

Politecnico di Torino
The Department of Electronics and Telecommunications

(DET)

Master of Science Thesis in Electronic Engineering (Embedded Systems)
A.Y. 2024/2025
October 2024

Development of an embedded system for
electric vehicles with particular attention

to hardware-software integration
Enhancing Electric Vehicle Experience Through Engine Sound Simulation

Supervisor: Candidate:
Professor Mihai Teodor Lazarescu Ali Fakour Razeghi

Abstract

The rapid adoption of electric vehicles (EVs) has introduced numerous environmental benefits,

including reduced emissions and lower operational noise. However, the silent operation of EVs

presents a unique challenge: the absence of the auditory cues traditionally provided by internal

combustion engine (ICE) vehicles. Engine noise, though often considered a byproduct, plays a

crucial role in enhancing the driver’s experience and providing auditory feedback essential for

vehicle control. The lack of such feedback in EVs leads to reduced sensory involvement,

diminished situational awareness, and decreased control confidence for drivers. This thesis

addresses these gaps by developing a synthetic engine sound system tailored specifically for EVs,

aimed at restoring an engaging driving experience through carefully designed auditory stimuli.

The proposed system utilizes the SPC58EC80-DISP board, an advanced automotive

microcontroller, to interface with various EV sensors and communication buses, including the

Controller Area Network (CAN) bus, analog-to-digital converters (ADC), and pulse-width

modulation (PWM) signals. Real-time data such as speed, throttle position, and motor load are

collected and processed to simulate ICE engine sounds corresponding to the vehicle's current

operational state. This data is then forwarded to a miniPC, such as a Raspberry Pi, which generates

realistic engine sounds that dynamically adjust based on driving conditions like acceleration,

deceleration, and cruising. The system's design ensures precise synchronization of auditory

feedback with vehicle behavior, thereby contributing to a more intuitive, immersive, and satisfying

driving experience.

A notable feature of the system is its bidirectional communication capability, which ensures

that the synthesized sound output is always synchronized with the vehicle's real-time state. Data

flows continuously between the vehicle sensors and the sound generation unit, allowing instant

adjustments based on driver actions and changes in torque demand. Moreover, the system supports

feedback to vehicle control units, preserving critical functions such as torque management and

stability control, thereby enhancing driver experience without compromising safety or overall

vehicle performance. This tight integration between auditory output and vehicle dynamics ensures

that the driver receives continuous, context-appropriate auditory cues, creating a cohesive and

responsive experience.

This thesis outlines the methodology for designing, developing, and testing the synthetic

engine sound system in detail. The hardware setup encompasses real-time data collection from

multiple EV sensors, while software development focuses on extracting, processing, and

integrating this information to produce responsive and contextually appropriate sound synthesis.

Communication protocols are implemented to maintain precise synchronization between the

vehicle and the sound generator, ensuring realistic and immersive auditory feedback. The testing

phase includes functional, environmental, and user experience assessments to validate the system's

performance under different driving conditions. The results demonstrate that this integrated system

effectively bridges the sensory gap inherent in EVs, significantly enhancing driver engagement,

improving situational awareness, and potentially improving vehicle control. This research thus

provides a novel and effective solution to a significant challenge posed by the transition from ICE

vehicles to quieter EVs, contributing to both safety and driving enjoyment.

Keywords: Electric vehicles (EVs), Auditory feedback, Internal combustion engine (ICE),

Engine noise, Driving experience, SPC58EC80-DISP board, Data collection, Sensors,

Communication buses, Controller Area Network (CAN bus), Analog-to-digital converters (ADC),

Pulse-width modulation (PWM), MiniPC, Raspberry Pi, Sound synthesis, Torque control, Real-

time adjustments, Vehicle control, Immersive auditory experience, Sound generation, Software

development, Communication protocols, Vehicle performance

"To my beloved parents, whose unwavering love, endless support, and

boundless sacrifices have guided me to this moment. This work stands as a

testament to your belief in me and the foundation of values you've instilled.

With all my gratitude and love, I dedicate this to you."

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my supervisor, Professor Mihai

Teodor Lazarescu, for his guidance and support throughout the preparation of this thesis. His

constructive feedback, particularly regarding the academic structuring of this work, was invaluable in

ensuring that it met the expected standards. His balanced and straightforward approach made the

process more effective and helped me stay on track during challenging phases of the research.

I am also deeply grateful to Francesco Spagnolo, CEO of 2Electron, for his generous support and

for providing the essential materials and components that made this project possible. His commitment

to innovation and encouragement throughout my research were fundamental in helping me achieve

my objectives.

In addition, I would like to thank my colleagues at 2Electron for their kind support and collaboration

throughout the course of this project. Their technical expertise, patience, and valuable input

significantly contributed to overcoming various challenges and enhanced my overall experience.

Working alongside such knowledgeable and dedicated professionals has been an incredibly inspiring

aspect of this journey.

Finally, I wish to acknowledge the broader 2Electron team, whose collaborative work environment

and commitment to fostering research provided an ideal setting for my thesis. The resources and

support offered by 2Electron were critical in making this work a success.

Table of Contents

1 Introduction ... 1

1.1 Significance of Research.. 2

1.2 Research Objectives ... 3

1.3 Brief Overview of Methodology ... 4

1.4 Comprehensive Literature Review .. 5

1.4.1 Previous Work on Sound Synthesis for Electric Vehicles 5

1.4.2 Embedded Systems Used in Automotive Applications 9

1.4.3 Challenges and Future Trends ... 11

2 Background and Analysis .. 13

2.1 Key Requirements for Automotive Embedded Systems 13

2.2 Analysis of Alternative Embedded Systems ... 14

2.2.1 NXP S32K Series ... 14

2.2.2 Texas Instruments TMS570 .. 16

2.2.3 Renesas RH850 .. 18

2.2.4 The SPC58EC80-DISP Board: Justification for Selection 20

2.3 Justification .. 21

3 Methodology .. 23

3.1 System Design and Integration ... 23

3.1.1 Architecture Development .. 23

3.1.2 EV System Integration ... 25

3.1.3 Hardware Configuration .. 27

3.2 Data Acquisition and Transmission ... 29

3.2.1 Firmware Development... 30

3.2.2 Communication Protocols .. 33

3.2.3 Data Handling and Filtering ... 36

3.3 Testing and Validation .. 41

3.3.1 Functional Testing .. 41

User Experience Testing .. 44

3.3.2 Environmental Testing... 46

3.3.3 Iterative Refinement ... 49

3.3.4 Long-term Reliability .. 51

4 Hardware Overview .. 55

4.1 MCU Key Features ... 56

4.2 Power Supply .. 63

4.3 CAN and ISO CAN-FD .. 64

4.3.1 CAN Transceivers (U1 and U2) ... 64

4.3.2 Bus Termination and Filtering .. 65

4.3.3 Test Points (TP1, TP2, TP3, and TP4) ... 65

5 Software Overview ... 67

5.1 SPC5Studio Overview .. 67

5.1.1 Creating a New Application ... 68

5.1.2 Add Components to the Project ... 71

5.1.3 Generate Application Code ... 72

5.1.4 Compile Your Application ... 73

5.2 UDE STK Overview ... 74

5.2.1 Key Features and Overview of UDE STK 5.2 ... 74

5.2.2 Application Areas and Benefits .. 77

6 Development of the Embedded System for Electric Vehicles 79

6.1 State Machine Design for Sound Synthesis .. 80

6.2 Initial Configuration ... 84

6.2.1 Clock Distribution .. 84

6.2.2 Low Level Driver Component Register-Level Abstraction (RLA) 85

6.2.3 Pin Mapping ... 86

6.2.4 SARADC Configuration ... 87

6.2.5 UART Configuration .. 90

6.2.6 DSPI Configuration ... 92

6.3 CAN Bus Overview and Implementation ... 95

6.3.1 CAN Bus as a Communication System ... 95

6.3.2 Physical Structure of the CAN Bus ... 95

6.3.3 Working Mechanism ... 96

6.3.4 Advantages of the CAN Bus ... 96

6.3.5 Use Cases in Vehicles ... 96

6.3.6 CAN Message Characteristics ... 97

6.3.7 CAN Implementation Codes ... 99

7 Results and Discussion .. 102

7.1 Functional, User Experience, and Environmental Testing 103

7.1.1 Functional Testing Outcomes .. 103

7.1.2 User Experience Testing Outcomes.. 103

7.1.3 Environmental Testing Outcomes .. 104

7.2 System Performance Analysis .. 104

7.2.1 Real-Time Responsiveness ... 104

7.2.2 Sound Quality and Synchronization ... 104

7.3 Comparison With Relevant References ... 105

8 Conclusion and Future Improvements ... 107

8.1 Summary of Main Results .. 107

8.2 Limitations ... 108

8.3 Implications for the Industry .. 109

8.4 Future Improvements .. 109

9 Bibliography ... 111

List of Figures
Figure 1-1 Acoustic Vehicle Alerting System (AVAS). ... 6

Figure 3-1 Overall system architecture .. 24

Figure 3-2 Unsmoothed accelerator pedal signals captured by ADC inputs 37

Figure 3-3 Smoothed accelerator pedal signals captured by ADC inputs 38

Figure 3-4 Data transmission latency measurement .. 42

Figure 4-1 DISP discovery board-top side .. 56

Figure 4-2 SPC58EC80 Block diagram ... 61

Figure 4-3 Peripheral allocation .. 62

Figure 4-4 Power supply circuit of the SPC58EC80-DISP board 63

Figure 4-5 CAN and ISO CAN-FD interface circuit of the board .. 66

Figure 5-1 Project name window ... 68

Figure 5-2 Application name window .. 69

Figure 5-3 Select platform window ... 70

Figure 5-4 Add components to project .. 71

Figure 5-5 Application generation summary .. 72

Figure 5-6 Compile application .. 73

Figure 6-1 Finite state machine flowchart .. 80

Figure 6-2 Clock tree ... 84

Figure 6-3 Low Level Driver Component RLA ... 85

Figure 6-4 Pin mapping .. 86

Figure 6-5 SARADC configuration parameters ... 88

Figure 6-6 UART configuration parameters .. 90

Figure 6-7 SPI communication signals .. 93

Figure 6-8 CAN twisted pair wire typical color .. 95

Figure 6-9 CAN driver structure .. 99

Figure 6-10 CAN TX message frame structure .. 100

Figure 6-11 CAN RX message frame structure .. 101

List of Tables
Table 2-1 NXP semiconductors S32K1xx microcontroller family characteristics 14

Table 2-2 Texas Instruments TMS570LS0x32 Microcontroller characteristics 16

Table 2-3 Renesas RH850/F1L microcontroller family characteristics 18

Table 2-4 STMicroelectronics SPC5 microcontroller family characteristics 20

Table 2-5 Comparative table among MCUs .. 21

Acronyms
ADC: Analog-to-Digital Converter

ADAS: Advanced Driver Assistance Systems

CAN: Controller Area Network

DMA: Direct Memory Access

DSPI: Deserial/Serial Peripheral Interface

EV: Electric Vehicle

FSM: Finite State Machine

I2C: Inter-Integrated Circuit

ICE: Internal Combustion Engine

ISO CAN-FD: CAN with Flexible Data-Rate

LIN: Local Interconnect Network

PWM: Pulse Width Modulation

RTOS: Real-Time Operating System

SARADC: Successive Approximation Register Analog-to-Digital Converter

SoC: State of Charge

SoC: System on Chip

SPI: Serial Peripheral Interface

UART: Universal Asynchronous Receiver-Transmitter

Introduction 1

1 Introduction

The emergence of electric vehicles (EVs) has significantly transformed the automotive

industry, offering a quieter, more energy-efficient driving experience compared to traditional

internal combustion engine (ICE) vehicles. However, this quietness, while beneficial in reducing

noise pollution, presents a unique challenge: the absence of auditory feedback that drivers have

relied upon for decades. In ICE vehicles, the engine noise serves as a critical source of sensory

input, providing valuable information about the vehicle's speed, acceleration, and general

performance. This auditory feedback helps drivers maintain control and enhances their

engagement with the vehicle.

In contrast, the nearly silent operation of EVs creates a sensory gap, leading to a diminished

connection between the driver and the vehicle's operational state. The lack of engine sound not

only reduces the emotional engagement that comes with driving but can also hinder a driver's

intuitive ability to gauge vehicle behavior, potentially impacting driving performance and safety.

Addressing this problem is the primary focus of this thesis: developing a system to synthesize

realistic engine sounds for EVs, thereby restoring an essential layer of feedback and enhancing the

overall driving experience.

At the heart of this system is the SPC58EC80-DISP board, a versatile and powerful

microcontroller platform specifically designed for automotive applications. Built on a robust 32-

bit Power Architecture® MCU, the SPC58EC80-DISP is well-suited for tasks that require high

reliability and real-time performance—both of which are essential in the context of modern EV

systems. The board features multiple communication interfaces such as CAN, LIN, FlexRay,

UART, SPI, I2C and Ethernet, as well as ADCs, PWMs, and general-purpose I/Os, making it

highly adaptable to various automotive control systems.

This microcontroller board serves as the backbone of the proposed sound synthesis system. By

collecting and processing real-time data from the EV’s sensors and communication buses, the

SPC58EC80-DISP enables accurate monitoring of vehicle conditions. The CAN bus interface

plays a pivotal role in gathering key data, such as vehicle speed, throttle position, and torque

demand. In addition, ADC channels will capture essential analog signals, such as accelerator pedal

position.

The data collected from these sources will then be transmitted to a miniPC, such as a Raspberry

Pi, which will handle the sound synthesis process. Using advanced sound generation algorithms,

the miniPC will convert the data into realistic, responsive engine sounds that correspond to the

current driving conditions. These synthesized sounds will be output through speakers strategically

placed in the vehicle’s cabin, providing drivers with an immersive auditory experience that mimics

the familiar engine sounds of ICE vehicles. This feedback not only enhances driving enjoyment

but also serves as a sensory tool for better vehicle control.

2 Introduction

One of the key innovations in this system is its bidirectional communication capability. The

SPC58EC80-DISP board not only transmits sensor data to the miniPC but also receives feedback

or commands that are essential for maintaining vehicle performance, such as torque adjustments.

This closed-loop communication ensures that the synthesized sounds are always in sync with the

vehicle’s operational state, thus enhancing the overall driving experience without compromising

critical vehicle functions.

In summary, this thesis presents a novel solution to the sensory gap inherent in EVs. By

leveraging the SPC58EC80-DISP board’s capabilities for real-time data collection and processing,

combined with advanced sound synthesis techniques, this system will offer drivers an immersive

and responsive auditory experience, contributing to both driving pleasure and control precision in

electric vehicles.

1.1 Significance of Research
The significance of this research lies in addressing a critical sensory deficiency in modern

electric vehicles. As the automotive industry shifts towards EVs, the traditional sensory cues

associated with driving are being lost, potentially affecting driver engagement and safety. This

research aims to bridge this gap by providing an innovative solution that restores auditory

feedback, a fundamental component of the driving experience. By synthesizing engine sounds that

are responsive to real-time vehicle dynamics, this system will enhance both the emotional

connection between the driver and the vehicle and improve intuitive driving control.

Furthermore, this research has broader implications for the automotive industry, where

enhancing the driving experience is becoming increasingly important in the competitive EV

market. By developing a system that reintroduces auditory cues, manufacturers can make EVs

more appealing to a wider range of drivers, including those who may be hesitant to switch from

ICE vehicles due to the perceived loss of driving enjoyment. In addition, the proposed system

could contribute to improved safety by providing drivers with another layer of real-time feedback

that aids in decision-making.

The research also highlights the capabilities of the SPC58EC80-DISP board in automotive

applications, demonstrating how versatile microcontroller platforms can be leveraged to solve

emerging challenges in the industry. This approach can serve as a reference for future

developments in EV technology, where real-time data processing and sensory feedback systems

will play a crucial role in defining the user experience. Ultimately, this work contributes to the

evolution of electric vehicles, making them not only environmentally friendly but also enjoyable

and safe to drive.

Introduction 3

1.2 Research Objectives
The specific objectives of this research are as follows:

1. Develop a Sound Synthesis System for EVs: The primary goal is to design and implement

an advanced sound synthesis system that generates realistic engine sounds for electric

vehicles. This system will utilize real-time data collected from various vehicle sensors to

provide auditory feedback that mimics the experience of ICE vehicles. Such sound cues

are crucial for both driver immersion and safety, addressing the unique challenge of the

inherently quieter EV driving experience.

Significance: By synthesizing engine-like sounds, this research aims to enhance the driving

experience, providing intuitive auditory cues that aid driver awareness, especially during

acceleration, deceleration, and gear changes. The added auditory feedback can help improve

the overall driving experience for users transitioning from ICE vehicles to EVs.

2. Integrate Real-Time Data Collection and Processing: Utilize the SPC58EC80-DISP

microcontroller to gather and process critical sensor data from the vehicle’s CAN bus and

ADC channels. This data will be used to accurately capture and represent the operational

state of the vehicle, such as speed, pedal position, and other driving conditions.

Significance: The real-time nature of this system ensures that synthesized engine sounds

correspond precisely to the vehicle’s current status. Effective real-time processing and data

handling are essential to guarantee the realism and responsiveness of the generated sound,

making it a seamless part of the driving experience.

3. Establish Bidirectional Communication for Synchronization: Implement a closed-loop

communication system between the SPC58EC80-DISP microcontroller and a miniPC. This

bidirectional setup will enable continuous synchronization between the vehicle’s

conditions and the synthesized auditory feedback, ensuring that any changes in the

vehicle’s operational parameters are reflected immediately in the sound output.

Significance: Ensuring that the synthesized sounds are always in sync with the vehicle’s

conditions is vital for driver confidence and situational awareness. This closed-loop

communication system reduces latency and potential discrepancies, providing a robust

connection between vehicle behavior and auditory feedback.

4. Enhance Driver Experience and Safety: Evaluate the impact of synthesized sounds on

driver engagement, vehicle control, and safety. The study will focus on how auditory

feedback influences driver behavior, improves responsiveness, and contributes to a more

immersive and safer driving experience.

4 Introduction

Significance: Properly designed auditory feedback can contribute significantly to enhancing

situational awareness for drivers, especially in the context of quiet electric vehicles. By

improving driver engagement and offering audible indicators of speed and vehicle behavior,

the system can help reduce driver errors and increase safety, especially in urban environments

where pedestrians and other road users may not hear EVs approaching.

5. Demonstrate the Applicability of the SPC58EC80-DISP Board: Showcase the

SPC58EC80-DISP microcontroller's capabilities in real-time data acquisition, sound

synthesis, and closed-loop control, highlighting its effectiveness for automotive

applications beyond traditional use-cases.

Significance: Demonstrating the applicability of the SPC58EC80-DISP board in this complex

automotive scenario underlines its versatility and robustness. This research aims to position

the microcontroller as a viable platform for advanced real-time embedded systems, potentially

encouraging its adoption in similar automotive or industrial projects, thus expanding its usage

footprint.

1.3 Brief Overview of Methodology
The proposed methodology outlines a systematic approach for designing and implementing a

sound synthesis system for EVs. The process involves the integration of hardware and software

components to collect real-time vehicle data, synthesize engine-like sounds, and ensure seamless

communication between the EV's systems and the sound generation unit. This methodology is

divided into four key phases: system design and integration, data acquisition and transmission,

sound synthesis development, and testing and validation. Each phase is designed to ensure the

system's performance, reliability, and user experience meet the required standards.

• System Design and Integration: This phase involves developing a modular system

architecture that integrates both hardware (SPC58EC80-DISP board, sensors,

actuators) and software (firmware for the SPC58EC80-DISP board). The architecture

must facilitate efficient interaction between components, including robust

communication pathways such as CAN or UART to ensure seamless data flow.
• Data Acquisition and Transmission: Firmware will be developed for the

SPC58EC80-DISP to collect data from vehicle sensors and communicate with a

miniPC for sound synthesis. Low-level programming in C will be used to ensure real-

time data handling and communication reliability, while robust communication

protocols like CAN or SPI will be implemented to manage data flow effectively.
• Sound Synthesis Development: The miniPC, such as a Raspberry Pi, will process the

data collected from the vehicle and use advanced sound generation algorithms to create

realistic engine sounds. These algorithms will simulate different engine modes (e.g.,

idle, acceleration, deceleration) to enhance the auditory experience in alignment with

real-time vehicle conditions.

Introduction 5

• Testing and Validation: The system will undergo rigorous functional, user experience,

and environmental testing to validate its performance and reliability. Functional tests

will ensure accurate data transmission and synchronization between the EV and the

synthesized sounds. User experience testing will focus on evaluating the realism and

satisfaction of the generated sounds under various driving conditions. Environmental

testing will ensure the robustness of the system across different conditions such as

temperature and humidity.

This iterative process will help ensure that the final system is both reliable and effective in

enhancing the driving experience of electric vehicles by reintroducing a critical sensory component

that is missing in EVs compared to traditional ICE vehicles.

1.4 Comprehensive Literature Review

The use of sound synthesis in electric vehicles has emerged as a significant area of interest in
recent years, driven by the need to enhance the driver experience, improve vehicle integration, and
address safety concerns associated with the nearly silent operation of these vehicles. Unlike
traditional internal combustion engine vehicles, which provide drivers with rich auditory feedback
that supports both engagement and intuitive vehicle control, EVs often lack these sensory cues. To
address this gap, various approaches to synthetic sound generation have been developed, focusing
on creating realistic engine sounds that replicate the auditory characteristics of ICE engines. These
efforts aim to improve driver engagement, restore a familiar auditory experience, ensure safety by
making EVs more audible to pedestrians and other road users, and integrate seamlessly with
existing embedded systems in automotive applications.

This section provides a comprehensive review of the different techniques and systems that
have been developed for sound synthesis in EVs, including previous work on sound synthesis for
electric vehicles, the role of embedded systems in automotive applications, and the challenges and
future trends in this field. The review will highlight the evolution of sound synthesis methods, the
integration of embedded systems to facilitate sound generation, and the ongoing challenges in
achieving realistic, adaptable, and regulation-compliant solutions that enhance both driver
experience and public safety.

