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Abstract

Gamma Knife is an advanced form of radiation therapy allowing non-invasive tumor
treatment by delivering high radiations doses to localized brain regions. Early detection
of tumor progression after Gamma Knife radiation therapy can significantly influence
treatment decisions and improve outcomes in brain cancer patients. In this work we
propose several deep learning solutions to predict local progression of metastatic brain
tumors after Gamma Knife radiation therapy exploiting MRI scans, radiation dose maps
and clinical patient information. The training set consists of 140 stable and 13 recurrent
lesions, while the test set contains 81 stable and 10 recurrent lesions. Oversampling,
focal loss, data augmentation and thresholding are adopted to face data imbalance along
with cross validation to improve model generalization. We explored different multimodal
fusion techniques: input fusion via Discrete Wavelet Transform, concatenation-based in-
formation fusion, LSTM-based information fusion and attention-based fusion. Despite the
challenges posed by data scarcity and imbalance, our proposed solutions demonstrated
the potential of multimodal deep learning models leveraging MRI, Dose and clinical in-
formation, laying the foundations for future studies aimed at timely, accurate tumor
progression predictions to improve life quality and expectancy of patients affected by
metastatic brain cancer.



Chapter 1

Introduction

1.1 Brain tumors

Tumors are abnormal growths of cells. They can labeled as benignant or malignant (can-
cer) wether they can spread or invade nearby tissues, or even metastasize in other parts
of the body. Specifically, brain tumors can cause several health problems by applying
pressure to critical structures, potentially disrupting essential functions, and often proven
difficult to fully remove.

The latest survey conducted by the Italian Oncological Medical Association [6] in
2023 reveals that in Italy around 52.800 people have been diagnosed with central nervous
system cancer: in 2022 around 6300 new cases have been discovered, 3600 being males
and 2700 being females. Expectancy of life in the first 5 years is 24% in males and 27%
in females. Moreover, meanwhile the trend in Italy in the last few years appears to be
stable, many industrialized countries, such as USA and UK, are witnessing a constant
increment of incidence rate.

Metastatic brain tumors are much more frequent than primary ones [7]: the study
conducted by Saha et al. [8] in 2013 revealed a ratio of 10:1 with respect to primary brain
tumors. Moreover, 25% of cancer patients develop metastasis in the brain.

1.2 Gamma knife

The first and most common treatment for brain tumors is surgery, which aims to remove
as much of the tumor as possible while preserving surrounding healthy tissues. This
approach helps relieve pressure on critical structures and may help other ongoing treat-
ments. Gamma Knife (GK), on the other hand, is a non-invasive stereotactic radiosurgery
(SRS) technique. It works by focusing multiple low-dose radiation beams precisely on
the tumor’s location. While within a single beam the radiation dose is minimal, the
intersection of all beams at the tumor contains a much higher dose, effectively treating
it without performing any incision. The outcome of this procedure cannot be detected
immediately after, and follow-ups will determine the tumor’s response to the treatment.
The RANO-BM [9] criteria provides standardized guidelines for evaluating the response
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1.3 – Medical domain information

of brain metastases after the therapy. The 4 response categories described in the guide-
lines are: Complete Response (CR), Partial Response (PR), Stable Disease (SD) and
Progressive Disease (PD).

Accurate estimate of SRS outcome would enable effective and decisive adjustments
to the treatment planning and design of metastatic brain cancer patients, ultimately
improving health outcomes and quality of life. Moreover, narrowing down the treat-
ment outcome estimation locally to individual lesions could further optimize personalized
treatments and substantially improve prognostic accuracy.

1.3 Medical domain information

1.3.1 Imaging

In the medical domain different types of scans are used to reveal important characteristics
which allow to correctly diagnose, classify, and monitor diseases. The most popular ones
are:

• Magnetic resonance imaging (MRI): is one of the most commonly used imaging
for brain lesion analysis. A key factor is its ability to allow visualization on all planes
(axial, sagittal and coronal). The most common types are:

– T1-weighted: it can also be performed while infusing gadolinium. By result-
ing brighter in the scan it allows to enhance lesions with respect to surrounding
healthy issues.

– T2-weighted
– Fluid Attenuated Inversion Recovery (FLAIR)
– Diffusion-Weighted Imaging (DWI)

• Computed Tomography (CT)

• Positron Emission Tomography (PET)

• Planned radiation dose map: in this work we will exploit the planned radiation
therapy produced by the software that plans the GK treatment. It allows to have
a 3D representation on where the radiation dose will be deposited and how much.

Figure 1.1: From left to right, T1W, T2W and FLAIR MRI scans. [1]
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Introduction

1.3.2 Clinical data

Clinical data complements imaging, allowing to introduce context for decision making.
Demographics is usually included, which can be more or less determinant depending
on the specific task. Primary tumor location and tumor histology allow to describe, in
the case of metastatic tumors, the original cancer location and its cell structure. Lesion
location allow to identify in which region the tumor has developed. Number of metastases
and longest diameter are relevant information, which can help the prognosis of treatment
outcome.

More specific clinical data are:

• Graded Prognostic Assessment (GPA): is a scoring system used to stratify patients
into prognostics groups. The higher the GPA score the better the prognosis. Some
of the considered factors are primary tumor type, age, KPS score and number of
brain metastases.

• Karnofsky Performance Status (KPS): is a score assessing the patient’s functional
status. The higher the score the more the patient functional abilities are uncom-
promised.

• Edema Index (EI): is a quantitative measure of the swelling developed around the
lesion due to fluid accumulation.

1.4 Machine learning within the medical domain

Machine Learning based solutions have demonstrated great capabilities in extracting rel-
evant and discriminative correlations between medical imaging and clinical data, enabling
applications such as disease classification, prognosis prediction and treatment planning.

