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Summary

Solving an inverse imaging problem consists in the task of reconstructing an unknown image
from observed, often incomplete noisy data. A standard example describing a linear degrada-
tion process is the problem of image deconvolution where the operator describing the blurring
process (forward operator) is a convolution matrix.
Inverse problems are typically ill-posed, that is small perturbations in the observed image
(input) lead to significant perturbations in the desired image (output). A standard paradigm
overcoming such instabilities consists in considering a regularised formulation of the problem
in order to guarantee stable reconstruction of the solution. Regularisation is combined with
a data-fitting term along with hyperparameters balancing the two. Total Variation regulari-
sation is a popular regulariser in the context of imaging due to its enhanced edge-preserving
behaviour and noise smoothing properties in comparison to other, simpler, regularisations (e.g.
Tikhonov, l1 norm).
From a Bayesian perspective, Total Variation (TV) regularisation implicitly assumes a space-
invariant, one-parameter half-Laplacian distribution (hLd) for the gradient magnitudes of the
true image. However, this assumption is often restrictive in the modelling of natural images,
whose statistics are often characterised by heterogeneous and highly oscillating behaviour.
Ideally, in smooth regions, stronger regularization is desired, while in textured areas, less reg-
ularisation is preferred.
This naturally led us to a new formulation where, for each pixel, an adaptive regularisation
parameter weights the local image contents. This model better captures the space-variant
(SV) nature of gradient distribution throughout the image. Numerically, such space variant
model can be efficiently solved by means of accelerated first-order algorithms such as, e.g., the
Fast Iterative Thresholding Algorithm (FISTA) endowed with a non-monotone backtracking
strategy to select optimal step-sizes.
To compute effectively these weights, differently from the scalar case, where in most cases a
brute-force approach (grid search) is used to select a optimal parameter maximising suitable
quality metrics (e.g., PSNR, SSIM), in the SV approach such strategy is not feasible due to
the potentially large size of the image considered. To mitigate this problem, we consider a
deep learning-based patch-based approach where, for each image patch (of fixed size) a golden
section algorithm is used to select an optimal scalar parameter by suitable comparison with
ground truth data. The value computed can be then used as an optimal value in the centre of
the selected patch and the map of space-variant parameters can be built in a sliding window
fashion.
By using natural image datasets of different size and noise distribution/intensity, we then im-
plemented a supervised learning approach where a light neural network is trained to predict
the optimal parameter in a pixel by looking only at a small patch around the pixel itself,
leading to fast and effective inference after suitable training.

4



The space-variant reconstruction approach obtained better results in terms of SSIM and PSNR
with respect to the global reconstruction leading to better detail preservation and reduced
over-smoothing in textured regions. Also, our ML approach drastically decreased the compu-
tational time required to compute the parameters map without the use of ground truth, an
essential feature in real-world applications.
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Chapter 1

Introduction to inverse
problems

In this chapter, a brief introduction about imaging inverse problems will be provided along with
a quick review on how to solve them. We will first present these problems from a statistical
perspective and then move to an optimization point of view. We will discuss the various
regularization techniques that can be applied to ensure stable procedures to deal with the
intrinsic ill-posedness of the problems considered, as well as some optimization methods and
algorithms that can address it from a numerical viewpoint. In conclusion, we will introduce
some quality metrics to evaluate the effectiveness of the reconstruction procedure.

1.1 Inverse problems
The objective of an inverse problem is to retrieve a quantity x having access to the observed
data y, which is know to be the results of a measurement process that is defined by an
(possibly known) operator A. This process describes how the observed data y are derived
from the system under investigation and is often referred to as the forward model.
Mathematically, the forward model maps the unknown quantity x, which we want to estimate,
into observable quantities. This mapping is represented by a forward operator A : ❘n → ❘

n.
The inverse problem can then be expressed in the following form:

Ax = y, (1.1)

where A ∈ ❘n×n describe the relationship between the unknown x and the observations y.
In real-world scenarios, measurements are always corrupted by some level of noise. This noise
can come from various sources such as sensor inaccuracies, external disturbances, or errors in
the measurement process itself. The noise is often modeled as a sampling process from some
probability distribution, where the most common one is the Gaussian distribution.
In real applications, inverse problems are typically ill-posed, meaning that they do not satisfy
the conditions for being well-posed. The definition of well-posed problem is the following:

Definition 1.1 (Well-posed inverse problem) A problem is said to be well-posed if the
following hold:

• The solution of the problem exists

13



Introduction to inverse problems

• The solution is unique

• The solution has a continue dependence on the data (stability)

If one of the latters does not hold the problem is defined as ill-posed.

1.2 Bayesian interpretation

A standard paradigm for the solution of ill-posed inverse problems consists in the formulation
of a minimization problem composed of a data fidelity term D and a regularisation term R
encoding a priori assumptions on the desired solution (sparsity, smoothness) in the form

min
x∈❘n

D(Ax, y) + R(x; θ). (1.2)

To balance the effect of these two terms, a vector of hyperparameters θ ∈ ❘d appears.
From a statistical viewpoint, those parameters characterise the corresponding image prior dis-
tributions. The estimation of these parameters is necessary for obtaining good reconstruction
quality.
A prominent subfield of inverse problems is that of imaging, with applications in chemistry,
biology, geosciences, and medicine. Various methods for imaging have been developed over
the previous four decades and have been partly made available for practical use.
Firstly, we tackle these imaging inverse problems from a statistical point of view due to their
popularity and ability to incorporate nondeterministic information in the forward operator A.
Indeed, one should think the unknown image x as a realization of the random variable X to
stress the intrinsic uncertainty of this value, which is exaggerated by the potential approxi-
mation of the forward operator A that is linked to the measurement process itself. The prior
knowledge about X are captured by the prior probability density function (pdf): P (x).
In a similar way, the observed image y can be seen as the realization of a random variable Y,
where the likelihood pdf P (y|x) describes its behaviour given a fixed x.
In this context, the aim is to reconstruct the distribution of x given the observation y and a
fixed forward operator A.
From a statistical point of view, the objective is to seek the posterior pdf P (x | y). Indeed,
using the Bayes formula it is possible to obtain

P (x|y) = P (y|x)P (x)
P (y) , (1.3)

where P (y) is often referred to the evidence term and it should be considered a normalization
constant.
Is it possible to switch from this purely statistical to a more optmization-based framework
using a maximum a posteriori (MAP) estimation.
The MAP estimation is used to seek an unknown quantity based on observed data. It aims to
find the most probable value of a random variable given the observed data and prior knowledge.
The formulation became

x∗ ∈ arg max
x

P (x|y, A), (1.4)

14



1.3 – Data fidelity

where applying Bayes formula we obtain:

x∗ ∈ arg max
x

P (x)P (y|x, A)
P (y) ,

in which after have neglected the evidence term P (y) and took the negative likelihood it is
possible to get

x∗ ∈ arg min
x

−ln(P (x)P (y|x, A)).

Note that some considerations can be done. Assuming that

P (x) ∝ e−R(x) , P (y|x, A) ∝ e−Φ(Ax;y),

the last formulation became

⇒ x∗ ∈ arg min
x

R(x) + Φ(Ax; y).

We can now define P (x) and so R(x) to encode some prior information on the ground truth
x, while P (y|x, A) and so Φ(Ax; y) encode some model noise statistics.
Φ(Ax; y) and R(x) are the aforementioned in (1.2) data fidelity and regularisation term.

1.3 Data fidelity

The data fidelity term is a function that quantify the discrepancy between x and y. In
many real applications the most common discrepancy measure is the classical choice where
D(x, y) = ∥x − y∥2

2 i.e. least square problem.
We are gonna see that this choice is the preferable one from a Bayesian point of view when
our images are corrupted by Gaussian noise.
However, to address types of noise other than Gaussian, different data fidelity terms are re-
quired. In this work, we focus on Gaussian and Poisson noise models.

1.3.1 Gaussian data fidelity

Given the assumption that the data are corrupted by Gaussian noise and Gaussian blur, one
can think the corrupted observation y as:

y = Ax + e,

where the additive white Gaussian noise is a realization of a Gaussian distribution e ∼
N (0, σ2

AW GN In) and A ∈ ❘n×n is a convolution operator with a Gaussian kernel that models
Gaussian blur. The rows of A identify the point spread function (PSF) with a blur variance
of σ2

P SF .
In the context of inverse imaging problems, x is the clean image to be estimated, while the
measured image y is a realization of the random vector variable Y ∼ N (Ax, σ2In).
Assuming that the components of the Gaussian noise e are independent. Is it possible to
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express the pdf of the components yi of random vector Y using as parameter the mean Ax:

fx,A(yi) = 1√
2πσ2

exp
A

−(yi − (Ax)i)2

2σ2

B
,

and the likelihood of L(x|y) as

L(x|y) =
nÙ

i=1
fx(yi) =

nÙ
i=1

1√
2πσ2

exp
A

(yi − (Ax)i)2

2σ2

B
= (2πσ2)− n

2 exp
A

−∥y − Ax∥2

2σ2

B
,

where n is the number of pixel in the image.
Maximising the likelihood we obtain

arg max
x

log (L(x|y)) = arg min
x

− log (L(x|y)) = arg min
x

∥y − Ax∥2
2

2 , (1.5)

and the typical data fidelity for Gaussian denoising:

D(Ax, y) = 1
2 ∥Ax − y∥2

2 . (1.6)

1.3.2 Poisson data fidelity

Unlike Gaussian noise, Poisson noise is an intensity-dependent noise. There are applications
where noise is not independent of the received signal - as assumed so far in the Gaussian case
- but depends on the amount of the average quantity of the signal x and it is defined as follow:

Definition 1.2 (Poisson distribution) A scalar random variable X is Poisson-distributed
with scale parameter λ, denoted by X ∼ Poisson(λ). The pdf of X takes the form

Poissonλ(X = n) = λn

n! e−λ s.t n ∈ N.