1.4.1 Previous Work on Sound Synthesis for Electric Vehicles
The use of sound synthesis in electric vehicles is a relatively new field, emerging in response

to the unique auditory challenges posed by the lack of engine noise in EVs. Previous research has

focused on various aspects of sound synthesis, including safety, driver experience, and technical

implementation. This literature review examines these areas to provide context for the present

study.

6 Introduction

1. Safety Considerations

Early studies on sound synthesis for EVs emphasized the safety implications of a nearly silent

vehicle, especially for pedestrians and cyclists. Research by (Hella GmbH & Co. KGaA, 2021)

examined the development of Acoustic Vehicle Alerting Systems (AVAS), which are designed to

produce artificial sounds that help alert pedestrians to the presence of an EV. This work

demonstrated that specific frequencies and sound patterns can effectively increase pedestrian

awareness without being overly intrusive, offering a solution that balances safety needs with sound

pollution concerns.

Further investigations by (Nikolaos Kournoutos & Jordan Cheer, 2019) examined the use of

directional speakers and adaptive sound levels to provide effective warnings while minimizing

noise pollution. Their findings suggested that sound synthesis could be tailored to the

environmental context, enhancing safety without compromising the quiet nature of EVs. This

approach allows the warning sounds to adapt to varying noise conditions, thereby reducing

unnecessary sound output in quieter environments.

Figure 1-1 Acoustic Vehicle Alerting System (AVAS). The AVAS system generates sound for nearly silent electric

vehicles to improve the safety of vulnerable road users such as pedestrians, cyclists, and children.

Introduction 7

Figure 1-1 is depicting the Acoustic Vehicle Alerting System (AVAS), a system implemented

to improve safety around electric vehicles and hybrid vehicles, which are typically much quieter

compared to traditional internal combustion engines. The diagram shows key motivations and

effects of AVAS, represented with different icons:

• Visual Impairment Assistance: AVAS aids visually impaired individuals by emitting

artificial vehicle sounds, allowing them to better detect and navigate around electric

vehicles.

• Improved Auditory Detection: AVAS addresses the challenge of low-noise EVs by adding

audible cues, ensuring that pedestrians and other road users can hear approaching vehicles,

enhancing awareness.

• Preventing Accidents with Pedestrians and Cyclists: Quieter EVs pose a risk to

pedestrians and cyclists who may not hear them, increasing the likelihood of accidents.

AVAS helps mitigate this risk by making EVs audible in low-speed environments.

• Reducing Overall Accident Risk: The implementation of AVAS aims to reduce collisions

by ensuring both pedestrians and other vulnerable road users, such as cyclists, have clear

auditory alerts of approaching electric vehicles.

The bottom part of the image visually represents how AVAS emits sounds, ensuring that

pedestrians and individuals using scooters or other small vehicles can detect and avoid electric

vehicles effectively, especially in urban areas or while navigating streets.

2. Driver Experience and Engagement

A significant body of research has focused on how sound synthesis can improve driver

experience and engagement. A study by (Tsugi Studio, 2018) on real-time engine sound synthesis

demonstrated that adding realistic engine sounds enhances driver engagement by mimicking the

auditory cues traditionally provided by internal combustion engine vehicles. The study found that

incorporating responsive, synthesized engine sounds improved drivers’ perception of acceleration

and vehicle performance, creating a more immersive and satisfying driving experience.

Similarly, (Valter Prpic, Elena Gherri, & Luisa Lugli, 2024) explored the psychological impact

of synthesized engine sounds on drivers, particularly in how auditory feedback influences speed

perception and vehicle control. Their findings showed that synthesized sounds could reduce driver

anxiety in high-speed situations by providing crucial auditory cues. Without these sounds, drivers

often underestimate their speed, potentially leading to faster driving. This research underscores the

importance of realistic sound feedback in helping drivers maintain control and feel more attuned

to the vehicle's dynamics, contributing to a more controlled and satisfying driving experience.

8 Introduction

3. Technical Implementation and Sound Design

From a technical perspective, previous research has explored various methods for generating

synthesized sounds in electric vehicles. (Lazaro, et al., 2022) investigated the use of granular

synthesis for EV sound design, focusing on how specific parameters can shape the driver’s

emotional response. Their study found that granular synthesis is particularly effective for

producing dynamic and responsive sounds that adapt in real time to changes in vehicle speed and

throttle position, providing an immersive and engaging experience. This approach highlights the

potential of granular synthesis to enhance driver satisfaction through a more authentic auditory

experience that mirrors the vehicle's operation.

Another notable contribution in sound synthesis for electric vehicles comes from Ansys

Sound: ASD GeneBOX, which focuses on integrating real-time data from the CAN bus to

modulate sound synthesis parameters. This approach allows synthesized sounds to be closely

synchronized with the vehicle's operational state, ensuring a coherent and realistic auditory

experience that enhances driver engagement. By dynamically adjusting sound based on real-time

data, ASD GeneBOX demonstrates the importance of responsive sound design in creating an

authentic experience that mirrors the driving conditions and vehicle behavior.

4. Challenges in EV Sound Generation

Generating engine-like sounds for electric vehicles presents several challenges, both technical

and perceptual. One major challenge is the realism of synthesized sounds. Achieving a sound that

feels authentic to drivers and replicates the auditory cues provided by traditional engines is

complex, particularly since electric motors operate differently from internal combustion engines.

Techniques such as granular synthesis and physical modeling need to be carefully tuned to ensure

that the generated sounds closely mirror the dynamic changes experienced during driving.

One significant challenge in generating sounds for electric vehicles is managing noise pollution

while meeting regulatory standards, particularly in urban environments. (Cesbron, et al., 2021)

explored how different road surfaces impact electric vehicle noise emissions at urban speeds,

underscoring the complexities of designing sounds that enhance safety without contributing to

excessive noise pollution. Their findings illustrate the importance of developing sound synthesis

systems that comply with noise regulations while preserving the quiet characteristics of EVs,

especially in densely populated areas where noise management is essential.

Latency is also a critical issue in EV sound generation. The system must process real-time data

from vehicle sensors and generate corresponding auditory feedback without perceptible delay. Any

lag between vehicle actions and the associated sound can disrupt the driver's experience and

potentially reduce trust in the system. Therefore, low-latency sound processing algorithms and

efficient hardware-software integration are necessary to provide a seamless driving experience.

Introduction 9

Another area of exploration in EV sound synthesis is the personalization of auditory

experiences to cater to individual driver preferences. (Chang K., Cho G., Song W., & Kim M.,

2022) investigated the design of personalized EV driving sounds that adapt based on the driver's

emotional state, using real-time emotion recognition to adjust sound profiles dynamically. This

approach allows the auditory feedback in EVs to be more responsive and tailored to the driver’s

mood, enhancing user satisfaction and engagement. By aligning sound synthesis with the driver’s

emotional needs, this study demonstrates the potential of customized soundscapes to create a more

enjoyable and immersive driving experience.

5. Challenges and Future Directions

Despite the advancements made in sound synthesis for EVs, several challenges remain. One

major challenge is achieving a balance between providing sufficient auditory feedback for driver

engagement while minimizing noise pollution. Research by (Cesbron, et al., 2021) highlighted the

complexities involved in designing EV sounds that are informative yet unobtrusive, particularly in

urban environments where noise regulations are strict. Their study on the influence of road surfaces

on EV noise emissions underscores the importance of carefully crafted soundscapes that enhance

driver awareness without contributing excessively to urban noise.

Another area for future exploration is the personalization of synthesized sounds. Studies by

(Chang K., Cho G., Song W., & Kim M., 2022) have begun to explore how sound profiles could

be customized based on real-time emotion recognition, allowing soundscapes to adapt to the

driver's mood and preferences. This level of customization has the potential to improve driver

satisfaction significantly, making EVs more appealing to a broader audience by offering a more

personalized and engaging auditory experience.

1.4.2 Embedded Systems Used in Automotive Applications
Embedded systems play a crucial role in modern automotive applications, contributing to

safety, efficiency, and overall vehicle performance. The increasing complexity of vehicle

electronics has led to the adoption of sophisticated embedded platforms that integrate various

subsystems, including engine control, infotainment, and advanced driver assistance systems

(ADAS). This literature review focuses on the use of embedded systems in automotive

applications, highlighting their evolution, current trends, and relevance to sound synthesis in

electric vehicles.

1. Evolution of Embedded Systems in Automotive Applications

The role of embedded systems in automotive applications has grown considerably over the

past few decades. Initially, automotive electronics focused on basic tasks such as electronic

ignition and fuel injection control, limited by the technology of the time and operating in isolation.

However, advancements in semiconductor technology during the 1960s and beyond enabled the

development of more capable automotive systems.

10 Introduction

The introduction of powerful microcontrollers in the 1990s, particularly those based on 32-bit

architectures, allowed embedded systems to support more complex functions. This new level of

processing power enabled advancements in engine management and real-time diagnostics,

providing vehicles with greater efficiency and performance capabilities.

In the 2000s, embedded systems became more interconnected as technologies like the CAN

bus allowed different electronic control units (ECUs) to communicate seamlessly within a vehicle.

This networking capability enabled the integration of multiple subsystems, enhancing both the

functionality and reliability of modern vehicles.

2. Real-Time Processing and Reliability

Modern automotive embedded systems must meet strict real-time and reliability requirements,

particularly for safety-critical applications. Real-time operating systems (RTOS) play a crucial role

in automotive ECUs, providing the deterministic response times required for functions such as

anti-lock braking systems (ABS) and airbag deployment. Standards like AUTOSAR have defined

RTOS frameworks specifically for automotive applications to ensure the precision and reliability

needed for these critical tasks. The SPC58EC80-DISP, featuring a 32-bit Power Architecture®

e200z4 dual-core CPU, is an example of a microcontroller capable of supporting such demanding

requirements. With interfaces for CAN FD, Ethernet, FlexRay, and LIN, it enables real-time data

acquisition and decision-making, making it well-suited for applications such as sound synthesis

and ADAS.

3. Communication Protocols and Data Handling

Communication protocols are fundamental to the effective operation of automotive embedded

systems. The CAN bus has long been the standard for in-vehicle communication due to its

robustness and efficiency in managing real-time data. More recently, advanced protocols like

FlexRay and Ethernet have gained traction in the automotive industry, offering higher data rates

and supporting more complex interactions between ECUs.

The SPC58EC80-DISP board, used in this research, leverages these advanced communication

protocols to facilitate data collection and distribution for the sound synthesis system. By utilizing

CAN for real-time sensor data acquisition and Ethernet for high-speed communication with

external processing units, this embedded system can deliver the performance required for seamless

auditory feedback.

Introduction 11

4. Embedded Systems in Sound Synthesis

The use of embedded systems in sound synthesis for EVs is a relatively recent development.

Modern microcontrollers, particularly those based on ARM Cortex architectures, are increasingly

used to generate engine-like sounds in EVs, providing real-time auditory feedback that responds

to changes in vehicle speed and load. These microcontrollers leverage digital signal processing

(DSP) algorithms to create realistic and responsive sounds, enhancing both driver experience and

pedestrian safety. Techniques such as granular synthesis and physical modeling have proven

effective on microcontrollers equipped with DSP capabilities, enabling dynamic sound generation

that adapts to driving conditions.

In the context of this thesis, the SPC58EC80-DISP board functions as the main controller,

gathering sensor data and interfacing with a sound synthesis unit. With its high processing power

and diverse communication interfaces, the board ensures that synthesized sounds are precisely

aligned with the vehicle’s operational state, delivering real-time auditory feedback that contributes

to a more immersive driving experience.

1.4.3 Challenges and Future Trends

The development of sound synthesis systems for electric vehicles presents several challenges
that must be addressed to achieve widespread adoption and effectiveness. One major technical
challenge lies in achieving a balance between realistic auditory feedback for driver engagement
and compliance with regulatory noise standards, especially in urban environments. Synthesized
engine sounds must be informative yet unobtrusive, requiring the use of sophisticated algorithms
to create dynamic soundscapes that adapt to changing driving conditions. Additionally, these
soundscapes must be carefully crafted to prevent excessive noise pollution, which is increasingly
regulated in densely populated areas.

Another critical challenge is managing latency in sound generation. To ensure a seamless
driving experience, the system must generate auditory feedback with minimal delay. This requires
efficient real-time processing capabilities, integrating data from vehicle sensors and producing
sound outputs that align precisely with vehicle dynamics. Any lag between vehicle actions and
corresponding auditory feedback can reduce driver trust and diminish the sense of control, making
low-latency systems crucial for effective sound synthesis.

Security is also a growing concern as sound synthesis systems become more interconnected
with other vehicle subsystems. Ensuring robust communication security to protect against cyber
threats is vital, particularly as vehicles become more connected through external networks and
protocols. The complexity of ensuring the integrity of data transmission while maintaining system
responsiveness presents a significant challenge that developers must overcome.

12 Introduction

In terms of future trends, the integration of artificial intelligence (AI) and machine learning
(ML) is expected to revolutionize sound synthesis in EVs. These technologies can be used to
personalize the driving experience by analyzing driver behavior and preferences. For instance, AI-
driven sound synthesis systems could adjust auditory feedback based on individual driving styles,
providing more personalized and engaging auditory experiences. Machine learning could also be
used for predictive maintenance, using real-time data analytics to anticipate component wear or
failures, allowing for proactive interventions that enhance both system reliability and sound
accuracy.

Another emerging trend is the development of adaptive sound systems that respond not only
to vehicle dynamics but also to external environmental factors. By incorporating data on ambient
noise levels, these systems can dynamically modify sound profiles to enhance clarity and maintain
auditory feedback quality in various driving environments. This adaptability ensures that the
generated sounds remain effective under different conditions, such as heavy urban traffic or quiet
rural settings.

Additionally, advancements in embedded systems are enhancing the capabilities of sound
synthesis units. Microcontrollers, such as the SPC58EC80-DISP board, with high processing
power and diverse communication interfaces, are enabling more sophisticated data integration and
processing, facilitating the real-time generation of high-quality, immersive auditory feedback. The
integration of DSP (Digital Signal Processing) capabilities directly into microcontrollers is also
allowing for more complex and realistic sound modeling techniques, such as granular synthesis
and physical modeling, which enhance the authenticity of synthesized sounds.

The future of sound synthesis in EVs will also likely involve increased collaboration between
automotive manufacturers and regulatory bodies to establish standardized requirements for vehicle
auditory feedback. As the demand for personalized, yet regulation-compliant, auditory experiences
grow, sound synthesis technologies must evolve to meet both consumer expectations and
legislative standards.

Conclusion

The literature on sound synthesis for electric vehicles provides a comprehensive foundation

for understanding the various dimensions of this emerging field. Safety, driver experience, and

technical implementation are key areas that have been extensively studied, highlighting both the

potential benefits and the challenges of introducing synthesized sounds in EVs. Additionally, the

review of embedded systems in automotive applications underscores their essential role in

enabling sophisticated vehicle functions, such as real-time data processing and communication,

which are critical to the successful implementation of a sound synthesis system. This thesis builds

on previous research by focusing on real-time data integration and the use of advanced sound

generation techniques to enhance driver engagement and safety, addressing the sensory gap left by

the absence of traditional engine sounds in electric vehicles.

Background and Analysis 13

2 Background and Analysis

The use of embedded systems in modern EVs is pivotal for real-time data collection,

communication between various vehicle subsystems, and efficient processing of sensor data. Such

systems must be robust, compliant with automotive standards, and capable of handling real-time

operations with minimal latency. In this chapter, we will analyze different embedded system

platforms based on their ability to meet the demands of automotive applications, specifically

focusing on communication protocols, real-time data collection, and processing capabilities. The

chapter concludes by presenting the SPC58EC80-DISP board as the superior choice for this project

due to its automotive-specific design and features.

2.1 Key Requirements for Automotive Embedded Systems
Before discussing alternative platforms, it’s essential to define the key requirements for an

embedded system in EVs, particularly those focused on real-time data collection and processing:

• Automotive communication protocols: The system must support protocols such as CAN,

LIN, and potentially FlexRay or Ethernet to enable communication between ECUs and

sensors.

• Real-time processing: The system must handle data in real-time, ensuring minimal latency

in processing and acting on the sensor data to improve vehicle safety and performance.

• Reliability and durability: Automotive-grade systems must withstand harsh

environments, including temperature extremes, vibrations, and EMI.

• Low power consumption: EVs require power-efficient embedded systems to ensure they

do not drain the vehicle's power reserves.

• Scalability and flexibility: The embedded system should allow easy integration with

additional sensors or future system upgrades.

• Automotive compliance: The system must comply with automotive standards such as ISO

26262 (functional safety) and AEC-Q100 (qualification for integrated circuits).

14 Background and Analysis

2.2 Analysis of Alternative Embedded Systems

2.2.1 NXP S32K Series
The NXP S32K family of microcontrollers is designed for automotive applications, with a

focus on safety, reliability, and support for automotive communication protocols. The main

characteristics are shown in the Table 2-1.

Category Feature S32K1XX Characteristics

Core Architecture Arm Cortex-M4F (32-bit)

Clock Speed Up to 112 MHz (HSRUN mode)

Floating Point Unit (FPU) Single Precision

Memory Flash Memory Up to 2 MB

SRAM Up to 256 KB with ECC

FlexNVM Up to 64 KB for EEPROM emulation

Cache 4 KB Code Cache

Communication CAN Up to 3 FlexCAN modules with optional CAN-FD

LIN Up to 3 LPUART modules supporting LIN protocol (v1.3
to v2.2A)

SPI Up to 3 Low-Power SPI (LPSPI) modules

I²C Up to 2 Low-Power I²C (LPI2C) modules

Ethernet 1 x 10/100 Mbps Ethernet (with IEEE 1588 support)

FlexIO Configurable for UART, I²C, SPI, I²S, PWM, etc.

Analog ADC Up to 2 x 12-bit ADCs (32 channels per module)

Comparator 1 x Analog Comparator with 8-bit DAC

Timers Timers Up to 8 FlexTimer modules (16-bit counters with PWM,
IC/OC support)

Low-Power Timers 1 Low-Power Timer, 1 Low-Power Interrupt Timer, and 2
Programmable Delay Blocks (PDB)

Safety ISO Compliance ASIL B or D (depending on configuration)

Watchdog Timers Internal Watchdog and External Watchdog Monitor

CRC Channels Integrated CRC unit

Error Correction ECC on Flash and SRAM

Power Low Power Modes HSRUN, RUN, STOP, VLPR, and VLPS modes

Voltage Range 2.7V to 5.5V

Debug Debug Interfaces JTAG, Serial Wire Debug (SWD), and Trace support

Package Available Packages QFN (32-pin), LQFP (48/64/100/144/176-pin), MAPBGA
(100-pin)

Qualification AEC-Q100 compliant for automotive applications

Table 2-1 NXP semiconductors S32K1xx microcontroller family characteristics

Background and Analysis 15

• Strengths:

o Automotive protocols support: The S32K series supports CAN, LIN, and FlexRay

communication, which makes it suitable for real-time data exchange in EVs.

o Real-time processing: Equipped with ARM Cortex-M processors, the S32K series

is designed for low-latency operation and can handle real-time data processing

efficiently.

o Automotive-grade: The S32K microcontrollers are qualified for automotive use,

with certifications for functional safety (ISO 26262).

o Low power consumption: Designed to be energy-efficient, making them ideal for

EV applications.

• Weaknesses:

o Development complexity: Although the S32K series offers automotive-grade

features, developing and optimizing code for real-time tasks can be more complex,

requiring expertise in automotive toolchains and safety standards.

o Limited high-end processing: While sufficient for most real-time data collection

tasks, the processing power may not be as robust as more advanced systems for

complex data analysis or advanced processing algorithms.

• Conclusion: The NXP S32K series is a strong contender for automotive applications,

providing the necessary communication protocol support and reliability for data collection

and processing, though it may be limited in more computationally demanding tasks.

16 Background and Analysis

2.2.2 Texas Instruments TMS570
The Texas Instruments TMS570 series is a family of ARM Cortex-R-based microcontrollers

designed for safety-critical automotive applications, particularly those requiring high performance

and reliability. The main characteristics are shown in the Table 2-2.

Category Feature TMS570LS0432 Characteristics

Core

Architecture Dual ARM Cortex-R4F running in lockstep

Clock Speed Up to 80 MHz

Instruction Protection ECC (Error Correction Code) on Flash and RAM

Memory

Flash Memory 384 KB (Program Flash with ECC)

SRAM 32 KB with ECC

Data Flash 16 KB (Emulated EEPROM with ECC)

Communication

CAN 2 x DCAN (CAN 2.0B compliant)

LIN 1 UART with LIN 2.1 support

SPI
2 Standard SPI modules + 1 Multibuffered SPI

(MibSPI)

Analog ADC 12-bit ADC with 16 channels and 64 result buffers

Timers
High-End Timer

Next Generation High-End Timer (N2HET) with 19
programmable pins

Quadrature Encoder Enhanced QEP for position and motion control

Safety

ISO Compliance ISO 26262 ASIL D compliant

Watchdog Timers Built-in Digital Watchdog Timer

Error Monitoring Error Signaling Module (ESM) with external error pin

Self-Test Built-In Self-Test (BIST) for CPU and RAM

Power
Low Power Modes

Supports low-power modes and optimized clock
gating

Voltage Range Core: 1.14V–1.32V, I/O: 3.0V–3.6V

Debug Debug Interfaces JTAG, ARM CoreSight, IEEE 1149.1 boundary scan

Package
Available Packages LQFP-100

Qualification AEC-Q100 for automotive applications

Table 2-2 Texas Instruments TMS570LS0x32 Microcontroller characteristics

Background and Analysis 17

• Strengths:

o Automotive safety: The TMS570 series is compliant with ISO 26262 for functional

safety, making it ideal for critical automotive systems.

o Real-time processing: With the Cortex-R architecture, these microcontrollers are

designed for real-time processing tasks and are capable of handling complex data

processing with minimal latency.

o Communication support: TMS570 microcontrollers support automotive

communication protocols such as CAN, LIN, and FlexRay, ensuring seamless

integration into EV networks.

o High performance: Capable of handling more demanding processing tasks due to

the real-time architecture and dual-core lockstep features for redundancy.

• Weaknesses:

o Higher power consumption: While offering high performance, the TMS570 series

generally consumes more power compared to lower-end automotive

microcontrollers, which might be a disadvantage in EV applications where power

efficiency is critical.

o Complexity: Like the NXP S32K series, the TMS570 requires specialized knowledge

and tools for development and is best suited for teams with significant automotive

experience.