Traditional models, like SVM, Decision Trees and Logistic Regression have been
largely used in the medical domain, even though they require manual feature engineer-
ing. Deep learning, instead, allows to automatize this stage given its ability to directly
process raw and complex information (images, videos, text, audio) delivering often higher
performances.

Convolutional Neural Networks (CNN) are a popular choice for image classification
tasks since they excel at learning hierarchical features; starting from simpler edges and
texture, in shallower layers, to more complex patterns, like shapes and objects, in deeper
layers. Moreover, many pretrained models are available, which allow to extract rele-
vant features with limited samples through transfer learning. Although Recurrent Neural
Networks are designed to handle sequential data, they have been proven capable of ex-
tracting important spatial correlations within 3D medical imaging. For what concern
transformers, they have recently found their application in medical imaging thanks to
the development of Visual Transformers (ViT): by exploiting the self-attention mecha-
nism they manage to capture global relationships, a fundamental characteristic which can
be determinant in multimodal information contexts.
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1.5 – Multimodal information

1.5 Multimodal information

It is not uncommon, within the medical domain, the availability of multiple input modal-
ities: it is crucial to find effective ways to leverage them all to maximize models per-
formances by exploiting complementary information. Information fusion can be adopted
at different levels within the learning pipeline. Input fusion, fuses or concatenates the
different inputs before the deep learning backbone is reached. Intermediate fusion hap-
pens whenever the features, extracted by some deep learning backbones, are merged or
concatenated before the final classifier. Output fusion, on the other hand, tries to com-
bine the classification outputs of different classifiers, which have independently classified
each input modality, to produce a final prediction. In recent years, attention-based fusion
techniques have gained a lot of popularity [2]: they exploit attention relationships among
modalities to perform feature fusion.

1.6 Data scarcity and imbalance

Nevertheless, a lot of data is needed to produce good results. Yet, medical imaging gath-
ering is a slow and costly job: it requires time, approval requests, specialized personnel
and resources. These constraints often lead to datasets containing limited amount of sam-
ples. Moreover, some domains are intrinsically imbalanced which negatively affect deep
learning models performances. Ad hoc strategies have been developed to directly face
data imbalance and scarcity. To increase the number of samples, the first step consists
of augmenting the dataset by applying augmentation techniques like rotation, flipping,
shearing, and many others. More advanced technique, like Generative Adversarial Net-
works (GANs), allow to generate augmented samples, by learning intrinsic structural
information from the available ones. For what concerns data imbalance, it can be dealt
by choosing specific loss functions. Binary weighted cross entropy allows the model to
focus more on minority classes by assigning different weights to the classified samples,
based on the class they belong to. Focal loss [3], instead, allows the model to focus on
harder to classify samples (in other words, misclassified samples). Cross validation is very
effective when it comes to hyper-parameters tuning, but it also help to maximize the use
of limited samples: by dividing the dataset into k folds ensures that every part of the
dataset gets used in both training and validation or test phases, across multiple iterations.
Models trained on different training sets are produced, which could also be used together
with straightforward techniques, such as majority voting or prediction averaging, in order
to maximize performances.

1.7 Proposed work

In this thesis, we will address the task of predicting local tumor recurrence after Gamma
Knife treatment by exploiting pre-treatment MRI scans, ROI masks, planned radiation
dose maps, and clinical information of patients affected by metastatic brain tumors. Tu-
mors that shrink or stabilize after the treatment are labeled as ’stable’, while remaining
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cases are labeled as ’recurrent’. To address the challenges posed by the dataset’s imbal-
ance, focal loss, data augmentation, and thresholding techniques are employed to mitigate
its effects. To leverage all input modalities, different multimodal fusion techniques are
tested. The model proposed alongside the dataset, extracts the features from the imag-
ing through convolutional layers and finally concatenates them with the clinical features.
Then, an input fusion technique is developed, which makes use of Discrete Wavelet trans-
form to fuse MRI scans and radiation dose maps. The resulting input is then fed to a
convolutional backbone to extract relevant features. Additionally, a state of the art model
is adapted into our domain: it makes use of a CNN backbone to extract local features
from overlapping 2D slices of both MRI scans and planned radiation dose maps. Finally,
an LSTM network is used to include long-range relationships between different slices.
Lastly, an attention-based fusion architecture is again adapted to our domain: it exploits
CNN for local feature extraction from 2D slices and self-attention mechanism to find im-
portant correlations between data modalities. Despite not reaching satisfactory results,
important considerations are made for future works, regarding both new techniques and
future datasets creation.
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Chapter 2

Related works

2.1 Current state of the art

2.1.1 MRI radiomics features and clinical data

Du et al. [10] developeded several machine learning solutions that make use of MRI
radiomics and clinical risk factors. Patients who participated in the study, 337 in total,
had no more than four brain metastases, and had complete clinical data and pretreatment
imaging.

Pre-treatment MRI scans included Axial CE T1WI, T2WI and DWI acquired on
1.5T MRI system. In addition to MRI scans, whole tumor (enhancement and non-
enhancement) and peritumoral edema ROIs masks were also produced. Clinical features
included in the study were: Graded Prognostic Assessment (GPA), number of metastases,
KPS edema index, primary tumor type, lesion location, age, tumor volume and sex. The
response criteria follows the RANO-BM criteria: specifically in this work complete re-
sponse (CR) and partial response (PR) are labeled as locally effective (LE), stable disease
(SD) is labeled as Locally Stable (LS) and progressive disease (PD) as locally ineffective
(LIE).

Radiomics features were extracted by applying different image filters to all combina-
tions of imaging sequences and regions of interest. An exhaustive feature selection has
been conducted to choose only the most relevant and unique features. The majority of
chosen features, 233 in total, were texture and wavelet, demonstrating the relevance of CE
T1W sequence, tumor ROIs, advanced radiomics textures, and wavelet image features.