We define a Poisson noisy image components as

yi ∼ Poisson(Ax)i, (1.7)

and for each component i = 1, . . . , n where (Ax)i > 0, the probability distribution is given by

Poisson(Ax)i
(yi = n) = (Ax)n

i

n! e−(Ax)i s.t n ∈ N. (1.8)

Considering the density of the probability distribution as the joint distribution of Y ∼
Poisson(Ax) as

Poisson(x)(Y = y) =
nÙ

i=1

(Ax)yi

i

yi!
e−(Ax)i , (1.9)

and assuming the signal ỹ is received, the likelihood is given by

L(x, ỹ) =
nÙ

i=1

(Ax)ỹ
i

ỹi!
e−(Axi).
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The log-likelihood is then

log(L(x, ỹ)) =
nØ

i=1
ỹi log((Ax)i) − log(ỹi!) − (Ax)i,

and the maximum likelihood approach is equivalent to minimizing the Kullback-Leibler(KL)
divergence, obtaining as data fidelity for Poisson noise

D(Ax, ỹ) := KL(ỹ, Ax) =
nØ

i=1
ỹi log

3
ỹi

(Ax)i

4
+ (Ax)i − ỹi. (1.10)

The KL divergence is the data fidelity suited for denoising task in the Poisson case.
Notice that in our experiments for the sake of simplicity we do not consider the blurring
operator for the Poisson case. In that cases A would be the identity matrix I.

1.4 Regularisation
We recall from definition 1.1 that usually ill-posed problems lack what is the so-called stability,
where solving the inverse formulation can cause small perturbations (e.g. additive white
Gaussian noise) in the observed image (input) to lead to significant perturbations in the
desired image (output).
For example if we want to use a closed-form expression for solving (1.5) is it possible to define
the least square term associated to the system y = Ax as

J(x) = 1
2 ∥Ax − y∥2

2 ,

and it possible to find the solution of the minimization problem solving for ∇J(x) = 0, where
the solution is defined as

∇J(x) = A∗(Ax − y),

∇J(x) = 0 for x = (A∗A)−1A∗y. (1.11)

. In Fig 1.1 it has been shown that when only the blur operator is applied to the image,
solving the inverse problems lead to good reconstruction. While solving the inverse problem
where it has been also applied an negligible quantity of Gaussian noise (e.g. variance of 0.1 in
a range of 0-255) will lead to an huge amplification of the noise like in Fig 1.2

Figure 1.1: Solution of exact square solution with only blur.

To overcome this adversities it is necessary to add in the minimisation problem a regulari-
sation term that ensure some good properties in the solution found.
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Figure 1.2: Solution of exact square solution with blur and small noise added.

The most common regularisation terms used, especially in regression task for machine learn-
ing, are the ℓ1 norm or the ℓ2 squared norm.
The ℓ1 norm it is known for its tendency to produce sparse solution, where many elements
of the solution are shrinked to zero, effectively selecting only a subset of the most important
features.
The ℓ1 norm for discrete finite-dimensional elements x ∈ ❘n is defined as

ℓ1(x) := ∥x∥1 =
nØ

i=1
|xk|, (1.12)

while the l2 norm squared for discrete finite-dimensional elements x ∈ ❘n is defined as

ℓ2(x) := ∥x∥2
2 =

nØ
i=1

|xk|2. (1.13)

Compared to the ℓ1 norm, the ℓ2 norm squared (Tikhonov regularisation) shrinks all elements
uniformly but does not set any of them exactly to zero, leading to more smooth solutions.
A widely used edge-preserving regulariser initially introduced by Rudin et al. [1992] for image
denoising is the Total Variation (TV) semi-norm, which after have added an arbitrary small
parameter 0 < ϵ ≪ 1 for guaranteeing convexity and differentiability. It reads

TVϵ(x) :=
nØ

i=1
∥(Dx)i∥2,ϵ =

nØ
i=1

ñ
(Dhx)2

i + (Dvx)2
i + ϵ2, (1.14)

where Dh and Dv represent the horizontal and vertical discrete gradient components at pixel
i, respectively. The edge-preserving behaviour is given by the presence of the gradient in the
regularisation.

To solve the inverse problem given the minimisation formulation given in (1.2) iterative
methods have to be applied. In these examples we have used standard gradient descent or
proximal gradient descent.
The degredation process illustrated in Fig 1.3 consist in taking the clean image and apply a
blurring operator and then injecting a gaussian noise. In Fig 1.4 the minimisation problem
has been solved with no regularisation at all. While in Fig 1.5 are illustrated from the left to
right different regularisation effect: ℓ1 norm, ℓ2 squared norm and TV norm.

18



1.5 – Optimization

Figure 1.3: Transition from clean image to corrupted.

Figure 1.4: Solution of iterative methods with only L2 Fidelity term.

Figure 1.5: Different effects on the solution based on the regulariser used.

Note that in this case all the regularisation are not weighted by any hyperparameter. Since
TV norm is a strong regulariser, not assign the right weight can lead to cartoon-like effect.

1.5 Optimization
Iterative methods are mathematical procedure that given a starting point x0 progressively
approximate the sequence xk, ideally converging to an accurate solution. They are commonly
used when direct methods lead to ill-posed solutions.
Take for example

min
x∈Rn

f(x),

with f : Rn → R is a (non)convex, differentiable and proper function. The idea is to find the
sequence x∗ that minimise f .

1.5.1 Gradient Descent
The most popular algorithm is the gradient descent method where the sequence moves in
the opposite direction of the gradient. It moves in the steepest descent with an appropriate
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step-size τ .

Algorithm 1 Gradient Descent (GD) algorithm

• Input: τ ∈
!
0, 2

L

"
, x0 ∈ Rn.

• For k ≥ 0 do
xk+1 = xk − τ∇f(xk)

• End for

There are several things to consider when iterative methods are used:

• The choice of the step-size τ is important for the convergence of the algorithm and its
value is related to the Lipschitz constant L of ∇f , and so on the growth of f .
One example is the case of

f(x) = x2/2 with ∇f(x) = x,

and the following update rule
xk+1 = (1 − τ)xk.

It is clear that an appropriate τ has to be picked for this sequence to converge. For GD
algorithm τ ∈

!
0, 2

L

"
.

• If the function f is convex the solution does not depend on the starting point x0. If this
is not the case, different initialisation lead to different solution.

• Ideally the algorithm should stop when the sequence xk is close to the solution x∗ so a
stopping criterion has to be defined.
One example is the relative error in the sequence ∥xk+1 − xk∥1 < tol, or gradient check
like ∥∇f(xk)∥1 < tol.
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1.5 – Optimization

1.5.2 Accelerated gradient descent

Nowdays, computational efficiency is necessary, and other first-order methods aim to address
this need.
Accelereted gradient descent (AGD) algorithm proposed by Nesterov [1983] provides faster
convergence and the idea is to add inertia to "shift" the sequence of iterates (Fig 1.6).

Figure 1.6: Difference between GD and AGD directions.

Algorithm 2 Accelerated gradient descent (AGD) algorithm

• Input: x0 = x−1 ∈ Rn, τ ∈
!
0, 1

L

$
, t0 = 1.

• For k ≥ 0 do

tk+1 =
1 +

ñ
1 + 4t2

k

2
yk+1 = xk + tk − 1

tk+1
(xk − xk−1)

xk+1 = yk+1 − τ∇f(yk+1)

• End for

1.5.3 Fast iterative shrinkage-thresholding algorithm (FISTA)

Some problems require the solution x∗ to be included in a specific suitable domain, assigning
to the solution some costraints. For example in Poisson noise denoising the solution must be
included in ❘n

++.
For these reason sometimes is necessary to use proximity method like Fast iterative shrinkage-
thresholding algorithm(FISTA) based on the work of Beck and Teboulle [2009] and it is defined
as follow

21



Introduction to inverse problems

Algorithm 3 Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)

• Input: x0 = x−1 ∈ Rn, τ ∈
!
0, 1

L

$
, t0 = 1, with ❉ a feasible set.

• For k ≥ 0 do

tk+1 =
1 +

ñ
1 + 4t2

k

2
yk+1 = xk + tk − 1

tk+1
(xk − xk−1)

xk+1 = prox❉yk+1 − τ∇f(yk+1)

• End for

1.6 Image processing metrics
The most used metrics in image processing are the structural similarity index measure (SSIM)
and the peak signal-to-noise ratio (PSNR).
PSNR is a metric that quantifies the difference between two images by comparing the peak
signal (original image) to the noise (distortions or differences). It is expressed in decibels (dB)
and it is formulated as

PSNR = 20 log10

A
max(x)ð

MSE(x, x̃)

B
,

where x is the ground truth (also the clean image) and MSE is the minimum squared error
pixel-wise between the ground truth and the reconstructed image x̃.
SSIM is a perceptual metric that measures the similarity between two images, focusing on
structural information rather than just pixel differences (unlike PSNR). It produce a score in
the range [0,1].
The SSIM metric is defined as follow:

SSIM(x, y) = (2µxµy + c1)(2σxy + c2)
(µ2

x + µ2
y + c1)(σ2

x + σ2
y + c2)

with:

• µx: the pixel sample mean of x, µy: the pixel sample mean of y.

