-enhanced model’s advantage in predicting nuanced attention shifts.

5.2 Implementation Details
5.2.1 Extracting DCBs
The implementation of Dynamic Contextual Belief (DCB) within our Inverse
Reinforcement Learning framework necessitated the computation of contextual
belief maps for each slide in the Stroop test. These belief maps form a critical
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component of the state representation, capturing both high-resolution focal details
and low-resolution peripheral information. To generate these maps, we developed
a comprehensive approach that involved training a custom object detection model
using Detectron2 and constructing feature maps based on the detected objects.
This section details the processes involved in training the object detection model
and computing the high-resolution (HR) and low-resolution (LR) feature maps
integral to the DCB representation.

A. Training Detectron2 for Custom Object Detection

To accurately model human visual attention and contextual beliefs within the
Stroop task environment, it was essential to detect and classify specific objects
present in the slides, such as buttons indicating "correct" or "wrong" responses and
words displayed in various colors and congruence conditions. For this purpose,
we employed Detectron2, a state-of-the-art object detection and segmentation
framework developed by Facebook AI Research. Detectron2 provides a modular
and flexible platform for training custom object detection models using various
architectures and datasets.

Annotation of Stroop Test Images

We began by collecting a dataset of Stroop test slides, comprising images that
presented words in different color-word congruency configurations. Due to the
controlled nature of the experiment, we initially had a limited set of 11 distinct
images. To prepare these images for training the object detection model, we used
Roboflow, an online tool that facilitates image annotation and dataset management.

Using Roboflow’s annotation interface, we meticulously labeled each image by
drawing bounding boxes around the objects of interest and assigning them to
one of 13 predefined classes. These classes were carefully selected to represent all
possible combinations of word content and font color relevant to the Stroop task,
as well as the response buttons. The classes included:[class-correct, class-wrong,
word-blueinblue, word-blueingreen, word-blueinyellow, word-greeninblue, word-
greeningreen, word-greeninred, word-redingreen, word-redinred, word-redinyellow,
word-yellowinred, word-yellowinyellow]

Each class represents a specific combination of the word’s semantic content and
its displayed color, capturing both congruent and incongruent conditions critical to
the Stroop effect. The "class-correct" and "class-wrong" labels correspond to the
response buttons that participants interact with during the task. Fig. 5.1
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Figure 5.1: Roboflow Annotation System

Conversion to COCO Panoptic Format

After completing the annotations, the dataset was initially in COCO (Common
Objects in Context) format, which is suitable for object detection tasks. However, for
panoptic segmentation—which combines both instance segmentation and semantic
segmentation—we needed to convert the annotations to COCO Panoptic format.
This format provides a unified representation of both "stuff" and "thing" classes,
allowing for comprehensive scene understanding, however in this case ignoring the
“stuff” class was possible because there were only a single “stuff” object that was
the background.

The conversion process involved generating a panoptic segmentation map for
each image, where each pixel is assigned a class label and, for "thing" classes, an
instance ID. We utilized tools provided by the Detectron2 framework to facilitate
this conversion, ensuring compatibility with the panoptic segmentation training
pipelines.

Data Augmentation to Address Limited Dataset Size

Given the small number of original images (11 in total), training a robust object
detection model posed a significant challenge due to the risk of overfitting and
poor generalization. To mitigate this issue, we implemented data augmentation
techniques focused on cropping. By randomly cropping regions of the original
images and treating them as new samples, we effectively increased the diversity of
the training data without introducing new content.

This cropping augmentation was carefully managed to maintain the integrity of
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the annotated objects, ensuring that cropped regions still contained meaningful
instances of the classes of interest. The augmented dataset provided a more
substantial foundation for training the model, enhancing its ability to detect
objects under various spatial configurations and scales.

Figure 5.2: HR Image Segmentation Figure 5.3: LR Image Segmentation

Training the Detectron2 Model

With the augmented dataset prepared and annotations in COCO Panoptic format,
we proceeded to train a custom panoptic segmentation model using Detectron2’s
panoptic_fpn_R_50_3x architecture. This model combines a Feature Pyramid
Network (FPN) with a ResNet-50 backbone, providing a balance between accuracy
and computational efficiency.

The training process involved the following steps:

1. Configuration Setup: We configured the training parameters, including learning
rate schedules, batch sizes, and augmentation settings, to suit our dataset’s
characteristics. Hyperparameters were tuned to optimize performance given
the limited data.

2. Model Initialization: The model was initialized with weights pre-trained on
the COCO dataset, allowing it to leverage learned features from general object
categories and accelerate convergence.

3. Training Loop: The training loop iterated over the augmented dataset, ad-
justing the model weights to minimize the loss functions associated with
panoptic segmentation. We monitored training metrics such as loss values and
segmentation accuracy to assess progress and prevent overfitting.
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4. Validation: Although our dataset was small, we set aside a portion for valida-
tion to evaluate the model’s performance on unseen data. This step was crucial
for ensuring that the model generalized well beyond the training samples.