They analyzed clinical features by computing Spearman correlation coefficient matrix
and applying logistic regression. They ended up finding number of brain metastasis and
GPA the most discriminant features. Follow along KPS score and edema index, while
sex and primary tumor type did not appear to be relevant for the task.

The six chosen classifiers were Gaussian Naive Bayesian (GNB), k-Nearest Neighbors
(KNN), random forest (RF), adaptive boosting (AB), support vector machine (SVM)
with linear kernel, and multilayer perceptron (MLP).
Experiments were run adopting both and alternatively radiomics and clinical data. Clas-
sifiers fed with both modalities delivered the best performances, with SVM being the
most accurate classifier reaching above 0.9% AUC in all experiments.
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Related works

2.1.2 CT scans and CNN

The work proposed by Cha et al. [11] addresses SRS outcome prediction by adopting
computer tomography (CT) imaging and CNN. In total 89 patients and 110 tumors
were considered for this work. Complete (CR) and partial (PR) response were labeled as
’responder’ whereas stable (SD) and progressive (PD) were considered as ’non-responder’.
An additional note is that tumors with a longest diameter larger than 35mm or smaller
than 10mm were not included in this work. Gathered CT imaging consisted of one axial
slice for each tumor, including its central point with marginal surrounding tissue. The
CNN structure involved 2 convolutional and pooling layers and two final fully connected
layers. 50 different datasets were created, divided into training, validation, and evaluation
groups. Five groups of 10 different datasets each were instantiated, ensuring the same
evaluation datasets across groups. An additional ensemble model averages the prediction
of all models within each group. The AUC for individual CNN models ranged from 0.602
to 0.8262. The ensemble models showed improved performance with AUCs ranging from
0.761 to 0.856.

2.1.3 Recurrent Neural Networks

The study conducted by Cho et al. [12] proposes 3 solutions, namely maximum axial
diameter (Dmax), radiomics, CNN, and CNN-based GRU to predict SRS outcome by
exploiting MRI scans.

The dataset included 194 patients affected by brain metastasis, collecting 369 indi-
vidual lesions. Train and test split were created by randomly splitting the whole dataset
with a ratio of 8:2. An additional external validation set was employed, containing 43
patients with 62 total target lesions. The treatment outcomes were categorized between
progressive disease ’PD’ and ’non-PD’, which includes Complete response (CR), partial
response (PR), and stable disease (SD). MRI imaging included always a pre-treatment
scan, and up to 3 follow-up scans. Again, a lower bound of at least one dimension being
higher then 5mm has been set to avoid analyzing too small lesions.

The maximum diameter of each brain metastasis was measured on the representative
axial plane, and radiomics features were extracted through the PyRadiomics library. Both
information were analyzed by XGBoost models. The simple CNN architecture extracts
the features from the 4 scans inputs and concatenates them. The CNN-based GRU
model splits into a first version, where features from 3D MRIs are extracted through a
3D ResNet34 backbone, and a second one, where 3 patches, one for each orthogonal plane,
are extracted and fed to a 2D ResNet34 backbone. In both versions, extracted features are
then fed to a GRU network. Optimal thresholds were calculated by considering Youden’s
J statistic and ROC. The 2D Conv-GRU model outperformed al the others by reaching
a mean AUC 0.8782 in the test set and 0.8341 in the external validation set. Recorded
results showed also that accuracy increases with the number of follow-up images used.

RNNs were explored also by Jalalifar et al. [13] for the purpose of local failure pre-
diction after SRT. The dataset included 99 patients presenting a total of 116 lesions.
Imaging consisted of T1w and T2-FLAIR scans, collected prior to the SRT treatment.
An independent set of 25 patients and 40 target lesions was used for final evaluations.
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2.2 – Multimodal medical fusion

Complete Response (CP), Partial Response (PR), or Stable Disease (SD) outcomes were
labeled as Local Control (LC) whereas Progressive Disease (PD) was labeled as Local
Failure (LF).

The proposed solution consists of a InceptionV2ResNet network used as backbone for
2D slices feature extraction of T1w and T2-FLAIR scans. Features extracted were pro-
cessed by LSTM, Seq2Seq and transformer networks to incorporate spatial dependencies
between slices. Additionally, clinical features were also taken into consideration: an in-
ternal study defined as most discriminative for the task histology, tumor location, tumor
size, and number of brain metastases. The architecture exploiting the LSTM network will
be explained thoroughly in the methods sections since it has been replicated to exploit
radiation dose maps and MRI imaging in our work. The configuration using the LSTM
network with clinical features reached an AUC on the independent test set of 0.86, the
highest among all solutions.

2.2 Multimodal medical fusion

In the medical domain more than often is possible to collect data from different sources
carrying complementary information: medical imaging, clinical records, and lab results
just to name a few. Moreover, significantly in neurology, medical imaging is able to
give non-invasive and detailed insights for various purposes like diagnosis of neurological
disorders and disease monitoring. It is then essential to experiment and develop new
strategies that are able to find and exploit correlation between different modalities. We
will focus prevalently into multimodal image fusion given the nature of the information
that we will treat. To further support the importance of multimodal image fusion in the
medical domain it is enough to look at the trend of the number of published articles in
recent years dealing about it 2.1. Different fusion strategies can be classified based on

Figure 2.1: Number of pubblications regarding multimodal fusion of medical imaging on
PubMed from 2016 to 2023. [2]
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Related works

when the information fusion is performed during the classification pipeline and which
strategy is used to combine different information.

2.2.1 Input fusion

Input fusion allows to combine data from multiple imaging sources before accessing the
deep learning backbone. The simplest way consists of concatenating the input images
along one dimension. Otherwise, it is possible use advanced methods to merge the dif-
ferent input modalities pixel by pixel, or eventually, voxel by voxel in the case of 3D
images.

