
POLITECNICO DI TORINO

Master’s Degree
in Mechatronic Engineering

Master’s Thesis

System Design and Evaluation of Multi-Modal Magnetic
Tactile Sensor for Robotic Grasping

Supervisors Candidate
Prof. Marcello Chiaberge Kaliroi Mignone
Oliver Neumann

December 2024

Summary

In robotic manipulation and grasping tasks, visual sensing is commonly used to gather
information about external object properties, including position, shape, and orientation.
However, in unstructured environments where occlusions and low visibility may occur,
visual information alone is insufficient for providing the necessary tactile feedback. In
contrast, tactile sensors offer critical information regarding an object’s pose, texture, and
force, thereby enhancing a robotic system’s ability to grasp and manipulate objects with
greater precision. These sensors enable robots to perform tasks such as delicate grasping,
shape recognition, and texture detection.

This thesis work, developed at the Institute of Robotics and Mechatronics (RMC) of the
German Aerospace Center (DLR), addresses the pose estimation problem of both the fin-
gertips of robotic grippers, as well as the objects being grasped. It emphasizes the role of
tactile sensors in object manipulation and grasping operations, particularly in scenarios
where visual data alone may be inadequate. Among the tactile sensing technologies devel-
oped in recent years—such as capacitive, piezoresistive, and optical sensors—Hall-effect-
based tactile sensors are notable for their multi-directional sensing capabilities, relatively
low cost, and ease of fabrication.

To achieve effective pose estimation for robotic grasping applications, this work explores
the firmware design and evaluation of a magnetic-based multi-modal tactile sensor specif-
ically developed by the Institute of Robotics and Mechatronics at DLR. The proposed
tactile sensor consists of four Hall-effect sensors and a 9-degree-of-freedom (DoF) inertial
measurement unit (IMU). Together, these sensors facilitate responsive measurement of
touch-related force vectors while supporting orientation tracking through the fusion of
IMU sensor data. It is crucial to overcome magnetic interference and drift effects that can
distort readings, which are important considerations in sensor design and calibration.

For reliable real-time operation and communication within robotic systems, this work uti-
lizes the Zephyr Real-Time Operating System (RTOS). Since Zephyr’s framework lacked
built-in sensor drivers for the Hall-effect and IMU sensors, custom drivers were developed
in C based on detailed sensor datasheet specifications. This development facilitated sensor
management and signal processing within the Zephyr RTOS.

The thesis proceeds by analyzing the Hall sensor data independently of the IMU data,
conducting separate signal analyses. Calibration and sensor fusion algorithms for the
IMU sensors (accelerometer, magnetometer, and gyroscope) allow for the derivation of
quaternions or Euler angles, providing precise orientation of objects in contact with the
tactile sensor. Analyses and evaluations of both the tactile and IMU data were performed,
yielding a comprehensive overview of the overall functionalities of the tactile sensor.

2

Through this work, a novel tactile sensing approach is proposed that integrates multi-
modal force and orientation feedback. This approach enhances the feasibility of pose
estimation for robotic grasping, with potential applications in unstructured environments
where traditional vision-based systems may not be suitable.

3

Acknowledgements

This work is supported by the European Union’s Horizon Europe research and innovation
framework under grant agreement No. 101070136, project IntelliMan.

4

Contents

List of Tables 7

List of Figures 8

Acronyms 9

1 Introduction 11
1.1 Motivations . 11
1.2 Chapters organization . 12

2 State of the Art 13
2.1 Tactile Sensing in Robotics . 13
2.2 Multi-modal Tactile sensing . 13
2.3 Magnetic Tactile Sensing . 14
2.4 Pose Estimation using Tactile Sensing . 14

3 DLR Multi-Modal Magnetic Tactile Sensor 15
3.1 General Description . 15
3.2 Development Boards . 17

4 Firmware Development 19
4.1 Framework and Methodology . 19

4.1.1 Zephyr RTOS . 19
4.1.2 Methodology for Real-Time Firmware Development 26

4.2 Sensor Drivers Development . 27
4.2.1 MLX90395 Hall Sensor Driver . 27
4.2.2 ICM20948 IMU Sensor Driver . 41

5 Experimental Evaluation 47
5.1 MLX90395 Sensor Characterization . 47

5.1.1 Single Hall Sensors Behavior . 47
5.1.2 Effect of the permanent magnets on the IMU 48
5.1.3 Sensor Sensitivity . 50
5.1.4 Comparison with Xela Sensor Resolution 51

5.2 IMU Sensor Characterization . 53

5

5.2.1 IMU Calibration . 53
5.2.2 IMU Data Comparison Between Library and Firmware 56
5.2.3 Comparison with benchmark sensors 59

6 Sensor Fusion 63
6.1 Mahony Filter . 63

7 Conclusions and Future Work 67
7.1 Conclusions . 67
7.2 Future Work . 68

A I2C Communication Protocol 69

B Debugging Tools 71

Bibliography 77

6

List of Tables

4.1 Sensitivity . 34
4.2 Sensor Modes Commands . 36
5.1 Sensor Sensitivity Table . 50
5.2 Sensitivity of the sensor considering only the front left taxel 52
5.3 uSPa44 maximum measurable range and resolution 52

7

List of Figures

3.1 DLR Tactile Sensor Rendering . 16
3.2 DLR Tactile Sensor . 16
3.3 Teensy 4.0 Development Board . 17
4.1 Devicetree Build Flow . 25
4.2 Register Map Example . 29
4.3 I2C Convention . 30
4.4 Read Register Command . 31
4.5 Write Register Command . 31
4.6 Offset Register Map . 32
4.7 Sensitivity Register Map . 33
4.8 Resolution Register Map . 33
4.9 Resolution Implementation . 33
4.10 Exit Command . 35
4.11 Reset Command . 36
4.12 ICM20948 Sparkfun Breakout Board . 41
5.1 Single Hall Sensors Behavior . 48
5.2 Effect of the permanent magnets on IMU magnetometer 49
5.3 Sensor Sensitivity . 50
5.4 uSPa44 normal force (z-axis) . 51
5.5 Sensitivity of the sensor considering only the front left taxel 52
5.6 Serial Monitor Output . 55
5.7 Data Points Ellipsoid . 55
5.10 SparkFun ISM330DHCX, MMC5983MA Breakout Board 59
A.1 Master-Slave Communication . 69
A.2 Multiple Devices Communication . 70
A.3 Master-Slave Addresses . 70
B.1 MIMRX1060-EVK Target Board . 72
B.2 Debug Hardware . 73
B.3 Ozone Debugger . 73
B.4 Rigol MSO5354 Digital Oscilloscope . 74

8

Acronyms

ADC Analog to Digital Converter. 32, 33

AHRS Attitude and Heading Reference System. 53

API Application Programming Interface. 23, 24, 27, 29, 30, 43

CAN Controller Area Network. 17, 26, 71, 74

CSV Comma Separated Value. 55

DLR Deutsches Zentrum für Luft- und Raumfahrt (German Aerospace Center). 12, 15,
47, 48, 51

dof Degrees Of Freedom. 53, 59

EKF Extended Kalman Filter. 14

I2C Inter-Integrated Circuit. 8, 12, 15, 17, 23, 27, 30, 35, 37, 38, 40, 42–45, 53, 69, 70,
74

IC Integrated Circuit. 15

IDE Integrated Development Environment. 17

IMU Inertial Measurement Unit. 8, 12, 15, 26, 27, 41, 47–49, 51, 53, 59, 63, 66, 67

IoT Internet of Things. 17

JTAG Joint Test Action Group. 72

LSB Least Significant Bit. 34

LSTM Long Short-Term Memory. 14

PCB Printed Circuit Board. 15, 16, 48

RAM Random Access Memory. 17

9

RTOS Real-Time Operating System. 12, 19, 20, 26, 27, 29, 37–39, 43, 44, 59, 66, 67

SB Start Burst. 36

SM Start Single Measurement. 36

SPI Serial Peripheral Interface. 17, 23, 74

UART Universal Asynchronous Receiver-Transmitter. 39

URL Uniform Resource Locator. 20, 21

USB Universal Serial Bus. 40, 71

10

Chapter 1

Introduction

1.1 Motivations

Robotic manipulation in unstructured environments often faces challenges due to the
limitations of vision-based systems, particularly under conditions of occlusion or poor vis-
ibility. To address these limitations, tactile sensing has emerged as a critical complement,
providing information about an object’s pose, texture, and applied forces that enhance
precision in grasping and manipulation tasks.

Motivated by the need to improve pose estimation in robotic grasping, this thesis, con-
ducted at the Institute of Robotics and Mechatronics (RMC) of the German Aerospace
Center (DLR), focuses on designing and evaluating a magnetic-based multi-modal tactile
sensor. The sensor integrates Hall-effect sensors with a 9-degree-of-freedom inertial mea-
surement unit (IMU) to deliver real-time force and orientation feedback, addressing key
challenges such as magnetic interference and sensor drift through calibration and fusion
algorithms.

Unlike previous DLR approaches to pose estimation, which relied on prerequisites such
as inaccurate joint position and torque measurements, rigid assumptions about object
geometry, and initial pose information often obtained through vision, this work aims to
reduce these dependencies. The IMU-based tactile sensor can independently determine
the initial pose of a grasped object, eliminating the need for vision-based initialization.
Additionally, by placing an IMU directly on the robot’s links, the system improves the
precision of joint angle estimation, offering a more robust alternative to existing methods.

Custom drivers for these sensors were developed in C within the Zephyr Real-Time Op-
erating System (RTOS), enabling reliable real-time communication and processing. This
novel approach enhances the feasibility of tactile-based pose estimation in scenarios where
visual feedback alone is insufficient, paving the way for more adaptive and effective robotic
systems in complex environments.

11

Introduction

1.2 Chapters organization
This section provides a brief description of the content of each chapter composing the
thesis, thus providing an overview on the thesis work content.

Chapter 3 is about the DLR multi-modal tactile sensor. It includes sections about the
general description of the sensor and the boards and Inter-Integrated Circuit (I2C) com-
munication protocol.

Chapter 4 is about the firmware development. In particular, the Zephyr RTOS basics
and the debugging tools used are described. The following section is about the driver
development first of the MLX90395 Hall sensor, and then of the ICM20948 Inertial Mea-
surement Unit (IMU).

Chapter 5 is about the experimental evaluation of the sensors. First, the Hall sen-
sor characterization is described; then, the IMU sensor calibration and comparison with
benchmark sensors and libraries, is analyzed.

Chapter 6 describes the need of a sensor fusion procedure to effectively use IMU data.
Therefore, the chosen sensor fusion algorithm and its implementation is described.

Chapter 7 shows the conclusions and the possible future work.

Chapter 8 contains the appendix showing the debugging tools used in the firmware
development.

12

Chapter 2

State of the Art

This chapter reviews the current advancements and methodologies in tactile sensing, fo-
cusing on the technologies and approaches relevant to robotic manipulation and grasping.
The covered topics are tactile sensing, multi-modal tactile sensing, and magnetic-based
sensors in robotics, and the final paragraph will be about methodologies used for pose
estimation by using tactile sensing.

2.1 Tactile Sensing in Robotics
Tactile sensing plays a central role in robotic applications, enabling robots to interact with
their environment with dexterity and precision. Modern tactile sensors are designed to
capture a wide range of physical interactions, such as force, texture, and curvature, pro-
viding critical feedback for grasping and manipulation tasks. Various sensor technologies,
including piezoresistive, capacitive, optical, and multimodal sensors, have been developed,
each offering distinct advantages in sensitivity, robustness, and cost-effectiveness. How-
ever, challenges such as non-linear responses, environmental susceptibility, and integration
complexities remain a focus of ongoing research ([1], [2], [3], [4], [5]). The applications
are robust grasping, slip detection, and object recognition ([1], [2], [3], [5], [6]). In soft
robotics, tactile sensors enhance the capabilities of soft grippers, enabling slip detection,
bend sensing, and electronics-free tactile feedback [4]. In addition, tactile sensing is being
leveraged in niche sectors like agri-food robotics for tasks such as fruit firmness evaluation
and texture-based object classification, demonstrating its versatility and transformative
potential [7]. These advancements position tactile sensing as a cornerstone of modern
robotic systems, driving innovation in pose estimation for grasping and beyond.

2.2 Multi-modal Tactile sensing
Multi-modal tactile sensors have revolutionized robotic grasping by integrating diverse
sensing modalities to enhance object interaction and manipulation. These systems com-
bine sensors capable of measuring forces, detecting motion, and sensing proximity, en-
abling precise object recognition, manipulation, and grasp stability prediction ([8], [9]).