After training, the model demonstrated satisfactory performance in detecting
and segmenting the specified classes within the Stroop test images. The model’s
outputs included segmentation maps that delineated the locations and extents of
each object class within the images. Fig. 5.2 Fig. 5.3

B. Computing Feature Maps for Dynamic Contextual Belief

With the trained Detectron2 model, we proceeded to compute the feature maps
necessary for constructing the Dynamic Contextual Belief representations used
in our IRL framework. The goal was to generate high-resolution (HR) and low-
resolution (LR) belief maps for each image, capturing detailed and contextual
information about object presence and locations.

Generation of High-Resolution Feature Maps

The high-resolution feature maps were derived directly from the original images
using the trained model. For each image:

1. Object Detection and Segmentation: The model processed the image to
detect and segment instances of the 13 defined classes, producing a panoptic
segmentation map where each pixel was assigned a class label.

2. One-Hot Encoding: The segmentation map was transformed into a one-hot
encoding format across the spatial grid of the image. Specifically, the image was
divided into a grid of 32 × 20 patches, corresponding to the "patch_num": [32,
20] configuration used in our environment. Each patch, therefore, represented
a region of 16 × 16 pixels (since the image dimensions are 512 × 320 pixels).

3. Patch-Level Class Representation: For each patch, we determined the
presence of each class by inspecting the class labels within the patch area. The
result was a one-hot encoded vector of length 13 for each patch, indicating
which classes were present in that region.

The high-resolution feature maps thus provided detailed spatial information
about object classes at a fine granularity, essential for modeling the agent’s focal
attention in the DCB framework.
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Generation of Low-Resolution Feature Maps

To simulate peripheral vision and contextual awareness, we generated low-resolution
feature maps by applying a Gaussian blur to the original images before processing
them through the Detectron2 model. The process involved:

1. Gaussian Blurring: Each original image was subjected to Gaussian blur,
reducing high-frequency details and simulating the lower acuity of peripheral
vision.

2. Object Detection on Blurred Images: The blurred images were then
input into the trained model to perform object detection and segmentation.
While the model’s accuracy may be reduced on blurred images, it still captured
general contextual information about object presence. The goal is to simulate
understanding of the object outside of the fovea radius.

3. One-Hot Encoding and Patch Division: Similar to the high-resolution maps,
the resulting segmentation maps were divided into the same 32 × 20 grid of
patches, and one-hot encoding was applied to represent class presence in each
patch.

The low-resolution feature maps provided a broader, less detailed overview of the
scene, capturing contextual cues that guide the agent’s attention toward areas of
potential interest.

Integration into Dynamic Contextual Belief Maps

Combining the high-resolution and low-resolution feature maps, we constructed
the Dynamic Contextual Belief maps for each image:

1. Initial State Representation: At the beginning of each episode (i.e., when
the agent starts processing an image), the belief state was initialized with
the low-resolution feature map, representing the agent’s initial contextual
understanding of the scene.

2. Belief Updating with Fixations: As the agent selected fixation points
during the simulation, the high-resolution feature information corresponding to
the fixated patches was integrated into the belief state. This process involved:

• Masking: Applying a mask to update only the patches corresponding to
the fixation region, replacing the low-resolution data with high-resolution
details.

• Dynamic Update: The belief state was dynamically updated after each
fixation, progressively refining the agent’s understanding of the scene
based on accumulated high-resolution information.
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3. One-Hot Encoding Across Patches: The belief state at any given time
thus comprised a combination of low-resolution and high-resolution feature
maps, each represented by one-hot encoded vectors for the 13 classes across
the 640 patches.

Role in State and Action Modeling

The computed contextual belief maps played a crucial role in the state representation
within our IRL framework:

• State Input for the Policy Network: The belief maps served as input to
the policy network, providing spatial and semantic information that guided
the agent’s fixation decisions.

• Attention Mechanism: By modeling the foveated nature of human vision,
the belief maps enabled the agent to focus on areas of high relevance while
maintaining contextual awareness of the broader scene.

• Integration with EEG Data: In conjunction with EEG-informed cognitive
cues, the belief maps allowed the policy network to make fixation decisions
that reflected both the visual context and the participant’s cognitive state.

Challenges and Considerations

Several challenges arose during the computation of the contextual belief maps:

• Limited Dataset and Model Generalization: Despite data augmentation
efforts, the limited diversity of the dataset posed challenges for the model’s
generalization. Care was taken to validate the model’s performance and ensure
that it reliably detected the objects of interest across the augmented samples.

• Balance Between Resolution and Computational Efficiency: The
choice of patch size and grid dimensions involved trade-offs between the
granularity of spatial information and computational demands. The 32 × 20
grid provided a suitable balance, offering sufficient detail without imposing
excessive computational overhead.