The interesting work conducted by Rallabandi and Seetharaman [14] proposes an
Inception-ResNet wrapper model for automated detection of dementia stages using com-
bined MRI and PET scans. Here, fusion between MRI and PET imaging was achieved
using 2D Fourier and Discrete Wavelet Transform (DWT). This work gave us the inspi-
ration for developing a much simpler DWT-based fusion technique which will be further
discussed in the Methods section.

Input fusion usually requires the inputs to have the same structure and spatiality.
In many cases, different image modalities are retrieved together at the time of clinical
photography and may already share the same coordinates and spatial characteristics. If
this is not the case, resampling must be applied which allows to accurately overlay images
taken in different conditions.

2.2.2 Intermediate fusion

Intermediate fusion consists of combining data of different modalities at an intermediate
level, typically after applying preprocessing. Here the features from different modalities
are extracted through deep learning backbones and then are merged or concatenated.
An improvement of this technique is called hierarchical fusion, which allow to fuse the
extracted features at different layers allowing to progressively combine information from
different sources, starting with simple combinations and gradually moving to more com-
plex interactions. A different application of intermediate fusion consists of using an
additional deep learning backbone in order to fuse the previously extracted features.

The base model [4], provided within the article dealing about the dataset we used,
applies an intermediate fusion technique, involving the concatenation of features extracted
from MRI scans, radiation dose maps and clinical data. On the other hand, the models
adopting recurrent neural network by Jalalifar et al. [13] and Cho et al. [12] exploit LSTM
and GRU networks to fuse the features coming from different images.

2.2.3 Attention-based fusion

The advent of transformers has revolutionized the field of Neural Language Processing
(NLP) by moving away from traditional RNNs and CNNs to analyze sequence of in-
formation. One of the main advantages is surely the more scalable and parallelizable
architecture. In recent years, transformers have been explored in a variety of other do-
mains, like image classification. Multimodal transformer solution have been developed
to exploit the Self-Attention mechanism to find relevant correlations between different
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2.2 – Multimodal medical fusion

data modalities. Among many strategies, the work proposed by Dai, Gao and Liu [5]
describes TransMed, an attention-based fusion solution which efficiently captures both
local features (via CNNs) and long-range dependencies (via transformers) between dif-
ferent imaging modalities which makes it a valuable solution for limited dataset. This
strategy has been adapted to our treatment outcome prediction task and will be further
discussed in the Methods section.

11



12



Chapter 3

Materials and methods

3.1 Dataset
Wang et al. [4] released a brain cancer MRI dataset along with Gamma Knife treatment
planning and follow-up information in order to promote the development of machine
learning solutions able to predict local tumor recurrence given the current treatment
planning, MRI imaging, and patient clinical information. In total, information was re-
trieved from 47 patients affected by metastatic brain tumors resulting in 244 lesions with
annotations. Patients might have undergone from 1 up to 8 courses. Multiple courses
might have been needed in case of local recurrence occurred or new metastatic tumors
developed in the brain. Local lesion progression was identified by follow-ups: "stable"
includes Complete Response (CR), Partial Response (PR) and No Change (NC). "recur-
rence", instead, indicates local progression: eventual Beside or Remote Recurrence are
treated as new lesions.

3.1.1 Structure

Each subject is identified by a unique id and each patient’s course is identified by a
progressive number. For each course are available: the MRI series recorded in preparation
for the treatment, the RTStruct information containing the ROI masks and the planned
radiation dose maps. Fig. 3.1 shows the file structure map. Moreover, primary tumor
location, tumor histology, age at diagnosis and gender are recorded for each course.
Lesion level information is stored too: it contains for each lesion the location, the label
("stable" or "recurrence"), fractions (number of session in which the total radiation dose
was delivered for that course) and finally the number of months elapsed between the
treatment and follow-up imaging. Fig. 3.2 shows some examples of clinical records and
how they are managed across different tables.

13



Materials and methods

Figure 3.1: Dataset file structure.

Figure 3.2: Course and lesion level records.
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3.1 – Dataset

3.1.2 MRI scans, ROI masks and planned radiation dose maps

MRI scans are T1 MPRAGE with gadolinium contrast. The original axial plane is
256x256 pixels while the slice thickness varies individually.

Lesion mask delineation was a collaborative effort involving at least 1 radiation on-
cologist, 1 neurosurgeon, and 1 neuroradiologist. The delineation limit criterion was gen-
erally determined based on absorbed contrast, including regions identified as suspicious
by consensus.

Radiation dose maps are computed by the treatment planning system (TMR10 algo-
rithm of the GammaPlan software) which does not include the heterogeneity of the tissues
within calculations. Moreover, no uncertainties regarding the accuracy of the delivery are
included.

Fig. 3.3 shows some slice samples from the whole imaging of subject 427 regarding
its second course.

Figure 3.3: Slice samples from the whole imaging. From the top to the bottomo row we
have respectively MRI, planned radiation dose map and ROI mask.

3.1.3 Reading pipeline and preprocessing

The raw DICOM files containing all the imaging weigh overall around 10GB. The remote
server used for running all the tests had limited disk space and it was not possible to
store directly all the data there. Moreover different trials have been carried out before
choosing the final preprocessing strategies and it was not possible to read, process, and
save each time all the information. For this reasons, the reading pipeline was divided
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into two stages: the first stage consists into extracting information regarding individual
lesions from MRI and radiation dose maps by exploiting ROI masks.

As also stated in the article, MRI scans and radiation dose maps share both incompat-
ible spacing and different dimensions. Moreover, different MRI scans presented different
spacing as well, thus a general resampling was needed in order to proceed. These steps
are not trivial, but fortunately the powerful library SimpleITK [15] is able to simplify
them.