13

State of the Art

Advanced models align tactile data with other modalities, such as vision and language, to
achieve zero-shot learning and broaden application possibilities [10]. Additionally, fusion
techniques that integrate motion and environmental sensing improve spatial resolution,
force estimation, and interaction analysis [11]. While challenges like computational com-
plexity remain, these sensors enable real-time insights, adaptability, and robust control in
dynamic environments, making them indispensable for modern robotic systems.

2.3 Magnetic Tactile Sensing
Magnetic-based tactile sensors are a versatile and robust solution for robotic applica-
tions, offering high sensitivity, compactness, and environmental resilience. These sensors
combine a magnetic field source, magnetic field sensors (e.g., Hall effect sensors), and a
deformable medium to measure forces, pressures, and, in some cases, contact locations
and shapes ([12], [13]). Their ability to deliver multi-directional force measurements and
their immunity to environmental factors such as temperature and humidity make them re-
liable for dynamic applications [12]. In robotics, magnetic tactile sensors are widely used
in grasping and manipulation tasks due to their flexibility and ease of integration into
robotic grippers. Advanced designs utilizing sensor arrays and deformable media enable
precise contact location detection, enhancing pose estimation and adaptive grasping ([13],
[14]). While challenges such as susceptibility to stray magnetic fields and limited spa-
tial resolution remain, innovations like magnetic shielding and optimized sensor designs
continue to improve their performance ([13], [14]). Magnetic tactile sensors also excel
in multi-modal systems, complementing other sensing modalities with their high spatial
resolution and robust force measurement capabilities. This makes them highly effective
for tasks requiring precise pose estimation and grasping in robotic applications.

2.4 Pose Estimation using Tactile Sensing
Tactile sensors have become integral to improving pose estimation in robotic grasping
by leveraging diverse sensing modalities and computational techniques. Early methods
refined pose estimates using contact location and force data, employing optimization al-
gorithms like evolutionary strategies to minimize discrepancies between measured and
estimated contact information [15]. Temporal tactile data has also been utilized with
neural networks, such as those with Long Short-Term Memory (LSTM) layers, to enhance
orientation estimation by integrating inertial and magnetic field data [16]. Particle filter-
based approaches combine tactile and kinematic data for real-time pose tracking, while
Extended Kalman Filter (EKF) have been used to estimate pose and contact forces with
minimal or no specialized tactile sensors ([17], [18]). Bayesian methods efficiently estimate
six-degree-of-freedom poses under high uncertainty [19]. Integrating multi-modal tactile
data, including force/torque, inertial, and magnetic field sensing, has proven effective
in addressing challenges like contact localization ambiguity and dynamic object interac-
tions. By combining these modalities, modern systems achieve robust and accurate pose
estimation for complex and dynamic grasping tasks.

14

Chapter 3

DLR Multi-Modal Magnetic
Tactile Sensor

This chapter is devoted to the description of the sensor’s general characteristics. First,
the layout of the sensor and the main characteristics of the single sensors composing the
system are presented. Then, the physical working principle is briefly assessed. Lastly, the
boards used for the thesis work are briefly described.

3.1 General Description
The DLR tactile sensor is a multi-modal tactile sensor that exploits the modalities relative
to the Hall sensors (MLX90395), and the one relative to the IMU sensor (ICM20948). The
Hall sensors are needed to measure the applied force in different directions, while the IMU
is needed to obtain the orientation of the tactile sensor. These modalities together enable
the sensor to provide information on the pose of the fingertips on which the sensor is
placed and of the grasped objects.

• MLX90395 Hall sensor from Melexis is a miniature monolithic sensor Integrated
Circuit (IC) sensitive to the three orthogonal components of the magnetic flux density
applied to the IC (i.e. Bx, By, and Bz).

• ICM20948 IMU from TDK Invensense is a low-power 9-axes MotionTracking device.
The integrated sensors needed for this thesis’ purposes are a 3-axis gyroscope, 3-axis
accelerometer, 3-axis compass (AK09916).

The following chapters will present more details about the characteristics of those sensors.

The tactile sensor is made of a small Printed Circuit Board (PCB). On top of that the
four MLX90395 Hall sensors which form the taxels of the tactile sensor are soldered. On
the bottom side of the same PCB, the ICM20948 IMU is soldered, together with the spots
for the cables needed for the I2C communication. To obtain the final sensor, four perma-
nent magnets with 1 millimeter of side length, are placed at a height of approximately

15

DLR Multi-Modal Magnetic Tactile Sensor

one millimeter, on top of each Hall sensor. These magnets are then fused into a piece of
silicon through a molding process. The chosen silicon has a shore hardness of 30. This
parameter will have a consequence on the sensor’s sensitivity.

Figure 3.1 shows a 3D rendering of the tactile sensor system.

Figure 3.1: DLR Tactile Sensor Rendering

The green surface on the bottom represents the PCB, the black parallelepipeds are the
four Hall sensors, the gray cylinders are the cubic permanent magnets, and the yellow
layer is the silicon molded around the components of the sensor system.

A picture of the real sensor is shown in 3.2. On the left, the sensor is visible from the
front side (3.2a), while on the right the view is from the back (3.2b). Both the pictures
show the sensor with the silicon and the magnets on top of the Hall sensors, on the left,
and the sensor without the silicon and magnets, on the right.

(a) Tactile Sensor - Front (b) Tactile Sensor - Back

Figure 3.2: DLR Tactile Sensor

16

3.2 – Development Boards

Working principle

As external forces are applied to the elastomer, this experiences a deformation or a strain.
With the magnet embedded inside the elastomer, these strains create a change in mag-
netic field which can be measured by the Hall effect sensors.

The change in the magnetic flux density measurements is detected and, through the
calibration process, it can be reported to the value of the force that is applied on the
sensor when this is pressed.

3.2 Development Boards
The main board used during the entire work is the Teensy 4.0 development board. The
Teensy 4.0 is a compact, high-performance microcontroller board designed for applications
requiring significant processing power and low power consumption. Built around the
NXP i.MX RT1062 ARM Cortex-M7 processor, it operates at clock speeds up to 600
MHz, making it one of the fastest microcontrollers available in its class. Despite its small
size, the board includes an array of versatile input/output options, as well as multiple
communication protocols such as SPI, I2C, and CAN bus. Additionally, the Teensy 4.0
provides 1 megabyte of RAM and 2 megabytes of flash memory, supporting substantial
codebases and data storage, which is particularly advantageous for intensive applications
like signal processing, robotics, and IoT development. Its compatibility with the Arduino
IDE and support for the Teensyduino software extension also facilitates rapid prototyping
and simplifies the development of embedded systems.

Figure 3.3: Teensy 4.0 Development Board

A second board was extensively used. This is the MIMRX1060-EVK Target Board, which
is addressed in Appendix B (B), devoted to the debugging tools. In fact, this second
board was mainly used for debugging purposes.

The communication protocol used by all the sensors is the I2C. A detailed description of
the protocol is provided in Appendix A (A).

17

18

Chapter 4

Firmware Development

This chapter details the methodology and procedure for firmware development. The first
section introduces the framework used, beginning with an overview of the Zephyr RTOS,
which is the chosen RTOS for dealing with the whole tactile sensor, its structure, and
working principles, followed by a concise explanation of the methodology employed for
real-time firmware development. The second section focuses on sensor driver development,
providing a detailed description of the driver implementation for the MLX90395 Hall
sensor, followed by the development process for the ICM20948 IMU driver.

4.1 Framework and Methodology
In this section the main tools for writing the drivers for the MLX90395 and ICM20948
sensors, are described. First, the main characteristics of the Zephyr RTOS will be ad-
dressed. Then, a short overview on how is the RTOS used for meeting real-time needs in
this thesis work, is shown.

4.1.1 Zephyr RTOS
A Real-Time Operating System (RTOS) is a specialized operating system designed to
manage hardware resources and run applications with precise timing and high reliabil-
ity. The difference with general-purpose operating systems is that an RTOS prioritizes
tasks based on their urgency and ensures that critical processes are executed within strict
time constraints. Therefore, RTOS are ideal for applications where timing is crucial, such
as embedded systems, robotics, automotive systems, and medical devices. Key features
include multitasking, low latency, and deterministic behavior. The Zephyr Project1 is a
scalable real-time operating system (RTOS) supporting multiple hardware architectures,
optimized for resource-constrained devices, and built with security in mind.

1Zephyr Project Website, https://www.zephyrproject.org/

19

https://www.zephyrproject.org/

Firmware Development

The information presented in the following paragraphs about Zephyr RTOS was taken
from the Zephyr official documentation [20]. For the installation and setup, the Getting
Started Guide in [21] was followed.

Zephyr Github and Tools

The Zephyr Project GitHub [22] manages all the Zephyr-related repositories. The main
Zephyr repository (zephyr) contains Zephyr’s source code, configuration files, and build
system. The build system is based on CMake, it is application-centric, and requires
Zephyr-based applications to initiate building the Zephyr source code. The application
build controls the configuration and build process of both the application and Zephyr
itself, compiling them into a single binary.

West: Zephyr’s meta-tool The Zephyr project includes a command line tool named
west, which is inspired by Git submodules2. West’s built-in commands simplify multi-
repository management and allow developers to work with Git repositories under a com-
mon workspace directory. It’s especially useful for projects where Zephyr is used as part
of a larger codebase spread across multiple Git repositories. The west tool is developed in
its own repository, which can be found in [22]. The documentation for west can be found
in [20], in the Developing with Zephyr section.

West Manifests In Zephyr, west manifests play a crucial role in managing the complex
dependencies and repository structure often involved in embedded systems projects. West
manifests are YAML files, usually named west.yaml. Manifests have a top-level manifest
section with some subsections, as shown and described in the following.

manifest:
remotes:

- name: zephyrproject-rtos
url-base: https://github.com/zephyrproject-rtos

projects:
- name: zephyr

remote: private-repo
revision: dev-sensors
import:

name-allowlist:
- cmsis # required by the ARM port
- hal_nxp # required by the NXP port
- hal_st # required by the ST port

• remotes: contains a sequence of name and url-base which specifies the base URLs
where projects can be fetched from;

2Git Tools - Submodules, https://git-scm.com/book/en/v2/Git-Tools-Submodules

20

https://git-scm.com/book/en/v2/Git-Tools-Submodules

4.1 – Framework and Methodology

• projects: contains a sequence describing the project repositories in the west workspace.
Git remote URLs to use when cloning and fetching the projects need to be specified.
Projects also have optional keys.

– revision: refers to the Git repository branch to track;
– import: imports projects from manifest files in the given repository into the

current manifest. If used with the name-allowlist key as in the example, modules
strictly needed by the application can be selected to be cloned;

– path: path specifying where to clone the repository locally, relative to the top
directory in the west workspace.

Other subsections can be also set up if needed. More information can be found in the
documentation [20].

Kconfig: Configuration System The Zephyr kernel and subsystems can be config-
ured at build time to adapt them for specific application and platform needs. Configura-
tion is handled through Kconfig, which is the same configuration system used by the Linux
kernel. Configuration options (symbols) are defined in Kconfig files. The documentation
for Kconfig can be found in [20], in the Build and Configuration Systems section.

Zephyr Applications

Directory and Configuration Files The Zephyr application directory contains all
application-specific files, such as application-specific configuration files and source code.
The following scheme represents the directory of the application named firmware_app.

firmware_app
CMakeLists.txt
boards

mimxrt1060_evk.overlay
teensy40.overlay

prj.conf
VERSION
src

main.c

The files in the various folders will be briefly described in the following. More detailed
information can be found in the Application Development section of the Zephyr documen-
tation ([20]).

• CMakeLists.txt: This file tells the build system where to find the other application
files, and links the application directory with Zephyr’s CMake build system.

• board.overlay: The devicetree overlays specify which pieces of hardware will be used
for the specific application. They can be multiple for multiple boards used for the
same application.

21

Firmware Development

• prj.conf : This is a Kconfig fragment that specifies application-specific values for one
or more Kconfig options. These application settings are merged with other settings
to produce the final configuration.

• src: This folder contains the source code files for the specific application, typically
written in C, C++, or assembly language.

In the next chapters, examples of the content of the single application configuration files
will be shown.

Application Types The Zephyr application types are three, but for the purposes of
this thesis work two of them were mainly used.

• Zephyr workspace application
This is located within the workspace but outside the zephyr repository. An example
is shown in the following, where zephyrproject is the Zephyr workspace and app is
the Zephyr workspace application.

zephyrproject/
.west/
zephyr/
build/
modules/
zephyr-app/

app/

• Zephyr freestanding application
This is located outside of a Zephyr workspace. An example is shown in the following,
where zephyrproject is the Zephyr workspace and app is the Zephyr freestanding
application.