• Accuracy of Low-Resolution Detection: Applying the model to blurred
images for low-resolution feature maps introduced some inaccuracies due to
the degradation of visual details. However, this approach effectively simulated
peripheral vision and contributed valuable contextual information to the belief
state.
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5.2.2 IRL Framework
This subsection delves into the technical structure and hyperparameter settings
for implementing the scanpath models in our experiments. Here, we outline the
workflow, data preprocessing, and training nuances, emphasizing key modules,
functionality, and parameter choices that drive the system.

Data Processing Pipeline
1. Preprocessing and Patch-Based Representation:

• The visual input space is segmented into a grid of patches, defined by
"patch_num": [32, 20], yielding a 32 × 20 patch grid for 512 × 320 images.
Each patch measures 16 × 16 pixels, a size configured under "patch_size":
[16, 16], effectively balancing granularity with computational efficiency.
Therefore it yields 640 patches for each image.

• The initial fixation for each image is marked within this patch grid to
initialize the agent’s attention. EEG data, where available, is also linked
to each image for EEG-guided models, providing a continuous cognitive
state signal that informs gaze distribution.

2. Fixation Data Augmentation:

• Human scanpaths, categorized by task types (e.g., congruent vs. incon-
gruent Stroop conditions), are processed into fixation trajectories capped
at "max_traj_length": 6. This constraint ensures that the model predicts
a bounded sequence of gaze shifts, maintaining consistency with human
data.

• An inhibition of return (IOR) mechanism is applied to discourage repeated
fixations within a predefined area. The IOR radius is set by "IOR_size":
1, encouraging exploration of new regions within the visual space by
penalizing revisits to previously attended patches.

3. EEG Data Integration:

• For models incorporating cognitive states, EEG data is preprocessed and
stored within the dataset for each trial. This data is later accessed in the
policy network, influencing fixation predictions in EEG-enabled conditions.
The EEG features are processed using a dense layer, concatenated with
visual features to refine policy output.
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Training and Model Architecture
1. Policy and Discriminator Architecture:

• The IRL framework uses a Generative Adversarial Imitation Learning
(GAIL) setup, where a generator (policy) and discriminator are trained
simultaneously. The discriminator (LHF_Discriminator_Cond) differen-
tiates between human and model-generated scanpaths, while the policy
(LHF_Policy_Cond_Small) adapts its scanpath predictions to emulate
human behavior.

• The policy network is augmented with an EEG input layer that processes
EEG data through a dense layer. The final EEG-enhanced feature is
concatenated with visual features, enabling adaptive responses to cognitive
states.

2. Training Parameters and Hyperparameters:

• Training Loop Configuration: The Trainer class orchestrates the training
loop, setting up logging, checkpoints, and policy evaluation. Training is
conducted over num_epoch: 150 and num_step: 4, reflecting a limited
run in this experimental setup but modifiable for larger training scales.

• Batch Size and Device: Training uses a batch size of "batch_size": 4
for images and human gaze data, efficiently balancing memory use and
training speed on CUDA-enabled devices.

• Discount Factor and Advantage Estimation: "gamma": 0.9 defines the
discount factor for rewards, favoring shorter fixation sequences. General-
ized Advantage Estimation (GAE) is used, with "adv_est": "GAE" and
"tau": 0.96, stabilizing training by reducing variance in policy gradient
estimates.

3. Proximal Policy Optimization (PPO) Specifics:

• Learning Rate and Gradient Clipping: The PPO optimizer’s learning rate
is set to "lr": 1e-05 with "clip_param": 0.15, controlling the step size and
range for policy updates. These values are critical for managing policy
shifts while maintaining stable convergence.

• Value and Entropy Coefficients: The value coefficient, set to "value_coef":
0.5, ensures that the value function’s prediction of future rewards has
a balanced influence in the loss function. The entropy coefficient "en-
tropy_coef": 0.01 introduces randomness to action selection, fostering
exploration in gaze paths.

4. Discriminator and GAIL Settings:
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• Learning Rate and Scheduler: The discriminator’s learning rate ("gail_lr":
5e-05) and decay schedule are defined by "gail_milestones": [5], moderating
the learning pace over time.

• Step Checkpoints: The system saves model checkpoints at intervals defined
by "checkpoint_every": 1, supporting quick recovery and monitoring
during training.

5. Evaluation and Logging:

• Evaluation Frequency: The evaluation frequency, set at "evaluate_every":
5, governs how often the model is assessed on the validation set, balancing
training focus with periodic validation. The log root ("log_root": "./as-
sets") designates where results, losses, and performance metrics are saved
for further analysis.
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Results

In this chapter, we present the results of our study on reconstructing human gaze
behavior during the Stroop test using inverse reinforcement learning (IRL). The
primary objective was to determine whether integrating electroencephalography
(EEG) data with human fixation patterns could enhance the prediction accuracy
of gaze scanpaths. Specifically, we aimed to assess if the inclusion of EEG-derived
cognitive state information would lead to a significant improvement over models
that rely solely on fixation data.