Medical images processed by this library store metadata along with the image to
define how the voxel information are mapped into the physical world. The region in the
physical space that an image occupies is defined by the origin, the spacing, the size and
the direction cosine matrix. The origin defines the coordinates of the voxel with index
(0, 0, 0) in the world coordinate system (for example in millimeters). Spacing defines the
distance between adjacent voxels along each dimension in real world unit of measure. For
example a spacing of (1, 1, 0.5) means that voxels are 1mm apart along x and y axis and
0.5 mm along the z axis. The size defines the the discrete number of voxels along each
dimension of the image. Finally, the direction cosine matrix contains the orientation of
the image axes relative to the world coordinate system. An additional parameter, which
does not directly influence the resampling process, is the slice thickness. It measures the
actual thickness of the tissue imaged in one slice and it impacts the resolution and quality
of the image.

The first step we took consisted of resampling the MRI scans into a isotropic spacing
of (1, 1, 1). Then, since the ROI masks share the original spacing of the MRI scan,
they are resampled too, by taking as reference the resampled MRI scans. SimpleITK is
able to align the two images by calculating the transformation matrix from the source
and destination parameters described above. Then, interpolation is able to estimate the
voxel intensity of transformed coordinates who fall between voxels. We adopted linear
interpolation, which it is a popular choice given its ability to deliver a good compromise
between quality and computational time. We used instead nearest neighbor interpolation
when resampling ROI masks, since these are binary images where each voxel is either part
of the ROI (value of 1) or not (value of 0). This avoids intermediate values, maintaining
the integrity of the binary mask. Finally, each radiation dose map is resampled by using
again as reference the resampled MRI scan. This process ensures that all the medical
images share the same spacing of (1, 1, 1) and that each triplet of ROI masks, MRI scan
and radiation dose map are aligned.

Each MRI scan contains different ROI masks, depending on the number of present
lesions. These, unfortunately, are identified with a mixture between lesion location and
progressive lesion numbering with inhomogeneous termed used across different masks. In
order to associate each ROI to the clinical information, which contains the label of the
lesion, string matching between the ROI identifier and the corresponding clinical record
is performed by measuring the Levenshtein distance between the lesion location field,
contained in the clinical data, and the ROI identifier. This process has been reviewed
manually sample by sample. This was the only way to proceed given the lack of a direct
and unique joining field between clinical records and the respective ROI mask identifier.

Then, after the association, all the ROI masks have been applied to the relative MRI
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scans and radiation dose maps: a 5mm additional area around the mask was kept, since
it has been shown to positively contribute to treatment outcome prediction [13] [16].

A final python dictionary stores, for each target lesion, the preprocessed imaging and
relative clinical data. Clinical data contains the subject id too, which will be used during
the splitting phase of the dataset. The followed pipeline allows to isolate all the infor-
mation for each target lesion, and is thought for developing machine learning algorithms
able to detect treatment outcome by analyzing each target tumor independently.

Fig. 3.4 shows examples of preprocessed lesions with relative planned radiation dose
map.

Figure 3.4: Stable lesion MRI and planned dose map.

The second stage is carried out in a second moment, during the initialization of the
learning process. When the dataloader fires up, it reads the file structure containing
all the extracted information and applies all the scaling operations. For what concerns
the target lesions and the corresponding radiation dose maps, min-max scaling is applied
which maps the voxel intensity values between 0 and 1. Minimum and maximum statistics
are computed over the training set, in order to use them to process the validation and test
samples. Moreover padding is added in order to even the input size of the preprocessed
lesion MRI and radiation dose samples.
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By running some statistics, it comes out that the minimum registered shapes are
11x12x13 and the maximum are 48x66x51. This means that smaller lesions will experience
major padding, which can lead to worsening the performances. This will be further
discussed in the Results section.

For what concerns the clinical data, thorough preprocessing steps have been followed
too since, unfortunately, the available categorical values lack consistency in terminology
and specificity. Moreover, as pointed out by other works on the same task, the available
records may not be the most discriminant to detect the outcome of SRS treatment. Table
3.1 displays some examples of lesion locations. As it can be seen from the displayed values,
some ROIs are more detailed than others and each term needs to be standardized.

L post inf temp Crebellar culmen L mesial cereb R cereb hemisp
4 Lt Inf Cerebellar1 Rt Cerebellar 9 Lt Post Frontal 1 8 Rt Parietal 1

Lt ant inf frontal Lt ParaMedian Lt Ant Temp Lt Frontal POle

Table 3.1: Examples of lesion locations.

An initial mapping between abbreviations and standard terms has been developed
to standardize the records. After this primary step, the number of features obtained as
a result of applying one hot encoding was still too high with respect to the number of
available samples. Then the standardized lesion locations have been mapped to a more
general value: specifically, each location has been mapped to its respective lobe and side
(if present): parietal lobe, temporal lobe, occipital lobe, frontal lobe, cerebellum, and left
or right side. If a lesion was not located in any particular lobe, the original location was
left as it was . Table 3.2 shows some of these mappings.

Original lesion location Generalized
Right postcentral right parietal
Rt Sup Frontal right frontal

Rt Medial Cerebellum right cerebellar
Lt Frontal left frontal

Rt Frontal deep right frontal
Rt sup vermis vermis

Rt Inf Med Cerebellu right cerebellar
Rt Fourth Ventr right ventricle

Lt Cerebellar left cerebellar
CavityltCerebellar left cerebellar

Table 3.2: Examples of mapping of ROIs to more general regions.

Primary tumor location and histology undergone to the same standardization process.
The resulting input vector consists of 47 features. Input vector contains also information
regarding the number of lesions in the current course and the lesion volumes. These
information were not directly included but it was possible to retrieve them from the
available clinical records.
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3.2 Data imbalance
Table 3.3 shows the split used in the article proposing the dataet. Only 13 samples of
the minority class were available during training and 10 for testing. The ratio of samples
from the recurrence class with respect to the ones of the stable class is around 1:10. Ad
hoc techniques must be taken into consideration in order to attenuate the effects of such
imbalance.