<home>/
zephyrproject/

.west/
zephyr/
build/
modules/

app/
CMakeLists.txt
Kconfig
prj.conf
debug.conf
src

22

4.1 – Framework and Methodology

Application Initialization In Zephyr, applications can either created by hand, or it
is possible to refer to already existing workspace applications. To initialize an already
existing application, the following commands need to be followed in sequence in the folder
where the workspace ex-workspace wants to be placed.

$ west init -m https://git.example.com/example-repo ex-workspace
$ cd ex-workspace
$ west update

The west init command creates the ex-workspace west workspace, and clones the manifest
repo, while the west update command initially clones, and later updates, the projects listed
in the manifest in the workspace.

Application Build and Flash Whenever an application is initialized, to deploy it on
the microcontroller and test any device behavior, the code must be built and flashed onto
the board. The west commands to do this are the following.

west build -b <BOARD> path/to/source/directory
west flash

Zephyr Devices

Zephyr devices are represented by a struct device, defined in zephyr/device.h. This
structure holds a series of references to resources defined by drivers or defined internally
by the device definition macros. The most important fields for the device structure are
shown below.

struct device {
const char *name;
const void *config;
const void *api;
void *data;

};

Device Driver Model

The sensor driver is needed to interact with the hardware, and this happens through a
communication protocol as I2C or SPI. The driver handles initialization, configuration,
and data acquisition. It also uses the Sensor Interface SPI to make data available to
applications. In this thesis work, instance-based API, recommended for use within device
drivers, was used. The hardware configuration is specified in the device tree. All of these
aspects will be presented in more detail in the following.
The sensor driver folder is in a different directory depending on whether the application
is a workspace or a freestanding one. For a Zephyr workspace application, the drivers
are directly added to the zephyr/drivers/sensor/vendor/sensor-name folder, while for a
Zephyr freestanding application, the directory is zephyr-app/drivers/sensor/sensor-name.

23

Firmware Development

Sensor Interface API The Sensor Interface API is a standardized interface for access-
ing and interacting with different kind of sensors. It provides a set of functions, macros,
and data structures, providing a common interface for applications. The sensor API re-
ferred to here is sensor_driver_api. The key functions to interact with the sensors are
the initialization function, where the set up of the communication protocol and sensor
settings happens, the fetch function to get a data sample from the sensor, and the get
function, which takes the actual data from a specific channel of the sensor.
In fact, sensors may in general have different channels. A single channel can represent
same physical properties (e.g. velocity if the sensor is an accelerometer) around different
axes, or a different physical property measured by the same sensor. The sensor channels
are defined in the sensor.h file located at zephyr/include/zephyr/drivers.

Instance-based API Instance-based API is a more flexible way of handling sensor
drivers in Zephyr. It is especially used when multiple sensors of the same kind need to
be implemented, each of which with different configurations and behaviors. To use this
API, the DT_DRV_COMPAT macro needs to be defined. Then, after the API functions, an
instantiation macro for each instance needs to be defined.

Device Tree A devicetree3 is a hierarchical data structure used to define and configure
hardware devices. It provides a hardware-agnostic configuration system where the sensor
properties can be specified separately from the application code. The sensor driver can
then use the properties defined in the device tree at runtime. Multiple instances of the
same device can be defined in the device tree, each with its own properties.

Being the device tree a tree data structure, it has a hierarchy of nodes. Each node in
the device tree is named according to the following convention: node-name@address. The
address part is however only added if the node has the reg property defined. An example
of a device tree node is shown below.

/ {
device {

compatible = "vendor,device";
num-foos = <3>;

};
};

• /: the root node does not have a name and it is identified by a forward slash;

• device: node with two properties.
The compatible property defines the name of the hardware device the node repre-
sents. The recommended format is "vendor,device". This property is used to find
the bindings for the node.

3Devicetree Website, https://www.devicetree.org/

24

https://www.devicetree.org/

4.1 – Framework and Methodology

When developing a sensor driver, the device tree files to be configured are the device tree
sources (.dts files) and the device tree overlays (.overlay files). These two, linked with the
device tree bindings which will be explained in the next paragraph, compose the complete
device tree header file (devicetree.h). The following scheme 4.1 shows this concept.

Figure 4.1: Devicetree Build Flow

Devicetree Bindings Device tree bindings are .yaml configuration files that define how
the driver interacts with the device tree. During the configuration phase, the build system
tries to match each node in the device tree to a binding file. This matching happens by
checking that the compatible property has the same name for both the device tree node and
the binding. The directory where the bindings are usually placed is zephyr/dts/bindings,
and the files related to single sensors are named vendor,device.yaml. An example of
binding referred to the device tree node in the previous paragraph is shown in the following.

compatible: "vendor,device"

properties:
num-foos:

type: int
required: true

Information specific to the drivers for the MLX90395 and the ICM20948 sensors will be
given in 4.2.

Zephyr Settings for Debugging

West Command for Debugging To compile a zephyr project for the MIMXRT1060_EVK
target board described in B, the following command needs to be used.

west build -b mimxrt1060_evk -- -DCMAKE_BUILD_TYPE=Debug

• -- is used to pass additional options to the build system;

• -DCMAKE_BUILD_TYPE=Debug option sets the build type to Debug, enabling debugging
features such as specific debugging symbols and optimizations.

25

Firmware Development

debug.conf File For debugging purposes, a specific Kconfig fragment can be set up.
The file name is debug.conf and, together with the settings provided by the prj.conf file,
produces the final configuration. The settings specified for the debugging of the application
related to the tactile sensor firmware, are shown in the following.

General
CONFIG_DEBUG=y # build kernel with debugging enabled
CONFIG_NO_OPTIMIZATIONS=y # need for bigger stack size

Compiler
CONFIG_DEBUG_OPTIMIZATIONS=y

Segger
CONFIG_THREAD_NAME=y
CONFIG_THREAD_ANALYZER=y
CONFIG_SCHED_CPU_MASK=y
CONFIG_SEGGER_SYSTEMVIEW=y # enable Segger SystemView
CONFIG_USE_SEGGER_RTT=y # enable Segger J-Link RTT libraries
CONFIG_TRACING=y # enable system tracing: needs SystemView

4.1.2 Methodology for Real-Time Firmware Development
The methodology for real-time firmware development in this work focuses on leveraging
the Zephyr RTOS to design a modular and responsive system capable of meeting strict
timing and performance requirements. The firmware incorporates two key threads: one
dedicated to communication with a CANopen network and the other to sensor fusion.
The CANopen thread handles the protocol-specific demands of a robotic application,
ensuring real-time data exchange and synchronization over the CAN bus with precise
timing to avoid delays and meet network deadlines. To meet these requirements, the
CANopen thread is assigned a higher priority, ensuring it receives processor time before
less critical tasks, such as sensor fusion. The sensor fusion thread processes data from
the tactile sensor, integrating information from the Hall sensor and the IMU to derive
meaningful insights. This separation of concerns allows each thread to operate at its
appropriate frequency, prioritized according to its real-time constraints, and synchronized
using Zephyr’s scheduling and inter-thread communication primitives. This design ensures
modularity, scalability, and fault isolation while meeting the performance demands of the
robotic application.

26

4.2 – Sensor Drivers Development

4.2 Sensor Drivers Development
This section is devoted to the sensor drivers development. First, the MLX90395 sensor
driver writing in Zephyr RTOS environment will be exploited in detail, focusing both
on the driver and application configuration files and settings, and on the content of the
driver source code. To this aim, the sensor characteristic will be described and discussed.
Afterwards, the same content for the ICM20948 IMU sensor will be described, less in
detail since most of the functions working principle is similar to the first sensor.

4.2.1 MLX90395 Hall Sensor Driver
The characteristics of Zephyr Device Drivers were already introduced in 4.1.1. This sec-
tion, however, is specific to the MLX90395 sensor. The first part of the discussion will
be about the configuration and source code files specific to the sensor driver, while the
second part describes the configuration files for an application that uses the sensor driver.
This latter part is kept general, to be adapted to any application using the sensor. The
information for writing the driver was taken from the sensor datasheet, [23]. In this work,
the high-field version of the Hall sensor is used.

The hardware used for the analysis and tests on the MLX90395 Hall sensor comprises the
tactile sensor itself, shown in 3.2, and of the Teensy 4.0 board shown in 3.3.

Driver CMakeLists.txt

The CMakeLists.txt file contains the information to compile the MLX90395 sensor driver
into a Zephyr library, which makes the driver source files available to all the other files
of the project that want to use the functions and API defined in the mlx90395.c file.
Therefore, after the compilation procedure, whatever application can refer to the sensor
driver. The translation of this concept is shown in the following snippet, which is the
content of the CMakeLists.txt file for the Hall sensor driver.

zephyr_library()
zephyr_library_sources(mlx90395.c)

Driver Kconfig

The Kconfig inside a sensor driver folder is used to define configuration options for that
driver. In particular, it ensures that the driver is only available when the sensor is defined
in the correct way in the device tree (though the depends on statement), and if this is
verified, it automatically enables the I2C driver (through the select ... if statement). The
menuconfig option in the Kconfig enables the sensor, whenever CONFIG_MLX90395 is set to
yes (y) in the prj.conf file. The Kconfig file for the MLX90395 sensor is shown below.

menuconfig MLX90395
bool "MLX90395 Three Axis Magnetometer"
default y
depends on DT_HAS_MELEXIS_MLX90395_ENABLED

27

Firmware Development

select I2C if $(dt_compat_on_bus,$(DT_COMPAT_MELEXIS_MLX90395),i2c)
help

Enable support for the MLX90395 Three Axis Magnetometer.

Devicetree Binding

The devicetree binding for the MLX90395 Hall sensor is the melexis,mlx90395.yaml file.
Reference to this binding is made in 4.2.1, where the device tree specifications for the
application using the sensor are defined. The compatible property is the same as the one
in the .overlay files. The content of the devicetree binding is shown below. The include
property makes the bindings for the other sensor properties or configurations available.

description: |
Melexis MLX90395 3-axis magnetometer sensor accessed through I2C bus

compatible: "melexis,mlx90395"
include: [sensor-device.yaml, i2c-device.yaml]

mlx90395.h

The header file (.h) of the MLX90395 sensor driver contains definitions and declarations
necessary for the driver to interact with other parts of the system, including the application
and kernel. The mlx90395.h file contains the information described in the following. After
listing each piece of information, an example is also provided.

• Include Guards: prevent multiple inclusions of the header file during compilation;

#ifndef __SENSOR_MLX90395_H_
#define __SENSOR_MLX90395_H_

• Includes: import necessary standard libraries and Zephyr modules;

#include <zephyr/drivers/i2c.h>

• Enums and Macros Definitions: define register addresses, bit masks, or other fixed
values specific to the sensor;

enum {GAIN_SEL_REG = 0x0,
GAIN_SEL_MASK = 0x00f0,
GAIN_SEL_SHIFT = 4};

#define MLX90395_I2C_ADDR 0x30

The example considered here is referred to the Gain properties. The information
for the registers, masks and shift values are taken from the sensor datasheet [23], in
particular from the Register Map table in Section 18.3. A snippet of the Register

28

4.2 – Sensor Drivers Development

Map is visible in 4.2. The GainSel value lies from Bit 4 to Bit 7 of register 0x00
(GAIN_SEL_REG). Therefore, GAIN_SEL_MASK is 0x00f0 and GAIN_SEL_SHIFT is 4.

Figure 4.2: Register Map Example

• Driver-Specific Data Structures: structs to store runtime and configuration data.

struct mlx90395_config {
struct i2c_dt_spec i2c;
uint16_t bandwidth;
uint16_t frequency;
uint16_t prd_set;
uint8_t zyxt;
uint8_t bdr;
enum mlx90395_mode mode;

};

struct mlx90395_data {
uint16_t magn_x;
uint16_t magn_y;
uint16_t magn_z;
struct k_sem sem;

};

mlx90395.c

The mlx90395.c file implements the logic that allows the Zephyr RTOS to communicate
with the sensor using the driver’s API. The .c file starts by including the necessary header
files, which are the ones related to Zephyr RTOS, the communication protocol, and the
mlx90395.h itself. Then, the helper functions to read from and write to the sensor’s
registers and a set of other functions to interact with the sensor and to modify its char-
acteristics, are defined. Moreover, the sensor driver API structure (already described in
4.1.1) and the macros to associate the driver with the hardware in the device tree, are
added. The structure for the sensor driver source code is shown below, with links referring
to each function explained in the following paragraphs.