• σ2
x: the variance of x, σ2

y : the variance of y.

• σxy: the covariance of x and y;

• c1 = (k1L)2, c2 = (k2L)2.

• L: the dynamic range of the pixel-values, often referred as max(x)

• k1 = 0.01 and k2 = 0.03 by default.

Regarding both the metrics, the higher they are and closer the reconstructed image is to the
clean image.
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Chapter 2

Hyperparameters estimation

Recalling (1.2), a suitable scalar hyperparameter (or vector of hyperparameters) have to be
found to balance the influence of the data fidelity and regularisation terms, that is the balance
between how much we trust the data and our prior knowledge on the structure of the desired
solution.
Firstly, it will be discussed the scalar case, which will be referred to as space-invariant (or
global) approach, where each region of the image is regularised in the same way due the es-
timation of a single regularisation parameter weighting the global strength of the data term
against the global effect of regularisation. Then we will describe a space-variant approach
where a parameters map is computed so that each pixel is assigned with its respective hyper-
parameter balancing the local effect of regularisation and data fit. Recalling the use of TV
regularisation term favouring piecewise constant regions, the rationale behind a space-variant
choice is to regularise less the textured regions of the image and to regularise more the homo-
geneous region, see for example the castle details and the sky in 2.1
Indeed in Fig 2.2 we show the differences in the reconstruction for under-and over-estimated

(a) x (b) y

Figure 2.1: Ground truth image and its noisy version. Noise is Gaussian with σ2
AW GN = 0.1

and Gaussian blur with σ2
P SF = 1.5.

global hyperparameter for TV reconstruction — a too small value will over-smooth the image,
while a too big value will not remove the noise at all. The task thus consist in choosing the
optimal one which will try to find a suitable balance.
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(a) x̃, µ = 5 (b) x̃, µ = 50

Figure 2.2: Different reconstruction obtained given by the choice of µ.

2.1 Space invariant regularisation in the Gaussian case
The inverse problem that we are treating in the Gaussian case has the form of

y = Ax + e

where A ∈ ❘
n×n models Gaussian blur defined by a kernel variance of σ2

P SF and e ∼
N (0, σ2

AW GN In) is a random realization of additive white Gaussian noise (AWGN).
The typical framework for image reconstruction is

x̃µ = arg min
x

µD(Ax, y) + R(x). (2.1)

Recalling the data fidelity for Gaussian denoising in (1.6) and the TV norm regulariser in
(1.14) we define the variational framework for Gaussian denoise as

x̃µ = arg min
x

µ

2 ∥Ax − y∥2
2 + TVϵ(x). (2.2)

We remark that, usually the hyperparameter is situated in front of the regulariser(hence it is
referred to as regularisation parameter), but we preferred to put it in front of the data fidelity
for numerical reasons (i.e. untreatable small value).1

Definition 2.1 (Univariate exponential or half Laplacian distribution) A scalar ran-
dom variable X is exponential- or half Laplacian-distributed with scale parameter λ ∈ R+/{0},
denoted by X ∼ hL(λ), if X = |Y |, with Y ∼ L(0, λ). The pdf of X takes the form

πλ(x) =

λ exp(−λx) if x ∈ R+,

0 otherwise.

As mentioned in the work of Pragliola et al. [2023], a TV prior assumes that the gradient

1The scale of parameters in front of the TV norm typically falls within the range of [10−3,10−2], which
can pose numerical challenges in machine learning algorithms, especially those involving regression task.
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2.1 – Space invariant regularisation in the Gaussian case

magnitudes qi := ∥(Dx)i∥2 follow a space-invariant one-parameter half-Laplacian Distribu-
tion (hLD) with global scale parameter, which does not adapt to local image structures.
Indeed the prior hLD probability density in natural images is highly dependent on the region
of the image that it is taken in consideration. Indeed, the parameter λ defining the shape of

(a) x (b) Hist of ∥(Dx)i∥2 (c) Detail of x (d) Hist of ∥(Dx)i∥2

Figure 2.3: Global and local image content prior probability.

the distribution is dependent on the region, as shown in Fig 2.3
Whenever the ground truth version of the noisy image y is available the optimal parameter
µ can be determined by maximizing an appropriate metric that measures similarity between
the ground truth(GT) and the reconstructed image.

To address the task of optimal hyperparameter estimation, a natural formulation is the
following grid search optimization problemarg maxµ ℓ(x̃µ, xGT),

subject to x̃µ = arg minx µD(Ax, y) + R(x).
(2.3)

For our experiments on Gaussian denoising, the regulariser R is the TV norm presented in
(1.14) and the data fidelity D is the one presented in (1.6).
The ℓ(·) is a loss function assessing optimality that can be chosen, for instance, either as the
PSNR or the SSIM.
The metric used for our experiments is the ℓ(x̃µ, xGT) = SSIM(x̃µ, xGT).
Solving directly (2.3) is challenging as shown in Calatroni et al. [2017], Calatroni et al. [2020]
and Calatroni et al. [2019]. Hence, practically, for this scalar case we decided to use instead a
brute-force approach, searching for the optimal parameter within a specific range of tentative
hyperparameters.
In Fig 2.4 we plot the function f(µ) = SSIM(xGT , xµ) for several values of µ within a fixed
interval. We observe that this function is concave, with a clear optimal value µ̂ that maximise
the SSIM metric.

To avoid the need of exploring, for different images and noise levels, the whole set of grid
points , we implement a golden-section algorithm, also called golden-section search, reducing
drastically the computation cost required to compute the optimal µ. The algorithm starts with
a large initial interval [a, b] and then, step by step, reduces its size until it becomes sufficiently
small.
The following steps are required:

1. • Choosing an interval [a, b] ideally containing the optimal µ

• Assign an initial centroid µ∗, typically µ∗ = a+b
2

• Define a vector of decreasing ranges α = [α1, α2, ..., αn]
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Figure 2.4: Brute force approach for computing the optimal parameter.

2. Evaluate the function in the triplet [µ∗ − αi, µ∗, µ∗ + αi]

3. Based on the function values, select as a new centroid the value that obtained the best
result.

4. Repeat until the granularity given by the αi is sufficiently small.

We show the granularity of the parameter search in the dot plot in Fig 2.5

Figure 2.5: Dot plot of the value examined by golden-section algorithm.

2.1.1 Algorithmic settings
In this section, we describe the algorithms employed to solve the ℓ2-TV problem in an efficient
way.

f(x) = µ

2 ∥Ax − y∥2
2 + TVϵ(x),
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2.1 – Space invariant regularisation in the Gaussian case

∇f(x) = µA∗(Ax − y) − div
A

Dx

∥Dx∥2,ϵ

B
,

Note that the standard TV regularisation term is non-smooth and as such it does not allow an
explicit computation of the gradient, thus requiring more sophisticated algorithms for its solu-
tion as shown in Chambolle and Pock [2011]. However, thanks to the ϵ-smoothing performed
here, a gradient exists and efficient gradient-based solvers can be used. The algorithm used
is FISTA (Section 1.5.3), ensuring that the minimization problem is solved in a accelerated
way while keeping the solution in the range [0,1]n. To guarantee that the final sequence xk

remains comparable to the same range as the initial image x.
The following parameter choices for the algorithm have been made for the following tests.

• The stopping condition on the relative error with respect to the cost function |f(xk)−f(xk−1|)
f(xk) <

10−5 or when the maximum of the iteration (usually 500) is reached.

• The ϵ present in the TV regulariser for guaranteeing differentiability is setted as 10−2

• The action of the linear operator, A or A∗ is defined as the convolution of a gaussian
kernel and it has been applied using the 2D Fast Fourier Transform (FFT)

• The gradient of the smoothed TV term is computed using by G.Peyre library.

• After each iteration the sequence xk is projected into the convex set [0,1]n.

We need to set τ = 1
L with L defined as the Lipschitz constant of ∇f .

By triangle inequality, this L can be estimated as the sum of the Lipschitz constants of the
data and regularisation terms for data fidelity and regularisation.

L = µ
...AT A

...+ 8
ϵ
.

In our case, A is a convolution operator and the term
..AT A

.. is equal to the maximum of the
Fourier transform associated to the kernel filter, so

..AT A
.. = 1.

Note that the stopping condition is based on the relative error of the cost function rather than
the relative error of the sequence norm, because FISTA may show oscillations in the sequence
of iterates.

Figure 2.6: Different rate of convergence between GD and FISTA.
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(a) GD (b) FISTA

Figure 2.7: Solution obtained by the solvers after 160 iterations.