• Conclusion: The TMS570 excels in safety-critical applications with higher real-time

processing demands. However, its higher power consumption and development complexity

may limit its suitability for certain EV data collection tasks.

18 Background and Analysis

2.2.3 Renesas RH850
Renesas RH850 microcontrollers are known for their use in automotive applications requiring

high performance, low power, and reliability. The main characteristics are shown in the Table 2-3.

Category Feature RH850/F1L Characteristics

Core

Architecture G3KH core

Clock Speed Up to 240 MHz

Floating Point Unit
(FPU)

Supported (Single Precision)

Memory

Flash Memory Up to 4 MB with ECC

SRAM Up to 120 KB with ECC

Retention RAM Supported for standby modes

Communication

CAN 2 x CAN-FD

LIN Supported via LIN channels

SPI Up to 6 channels

UART Multiple channels

Ethernet Optional (10/100 Mbps)

Analog
ADC 8 x 12-bit ADC channels

Comparators Supported

Timers

General-Purpose Timers Multiple timer channels

Watchdog Timers Dual Watchdog (Windowed and Interval)

Real-Time Clock Supported

Safety

ISO Compliance ISO 26262 ASIL D compliant

Fault Collection and
Control Unit

Integrated

Error Correction ECC on Flash and RAM

Power
Low Power Modes STOP, HALT, Retention Standby

Voltage Range 3.3V and 5V operation

Debug Debug Interfaces JTAG, On-chip Debug Unit (OCDU)

Package
Available Packages QFP and BGA packages

Qualification AEC-Q100 for automotive applications

Table 2-3 Renesas RH850/F1L microcontroller family characteristics

Background and Analysis 19

• Strengths:

o Power efficiency: The RH850 series is highly optimized for low power consumption,

making it ideal for EVs.

o Automotive-grade communication: These microcontrollers support CAN, LIN, and

Ethernet AVB, providing flexibility in data collection and real-time

communication.

o Real-time capabilities: The RH850 series offers robust real-time processing

features, including high-speed data collection and processing, which is essential for

EV applications.

o Automotive compliance: The RH850 is ISO 26262 compliant, ensuring that it meets

functional safety requirements for automotive systems.

• Weaknesses:

o Limited ecosystem: While the RH850 provides excellent performance for real-time

applications, its development ecosystem is somewhat limited compared to other

platforms like NXP or TI, potentially slowing development.

o Moderate performance: While efficient for many automotive tasks, the RH850 may

not handle extremely complex real-time analytics or tasks requiring advanced

processing power as well as high-end systems like TMS570.

• Conclusion: The Renesas RH850 strikes a good balance between power efficiency and

real-time processing, making it a strong choice for data collection in EVs, though its

ecosystem and development support may be limiting for more advanced tasks.

20 Background and Analysis

2.2.4 The SPC58EC80-DISP Board: Justification for Selection
The SPC58EC80-DISP board is part of STMicroelectronics' SPC5 family, designed

specifically for automotive applications. It offers distinct advantages over the alternatives,

particularly in terms of real-time processing, communication support, and automotive compliance.

The main characteristics are shown in the Table 2-4.

Category Feature SPC58EC80 Characteristics

Core

Architecture Dual e200z420n3 (Power Architecture)

Clock Speed Up to 180 MHz

Instruction Cache 8 KB per core

Data Cache 4 KB per core

Floating Point Unit Single Precision

Memory
Flash Memory 4 MB Flash (with 128 KB data flash)

SRAM
384 KB general-purpose + 128 KB local data RAM

(64 KB per core)

Communication

CAN 8 x CAN-FD

FlexRay 1 x Dual Channel

Ethernet
1 MAC (10/100 Mbps, VLAN, AVB, and time-

stamping support)

LIN 18 LINFlexD modules (UART-compatible)

SPI 8 x DSPI

I²C 1 channel

Analog ADC
5 x SAR ADC (3 x 12-bit, 1 supervisor 12-bit, 1

standby 10-bit ADC)

Timers
Timers 64 x eMIOS (Enhanced Modular I/O Subsystem)

System Timers 8 x PIT (Periodic Interrupt Timer)

Safety

ISO Compliance ISO 26262 ASIL B Capable

Watchdog Timers 3 Software Watchdog Timers

CRC Channels 2 CRC units

Fault Collection and Control
Unit

Integrated FCCU

Power
Low Power Modes HALT, STOP, Standby with RTC, Smart Standby

Supply Voltage 3.3V / 5V

Debug Debug Interfaces
High-speed SIPI/LFAST, Nexus Development

Interface, JTAG

Package
Available Packages eLQFP-176, eTQFP-144, eTQFP-100

Qualification AEC-Q100 for automotive applications

Table 2-4 STMicroelectronics SPC5 microcontroller family characteristics

Background and Analysis 21

To have a better understanding of characteristics of all mentioned MCUs, Table 2-5 shows and

compares their characteristics.

Category SPC58EC80-DISP S32K1XX TMS570LS0432 RH850/F1L

Core
Dual e200z420n3

(Power Arch.)
Arm Cortex-M4F

Dual Cortex-R4F
(Lockstep)

G3KH Core

Clock Speed 180 MHz Up to 112 MHz 80 MHz 240 MHz

Flash Memory 4 MB Up to 2 MB 384 KB Up to 4 MB

RAM 384 KB Up to 256 KB 32 KB 120 KB

CAN 8 x CAN-FD Up to 3 x CAN-FD 2 x CAN 2 x CAN-FD

FlexRay 1 x Dual Channel No No Yes

Ethernet
10/100 Mbps with

VLAN
Optional No Optional

ADC
5 x 12-bit SAR

ADCs
2 x 12-bit ADCs

12-bit, 16
channels

8 x 12-bit ADCs

Safety
Compliance

ISO 26262 ASIL B
capable

ASIL B/D capable ISO 26262 ASIL D ISO 26262 ASIL D

Communication
Comprehensive
(UART, SPI, LIN,
I²C, Ethernet)

Moderate (UART,
SPI, I²C, CAN)

Limited (UART,
CAN, SPI)

Strong (UART, SPI,
CAN, Ethernet

optional)

Power Modes
Advanced (HALT,
STOP, Standby)

HSRUN, RUN,
STOP modes

Basic low-power
modes

Multiple low-
power modes

Table 2-5 Comparative table among MCUs

2.3 Justification
Extensive Communication Capabilities:

EV systems rely on CAN and advanced networking protocols to gather real-time data from

multiple sensors and ECUs.

The SPC58EC80 supports 8 CAN-FD channels, FlexRay, and Ethernet, enabling seamless

integration with the vehicle’s complex communication network.

Alternatives like the S32K1XX and RH850/F1L offer fewer CAN-FD channels, and the

TMS570LS0432 lacks CAN-FD entirely.

High Processing Power:

The dual-core architecture (e200z420n3) of the SPC58EC80 ensures robust real-time

processing, crucial for handling sensor data and generating synthesized sound outputs without

latency.

22 Background and Analysis

Although the RH850/F1L offers a higher clock speed (240 MHz), its single-core architecture

may limit multitasking capabilities.

Memory Resources:

The SPC58EC80 provides 4 MB Flash and 384 KB RAM, sufficient for data-intensive tasks

like processing sensor inputs and managing sound synthesis algorithms.

The TMS570LS0432 has significantly lower memory (384 KB Flash, 32 KB RAM), and the

S32K1XX and RH850/F1L offer comparable but less versatile memory configurations.

Safety Features:

While the SPC58EC80 is ASIL B capable, it supports features like multiple watchdog timers

and CRC units, which are sufficient for your non-safety-critical sound synthesis application.

Achieving ASIL D is unnecessary for this use case.

Development Ecosystem:

SPC5Studio offers a robust development environment tailored for automotive applications,

streamlining your project’s development lifecycle.

Conclusion

The SPC58EC80-DISP stands out as the most suitable microcontroller for your project. Its:

Unmatched communication capabilities,

Sufficient processing power,

Ample memory resources, and

Automotive-focused design with a strong development ecosystem

make it the best choice for synthesizing engine sounds in EVs. This board not only meets your

project’s technical requirements but also provides scalability for future enhancements.

Methodology 23

3 Methodology
The proposed methodology outlines a systematic approach for designing and implementing a

sound synthesis system for EVs. The process involves the integration of hardware and software

components to collect real-time vehicle data, synthesize engine-like sounds, and ensure seamless

communication between the EV's systems and the sound generation unit. This methodology is

divided into four key phases: system design and integration, data acquisition and transmission,

sound synthesis development, and testing and validation. Each phase is designed to ensure the

system's performance, reliability, and user experience meet the required standards.

3.1 System Design and Integration

3.1.1 Architecture Development
Design a modular system architecture incorporating both hardware (SPC58EC80-DISP board,

sensors, actuators) and software (firmware, sound synthesis code). The architecture design forms

the foundation of the system, ensuring all components are organized efficiently and interact

seamlessly. The goal is to create a modular system architecture that integrates both hardware and

software components, allowing flexibility, scalability, and ease of troubleshooting (Figure 3-1).

Key considerations include:

• Hardware Integration: The primary hardware includes the SPC58EC80-DISP board, which

serves as the central unit responsible for gathering data from the EV’s sensors and actuators.

Additional sensors (e.g., for speed, throttle position, and braking) are integrated to capture

real-time vehicle metrics. These sensors provide the necessary inputs for sound synthesis.

The architecture should ensure easy hardware interfacing and reliable power management.

• Modular Design: A modular approach allows each component—data collection,

communication, and sound synthesis—to function independently while interacting with the

other modules. This makes it easier to update or troubleshoot individual parts without

affecting the entire system. Modules can include the data acquisition module (for handling

sensor inputs), the communication module (for transmitting data), and the sound generation

module (for synthesizing and outputting sounds).

• Software Integration: On the software side, the system will incorporate low-level firmware

running on the SPC58EC80-DISP to handle real-time data collection and communication

with the sound synthesis software. The sound generation code will be executed on a miniPC,

using advanced algorithms to synthesize engine sounds. The software must be designed to

ensure seamless interaction between the hardware and the sound synthesis engine,

maintaining synchronization with vehicle performance in real-time.

24 Methodology

• Scalability and Flexibility: The system should be designed to accommodate future

expansions or modifications. For instance, additional sensors or changes to sound synthesis

algorithms can be incorporated without redesigning the entire system. Using a modular

design also enables easier upgrades to either the hardware (e.g., a newer version of the

SPC58EC80-DISP) or software (e.g., updated synthesis algorithms) without major

architectural changes.

• Communication Pathways: The architecture must ensure robust communication between

the SPC58EC80-DISP board and the miniPC. This can be achieved using a reliable

communication protocol (such as CAN or UART), which allows for fast and secure data

exchange. The architecture should also include error detection and handling mechanisms to

ensure the system remains resilient to potential communication errors.

In summary, the architecture design is essential to ensuring that the system components work

together efficiently, and that the system remains flexible, scalable, and easy to maintain. By

designing with modularity in mind, each component can be independently developed, tested, and

optimized, while still contributing to the overall system performance.

Figure 3-1 Overall system architecture , showing the main loop of process and process which are running in

background to have a real-time response to the system

Methodology 25

3.1.2 EV System Integration
Establish how the SPC58EC80-DISP board will interface with the EV’s CAN bus or other

vehicle communication systems. Define the signals and parameters (e.g., speed, throttle position)

to be monitored. The integration of the SPC58EC80-DISP board with the EV is a critical part of

the system design, as it ensures that real-time vehicle data is accurately captured and utilized to

drive the sound synthesis engine. This integration must account for the complexity of the EV’s

electronic architecture, particularly the communication systems used within the vehicle, such as

the CAN bus.

• Interfacing with the EV’s CAN Bus: Most modern electric vehicles use the CAN bus

protocol to manage communication between various ECUs such as the engine control unit,

battery management system, and transmission control unit. The CAN bus allows these

components to exchange real-time data efficiently. The SPC58EC80-DISP board must

interface with the EV’s CAN bus to collect data such as speed, throttle position, battery state

of charge (SoC), motor torque, and other relevant parameters that influence vehicle

dynamics.

o CAN Bus Protocol: The CAN bus operates using a multi-master, message-oriented

protocol. The SPC58EC80-DISP will need to be configured as a listener on this bus

to retrieve the desired signals without interrupting or disturbing the communication

flow between other ECUs. The firmware running on the SPC58EC80-DISP must be

designed to parse and decode the CAN messages that correspond to vehicle metrics

such as RPM, throttle, and acceleration. These signals will then be used as inputs to

the sound synthesis engine to produce the desired audio effects that mimic traditional

engine sounds.

o Signal Definition and Parameter Selection: Defining which signals and parameters

are relevant for sound synthesis is an important design step. For example, engine

RPM is a key metric for sound synthesis as it directly influences the pitch and

intensity of engine sounds. Other important signals may include gear selection,

acceleration/braking status, and speed, as they contribute to the dynamic nature of the

synthesized sound. The process of signal definition involves studying the CAN bus

message structure, identifying key parameters, and implementing filters to extract

this information in real-time.

o CAN Message Decoding: Each signal or parameter carried over the CAN bus is

encoded in a specific format, often requiring decoding algorithms to interpret the data

correctly. The integration will involve setting up the SPC58EC80-DISP to decode

relevant CAN identifiers (CAN IDs) and map them to the corresponding physical

parameters of the vehicle. For instance, a specific CAN ID might represent vehicle

speed, which can be converted from its raw binary form into a human-readable value

that feeds into the sound synthesis algorithms.

26 Methodology

• Alternate Communication Protocols: In some cases, depending on the EV’s architecture,

other communication protocols like FlexRay, Ethernet, or LIN (Local Interconnect Network)

may be in use. FlexRay, for example, offers higher data rates and redundancy, which might

be required for more advanced vehicles or autonomous driving systems. The SPC58EC80-

DISP must be flexible enough to adapt to different communication protocols in case the

vehicle uses alternatives to CAN. In such cases, the communication interface needs to be

adjusted accordingly, with proper decoders or transceivers added to interface with the

specific vehicle bus system.

• Wiring and Electrical Considerations: Physical integration requires careful attention to

wiring and electrical connections. The SPC58EC80-DISP board should be connected to the

EV’s communication bus through the appropriate transceivers (e.g., CAN transceivers) to

ensure stable data transfer. Proper grounding, shielding, and power supply considerations are

also essential to avoid electromagnetic interference (EMI) that could corrupt the signals.

• Calibration and Synchronization: The signals coming from the EV need to be calibrated

to match the expected input ranges of the sound synthesis algorithms. For instance, the range

of throttle positions may need to be normalized before being used to modulate sound

parameters. Additionally, synchronization between the data input and sound output is crucial

to prevent latency or mismatches, which could degrade the user experience. Implementing

buffering or time-stamping techniques can ensure real-time synchronization between the

vehicle’s data and the sound engine's output.

• Safety and Diagnostic Integration: Safety is an essential aspect of EV system integration.

The system should include error detection mechanisms that monitor the communication

bus for faults, such as missing or corrupted CAN messages. Additionally, integrating

diagnostic capabilities, such as logging errors or abnormal signals, will help in

troubleshooting during development and testing. The SPC58EC80-DISP board can be

programmed to report anomalies that could impact both the system's performance and safety.

In conclusion, integrating the SPC58EC80-DISP board with the EV's CAN bus and other

communication systems is a multi-step process that requires precise understanding of the vehicle’s

electronic architecture. This phase ensures the board collects accurate, real-time data for sound

synthesis, which is vital for producing an authentic and responsive auditory experience that mirrors

traditional engine behavior.

Methodology 27

3.1.3 Hardware Configuration
Determine the placement of sensors, the wiring of the board, and power management. Choose

supporting components, such as transceivers, for reliable communication between systems. In this

phase, the physical setup and electrical connections of the system are designed to ensure the

hardware functions as intended. This involves careful consideration of the placement of sensors,

wiring, power management, and the selection of supporting components to facilitate reliable data

collection and communication between systems.

• Sensor Placement: The strategic placement of sensors is crucial to ensure accurate and real-

time data collection. Depending on the vehicle's architecture and the specific data required

for sound synthesis, sensors must be positioned to measure parameters such as speed, throttle

position, braking force, and motor load. For example:

o Speed sensors can be placed on the wheels or connected to the vehicle’s drivetrain

to capture real-time velocity.

o Throttle position sensors are typically attached to the throttle pedal or motor

controller, providing data on how much power is being demanded by the driver.

o Brake sensors detect when and how forcefully the brakes are applied, allowing for

sound modulation (e.g., simulating deceleration sounds).

o Vibration sensors or accelerometers may also be added to enhance sound realism by

capturing physical vibrations related to vehicle dynamics, which can then be

translated into auditory feedback.

Careful consideration must be given to environmental conditions, such as temperature and

vibration, to ensure sensor durability and performance over time. Sensor calibration and alignment

with vehicle components are also critical to ensure the data collected is accurate and directly

correlates with vehicle behavior.

• Wiring Design and Signal Integrity: The wiring of the board to the sensors and other

components needs to be designed with signal integrity in mind. Poor wiring or incorrect

connections can introduce noise, latency, or signal loss, which can compromise system

performance. Key considerations include:

o Cable Routing: Wires should be routed to minimize their exposure to sources of

EMI, such as the EV’s motor or battery systems. Careful routing and shielding are

needed to avoid signal degradation, especially for analog sensors that are sensitive to

noise.

o Signal Grounding: Proper grounding is essential to avoid ground loops and other

electrical issues that can affect the integrity of the sensor data. Each component,

including the SPC58EC80-DISP board and sensors, should share a common ground,

and additional EMI shielding may be applied to the wiring if needed.

28 Methodology

o Connector Types: Choosing the right connectors (e.g., Molex, JST, or waterproof

automotive connectors) ensures reliable, secure connections between the sensors and

the main board. Weather-resistant connectors are essential in environments exposed

to dust, moisture, or high temperatures, particularly for systems mounted outside the

vehicle cabin.

• Power Management: Power management is another key element of hardware configuration.

The SPC58EC80-DISP board and all connected sensors and components require stable

power supplies. In an EV, the power management system must account for various power

sources (e.g., the main vehicle battery, auxiliary systems) and their associated voltages.

Considerations include:

o Voltage Regulation: EV systems typically operate at higher voltages (e.g., 48V or

more) for the main propulsion system, while the SPC58EC80-DISP board and

sensors may require lower voltage levels (e.g., 3.3V or 5V). DC-DC converters or

voltage regulators will be needed to step down the voltage appropriately for different

components, ensuring stable operation without voltage spikes or drops that could

damage the board or sensors.

o Power Distribution: Power must be distributed evenly across the system, with

consideration for current draw by each component. For instance, sensors may have

varying power requirements depending on their type (e.g., analog vs. digital), and the

wiring should be designed to handle these current levels safely.

o Power Protection: Implementing fuses or current limiters ensures the system is

protected from short circuits, overloads, or power surges. Additionally, the system

should include reverse polarity protection to prevent accidental damage due to

improper wiring.

• Component Selection and Integration: Choosing the right supporting components is

crucial to ensure the entire system functions reliably and efficiently. Key supporting

components include:

o Transceivers: The SPC58EC80-DISP board will need CAN transceivers (or

transceivers for the appropriate communication protocol) to facilitate data

transmission between the vehicle’s communication bus and the board itself. These

transceivers convert the data from the differential CAN signals to digital signals that

can be processed by the board’s microcontroller.

o Signal Conditioning Circuits: Signal conditioning circuits may be required to

ensure that the sensor data is compatible with the board’s ADCs or communication

inputs. This can include amplifiers, filters (e.g., low-pass filters to remove noise), or

level shifters to match signal levels with the board’s requirements.

Methodology 29

o Buffering and Isolation: In cases where signals may need to travel long distances or

interface with noisy systems, signal buffers or optocouplers may be used to ensure

that signals are transmitted cleanly and are electrically isolated from the rest of the

vehicle's systems. This reduces the risk of electrical noise or faults in one part of the

system affecting other components.

o Cooling Solutions: Depending on the power requirements and the environment in

which the system operates, passive or active cooling systems (e.g., heatsinks or fans)

may be necessary to dissipate heat generated by the board or components.

• Mechanical Considerations: The physical mounting of the SPC58EC80-DISP board,

sensors, and other hardware must also be taken into account to ensure longevity and

reliability. The system should be housed in a vibration-resistant enclosure, particularly in

vehicles where components are exposed to mechanical stress. Enclosures should also be IP-

rated for protection against dust and water ingress, particularly if mounted outside or near

high-exposure areas of the vehicle.

In conclusion, a well-planned hardware configuration ensures the reliable operation of the

system, with robust power management, signal integrity, and component integration being key

factors. Each element, from sensor placement to wiring, plays a role in ensuring that the system

captures accurate data, processes it efficiently, and communicates with the sound synthesis system

effectively, all while remaining resilient to real-world conditions such as vibration and

electromagnetic interference.

3.2 Data Acquisition and Transmission
The project involves developing low-level firmware for the SPC58EC80-DISP board to handle

real-time data collection from electric vehicle sensors, including accelerometers and speed sensors.

This firmware directly interfaces with hardware to collect, process, and transmit data in real-time,

ensuring reliable system performance. Communication protocols such as CAN, UART, and SPI

are implemented to transmit preprocessed sensor data to a miniPC for dynamic EV sound

synthesis. To ensure robustness, error-checking mechanisms are integrated to maintain data

integrity. Preprocessing of sensor data, including noise filtering and sensor calibration, is crucial

to ensure only relevant and accurate information is transmitted, thereby optimizing the system’s

efficiency and the quality of synthesized sound.

30 Methodology

3.2.1 Firmware Development
Develop firmware for the SPC58EC80-DISP using low-level programming (C or assembly) to

handle data collection from EV sensors (e.g., accelerometers, speed sensors). Optimize the

firmware for real-time operation. Firmware development for the SPC58EC80-DISP board is one

of the most critical steps in ensuring that the system can reliably collect, process, and transmit data

in real-time from the electric vehicle's sensors. Since the firmware runs at a low level, it is

responsible for interfacing with the hardware directly, handling tasks such as communication with

the EV’s sensors, data acquisition, real-time processing, and efficient data transmission to the

miniPC. The development of this firmware requires a deep understanding of embedded

programming, real-time systems, and communication protocols.