To achieve this, we developed and evaluated three models:

• Human Performance Metrics: Serving as a baseline, we analyzed the
actual human gaze data collected during the Stroop test to establish a perfor-
mance benchmark. This involved calculating various metrics directly from the
participants’ eye-tracking data without any modeling or prediction.

• IRL-EEG Model: This model incorporates both human fixation data and
EEG signals within the IRL framework. By integrating EEG features into
the state representation and policy network, the model aims to capture the
underlying cognitive processes influencing gaze behavior, potentially leading
to more accurate scanpath predictions.

• IRL-Image Model: This model utilizes only the fixation data within the IRL
framework, excluding EEG information. It serves to isolate the contribution
of visual information alone in predicting gaze behavior, allowing for a direct
comparison with the IRL-EEG model to assess the added value of EEG
integration.

For each model, we conducted experiments across all task conditions as well as
specific subsets, namely congruent and incongruent Stroop trials. The congruent
tasks involved color words displayed in matching font colors (e.g., the word "Red"
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written in red), while the incongruent tasks presented a mismatch between the
word meaning and its font color (e.g., "Red" written in blue), thus imposing varying
levels of cognitive load.

The results were evaluated using a set of quantitative metrics designed to
measure different aspects of gaze prediction accuracy and similarity to human
behavior:

• Target Fixation Probability (TFP): Assesses the probability of fixating
on task-relevant areas at each step of the scanpath, providing insights into
how quickly and effectively the model directs attention to critical regions.
In addition TFP-AUC (Area Under the Curve), summarizes the overall per-
formance of TFP across all steps, offering a comprehensive measure of the
model’s ability to focus on target areas over time.

• Sequence Score: Evaluates the similarity between the predicted and actual
fixation sequences, reflecting how closely the model replicates the temporal
order of human gaze shifts.

• Average Scanpath Ratio (SP Ratio): Compares the length of the predicted
scanpath to that of the human scanpath, indicating the efficiency of the model’s
gaze behavior.

• Probability Mismatch: Measures the discrepancy between the predicted
fixation probabilities and the actual human fixation distribution, highlighting
differences in attentional allocation.

• MultiMatch Scores: Comprise a set of metrics—Shape, Direction, Length,
and Position—that quantitatively assess the similarity between predicted
and human scanpaths across various dimensions of spatial and temporal
characteristics.

These metrics were computed for each model and task category, enabling
a detailed comparison of performance. The findings provide insights into the
effectiveness of EEG data integration in gaze prediction and the extent to which
human fixation patterns alone can suffice in reconstructing gaze behavior during
cognitively demanding tasks like the Stroop test.

In the following subsections, we delve into the specific results for each metric
and model, analyzing their implications for our understanding of gaze behavior
and the potential effects of incorporating EEG data into predictive models.
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6.1 Target Fixation Probability AUC
Definition and Importance
Target Fixation Probability (TFP) assesses the likelihood of the scanpaths by
measuring the number of fixations done to reach the answer. The TFP-AUC (Area
Under the Curve) aggregates the TFP across all steps, from 1 to 6, providing a
measure of how effectively and quickly a model directs attention to task-relevant
regions over time. A higher TFP-AUC indicates faster performance in guiding gaze
toward targets and with fewer steps could reach the answer.

Results Overview
We computed the TFP-AUC for the Human baseline, the IRL-EEG model, and
the IRL-Image model across all tasks(average), as well as for the congruent and
incongruent conditions separately. Average

• Human: TFP-AUC = 5.104

• IRL-EEG: TFP-AUC = 5.235

• IRL-Image: TFP-AUC = 5.504

Congruent Tasks

• Human: TFP-AUC = 5.125

• IRL-EEG: TFP-AUC = 4.689

• IRL-Image: TFP-AUC = 5.189

Incongruent Tasks

• Human: TFP-AUC = 5.083

• IRL-EEG: TFP-AUC = 5.782

• IRL-Image: TFP-AUC = 5.818

Analysis
• Human Baseline: The TFP-AUC for human participants was similar across

congruent and incongruent tasks, indicating consistent performance in fixating
on target areas regardless of cognitive load. Fig. 6.1
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Figure 6.1: Comparison between number of fixation to reach the target

• IRL-EEG Model: Showed a higher TFP-AUC in incongruent tasks (5.782)
compared to congruent tasks (4.689), suggesting that the model was more
effective in directing gaze to target areas under higher cognitive load when
EEG data was integrated. Fig. 6.1

• IRL-Image Model: Achieved higher TFP-AUC values across all task cat-
egories compared to the IRL-EEG model, with the highest TFP-AUC in
incongruent tasks (5.818), indicating effective prediction of gaze behavior
under cognitive interference using fixation data alone. Fig. 6.1

6.2 Probability Mismatch

Definition and Importance
Probability Mismatch measures the discrepancy between the predicted fixation
probabilities generated by the model and the actual fixation distribution observed
in human participants. It quantifies how well the model’s attention allocation
aligns with human behavior, with lower values indicating better alignment. In
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this comparison there is no option for the human-human comparison, because the
mismatch is always zero and is meaningless. Lower probability mismatch means
higher similarity.