29

Firmware Development

mlx90395.c Structure
Define DT_DRV_COMPAT melexis_mlx90395
Include necessary header files
Read Register
Write Register
Set Offset
Set Gain
Set Sensitivity
Set Resolution
Set Burst Rate
Digital Filtering
Convert x, y, z
Fetch Data
Channel Get
Exit
Reset
Start Burst
Start Single Measurement
Set Mode
Init
Define MLX90395_DEFINE(inst)

All the functions in the mlx90395.c file will be described one by one in the following. The
information for the functions writing were extracted from the MLX90395 datasheet, [23].
Many functions have as argument const struct device *dev, which is a pointer to the
device structure defined in the device.h header file, already introduced in 4.1.1. Some
functions also use API related to I2C protocol, which are defined in the i2c.h header file.

Read and Write Register For memory read and write commands, register access is
provided directly through the I2C protocol. To read the pictures in the following, 4.3
shows the conventions for I2C.

Figure 4.3: I2C Convention

30

4.2 – Sensor Drivers Development

Important in read and write register commands is that the register address to be read and
written must be shifted left by one bit.

Read Register The command implementation for the Read Register function is shown
below in 4.4, followed by its pseudo-code.

Figure 4.4: Read Register Command

Algorithm Read Register Function
Require: *device, register

procedure ReadRegister
Extract config struct
Initialize a two-byte command cmd
Shift left the register by 1 and assign it to cmd[0]
return Output of i2c_write_read_dt function

end procedure

Write Register The command implementation for the Write Register function is shown
in 4.5, followed by its pseudo-code.

Figure 4.5: Write Register Command

Algorithm Write Register Function
Require: *device, register, data

procedure WriteRegister
Extract config struct
Initialize a three-byte command cmd
Shift left the register by 1 and assign it to cmd[0]
Assign 16-bit data to cmd[1] and cmd[2]
return Output of i2c_write_read_dt function

end procedure

Offset This function is needed to change the offset on the output of the MLX90395.
This is done by using OffsetX, OffsetY, and OffsetZ parameters, which are each unsigned
16-bit variables. Figure 4.6 shows the register map for the Offset variables.

31

Firmware Development

Figure 4.6: Offset Register Map

The default offset value is 0x8000, which in binary is 1000 0000 0000 0000, and this
corresponds to no offset adjustment. Moreover, the offset is adjusted on the 19-bit Analog
to Digital Converter (ADC) value, so before the sensitivity adjustments and the resolution
selection. Equation 4.1 explains the relationship between the raw measurement MAG, and
the chosen offset value.

MAG = MAG − 4 ∗ OFFSETX|Y |Z (4.1)
The pseudo-code for the Set Offset function is shown in the algorithm below.

Algorithm Set Offset Function
Require: *device, command for x, y, z

procedure SetOffset
Write command for x in X_OFFSET_REG
Write command for y in Y_OFFSET_REG
Write command for z in Z_OFFSET_REG

end procedure

Gain This functions is needed to change the sensitivity of the MLX90395 sensor. This
one can be adjusted with several parameters, one of which is GainSel. The GainSel
parameter changes the gain stages before the input of the ADC. For small sensitivity
adjustments, other parameters (SensXY, SensZ, ResX, ResY, ResZ, explained in the fol-
lowing paragraphs) are recommended. GainSel is recommended to be kept constant, and
the default value for the high-field version of the sensor is 8, being the maximum possible
value 15. The Register Map snippet for the GainSel parameter was already introduced in
4.2.1.

Algorithm Set Gain Function
Require: *device, command for x, y, z

procedure SetGain
Initialize two uint16_t variables: old_val, new_val
Read GAIN_SEL_REG and store the value in old_val
Update old_val assigning the new value to new_val
Write new_val to GAIN_SEL_REG

end procedure

32

4.2 – Sensor Drivers Development

Sensitivity Unlike GainSel, SensXY and SensZ parameters adjust the sensitivity after
the ADC, so fully on the digital side. These parameters are always positive. Figure 4.7
shows the register map for the SensXY and SensZ parameters. Since both SensXY and
SensZ occupy 8 bits, their maximum value is 255.

Figure 4.7: Sensitivity Register Map

Equation 4.2 explains the relationship between the raw measurement MAG, and the chosen
SensXY and SensZ parameter value.

MAG = MAG ×
5
1 + SensXY or SensZ

29

6
(4.2)

The pseudo-code for the Set Sensitivity function is similar to the Set Gain one. However,
the content of two different registers, SENS_XY and SENS_Z, are read and changed.

Resolution This function is needed to set the ResX, ResY, ResZ parameters, with
which 16 of the 19-bit ADC value can be selected. Figure 4.2 shows the register map for
ResX, ResY, and ResZ parameters. Since they occupy only two bits each, their value can
go from 0 to 3.

Figure 4.8: Resolution Register Map

The implementation for these parameters is shown in 4.9. For resolution 2 and 3 the
saturation of the analog chain becomes visible and the used span is 17.2 bits of the
available 19.

Figure 4.9: Resolution Implementation

The pseudo-code for the Set Resolution function is similar to the Set Gain one. However,
the res_x, res_y, and res_z parameters are first chained into a single variable, res_xyz,
and then the content of the RES_XYZ_REG register is read and changed.

33

Firmware Development

Digital Filtering The purpose of this function is to set up one of the existing mea-
surement filters for the MLX90395 sensor. It is present on the magnetic measurements.
This digital filter averages over 2DigF ilt measurements, where DigFilt is the parameter to
set. The Register Map information for the Digital Filtering is visible in 4.8. Since the
DigFilt parameter occupies 3 bits, its maximum possible value is 7. The pseudo-code for
the Digital Filtering function is the same as the Set Gain one in 4.2.1, but the register
to be read and written on is DIG_FLT_REG, and the mask and shift values are respectively
DIG_FLT_MASK and DIG_FLT_SHIFT.

Convert The purpose of the converting functions is converting the sensor’s raw digital
output into meaningful physical values, which in the case of the Hall sensors is the mag-
netic field strength, measured in Tesla or Gauss (10−4 T). The raw output has a width of
16 bits and it’s a signed integer, therefore the values are in the range -32768 to 32767.

The conversion consists of a multiplication (or division) by a scaling factor representing the
sensor’s sensitivity, whose value is specified in the sensor datasheet. The sensitivity refers
to the relationship between the digital output (measured in LSB) and the magnetic field
strength (measured in Tesla or Gauss). It quantifies how many digital units the sensor’s
output changes per unit of magnetic field or, inversely, how much magnetic field change
is represented by a single step (LSB) in the sensor’s digital output. The sensitivity values
for the three axes x, y, and z, can be found in the sensor datasheet and are shown in 4.1.
The quantities are described in both µT/LSB16 and LSB16/mT units of measurements.

Parameter Symbol Typical Unit
Sensitivity X- or Y- axis SXX50 7.14 µT/LSB16

SY Y 50 140 LSB16/mT
Sensitivity Z- axis SZZ50 7.14 µT/LSB16

140 LSB16/mT

Table 4.1: Sensitivity values from Datasheet

Given this information, the formula for the conversion, which is the same for all x, y, and
z coordinates, is shown below.

MagneticF ield [mT] = RawData [LSB]
140 [LSB/mT] (4.3)

Fetch This function fetches new data sample. The pseudo-code for the Fetch Sample
function is shown in the algorithm below. A semaphore is used to ensure thread-safe
access to the shared resource which is the device data structure. To take the semaphore,
the k_sem_take(&data->sem, K_FOREVER) function was used, and to release it, the function
is k_sem_give(&data->sem).

34

4.2 – Sensor Drivers Development

Algorithm Fetch Sample Function
Require: *device, sensor channel

procedure FetchSample
Extract config struct
Extract data struct
Initialize a nine-byte buffer cmd
Assign the content of MLX90395_CMD_READ_MEASUREMENT to cmd[0]
Acquire the semaphore
Throw an error if the I2C read fails
Release the semaphore
Extract the magnetometer’s x, y, and z axis measurements from the buffer

end procedure

Channel Get As already said in 4.1.1, the Channel Get function takes the actual data
from a specific channel of the sensor, after the data has been fetched. The pseudo-code
for the Fetch Sample function is shown in the algorithm below.

Algorithm Channel Get Function
Require: *device, sensor channel

procedure ChannelGet
Extract data struct
Acquire the semaphore
Switch based on the sensor channel
Convert data with the converting function
Release the semaphore

end procedure

Exit The command implementation shown in 4.10 has the same structure of the one for
the Exit Function, but shows an example for a start of burst mode with X and Y being
measured. In the case of the Exit function, the command is 1000 0000, which corresponds
to 128.

Figure 4.10: Exit Command

The pseudo-code for the Exit function is shown in the algorithm below. The parameter
referred to as MLX90395_CMD_EXIT is the Exit command, 128.

Reset The command implementation for the Reset Function is shown in 4.11. The
command value is now 0xf0, which in binary is 1111 0000, and in decimal 240.

35

Firmware Development

Figure 4.11: Reset Command

Sensor Modes The MLX90395 Hall sensor has three different operating modes: single
measurement, burst, and wake-up on change. In this sensor driver implementation only
the first two were considered, and the functions to set those modes are described in the
next two paragraphs.

• Single Measurement: in this mode, a single measurement is requested by the master
through either the Start Single Measurement (SM) command, or via a rising edge
on the trigger pin;

• Burst: in this mode, the sensor will continuously make measurements. The mode
is started by the Start Burst (SB) and ended by the Exit commands. The rate of
measurements is programmable throught the Set Burst Rate function.

The structure of the command implementation for the Start Burst and Start Single Mea-
surement functions is the one shown in 4.10. The commands for the functions referred
to sensor modes are shown in 4.2. The zyxt is used to select which of the x, y, z axes or
temperature (t) components need to be measured, by setting the corresponding bit to 1.

Table 4.2: Sensor Modes Commands

Start Burst This function enables the activation of the Burst Mode, as explained in
the general Sensor Modes paragraph in 4.2.1. The pseudo-code is shown in the following
algorithm. The complete command structure for the Burst Mode is shown in the first row
of Table 4.2, which in code translates to MLX90395_CMD_START_BURST | zxyt_flags.

Algorithm Start Burst Function
Require: *device, zyxt_flags

procedure StartBurst
Extract config struct
Initialize a two-byte command cmd
Assign 0x80 to cmd[0]
Assign MLX90395_CMD_START_BURST | zxyt_flags to cmd[1]
return Output of i2c_write_read_dt function

end procedure

36

4.2 – Sensor Drivers Development

Start Single Measurement This function enables the activation of the Single Mea-
surement Mode, as explained in the general Sensor Modes paragraph in 4.2.1. The pseudo-
code is shown in the following algorithm. The complete command structure for the Single
Measurement Mode is shown in the last row of figure 4.2, which in code translates to
MLX90395_CMD_START_MEASUREMENT | zxyt_flags.

Algorithm Start Single Measurement Function
Require: *device, zyxt_flags

procedure StartSingleMeasurement
Extract config struct
Initialize a two-byte command cmd
Assign 0x80 to cmd[0]
Assign MLX90395_CMD_START_MEASUREMENT | zxyt_flags to cmd[1]
return Output of i2c_write_read_dt function

end procedure

Set Mode This function is needed to set the operating mode of the sensor. The pseudo-
code is shown in the algorithm below.

Algorithm Set Mode Function
Require: *device, register, zyxt_flags, mode, BaudRate

procedure SetMode
Switch(mode)
Case MLX90395_MODE_IDLE: Exit
Case MLX90395_MODE_BURST: Start Burst
Case MLX90395_MODE_SINGLE_MEASUREMENT: Start Single Measurement
EndSwitch

end procedure

Burst Rate The Set Burst Rate function is needed to set the rate of measurements for
the sensor in burst rate mode. The pseudo-code for the Set Burst Rate function is the same
as the one for the Set Gain function in 4.2.1. However, the register to be read and written
on is BURST_SEL_REG, and the mask and shift values are respectively BURST_SEL_MASK and
BURST_SEL_SHIFT.

Init The Init function initializes the MLX90395 sensor. In particular, it verifies that the
sensor is ready for the communication through I2C protocol, it configures the right settings
for the sensor, and prepares it to be used in whatever application inside the Zephyr RTOS
environment. The pseudo-code for the initialization function is shown in the algorithm
below.