• Low-Level Programming in C/Assembly: Firmware for the SPC58EC80-DISP board is

typically written in C or assembly language due to the need for precise control over hardware

resources. C is widely used in embedded systems because of its efficiency, low overhead,

and ability to manipulate hardware registers directly. Assembly, on the other hand, offers

even more fine-grained control and is sometimes used for highly optimized, time-critical

sections of code, though it is less portable and harder to maintain.

o Peripheral Drivers: One of the first tasks in firmware development is writing or

configuring drivers to interface with the board’s various peripherals, such as ADCs,

timers, PWM, and communication interfaces (CAN, UART, SPI, I2C). These drivers

provide the foundation for communicating with external sensors and the vehicle's

communication bus.

o Direct Memory Access (DMA): To optimize data handling and reduce the

processor's load, the firmware should utilize DMA where possible. DMA allows

peripherals to transfer data directly to and from memory without needing the CPU's

intervention, freeing up processing power for other tasks like real-time data filtering.

o Hardware Abstraction Layer (HAL): Using a HAL or custom abstraction layer

allows for more portable and maintainable code. The HAL can abstract away some

of the board-specific details, enabling easier integration with other boards or future

upgrades without rewriting large portions of the code.

• Data Acquisition from EV Sensors: The firmware must interface with various sensors (e.g.,

accelerometers, speed sensors, and throttle position sensors) to collect real-time data about

the vehicle’s state. This data is essential for producing accurate sound synthesis in response

to vehicle dynamics. Specific steps involved include:

Methodology 31

o Polling vs. Interrupts: Depending on the sensor type and system requirements, data

can be collected via polling (regularly checking sensor states) or interrupts (where

the sensor triggers an event when new data is available). For real-time performance

and energy efficiency, using interrupts is typically preferred, as it reduces CPU load

by only reacting when necessary.

o ADC Configuration: For analog sensors like accelerometers, the firmware needs to

configure the ADC to sample the sensor signals at a high enough frequency to capture

fast changes in the vehicle's motion. The sampled data must then be processed,

possibly using digital filtering to remove noise or smooth the signal before using it in

the sound synthesis engine.

o Sensor Fusion: If the system uses multiple sensors to gather vehicle data, the

firmware may need to implement sensor fusion algorithms to combine inputs from

different sources (e.g., combining speed sensor data with accelerometer data to

enhance accuracy). This can improve the quality of the synthesized sounds by

providing more detailed information about the vehicle's state.

• Real-Time Operating System (RTOS) Considerations: For more complex systems that

require concurrent execution of tasks (e.g., data acquisition, communication), using an RTOS

is beneficial. An RTOS ensures that time-critical tasks (such as sensor polling or CAN

message handling) are given priority and executed with predictable timing. Key RTOS

components include:

o Task Scheduling: In an RTOS-based system, tasks such as data collection,

communication with the miniPC, and error handling are divided into separate threads

or tasks. The RTOS scheduler prioritizes these tasks to ensure that time-sensitive

operations are completed within their deadlines.

o Inter-task Communication: For tasks to share data efficiently, the firmware will

need to implement inter-task communication methods, such as message queues or

semaphores. This ensures that the data collected from sensors is passed to the sound

synthesis or communication modules without delay or data corruption.

o Interrupt Handling: Interrupts from external sensors or communication buses (e.g.,

CAN) need to be serviced quickly and efficiently. The firmware must be designed to

handle these interrupts without significant overhead, ensuring that the real-time

performance of the system is maintained.

32 Methodology

• Optimization for Real-Time Operation: Since the system is designed to respond in real-

time to changes in the vehicle's state, the firmware must be highly optimized to minimize

latency and ensure that sound output remains synchronized with vehicle data.

o Minimizing Latency: Reducing the time between data acquisition and sound

generation is crucial for a seamless user experience. Interrupt-driven programming,

efficient buffering of incoming data, and avoiding blocking code are essential to

achieve low-latency operation.

o Code Optimization Techniques: Low-level optimizations, such as reducing

unnecessary loops, using fixed-point arithmetic instead of floating-point (to save

processing power), and inlining frequently used functions, can further improve real-

time performance. Additionally, careful memory management, such as placing

frequently accessed variables in fast-access memory regions (e.g., registers or cache),

will contribute to faster execution.

o Real-Time Debugging: Real-time systems require special debugging techniques to

ensure that the firmware performs as expected. Using tools like in-circuit debuggers

(ICDs), logic analyzers, and profiling tools helps identify bottlenecks, measure

response times, and ensure that tasks are meeting their real-time deadlines.

• Communication with the MiniPC: The firmware must also handle reliable communication

between the SPC58EC80-DISP and the miniPC, which processes the sound synthesis

algorithms. This may involve transmitting the processed sensor data over UART, CAN, or

Ethernet depending on the chosen communication protocol. Key considerations include:

o Data Packing and Transmission: To reduce communication overhead, the firmware

should implement efficient data packing strategies, combining multiple sensor

readings into a single message where possible. It’s also essential to implement error-

checking mechanisms, such as Cyclic Redundancy Check (CRC), to ensure data

integrity during transmission.

o Communication Protocol Optimization: If the system uses a communication

protocol like CAN, the firmware must handle CAN message prioritization and error

handling to ensure that critical vehicle data is transmitted without delay. For Ethernet

or UART communication, flow control mechanisms such as XON/XOFF or

hardware-based flow control may be needed to prevent data loss during high-speed

transmission.

• Testing and Validation: Firmware development also involves rigorous testing to ensure that

the system behaves as expected under various conditions. Unit tests, hardware-in-the-loop

(HIL) testing, and stress tests are performed to validate the firmware’s performance in real-

time data collection, error handling, and communication.

Methodology 33

In conclusion, developing firmware for the SPC58EC80-DISP board involves a combination

of low-level programming, real-time optimization, and robust communication strategies to ensure

reliable data acquisition and transmission. The firmware must be tightly integrated with the EV’s

sensors and communication buses to provide the real-time data necessary for dynamic sound

synthesis, while ensuring minimal latency and maximum reliability.

3.2.2 Communication Protocols
Implement robust communication protocols (e.g., CAN, UART, or SPI) to transmit data from

the SPC58EC80-DISP board to the miniPC. Include error-checking mechanisms to ensure data

integrity. In any system where data needs to be transmitted between multiple components,

particularly in embedded systems, selecting and implementing the right communication protocol

is crucial for ensuring reliability, efficiency, and real-time performance. For this project, robust

communication between the SPC58EC80-DISP board and the miniPC is essential to transmit real-

time sensor data, enabling the dynamic synthesis of EV engine sounds. Several key aspects must

be considered to establish a robust and reliable communication channel.

1. Protocol Selection (CAN, UART, SPI): Based on the system's requirements, protocols

like CAN, UART, or SPI can be implemented, depending on the type of data being transferred,

the distance between components, and the required transmission speed.

➢ CAN (Controller Area Network): CAN is widely used in automotive applications due

to its robustness and ability to handle multiple nodes communicating on the same bus. It is

particularly well-suited for environments where real-time data from multiple sources, such

as sensors and control units, needs to be transmitted with minimal errors. Since the project

involves data collection from the EV's sensors, which likely already use a CAN bus for

communication, integrating the SPC58EC80-DISP into the existing CAN network is a

logical choice. CAN also offers collision detection and priority-based message handling,

ensuring that high-priority messages (e.g., data from critical sensors) are delivered first,

with minimal latency.

CAN Communication Steps:

▪ Message Framing: CAN messages are transmitted in frames, which include the

message ID, data, and error-checking bits (CRC). For efficient communication, the

firmware must ensure that sensor data is packed into CAN frames without exceeding

the bus's bandwidth limits.

▪ Priority Management: Each CAN message has an ID that determines its priority.

Critical vehicle data (such as speed or throttle position) should have a higher priority

ID than less critical information (e.g., ambient temperature).

34 Methodology

▪ Error Handling: CAN includes built-in error-detection mechanisms, such as bit-

stuffing, CRC checks, and acknowledgment features, which automatically detect and

correct transmission errors.

➢ UART (Universal Asynchronous Receiver-Transmitter): UART is a simple,

asynchronous communication protocol commonly used for point-to-point data

transmission. It is ideal for low-speed, short-distance communication between the

SPC58EC80-DISP and the miniPC. UART does not require a clock signal, making it less

complex to implement compared to synchronous protocols like SPI.

UART Communication Steps:

▪ Baud Rate Selection: The baud rate (transmission speed) must be chosen carefully to

balance the data rate with reliability. Higher baud rates offer faster communication but

can lead to errors if the line quality is poor or if the processing overhead becomes

significant.

▪ Flow Control: To prevent data loss during transmission, flow control mechanisms such

as XON/XOFF (software flow control) or RTS/CTS (hardware flow control) can be

implemented to ensure that the sender does not overwhelm the receiver with too much

data at once.

▪ Error Detection: UART often implements parity bits for basic error detection. In

systems where data integrity is critical, additional layers of error-checking, such as

checksum or CRC, should be implemented in the higher layers of the communication

protocol.

➢ SPI (Serial Peripheral Interface): SPI is a high-speed, synchronous communication

protocol ideal for short-range communication between devices. It offers much faster data

transfer compared to UART, making it suitable for transmitting large amounts of sensor

data quickly. SPI uses a master-slave architecture, with the SPC58EC80-DISP board

typically acting as the master and the miniPC as the slave.

SPI Communication Steps:

▪ Clock Configuration: SPI uses a clock signal (SCK) to synchronize data transmission.

The clock speed must be set appropriately to ensure that the miniPC can process

incoming data without errors. The master (SPC58EC80-DISP) will control this clock,

ensuring synchronized data transfer.

Methodology 35

▪ Full-Duplex Communication: Unlike UART, SPI allows for full-duplex

communication, meaning data can be sent and received simultaneously. This is

beneficial in scenarios where bi-directional data transmission is required between the

SPC58EC80-DISP and the miniPC, such as sending sensor data while receiving control

commands.

▪ Slave Select (SS): SPI uses the Slave Select (SS) line to choose the device it

communicates with. In multi-device systems, proper management of the SS line

ensures that only the intended slave device (miniPC) is communicating with the master.

2. Data Integrity and Error Checking: In automotive and embedded systems, data integrity

is paramount, particularly when transmitting critical sensor information that directly influences

the user experience. The communication protocol must include mechanisms to detect and

recover from errors during transmission.

➢ Cyclic Redundancy Check (CRC): CRC is a robust error-detection method that checks

the integrity of data during transmission. In systems like CAN, CRC is embedded in each

message frame. For UART or SPI, CRC can be manually implemented in the protocol layer,

where a CRC code is calculated before sending the data and verified upon receipt. If a CRC

mismatch is detected, the system can request a retransmission of the corrupted data.

➢ Automatic Retransmission and Acknowledgment: For protocols like CAN, automatic

retransmission is built-in. If a transmission error is detected, the data frame is retransmitted

until it is acknowledged successfully. For UART and SPI, this can be achieved by

implementing acknowledgment (ACK/NACK) signals in the software. The receiver sends

an ACK signal if the data is received correctly or a NACK signal if an error is detected,

prompting a retransmission.

➢ Error Logging and Recovery: In real-time systems, tracking communication errors is

critical for debugging and ensuring system reliability. Implementing an error logging

mechanism within the firmware allows for monitoring error rates and diagnosing

communication issues. If a specific protocol or communication line is experiencing

frequent errors, the system can switch to a backup communication method (if available) or

implement recovery protocols, such as reducing the baud rate to increase reliability.

3. Real-Time Communication Considerations: Given the real-time nature of the project,

where sensor data is used to generate dynamic engine sounds in response to vehicle

performance, minimizing latency and ensuring timely data transmission is critical. The

communication protocol should be optimized to reduce transmission delays, ensuring that the

system can respond in real-time to vehicle dynamics.

36 Methodology

➢ Buffering and Flow Control: Implementing buffers within the firmware ensures that

data is temporarily stored if the miniPC cannot process it immediately. The firmware

should dynamically adjust buffer sizes to handle varying data loads, preventing overflow

and data loss. Flow control mechanisms such as hardware flow control (RTS/CTS) for

UART or slave management for SPI can also be used to prevent data loss when the receiver

is overwhelmed.

➢ Interrupt-Driven Communication: To minimize latency, the communication system

should be interrupt-driven, meaning that the processor is only interrupted when new data

is available, rather than constantly polling the communication lines. For example, when

using UART, an RX interrupt can trigger data reception when a new message arrives,

allowing the system to handle communication asynchronously without consuming CPU

cycles continuously.

4. Synchronization and Timing: Ensuring that data is synchronized between the

SPC58EC80-DISP and the miniPC is essential for real-time applications. Misaligned or

delayed data can lead to incorrect sound generation or unresponsive system behavior.

➢ Timestamping Data: One approach to maintain synchronization is to timestamp sensor

data before sending it to the miniPC. The miniPC can then use these timestamps to align

the incoming data with the appropriate sound generation routines, ensuring the engine

sounds are accurately synchronized with vehicle dynamics.

➢ Clock Synchronization: In systems with synchronous communication (like SPI),

keeping the clocks aligned is critical for data integrity. Even in asynchronous systems like

UART, clock drift over time can cause communication errors. Periodic re-synchronization

of clocks, either manually or automatically, helps prevent issues caused by desynchronized

clocks.

3.2.3 Data Handling and Filtering
Design methods to preprocess data (e.g., filtering noise, calibrating sensors) before

transmission, ensuring only relevant and accurate information is sent for sound synthesis. Accurate

and reliable data transmission is a cornerstone of the overall system design, especially when

dealing with sensor data in real-time applications such as EV sound synthesis. Before sensor data

is transmitted from the SPC58EC80-DISP board to the miniPC, it is essential to preprocess the

raw data to ensure that only relevant, accurate, and filtered information is sent. This preprocessing

step helps to reduce noise, minimize unnecessary data transmission, and optimize the system’s

performance by ensuring that only critical information is utilized in the sound synthesis process.

Methodology 37

3.2.3.1 Noise Filtering and Data Smoothing
In any electronic system, noise from various sources (e.g., electromagnetic interference,

temperature fluctuations) can degrade the accuracy of sensor data. Noise can lead to distorted or

inconsistent values, which in turn can affect the sound synthesis algorithms. Therefore,

implementing robust filtering techniques is essential to clean the data before it is used for real-time

sound generation.

▪ Low-Pass Filtering (LPF): Low-pass filters are commonly used to smooth out high-

frequency noise from sensor signals. For example, the throttle position or speed sensors

might produce noisy data due to mechanical vibrations or signal interference. By

applying a low-pass filter, high-frequency noise is removed, allowing the system to

focus on the actual vehicle dynamics. The cutoff frequency of the filter should be

carefully selected based on the characteristics of the noise and the sensor data to avoid

filtering out relevant information.

▪ Moving Average Filter: A simple and effective method for smoothing data is the

moving average filter, which computes the average of a fixed number of previous data

points. This helps to reduce short-term fluctuations and provide a more stable signal

for further processing. Moving average filters are particularly useful in reducing rapid,

unwanted changes in data while still maintaining the overall trend.

For example, in an EV where acceleration and deceleration may produce rapid sensor

readings, a moving average filter can smooth these readings to ensure the sound

synthesis algorithm receives a steady input, resulting in smoother sound transitions.

Figure 3-2 Unsmoothed accelerator pedal signals captured by ADC inputs, showing some small distortions before

applying smoothing techniques

38 Methodology

In the Figure 3-2, the signals from the accelerator pedal (labeled as "Accelerator sig. 1" and

"Accelerator sig. 2") appear with noticeable irregularities or noise. These irregularities are due to

sensor noise, vibrations, or quick, minor changes that aren't critical to capture in full detail.

In the Figure 3-3 (after applying a moving average filter), these same signals are smoother.

The filter effectively reduces noise by averaging out rapid, minor fluctuations, leading to a clearer

representation of the pedal’s general trend.

The moving average filter works by taking the average of a specific number of consecutive

data points (a "window") and then replacing the central point in that window with the average

value. This process helps to remove short-term variations while retaining the overall trend of the

signal. You can see that the filtered signals have fewer sharp changes and smoother edges. The

moving average effectively reduces abrupt transitions and rounds off the signal edges, which can

be particularly helpful in real-time processing to reduce noise.

In our specific application of synthesizing engine sounds for electric vehicles, using a moving

average filter on the pedal signals is crucial to ensure that the generated sounds respond smoothly

to pedal inputs. A noisy, unfiltered signal could result in jittery, unnatural sound synthesis, which

would negatively impact the user experience. The smoothing provided by the moving average filter

ensures that the resulting sound changes are more gradual and realistic, aligning better with the

driver’s expectations.

Figure 3-3 Smoothed accelerator pedal signals captured by ADC inputs, showing a smooth signal after applying

smoothing techniques

Methodology 39

▪ Kalman Filter: In more complex systems, a Kalman filter can be implemented for

sensor data fusion and noise reduction. This algorithm is particularly effective for

systems with multiple noisy inputs, as it continuously estimates the system's true state

by minimizing the error between the predicted and actual measurements. The Kalman

filter is beneficial for dynamic systems such as EVs, where parameters like speed,

throttle, or battery charge fluctuate rapidly. The filter allows for real-time noise

reduction and data smoothing while still accurately tracking rapid changes.

3.2.3.2 Sensor Calibration and Data Normalization
Sensor readings often contain errors or offsets that must be corrected through calibration.

Calibrating sensors ensures that the data transmitted is reliable and reflects the actual physical

quantities being measured.

▪ Zeroing and Offsetting: Many sensors, especially those measuring physical

parameters such as acceleration, torque, or speed, may exhibit small biases (offsets) in

their readings. Before using the data for sound synthesis, the system should apply

zeroing techniques to remove these biases. For example, when the vehicle is stationary,

speed sensors might still produce small non-zero values due to electrical noise or

mechanical imperfections. In such cases, zeroing the sensor ensures that the system

treats zero speed as a true stationary state.

▪ Gain Adjustment: Some sensors may require gain adjustment to correct for errors in

sensitivity. For instance, if a throttle sensor consistently underestimates or

overestimates the throttle position, a gain correction factor can be applied to ensure that

the sensor output accurately reflects the physical throttle state. Gain adjustments are

critical when sensors from different manufacturers are used in the same system, as their

response characteristics can vary.

▪ Normalization of Sensor Data: To ensure uniformity and facilitate sound synthesis,

sensor data may need to be normalized. Normalization involves scaling the raw data to

a fixed range, typically between 0 and 1. This step is particularly useful for sensors

with varying output ranges. For example, the throttle position sensor might output

values ranging from 0 to 1023, while the speed sensor might output values from 0 to

200. By normalizing both datasets to a common scale, the sound synthesis algorithm

can process the inputs more effectively, leading to consistent and proportional sound

output.

3.2.3.3 Data Compression and Minimization
Efficient use of communication bandwidth between the SPC58EC80-DISP and the miniPC is

critical, especially when handling real-time sensor data in an EV environment. Preprocessing the

data to reduce its size, while preserving the key information needed for sound synthesis, can

significantly improve system performance.

40 Methodology

▪ Thresholding and Deadbanding: Thresholding is a technique that eliminates minor

variations in sensor data that fall below a certain predefined threshold. For instance,

slight variations in speed may not need to be reflected in the sound synthesis, as they

would be imperceptible to the driver. By applying thresholding, these small variations

are ignored, thus reducing the amount of data transmitted. Similarly, deadbanding can

be used to ignore minor fluctuations around a setpoint (e.g., idle speed), further

reducing unnecessary data transmission.

▪ Event-Driven Transmission: Instead of continuously sending sensor data, the system

can implement an event-driven approach, where data is only transmitted when a

significant change occurs. For instance, data from the throttle position sensor would

only be sent when there is a noticeable change in the throttle's state. This reduces the

amount of data sent, thus optimizing communication bandwidth and minimizing

computational load on the miniPC.

▪ Data Compression Algorithms: For more complex systems where high-frequency

data must be transmitted, applying data compression algorithms before transmission

can help. Lossless compression techniques such as Run-Length Encoding (RLE) or

Huffman coding can reduce the size of the data without losing critical information. This

is particularly useful for sensors that produce large amounts of data, such as

accelerometers or gyroscopes.

3.2.3.4 Relevance Filtering
To ensure that only useful data is transmitted for sound synthesis, it is essential to filter out

irrelevant or redundant sensor data. This ensures that the miniPC and the sound synthesis algorithm

only process the necessary inputs, reducing computational load and improving real-time

performance.

▪ Contextual Data Filtering: Depending on the vehicle's current operating mode,

certain sensors might be more relevant than others. For instance, during steady highway

cruising, the data from accelerometers or gyroscopes might not be as crucial for sound

synthesis, whereas throttle position and speed sensors are. The system should be

capable of dynamically adjusting the data filters based on the driving context,

transmitting only the relevant information to optimize sound generation.

▪ Anomaly Detection: By implementing simple anomaly detection algorithms, the

system can automatically detect and discard faulty or unexpected sensor readings. For

example, if the throttle sensor suddenly reports an unusually high value while the speed

remains constant, this could indicate a sensor malfunction. In such cases, the system

should ignore the erroneous data to prevent it from disrupting the sound synthesis.

Methodology 41

3.2.3.5 Data Packaging and Protocol Compliance
Once the data has been filtered, smoothed, calibrated, and compressed, it must be appropriately

packaged according to the chosen communication protocol (CAN, UART, or SPI) for transmission

to the miniPC. Proper data packaging ensures that the system adheres to the communication

protocol's requirements while minimizing transmission errors.

▪ Message Structuring: The filtered and processed data should be structured into

predefined message formats, including header information, payload (sensor data), and

error-checking mechanisms (such as CRC). Structuring messages properly ensures that

the data is easily decoded at the receiving end.

▪ Synchronization and Timing: The data packets must be synchronized to ensure that

the miniPC receives the data in the correct sequence and at the right time. Proper

timestamping of data and packetizing it based on communication standards (such as

CAN frames) ensures that the miniPC interprets the sensor data in a time-aligned

manner, which is critical for real-time sound generation.