Results Overview
Probability Mismatch was computed for the IRL-EEG and IRL-Image models
across all tasks and separately for congruent and incongruent conditions. Average

• IRL-EEG: Probability Mismatch = 0.344

• IRL-Image: Probability Mismatch = 0.463

Congruent Tasks

• IRL-EEG: Probability Mismatch = 0.436

• IRL-Image: Probability Mismatch = 0.272

Incongruent Tasks

• IRL-EEG: Probability Mismatch = 0.782

• IRL-Image: Probability Mismatch = 0.818

Figure 6.2: Comparison mismatch probability among the algorithms
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Analysis
• All Tasks(Average): The IRL-EEG model exhibited a lower Probability

Mismatch compared to the IRL-Image model, indicating closer alignment with
human fixation probabilities when EEG data was included. Fig. 6.2

• Congruent Tasks: The IRL-Image model had a significantly lower Probability
Mismatch than the IRL-EEG model, suggesting that fixation data alone
provided a better match to human attentional allocation in simpler tasks.
Fig. 6.2

• Incongruent Tasks: Both models showed higher Probability Mismatch
values, reflecting greater difficulty in aligning model predictions with human
behavior under higher cognitive load. Fig. 6.2

6.3 Sequence Score
Definition and Importance
The Sequence Score evaluates the similarity between the predicted fixation sequences
and the actual sequences observed in human participants. It reflects how closely
the model replicates the temporal order and selection of gaze shifts, with higher
scores indicating greater similarity.

Results Overview
Sequence Scores were calculated for the Human baseline, IRL-EEG model, and
IRL-Image model across all tasks and for congruent and incongruent conditions.
Average

• Human: Sequence Score = 0.806

• IRL-EEG: Sequence Score = 0.427

• IRL-Image: Sequence Score = 0.398

Congruent Tasks

• Human: Sequence Score = 0.865

• IRL-EEG: Sequence Score = 0.481

• IRL-Image: Sequence Score = 0.426

Incongruent Tasks
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• Human: Sequence Score = 0.767

• IRL-EEG: Sequence Score = 0.382

• IRL-Image: Sequence Score = 0.375

Figure 6.3: Comparison sequence score

Analysis
• Human Baseline: High Sequence Scores indicate consistent and coherent

fixation sequences during the Stroop task. Fig. 6.3

• IRL-EEG Model: Achieved higher Sequence Scores compared to the IRL-
Image model across all task categories, suggesting that EEG data improved
the temporal replication of human gaze sequences. Fig. 6.3

• IRL-Image Model: Showed lower Sequence Scores, indicating less similarity
to human fixation sequences, particularly in incongruent tasks. Fig. 6.3

6.4 MultiMatch Analysis
MultiMatch is a comprehensive method for comparing scanpaths by quantifying
their similarity across multiple dimensions: Shape, Direction, Length, and Position.
Higher scores indicate greater similarity between the predicted and human scanpaths
in each dimension.
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6.4.1 Shape
Definition and Importance

Shape measures the geometric similarity between scanpaths, considering the overall
pattern formed by the sequence of fixations, irrespective of their exact locations.

Results Overview

Average

• Human: Shape = 0.928

• IRL-EEG: Shape = 0.842

• IRL-Image: Shape = 0.847

Congruent Tasks

• Human: Shape = 0.944

• IRL-EEG: Shape = 0.848

• IRL-Image: Shape = 0.854

Incongruent Tasks

• Human: Shape = 0.917

• IRL-EEG: Shape = 0.837

• IRL-Image: Shape = 0.840

Analysis

• Both the IRL-EEG and IRL-Image models achieved similar Shape scores,
slightly lower than the human baseline. Fig. 6.4

• The highest Shape scores were observed in congruent tasks for all models.
Fig. 6.4

6.4.2 Direction
Definition and Importance

Direction evaluates the similarity in the orientation of saccades between scanpaths,
considering the sequence of gaze shifts irrespective of their length or exact position.
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Figure 6.4: Comparison the value of Multi-match Shape

Results Overview

Average

• Human: Direction = 0.786

• IRL-EEG: Direction = 0.634

• IRL-Image: Direction = 0.648

Congruent Tasks

• Human: Direction = 0.858

• IRL-EEG: Direction = 0.641

• IRL-Image: Direction = 0.664

Incongruent Tasks

• Human: Direction = 0.738

• IRL-EEG: Direction = 0.629

• IRL-Image: Direction = 0.635
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Figure 6.5: Comparison the value of Multi-match Direction

Analysis

• The IRL-Image model slightly outperformed the IRL-EEG model in Direction
similarity across all task categories. Fig. 6.5

• Both models showed lower Direction scores compared to the human baseline.
Fig. 6.5

6.4.3 Length
Definition and Importance

Length measures the similarity in saccade amplitudes between scanpaths, focusing
on the distances covered during gaze shifts.