37

Firmware Development

Algorithm Initialization Function
Require: *device

procedure Init
Extract config struct
Extract data struct
Verify if the I2C bus is ready; throw an error otherwise
Exit the sensor
Put the thread to sleep for 50 ms
Reset the sensor
Put the thread to sleep for 50 ms
Set Offset
Set Gain
Set Sensitivity
Set Resolution
Digital Filtering
Set Burst Rate

end procedure

Application Configuration Files

To be able to use the sensor data for any application or project purposes, the application
configuration files also need to be set up. In particular, the files introduced in 4.1.1,
when describing the generic Zephyr application directory and configuration files, will be
described in detail. Therefore, the CMakeLists.txt, Kconfig, <board>.overlay, prj.conf
files, will be discussed in the following paragraphs.

CMakeLists.txt The CMakeLists.txt file contains the settings for the configuration of
the application build system. The file content specifies the minimum version required for
CMake to build the project (cmake_minimum_required(...)), the project name and the
programming language used (project(...)), and the source files needed for the application
(target_sources(...)). The content is shown below.

cmake_minimum_required(VERSION 3.13.1)
find_package(Zephyr REQUIRED HINTS $ENV{ZEPHYR_BASE})
project(mlx9039x LANGUAGES C)
target_sources(app PRIVATE src/main.c)

Kconfig The Kconfig file for the application only contains the line below. It refers to
a file provided by the Zephyr RTOS which contains the essential configuration settings
that can apply to most Zephyr projects. The Kconfig.zephyr file represents the standard
settings for a Zephyr application.

source "Kconfig.zephyr"

38

4.2 – Sensor Drivers Development

.overlay Files Each .overlay file refers to a single board to be used in the application.
The files for both the boards used for the MLX90395 application are described in the
following.

• teensy40.overlay

/ {
chosen {

zephyr,console = &cdc_acm_uart0;
};

};

&zephyr_udc0 {
cdc_acm_uart0: cdc_acm_uart0 {

compatible = "zephyr,cdc-acm-uart";
};

};

&lpi2c1 {
status = "okay";
clock-frequency = <400000>;

mlx90395c: mlx90395@c {
compatible = "melexis,mlx90395";
reg = <0x0c>;

};
};

The chosen node under the root node does not refer to any hardware device, unlike general
devicetree nodes. In fact, its properties are used to configure system-wide values, in
this case the zephyr,console property sets Universal Asynchronous Receiver-Transmitter
(UART) device used by the console driver. More details about the cdc_acm_uart0 node
can be found in the documentation4.

• mimxrt1060_evk.overlay

&lpi2c1 {
status = "okay";
clock-frequency = <100000>;

mlx90395: mlx90395@0c {
compatible = "melexis,mlx90395";
reg = <0x0c>;

};
};

4Zephyr RTOS Documentation - USB Device Support, https://docs.zephyrproject.org/latest/
connectivity/usb/device/usb_device.html

39

https://docs.zephyrproject.org/latest/connectivity/usb/device/usb_device.html
https://docs.zephyrproject.org/latest/connectivity/usb/device/usb_device.html

Firmware Development

The &lpi2c1 {...} region is the same for both the considered boards. This refers to an
I2C bus instance in the Zephyr device tree. The status property indicates the operational
status of the device, and "okay" indicates that the node is enabled. The clock-frequency
property specifies the clock frequency for the I2C bus, which in this case is 400 kHz,
corresponding to the fast mode. Lastly, the reg property specifies the I2C register of the
device.

prj.conf The settings for the prj.conf configuration file are shown below. Other than
the general assignments, some of the settings are specifically related to the board used,
in this case the Teensy 4.0. These refer to the configuration of the USB device and serial
output. Moreover, settings related to the communication protocol (CONFIG_I2C=y) and
the specific sensor used (CONFIG_MLX90395=y) are specified.

GENERAL
CONFIG_LOG=y
CONFIG_GPIO=y
CONFIG_STDOUT_CONSOLE=y

START - Only for Teensy 4.0
USB (incl. console output)
CONFIG_USB_DEVICE_STACK=y
CONFIG_USB_DEVICE_VID=0x16C0
CONFIG_USB_DEVICE_PID=0x0483
CONFIG_USB_DEVICE_INITIALIZE_AT_BOOT=n
CONFIG_USB_DEVICE_PRODUCT="RTOS Teensy"
CONFIG_USB_DRIVER_LOG_LEVEL_ERR=y

SERIAL OUTPUT
CONFIG_SERIAL=y
CONFIG_CONSOLE=y
CONFIG_UART_CONSOLE=y
CONFIG_UART_LINE_CTRL=y
CONFIG_CBPRINTF_FP_SUPPORT=y
END - Only for Teensy 4.0

I2C
CONFIG_I2C=y
CONFIG_SENSOR=y
CONFIG_MLX90395=y

PRINTF SUPPORT
CONFIG_CBPRINTF_FP_SUPPORT=y

40

4.2 – Sensor Drivers Development

4.2.2 ICM20948 IMU Sensor Driver
The content of this section is the same as the one for the MLX90395 driver, detailed in
4.2.1. Therefore, the structure of the section is the same. The first part will be about
the configuration and source code files specific to the sensor driver, while the second part
describes the configuration files for an application that uses the sensor driver. The infor-
mation for writing the driver was taken from the sensor datasheet, [24].

The hardware used for the analysis and tests on the ICM20948 IMU sensor is composed
of the SparkFun Qwiic ICM20948 Breakout Board, shown in 4.12a, and of the Teensy 4.0
board shown in 3.3.

(a) Breakout Board (b) Reference System

Figure 4.12: ICM20948 Sparkfun Breakout Board

Driver CMakeLists.txt The CMakeLists.txt file of the sensor driver has already been
described in 4.2.1. The content, shown below, is the same as the one for the MLX90395
sensor, but the source code file referred to is icm20948.c.

zephyr_library()
zephyr_library_sources(icm20948.c)

Driver Kconfig The Kconfig file description was also already provided in 4.2.1.

menuconfig ICM20948
bool "Custom ICM20948 sensor driver"
default y
depends on DT_HAS_INVENSENSE_ICM20948_ENABLED
select I2C if $(dt_compat_on_bus,$(DT_COMPAT_INVENSENSE_ICM20948),i2c)
help

Enable ICM20948 sensor

Devicetree Binding The devicetree binding for the ICM20948 IMU sensor is the
tdk,icm20948.yaml file. Reference to this binding is made in 4.2.1, where the device tree
specifications for the application using the sensor are defined. The compatible property
is the same as the one in the .overlay files desribed in 4.2.2. The content of the devicetree

41

Firmware Development

binding is shown below. The include property makes the bindings for the other sensor
properties or configurations available.

description: |
TDK ICM20948 9-axis IMU (Inertial Measurement Unit) sensor
accessed through I2C bus

compatible: "tdk,icm20948"
include: ["i2c-device.yaml"]

Header Files

The header files (.h) of the ICM20948 sensor driver contains definitions and declarations
necessary for the driver to interact with other parts of the system, including the appli-
cation and kernel. The header files for this driver are two, the icm20948_reg.h and the
icm20948.h, whose content will be described in the following.

icm20948_reg.h The ICM20948 sensor has several user banks (0, 1, 2, and 3), each
with specific registers that can be configured for different sensor operations. This header
file defines the sensors default addresses, the content of the registers addresses contained
in Bank 0, Bank 1, Bank 2, and Bank 3, and the registers for the AK09916 magnetometer.

icm20948.h The second header file contains, in order, the include guards, the inclusion
of the I2C communication protocol header file, and the definition of driver-specific data
structures related to runtime data and configuration.

#ifndef DRIVERS_SENSOR_ICM20948_H_
#define DRIVERS_SENSOR_ICM20948_H_

#include <zephyr/drivers/i2c.h>

struct icm20948_data {
int16_t accel_x;
int16_t accel_y;
int16_t accel_z;

int16_t gyro_x;
int16_t gyro_y;
int16_t gyro_z;

int16_t magn_x;
int16_t magn_y;
int16_t magn_z;

int16_t temp;
};

42

4.2 – Sensor Drivers Development

struct icm20948_config {
struct i2c_dt_spec i2c;

};

#endif

icm20948.c

The icm20948.c file implements the logic that allows the Zephyr RTOS to communicate
with the sensor using the driver’s API. The .c file starts by including the necessary header
files, which are the ones related to Zephyr RTOS, the communication protocol, and the
ICM20948 header files themselves. Then, a set of functions to interact with the sensor
and to modify its characteristics, are defined. Moreover, the sensor driver API structure
(already described in 4.1.1) and the macros to associate the driver with the hardware in
the device tree, are added. The structure for the sensor driver source code is shown below,
with links referring to each function explained in the following paragraphs.

icm20948.c Structure
Define DT_DRV_COMPAT invensense_icm20948
Include necessary header files
Set Correct Bank
ICM20948 Read Register
ICM20948 Write Register
AK09916 Write Register
AK09916 Read Register
Convert Accelerometer
Convert Gyroscope
Convert Magnetometer
Fetch Data
Channel Get
Init
Define ICM20948_DEFINE(inst)

Some functions will be described in the following. The information for the functions writ-
ing were extracted from the ICM20948 datasheet, [24]. Many functions have as argument
const struct device *dev, which is a pointer to the device structure defined in the de-
vice.h header file, already introduced in 4.1.1. Some functions also use API related to I2C
protocol, which are defined in the i2c.h header file.

Set Correct Bank The Set Correct Bank Function selects the wanted user bank. The
pseudo-code is shown in the algorithm below.

43

Firmware Development

Algorithm Set Correct Bank Function
Require: *device, bank

procedure SetCorrectBank
Extract config struct
Save the previously set bank in current_bank
Return if the wanted user bank is the same as previously set
return Output of i2c_reg_write_byte_dt function
set current_bank to bank

end procedure

Init The Init function initializes the ICM20948 sensor. In particular, it verifies that
the sensor is ready for the communication through I2C protocol, it configures the wanted
settings for each user bank of the sensor, and prepares it to be used in whatever application
inside the Zephyr RTOS environment. The pseudo-code for the initialization function is
shown in the algorithm below.

Algorithm Init Function
Require: *device

procedure Init
Extract config struct
Verify if the I2C bus is ready; throw an error otherwise
Reset unit: write 0x81 in ICM20948_REG_PWR_MGMT_1
Wait for Reset to complete
Exit sleep mode: write 0x01 in ICM20948_REG_PWR_MGMT_1
Check which device is being accessed: if the address is not

ICM20948_DEFAULT_ADDRESS, throw an error.
Set Gyroscope settings
Set accelerometer settings
Set user bank 3 settings
return 0

end procedure

44

4.2 – Sensor Drivers Development

Application Configuration Files

The structure of the application configuration files was already introduced in 4.1.1, and
the detailed structure for a generic application using the MLX90395 sensor was already
described in 4.2.1.

The structure of many of the configuration files is the same also for the ICM20948 sen-
sor. In particular, the Kconfig file is the standard one, the CMakeLists.txt file is the
same except for the project name, which will change depending on the application, and
the prj.conf file is the same, except for the CONFIG_MLX90395=y, which is substituted by
CONFIG_ICM20948=y.

The only file that changes slightly is the <board>.overlay for both the Teensy 4.0 and the
mimxrt1060_evk boards. In fact, the &lpi2c1 {...} region does not contain the mlx90395
node, but the icm20948 one, therefore the property specifying the register is different since
the I2C address for the ICM20948 sensor is 0x69. The content of the new region is shown
below.

&lpi2c1 {
status = "okay";
clock-frequency = <400000>;

icm20948: icm20948@69 {
compatible = "invensense,icm20948";
reg = <0x69>;

};
};

45

46

Chapter 5

Experimental Evaluation

This chapter is devoted to the description of the experimental evaluation done on both
MLX90395 and ICM20948 sensors. In particular, the first section is about the tests and
results for the Hall sensor characterization. The second section will instead describe the
ICM20948 IMU calibration and comparison with benchmark sensors and libraries.

5.1 MLX90395 Sensor Characterization
To characterize the behavior of the sensor, some tests have been performed. The first
test is about the behavior of the single Hall sensors. Then, the effect of the permanent
magnets on the IMU magnetometer is considered. The third test was done to measure the
sensor sensitivity, lastly a comparison with the Xela tactile sensor in terms of resolution
was made. The next sections will describe the tests and their results in detail.

5.1.1 Single Hall Sensors Behavior
The first test was done to show the behavior of the single taxels of the DLR tactile sensor,
each one composed by a MLX90395 Hall sensor. The single taxels were pressed one by
one for a duration of around two seconds, data was collected for 20 seconds, and a plot
was produced. The result of the experiment is shown in Figure 5.1.