Lesions Stable Recurrence Total
Training set 140 13 153

Test set 81 19 91
Total 221 23 244

Table 3.3: Samples split overview.

The article proposing the dataset tries to balance the two classes before the training
phase by oversampling the minority class through data augmentation. By rotating each
lesion and the corresponding radiation dose maps by 3 angles (respectively 90, 180, 270)
over each axis (x, y, z) they were able obtain such balancing. Other techniques are
available in order to deal with imbalance, which can be obtained by also downsampling
the majority class. Nevertheless, the loss functions can play a crucial role too: weighted
binary cross-entropy introduces weights to the positive and negative classes, which induces
the model to pay more attention to the minority class. Usually, the weight can be set as
the inverse frequency of the class. Another loss function tailored for classification tasks in
imbalanced datasets is focal loss [3]. Originally designed for object classification, it allows
the model to focus on hard-to-classify examples by introducing a modulating factor to
the cross-entropy loss.

−αt · (1 − pt)γ · log(pt) (3.1)

Where:

pt =
{︄

p if y = 1
1 − p otherwise

(3.2)

α is a weight term that enables to control the balance between the minority and
majority class, ensuring that the minority class receives more focus. The modulating
term (1 − pt)γ , instead, reduces the impact of well-classified samples (easy to classify):
by increasing γ, we induce the model to concentrate more on misclassified samples (hard
to classify). The graph depicted at Fig. 3.5, which was taken directly from the original
article, shows the trend: the loss for well classified samples decreases significantly as the
modulating term reaches 0.
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Figure 3.5: Focal loss trend. [3]

3.3 Data augmentation

Data augmentation allows to increase the diversity of the training set by applying dif-
ferent transformations to the original samples. It leads to improved generalization, thus
reducing overfitting which is crucial when working with limited data. Moreover, it in-
creases robustness, by allowing to handle variations like rotation or noise in real world
data.

For this work, we decided to apply random rotation, random flip and random affine
transformation. For what concerns random rotation, an angle between 0, 90, 180 and 270
was chosen along with a random axis (x, y or z). Random flip is performed randomly on
one of the 3 axis with 0.5 probability. By applying random affine transformation we are
able to apply a slight random rotation between -30 and 30 degrees, translation between
-5 and 5 pixels and random scaling with a factor between 0.85 and 1.15.

3.4 Split criteria

Dataset splits are always performed by subject, and not by individual samples. If samples
from the same subject were present in both train and test or validation set the model
might exploit patterns unique to that subject rather then generalizing across individuals,
which can be considered as data leakage. This practice is often used in the medical
domain since it allows the model to evaluate on completely unseen subjects, mimicking
real world scenarios. In this work we exploited stratified group splitting: it ensure the the
distribution of the classes is preserved (stratification) while also ensuring the the same
subject is not present of more than one set (grouping).

3.5 Cross validation

Cross validation is a useful tool that allows to exploit the limited amount of samples
and tune hyper-parameters. Given the scarcity of samples of the recurrence class, only
23 in the whole dataset, we decided to perform 2 main cross validations in order to test
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the performances of the proposed models: we apply a 10-fold cross validation on the
entire dataset creating iteratively 10 folds, 9 for training and 1 for testing. From each
training set a small portion of samples is held out for validation. This strategy allows to
maximize the number of samples the model can process. Finally prediction results of each
test set are concatenated and a global performance is computed. Secondly we perform a
5-fold cross validation only on the training set proposed by the dataset’s article: at each
iteration 4 folds are destined to the train set and 1 for the validation set.

3.6 Models

3.6.1 MLPCD

Clinical records, after the preprocessing steps, are embedded in an input vector containing
one hot-encoded categorical values and min-max scaled discrete values. We implemented
a Multi-Layer Perceptron (MLP) to produce discriminant embedding from the raw input.
The MLP consists of 2 hidden layers, respectively of size 128 and 64. ReLU is chosen as
activation function and both dropout and batch normalization are applied at each hidden
layer. An additional final fully connected layer is added when classifying samples only
using clinical records, in order to test the effectiveness of this strategy.

Figure 3.6: Multi layer perceptron for clinical records embedding.

The first hidden layer of higher dimensionality should allow to capture more complex
non-linear relationships between clinical features. The second one, instead, refines the
extracted features into a more compact representation while trying to preserve discrimi-
native relationships.
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3.6.2 Base model

Alongside the dataset, a novel model is proposed in order to produce a baseline evalua-
tion which exploits intermediate fusion trough concatenation. The schema in figure 3.7
summarizes the model structure.

Figure 3.7: Overview of the baseline network included in the brain mri dataset. [4]

The model consists of 3 main branches, each one handling a separate data modality.
High level features of both MRI and radiation dose maps are extracted through 3 se-
quential convolutional blocks consisting of one 3D convolutional layer, one max pooling
layer, one batch normalization layer, and ReLU activation applied to the convolutional
outputs. The final number of produced feature channels is 128. Finally, a global average
pooling layer compacts the output to a flat feature vector of size 128. Then, two fully
connected layers project the resulting feature vector to a feature size of 512 and back to
a feature size of 128. ReLU activation function is employed along with dropout with the
two fully connected layers.

For what concerns the clinical data, our proposed preprocessing steps results in a
different input shape and so the branch handling clinical data has been replaced with the
MLP CD model, stripped of its final fully connected layer. The resulting feature vectors
from each branch are concatenated producing a final feature vector that will be fed to a
fully connected layer for classification.

3.6.3 WDT CONV

This model employs voxel-level input fusion. It exploits Discrete Wavelet Transforms
(DWT) to fuse MRI and radiation dose maps and a final 3D CNN backbone to extract
relevant features.