To assess the correct implementation of the algorithm and to compare it with standard
(non-accelerated) gradient descent, using as example the deblurring task with σ2

AW GN =
0.1, σ2

P SF = 1.0, we compared both the performances of GD and FISTA in term of com-
putational time to compute x∗ and the iterations required.
The GD converged in 66.56 seconds with 1247 iterations, while FISTA converged in 12.73
seconds with 196 iterations.
Fig 2.6 and 2.7 illustrates that, with an upper limit of 160 iterations, the solution obtained by
FISTA has nearly converged, whereas the standard GD solution remains far from convergence.
Furthermore, important considerations need to be done. The time required to compute the
optimal hyperparameter presented in (2.3) using the golden-section algorithm vary based on
the presence of Gaussian blur or the intensity of Gaussian noise. Indeed, images with higher
noise intensity or images affected by blur require more iterations of the underlying optimiza-
tion solvers to arrive at convergence.
Taking as example an image of size 321 × 481 we obtain the following computational time
required for optimal parameter image reconstruction

• A = I, σ2
AW GN = 0.01 : ∼ 92s

• A = I, σ2
AW GN = 0.02 : ∼ 111s

• σ2
P SF = 1.0, σ2

AW GN = 0.01 : ∼ 195s

• σ2
P SF = 2.0, σ2

AW GN = 0.01 : ∼ 169s

All the codes are publicy avaiable at the following GitHub repository2.

2.2 Scalar regularisation in the Poisson case
We now consider the case when signal-dependent Poisson noise corrupts the observed image,
where each component is defined as:

yi ∼ Poisson(xi + η) (2.4)

2https://github.com/ClaudioFantasia/Space-Variant-Hyperparameter-Estimation-for-Inverse-Imaging-
Problem
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2.2 – Scalar regularisation in the Poisson case

with η a small background term to ensure that the Poisson distribution is always defined even
when xi = 0.

Recalling the Def 1.2, Poisson noise takes the pixel’s intensity as parameter of a Poisson
distribution (i.e. λ = xi), and outputs a new value based on the probability associated with
that intensity.
That is, for each i = 1, ..., n where (xi ≥ 0). Each component yi ∼ Poisson(αxi + η) has a
probability distribution given by

παxi+η(yi = n) = (αxi + η)n

n! e−αxi+η s.t n ∈ N, (2.5)

where α is a parameter that characterise how intense the noise is. In our case (0 ≤ x ≤ 1),
the smaller is alpha, the more intense is the noise.
Note that a random variable X ∼ Poissonαxi+η(n) has E(X) = V ar(X) = αxi + η. So white
pixels (i.e. higher value) have a higher probability of "oscillation", leading to increased noise
in those pixels.
Indeed, an image with a lower mean and overall darker pixels will experience a smaller ℓ2 error
after Poisson noise is applied with a fixed parameter. While a brighter image will experience
higher ℓ2 error, so higher discrepancy between the ground truth and its noisy version. A clear
example is shown in Fig 2.8

(a) Ground truth with ❊[x] = 0.26 (b) Noisy image y with ℓ2(y, xGT ) = 46.99

(c) Ground truth with ❊[x] = 0.59 (d) Noisy image y with ℓ2(y, xGT ) = 122.26

Figure 2.8: Different image corruption based on average pixel’s intensity.

Sticking again with TV regularisation and the data fidelity for Poisson noise presented in Eq
(1.14) and Eq (1.10), the variational framework to consider for Poisson denoising is

x̃ ∈ arg min
x

µKLη(x, y) + TVϵ(x), (2.6)
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where µ > 0 is the hyperparameter to estimate and KLη is the smoothed Kullback-Leibler
divergence

KLη(x, y) =
nØ

i=1
yilog

3
yi

xi + η

4
+ xi − yi.

The smoothed KL fidelity term requires each component to be positive (xi ≥ 0). This turns
the inverse problem into one of minimizing the KL divergence subject to a positivity constraint
x ≥ 0.
The variational framework for Poisson denoising is:

x̃ ∈ arg min
x

µ
nØ

i=1
yilog

3
yi

xi + η

4
+ xi − yi +

ñ
(Dhxi)2 + (Dvxi)2 + ϵ2 s.t x > 0. (2.7)

For numerical reasons, a parameter η was also included in the KL divergence term to avoid
divisions by zero and to be Lipschitz continuously differentiable on ❘n

+.

2.2.1 Algorthmic settings
Taking as function

f(x) =
nØ

i=1
yilog

3
yi

xi + η

4
+ xi − yi +

ñ
(Dhxi)2 + (Dvxi)2 + ϵ2 s.t x ≥ 0,

∇f(x) = µ

3
y

x + η
− 1

4
− div

A
Dx

∥Dx∥2,ϵ

B
.

The function f with parameter η > 0 and ϵ > 0 is Lipschitz continuously differentiable on ❘n
+

with Lipschitz constant
L = µ

max(y)
η2 + 8

ϵ
.

A rigorous proof of the Lipschitz constant for KL term is present in Harmany et al. [2011].
To enforce the non-negativity of the solution, we consider a projection on the non-negative
orthant which makes the underlying objective non-smooth. To solve it FISTA was used again
as a solver, performing a projection into a convex set [0,1]n.and the solver settings remains
the same with respect to the Gaussian case.
Note that given the estimation of L above, the following dependencies hold for L and the
step-size τ = 1/L:

L = O(1/ϵ2), τ = O(ϵ2) (2.8)

From a practictal point of view, it is preferable to keep η as small as possible to minimize
the discrepancy between the smoothed KL divergence and the true KL divergence, under this
choice and looking at (2.8) we have that the step size also tends to zero, making each step of
the algorithm too little.
To overcome the problems caused from the lack of a well-defined Lipschitz constant, or the
unstable behaviour due to numerical stability, we considered adaptive backtracking techniques
favouring a (non-monotone) adjustement of the step-size value.
Traditional Armijo-type line search methods for computing suitable step-sizes were not consid-
ered, as they do not allow for local increasing and decreasing of it, which could be potentially
unefficient in case of small initialisations. These strategies permit gradual step-size increases
along iterations while still ensuring the convergence of the algorithm.
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2.2 – Scalar regularisation in the Poisson case

In order to write the optimization step, a standard descent step in the differentiable compo-
nent f is combined with the projection onto the convex feasible set [0,1]n.
Based on the work of Calatroni and Chambolle [2019] we define the projection onto the convex
feasible set as x̂ = prox[0,1](x) where x is any point included in ❘n and a suitable step-size τ

picked based on the following condition

Df (x̂, x) ≤ ∥x̂ − x∥2

2τ
, (2.9)

where the Bregman distance Df is defined as

Df (x, y) := f(x) − f(y)− < ∇f(x), x − y > (2.10)

The projection is the clipping one and it is achieved by setting all values xi below zero to zero
and all values above zero to zero. The algorithm proposed is the following:

Algorithm 4 FISTA with backtracking
Parameters: τ1 > 0, ρ ∈ (0, 1).
Initialization: x0 = x−1 ∈ ❘n, x1 = prox[0,1](x0), and t1 = 1.
For k = 1, 2, . . .

τ 0
k+1 = τk

ρ
; (2.11)

For i = 0, 1, . . . repeat

τk+1 = ρiτ 0
k+1, (2.12)

tk+1 =

ñ
(1 + 4 τk

τk+1
t2
k)

2 , (2.13)

βk+1 = tk − 1
tk + 1 , (2.14)

yk+1 = xk + βk+1(xk − xk−1), (2.15)

xk+1 = prox[0,1]

1
yk+1 − τk+1∇f(yk+1)

2
, (2.16)

Until

Df (xk+1, yk+1) ≤ ∥xk+1 − yk+1∥2/2τk+1 (2.17)
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As can be seen from Fig (2.9), the step sizes along the iterations not only had a non-
monotonic trend, but were always above the step size defined by the Lipschitz constant (red
dotted line)

Figure 2.9: Step sizes of FISTA along the iterations.

Although backtracking strategies were implemented, the low Lipschitz constant lead the
computational time required for Poisson denoising to be significantly higher compared to
Gaussian denoising computational time shown in Section 2.1.1. However, in this case the time
required for the solver to converge is not related to the noise intensity.

• α = 45 : ∼ 252s

• α = 30 : ∼ 252s

• α = 15 : ∼ 258s

2.3 Space-variant regularisation
We now describe a strategy to model local image information examining small image patches
as showed in the following experiments. This will allow us to "piece together" local information
in a way that defines a more effective and appropriate image regularizer

Recalling the Bayesian interpretation of the TV approach in Fig 2.3, we can now allow allow
the gradient scale to locally adapt to the pixel-dependent structure, which means considering
the adaptive prior:

πλi(xi) =

λi exp(−λix) if xi ∈ R+,

0 otherwise.
(2.18)

A new formulation where a distinct regularisation parameter is estimated for each pixel has
been devised. We allow the model to better adapt to local image content and effectively
capture the space-variant (SV) nature of the gradient distribution across the image. The
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formulation that follows is

x̃ ∈ arg min
x

nØ
i=1

D((Ax)i, yi) + λiR(xi), λ = (λi) ∈ ❘n. (2.19)

However due to numerical problems (i.e. untreatable small values for the machine learning
task) caused by the strong effect of the TV norm, we preferred to use

x̃ ∈ arg min
x

nØ
i=1

µiD((Ax)i, yi) + R(xi), µ = (µi) ∈ ❘n. (2.20)

In the case where the parameter is scalar, it is possible to prove that µ is inversely pro-
portional to λ, using the assumption that both parameters have to strictly positive. However,
this is no longer necessarily true when the parameter becomes pixel-wise.
Nevertheless, considering that these parameters are not calculated on a single pixel but - as
explained in the following chapter - each pixel-wise parameter is actually first calculated over
a sub-image (where the pixel is the centroid), and then the parameter computed for the sub-
image is assigned to the pixel.
Considering that we can see each sub-image as a limit case of the scalar case, our substitution
remain valid.