The x axis in the plot show the time, measured in seconds, while the y axis measures the
magnetic field magnitude, measured in milliTesla. The first and second subplot show the
behavior of the magnetic data along the x and y axes of the Hall sensor. However, since
the direction of biggest solicitation for the Hall sensors is the z, the third subplot is the
most important. It shows the value in milli-Tesla of the magnetic flux density along the
z coordinate, which is always the most involved in these tactile sensing modalities.

The most immediate verification is about the magnitude of the magnetic field. The raw
magnetic data is a 16-bit signed integer, therefore its range goes from -32768 to 32767, as
said in 4.2.1. According to the converting function, when one of the permanent magnets

47

Experimental Evaluation

Figure 5.1: Single Hall Sensors Behavior

is pressed on one Hall sensor with a force leading to the maximum value in the range, the
corresponding value for the real magnetic field magnitude is derived in 5.1 and corresponds
to 234,05 mT.

MaxMagneticF ield [mT] = 32767 [LSB] / 140 [LSB/mT] = 234,05 mT (5.1)

The average maximum magnetic field value in the third subplot is around 100 mT, and the
maximum possible magnetic field magnitude is 234,05 mT. Therefore, the values obtained
after the converting function in the sensor driver are comparable to the expected ones.

5.1.2 Effect of the permanent magnets on the IMU
The design of the DLR tactile sensor makes the IMU very close to the side of the PCB
with the Hall sensors and permanent magnets. Since the IMU also has an embedded
magnetometer, needed to obtain the best results for the sensor fusion procedure, the
permanent magnets should not influence the magnetic measurements. Therefore, a test

48

5.1 – MLX90395 Sensor Characterization

was done to verify whether the permanent magnets embedded in the silicon on top of the
Hall sensor taxels had an effect on the IMU magnetometer. The tactile sensor was pressed
in a similar way with respect to the previous experiment, but this time data relative to
the IMU magnetometer was recorded and plot. Figure 5.2 shows the results of the test.

Figure 5.2: Effect of the permanent magnets on IMU magnetometer

The first subplot shows the magnetic Hall sensor data along the z coordinate, against the
time. The second subplot shows instead the measurements of the IMU magnetometer
along the three axes. The plot also shows a zoom on the area with biggest magnitude,
to better read the corresponding y value. The two subplots are both normalized along
the y axis with respect to the maximum magnetic flux density value for the Hall sensors.
This is done to compare the plots with the same scaling. The comparison shows that,
when pressing the Hall sensors along the z direction leading to the maximum value in
magnitude (1), the maximum value for the data read by the IMU magnetometer is only
0.01. Therefore, the effect of the permanent magnets is negligible.

49

Experimental Evaluation

5.1.3 Sensor Sensitivity
The third test was done to measure the sensor sensitivity. In this case, the sensitivity is
defined as the ratio between the force applied to the object (measured through the object
weight), and the magnetic field magnitude measured by the sensor as a response to the
applied force. The whole tactile sensor was pressed with objects of different weights. The
weights, the corresponding force values, and the measured average field, are collected in
Table 5.1. The table also shows the sensitivity coefficient, K, for each measurement.

Table 5.1: Sensor Sensitivity Table

The plot in Figure 5.3 translates the information of the table. Except for the smallest
measurements, the sensitivity value is on average 2 [N/mT].

Figure 5.3: Sensor Sensitivity

50

5.1 – MLX90395 Sensor Characterization

5.1.4 Comparison with Xela Sensor Resolution

For the last test, the DLR tactile sensor was compared to a commercial tactile sensor from
XELA Robotics, uSkin Patch model uSPa 441, whose datasheet is [25]. The XELA uSkin
is a 4x4 taxels tri-axial tactile sensor module, and each individual sensing point measures
three axis touch (x, y, z), just like DLR tactile sensor. However, uSkin does not have an
integrated IMU sensor.

The uSPa44 has two different sensitivity settings, indicated by the letter "S" or "H".
The standard model has sensitivity "H", so we will refer to this model for the following
considerations. The details of the sensor’s response, obtained by using one sensing point,
so applying the force to one single taxel, can be seen in 5.4. This plot shows the uSkin
raw output, measured in LSB, against the force, measured in Newtons.

Figure 5.4: uSPa44 normal force (z-axis)

To compare the resolution of the XELA tactile sensor, a single taxel (front left) of the DLR
tactile sensor was pressed with objects of different weights. The weights, the corresponding
force values, and the measured average LSB, are collected in Table 5.2. The table also
shows the resolution value, measured in [N/LSB], for each measurement. The small Table
5.3, instead, shows the maximum measurable range and the resolution values for the
uSPa44 tactile sensor with default sensitivity. By simultaneously looking the two tables,
the resolution values along the z axis are comparable and of the order of 0.002 [N/LSB].

1XELA uSPa 44 Tactile Sensor, https://www.xelarobotics.com/sensor-collection/uspa-44

51

https://www.xelarobotics.com/sensor-collection/uspa-44

Experimental Evaluation

Table 5.2: Sensitivity of the sensor considering only the front left taxel

Table 5.3: uSPa44 maximum measurable range and resolution

The similarity can be also shown by means of the plots. The first plot in Figure 5.5 shows
the graphical representation of Table 5.2. The second plot is a snippet taken from Figure
5.4, more or less in the same range as the first one. From the graphical comparison of the
two plots, the resolution slope is very similar.

Figure 5.5: Sensitivity of the sensor considering only the front left taxel

52

5.2 – IMU Sensor Characterization

5.2 IMU Sensor Characterization
This section is devoted to the characterization of the ICM20948 IMU sensor. The first
thing that was done is the calibration of the sensor. This is needed to ensure the accu-
racy and reliability of the IMU data. The second step was comparing the measurements
obtained by using the firmware written in Zephyr, and the ones obtained by using an
ICM20948 already existing library. The last coparison was done between the ICM20948
sensor, whose data was read by using the firmware, and the ISM330DHCX 6 dof IMU
sensor paired with the MMC5983MA magnetometer.

5.2.1 IMU Calibration
Raw data from IMU sensors often contain errors that can lead to significant inaccuracies
in the measured data. Moreover, to use the IMU data in the best possible way, so trying
to get the best part out of all the sensors composing the IMU, sensor fusion algorithms
needed to be applied (see chapter 6, but if the calibration is not performed their outcome
is not usable. Therefore, the calibration procedure is essential.

The sensor calibration procedure was performed by using the ICM_20948-AHRS Github
repository from jremington, [26]. The repository contains a Mahony Attitude and Heading
Reference System (AHRS) 3D Fusion Filter for Arduino and the ICM20948 sensor, and
a calibrate3.py file to perform sensor calibration. This python file optionally replaces a
C program called Magneto which performs calibration. The library is written and tested
for the Sparkfun breakout board shown in 4.12, using I2C connection on an Arduino Pro
Mini. In this thesis, however, the target board used is the Teensy 4.0 shown in 3.3.

Sensors Measurement Model

The sensors measurement models describe how the data measured from the sensor relates
to the true quantities. In fact, bias, scale and alignment errors can be typically found
in sensor readings. Biases are constant offsets in the sensor readings and they are esti-
mated by considering the mean of the measurements under static conditions. They can
be therefore subtracted from the measured data to obtain the true one. Instead, errors
due to scale factors and non-orthogonality of the sensor axes are corrected by means of a
matrix transformation, calculated based on data from controlled rotation and 3D space
sampling. Calibration aims at determining the bias vectors (bacc, bgyro, bmagn) and the
correction matrices (Macc, Mgyro, Mmagn) for each sensor.

The measurement models, which take into account the presence of these errors, for each
sensor composing the IMU are described in the following.

Accelerometer The accelerometer measures acceleration (a) along the three axes. The
relationship between the real and measured acceleration data is shown below in 5.2.

ameasured = Macc (atrue + bacc) (5.2)

53

Experimental Evaluation

Gyroscope The gyroscope measures angular velocities (ω) along the three axes. The
relationship between the real and measured angular velocity data is shown below in 5.3.

ωmeasured = Mgyro (ωtrue + bgyro) (5.3)

Magnetometer The magnetometer measures the magnetic field vector magnitude (B).
From a geometric point of view, magnetometer data samples should form a sphere. How-
ever, usually they form an ellipsoid2. This happens because of two contributions:

• Hard Iron Distorsion: caused by permanent magnetic objects near the sensor (like
ferrous materials). It results in an offset in the magnetometer readings, which are
modeled by the bias vector bmagn.

• Soft Iron Distortion: caused by nearby magnetic materials that distort the magnetic
field, leading to an elliptical response. This contribution is corrected by using the
matrix Mmag.

The ellipsoid problem occurs also for the accelerometer sensor, although it’s less promi-
nent. It does not happen in the gyroscope case. The relationship between the real and
measured magnetic field data is shown in 5.4.

Bmeasured = Mmagn (Btrue + bmagn) (5.4)

The equations to find the true measurements for accelerometer, gyroscope, and magne-
tometer sensors are respectively shown in the following.

atrue = M−1
acc (ameasured − bacc) (5.5)

ωtrue = M−1
gyro (ωmeasured − bgyro) (5.6)

Btrue = M−1
magn (Bmeasured − bmagn) (5.7)

Calibration Procedure

The steps for using the library for calibration purposes is described in the following. The
ICM_20948_get_cal_data.ino and the calibrate3.py files are used to complete the proce-
dure and obtain the bias vectors and correction matrices.

First, the Arduino code file ICM_20948_get_cal_data.ino is deployed on the board. The
instructions printed on the serial monitor must be followed. The sensor has to be kept still
while the program collects gyroscope data and computes the gyroscope bias vector bgyro.
The same program then records 300 accelerometer and magnetometer data points, while

2Magnetometer Calibration, https://teslabs.com/articles/magnetometer-calibration/

54

https://teslabs.com/articles/magnetometer-calibration/

5.2 – IMU Sensor Characterization

the user slowly and steadily rotates the sensor in all directions. This data is copied from
the serial monitor output, and it is used to create two different Comma Separated Value
(CSV) files containing accelerometer and magnetometer data respectively. A snippet of
the serial monitor content described is shown in Figure 5.6.

Figure 5.6: Serial Monitor Output

The two CSV files are then loaded one at a time into the calibrate3.py program file,
through the command data = np.loadtxt("<sensor>_data.csv",delimiter=','). First,
the accelerometer data file is loaded and the values for bacc and the inverse of Macc are
obtained. Then, the same is done with the magnetometer data file, and the values for
bmagn and the inverse of Mmagn are obtained. The calibrate3.py code directly gives the
inverted calibration matrices.

When the calibrate3.py file is run, the distorted ellipsoid coming from the plot of the
uncalibrated data points, is shown. An example of this ellipsoid is visible in the following
Figure 5.7.

Figure 5.7: Data Points Ellipsoid

The parameters obtained after the calibration procedure are then directly used inside the
equations 5.5, 5.6, and 5.7, to find the real calibrated measurements.

55

Experimental Evaluation

5.2.2 IMU Data Comparison Between Library and Firmware

After the calibration procedure, the data measured by the firmware was compared to the
data obtained by using the same library used for calibration purposes, which uses the
Sparkfun ICM_90248 Arduino library3.

Taking as a reference system the one showed in 4.12b, the test made consisted in rotating
the sensor in different ways. The sequence of rotations consisted in +90 and -90 degrees
around x axis, -90 and +90 degrees around y axis, and 90 and -90 degrees around z axis.
The expected behavior for each sensor is explained in the following:

• Accelerometer : the gravitational acceleration starts with a value of 9.8 m/s2 along
the z axis. When the sensor is rotated of 90 degrees around the x axis, the gravi-
tational acceleration moves along the y axis, and when the sensor is rotated of 90
degrees around the y axis, the vector lies along the x axis;

• Gyroscope: a spike should be visible in correspondence to each rotation;

• Magnetometer : when a rotation is made around the x axis, the magnetic measure-
ment along that same axis should be constant. Same happens for y and z axes.

The raw data between the already existing and working library and the firmware, were
compared. Figure 5.8a shows the raw data acquired by using the library, while Figure
5.8b shows the raw data acquired by using the firmware. It should be noted that the raw
data are the same in terms of behavior and magnitude.

Then, a similar comparison was done between the calibrated data acquired with the library
code and with the firmware one. Figure 5.9a shows the calibrated data acquired by using
the library, while Figure 5.9b shows the calibrated data acquired by using the firmware.
Also in this case the calibrated data are the same in terms of behavior and magnitude.