3.3 Testing and Validation

3.3.1 Functional Testing
Conduct testing to ensure the system is functioning correctly, focusing on data transmission

accuracy, sound generation timing, and communication robustness. Functional testing is a critical

step in the development of the sound synthesis system for EVs. This phase is designed to validate

the system's core functionalities, ensuring that all components operate as intended and that the

synthesized sound accurately reflects real-time vehicle data. The primary objectives of functional

testing include verifying data transmission accuracy, assessing sound generation timing, and

evaluating the robustness of communication between various system components.

3.3.1.1 Data Transmission Accuracy
Ensuring the accuracy of data transmission is fundamental to the system's performance. The

sound synthesis system relies heavily on real-time data from the SPC58EC80-DISP board, which

collects various vehicle parameters such as speed, throttle position, and RPM. Accurate data

transmission is essential for the miniPC to generate realistic engine sounds that align with the

vehicle’s actual performance.

▪ Data Integrity Checks: To ensure the integrity of the data transmitted from the

SPC58EC80-DISP to the miniPC, various integrity checks can be implemented. This

includes error-checking protocols (e.g., checksums or cyclic redundancy checks) to

detect any discrepancies in the data during transmission. By comparing the sent data

with the received data, the system can identify any corruption or loss of information,

allowing for corrective actions to be taken immediately.

42 Methodology

▪ Testing Data Latency: Evaluating the latency of data transmission is also crucial. This

involves measuring the time taken for data to travel from the SPC58EC80-DISP to the

miniPC and be processed for sound generation. High latency can lead to noticeable

delays in the audio output, diminishing the overall user experience.

Figure 3-4 illustrates the time interval of 20ms for communication between the miniPC

and the SPC58EC80-DISP board. The system should be tested under various

operational conditions (e.g., idle, accelerating, cruising) to ensure that data latency

remains within acceptable limits.

Figure 3-4 Data transmission latency measurement. This figure shows communication signals captured by logic

analyzer in the real project. The SPC58EC80-DISP board receives data every 20ms from miniPC.

3.3.1.2 Sound Generation Timing
The timing of sound generation is vital to creating a realistic and engaging driving experience.

The synthesized engine sounds must change dynamically and instantaneously based on real-time

vehicle data.

▪ Synchronization Tests: Functional testing should include synchronization tests to

ensure that sound generation occurs in perfect alignment with the incoming data. For

instance, if the throttle position changes suddenly, the sound output should reflect that

change without any lag. This requires precise timing measurements to verify that the

sound synthesis algorithms respond accurately to real-time data inputs.

▪ Dynamic Response Assessment: Testing should also involve evaluating how the

system reacts to rapid changes in driving conditions, such as quick accelerations or

decelerations. The sound output must adapt fluidly to these changes, maintaining a

continuous and coherent audio experience. This could be tested using various driving

scenarios to gauge the responsiveness and timing of sound generation.

3.3.1.3 Communication Robustness
Robust communication between the SPC58EC80-DISP and the miniPC is essential for

ensuring that the system remains functional even in the presence of potential disturbances or

failures.

Methodology 43

▪ Stress Testing: Functional testing should include stress tests that simulate extreme

operating conditions, such as high vehicle speeds, rapid sensor updates, or interference

from other electronic systems within the vehicle. The goal is to assess how the system

handles these conditions and whether the communication remains stable and reliable.

▪ Failover Mechanisms: Implementing and testing failover mechanisms is also vital. In

the event of communication failure or data loss, the system should have protocols to

either restore communication or switch to a backup system without interrupting the

audio output. Functional testing should involve simulating communication failures to

verify that the system can effectively recover and continue operating.

3.3.1.4 User Interaction Testing
An essential aspect of functional testing is evaluating how the system interacts with the driver.

The synthesized sounds should not only be realistic but also enhance the driving experience

without causing distraction or annoyance.

▪ User Feedback Loop: Incorporating a feedback loop during testing can provide

valuable insights into user satisfaction with the audio output. Driver feedback can help

identify areas for improvement in sound quality, volume levels, and responsiveness. By

gathering data on user experiences, the system can be fine-tuned to meet driver

expectations better.

▪ Adjustability of Sound Parameters: Functional testing should also include tests to

ensure that sound parameters (such as volume, pitch, and type of sound) are adjustable

and responsive to user input. For instance, if a driver prefers a sportier sound profile,

the system should allow them to switch to a more aggressive engine simulation without

compromising performance or quality.

3.3.1.5 Compliance and Standards Testing
Finally, functional testing should ensure that the system complies with relevant automotive

standards and regulations. This is crucial for ensuring the safety, reliability, and market readiness

of the sound synthesis system.

▪ Regulatory Compliance Checks: Compliance with automotive standards (such as ISO

or SAE) is necessary for the system to be considered safe and reliable. Testing should

involve evaluating whether the system meets requirements related to audio output,

electronic interference, and overall vehicle performance. This ensures that the system

not only enhances the driving experience but does so within regulatory frameworks.

44 Methodology

User Experience Testing
Perform subjective testing with drivers to evaluate the realism and satisfaction of the generated

sounds in various driving conditions (e.g., acceleration, braking, cruising). Users experience

testing is a vital component of the evaluation process for the sound synthesis system in (EVs. This

phase focuses on gathering subjective feedback from drivers regarding the realism, satisfaction,

and overall impact of the generated engine sounds in various driving scenarios. The insights gained

from this testing will inform refinements and enhancements to the system, ensuring it meets the

expectations and preferences of end users.

3.3.1.6 Objective of User Experience Testing
The primary goal of user experience testing is to assess how well the synthesized sounds

resonate with drivers and how effectively these sounds enhance their overall driving experience.

Unlike objective measurements, which focus on technical performance metrics, user experience

testing seeks to understand the emotional and sensory responses of drivers to the audio output.

▪ Realism of Engine Sounds: Participants will evaluate the authenticity of the

synthesized sounds compared to traditional ICE sounds. Realistic sound generation is

critical for providing drivers with auditory feedback that aligns with their expectations

based on previous driving experiences. Drivers should feel that the sounds represent

the vehicle’s performance accurately, whether accelerating, cruising, or braking.

▪ Satisfaction and Enjoyment: Drivers will also assess their enjoyment of the generated

sounds. A satisfying auditory experience can significantly enhance the perception of

the vehicle’s performance, making it feel more engaging and enjoyable to drive. This

subjective feedback can help identify which sound profiles are preferred and which

may be deemed unappealing or distracting.

3.3.1.7 Methodology for Testing
To conduct user experience testing effectively, a structured approach will be employed. This

will include selecting a diverse group of drivers, defining testing parameters, and establishing a

framework for gathering feedback.

▪ Participant Selection: A diverse group of drivers, encompassing various

demographics (age, gender, driving experience, etc.), will be recruited for testing. This

diversity ensures that feedback reflects a broad range of preferences and expectations,

allowing for a more comprehensive understanding of user experiences.

▪ Driving Scenarios: Participants will be asked to drive the vehicle under different

conditions, including acceleration, braking, and cruising at various speeds. This variety

ensures that the sound synthesis system is evaluated across a spectrum of driving

experiences, capturing how well it performs in real-world scenarios.

Methodology 45

▪ Evaluation Criteria: During the test, participants will evaluate the sounds based on

several criteria, including:

➢ Realism: How closely the synthesized sounds mimic traditional engine sounds.

➢ Satisfaction: Overall enjoyment of the audio output.

➢ Clarity: How clearly the sounds convey the vehicle's performance characteristics.

➢ Distraction: Whether the sounds are intrusive or distracting during driving.

➢ Emotional Impact: The extent to which the sounds evoke emotional responses,

such as excitement or comfort.

3.3.1.8 Iterative Refinement:
The findings from user experience testing will be used to inform iterative refinements to the

sound synthesis system. Feedback will drive adjustments to the sound profiles, ensuring that they

align more closely with user preferences.

▪ Sound Profile Adjustments: Based on user feedback, sound profiles may be fine-

tuned to enhance realism or address any dissatisfaction. This could involve adjusting

sound parameters, applying different synthesis algorithms, or even redesigning the

audio output strategy to better reflect user preferences.

▪ Ongoing User Feedback Integration: As the system evolves, incorporating ongoing

user feedback will be essential to maintain alignment with driver expectations. Regular

user experience assessments should be planned as part of the system lifecycle to ensure

continuous improvement and adaptability to changing driver preferences.

46 Methodology

3.3.2 Environmental Testing
Test the system in different environmental conditions (temperature, humidity) to validate the

system’s robustness in real-world driving scenarios. Environmental testing is a critical phase in the

development of the sound synthesis system for EVs. This process aims to evaluate the system's

robustness and performance across a variety of real-world conditions, ensuring it operates

effectively in diverse environmental scenarios. Factors such as temperature, humidity, vibration,

and external noise can significantly impact the performance of both the hardware and the sound

synthesis algorithms. Thus, thorough environmental testing is essential to confirm that the system

can maintain its functionality and audio quality in challenging conditions.

3.3.2.1 Objective of Environmental Testing
The primary goal of environmental testing is to ensure that the sound synthesis system remains

reliable and consistent across different operating conditions. This involves assessing how

environmental factors affect the performance of the SPC58EC80-DISP board, the miniPC, and the

synthesized sounds.

▪ System Robustness: The system must demonstrate resilience to extreme

environmental conditions, including high and low temperatures, varying humidity

levels, and exposure to potential contaminants (like dust or moisture). A robust system

will continue to function accurately and produce high-quality sound regardless of

external conditions, which is critical for real-world application.

▪ Audio Consistency: Environmental conditions can alter sound propagation and

perception. For example, changes in temperature or humidity can affect the acoustics

inside the vehicle cabin, leading to variations in sound quality. Ensuring audio

consistency under these varying conditions is essential for delivering a reliable driving

experience.

3.3.2.2 Testing Parameters
To effectively conduct environmental testing, several key parameters will be evaluated:

▪ Temperature Variations: The system will be tested under a range of temperatures,

from extreme cold (e.g., -20°C) to extreme heat (e.g., +60°C). The goal is to evaluate

how these temperature extremes affect the electronics of the SPC58EC80-DISP board

and miniPC, as well as the synthesis algorithms used for sound generation.

o Cold Conditions: Testing in cold conditions helps identify potential issues such as

slow boot times, reduced processing speeds, or audio output anomalies. It's

essential to ensure that the system remains responsive and that the sound generation

algorithms can handle low-temperature operation without degradation in

performance.

Methodology 47

o Hot Conditions: High temperatures can lead to overheating of electronic

components, which might result in thermal throttling or system failure. The testing

will assess whether the system can sustain its performance without overheating and

whether the sound output remains consistent during prolonged exposure to high

temperatures.

▪ Humidity Levels: Humidity testing will examine how varying levels of moisture in the

air (from low to high humidity environments) affect the performance of the system.

High humidity can lead to condensation and potential short-circuiting of electronic

components, while low humidity can result in static electricity build-up.

o Moisture Resistance: The system should be assessed for its ability to withstand

high humidity without compromising the electronic circuitry or sound generation

quality. Protective measures such as enclosures or coatings may need to be tested

for effectiveness in preventing moisture damage.

3.3.2.3 Vibration Testing
As vehicles encounter various driving conditions, vibrations are an inherent part of the

experience. Environmental testing should include assessments of how the system performs under

different vibration frequencies and amplitudes, simulating real-world driving scenarios.

▪ Simulated Driving Conditions: The system should be subjected to vibration testing

on simulators that replicate the various road conditions a vehicle may encounter,

including smooth highways and rough terrains. This testing will help identify any

potential issues related to the stability of connections, component reliability, or audio

output quality during vibrations.

▪ Long-term Durability: Prolonged exposure to vibrations may cause components to

loosen or degrade over time. Testing will evaluate the durability of the connections and

components under continuous vibrations to ensure long-term reliability and consistent

sound performance.

3.3.2.4 External Noise Considerations
In addition to testing how the system generates sounds in different environmental conditions,

it's crucial to evaluate how external noise impacts the perceived quality of the synthesized engine

sounds.

▪ Ambient Noise Levels: Environmental testing will assess how various ambient noise

levels (e.g., city traffic, highway sounds, and background chatter) affect the clarity and

perception of the synthesized engine sounds. The sound synthesis system should be

able to maintain audio quality and clarity in the presence of these external noises.

48 Methodology

▪ Adaptive Sound Generation: The system could also incorporate algorithms that adapt

the generated sounds based on the detected external noise levels. Testing should

evaluate how effectively these adaptive algorithms function in real-world conditions,

enhancing the overall driving experience.

3.3.2.5 Data Collection and Analysis
Throughout the environmental testing process, systematic data collection and analysis are

essential to draw meaningful conclusions regarding system performance.

▪ Performance Metrics: Metrics such as sound clarity, system response times, and

temperature thresholds will be recorded during tests. This data will be crucial for

identifying trends and potential areas for improvement.

▪ Failure Mode Analysis: Any failures or performance issues encountered during testing

will be analyzed to understand their causes. This analysis will inform necessary design

adjustments or enhancements to improve the system’s resilience to environmental

challenges.

3.3.2.6 Iterative Improvements
The results of environmental testing will lead to iterative improvements in the sound synthesis

system. Based on identified weaknesses or failures, the design can be refined to enhance robustness

and audio quality.

▪ Component Selection: Choosing components that are more resilient to temperature

fluctuations, humidity, and vibrations may be necessary based on testing outcomes.

Improved materials or protective measures can help ensure that the system functions

optimally under real-world conditions.

▪ Design Modifications: The overall system design may be modified based on testing

results to enhance durability and performance. This could involve redesigning

enclosures, improving heat dissipation methods, or implementing more effective noise-

canceling technologies to maintain sound clarity.

Methodology 49

3.3.3 Iterative Refinement
Analyze feedback from the testing phases and refine the system to address any issues related

to sound quality, responsiveness, and integration with the EV's systems. Iterative refinement is a

crucial phase in the development of the sound synthesis system for electric vehicles. This process

involves a continuous cycle of analyzing feedback from various testing phases, identifying areas

for improvement, and implementing changes to enhance the system's performance. The ultimate

goal is to ensure that the synthesized sounds are of high quality, responsive to real-time data, and

seamlessly integrated with the EV's existing electronic systems.

3.3.3.1 Feedback Analysis
The iterative refinement process begins with a thorough analysis of the feedback collected

during functional, user experience, and environmental testing phases.

▪ Data Synthesis: Feedback will be gathered from multiple sources, including user

surveys, performance metrics, and observational data from test drives. This information

will be synthesized to identify common themes, strengths, and weaknesses of the

system. For instance, if multiple users report dissatisfaction with the realism of the

engine sounds, it signals a critical area for improvement.

▪ Prioritization of Issues: Once feedback is analyzed, it’s essential to prioritize the

identified issues based on their impact on user experience and system performance.

Factors to consider include the frequency of the issue (how many users reported it), its

severity (how much it affects the driving experience), and the feasibility of

implementing a solution.

3.3.3.2 Sound Quality Enhancement
Improving sound quality is a fundamental focus of the iterative refinement process. This may

involve adjustments to the sound synthesis algorithms or the implementation of new audio

processing techniques.

▪ Algorithm Optimization: Based on feedback regarding sound realism and clarity, the

sound synthesis algorithms may need optimization. This could involve fine-tuning

parameters such as frequency response, modulation depth, and attack/decay times to

create more dynamic and lifelike engine sounds. Advanced techniques, such as granular

synthesis or physical modeling, may also be explored to enhance sound realism.

▪ Sound Profile Diversity: Users may express a desire for more diverse sound profiles

to match different driving scenarios (e.g., sport mode vs. eco mode). Iterative

refinement will involve creating and testing additional sound profiles, ensuring that

users have options that enhance their driving experience.

50 Methodology

3.3.3.3 Responsiveness Improvement
Responsiveness refers to the system's ability to accurately reflect changes in vehicle

performance in real-time. Ensuring that the sound output is timely and reflective of the vehicle's

current state is vital for a satisfying driving experience.

▪ Latency Reduction: Feedback regarding any noticeable delays between data input and

sound output will be addressed by optimizing the data acquisition and processing

pipeline. This may involve refining the firmware on the SPC58EC80-DISP board or

optimizing the communication protocols to minimize latency.

▪ Dynamic Sound Adjustment: The system can be enhanced to allow for more rapid

adjustments to the sound output based on real-time data. For instance, implementing

adaptive algorithms that can respond to sudden changes in throttle position or speed

will make the sound experience more engaging and realistic.

3.3.3.4 Integration Optimization
A critical aspect of the iterative refinement process is ensuring that the sound synthesis system

integrates seamlessly with the EV's existing electronic systems.

▪ Interfacing Improvements: Analyzing feedback related to communication issues

between the SPC58EC80-DISP board and the miniPC will help identify any

inefficiencies in interfacing. Improvements may include refining the communication

protocols or optimizing data formats to ensure smooth and reliable data exchange.

▪ System Compatibility Testing: Ongoing testing will ensure that changes made during

the refinement process do not negatively impact the performance of other electronic

systems within the vehicle. Compatibility with various components, such as the

vehicle's battery management system and other sensors, must be assessed to prevent

conflicts and ensure overall system integrity.

Methodology 51

3.3.3.5 Continuous Testing and Validation
The iterative refinement process is cyclical, meaning that after implementing changes, the

system must undergo further testing to validate improvements.

▪ Validation Testing: After refining the system based on feedback, additional rounds of

functional and user experience testing will be conducted to ensure that the changes have

effectively addressed previous issues. This testing phase is critical for confirming that

sound quality, responsiveness, and integration have improved.

▪ Documenting Changes: Keeping detailed documentation of each iteration, including

the changes made and their outcomes, is essential for tracking the development process.

This documentation can serve as a valuable resource for future iterations and help

maintain transparency throughout the development lifecycle.

3.3.4 Long-term Reliability
Evaluate system performance over extended testing sessions to ensure long-term reliability,

sound consistency, and minimal latency in response to vehicle changes. Long-term reliability is a

critical aspect of evaluating the sound synthesis system for electric vehicles. This phase focuses

on assessing how well the system performs over extended periods, ensuring that it consistently

delivers high-quality sound and responds accurately to vehicle changes throughout its operational

lifespan. Ensuring long-term reliability is essential not only for user satisfaction but also for the

overall safety and functionality of the vehicle.

3.3.4.1 Objective of Long-term Reliability Testing
The primary objective of long-term reliability testing is to confirm that the sound synthesis

system can maintain performance under continuous use and over varying operating conditions.

This includes assessing sound consistency, system durability, and responsiveness to real-time

vehicle data.

▪ Sound Consistency: The system should produce a consistent audio output over time,

regardless of environmental fluctuations or wear on electronic components. Users

expect the synthesized sounds to remain stable in quality, resembling realistic engine

sounds throughout the lifespan of the vehicle.

52 Methodology

▪ Minimizing Latency: As the system operates over extended periods, it’s essential to

ensure that latency remains minimal. Increased latency can degrade the user experience

and diminish the system's effectiveness in conveying real-time performance changes.

The goal is to guarantee that the system remains responsive, with sound adjustments

occurring instantly as vehicle conditions change.

3.3.4.2 Testing Methodology
Long-term reliability testing will employ a structured methodology to ensure thorough

evaluation.

▪ Extended Testing Sessions: The system will undergo extensive testing sessions that

simulate prolonged use, incorporating various driving scenarios, ambient conditions,

and user interactions. This approach helps identify how the system performs over time

and under diverse conditions.

▪ Continuous Monitoring: Throughout the testing sessions, continuous monitoring of

system parameters, including sound output quality, response times, and component

temperatures, will be conducted. This data will provide insights into how the system

holds up during extended use and whether any degradation occurs.

3.3.4.3 Durability Assessment
Evaluating the durability of the hardware and software components of the sound synthesis

system is crucial for ensuring long-term reliability.

▪ Stress Testing: The system will undergo stress testing to assess its ability to handle

extreme conditions, such as high temperatures, humidity, and vibrations. These tests

simulate potential real-world scenarios, allowing the identification of weaknesses in

the system design that could lead to failure over time.

▪ Component Lifespan Analysis: Specific components, such as microphones, speakers,

and circuit boards, will be evaluated for their lifespan and susceptibility to wear and

tear. Understanding the durability of each component is essential for planning

maintenance and replacements in the long-term use of the system.

Methodology 53

3.3.4.4 User Interaction and Feedback
Long-term reliability testing should also consider user interaction and feedback over time.

▪ User Experience Monitoring: Participants will be asked to provide feedback on their

experiences with the sound synthesis system over extended use. This qualitative data

can help identify any emerging issues or concerns that may not be apparent in initial

testing phases.

▪ Regular User Feedback Sessions: Establishing regular sessions for users to share their

experiences will enable continuous improvement and refinement of the system.

Tracking changes in user perception over time can help maintain high satisfaction

levels.

3.3.4.5 Iterative Improvements Based on Findings
The insights gained from long-term reliability testing will drive iterative improvements to the

sound synthesis system.

▪ System Adjustments: Based on testing outcomes, adjustments to the system may be

necessary to enhance durability, sound consistency, and responsiveness. This could

involve upgrading components, refining software algorithms, or implementing better

protective measures against environmental factors.

▪ Maintenance Protocols: Establishing maintenance protocols based on the findings

from long-term reliability testing will help ensure the system continues to perform

optimally throughout its lifespan. This may include recommendations for routine

checks, component replacements, or software updates.

54 Hardware Overview

Hardware Overview 55

4 Hardware Overview
The SPC58EC-DISP discovery plus board is a development platform designed to assess and

create applications using the SPC58EC80E5 microcontroller, which comes in an eTQFP144

package. The SPC58EC80E5 microcontroller is intended for use in body, networking, and

security-related applications.

The SPC58EC-DISP board is equipped with various interfaces such as an Ethernet controller,

CAN-FD, FlexRay, LIN, UART, ADC, and a JTAG port, making it an ideal tool for evaluating the

microcontroller and developing and debugging applications. It includes an integrated programmer

and debugger (PLS-supported) for programming and debugging the microcontroller, with a section

dedicated to enabling a USB virtual COM port. The board features connectors compatible with

Arduino UNO R3 shields, simplifying functionality expansion by adding compatible shields or

boards. Additionally, all GPIOs and key signals are accessible via a 4x37 0.1" pin array.