For this new space-variant approach, we first introduce a Gaussian pixel-wise fidelity re-
sulting in an adaptive version of (2.2)

x̃ ∈ arg min
x

nØ
i=1

µi

2 |(Ax)i − yi|2 + TVϵ(x), µ = (µi) ∈ Rn, (2.21)

and then a Poisson pixel-wise fidelity, an adaptive version of (2.7)

x̃ ∈ arg min
x

nØ
i=1

µi (yilog

3
yi

xi + η

4
+ xi − yi) +

ñ
(Dhxi)2 + (Dvxi)2 + ϵ2 s.t x > 0. (2.22)

Using as example the problem of deblurring a Gaussian noisy image, we want to emphasise the
effectiveness of the space-variant approach: observing the color bar of the parameters map, it
is possible to notice in Fig 2.11b lower values (i.e. more regularisation) in homogeneous areas
like the sky, where details are minimal. While in textured regions such as the buffaloes or
grass, regularization is reduced and we have higher values.
It is important to note that regularization becomes stronger as the parameter decreases (and
viceversa). This is due to the fact that the parameter is in front of the data fidelity.
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Figure 2.10: Blurry and noisy image to reconstruct.

(a) Reconstructed image (b) Color map of the parameters intensity

Figure 2.11: Reconstructed image with its patch-wise parameters map.
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Chapter 3

Patch-based learning

We present in the following a patch-based strategy to learn TV parameter maps. To do so, in
this chapter we start describing the dataset used in our experiments and summarize some of
its key properties. We explain how we simulate noisy images by corrupting the ground truth
images as a training set, in order to have both the noisy images and their corresponding clean
counterparts. Furthermore, we discuss the motivations that led us to adopt a supervised deep
learning approach and how we generated a secondary dataset, where sub-images(i.e. patches)
were extracted from the images present in the dataset and their corresponding SSIM-optimal
parameter was computed using golden-section methods mentioned in the previous chapter.
Patches were created using an overlapping sliding window approach and each parameter is
then used as label for the corresponding patch.

3.0.1 Notation

We introduce some notation for reader clarity.

Parameter Description
(xk

GT )i i-th pixel of the k-th image
x̄k

n n-th patch of the k-th image
(yk

GT )i i-th pixel of the k-th corrupted image
ȳk

n n-th patch of the k-th corrupted image
(µk

DL)i Predicted parameter for the i-th pixel of the
k-th image

(ȳ)i Patch centered around i-th pixel
µk,n

GT Optimal scalar hyperparameter corresponding
to the n-th patch of the k-th image

(µDL)i Predicted sub-optimal parameter for i-th pixel
µGTd Optimal scalar parameters (i.e. labels) asso-

ciated to the d-th simulated dataset
fθ Neural network with weights θ

Table 3.1: Notation
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3.1 Berkley dataset

The dataset used for our simulations is the Berkeley dataset, consisting of 300 greyscale natural
images with sizes of either 321×481. These images are real-world scenes of landscapes, people,
and objects, with patterns and structures found in nature rather than artificially created. In
Fig 3.1 we show some examples and it is possible to found the dataset at the following link1.

Figure 3.1: Some examples from Berkley dataset.

This kind of images differ significantly in contents, showing several different regions with
very different statistics. There could be highly textured region like a person face full of de-
tails and more piecewise constant regions like the sky with only very few intensity variations.
Having images with so different behaviour can be challenging for the task of hyperparameter
estimation, but it may be beneficial from a deep learning perspective enhancing more variety
in the dataset and learning of new patterns.
The data range of all the images has been normalized in the interval [0,1].
To simulate realistic corrupted images, we introduced Gaussian noise (with or without addi-
tional blur) and Poisson noise.
We added Gaussian noise by summing to the normalized k-th image of the dataset xk

GT an-
other image of the same size e, where all pixels follow a Gaussian distribution with a mean of
0 and a variance that could either be fixed or variable.

yk
GT = xk

GT + e e ∼ N (0, σ2
AW GN Id),

For simulating blurred and noisy images, we first applied the convolution operator A to the
k-th image and Gaussian noise was then added:

yk
GT = Axk

GT + e e ∼ N (0, σ2
AW GN Id).

To model Poisson noise, a Poisson distribution was applied to each pixel of the ground truth

1https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/

36

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
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image, obtaining:
(yk

GT )i ∼ Poisson((xk
GT )i) s.t. i ∈ {1, . . . , I},

where I is the total number of pixels in the image.
To simulate different noise levels, we considered the following settings: for Gaussian noise,

the variance was set to σ2
AW GN = 0.01 and σ2

AW GN = 0.02. For blurred images, the blur
variance of the point spread function (PSF) was typically σ2

P SF = 1.0.
For Poisson noise, the noise levels were determined by scaling factors α = 45, α = 15, α = 5.
Subsequently, the images have been normalized in a fixed data range [0,1], so that the cor-
rupted images yGT and the clean one xGT would be in the same range.
In the Gaussian case we normalised with a min-max normalisation

y
′ = y − min(y)

max(y) − min(y) (3.1)

Whereas in the Poisson case we normalised by simply dividing by the maximum, given the
strict positivity of each yi component.

y
′ = y

max(y) (3.2)

3.2 Training dataset

We created a dataset based on the Berkeley dataset, with the aim of using it as a training set
for a deep learning model.
Out of the K = 300 images in the Berkeley dataset. We obtain N = 126 (or N = 551) patches
per image depending on the patches size. Overall the samples in the dataset are K × N , thus
they are 37800 or 165300.
In order to extract only relevant features from an image and create an effective dataset, for
each corrupted image yk

GT slightly overlapping patches ȳk
n of size 64 × 64 (or 32 × 32) were

extracted with a sliding step set to 32 (or 16), either to the right or downward, thus letting
the patches to overlap by 50 or 25 percent.
The labels are defined as the scalar hyperparameter appearing in (2.1) of the corresponding
sample patch ȳ estimated by solving the related grid search (2.3). We recall that the model
addressed for image scalar reconstruction is (2.2) for Gaussian noise and (2.7) for Poisson one.
The optimal scalar hyperparameter corresponding to the n-th patch of the k-th Berkley dataset
image is defined as

µk,n
GT with k ∈ {1, . . . , K}, n ∈ {1, . . . , N}, (3.3)

Each noise type (Gaussian/Poisson) and level (low, high) was applied to the entire image
before the patch extraction. Every patch is corrupted by Gaussian or Poisson noise with fixed
or different intensities.
Six datasets were thus created divided as follows: 68% for training, 16% for validation, and
16% for testing.

1. Dataset with Gaussian noise of fixed variance σ2
AW GN = 0.01 and patches size of 64 × 64

with 37800 patches

2. Dataset with Gaussian noise of fixed variance σ2
AW GN = 0.02 and patches size of 64 × 64

with 37800 patches.
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3. Dataset with Gaussian noise of different variance σ2
AW GN = 0.01, σ2

AW GN = 0.02 with
patches size of 64 × 64 with 75600 patches where we have combined both the first and
the second dataset.

4. Dataset with Gaussian noise of fixed variance σ2
AW GN = 0.01 and blur σP SF = 1.0 and

patches size of 64 × 64 with with 37800 patches.

5. Dataset with Gaussian noise of fixed variance σ2
AW GN = 0.01 with patches size of 32×32

with 165300 patches.

6. Dataset with Poisson noise of different intensities with α = 45, α = 15, α = 5 with 165300
patches.

Defining as GTd the d-th dataset created, we analysed the different statistical properties of
the labels µGTd related to the d-th dataset.
Note that the peaks visible in correspondence with the values 0.1 and 308 are due to the fact
that those are the lower/upper bounds used in the golden section algorithm.
We intended to not increase this range both because it would have required much more com-
putational time to search in a larger range, but also in order not to have too extreme outliers
that could damage the training performance.
We notice from Fig 3.2 that the mean values of the two datasets are quite different, with
the former dataset having a higher mean. This outcome is expected, as the second dataset
contains higher-intensity Gaussian noise, so to require on average stronger regularization, that
is a smaller fidelity parameter µ (i.e. ❊(µGT2) = 33.28 < ❊(µGT1) = 40.94).
As shown in the following chapter, learning the distribution of this data distribution was not

(a) µGT1 (b) µGT2

Figure 3.2: Histograms of labels between the dataset with σ2 = 0.01 and the one with σ2 =
0.02.

difficult, partly because the variance is relatively low, and the high kurtosis reveals clear peaks.
Note that in the case of the deblurring dataset, the task renders challenging, due to the high
standard deviation (σ(µGT4) = 53.02) in the distribution and the low kurtosis (Kurt(µGT4)
= 2.25), indicating that the parameters to be learned are particularly dispersed as illustrated
in Fig. 3.3.