Results Overview

Average

• Human: Length = 0.930

• IRL-EEG: Length = 0.839

• IRL-Image: Length = 0.839

Congruent Tasks
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• Human: Length = 0.958

• IRL-EEG: Length = 0.870

• IRL-Image: Length = 0.870

Incongruent Tasks

• Human: Length = 0.911

• IRL-EEG: Length = 0.814

• IRL-Image: Length = 0.814

Figure 6.6: Comparison the value of Multi-match Length

Analysis

• Both models achieved identical Length scores across all task categories, slightly
lower than the human baseline. Fig. 6.6

• The highest Length scores were in congruent tasks. Fig. 6.6

•
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6.4.4 Position
Definition and Importance

Position assesses the spatial similarity between scanpaths, considering the exact
locations of fixations.

Results Overview

Average

• Human: Position = 0.927

• IRL-EEG: Position = 0.831

• IRL-Image: Position = 0.840

Congruent Tasks

• Human: Position = 0.935

• IRL-EEG: Position = 0.806

• IRL-Image: Position = 0.819

Incongruent Tasks

• Human: Position = 0.922

• IRL-EEG: Position = 0.851

• IRL-Image: Position = 0.857

Analysis

• Both models achieved identical Length scores across all task categories, slightly
lower than the human baseline. Fig. 6.7

• The highest Length scores were in congruent tasks. Fig. 6.7

•
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Figure 6.7: Comparison the value of Multi-match Position

6.5 Scanpath Ratio
Definition and Importance
The Scanpath Ratio (SP Ratio) compares the length of the predicted scanpath to
the length of the human scanpath. It provides an indication of the efficiency and
realism of the model’s gaze behavior, with a value closer to 1 indicating a closer
match to human scanpath length.

Results Overview
Sequence Scores were calculated for the Human baseline, IRL-EEG model, and
IRL-Image model across all tasks and for congruent and incongruent conditions.
Average

• Human: Average SP Ratio = 0.721

• IRL-EEG: Average SP Ratio = 0.687

• IRL-Image: Average SP Ratio = 0.743

Congruent Tasks

• Human: Average SP Ratio = 0.664

• IRL-EEG: Average SP Ratio = 0.503
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• IRL-Image: Average SP Ratio = 0.598

Incongruent Tasks

• Human: Average SP Ratio = 0.760

• IRL-EEG: Average SP Ratio = 0.832

• IRL-Image: Average SP Ratio = 0.860

Figure 6.8: Comparison sequence score

Analysis
• Average: The IRL-Image model had a Scanpath Ratio closer to the human

baseline, indicating better overall efficiency in scanpath length.Fig. 6.8

• Congruent Tasks: Both models had lower Scanpath Ratios compared
to the human baseline, with the IRL-EEG model showing a notably lower
value.Fig. 6.8

• Incongruent Tasks: Both models exceeded the human Scanpath Ratio,
indicating longer scanpaths under higher cognitive load.Fig. 6.8
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TFP-AUC Probability Mismatch Sequence Score SP Ratio Multimatch
Shape Direction Length Position

Human Average 5.10 - 0.8062 0.7206 0.9277 0.7861 0.9297 0.9273
Congruent 5.12 - 0.8645 0.6637 0.9441 0.8583 0.9577 0.9348
Incongruent 5.08 - 0.7673 0.7601 0.9169 0.7381 0.9109 0.9223

IRL-EEG Average 5.23 0.3436 0.4266 0.6869 0.8423 0.6344 0.8390 0.8307
Congruent 4.68 0.4361 0.4814 0.5030 0.8482 0.6410 0.8696 0.8056
Incongruent 5.78 0.7818 0.3818 0.8322 0.8374 0.6290 0.8141 0.8513

IRL-Image Average 5.50 0.4632 0.3979 0.7425 0.8465 0.6480 0.8393 0.8398
Congruent 5.18 0.2722 0.4259 0.5979 0.8542 0.6639 0.8704 0.8192
Incongruent 5.81 0.8181 0.3749 0.8596 0.8402 0.6350 0.8138 0.8567

Table 6.1: Summary of results of different metrics over algorithms and tasks
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Discussion

The present study explored the efficacy of integrating electroencephalography
(EEG) data with eye-tracking metrics within an inverse reinforcement learning
(IRL) framework to reconstruct and predict human gaze behavior during the Stroop
test. By comparing models that utilized both fixation data and EEG signals (IRL-
EEG) against those relying solely on fixation data (IRL-Image) and the human
baseline, this research aimed to discern the added value of neural data in enhancing
gaze prediction accuracy under varying cognitive loads.