The SPC58EC80E5 is a high-performance automotive microcontroller (MCU) from the SPC58

C line of STMicroelectronics. It is designed to address complex body, networking, and security

functions in automotive applications. The microcontroller is based on 32-bit Power Architecture

technology, featuring dual e200z4 cores running at up to 180 MHz. It also includes Hardware

Security Module (HSM) support, making it suitable for applications that require both high

computational power and robust security features.

56 Hardware Overview

Figure 4-1 DISP discovery board-top side

4.1 MCU Key Features
1. Processor and Architecture

The SPC58EC80E5 utilizes two e200z4 cores for enhanced processing capability. The dual-

core architecture allows for parallel processing, which improves the efficiency of tasks like

automotive control systems, where real-time processing is critical. Each core operates at up to 180

MHz and supports Variable Length Encoding (VLE), a method for reducing code size by mixing

16-bit and 32-bit instructions, thereby optimizing memory usage.

In addition to the dual-core setup, a third e200z0 core is embedded in the Hardware

Security Module (HSM), which is responsible for executing cryptographic operations and handling

secure communications. This separation of the security functions from the main cores ensures that

security-sensitive tasks are executed in an isolated environment, enhancing overall system security.

Hardware Overview 57

2. Memory and Storage

The microcontroller provides ample memory resources suitable for automotive applications:

• 4 MB of Flash memory is dedicated to code storage, along with 128 KB of data

Flash that supports EEPROM emulation. The EEPROM emulation feature enables non-

volatile data storage, crucial for storing configuration settings and other essential data

during vehicle operation.

• 384 KB of general-purpose SRAM offers sufficient temporary data storage for

high-speed operations, and an additional 128 KB of local RAM is available for each of the

two main cores, enabling fast access to frequently used data.

• The Hardware Security Module (HSM) includes its own memory, with 176 KB

of dedicated Flash memory (144 KB for code and 32 KB for data). This memory is

specifically for secure code and data storage, separate from the main Flash memory.

The Flash memory supports read-while-write operations, meaning the system can continue to

read from Flash while it is being programmed or erased, which is important for real-time

automotive systems where uninterrupted operation is critical.

3. Communication Interfaces

The SPC58EC80E5 is equipped with a comprehensive set of communication interfaces,

making it ideal for complex automotive networks. These interfaces allow the microcontroller to

communicate with other electronic control units in a vehicle:

• Eight CAN-FD (Controller Area Network with Flexible Data-rate) channels

support high-speed communication, allowing for data rates up to 8 Mbps, which is essential

for the fast-growing demands of in-vehicle networking, particularly in advanced driver-

assistance systems (ADAS).

• 18 LINFlexD modules provide communication over the LIN (Local Interconnect

Network) and UART (Universal Asynchronous Receiver-Transmitter) protocols. LIN is

typically used for lower-speed communications in body control systems, such as lighting,

seat controls, and air conditioning.

58 Hardware Overview

• A dual-channel FlexRay controller enables robust, high-speed, time-

deterministic communication, making it a popular choice for safety-critical applications

such as braking and steering systems.

• Ethernet support at 10/100 Mbps is compliant with IEEE 1588 for precise time-

stamping, making it suitable for automotive Ethernet use cases like diagnostics, camera

systems, and over-the-air software updates.

4. Safety Features

The SPC58EC80E5 is designed with safety in mind, adhering to ASIL-B (Automotive Safety

Integrity Level) standards as outlined by the ISO 26262 functional safety standard. It incorporates

several key safety features:

• The Fault Collection and Control Unit (FCCU) is responsible for collecting fault

information from various modules and initiating the appropriate responses, such as

transitioning to a safe state in the event of a critical failure.

• The Memory Error Management Unit (MEMU) detects and reports memory

errors, ensuring that corrupted data is handled properly. This is critical in automotive

applications where memory errors could lead to unsafe conditions.

• The microcontroller includes Cyclic Redundancy Check (CRC) units, which

verify data integrity to prevent transmission or storage errors. These CRC units are used to

ensure that data has not been corrupted in transit or during processing.

• End-to-end ECC (Error Correction Code) is implemented across memories and

bus communications, providing robust protection against data corruption by detecting and

correcting single-bit errors.

5. Power Management and Low-Power Modes

In automotive environments, power efficiency is crucial, particularly in systems that operate

continuously, even when the vehicle is not in active use. The SPC58EC80E5 provides several low-

power modes, including:

Hardware Overview 59

• HALT and STOP modes, which reduce power consumption when certain

functionalities are idle.

• Standby mode further minimizes power consumption by disabling most of the

system except for critical wake-up circuitry.

• An ultra-low-power standby mode includes a real-time clock (RTC) and support

for a Smart Wake-up Unit that monitors input pins to wake the system up based on

predefined triggers.

These power-saving features make the microcontroller ideal for applications like body control

modules and telematics, where power consumption must be minimized without sacrificing

performance.

6. Enhanced I/O and Peripherals

The SPC58EC80E5 microcontroller provides a wide range of I/O options through its enhanced

modular I/O subsystem (eMIOS):

• Up to 64 timed I/O channels with 16-bit counter resolution allow for precise

pulse-width modulation (PWM) control, which is critical in applications like motor control,

lighting, and HVAC systems.

• The microcontroller features three 12-bit SAR (Successive Approximation

Register) analog-to-digital converters (ADCs) for accurate sensor data acquisition, along

with an additional 10-bit SAR ADC for supervisory functions.

• It also supports Direct Memory Access (DMA), enabling faster data transfers

between memory and peripherals without burdening the CPU.

The crossbar switch architecture allows multiple bus masters, such as the cores and peripherals,

to access memory simultaneously without bottlenecking, improving the system's throughput.

60 Hardware Overview

Conclusion

The SPC58EC80E5 microcontroller is an advanced, automotive-grade solution for body

control, networking, and security applications. Its combination of high-performance dual-core

architecture, extensive memory resources, multiple communication interfaces, and robust safety

features make it suitable for modern automotive applications, especially in areas that demand real-

time performance, data integrity, and security. The integrated Hardware Security Module ensures

secure communication and data handling, while the extensive peripheral set, including CAN-FD,

FlexRay, LIN, and Ethernet, makes it ideal for in-vehicle networking and control.

This microcontroller also excels in energy efficiency, with various low-power modes that are

essential for applications where minimizing energy consumption is critical. Overall, the

SPC58EC80E5 provides a scalable, reliable, and secure platform for advanced automotive

systems.

Refer to Figure 4-2 for a block diagram of the SPC58EC80E5 and Figure 4-3 for its peripheral

layout. These figures will help you visualize the interaction between its cores, memory,

communication interfaces, and peripherals.

Hardware Overview 61

Figure 4-2 SPC58EC80 Block diagram

62 Hardware Overview

Figure 4-3 Peripheral allocation

Hardware Overview 63

Figure 4-4 Power supply circuit of the SPC58EC80-DISP board, providing 5V, 3.3V and linear regulated 3.3V

4.2 Power Supply
The power supply circuit for the SPC58EC80-DISP board (Figure 4-4) is designed to provide

flexible voltage regulation and distribution, supporting multiple voltage rails and external power

input.

• Primary Power Input and Protection:

o The circuit accepts an external DC input (V_Ext), which can be switched on/off and

is protected by a fuse. This is the main power source.

• Voltage Regulators:

o Buck Regulators (U7 and U8): These two switching regulators convert V_Ext into

stable 3.3V (3V3) and 5V (5V) outputs, which are used to power various parts of the

board.

o Linear Regulator (U9): This LDO regulator provides an additional 3.3V output

(3V3_LR) from the 5V rail, offering a low-noise option for components sensitive to

power fluctuations.

64 Hardware Overview

• Power Selection Jumpers (JP34 to JP37):

o These headers allow users to select different voltage sources (3.3V, 5V, or V_Ext) for

specific power domains, such as VDD_HV_IO_Main, VDD_HV_IO_Flex, and

VDD_HV_ADC, providing flexibility in the power configuration.

• Power Status Indicators:

o LEDs indicate the presence of the 3V3_LR, 3V3, 5V, and V_Ext voltages, allowing

quick visual confirmation of each rail's status for easier troubleshooting.

The design provides regulated 3.3V and 5V outputs from an external DC source, with

configurable power distribution and LED indicators for monitoring. It combines the benefits of

efficient switching regulators and a low-noise linear regulator to meet the diverse power

requirements of the board.

4.3 CAN and ISO CAN-FD
Figure 4-5 shows the CAN interfaces on the SPC58EC80-DISP board, which includes two

independent CAN transceivers. Each section of the circuit handles communication on a separate

CAN bus, allowing the board to interface with multiple CAN networks. Here’s a breakdown of the

components and their functions:

4.3.1 CAN Transceivers (U1 and U2)
• MCP2562FD transceivers are used for both CAN channels. These transceivers support CAN

FD (Flexible Data-rate), which allows for higher data transmission rates compared to

standard CAN.

• Pins:

o TXD/RXD: These pins connect to the microcontroller’s CAN TX and RX lines.

o CANH/CANL: The differential high and low output pins are used for the CAN

bus. These connect to the CAN bus lines and are responsible for transmitting and

receiving differential signals.

o STBY (Standby): This pin controls whether the transceiver is in normal operation

or standby mode, allowing power saving when the CAN interface is not in use. The

standby pin can be grounded or pulled high through headers JP2 and JP4, making

it configurable.

Hardware Overview 65

4.3.2 Bus Termination and Filtering
• Termination Resistors (R5/R6 and R12/R13): Each CAN bus is terminated with 60.4Ω

resistors to match the characteristic impedance of the CAN bus, which is typically 120Ω

(parallel resistance of the two 60.4Ω resistors). This termination is necessary to prevent

signal reflections on the bus.

• Optional Jumpers (JP1 and JP3): These jumpers allow you to enable or disable

termination on each CAN line, providing flexibility depending on whether the board is

used as a single node or an endpoint on the bus.

• Capacitors (C1, C2, C7, and C8): These 47pF capacitors are used for filtering high-

frequency noise, helping to maintain signal integrity on the CANH and CANL lines.

• Additional Capacitors (C5, C6, C11, and C12): Extra filtering capacitors, 4.7nF,

connected to ground to further filter noise on the CAN lines.

4.3.3 Test Points (TP1, TP2, TP3, and TP4)
• These test points provide access to the CANH and CANL signals for both CAN buses.

They can be used to monitor the differential CAN signals with an oscilloscope or other test

equipment during debugging.

D-Sub Connectors (J1 and J2)

• CAN Bus Output: Both CAN networks are accessible through separate D-Sub 9-way

connectors (J1 and J2), which are commonly used for CAN connections in industrial and

automotive applications.

• Pin Mapping: The CANH and CANL lines are connected to the standard CAN pins on the

D-Sub connectors. Additionally, external power (V_Ext) is also routed to these connectors,

potentially for powering external CAN devices.

This CAN interface section enables the SPC58EC80-DISP board to communicate over two

independent CAN channels. Each channel has its own transceiver (U1 and U2), with noise filtering

and configurable termination to ensure robust communication. The D-Sub connectors provide a

standard interface for connecting the board to external CAN networks, making this setup suitable

for automotive and industrial CAN applications.

This design allows for flexibility in CAN configuration, with features like standby control,

selectable termination, and accessible test points, making it versatile for a variety of CAN-based

communication tasks.

66 Hardware Overview

Figure 4-5 CAN and ISO CAN-FD interface circuit of the board is exploiting MCP2562FD (High-Speed CAN

Flexible Data Rate Transceiver)

Software Overview 67

5 Software Overview

5.1 SPC5Studio Overview
SPC5Studio is an Eclipse-based development environment tailored for SPC5x Power

Architecture 32-bit microcontrollers. It provides an extensible platform where users can create

embedded applications by utilizing pre-built components and developing custom plug-ins. The

generated code is ANSI C compliant, adhering to MISRA 2012 standards for high-quality, reliable

software.

SPC5Studio offers an intuitive user interface, simplifying the creation of embedded

applications by enabling easy configuration of MCU resources. Its application wizard

automatically manages dependencies, helping developers generate syntax-error-free projects from

the beginning.

The tool is free to download from ST's website, with updates provided via an automatic

notification system. Further customization and increased functionality are available through a

marketplace filled with installable components.

68 Software Overview

5.1.1 Creating a New Application
• Project name

In this step, you begin by creating a new project within SPC5Studio, which involves assigning

a unique name to the project. The project name serves as the primary identifier and helps

differentiate it from other projects you may have in your workspace. Choosing a descriptive name

is especially helpful when managing multiple projects, as it allows you to keep track of different

versions or types of embedded applications you’re developing. This initial naming step is

fundamental to keeping your work organized and ensuring efficient project management

throughout the development process.

Additionally, the project name will be used to create the directory structure where all the related

files—such as configuration, source code, and build outputs—are stored. This means that having

a clear and unique project name can also help avoid confusion and conflicts between different

projects.

Figure 5-1 Project name window in which should define a name for the project

Software Overview 69

• Application name

After setting a project name, you need to define an application name within SPC5Studio. The

application name is a crucial identifier that represents the specific embedded software or

functionality you are building as part of your project. It serves as a secondary layer of identification

within your project—while the project name might refer to the overarching task, the application

name indicates a specific component or purpose of the software being developed.

The application name helps maintain clarity and focus as it points directly to what your code

is intended to accomplish. It may also be reflected in the directory and file structures, making it

easier to navigate and understand the different components of the project later on. Having an

appropriate application name is essential when working in teams or revisiting the project after

some time, as it provides quick insight into the purpose and scope of the specific application you

are developing.

Figure 5-2 Application name window where we can define an application name and a brief description

70 Software Overview

• Select platform

In this step, you specify the target hardware platform for your embedded application.

Essentially, you are telling SPC5Studio which specific SPC5 microcontroller (MCU) or family of

microcontrollers you plan to use. The platform selection includes choosing a particular

microcontroller that meets your project's requirements in terms of performance, available

peripherals, and memory size.

By carefully selecting the platform and defining the specific details about your target MCU,

you make sure that all subsequent steps, like component selection and code generation, are aligned

with the hardware you are targeting. This alignment reduces the risk of incompatibility, saves

development time, and ensures that the generated code will run optimally on your target

microcontroller.

Figure 5-3 Select platform window is used to specify the target hardware platform e.g. SPC58ECxx in this project

Software Overview 71

5.1.2 Add Components to the Project
This step is about selecting and configuring the building blocks of your embedded application.

It allows you to add the drivers, libraries, middleware, and other software modules needed to make

your project work. The ease of use provided by the graphical interface, combined with automated

compatibility checks, makes this step efficient and minimizes the risk of integration errors. This

approach gives you flexibility and ensures that your project is both scalable and maintainable.

Figure 5-4 Add components to project

72 Software Overview

5.1.3 Generate Application Code
In this step, SPC5Studio takes all of the configurations you have specified so far—including

the platform selection, added components, and resource configurations—and automatically

generates the necessary source code for your embedded application. This step is one of the key

advantages of using an integrated development environment like SPC5Studio, as it simplifies what

can otherwise be a labor-intensive and error-prone task.

The "Generate Application Code" step in SPC5Studio is a powerful feature that automatically

creates a basic code framework for your embedded system, including peripheral drivers,

middleware setup, and a structured main application file. By ensuring MISRA 2012 compliance,

managing dependencies, and organizing code in a clear and modular way, SPC5Studio accelerates

the development process and helps developers produce reliable, maintainable, and ready-to-deploy

embedded software for SPC5 microcontrollers.

Figure 5-5 Application generation summary shows any error or warning if we did something wrong

Software Overview 73

5.1.4 Compile Your Application
Once you've configured your project and generated the application code, the next step is to

compile that code to produce an executable that can be uploaded and executed on the

microcontroller. Compiling involves several stages that transform your source code into a

machine-readable format, while also verifying that your code is error-free.

The "Compile Application" step is about transforming your human-readable source code into

machine code that the SPC5 microcontroller can execute. It involves preprocessing, compiling into

object files, linking them to create an executable, and generating a binary that can be flashed onto

the microcontroller. This step also includes error-checking, optimizing the code for performance

or memory usage, and preparing the final output for deployment. The compilation process ensures

that your embedded system code is both syntactically correct and appropriately configured to run

reliably on your target hardware.

Figure 5-6 Compile application

74 Software Overview

5.2 UDE STK Overview
UDE STK 5.2, or Universal Debug Engine Starter Kit version 5.2, is a comprehensive

debugger software tool used primarily for debugging and testing embedded systems. Developed

by PLS Development Tools, UDE STK is designed to interface with microcontrollers and System-

on-Chip (SoC) devices, providing developers with in-depth access to internal resources of the

microcontroller during the software development process. Below is an overview of its features,

functionalities, and application areas:

5.2.1 Key Features and Overview of UDE STK 5.2

• Integrated Development and Debug Environment:
o UDE STK 5.2 is an integrated debugger designed to work with multiple

development environments and supports various microcontroller families. It
provides an easy-to-use GUI with features that streamline the debugging process.

o It is particularly useful for embedded developers working with complex systems,
as it integrates seamlessly with compilers and RTOS.

• Support for Multiple Architectures:
o UDE STK 5.2 supports a wide range of 32-bit microcontroller architectures. It is

commonly used with automotive microcontrollers, such as those based on the
Power Architecture (like SPC5 series), ARM Cortex cores, and other popular
microcontroller families.

o This makes it a suitable choice for automotive applications, industrial automation,
and consumer electronics that use high-performance microcontrollers.

• Real-Time Debugging Capabilities:
o UDE STK 5.2 allows developers to observe the behavior of an embedded system

in real-time without halting the target microcontroller, which is critical for real-
time applications.

o It provides live access to registers, variables, and memory, enabling developers to
monitor system status as it executes. This non-intrusive debugging capability is
particularly useful in safety-critical systems where continuous monitoring is
essential.

• Graphical User Interface:
o The UDE software interface provides multiple windows that help visualize and

analyze data in an embedded system. These windows include memory views, watch
windows, variable views, call stacks, and peripheral register access views.

o The GUI is customizable, allowing developers to arrange the windows to best suit
their workflow and easily monitor critical variables and hardware status.

Software Overview 75

• Powerful Debugging Features:
o Breakpoint Management: UDE STK 5.2 supports both software and hardware

breakpoints. Breakpoints help developers pause the execution of the application at
a specific line of code or address in memory, allowing for detailed inspection of the
system state.

o Watchpoints: Conditional breakpoints or watchpoints can be set to pause
execution only when a specific condition is met (e.g., a variable changes to a certain
value).

o Step-by-Step Execution: The tool allows single-stepping through the code—line
by line or function by function—making it easy to locate the exact point where
issues occur.

• Trace Functionality:
o ETM and DWT Trace: For advanced debugging, UDE STK 5.2 supports trace

functions, such as ETM (Embedded Trace Macrocell) and DWT (Data Watchpoint
and Trace). These functions allow developers to trace the execution history of the
program, providing detailed insights into how the program reached its current state.

o Code Coverage and Profiling: The trace features also assist in code coverage
analysis, which is essential in determining how thoroughly a program has been
tested. This is crucial for validating software, especially in automotive and other
safety-critical applications.

• Scripting and Automation:
o UDE STK 5.2 includes scripting capabilities, allowing developers to automate

repetitive debugging tasks. Scripts can be written using Python or other supported
languages to control the debugger programmatically.

o This functionality helps save time and ensures consistency when debugging similar
issues across multiple devices or projects. Automated scripts can also be used in
production testing environments.

• Multi-Core and Multi-Target Debugging:
o The tool is capable of debugging systems with multiple cores or multiple

microcontrollers. This is particularly important for automotive systems where
multiple processors work together in a distributed system architecture.

o UDE STK 5.2 manages the debugging of multiple cores, allowing synchronized
execution control, simultaneous variable monitoring, and coordinated breakpoint
handling across all cores in the system.

76 Software Overview

• RTOS Awareness:
o UDE STK 5.2 is designed to work effectively with real-time operating systems. It

provides RTOS-aware debugging, meaning it can show information about tasks,
threads, queues, and other RTOS objects, which helps in diagnosing issues in
RTOS-based applications.

o RTOS task monitoring allows developers to see which tasks are running, their
states, priorities, and stack usage, which is valuable for optimizing performance and
troubleshooting timing issues.

• Flash Programming and Diagnostics:
o UDE STK 5.2 also supports integrated flash programming, allowing developers to

program the non-volatile memory of the target microcontroller directly from the
debugger environment. This functionality simplifies the process of uploading and
testing new code versions.

o Diagnostics tools are included to verify the integrity of the programmed data, which
is especially important for ensuring reliability in production environments.

• Hardware Support:
o UDE STK 5.2 is compatible with a variety of debugging interfaces and hardware

probes, such as JTAG, SWD (Serial Wire Debug), and the high-performance PLS
UAD (Universal Access Device) family.

o The hardware support allows developers to interface with a range of
microcontrollers and choose the connection type that best fits their requirements—

whether it’s rapid prototyping or more in-depth, performance-critical analysis.
• Flexibility and Integration:

o IDE Integration: UDE STK can be used as a standalone tool or integrated into
popular integrated development environments (IDEs), such as Eclipse or
SPC5Studio. This helps developers use their preferred software tools without
compromising on debugging capabilities.

o Third-Party Tool Compatibility: It is also compatible with various third-party
compilers, such as Green Hills, IAR, and GCC, providing flexibility in the
development toolchain.

• User-Friendly Licensing:
o UDE STK 5.2 offers a "Starter Kit" version, which is typically more cost-effective

and suitable for developers and students who are just getting started with
microcontroller development. This makes it an accessible option for smaller
projects or educational purposes, providing essential debugging tools without the
need for extensive licensing costs.

Software Overview 77

5.2.2 Application Areas and Benefits

• Automotive Systems: Given its robust support for SPC5 microcontrollers and Power
Architecture, UDE STK 5.2 is well-suited for automotive applications, especially those
involving safety-critical functions, such as ECUs for engine management, braking, and
ADAS.

• Industrial Automation: Its support for multi-core debugging, RTOS awareness, and trace
analysis makes UDE STK ideal for use in industrial control systems, where real-time
performance and reliability are crucial.

• Embedded System Development: The powerful debugging, tracing, and multi-core
support make it an excellent choice for embedded systems in consumer electronics and IoT
devices, providing visibility into the inner workings of complex applications.