While the dataset with Gaussian noise and reduced patches size (Fig. 3.4) shows another
highly spread distribution, which is due to the fact that smaller patches can contain an higher
variety of scenarios, obtaining an higher variance and lower kurtosis with respect to the 64×64
counterpart of the first dataset (i.e. Var(µGT5) = 53.02 > Var(µGT1) = 48.55, Kurt(µGT5) =
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Figure 3.3: Histogram of the dataset labels affected by blur: µGT4 .

10.61 < Kurt(µGT1) = 16.44). These statistics can make it harder for the architecture to
differentiate between noise and meaningful textures.
Figure (3.5) shows that the dataset for Poisson noise is concentrated around low values (0.1

Figure 3.4: Histogram of the dataset labels with reduced patch size µGT5 .

- 50). However, the outliers amplify its standard deviation.
We illustrate a table summarising all the main characteristics of the datasets in 3.2.

Dataset Mean Std Kurtosis Skewness

1 40.94 48.55 16.44 3.77
2 33.28 43.02 23.34 4.45
3 37.11 46.03 19.26 4.06
4 70.07 53.02 2.25 1.36
5 45.70 59.49 10.61 3.19
6 23.73 58.93 9.09 3.22

Table 3.2: Summary statistics
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Figure 3.5: Histograms of the labels of the Poisson noise dataset µGT6 .

3.3 Deep parameter estimation

We detail in this section the deep learning approach considered to automatically selecting the
parameters map of (2.20) to regularize the noisy image. A parameter µi has to be found for
each pixel within the image.
However, the parameters map may not always be well-defined because the parameters can
vary depending on how they are computed. Indeed, computing it patch by patch like in 2.11b
can lead to ambiguous results, especially if the patch contains both textured and homogeneous
regions.
Obviously, this also depends on the size of the patch itself. The smaller the patch, the greater
the likelihood of having statistically similar features throughout the patch.
Our approach to face this difficulties involves selecting a fixed pixel i of one image k, extracting
a patch (ȳk)i ∈ ❘64×64 (or ❘32×32) centered on i, and computing its parameter µi based on the
surrounding region within the patch itself. This process is repeated for each pixel to capture
spatial information across the image.
However, computing these parameters in a SSIM-optimal way, solving the related grid search
for each pixel-centered patch is not computationally feasible and would require the ground
truth.
To address this issue, a light neural network fθ with fast inference was trained, to obtain SSIM
sub-optimal parameter for each pixel-centered patch, so that

fθ((ȳ)i) = (µDL)i , (3.4)

where (ȳ)i is the patch centered in the pixel i, (µDL)i is the parameter for the pixel i and θ

are the weights of the neural network.
A similar approach was done by Nekhili et al. [2022] and it is shown in their architecture in
Fig 3.6.

A significant advantage is that by training our neural network on fixed-size patches, it
becomes possible to later apply the network to images of different sizes by extracting sub-
regions from them. Although, patches size is an important parameter to tune. Smaller patches
are better at capturing the space variance of the image, but they make it more challenging for
the neural network to better capture differences between the noise and natural textures.
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Figure 3.6: CNN architecture for the estimation of the sub-optimal parameter.

3.4 Architecture

In this section, we present the two different architectures that have been proposed based on
the size of the patches and the noise analysed.
Both the architectures are very lightweight due to the fact that specifically trained to extract
features from small images (i.e. 64 × 64 or 32 × 32) and the feature space is not that big to
learn. Indeed the learnable parameters of the first architecture are 17823681 (∼ 107), while
the lighter one has 2802817 (∼ 2 × 106) learnable parameters.
The first one 3.3 is proposed in the case of patches with size 64×64 and 32×32 in the Gaussian
case, while a lighter one 3.4 is proposed for Poisson noise with patches of size 32 × 32.
The stride and padding parameters of the Conv2D layers are set such that the output size
of the image remains the same as the input size. Max pooling layers are used to reduce the
image dimensions. While the dropout layers are used for avoiding the overfitting phenomena
that we often encountered in our experiments.

3.5 Training

This section describes the training settings used for both architectures before mentioned. Some
settings are influenced by the work on regularisation parameters of Afkham et al. [2021], al-
though their experiments were performed on images of size 180 × 180.
To prevent model overfitting, we reduced the architecture’s complexity, but we also imple-
mented the following settings for both architectures:

• Batch_size = 256 to avoid too stochasticity in the gradient direction.

• Learning rate = 10−5 to ensure convergence.

• Scheduler of learning rate with an exponential decay of parameter γ = 0.8.

• Adam optimizer for guaranteeing momentum.

• Weight decay of 10−4 for ℓ2 regularisation.
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Layer Type Output Shape Kernel / Units Details

Input Layer (1, 64, 64) - Single-channel input
Conv2D + BatchNorm2D + ReLU (32, 64, 64) 5 × 5, 32 Stride 1, Padding 2
Conv2D + BatchNorm2D + ReLU (64, 64, 64) 5 × 5, 64 Stride 1, Padding 2
MaxPool2D (64, 32, 32) 2 × 2 Stride 2
Conv2D + BatchNorm2D + ReLU (128, 32, 32) 3 × 3, 128 Stride 1, Padding 1
MaxPool2D (128, 16, 16) 2 × 2 Stride 2
Conv2D + BatchNorm2D + ReLU (256, 16, 16) 3 × 3, 256 Stride 1, Padding 1
MaxPool2D (256, 8, 8) 2 × 2 Stride 2
Flatten (16384) - Flatten feature maps
Fully Connected + ReLU (1024) 1024 Fully connected layer
Fully Connected + ReLU (512) 512 Fully connected layer
Dropout - Dropout (0.25) Regularization
Fully Connected + ReLU (128) 128 Fully connected layer
Dropout - Dropout (0.25) Regularization
Fully connected (1) 1 Output layer

Table 3.3: Details of the first architecture.

Layer Type Output Shape Kernel / Units Details

Input Layer (1, 32, 32) - Single-channel input
Conv2D + BatchNorm + ReLU (64,32,32) 5 × 5, 64 Stride=1, Padding=2
MaxPool2D (64,16,16) 2 × 2 Stride=2
Conv2D + BatchNorm + ReLU (128,16,16) 5 × 5, 128 Stride=1, Padding=2
MaxPool2D (128,8,8) 2 × 2 Stride=2
Conv2D + BatchNorm + ReLU (256,8,8) 3 × 3, 256 Stride=1, Padding=1
MaxPool2D (256,4,4) 2 × 2 Stride=2
Conv2D + BatchNorm + ReLU (512,4,4) 3 × 3, 512 Stride=1, Padding=1
MaxPool2D (512,2,2) 2 × 2 Stride=2
Flatten 2048 - Flattened output
Fully Connected + ReLU 512 512 Fully connected layer
Dropout 512 - Dropout (0.25)
Fully Connected + ReLU 128 128 Fully connected layer
Dropout 128 - Dropout (0.25)
Fully Connected 1 1 Output layer

Table 3.4: Details of the second architecture.
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The neural network fθ is then trained using a Mean Squared Error (MSE) loss (ℓ2 squared)
plus the regularization, so that:

θ̂ ∈ arg min
θ

1
J · N

Ø
j,n

|fθ(yj
n) − µj,n

GT |2 + λ
PØ

p=1
∥θ∥2

2 , (3.5)

with λ = 10−4 and P the number of learnable parameters of the architecture.
For training purpose, the labels have been normalized using a min-max scaling to map its
values to the range [0, 1]:

µ
′ = µ − min(µ)

max(µ) − min(µ)

This was done to align the ranges of the labels and features, ensuring compatibility during
model training.
The performances of our architectures were assessed using a popular regression metric: the
coefficient of determination (R2) on the test set. Considering N as the number of test patches,
we define the error as

R2 := 1 −
qn

i=1((µGT )i − (µDL)iqn
i=1((µGT )i −❊((µGT )i)

. (3.6)

The data range of R2 is (−∞,1], where 1 indicate a perfect fit and 0 indicate a bad fit, while
values below 0 indicates that the model is performing worse than predicting the mean.

An important thing to point out is that training is not computationally expensive, as the
light architectures take as input small patches.
The most computationally expensive part of this approach is the creation of the dataset, since
for each patch an SSIM-optimal parameter has to be computed. However, once the dataset
is created, perform fine-tuning on the architecture and its associated training settings is not
very computationally demanding.