3https://www.arduinolibraries.info/libraries/spark-fun-9-do-f-imu-breakout-icm-20948-arduino-
library

56

5.2 – IMU Sensor Characterization

(a) Library Raw Data

(b) Firmware Raw Data

57

Experimental Evaluation

(a) Library Calibrated Data

(b) Firmware Calibrated Data

58

5.2 – IMU Sensor Characterization

5.2.3 Comparison with benchmark sensors
The last tests done for the ICM20948 IMU sensor characterization consist in the compari-
son with two benchmark sensors whose drivers are already implemented in Zephyr RTOS.
The two sensors are the ISM330DHCX 6 dof IMU and the MMC5983MA magnetometer.
The hardware used for these tests consists of the ICM20948 Sparkfun breakout board in
4.12a, and the ISM330DHCX + MMC5983MA Sparkfun breakout board in 5.10, placed
one on top of the other and fixed to each other with some screws and nuts to ensure the
same movement of both the boards. Before being able to compare the data measured by
both sensors, the reference systems, shown in 4.12b and 5.10b, were aligned.

(a) Front (b) Back

Figure 5.10: SparkFun ISM330DHCX, MMC5983MA Breakout Board

The same tests described in the previous paragraph 5.2.2 were reproduced for this setup.

Plots 5.11a and 5.11b show the comparison of the data measured by the accelerometer and
gyroscope sensors inside the IMUs. They show the same data both in terms of behavior,
which is the expected one, and of magnitude.

Plots in 5.12a and 5.12b, instead, show the comparison between the two magnetometers.
In this case, data is also the same in terms of behavior and magnitude, but the offsets are
different due to the missing calibration procedure for both the magnetometer sensors.

59

Experimental Evaluation

(a) ICM20948 Acc Gyro Data

(b) ISM330DHCX Data

60

5.2 – IMU Sensor Characterization

(a) ICM20948 Magnetometer Data

(b) MMC5983MA Data

61

62

Chapter 6

Sensor Fusion

Sensor fusion is the process of combining data coming from different sensors to produce a
more accurate and reliable representation of a system’s state than the one that can be ob-
tained by using single sensors alone. In IMUs context, no single accelerometer, gyroscope,
or magnetometer can provide complete data about orientation in all conditions. Each
sensor has strengths and weaknesses, and sensor fusion produces a more robust, accurate,
and stable estimate by combining the sensor outputs to overcome individual limitations.

The three types of sensors already present in the ICM20948 IMU are commonly used
for orientation estimation. Gyroscopes measure angular velocity. If the initial conditions
are known, it may be integrated over time to obtain the sensor’s orientation. Since the
gyroscope measurement errors are integrated, errors will accumulate in the calculated
orientation. Therefore, gyroscopes alone cannot provide an absolute measurement of ori-
entation. Accelerometers and magnetometers will measure the earth’s gravitational and
magnetic fields respectively and so provide an absolute reference of orientation. However,
they are likely to be subject to high levels of noise.

The task of sensor fusion algorithms, and therefore of an orientation filter, is to compute
a single, accurate, and robust estimate of orientation through the optimal fusion of the
measurements from these sensors maintaining a low computational cost for running on
the onboard processor.

6.1 Mahony Filter
Among the existing sensor fusion algorithms, the ones with the best balance between
computational efficiency, accuracy, and real-time capability are a few: Madgwick filter,
Mahony filter, Complementary filter1. Based on the comparative analysis reported in
[27], where the authors compare three sensor fusion algorithms for a setup that is similar

1IMU Data Fusing: Complemetary, Kalman, and Mahony Filter, https://www.olliw.eu/2013/
imu-data-fusing/

63

https://www.olliw.eu/2013/imu-data-fusing/
https://www.olliw.eu/2013/imu-data-fusing/

Sensor Fusion

to the one described in this thesis and suitable for real-time operation, the best filter in
terms of computational efficiency, which is a very critical property in embedded systems
applications, is the Mahony filter. Therefore, it was chosen to be implemented among the
others.

The Mahony filter was first described by Mahony et al. in [28]. The filter’s simplicity and
efficiency have made it a popular choice for embedded systems, especially in applications
like robotics and aerial navigation. The algorithm related to the Mahony filter is shown
below. Ki and Kp are parameters to be chosen based on the filter wanted performance.

Algorithm Mahony Filter Algorithm
1: Set algorithm coefficients Ki, Kp and initialize quaternion q1 = 1, q2 = q3 = q4 = 0

while: sensor data is available
2: Read accelerometer measurements ax, ay, az and gyroscope measurements gx, gy, gz

3: Compute orientation error from accelerometer data, where ei,t represents the integral
error of the measurements at time t:

et+1 =

ax,t

ay,t

az,t

 ×

 2 (q2q4 − q1q3)
2 (q1q2 + q3q4)!

q2
1 − q2

2 − q2
3 + q2

4
"

ei,t+1 = ei,t + et+1∆t

4: Update angular velocity computed from gyroscope with the Ki and Kp terms using
feedback (fusion):

ωt+1 = ωt + Kpet+1 + Kiei,t+1

5: Compute orientation increment from gyroscope measurements:

q̇ω,t+1 = 1
2 q̂t ⊗

#
0, ωT

t+1
$

6: Numerical integration:
qt+1 = q̂t + ∆tq̇ω,t+1

endwhile

64

6.1 – Mahony Filter

Mahony Filter in zsclib

The Zephyr RTOS framework used has already implemented a library that, among many
other scientific computing and data analysis features, implements various sensor fusion al-
gorithms. This is the Zephyr Scientific Library (zsclib) and its Github repository is at [29].

All orientation fusion algorithms in zscilib use the same interface, therefore it’s trivial to
switch between different algorithms. The interface for the sensor fusion algorithms will
be shown in the following taking as example the Mahony filter.

The Mahony filter can be instantiated and configured with the following piece of code,
placed in the source code file.

/* Config settings for the Mahoney filter. */
static zsl_real_t _mahn_intfb[3] = { 0.0, 0.0, 0.0 };

static struct zsl_fus_mahn_cfg mahn_cfg = {
.kp = 50,
.ki = 0,
.integral_limit = 10000.0,
.intfb = {

.sz = 3,

.data = _mahn_intfb,
},

};

static struct zsl_fus_drv mahony_drv = {
.init_handler = zsl_fus_mahn_init,
.feed_handler = zsl_fus_mahn_feed,
.error_handler = zsl_fus_mahn_error,
.config = &mahn_cfg,

};

The filter can then be initialized by using the init_handler function, and fed by using
the feed_handler function. Both the functions are shown below.

struct zsl_fus_drv *drv = &mahony_drv;

/* Initialize the filter at 100 Hz*/
drv->init_handler(100, drv->config);

/* Feed the filter */
drv->feed_handler(&av_cal, &mv_cal, &gv_cal, &incl, &quat, drv->config);

65

Sensor Fusion

Mahony Filter Implementation

After performing the calibration procedure on the ICM20948 IMU sensor, checking that
the units of measurement of the gyroscope data were the right ones (accelerometer and
magnetometer vectors are normalized), the implementation of the Mahony filter inside
the application was done. Before testing the filter, the correctness of the input data was
checked by using the external library [26] also used for the calibration procedure. The
same test set was applied for two different data acquisitions, first with the library and then
with the firmware (the code which also implements the Mahony filter in Zephyr RTOS).
However, the filter did not give satisfactory results.

A different attempt was then made at using the Arduino code for the Mahony AHRS
filter in [26], directly as a C function implementing the filter algorithm. Although the
code used was the same as the one in the MahonyQuaternionUpdate function inside the
ICM_20948_Mahony.ino file, and the data management was also the same, this attempt
was also not satisfactory.

66

Chapter 7

Conclusions and Future Work

This chapter presents a conclusive summary of the thesis, highlighting its key contributions
to addressing the pose estimation challenges in robotic grasping. The chapter outlines
potential directions for future research, positioning this work as a foundational step toward
further improving pose estimation methods and expanding the capabilities of robotic
systems in grasping and manipulation tasks.

7.1 Conclusions
This thesis has addressed key challenges in robotic grasping and manipulation by de-
veloping and evaluating a novel multi-modal tactile sensing system, leveraging magnetic
and inertial sensing for enhanced pose estimation. Building on the insights from state-of-
the-art tactile sensing technologies, this work introduced an integrated system combining
Hall-effect sensors and a 9-degree-of-freedom IMU to provide real-time feedback on forces
and orientations.
The proposed sensor system was complemented by the custom firmware detailed in Chap-
ter 4, which included the development of the drivers for the MLX90395 Hall sensor and
the ICM20948 IMU within the Zephyr RTOS framework. The real-time needs of the
robotic system were met by leveraging Zephyr RTOS features like thread priorities and
synchronization.
Experimental evaluations highlighted the sensor’s performance, addressing challenges such
as magnetic interference and drift, while validating its robustness against existing bench-
marks. An extensive study on possible effective sensor fusion algorithms for the IMU was
carried out, and attempts for successful implementation of the chosen algorithm, Mahony
filter, were made by using different methodologies.

67

Conclusions and Future Work

7.2 Future Work
This section provides a list of recommendations for future work that must be taken into
consideration to further enhance the capabilities and applications of the developed multi-
modal tactile sensing system, building on the foundational contributions of this thesis.

Implementing Sensor Fusion Algorithm

A key direction for future work is the further optimization and implementation of the
chosen sensor fusion algorithm, the Mahony filter, to fully harness the potential of IMU
data and effectively integrate it with tactile data from the Hall-effect sensors. By combin-
ing the tactile force measurements with quaternion information derived from the sensor
fusion process, the system can achieve enhanced accuracy and robustness in pose esti-
mation for robotic grasping applications. This approach aims to maximize the synergy
between tactile and inertial data, providing a comprehensive and precise feedback mech-
anism that can significantly improve the performance of robotic manipulation tasks in
complex environments.

Test the Firmware on the Real Robot

Another important direction for future work is testing the developed tactile sensor system
on a real robotic platform. While the experimental evaluations conducted in this thesis
demonstrated the sensor’s performance in controlled scenarios, deploying it on a real robot
would provide valuable insights into its practical reliability and effectiveness in dynamic
environments. This step would allow for assessing the sensor’s integration with robotic
controllers, its responsiveness during real-time tasks, and its robustness in handling diverse
objects and grasp conditions, ultimately bridging the gap between experimental validation
and real-world applications.

Using multiple tactile sensors on a robotic hand

A promising direction for future work is the integration of multiple tactile sensors across
the same robotic hand to enable comprehensive force and pose feedback for multi-fingered
manipulation tasks. The modular design of the Zephyr RTOS, employed in this thesis,
provides a scalable framework for managing multiple sensors efficiently. Its real-time capa-
bilities and support for multi-threading allow seamless communication and coordination
among sensors, ensuring synchronized data acquisition and processing. This scalability
could facilitate the development of more advanced robotic systems capable of complex
object handling and adaptive manipulation in dynamic environments.

68

Appendix A

I2C Communication Protocol

This appendix describes the Inter-Integrated Circuit (I2C) communication protocol. In
fact, for the Teensy 4.0 board to communicate with the sensors and obtain data, the I2C
communication protocol1 is used. For sensor applications, I2C is particularly valuable due
to its simplicity and efficiency in handling multiple devices with minimal wiring.

The Inter-Integrated Circuit (I2C) protocol is a widely used, synchronous serial commu-
nication protocol, meaning that data bits are transferred one by one at regular intervals
of time set by a reference clock line. It allows up to 1008 slave devices to communicate
with a master device over just two wires: a data line (SDA) and a clock line (SCL). The
scheme showing the communication between the master and the generic slave devices is
shown in A.1.

Figure A.1: Master-Slave Communication

Both the I2C bus lines are operated as open drain drivers. This means that any device
on the I2C network can drive SDA and SCL low, but they cannot drive them high. So,
a pull-up resistor is used for each bus line, to keep them high, at positive voltage, by
default. This concept is shown in A.2. By using this system there will be no chances of
shorting, which might happen when one device tries to pull the line high and some other
device tries to pull the line low.

1Basics of I2C Communication | Hardware, Data Transfer, Configuration, https://www.
electronicshub.org/basics-i2c-communication/

69

https://www.electronicshub.org/basics-i2c-communication/
https://www.electronicshub.org/basics-i2c-communication/

I2C Communication Protocol

Figure A.2: Multiple Devices Communication

Designed for short-range, low-speed communication within electronic devices, I2C operates
by having the master device initiate communication, control the clock signal, and send
or request data from designated slave devices through 7-bit or 10-bit addresses which are
different for each slave device. The uniqueness of the 7-bit addresses and a more complete
scheme for the Inter-Integrated Circuit (I2C) communication protocol is visible in A.3.

Figure A.3: Master-Slave Addresses

The data transfer uses a series of bit-based acknowledgments to ensure data integrity, and
devices can be configured to communicate at different speeds, typically up to 400 kHz in
standard applications or up to 3.4 MHz in high-speed mode.