DWT allows to decompose signals into low-frequency (approximation) and high-
frequency (detail) components while preserving spatial (or temporal) resolution. Such
components are called wavelets, which are small finite-duration oscillating waveforms
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with an average value of zero. The decomposition is performed through a low-pass filter
(L) and a high-pass filter (H) along each axis: L captures approximate information, while
H captures detail information. It is an iterative process: initially the signal is fed to the
two filters. Then the process can be iterated on the low-frequency output for further
decomposition. In the case of a 3D image, which can be treated as a 3D signal, for each
level decomposition we get eight sub-bands corresponding to low and high frequencies in
all three dimensions:

• LLL: low frequencies along all dimensions

• LLH, LHL, HLL, LHH, HLH, HHL: mixed frequencies

• HHH: high frequencies along all dimensions

The lower frequencies embed large scale features of the image, while detail coefficients
capture finer details, such as edges and textures. We visually investigated a potential
way to fuse the coefficients extracted from the MRI and radiation dose maps. A visually
promising result was obtained by averaging approximation coefficients and keeping detail
coefficient with highest energy:

Approximation coefficient

fusedLLL = α · coeffs_MRLLL + (1 − α) · coeffs_RTDLLL,

where α = 0.5.

Detail Coefficients

EMR,k =
∑︂
i,j,l

|coeffsMR,k(i, j, l)|2, ERTD,k =
∑︂
i,j,l

|coeffsRTD,k(i, j, l)|2,

fusedk =
{︄

coeffsMR,k if EMR,k > ERTD,k

coeffsRTD,k otherwise.

Then the fused imaged is obtained by applying the Inverse Discrete Wavelet Transform
to the resulting coefficients.
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The following figures 3.8 show the final result of the proposed fusion:

Figure 3.8: MRI and radiation dose maps fusion results through WDT.
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The fusion resembles an "highlighting" effect upon the lesion, underling the regions
with higher concentrations of radiation doses.

The 3D CNN backbone, which follows the line of the one adopted in the base model,
consists of four sequential convolutional blocks, each one containing one 3D convolutional
layer, one max pooling layer for spatial downsampling, one batch normalization layer, and
ReLU activation applied to the convolutional outputs. The model increases progressively
the number of feature channels from 1 to 256 across the convolutional layers. Finally, a
global average pooling layer reduces the spatial dimension resulting in a compact feature
vector of 256. Then, two fully connected layers are employed to project the extracted 256
feature to a 512 dimensional space, dropout is employed in between to reduce overfitting
and the final fully connected layer re-compacts the feature vector back to the original
dimensionality of 256.

Clinical data embedding is obtained through the MLP CD model and the resulting
feature vector is concatenated to the to the one extracted from the 3D CNN backbone.
A final fully connected layer computes the final prediction.

Figure 3.9: WDT CONV model architecture.

3.6.4 CONV LSTM

Jalalifar et al. [13] propose a deep learning solution for predicting the outcome of SRT,
exploiting a InceptionResNetV2 backbone to extract local features from T1w and T2-
FLAIR MRI slices and LSTM, Seq2Seq or transformer network to incorporate spatial
dependencies between slices. Although our imaging includes T1w MRI and planned
radiation dose maps, we tried to adapt this solution into our domain, as shown in fig.
3.10.
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Figure 3.10: CONV LSTM architecture.

Initially 2D slices are extracted from both MRI and radiation dose maps. Then 2-
channel slices are created by concatenating along the channel dimension the extracted
2D slices. The chosen backbone for feature extraction is ResNet18 in our case, which is
less complex then the proposed InceptionResNetV2 network. The output of the CNN
backbone results in a list of feature vectors encoding local spatial dependencies between
MRI and radiation dose map slices.

Another reason why we chose to employ this solution is also because of the exploitation
of clinical records. The authors collected different clinical information such as: histology,
tumor location between (infratentorial or supratentoria), tumor size (longest diameter
in mm), number of brain metastases, total dose (Gy), previous Whole Brain Radiation
Therapy (WBRT) (yes/no), prior SRT/SRS (yes/no), GPA (from 0 to 4), age and gender.
The clinical records are embedded through a MLP with one hidden size of 10. After an
exhaustive search the final chosen records were histology, tumor location, tumor size, and
number of brain metastases which have proven to be the most discriminant.

As we previously said, we decided to employ tumor size and number of brain metas-
tases too which were not specifically provided in our dataset but were retrieved from the
available clinical records. The authors fuse clinical features, extracted from the MLP
backbone, and the features extracted by the imaging by concatenation. The sequence is
then fed to a LSTM network with 2 layers and hidden size of 45. A final fully connected
layer outputs the final prediction. In the article, the LSTM configuration with clinical
features outperformed all the other models.

26



3.6 – Models

3.6.5 TransMed

Dai et al. [5] propose a multi-modal attention-based fusion for medical imaging classifi-
cation. A CNN backbone and a transformer work together: the CNN manages to extract
local dependencies whereas the transformer establishes long-range spatial dependencies
between different modalities.

Transformers

Transformers, introduced by the article "Attention is all you need" [17], are a class of deep
learning architectures, originally developed in the field of natural language processing
(NLP). Nevertheless its applications have expanded to other tasks such speech processing
and computer vision.

Self-attention mechanism

The key concept introduced by transformers is the so called Self-Attention mechanism. It
allows to weigh the relevance of each input element to every other element in a sequence,
regardless of their position allowing to capture long-range dependencies more effectively.
Input vectors are linearly transformed into three different vectors: Q (query), K (key),
and V (value) vectors.

Q = XWQ, K = XWK , V = XWV

WQ, WK , and WV are learned weight matrices.
We can think of Q as the target element for which we are trying to find relevant

dependencies with other elements in the sequence. K, instead, represents the elements
in the sequence from which we are trying to find relevant information with respect to Q.
Finally, V contains the actual information of the elements in the sequence.