UDE STK 5.2 is a powerful and versatile debugger for embedded systems, providing a range
of tools to help developers test, debug, and optimize their applications. Its support for multiple
microcontroller architectures, advanced trace and breakpoint capabilities, RTOS-awareness, and
integration with various IDEs make it a suitable choice for developing complex embedded
systems, particularly in automotive and industrial environments. By offering real-time debugging,
multi-core support, and flexible licensing options, UDE STK 5.2 is both accessible and highly
functional, catering to both professional developers and those just starting in embedded
development.

78 Software Overview

Development of the Embedded System for Electric Vehicles 79

6 Development of the Embedded System for Electric Vehicles

In the previous chapters, we introduced the motivation, background, and system requirements
for the development of an embedded system for EVs, with particular attention to hardware-
software integration. With the foundational concepts established, we now proceed to the practical
aspects of system implementation. This chapter will focus on the specific steps involved in
developing and integrating the embedded system for our EV project.

We begin with the initial configuration of the embedded platform, detailing the setup of the
microcontroller and other essential components that form the core of our system. This includes
configuring clock settings, pin mapping, and initializing the basic modules required for further
development. The subsequent section addresses the reading from SARADC (Successive
Approximation Register Analog-to-Digital Converter) inputs, which play a crucial role in
capturing analog signals such as those from the accelerator pedal, providing the digital data needed
for system control.

Following this, we provide an overview of the CAN bus, a critical communication protocol in
automotive systems, and describe its implementation within our project. This involves setting up
the CAN controller, configuring message filters, and ensuring reliable data exchange between
different modules of the EV. Lastly, we delve into the DSPI (Deserial/Serial Peripheral Interface)
implementation, which is utilized for interfacing with various peripheral devices, such as digital-
to-analog converters, that are crucial for real-time control and feedback.

This chapter will walk through each of these key stages, providing insights into the
methodologies and tools used, as well as practical considerations and challenges encountered
during the implementation. By breaking down these steps, we aim to provide a comprehensive
understanding of how the embedded system components are configured and integrated to meet the
specific needs of electric vehicles, with a focus on seamless hardware-software integration.

80 Development of the Embedded System for Electric Vehicles

6.1 State Machine Design for Sound Synthesis
A Finite State Machine (FSM) is a model of computation used to design systems that can be in

one of a finite number of states at any given time. In an FSM, the system transitions from one state

to another in response to specific inputs or conditions, making it highly suitable for managing

complex sequences of operations in embedded systems.

Figure 6-1 represents an FSM tailored for an embedded system that continuously collects data

from vehicle sensors and communicates with a miniPC for processing. The FSM provides a

structured approach to control flow, ensuring the system can handle data acquisition,

communication, error handling, and response processing in a closed-loop fashion. Each state in

the FSM has a defined purpose, with transitions based on events or conditions, creating a robust

and organized control structure for real-time applications.

Figure 6-1 Finite state machine flowchart for the electric vehicle sound synthesis system, showing the operating

states and transitions based on vehicle speed, acceleration, and user input

Development of the Embedded System for Electric Vehicles 81

1. Initialize

➢ Purpose: This is the starting point of the FSM where the system performs necessary

setup operations. In this stage, the board initializes its components, such as UART

communication, CAN interface, ADCs for analog inputs, and any other peripherals.

➢ Transition: After initialization, the FSM proceeds to the next step, Setup

Connection.

2. Setup Connection

➢ Purpose: Here, the board attempts to establish communication with the miniPC.

This involves setting up the UART connection or any protocol handshakes required

for reliable data exchange.

➢ Transition:

▪ Connection Established: If the connection is successfully established, the

FSM moves to Data Collecting and Filtering.

▪ Connection Failed: If the connection fails, it loops back to Initialize to retry

setup. This loop allows the system to reset and try again if any connection

issues arise, enhancing robustness.

3. Data Collecting and Filtering

➢ Purpose: In this state, the system gathers data from various sources on the board.

This includes:

▪ Collecting CAN messages from the vehicle network.

▪ Reading analog inputs through the ADC (e.g., sensor data).

▪ Filtering or processing the raw data as needed before transmission.

➢ Transition: Once the data is collected and filtered, the FSM transitions to Transmit

Data to send this information to the miniPC.

4. Transmit Data

➢ Purpose: In this state, the collected and filtered data is transmitted to the miniPC

via UART. This step is essential for communicating the current state of the board's

environment (e.g., sensor readings, vehicle information).

➢ Transition: After data transmission, the FSM moves to Check Response.

82 Development of the Embedded System for Electric Vehicles

5. Check Response

➢ Purpose: Here, the board checks for an acknowledgment or response from the

miniPC. The response might contain new control values or commands for the

board.

➢ Logic:

▪ Instead of waiting indefinitely, the board checks for response availability

within a set time limit.

▪ If the response is received in time, the FSM proceeds to Set Output Values.

▪ If there is no response within the timeout, it raises an error and loops back

to continuously check for response availability.

➢ Transition: Based on response status:

▪ OK (Response Received): Moves to Set Output Values.

▪ No Response (Timeout): Enters an error-checking loop to wait for a

response indefinitely, ensuring the system can detect and handle

communication issues.

6. Set Output Values

➢ Purpose: This state involves applying the received response (if any) from the

miniPC. For example, the response might include updated analog output values or

other settings for the board to adjust its outputs accordingly.

➢ Feedback Verification: Since this is a closed-loop system, the correctness of these

output values isn’t directly verified here. Instead, when the FSM cycles back to

Data Collecting and Filtering, it will verify the effect of the applied output by

observing changes in the collected data.

➢ Transition: After setting the output values, the FSM loops back to Data Collecting

and Filtering, continuing the cycle of data acquisition, transmission, and response

processing.

Development of the Embedded System for Electric Vehicles 83

Summary

• This flowchart represents a closed-loop FSM that continuously collects data,

communicates with the miniPC, and adjusts its outputs based on feedback.

• If any part of the process (like connection or response) fails, the system can retry or wait

for resolution, making it resilient.

• The closed-loop verification method leverages the natural feedback from data collection to

ensure outputs are functioning as expected, without requiring an explicit output-checking

mechanism.

This FSM is well-suited for embedded applications that require real-time data acquisition,

communication, and response adjustments, such as your system for synthesizing engine sounds in

an electric vehicle.

84 Development of the Embedded System for Electric Vehicles

6.2 Initial Configuration

The initial configuration is a crucial step in the development of the embedded system for
electric vehicles. This phase involves setting up the foundational hardware and software
parameters that ensure reliable and efficient operation. The configuration of the microcontroller,
clock distribution, pin mapping, and initialization of key peripherals are all essential tasks that lay
the groundwork for subsequent stages of development. By establishing these core settings, we
ensure that the system can operate in a stable manner and meet the specific requirements of the
EV application.

6.2.1 Clock Distribution

The clock distribution network within the microcontroller is a key aspect of the initial
configuration. It determines the timing and synchronization of all internal modules and peripherals.
The clock tree must be configured to provide appropriate clock signals to each subsystem, ensuring
optimal performance and energy efficiency. Figure 6-2 illustrating the clock tree of the
microcontroller is provided to give a general overview without delving into deep technical details.

Figure 6-2 Clock tree is used to set clock signal for peripherals

Development of the Embedded System for Electric Vehicles 85

6.2.2 Low Level Driver Component Register-Level Abstraction (RLA)

The Low Level Driver Component RLA is an essential part of the microcontroller's initial
configuration, providing direct access to hardware registers for efficient and precise control. This
layer allows developers to interface directly with the hardware, optimizing performance for
specific tasks within the EV system. Figure 6-3 is provided to show the driver selection page of
the SPC5studio, where various drivers can be enabled.

Figure 6-3 Low Level Driver Component RLA , by checking the boxes we can add those drivers to our project

86 Development of the Embedded System for Electric Vehicles

6.2.3 Pin Mapping

The pin mapping process is a fundamental part of configuring the embedded system, as it
ensures that the microcontroller's input/output pins are correctly assigned to their intended
functions. In SPC5Studio, the pin mapping tool allows developers to easily assign peripherals to
specific pins, simplifying the hardware-software integration process. This configuration step is
critical for ensuring that signals are routed properly and that the system performs as intended.
Figure 6-4 is provided to illustrate the pin mapping window in SPC5Studio, showing how pins can
be assigned to different functions and how the interface assists in managing these assignments.

Figure 6-4 Pin mapping is used to set a name for each pin and define the functionality of that pin

Development of the Embedded System for Electric Vehicles 87

6.2.4 SARADC Configuration
The SARADC (Successive Approximation Register Analog-to-Digital Converter) is utilized in

the SPC58EC80-DISP board to convert analog signals to digital form. This conversion plays a key

role in acquiring real-time data from sensors, which is critical in various embedded systems and

automotive applications. For my project, involving the generation of synthetic engine sounds for

EVs, I have configured two channels of the SARADC module to read data from input sources such

as the accelerator pedal sensor.

The SARADC configuration was performed using SPC5Studio, and the Figure 6-5 illustrates

the configuration interface, providing an overview of the setup parameters. This includes

specifying the Conversion Group, Channel Configuration, and various conversion timing details.

Conversion Mode and Triggering

The ADC in SPC5Studio was set to operate in 'Scan Mode' under the Conversion Group

settings. This mode allows for multiple channels to be sampled in sequence. The trigger mode for

the SARADC was set to 'Disabled', which means that conversion starts without any external or

software trigger. Instead, the conversions are controlled internally within the scanning cycle.

Clock Settings and Resolution

The SARADC clock settings have been configured to achieve an appropriate balance between

speed and accuracy for our application. The attached figure provides details on the registers used

for conversion timing configuration:

• CTRx Registers: The configuration screen displays settings for four control registers

(CTR0, CTR1, CTR2, CTR3). Each CTR register manages parameters like conversion

resolution (CRES), precharge time (PRECHG), and sample time (Tsample).

• The SARADC module can operate at different resolutions, where CRES can be set to LOW

(10-bit) or HIGH (12-bit). For our application, we used CTR0 which is set to LOW and

uses 10 bits resolution.

• The conversion time (Tconv) for the ADC channels is shown in the Figure 6-5, which is

essential for estimating latency and managing the data acquisition rate.

Channel-Specific Configuration

In this project, two internal channels were configured to capture analog inputs. As shown in

the Figure 6-5, the following parameters were defined:

• Channel Type: Internal, indicating that no external trigger or additional peripherals are

used.

• Channel Number: Channel 42 was used for input acquisition, which corresponds to the

accelerator pedal sensor.

88 Development of the Embedded System for Electric Vehicles

• Precharge and Reference Selection: Precharge was enabled, and the default reference

was used to stabilize the input signal before conversion.

• Conversion Timing Register: CTR0 was selected for configuring the timing parameters

of channel conversion.

Figure 6-5 SARADC configuration parameters

Development of the Embedded System for Electric Vehicles 89

Use of Callbacks

In the configuration, callbacks were also set for the ADC driver to notify the application

whenever a conversion is completed. The function adc_callback42 was defined to handle the

completion event, facilitating real-time processing of the converted digital data.

Read from SARADC inputs

The SARADC on the SPC58EC80-DISP board is an analog-to-digital converter that converts an

analog input signal (like a varying voltage from a sensor) into a digital value that the

microcontroller can process.

Key Features of the SARADC on the SPC58EC80-DISP Board:

1.Successive Approximation: The SARADC uses the successive approximation method,

which is efficient and fast. It approximates the analog input by comparing it to a series of

reference voltages, narrowing down to a precise digital value in a set number of steps.

2.Resolution and Accuracy: SARADCs generally offer good accuracy with moderate

resolution (typically 10-12 bits for automotive microcontrollers), allowing the SPC58EC80

to capture fine details in the input signal, such as the accelerator pedal’s exact position.

3.Speed: The SAR approach is relatively fast compared to other ADC types, making it

suitable for real-time applications, like reading rapid changes in sensor values.

4.Multiplexing Capability: The SARADC can handle multiple input channels, meaning you

can connect several analog sensors to it and switch between them, enabling you to monitor

various signals efficiently.

5.Automotive-Grade Performance: Designed for automotive applications, the SARADC

on this board provides the robustness and reliability required for vehicle systems, with good

noise immunity and precision.

The SARADC on the SPC58EC80-DISP is optimized for fast, accurate, and reliable

conversion of analog signals, making it ideal for applications like monitoring an accelerator pedal,

where real-time, precise data is essential.

In this thesis I used the SARADC to read the accelerator pedal position. Once the pedal position

is digitized, MCU can send this value along with other sensor data to the miniPC, where it can be

used as an input for sound synthesis, among other processing tasks. This data is critical for

synthesizing engine sounds, where the pedal position can control the sound dynamics, reflecting

acceleration or deceleration in real-time.

90 Development of the Embedded System for Electric Vehicles

6.2.5 UART Configuration
The UART (Universal Asynchronous Receiver-Transmitter) module was configured for serial

communication to facilitate the data exchange between the board and external devices, which is

essential for debugging and real-time data monitoring. The UART configuration in SPC5Studio

was performed with the following settings, as illustrated in Figure 6-6.

Figure 6-6 UART configuration parameters

General Configuration

• Symbolic Name: The UART configuration is represented symbolically as cfg_uart0 for

easy reference within the code.

• Baud Rate: Set to 115200 bps, which is a standard rate for serial communication, balancing

speed and reliability for debugging and logging.

• Mode: Configured as 8BITS_PARITY_NONE, which means 8 data bits, no parity, and 1

stop bit. This is a typical configuration for straightforward communication without error-

checking overhead.

Development of the Embedded System for Electric Vehicles 91

API Behavior

• Mode: The UART module was configured to operate in Asynchronous mode, allowing

the read/write operations to continue without blocking until completion. This enables better

responsiveness and non-blocking behavior for other tasks.

• Buffered IO Size: The buffered I/O size was left unconfigured (default), implying that

standard buffers were used for data handling.

Notifications

• RX Callback: A receive callback function rx0cb was defined to handle received data,

enabling the application to respond in real-time to incoming messages.

• TX Callback: No transmit callback was defined for this configuration, as the application

does not require explicit notifications for completed transmissions.

DMA Configuration

• DMA Enable: Direct Memory Access (DMA) was not enabled for this UART

configuration, meaning that data transfer is handled directly by the CPU. This decision was

made to reduce the complexity of the implementation since the data rate requirements did

not necessitate the use of DMA.

• DMA Error Callback: Not configured, as DMA was not utilized.

92 Development of the Embedded System for Electric Vehicles

6.2.6 DSPI Configuration
The DSPI (Deserial/Serial Peripheral Interface) module was configured for SPI

communication to interface with external peripherals, such as sensors or DACs, providing a

synchronous data transfer mechanism. The DSPI configuration in SPC5Studio was set up with the

following details.

General Configuration

• Symbolic Name: The DSPI configuration is represented as low_speed_16 for easy

reference in the code, indicating a specific SPI setup with a lower speed and a frame size

of 16 bits.

• Mode: Configured as Master, which allows the board to initiate communication with

connected slave devices.

• Clock Polarity and Phase: Set to Low clock polarity and Leading Edge clock phase. This

combination ensures compatibility with the target SPI peripheral's timing requirements.

• Frame Size: Set to 16 bits, which means that each SPI transaction involves 16 bits of data

being transferred per frame.

• Frame Ordering: MSB first, which means that the most significant bit is transmitted first

in each data frame.

• Endianness: Configured as Little Endian for consistency with the rest of the data

operations in the system.

Timing Configuration

The timing settings for DSPI were carefully configured to match the requirements of the connected

peripheral:

• Baud Rate Prescaler: Set to PRE2, which helps determine the clock rate for SPI

communication.

• Baud Rate Divider: Set to DIV64, which further divides the clock to achieve the desired

communication speed of 312500 bits/s.

• Chip Select Timing: Specific prescalers and dividers were configured for the chip select

assertion and de-assertion timings to ensure stable communication with the connected

devices.

Development of the Embedded System for Electric Vehicles 93

Chip Select Configuration

• Mode: The Chip Select was configured in Hardware (continuous) mode, ensuring that

the SPI line remains selected throughout the data transfer, preventing communication

interruptions.

• GPIO Port and Bit: The Chip Select line is managed via PORT_A, GPIO Bit 0, which

is linked to the hardware to provide precise control over which peripheral is being

addressed.

• PCS Line: Set to PCS0, which represents the particular line used for selecting the SPI

device.

Notifications

• Transfer Complete Callback: A Transfer Complete Callback was left unconfigured,

indicating that for this setup, the SPI transactions are handled without interrupt-driven

completion notifications, which is suitable for simpler or non-time-critical transfers.

The SPI protocol allows for high-speed data transfer by shifting data on every clock pulse. The

clock polarity and phase settings are configurable, allowing compatibility with various peripheral

devices like the MCP4922. The MCP4922 is a 12-bit digital-to-analog converter (DAC) that

communicates using the SPI protocol. In this thesis project, we need to use the DSPI module

because it provides a way to control and communicate with SPI-compatible devices like the

MCP4922. As soon as the miniPC returns the values, using SPI and MCP4922 corresponding

values will produce on the output. A detailed view of the DSPI signaling is captured from the real

project and illustrated in Figure 6-7.

Figure 6-7 SPI communication signals captured from the real project and shows sending data to the MCP4922

94 Development of the Embedded System for Electric Vehicles

Summary of Configuration

The SARADC, CAN, UART, and DSPI configurations for the SPC58EC80-DISP board are

pivotal for ensuring accurate data acquisition, robust communication, and effective data logging

within the system. The CAN, UART, and DSPI configurations, demonstrate the adjustable control

over parameters such as timing, buffering, and filtering, which are crucial for reliable system

performance. Together, these configurations enable the seamless integration of analog sensor data,

communication protocols, and debugging capabilities into the broader vehicle control network,

supporting the objectives of the project.

Development of the Embedded System for Electric Vehicles 95

6.3 CAN Bus Overview and Implementation
The CAN (Controller Area Network) bus is a robust communication system used primarily in

vehicles and industrial applications to enable different Electronic Control Units or “nodes” to

communicate with each other without needing a central host computer. Here's a breakdown based

on the images and the description provided:

6.3.1 CAN Bus as a Communication System
• Think of the CAN bus as the nervous system in a human body, allowing different parts

(nodes or ECUs) to exchange information quickly and reliably.

• Each ECU in the network is responsible for controlling or monitoring specific functions,

such as braking, engine control, or air conditioning. These functions often need to interact,

and the CAN bus facilitates this communication.

• By allowing ECUs to communicate with each other directly, the CAN bus eliminates the

need for point-to-point wiring, which makes the system simpler, more efficient, and easier

to troubleshoot.

6.3.2 Physical Structure of the CAN Bus
• The CAN bus uses a two-wire twisted pair for transmission, often color-coded for

easy identification:

o CAN High (CAN H): Typically yellow in color.

o CAN Low (CAN L): Typically green in color.

Figure 6-8 CAN twisted pair wire typical color, yellow for CAN high and green for CAN low

96 Development of the Embedded System for Electric Vehicles

• Twisting the wires together helps reduce electromagnetic interference (EMI), ensuring

data integrity even in environments with electrical noise, like in a car or industrial setup.

• When data is transmitted, the CAN High and CAN Low wires carry opposite signals

(differential signaling), which enhances noise immunity.

6.3.3 Working Mechanism
• The CAN bus operates as a multi-master, message-oriented protocol, meaning any node

can start a transmission if the bus is free.

• Each message on the CAN bus has a unique identifier that determines its priority. If two

nodes attempt to transmit at the same time, the message with the lower identifier value gets

priority, ensuring the more critical data goes through first.

• Messages are transmitted across the network to all nodes, but each node only processes

messages it’s programmed to receive.

6.3.4 Advantages of the CAN Bus
• Reliability and Error Handling: The CAN bus includes built-in error detection and

handling mechanisms, such as CRC, which minimizes the chance of erroneous data being

accepted by any ECU.

• Real-Time Communication: The CAN bus allows real-time data sharing between ECUs,

making it ideal for time-critical functions like braking or airbag deployment in automotive

systems.

• Efficiency: The system is efficient because each message has a specific identifier, allowing

nodes to filter and prioritize messages, reducing processing time and bandwidth usage.

• Simplified Wiring: Since all ECUs are connected to the same twisted pair of wires, there’s

less wiring complexity compared to point-to-point connections, which reduces the weight

and cost of wiring in vehicles.

6.3.5 Use Cases in Vehicles
• In modern vehicles, CAN bus networks are extensively used to link various ECUs like the

engine control module (ECM), transmission control module (TCM), antilock braking

system (ABS), airbag control unit, and infotainment systems.

• For instance, when you press the brake pedal, the braking ECU can send a message over

the CAN bus to inform the engine ECU and transmission ECU to reduce power and

prepare for stopping. This integrated communication results in smoother and safer

operation.

Development of the Embedded System for Electric Vehicles 97

In summary, the CAN bus is an essential communication protocol for modern automotive

systems, providing a robust, reliable, and efficient way for multiple ECUs to communicate in real

time, making vehicle systems responsive, integrated, and secure.

6.3.6 CAN Message Characteristics
The characteristics of a CAN message are essential for understanding how data is transmitted

and received over this protocol. Here’s an overview:

• Message Frame Types

CAN uses different types of message frames for varied purposes:

o Data Frame: Carries data from transmitter to receiver(s).

o Remote Frame: Requests data from another node.

o Error Frame: Signals errors detected on the network.

o Overload Frame: Adds extra delay between data or remote frames if needed.

• Bit Rates and Synchronization

CAN supports various bit rates, typically ranging from 125 Kbps to 1 Mbps. The network

synchronizes by resynchronizing each node to the bit time whenever a transition on the CAN bus

occurs, allowing precise timing even across multiple nodes.

• CAN Identifier

The identifier field (11-bit or 29-bit in extended format) in each CAN frame represents message

priority:

o Standard Frame: 11-bit identifier, commonly used.

o Extended Frame: 29-bit identifier, allowing for a more extensive range of message

identifiers.

• Data Length Code (DLC) and Data Field

The Data Length Code (DLC) indicates the number of bytes (0-8) in the data field of a frame.

The Data Field can contain up to 8 bytes of application data, allowing flexible data transmission

in each frame.