3.6 Inference time
In Section 2.1.1 and 2.2.1, we discussed the computational time required to determine the
optimal scalar parameter for Gaussian denoising (or deblurring) and Poisson denoising using
the golden section algorithm.
Computing the scalar parameter for an image 321 × 481 requires ∼ 100 − 300 seconds, while
computing the scalar parameter for a patch of size 64 × 64 (or 32 × 32) require approx-
imately ∼ 3 − 4 seconds. However, to compute the scalar parameter for each pixel in a
space-variant fashion is unfeasible, because it would require to compute a scalar parameter for
321 · 481 = 154401 pixels taking approximately 463203 seconds.
One fundamental characteristic of our deep learning approach is that the neural network itself
has the property of being very lightweight due to the fact that is specifically trained to extract
features from small images (i.e. 64 × 64 or 32 × 32) with a feature space not hard to learn.
Thanks to this property of being lightweight our architectures require a short amount of time
for performing inference over all the pixels of one image. The network presented in Tab 3.3
requires ∼ 277s, while the lighter one presented in Tab 3.4 requires ∼ 195s.
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Notice that these values does not change based on the noise intensity faced or the presence
of blur in the image, unlike classical scalar approaches.
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Chapter 4

Results

In this chapter, we report the numerical results obtained for the denoising task for both Pois-
son and Gaussian noise, injecting noises at varying intensities and carefully analyzing the
parameters that influence performances the most. Furthermore, in view of application of the
proposed approach to more complex problems, we consider the image deblurring task with
known Gaussian blur in the case of Gaussian noise. For each noise distribution, we ran exam-
ples taking into account factors such as patch size and the influence of including multiple noise
levels in the dataset. We investigated whether these factors improve robustness by enhancing
the architecture to better handle unseen noise or improve its performance on noise already
seen.
The performances are reported in a table 4.1 with the overall major results. In the table are
presented the performances of the regression task using the R2 formula in (3.6). While for
each architecture trained on a given dataset, the mean and standard deviation of SSIM im-
provement between the scalar and space-variant approaches are evaluated using 30 test images
from the Berkeley dataset, corrupted in the same way as the training set.
Since the proposed deep learning approach relies on the prior knowledge of the noise distri-
bution, we also developed a classification network to determine the noise type (Poisson or
Gaussian) as described in the first section.

Dataset R2 Level Tested Mean Std
1 0.6240 σ2

AW GN = 0.01 0.002 0.028
2 0.4939 σ2

AW GN = 0.02 -0.006 0.036
3 0.6135 σ2

AW GN = 0.02 0.0004 0.031
3 0.6135 σ2

AW GN = 0.015 0.006 0.027
4 0.6124 σ2

AW GN = 0.01 -0.0007 0.042
5 0.6455 σ2

AW GN = 0.01, σ2
P SF = 1.0 0.005 0.018

6 0.3936 α = 45 -0.0059 0.148

Table 4.1: Summary of results for six datasets, including R2 values, tested noise levels, and
SSIM improvement metrics.
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4.1 Classification task
Given the statistical differences of the noise observed in both the additive Gaussian and in
the signal-dependent Poisson case, a natural question on whether it’s possible to discriminate
between them (binary classification problem) using a simple classifier arises. This could favour
ad-hoc processing with the appropriate data term, see equations (2.21) or (2.22).
The dataset for this task was created by extracting patches of size 64×64. Within the dataset,
both types of noise, Gaussian and Poisson, were simulated with three different intensities for
each type of noise (i.e. σ2

AW GN = 0.01, σ2
AW GN = 0.02, σ2

AW GN = 0.03, α = 45, α = 15, α = 5).
Gaussian noise patches were labelled as zero, while the Poisson ones were labelled as one.
We used the architecture presented in Tab 3.3 as feature extractor for the image patches and
the output shape of the last multi-layer perceptron was setted as 2, in order to output two
probabilities i.e. Gaussian or Poisson.
At test time the accuracy obtained is of 92% leading to good results at inference time with a
stable validation loss presented in Fig 4.1.
The idea is to extract a fixed number of patches from an image and check if the network can

Figure 4.1: Validation loss for classification task.

correctly classify, with a good accuracy, as Gaussian(or Poisson) the entire image is classified
as Gaussian(or Poisson).
When tested on the castle affected by different intensity of Gaussian noise we obtain good
accuracy even when the noise is almost imperceptible (i.e. σ2

AW GN = 0.001) like in Fig 4.2.
While we obtain slightly worst results in the Poisson case (Fig 4.3), especially in the case of
imperceptible noise (i.e. α = 65), but still appreciable.

46



4.1 – Classification task

(a) σ2
AW GN = 0.001, accuracy : 72% (b) σ2

AW GN = 0.005, accuracy : 89%

(c) σ2
AW GN = 0.01, accuracy : 100% (d) σ2

AW GN = 0.02, accuracy : 100%

Figure 4.2: Classification of Gaussian noise based on different intensities.

(a) α = 65, accuracy : 60% (b) α = 55, accuracy : 69%

(c) α = 45, accuracy : 74% (d) α = 15, accuracy : 100%

Figure 4.3: Classification of Poisson noise based on different intensities.
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4.2 Gaussian denoising
In this section, we experimented with different datasets for Gaussian denoising. We started
by addressing a single noise level, ranging from low to medium, and finally we expanded
the approach to handle multiple noise levels. Additionally, we compared the space-variant
reconstruction performances with respect to the scalar one using patch sizes of either 64 × 64
or 32 × 32.

4.2.1 Low noise (σ2
AW GN = 0.01)

We started with a dataset (1th one) containing patches size of 64 × 64 and Gaussian noise
with σ2

AW GN = 0.01.
The R2 value obtained is 0.6240 and the training phase was stopped at 25 epochs, as the
validation loss began showing oscillatory behaviour and the train loss was almost flat after
only a few epochs. We report these convergence plots in Fig 4.4.

(a) Training loss (b) Validation loss

Figure 4.4: Losses for denoising task with σ2
AW GN = 0.01.

Testing the architecture on a test image we achieved in Fig 4.5 remarkable results using
the space-variant approach, improving the SSIM value compared to the scalar method and
preserving textured regions, see, for instance, the fine-detailed areas of the castle from being
over-smoothed as seen with the global approach.

(a) y, SSIM = 0.38 (b) x̃, SSIM = 0.75 - x̃SV , SSIM = 0.78

Figure 4.5: Noisy image with its scalar and space-variant reconstruction for σ2
AW GN = 0.01
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The estimated parameter map behaves as expected, i.e. it applies less regularization in
highly textured areas and smooths out with stronger strength homogeneous (piece-wise con-
stant) areas. This can be observed in Fig. 4.6, where the castle is practically segmented upon
estimation of the parameter map and subject to significantly lower regularisation i.e. higher
value of the parameters in that region.
We tested the architecture on 30 test images and the results found show a very small average
SSIM improvement of 0.0024 against the 0.03 provided in castle example. This is mainly be-
cause our approach achieves good SSIM improvements on some images but may obtain SSIM
decrease on others. Indeed, the standard deviation of the SSIM improvements is pretty high
(σ = 0.028) as reported in Tab 4.1.
However, it is worth highlighting that even when the SSIM value remains similar to the one
found in global approach, the visual improvements are still highly appreciated, as in Fig 4.7.

(a) 3D µ − map (b) Colorbar of µ − map

Figure 4.6: 3D graph-2D colorbar of the parameters map for σ2
AW GN = 0.01 Gaussian denois-

ing.

(a) x̃, SSIM = 0.74 (b) x̃SV , SSIM = 0.74

Figure 4.7: Images with same SSIM values, but different preserved texture.
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4.2.2 Medium noise (σ2
AW GN = 0.02)

In the next phase, we consider a dataset (2th) corrupted by higher Gaussian noise with a
variance σ2

AW GN = 0.02.
To test this, we considered a new image dataset with patches of the same size but with different
realizations of Gaussian noise at this new higher intensity. Having a higher noise leads of a
decreasing in optimal parameters value (indeed E(µGT2) = 39.10 < ❊(µGT1) = 48.25) since
more regularization is therein required.
Convergence is achieved in approximately 25 epochs, as showed in Fig 4.8. The R2 = 0.4939
value in this case is way lower with respect to the low level noise case (R2 = 0.6240), suggesting
that higher noise indicates a more challenging regression task and slightly lower performances
as showed in Tab 4.1.

(a) Training loss (b) Validation loss

Figure 4.8: Losses for denoising task with σ2
AW GN = 0.02.

However, for consistency, we still used the image of the castle in Figure 4.5 for inference,
observing a good improvement with respect to the scalar approach. Despite the SSIM im-
provement is lower than the previous case, the visual effects remain remarkable as shown in
Fig 4.9.

(a) y, SSIM = 0.30 (b) x̃, SSIM = 0.69 - x̃SV , SSIM = 0.70

Figure 4.9: Noisy image with its scalar and space-variant reconstruction for σ2
AW GN = 0.02.
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With a 2D colorbar map (Fig 4.10) we show how the peaks around the castle remain,
although less pronounced (i.e. more regularisation) in the medium noise level, for both tests.

(a) 2D colorbar of µ − map (b) 2D colorbar of µ − map

Figure 4.10: 2D colorbar for the Gaussian denoising tested on σ2
AW GN = 0.01, σ2

AW GN = 0.02.

4.2.3 Enhancing robustness
Using the 3th dataset, we showed how to improve the robustness of the deep learning approach,
training a neural network on two noise levels and then testing it on noise levels not provided
during training, analysing the performances obtained in these scenarios. The idea was to com-
bine the two previously used datasets and test the model on unseen noise i.e. σ2

AW GN = 0.015.
In addition, we found that the network trained on mixed noise (0.01 and 0.02) not only per-
formed well on unseen noise but also achieved better results on images corrupted by noise
whose intensity was seen during training as it has been shown in the results table 4.1. This
can also be observed in Fig 4.12 where a small improvement of (∼ 0.005) is obtained on the
noisy image corrupted by one of the two training noise levels illustrated before in Fig 4.9.
Even in this case, only 25 epochs were sufficient, as seen in Fig (4.11), as convergence was
achieved quickly and the R2 = 0.6135 value obtained is way higher with respect to the medium
level noise intensity.