7.1 Interpretation of Key Findings
The analysis revealed that integrating EEG data with fixation patterns did not
result in substantial improvements in gaze prediction accuracy compared to models
utilizing fixation data alone. Both the IRL-EEG and IRL-Image models demon-
strated comparable performance across most metrics, indicating that the inclusion
of EEG-derived cognitive state information did not significantly enhance the pre-
diction of gaze scanpaths during the Stroop test.

• Target Fixation Probability Area Under the Curve (TFP-AUC):
Both models showed similar TFP-AUC values across all tasks, with the IRL-
Image model slightly outperforming the IRL-EEG model in incongruent tasks
(IRL-Image: 5.818 vs. IRL-EEG: 5.782). This suggests that fixation data
alone is sufficiently effective in directing gaze toward task-relevant areas, even
under high cognitive load conditions.

• Probability Mismatch: The IRL-EEG model exhibited a slightly lower
Probability Mismatch (0.344) compared to the IRL-Image model (0.463) across
all tasks. However, this difference was not substantial enough to indicate a
significant advantage of EEG integration.
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• Sequence Score: Both models achieved similar Sequence Scores (IRL-EEG:
0.427 vs. IRL-Image: 0.398), indicating that the temporal order of gaze shifts
was equally well replicated by both approaches.

• MultiMatch Analysis: The IRL-Image model marginally outperformed the
IRL-EEG model in Direction and Position similarities, while the IRL-EEG
model showed a slight edge in capturing the Sequence Score. Overall, the
differences were minimal, reinforcing the conclusion that EEG integration does
not markedly enhance gaze prediction.

• Scanpath Ratio (SP Ratio): Both models presented comparable SP Ratios,
with the IRL-Image model slightly closer to the human baseline (SP Ratio:
IRL-Image = 0.743 vs. IRL-EEG = 0.687). This indicates that the efficiency
and realism of the scanpath lengths were similarly maintained by both models.

Overall, the findings suggest that while EEG data can provide additional
cognitive state information, its integration within the IRL framework did not lead
to significant improvements in predicting human gaze behavior during the Stroop
test compared to using fixation data alone.

7.2 Implications of Findings

Enhancing Gaze Prediction Models
The comparable performance of the IRL-EEG and IRL-Image models underscores
that fixation data alone may be sufficient for accurate gaze prediction in tasks
like the Stroop test. This implies that the added complexity of integrating EEG
data may not be necessary for certain applications, potentially simplifying model
architecture and reducing computational overhead without compromising prediction
accuracy. During the Stroop test, because there are some limited allowed slides, the
model would quickly find out the prediction only by using fixations and somehow it
ignores EEG data because fixations (DCBs) have become wild cards in predicting
the next fixations and it can proceed without EEG data.

Clinical and Diagnostic Applications
Given that EEG integration did not substantially improve gaze prediction, the use
of fixation data alone could be a more efficient approach for clinical diagnostics
and monitoring. Eye-tracking metrics, without the need for simultaneous EEG
recording, offer a less intrusive and more cost-effective method for assessing cognitive
functions and detecting neurodegenerative or attention-related disorders.
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Cognitive Neuroscience Research
From a cognitive neuroscience perspective, the findings suggest that while EEG
data provides valuable insights into neural activity, its role in enhancing behavioral
predictions like gaze scanpaths may be limited in certain contexts. Future research
might explore other ways to leverage neural data or investigate different cognitive
tasks where EEG integration could have a more pronounced impact on behavioral
modeling.

7.3 Limitations
Despite the insights gained, several limitations must be acknowledged:

Nature of Stroop Test
In the Stroop test under NIH standards, there’s a strict restriction that prevents
the use of arbitrary colors. This could result in very difficult to manage overfitting
during the training process. This could lead the model to rapidly detect the answer
only by seeing the features of the words, so it somehow ignores the EEG data. In
other words, we have to use train DCBs inside the test set, in this case finding
a solution to prevent the model from learning too much from the fixations and
relying on the EEG data more.

Way of Extracting DCBs
Potentially there’s another way of extracting DCB and object annotation that
could prevent the model from easily overfitting on the objects that have been seen
before.

Sample Size and Diversity
The study’s sample size, comprising ten participants, is relatively small and may
limit the generalizability of the results. Future studies with larger and more diverse
populations are necessary to validate the observed trends and ensure that the
models perform consistently across different demographic and cognitive profiles.
Even in the context of data augmentation, because of simulating the gaze foveal,
using some of the transforms that blur or downsampling were restricted because
they became strongly accurate in detecting the images in Low-res mode, that it
could prevent us from simulating objects out of the foveal correctly.
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EEG Data Integration Complexity
Integrating EEG data into the IRL framework introduces additional layers of
complexity, including challenges in effective feature extraction and synchronization
with eye-tracking data. The current implementation may not fully exploit the
temporal richness of EEG signals, potentially constraining the model’s capacity to
capture nuanced cognitive states.