98 Development of the Embedded System for Electric Vehicles

• Cyclic Redundancy Check (CRC)

Each frame includes a CRC field that ensures data integrity by checking for transmission

errors. Any inconsistency in the CRC check triggers an error frame.

• Arbitration

CAN uses a non-destructive bitwise arbitration mechanism based on the identifier. The

message with the lowest identifier wins arbitration, allowing higher-priority messages to access

the bus first.

• Acknowledgment

Each node checks for errors in every frame and sends an acknowledgment (ACK) if it

correctly receives the message. This mechanism ensures reliable communication across the

network.

• Error Handling

CAN features five types of errors (bit, stuff, CRC, form, and acknowledgment errors) and

utilizes a robust error-handling system where nodes transition between error-active, error-passive,

and bus-off states based on error frequency.

• Message Length and Format

CAN messages have a compact frame structure, optimizing transmission time. Key fields

include:

o SOF (Start of Frame): Indicates the start of the frame.

o Control Field: Contains DLC and message flags.

o EOF (End of Frame): Marks the end of the frame.

Understanding these CAN message characteristics is vital for efficient communication design

and effective troubleshooting within CAN networks, especially in automotive and industrial

applications where reliability is critical.

Development of the Embedded System for Electric Vehicles 99

6.3.7 CAN Implementation Codes
CAN Configuration

The CAN (Controller Area Network) module was configured to facilitate communication

between various components of the electric vehicle system. This communication is crucial for

transmitting control commands and sensor data efficiently in a reliable manner. The CAN

configuration in SPC5Studio was done with the following parameters.

Figure 6-9 CAN driver structure

General Configuration

• Loopback Mode: The CAN configuration was set with No_Loopback mode, meaning

that the transmitted messages are not fed back into the receive path. This is suitable for

normal operation where external nodes communicate over the CAN bus.

• Endianness: The configuration was set to Big Endian to align with the data representation

format used in other parts of the system.

Timing Configuration

The timing parameters of the CAN module were carefully selected to ensure reliable

communication across the network:

• Clock Prescaler: The prescaler value was set to 1, which determines the rate at which the

CAN clock operates relative to the system clock.

• Nominal Synchronization Jump Width (NSJW): Set to 3, which allows for re-

synchronization in the event of phase errors, improving robustness.

100 Development of the Embedded System for Electric Vehicles

• Nominal Time Segment 1 (NTSEG1): Set to 10, and Nominal Time Segment 2

(NTSEG2) was set to 3. These segments control the timing characteristics of bit sampling,

which is crucial for the accuracy of CAN communication.

• The calculated CAN Bit Rate was 500 kbit/s, which is suitable for most vehicle

applications where timely and reliable data transfer is needed.

Figure 6-10 CAN TX message frame structure, showing all fields in the TX frame

CANFD Operation

• CANFD Enabled: The CANFD (Flexible Data Rate) was not enabled for this

configuration as the standard CAN communication sufficed for the project requirements.

• Bit Rate Switching: Disabled, meaning that a single bit rate was used throughout.

RX Buffer Configuration

• Interrupt Line: Configured to LINE0, with the callback function can1sub0rxcb to handle

received messages.

• Number of RX Buffers: 16 buffers were set up to handle incoming messages, providing

adequate buffering for high-throughput scenarios.

• RX Buffer Filters: Two filters were defined to accept specific CAN IDs, 0x108 and 0x118,

which correspond to critical messages for the system.

Development of the Embedded System for Electric Vehicles 101

FIFO Configuration

Two FIFO buffers were also configured to manage incoming CAN messages:

• FIFO 0: Configured with 64 buffers, enabling efficient handling of multiple messages. A

new message callback named can1sub0rxcb was used to notify the application of new

messages.

• FIFO 1: Not configured, as FIFO 0 was sufficient for the application.

TX Configuration

• TX Mode: Set to DEDICATED, which allocates fixed buffers for each transmitted

message, minimizing latency.

• Number of TX Buffers: 16 buffers were used to ensure that outgoing messages can be

queued effectively without dropping.

Error Management

• Error Callback: The callback function errorcb was defined to handle error conditions on

LINE0. This callback is triggered whenever an error occurs, providing details on the type

of error via the PSR register, which helps in diagnosing communication issues.

Figure 6-11 CAN RX message frame structure, showing all fields in RX frame

102 Results and Discussion

Results and Discussion 103

7 Results and Discussion

This chapter presents an analysis of the results obtained from functional, user experience, and
environmental testing, alongside a detailed discussion on system performance and comparison
with existing technologies. The outcomes are interpreted in light of the objectives of this thesis,
providing insight into the viability and effectiveness of the proposed electric vehicle (EV) sound
synthesis system.

7.1 Functional, User Experience, and Environmental Testing

7.1.1 Functional Testing Outcomes
Functional testing demonstrated that the system could effectively collect data from multiple

sensors, including accelerator pedal and speed, extract the necessary information from the CAN

bus, and transmit all the data to the miniPC for sound synthesis. Notably, the integration of the

CAN bus interface enabled real-time data transfer without any significant latency issues. Data

processing within the SPC58EC80-DISP board showed robust performance, ensuring the

generation of corresponding engine sounds that closely matched the vehicle's state, all while

meeting strict delay limitations.

A key aspect of functional testing was evaluating the latency between sensor data acquisition,

extraction from the CAN bus, data transmission to the miniPC, and the auditory output. The system

achieved an average latency of approximately 20 ms, which was well within acceptable limits for

real-time applications. This rapid response time ensured that synthesized engine sounds responded

promptly to driver inputs, thereby enhancing the immersive driving experience.

7.1.2 User Experience Testing Outcomes
User experience testing focused on evaluating how well the synthesized engine sounds

improved driver engagement and satisfaction. Participants were asked to drive a test vehicle

equipped with the sound synthesis system, and feedback was collected through interviews. Most

participants reported a notable enhancement in their driving experience. The added engine sound

provided an increased sense of control and awareness, which was particularly evident during

acceleration and deceleration phases.

The synthesized engine sounds were generally perceived as realistic and dynamic, contributing

positively to the overall enjoyment of driving an EV. Several drivers highlighted that the auditory

feedback helped them intuitively gauge vehicle speed and motor load, improving confidence while

driving. However, there were also suggestions to fine-tune certain sound characteristics, such as

reducing the intensity of the synthesized sounds at higher speeds to avoid auditory fatigue.

104 Results and Discussion

7.1.3 Environmental Testing Outcomes
The system was also subjected to various environmental conditions to assess its robustness and

reliability. Tests included exposure to temperature variations, and electromagnetic interference

(EMI), which are common challenges in automotive environments. The SPC58EC80-DISP board

and sensors demonstrated stable operation across a temperature range of 0°C to 60°C. The

system's EMI shielding was effective, as no significant data corruption or signal interference was

observed during high-noise testing conditions.

7.2 System Performance Analysis
The overall performance of the proposed sound synthesis system was evaluated based on real-

time responsiveness, sound quality, and the effectiveness of the bidirectional communication setup.

The SPC58EC80-DISP board's processing power was sufficient for handling sensor data

acquisition and preliminary filtering, while the miniPC successfully performed the

computationally intensive task of sound synthesis.

7.2.1 Real-Time Responsiveness
One of the critical performance indicators was the system's ability to provide real-time auditory

feedback. The latency tests revealed that the system maintained a consistent delay below 20 ms,

which was sufficient to create a natural auditory response that matched the vehicle's dynamics.

This level of responsiveness was found to be crucial in enhancing driver engagement, particularly

during rapid throttle changes.

7.2.2 Sound Quality and Synchronization
The quality of the synthesized engine sounds was analyzed both subjectively and objectively.

Subjective assessments by drivers indicated that the synthesized sounds closely resembled internal

combustion engine vehicles in terms of tonal characteristics, such as pitch and modulation during

acceleration. Objectively, frequency analysis showed that the sound spectrum aligned well with

that of typical ICE vehicles, particularly during idle and low-speed conditions.

Synchronization between vehicle dynamics and auditory feedback was also evaluated. The

bidirectional communication setup enabled the SPC58EC80-DISP board to provide timely

adjustments to sound parameters based on the vehicle's state. This synchronization was critical for

achieving a coherent driving experience, where the auditory output precisely matched the driver's

actions.

Results and Discussion 105

7.3 Comparison With Relevant References
The system was benchmarked against existing commercial and academic solutions for electric

vehicle sound synthesis. Compared to systems like the Nissan Leaf's pedestrian alert and the BMW

i8's artificial engine sound, the proposed solution demonstrated significant advantages in terms of

customization and real-time driver feedback. Unlike basic alert sounds meant primarily for

pedestrian safety, this system provides a comprehensive auditory feedback mechanism specifically

tailored for enhancing the driving experience, rather than simply meeting regulatory requirements.

Compared to the approach by (Pavlo Bazilinskyy, Roberto Merino-Martínez, Elif Özcan,

Dimitra Dodou, & Joost de Winter, 2023), which focused on enhancing driver engagement through

exterior synthesized sounds for electric vehicles, the proposed solution features a more advanced

sensor integration scheme. This scheme not only uses vehicle speed but also integrates accelerator

position and torque demand to produce a more context-aware sound output. Additionally,

(Maunder & Munday, 2017) examined in-cabin sound augmentation to enhance driver

engagement; however, their work lacked the bidirectional communication essential to the current

system. The present system introduces an innovative methodology that surpasses previous efforts,

especially in ensuring real-time synchronization between sound output and vehicle control units,

thereby maintaining consistency even during rapid changes in driving conditions.

The integration of real-time data collection, bidirectional communication, and an adaptive

feedback mechanism makes this system a robust contribution to the evolving domain of electric

vehicle auditory feedback. By offering a solution that not only complies with regulatory demands

for pedestrian safety but also enhances the driver’s sensory experience, this project sets itself apart

from many current implementations in both industry and academia.

106 Conclusion and Future Improvements

Conclusion and Future Improvements 107

8 Conclusion and Future Improvements
The development of an embedded system for enhancing the driving experience in EVs through

engine sound synthesis yielded promising outcomes. The proposed system effectively integrates

the SPC58EC80-DISP board with various vehicle sensors and a miniPC for sound generation,

creating a robust, real-time feedback loop between vehicle state and auditory output. The

implementation was successful in synthesizing realistic engine sounds that adapted dynamically

to vehicle conditions such as speed, acceleration, and braking, addressing the sensory gap inherent

in EVs. The functional testing results demonstrated the accuracy of data acquisition, minimal

latency in sound generation, and reliable communication between the hardware components. User

experience testing indicated a significant enhancement in driver engagement and satisfaction,

while environmental tests confirmed the system's reliability across a range of challenging

operating conditions.

8.1 Summary of Main Results
In summary, the results of this study demonstrate that the proposed electric vehicle sound

synthesis system effectively enhances the driving experience by reintroducing essential auditory

feedback. The system successfully integrates sensor data acquisition, CAN bus communication,

and real-time sound generation, achieving an average latency of approximately 20 ms, which meets

the delay requirements for immersive auditory feedback. Functional, user experience, and

environmental testing confirmed the reliability of the SPC58EC80-DISP board and the sound

synthesis process in various conditions. User testing showed that the synthesized sounds

significantly improved driver engagement, providing an intuitive sense of speed and vehicle

behavior. Compared to existing solutions, the bidirectional communication setup and real-time

adaptability of the system were found to offer a more responsive and immersive experience,

bridging the sensory gap in modern EVs.

The proposed system's performance was compared with existing approaches documented in

the literature. The system's use of the SPC58EC80-DISP board, with its dedicated automotive-

grade features, provided an advantage over traditional microcontroller setups that rely on less

robust communication interfaces. The bidirectional communication capability, in particular,

offered an edge in maintaining synchronization between sound output and vehicle operation, a

feature lacking in some commercially available EV sound modules.

Compared to previous studies that utilized granular synthesis techniques, the current system's

use of real-time sensor data to modulate sound synthesis parameters resulted in a more adaptive

and responsive auditory experience. The ability to fine-tune the sound output based on real-time

torque and acceleration data was found to be a significant improvement over static sound playback

methods used in earlier systems.

108 Conclusion and Future Improvements

The proposed sound synthesis system successfully addressed several gaps identified in prior

research, including latency reduction, realistic sound generation, and the effective use of

bidirectional communication. These improvements contributed to an enhanced driving experience,

making electric vehicles more engaging while preserving safety and control.

8.2 Limitations

Despite the promising results obtained in this study, several limitations need to be
acknowledged. Firstly, the synthesized engine sound, although realistic, is limited in terms of
personalization. Although the system offers different sound profiles, these predefined options may
not fully cater to the varied preferences of all drivers. Future iterations of the system should explore
further customization options that allow users to modify or create their preferred auditory
experience.

Secondly, the system's performance heavily depends on the accuracy and reliability of sensor
data. Any signal degradation or noise in the sensor data can adversely affect the quality and timing
of the synthesized sound. Although environmental testing demonstrated robust performance across
various conditions, extreme environments or faulty sensors could still lead to inconsistent auditory
feedback.

Thirdly, the current setup relies on a miniPC for sound synthesis, which, while effective, adds
to the system's overall cost and complexity. A more compact and integrated hardware solution
would be beneficial for real-world deployment, reducing the physical space required and
potentially improving system efficiency.

Another limitation is the latency in data transmission, which, although minimized to
approximately 20 ms, may still be noticeable in highly dynamic driving scenarios or by particularly
sensitive users. Further improvements in reducing latency, possibly through enhanced processing
capabilities or optimized communication protocols, would enhance the seamless integration of
auditory feedback with vehicle dynamics.

Finally, the system's scalability and compatibility with different vehicle models have not been
extensively tested. The integration of the SPC58EC80-DISP board and sensor setup may require
significant adaptation when applied to different electric vehicle platforms, limiting its broader
applicability without further engineering and customization efforts. Future research should focus
on making the system more adaptable to a range of vehicle models and conditions, including
different sensor configurations and communication protocols.

Conclusion and Future Improvements 109

8.3 Implications for the Industry
The introduction of synthetic engine sound systems for EVs presents significant implications

for the automotive industry. This technology bridges the sensory gap between traditional ICE

vehicles and modern EVs, thereby enhancing driver satisfaction and helping EVs appeal to a

broader range of consumers. The successful implementation of such a system could lead to greater

consumer acceptance of EVs, particularly among drivers who miss the auditory feedback of ICE

vehicles. Moreover, it suggests a new direction for enhancing EV safety by providing auditory

cues to drivers and pedestrians alike, potentially reducing accident risks in low-speed

environments where EVs are otherwise silent. The use of the SPC58EC80-DISP board

demonstrates how existing embedded microcontroller technology can be effectively leveraged in

innovative applications, providing a model for future automotive electronics solutions.

8.4 Future Improvements
To address the identified limitations, several future improvements are proposed. Enhancing the

fidelity of the synthesized engine sounds could be achieved by employing more advanced sound

synthesis algorithms, such as granular synthesis or machine learning-based techniques, to better

capture the nuances of ICE engine acoustics. Integration with additional vehicle sensors, such as

vibration sensors, could also improve the richness and authenticity of the auditory experience. To

mitigate the reliability concerns related to hardware, future versions of the system could integrate

the sound synthesis function directly into the vehicle's main control unit, reducing the need for

multiple processing devices and improving system robustness. Additionally, optimizing the

firmware for better efficiency and exploring hardware acceleration options could help lower

latency, ensuring even tighter synchronization between driver actions and auditory feedback.

Lastly, the incorporation of driver-customizable sound profiles would add an element of

personalization, allowing users to select sound types that align with their preferences, further

enhancing driver engagement.

110

 111

9 Bibliography
C., S. (1992). CAN Specification 2.0: Protocol and Implementations. CAN Specification 2.0:

Protocol and Implementations. SAE International. Retrieved from
https://doi.org/10.4271/921603

Cesbron, J., Bianchetti, S., Pallas, M.-A., Bellec, A. L., Gary, V., & Klein, P. (2021, 6 4).
Retrieved from https://doi.org/10.1515/noise-2021-0017

Chang K., Cho G., Song W., & Kim M. (2022). Retrieved from https://doi.org/10.4271/2022-
01-0972

Hella GmbH & Co. KGaA. (2021, 05 19). HELLA. Retrieved from HELLA:
https://www.hella.com/soe/en/News/Acoustic-warning-system-AVAS-4159/

Lazaro, M. J., Kim, S., Choi, M., Kim, K., Park, D., Moon, S., & Yun, M. H. (2022). Retrieved
from https://aes2.org/publications/elibrary-page/?id=21566

Maunder, & Munday. (2017). System for Augmenting the In-Cabin Sound of Electric
Vehicles. System for Augmenting the In-Cabin Sound of Electric Vehicles. Institute
of Noise Control Engineering.

Nikolaos Kournoutos, & Jordan Cheer. (2019, 6 16). An Environmentally Adaptive Warning
Sound System For Electric Vehicles. INTER-NOISE 2019. Madrid, Spain: University of
Southampton.

Pavlo Bazilinskyy, Roberto Merino-Martínez, Elif Özcan, Dimitra Dodou, & Joost de Winter.
(2023). Exterior sounds for electric and automated vehicles. Exterior sounds for
electric and automated vehicles. Retrieved from
https://doi.org/10.1016/j.apacoust.2023.109673

Tsugi Studio. (2018, 5 1). Real-time Synthesis of Engines. Retrieved from Tsugi Studio:
https://tsugi-studio.com/blog/2018/05/01/real-time-synthesis-of-engines/

Valter Prpic, Elena Gherri, & Luisa Lugli. (2024, 9 18). A perspective review on the role of
engine sound in speed perception and control. Retrieved from Frontiers:
https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2024.13912
71/full

	1 Introduction
	1.1 Significance of Research
	1.2 Research Objectives
	1.3 Brief Overview of Methodology
	1.4 Comprehensive Literature Review
	1.4.1 Previous Work on Sound Synthesis for Electric Vehicles
	1.4.2 Embedded Systems Used in Automotive Applications
	1.4.3 Challenges and Future Trends

	2 Background and Analysis
	2.1 Key Requirements for Automotive Embedded Systems
	2.2 Analysis of Alternative Embedded Systems
	2.2.1 NXP S32K Series
	2.2.2 Texas Instruments TMS570
	2.2.3 Renesas RH850
	2.2.4 The SPC58EC80-DISP Board: Justification for Selection

	2.3 Justification

	3 Methodology
	3.1 System Design and Integration
	3.1.1 Architecture Development
	3.1.2 EV System Integration
	3.1.3 Hardware Configuration

	3.2 Data Acquisition and Transmission
	3.2.1 Firmware Development
	3.2.2 Communication Protocols
	3.2.3 Data Handling and Filtering
	3.2.3.1 Noise Filtering and Data Smoothing
	3.2.3.2 Sensor Calibration and Data Normalization
	3.2.3.3 Data Compression and Minimization
	3.2.3.4 Relevance Filtering
	3.2.3.5 Data Packaging and Protocol Compliance

	3.3 Testing and Validation
	3.3.1 Functional Testing
	3.3.1.1 Data Transmission Accuracy
	3.3.1.2 Sound Generation Timing
	3.3.1.3 Communication Robustness
	3.3.1.4 User Interaction Testing
	3.3.1.5 Compliance and Standards Testing

	User Experience Testing
	3.3.1.6 Objective of User Experience Testing
	3.3.1.7 Methodology for Testing
	3.3.1.8 Iterative Refinement:

	3.3.2 Environmental Testing
	3.3.2.1 Objective of Environmental Testing
	3.3.2.2 Testing Parameters
	3.3.2.3 Vibration Testing
	3.3.2.4 External Noise Considerations
	3.3.2.5 Data Collection and Analysis
	3.3.2.6 Iterative Improvements

	3.3.3 Iterative Refinement
	3.3.3.1 Feedback Analysis
	3.3.3.2 Sound Quality Enhancement
	3.3.3.3 Responsiveness Improvement
	3.3.3.4 Integration Optimization
	3.3.3.5 Continuous Testing and Validation

	3.3.4 Long-term Reliability
	3.3.4.1 Objective of Long-term Reliability Testing
	3.3.4.2 Testing Methodology
	3.3.4.3 Durability Assessment
	3.3.4.4 User Interaction and Feedback
	3.3.4.5 Iterative Improvements Based on Findings

	4 Hardware Overview
	4.1 MCU Key Features
	4.2 Power Supply
	4.3 CAN and ISO CAN-FD
	4.3.1 CAN Transceivers (U1 and U2)
	4.3.2 Bus Termination and Filtering
	4.3.3 Test Points (TP1, TP2, TP3, and TP4)

	5 Software Overview
	5.1 SPC5Studio Overview
	5.1.1 Creating a New Application
	5.1.2 Add Components to the Project
	5.1.3 Generate Application Code
	5.1.4 Compile Your Application

	5.2 UDE STK Overview
	5.2.1 Key Features and Overview of UDE STK 5.2
	5.2.2 Application Areas and Benefits

	6 Development of the Embedded System for Electric Vehicles
	6.1 State Machine Design for Sound Synthesis
	6.2 Initial Configuration
	6.2.1 Clock Distribution
	6.2.2 Low Level Driver Component Register-Level Abstraction (RLA)
	6.2.3 Pin Mapping
	6.2.4 SARADC Configuration
	6.2.5 UART Configuration
	6.2.6 DSPI Configuration

	6.3 CAN Bus Overview and Implementation
	6.3.1 CAN Bus as a Communication System
	6.3.2 Physical Structure of the CAN Bus
	6.3.3 Working Mechanism
	6.3.4 Advantages of the CAN Bus
	6.3.5 Use Cases in Vehicles
	6.3.6 CAN Message Characteristics
	6.3.7 CAN Implementation Codes

	7 Results and Discussion
	7.1 Functional, User Experience, and Environmental Testing
	7.1.1 Functional Testing Outcomes
	7.1.2 User Experience Testing Outcomes
	7.1.3 Environmental Testing Outcomes

	7.2 System Performance Analysis
	7.2.1 Real-Time Responsiveness
	7.2.2 Sound Quality and Synchronization

	7.3 Comparison With Relevant References

	8 Conclusion and Future Improvements
	8.1 Summary of Main Results
	8.2 Limitations
	8.3 Implications for the Industry
	8.4 Future Improvements

	9 Bibliography