(a) Training loss (b) Validation loss

Figure 4.11: Losses for denoising task with σ2
AW GN = 0.01,0.02.
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(a) y, SSIM = 0.34 (b) x̃, SSIM = 0.71 - x̃SV , SSIM = 0.73

(c) y, SSIM = 0.30 (d) x̃, SSIM = 0.69 - x̃SV , SSIM = 0.71

Figure 4.12: Left: noisy images with different Gaussian noise levels. Right: scalar and space
variant reconstructions for σ2

AW GN = 0.015 and σ2
AW GN = 0.02 using the architecture trained

on mixed noises.

4.2.4 Ablation study on patch sizes

Patch size is an important parameter to tune: small patches can capture more space-variance
and can better adapt to detect complex structure in the whole image than larger one. However
it may be more difficult for the architecture to learn a successful regression task in this case
as the extraction of meaningful features from smaller images is not trivial.
To test this, we considered a dataset (4th) with patches size of 32×32 and fixed noise variance
σ2

AW GN = 0.01. We repeated the training using the architecture from all previous cases (i.e.
the more complex one in Tab 3.3), but this time a max pooling layer was removed to ensure
that the output shape after the flattening operation was still 16384.
Examining this dataset to the first, where the variance remains the same but the patch size
decreases: the R2 value of this dataset is slightly lower to the one exhibited in the first dataset.
However, it is a good value considering that learning from smaller patches is indeed a more
challenging task.
Although the quantitative SSIM results are approximately similar for both the 64x64 and
32x32 patch sizes as shown in Tab 4.1, the visual results and adaptivity observable in the
regularisation parameters map are far more appreciable in the case of smaller patches.
Indeed, the visual improvements in Figure 4.13 are appreciable as the fur (and wings) can be
seen better.
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Furthermore, using smaller patches allow to adapt to more complex shapes and also succeed

(a) y, SSIM = 0.30

(b) x̃SV64×64 , SSIM = 0.882 (c) x̃SV32×32 , SSIM = 0.876

Figure 4.13: Space-variant reconstruction by architectures trained on 64 × 64 and 32 × 32.

to regularise regions where thinner objects are embedded in homogeneous regions, which oth-
erwise would create noise clouds due to the patch size being too large compared to the object
itself. A clear example is the helicopter’s blade in Fig 4.14.
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(a) y, SSIM = 0.431 (b) x̃, SSIM = 0.753

(c) µ-map 64 × 64 (d) µ-map 32 × 32

(e) x̃SV64×64 , SSIM = 0.757 (f) x̃SV32×32 , SSIM = 0.766

Figure 4.14: Better reconstruction of fine-grained details in the denoising case with σ2
AW GN =

0.01.

4.3 Gaussian deblurring
We now consider the case where the forward operator is a matrix defining the convolution
operation between the image and a Gaussian kernel. For this new task we have created a
dataset (5th) with patches sizes of 64 × 64, where we applied a Gaussian blur using the
FFT algorithm with a variance of σ2

P SF = 1.0 and then we added Gaussian noise of variance
σ2

AW GN = 0.01.
Applying a Gaussian kernel tends to smooth the image, as the convolution tends to average
out the values present in the part affected by the filter by attenuating the high frequencies,
i.e. by reducing the intensity shifts. This leads to the smoothing of edges and a general
reduction of highs and lows, thus reducing the overall image variance. Furthermore, as seen
in the previous chapter, the distribution of parameters in the deblurring case is very sparse,
with a very high mean value.
Despite the Gaussian convolution tend to reducing the pixel intensity range, the achieved
R2 value is the best among all the regression tasks and it is also worth mentioning that the
training in Fig 4.15 was more stable than in the denoising case illustrated in Fig 4.4 and 4.8.
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4.3 – Gaussian deblurring

(a) Training loss (b) Validation loss

Figure 4.15: Losses for deblurring task with σ2
AW GN = 0.01, σ2

P SF = 1.0.

We observe from Fig 4.16 that, the parameters map looks smoother in comparison to the
ones computed for the denoising task, probably due to the blurring and averaging effects
introduced by the Gaussian filter. However this smoothed map do not interfere with a good
reconstruction of the image.

(a) y, SSIM = 0.291 (b) µ-map

(c) x̃, SSIM = 0.758 (d) x̃SV, SSIM = 0.777

Figure 4.16: Blurred image with its global and space-variant reconstruction for σ2
AW GN =

0.01, σ2
P SF = 1.0.
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4.4 Poisson denoising
Based on the previous experiments, we now stick with the 32 x 32 patches for performing
denoising on a different, non-additive, Poisson noise model.
The Poisson dataset (6th) was created with 32 × 32 patches and noise of three different inten-
sities: α1 = 45, α2 = 15, α3 = 5, where the lower the alpha parameter is, the more intense the
noise.
In this new context, the complex architecture adapted for patch size of 32 × 32 (i.e. the archi-
tecture presented in Tab 3.3 with the removal of one max pooling layer) cause issues related
to overfitting as displayed in Fig 4.17 where an increasing trend in the validation loss appears.
One of the most effective methods to reduce overfitting is to simplify the architecture. On one
side, this simple idea is such that the architecture learns only the general features of the task,
and not features of a particular dataset.
We used the lighter architecture presented in Tab 3.4 that obtain a more stable training, as
shown by the validation loss illustrated in Fig 4.18, with respect to the complex one.

(a) Training loss (b) Validation loss

Figure 4.17: Losses(big architecture) for denoising task in Poisson case for α1 = 45, α2 =
15, α3 = 5.

(a) Training loss (b) Validation loss

Figure 4.18: Losses(small architecture) for denoising task in Poisson case for α1 = 45, α2 =
15, α3 = 5.
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4.4 – Poisson denoising

It is worth mentioning that the regression task for Poisson denoising achieve the worst
performances across all the datasets tested, obtaining a small value of R2 = 0.3936. It is likely
that this error arises from cases where the Poisson noise is more intense (i.e. α = 5).
Furthermore, Poisson noise is signal-dependent, hence it may poses greater challenges for
regression task and inference. However, when tested on images of low intensity Poisson noise
(e.g., higher α parameter), improvements could still be observed.
Testing, for consistency, the usual castle image, our approach performs well on low intensity
Poisson noise (i.e. α = 45) as it has been exhibited in Fig 4.19, but it starts to have some
decrease in the SSIM value when tested on higher intensity noise like in Fig 4.20, even thought
the visual effect remains acceptable.

(a) y, SSIM = 0.390 (b) µ-map

(c) x̃, SSIM = 0.668 (d) x̃SV, SSIM = 0.700

Figure 4.19: (Poisson) noisy image with its global and space-variant reconstruction for α = 45.
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(a) y, SSIM = 0.232 (b) µ-map

(c) x̃, SSIM = 0.492 (d) x̃SV, SSIM = 0.475

Figure 4.20: (Poisson) noisy image with its global and space-variant reconstruction for α = 15.
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Chapter 5

Conclusions and outlook

In this work, we addressed the task of estimating adaptive hyper-parameters in a variational
model designed for reconstructing natural images corrupted by Gaussian noise, Poisson noise
and, in some cases, Gaussian blur. In particular, we developed a space-variant model using a
deep-learning approach for Total-variation(TV) regularisation combined with a suitable data
term tailored to the noise model considered. Moving from a scalar to a pixel-dependent
estimation adapts more effectively to the heterogeneous image details, thus improving overall
reconstruction quality.
For the estimation of the parameter map, we divided a dataset of natural images into patches
and developed a supervised training procedure of scalar regularisation parameters to be placed
at the centre of sliding window running through the image by means of a (light) deep neural
network. Upon this training, at inference time the trained network is thus able to infer a
regularisation map for the image at hand.
The space-variant approach proved slightly better results with respect to the classical scalar
approach in term of SSIM metric, with meaningful and visible improvements from a visual
perspective, preserving textured regions and smoothing out homogeneous (piece-wise constant)
areas. Furthermore, the computational cost of the computation of the space-variant map is
extremely fast, being the evaluation of a trained network in correspondence of the given image
considered .
Training was performed efficiently by using patch datasets with different noise statistics and
sizes. Due to the light architecture employed and the limited size of the training dataset,
training was computationally effective and further benefited from the use of accelerated first-
order methods and advanced backtracking strategies for the solution of the TV-regularised
problems.
Testing the network performances under a variety of scenarios provided meaningful insights
regarding the factors that contribute the most to a successful image reconstruction.

• Smaller patches lead to better segmentation of the parameters map and subsequently
better visual results. A slight SSIM improvement has been noted on some images with
respect to the scalar case. However, from a visual perspective, the results are significantly
improved in textured areas, thus allowing better detail preservation.

• Including multiple noise levels in the dataset (from low to high) provide better perfor-
mances on unseen noise and even already seen noise.

As an outlook for future research we mention:
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Conclusions and outlook

• Architectures that perform better on the regression task used to train the network upon
the use of scalar training should be explored more. Unlike what we have done in our
approach, the architecture should be adapted based on the type of noise and the patch
size used.

• Reducing the patch size may lead to better segmentation of the parameters map and
improved local adaptability. Different architectures should thus be explored to better
handle this new patch size.
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