7.4 Future Work
Building upon the current study’s findings, future research could explore the
following avenues:

Changing the Way of Extracting DCBs
The most important effect could be done by using another way of extracting DCBs,
particularly like annotating objects as different standards may change the results.
It could prevent the model from detecting the answer quickly as soon as it sees the
object feature map in belief maps.

Expanding the Dataset
Increasing the number of participants and incorporating a more diverse demo-
graphic sample would enhance the robustness and generalizability of the models.
A larger dataset would also facilitate the application of more sophisticated EEG
feature extraction techniques, potentially uncovering deeper insights into the neural
underpinnings of gaze behavior.

Refining EEG Feature Extraction
Employing advanced EEG analysis methods, such as machine learning-based feature
extraction or time-frequency analysis, could improve the integration of neural data
into the IRL framework. Capturing more granular aspects of cognitive states may
enhance the model’s ability to replicate complex gaze patterns.

Diverse Cognitive Tasks
Extending the framework to include a variety of cognitive tasks beyond the Stroop
test would test the model’s versatility and uncover task-specific dynamics in gaze
behavior. This would also allow for a broader evaluation of the benefits and
limitations of EEG integration across different cognitive contexts.
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Refining Model Architecture
Further refinement of the IRL framework, potentially incorporating multi-modal
deep learning architectures, could enhance the synergy between EEG and eye-
tracking data. Exploring alternative reinforcement learning algorithms beyond
Proximal Policy Optimization (PPO) may also yield improvements in model stability
and performance.
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Chapter 8

Conclusion

This dissertation aimed to investigate the potential benefits of integrating electroen-
cephalography (EEG) data with eye-tracking metrics within an inverse reinforcement
learning (IRL) framework to reconstruct and predict human gaze behavior during
the Stroop test. The primary objective was to determine whether EEG-derived
cognitive state information could enhance the accuracy of gaze scanpath predictions,
particularly under varying levels of cognitive load.

Through the development and evaluation of two primary models—the IRL-EEG
model, which incorporated both fixation data and EEG signals, and the IRL-Image
model, which utilized only fixation data—the study sought to discern the added
value of neural data in gaze prediction. Comprehensive assessments using metrics
such as Target Fixation Probability Area Under the Curve (TFP-AUC), Probability
Mismatch, Sequence Score, MultiMatch Analysis, and Scanpath Ratio (SP Ratio)
revealed that both models performed comparably across most metrics. Notably,
the integration of EEG data did not result in significant improvements in gaze
prediction accuracy compared to the model relying solely on fixation data. Both the
IRL-EEG and IRL-Image models exhibited similar performances, indicating that
fixation patterns alone possess substantial predictive power in directing gaze towards
task-relevant areas, even under high cognitive load conditions like incongruent
Stroop trials.

The findings suggest that the added complexity of incorporating EEG data may
not be necessary for certain applications, particularly those involving tasks with
limited and highly structured stimuli, such as the Stroop test. This has important
implications for the design of gaze prediction models, suggesting that simpler
models using only eye-tracking data can achieve comparable accuracy without the
additional computational and logistical burdens associated with EEG integration.

From a clinical and diagnostic perspective, the results indicate that eye-tracking
metrics alone could serve as a more efficient and cost-effective tool for assessing
cognitive functions and detecting neurodegenerative or attention-related disorders.
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This non-intrusive method offers significant advantages in terms of ease of im-
plementation and participant comfort, making it a viable option for widespread
clinical use.

However, the study is not without limitations. The relatively small and ho-
mogeneous sample size of ten participants may limit the generalizability of the
results. Additionally, the specific nature of the Stroop test, with its stringent
color-word combinations, may have facilitated overfitting, allowing the models to
rely heavily on fixation patterns while marginalizing the contribution of EEG data.
Future research should address these limitations by expanding the participant pool,
exploring alternative methods for extracting and integrating Dynamic Contextual
Belief (DCB) maps, and testing the framework across a broader range of cognitive
tasks to fully understand the potential benefits and constraints of multimodal data
integration in gaze behavior modeling.

In conclusion, while the theoretical promise of EEG integration for enhancing
gaze prediction exists, this study demonstrates that, in the context of the Stroop
test, fixation data alone is sufficient for accurate gaze behavior reconstruction.
These insights contribute to the ongoing discourse in cognitive neuroscience and
machine learning, highlighting the importance of evaluating the practical utility of
multimodal data integration and encouraging further exploration into optimizing
gaze prediction frameworks for diverse cognitive applications.
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