70

Appendix B

Debugging Tools

This appendix shows the tools used in the thesis work for debugging purposes, and shows
both the hardware components and the graphical tools.

Debugging is about ensuring that a system works as intended. This involves identify-
ing and fixing errors, optimizing performance, and enhancing stability. It is a crucial
aspect of embedded systems development. In fact, those systems are often deployed in
resource-constrained environments, operate in real-time, and interact directly with hard-
ware, making them particularly susceptible to complex and hard-to-find errors. Effective
debugging is essential to ensure system performance, reliability, and safety.

The debugging system considered here is composed of:

• Target board, on which the code to analyze is deployed;

• Debug probe, which acts as an intermediary between the development environment
on the host computer, and the target device;

• Graphical Debugger, which provides a user-friendly, visual interface for debugging
the application;

• Oscilloscope, which uses triggers to capture data and verify if the firmware sends/re-
ceives correct instructions.

MIMRX1060-EVK Target Board

The target board used for debugging purposes is the MIMRX1060-EVK board, shown
in B.1. This is an evaluation kit based on i.MX RT1060, an ultra-low-power, high-
performance crossover processor by NXP Semiconductor. The MIMXRT1060-EVK board
includes various peripherals and interfaces and multiple communication options like USB,
Ethernet, and CAN. It’s compatible with J-Link for more advanced debugging.

71

Debugging Tools

Figure B.1: MIMRX1060-EVK Target Board

J-Link PRO Debug Probe

The main tool used for debugging is the J-Link Pro debug probe from SEGGER. This
high-performance debugging tool is widely used in embedded systems development due
to its versatility, speed, and compatibility with a range of microcontrollers. It supports a
broad range of development tools and software, including SEGGER’s Ozone, which will
be described in the next subsection. It’s a multi-platform solution, making it adaptable
to varied development environments.The debug probe is shown in B.2, being the black
device on the left, connected to the board with a gray JTAG cable.

Complete Debug Hardware

The complete debug hardware is shown in B.2. The picture shows the JLink Pro Debugger
probe connected to the chosen board, the MIMXRT1060-EVK. The specific sensor to be
tested is connected to the board.

Ozone Graphical Debugger

The Ozone Debugger by SEGGER is a powerful, stand-alone graphical debugger designed
for embedded systems, providing developers with comprehensive tools for debugging, per-
formance analysis, and code optimization. It supports source-level debugging in C, C++,
and Rust, as well as assembly instruction debugging. Ozone is also multi-platform. The
tool integrates tightly with SEGGER’s J-Link and J-Trace debug probes, enabling high-
speed programming and the use of powerful built-in features.

Figure B.3 shows the default Ozone screen. The screen is divided in two horizontal strips.
The first one comprises, from left to right, the source files list and breakpoints window,
the source code viewer, where the code to analyze is shown and breakpoints can be set,
the disassembly, local and global data windows, and the field showing the content of the
registers. The second horizontal strip contains the console and the memory content.

72

Debugging Tools

Figure B.2: Debug Hardware

Figure B.3: Ozone Debugger

SEGGER SystemView

When dealing with complex embedded systems comprising multiple threads and inter-
rupts, the SEGGER SystemView tool is needed. This is a real-time recording and visual-
ization tool for embedded systems. It reveals the true runtime behavior of an application,
going far deeper than the system insights provided by debuggers.

73

Debugging Tools

Oscilloscope

Another very useful tool when debugging embedded systems is a digital oscilloscope. In
this thesis work, the Rigol MSO5354 digital oscilloscope was used. The MSO5354 excels
in analyzing communication protocols such as I2C, SPI, or CAN, and can decode them in
real-time.

To decode the I2C protocol, used for the tactile sensor communication, the oscilloscope
probes were connected to the clock and data buses. Then, triggers are used to capture
data during a specific transaction, and this data is decoded to verify if the firmware
sends/receives correct instructions. If the registers and values read are the expected ones,
the application is working correctly.

Figure B.4: Rigol MSO5354 Digital Oscilloscope

74

Bibliography

[1] Q. Li, O. Kroemer, Z. Su, F. F. Veiga, M. Kaboli, and H. J. Ritter, “A review of
tactile information: Perception and action through touch”, IEEE Transactions on
Robotics, vol. 36, no. 6, pp. 1619–1634, 2020. doi: 10.1109/TRO.2020.3003230.

[2] Z. Kappassov, J.-A. Corrales, and V. Perdereau, “Tactile sensing in dexterous robot
hands”, Robotics and Autonomous Systems, vol. 74, pp. 195–220, 2015.

[3] R. S. Dahiya, M. Valle, et al., “Tactile sensing for robotic applications”, Sensors,
Focus on Tactile, Force and Stress Sensors, pp. 298–304, 2008.

[4] C. Hegde, J. Su, J. M. R. Tan, K. He, X. Chen, and S. Magdassi, “Sensing in soft
robotics”, ACS nano, vol. 17, no. 16, pp. 15 277–15 307, 2023.

[5] J. Jiang and S. Luo, “Robotic perception of object properties using tactile sensing”,
in Tactile Sensing, Skill Learning, and Robotic Dexterous Manipulation, Elsevier,
2022, pp. 23–44.

[6] R. Bogue, “Recent developments in robotic tactile perception”, Industrial Robot: An
International Journal, vol. 44, no. 5, pp. 565–570, 2017.

[7] W. Mandil, V. Rajendran, K. Nazari, and A. Ghalamzan-Esfahani, “Tactile-sensing
technologies: Trends, challenges and outlook in agri-food manipulation”, Sensors,
vol. 23, no. 17, p. 7362, 2023.

[8] Y. Jiang, L. Fan, X. Sun, et al., “A multifunctional tactile sensory system for robotic
intelligent identification and manipulation perception”, Advanced Science, vol. 11,
no. 41, p. 2 402 705, 2024.

[9] P. Weiner, C. Neef, Y. Shibata, Y. Nakamura, and T. Asfour, “An embedded, multi-
modal sensor system for scalable robotic and prosthetic hand fingers”, Sensors,
vol. 20, no. 1, p. 101, 2019.

[10] F. Yang, C. Feng, Z. Chen, et al., “Binding touch to everything: Learning unified
multimodal tactile representations”, in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2024, pp. 26 340–26 353.

[11] W. Fan, H. Li, W. Si, S. Luo, N. Lepora, and D. Zhang, “Vitactip: Design and ver-
ification of a novel biomimetic physical vision-tactile fusion sensor”, arXiv preprint
arXiv:2402.00199, 2024.

75

https://doi.org/10.1109/TRO.2020.3003230

BIBLIOGRAPHY

[12] X. Li, R. Deng, W. Jiao, et al., “A high-sensitivity magnetic tactile sensor with a
structure-optimized hall sensor and a flexible magnetic film”, IEEE Sensors Journal,
vol. 24, no. 10, pp. 15 935–15 944, 2024. doi: 10.1109/JSEN.2024.3385299.

[13] S. Park, S.-R. Oh, and D. Hwang, “Magtac: Magnetic six-axis force/torque fingertip
tactile sensor for robotic hand applications”, in 2023 IEEE International Confer-
ence on Robotics and Automation (ICRA), 2023, pp. 10 367–10 372. doi: 10.1109/
ICRA48891.2023.10161042.

[14] A. Mohammadi, Y. Xu, Y. Tan, P. Choong, and D. Oetomo, “Magnetic-based
soft tactile sensors with deformable continuous force transfer medium for resolving
contact locations in robotic grasping and manipulation”, Sensors, vol. 19, no. 22,
p. 4925, 2019.

[15] J. Bimbo, P. Kormushev, K. Althoefer, and H. Liu, “Global estimation of an object’s
pose using tactile sensing”, Advanced Robotics, vol. 29, no. 5, pp. 363–374, 2015.

[16] V. R. Galaiya, M. Asfour, T. E. Alves de Oliveira, X. Jiang, and V. Prado da Fon-
seca, “Exploring tactile temporal features for object pose estimation during robotic
manipulation”, Sensors, vol. 23, no. 9, p. 4535, 2023.

[17] M. Chalon, J. Reinecke, and M. Pfanne, “Online in-hand object localization”, in 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2013,
pp. 2977–2984.

[18] M. Pfanne and M. Chalon, “Ekf-based in-hand object localization from joint po-
sition and torque measurements”, in 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), IEEE, 2017, pp. 2464–2470.

[19] A. Petrovskaya, O. Khatib, S. Thrun, and A. Ng, “Bayesian estimation for au-
tonomous object manipulation based on tactile sensors”, in Proceedings 2006 IEEE
International Conference on Robotics and Automation, 2006. ICRA 2006., 2006,
pp. 707–714. doi: 10.1109/ROBOT.2006.1641793.

[20] Zephyr Project, Zephyr Project Documentation. [Online]. Available: https://docs.
zephyrproject.org/latest/index.html.

[21] Zephyr Project, Zephyr RTOS - Getting Started Guide. [Online]. Available: https:
//docs.zephyrproject.org/latest/develop/getting_started/index.html.

[22] Zephyr Project, Zephyr - GitHub, Zephyr Project GitHub Profile. [Online]. Available:
https://github.com/zephyrproject-rtos.

[23] Melexis, MLX90395 Datasheet.
[24] T. Invensense, ICM-20948 IMU Datasheet.
[25] X. Robotics, uSkin Sensor Datasheet.
[26] jremington, ICM-20948-AHR, GitHub repository. [Online]. Available: https : / /

github.com/jremington/ICM_20948-AHR.

76

https://doi.org/10.1109/JSEN.2024.3385299
https://doi.org/10.1109/ICRA48891.2023.10161042
https://doi.org/10.1109/ICRA48891.2023.10161042
https://doi.org/10.1109/ROBOT.2006.1641793
https://docs.zephyrproject.org/latest/index.html
https://docs.zephyrproject.org/latest/index.html
https://docs.zephyrproject.org/latest/develop/getting_started/index.html
https://docs.zephyrproject.org/latest/develop/getting_started/index.html
https://github.com/zephyrproject-rtos
https://github.com/jremington/ICM_20948-AHR
https://github.com/jremington/ICM_20948-AHR

BIBLIOGRAPHY

[27] K. Çoçoli and L. Badia, “A comparative analysis of sensor fusion algorithms for
miniature IMU measurements”, in 2023 International Seminar on Intelligent Tech-
nology and Its Applications (ISITIA), Surabaya, Indonesia: IEEE, Jul. 26, 2023,
pp. 239–244, isbn: 9798350313956. doi: 10.1109/ISITIA59021.2023.10220994.
[Online]. Available: https://ieeexplore.ieee.org/document/10220994/.

[28] R. Mahony, T. Hamel, and J.-M. Pflimlin, “Nonlinear complementary filters on
the special orthogonal group”, IEEE Transactions on Automatic Control, vol. 53,
no. 5, pp. 1203–1218, Jun. 2008, issn: 0018-9286. doi: 10.1109/TAC.2008.923738.
[Online]. Available: http://ieeexplore.ieee.org/document/4608934/.

[29] Zephyr Project, Zsclib - GitHub, Zsclib GitHub Repository. [Online]. Available:
https://github.com/zephyrproject-rtos/zscilib.

77

https://doi.org/10.1109/ISITIA59021.2023.10220994
https://ieeexplore.ieee.org/document/10220994/
https://doi.org/10.1109/TAC.2008.923738
http://ieeexplore.ieee.org/document/4608934/
https://github.com/zephyrproject-rtos/zscilib

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Motivations
	Chapters organization

	State of the Art
	Tactile Sensing in Robotics
	Multi-modal Tactile sensing
	Magnetic Tactile Sensing
	Pose Estimation using Tactile Sensing

	DLR Multi-Modal Magnetic Tactile Sensor
	General Description
	Development Boards

	Firmware Development
	Framework and Methodology
	Zephyr RTOS
	Methodology for Real-Time Firmware Development

	Sensor Drivers Development
	MLX90395 Hall Sensor Driver
	ICM20948 IMU Sensor Driver

	Experimental Evaluation
	MLX90395 Sensor Characterization
	Single Hall Sensors Behavior
	Effect of the permanent magnets on the IMU
	Sensor Sensitivity
	Comparison with Xela Sensor Resolution

	IMU Sensor Characterization
	IMU Calibration
	IMU Data Comparison Between Library and Firmware
	Comparison with benchmark sensors

	Sensor Fusion
	Mahony Filter

	Conclusions and Future Work
	Conclusions
	Future Work

	I2C Communication Protocol
	Debugging Tools
	Bibliography