The attention weights are computed by applying the softmax function to the dot prod-
uct between the Q vector with all K vectors, scaled by the square root of the dimension
of the K vectors:

Attention(Q, K, V ) = Softmax
(︄

QK⊤
√

dk

)︄
V

The dot product between Q and K measures how much attention Q should pay to
each key. Scaling by the square root of the dimension of the key vectors helps to stabilize
gradients when the dimension becomes too large. The softmax normalization converts
the scores into probabilities (sum equal to 1) producing the final attention weights. The
attention weights are then used to weight the values (V), aggregating the information the
query focuses on.

Multi-Head Self-Attention

Multi-Head Self-Attention is the component the allows the transformer to focus on dif-
ferent parts of the input sequence simultaneously, leading to richer and more diverse
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representations. Instead of using a single attention mechanisms, multiple parallel atten-
tion heads are used. Each head performs scaled dot-product attention independently
which are concatenated and passed through a final linear layer with a learnable weight
matrix to produce the final output.

MultiHead(Q, K, V ) = Concat(head1, ..., headn)WO

Where:

headi = Attention(QWQi , KWKi , V WVi)

DeiT

Data-Efficient Image Transformer (DeiT) is a transformer model designed for image clas-
sification. It aims to achieve high performances, even with limited training data which
suits perfectly to medical datasets suffering from data scarcity. DeiT follows the general
transformer-based architecture: the input image is split into fixed-size patches and flat-
tened into sequences. It introduces a distillation token to incorporate knowledge from a
teacher model, like a CNN, into the training process. Within TransMed, the distillation
token is omitted, and the extracted patches are fed through a ResNet network to ex-
tract local features. To the patch embedding is appended one class token and are added
positional embeddings: the class token acts as a representative summary of the input,
learning to aggregate information from al patches during training, whereas the positional
embeddings encode the spatial relationships between patches. Positional embedding are
needed since transformer don’t inherently know the order of the input data. This is the
final structure of a sequence of N patch embeddings of size D:

Z0 = [zclass + e0; z1 + e1; z2 + e2; ...; zN + eN ]

Shapes =
{︄

zclass [1, D]
e [N + 1, D]

Where zi is the patch embedding, zclass is the class token, and e is the positional
embedding sharing the same size of the patch embedding. The embedded sequences
are then fed to the multi-head self-attention layer. The final output is finally passed
through a MLP consisting of linear layers separated by a GeLu activation, enabling the
network to model complex relationships. Both multi head attention and MLP exploit
skip connections, specifically:

z′ = z + MultiHeadAttention(LayerNorm(z))

z′′ = z′ + MLP(LayerNorm(z′))

By defining as transformer encoder block the union of MHA and MLP, the final
structure of the DeiT consists in many sequential layers of such blocks (depth). A final
fully connected layer outputs the final prediction.
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TransMed Architecture

We can split the TransMed architecture into 3 parts, as shown if Fig. 3.11:

Figure 3.11: TRANS MED architecture. [5]

The first stage is in charge of creating the patch sequence: firstly the modalities are
concatenated through the modality dimension, then 2D slice are extracted from the 3D
imaging (the modality dimension is N=2 in our case, referring to MRI scan and radiation
dose map). Then slices are grouped into triplets, creating 3-channel 2D slices. Finally
fixed size patches are created: the patch size is an hyper-parameter, but as showed in the
article, higher patch sizes tend to decrease the performances. The second stage consists
into extracting features from the patch sequences: for our implementation we chose a
ResNet18 backbone. After appending the class token and adding positional embeddings
to the patches we conclude with the last stage where sequence patch embeddings are fed
to the DeiT-based transformer model. The DeiT implementation was taken from the
online github repository [18] of Francesco Saverio and adapted to the task.

3.7 Thresholding
At the end of the learning process, final logits are fed to a sigmoid which bounds the input
within 0 and 1. Given the imbalanced nature of the data, the default threshold t = 0.5
might not be the optimal one. The optimal threshold depends highly on the task, since
there may be applications where false positives and false negatives have different costs.
In this work, we consider positive samples the recurrent lesions and negative samples
the stable lesions. Recall, in treatment outcome prediction, might be considered more
valuable, since false positives can lead to delayed interventions, worsening the prognosis.
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Then, we chose to select the threshold leading to the maximum F1-score, which de-
livers the best compromise between precision and recall. During the training phase the
threshold is computed on both training and validation set, and finally the two are aver-
aged in order to deliver a more generalized one.

During cross-validation maintaining the fixed test set, at each iteration we store the
obtained threshold and compute a global final average to be finally used when averaging
the prediction obtained from the models trained on different folds.
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Chapter 4

Results

4.1 Metrics

In this work we considered the following metrics:

1. Accuracy: proportion of correctly classified samples out of the total number of
samples

2. Precision: proportion of true positive predictions out of all positive predictions

3. Recall: proportion of actual positives that the model correctly identified as positive

4. Specificity: proportion of actual negatives that the model correctly identified as
negative

5. F1 score: harmonic mean of precision and recall

6. Area under Receiver Operating Characteristic (AUROC): evaluates the
ability of the model to distinguish between positive and negative classes at different
threshold levels

7. Area Under Precision Recall (AUPR): evaluates the trade-off between preci-
sion and recall at various thresholds

We report AUPR in addition of AUROC since it can give a more informative overview
of the performances of model given the imbalanced data context.

4.2 Cross validation over the whole dataset

In order to exploit the maximum number of samples during training time, cross validation
has been used upon the whole dataset. The number of chosen folds is 10, and as already
explained in the methods section, the samples have been split in such a way that a subject
cannot be part of more than one set. At each iteration, 9 folds are used for training and
1 is used for testing. An enough number of samples has been held out at each iteration
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to constitute a validation set, respecting a similar overall ratio of recurrent and stable
lesions..

For what concerns the training hyper-parameters, we chose the Adam optimizer and
the reduce on plateau scheduler. This scheduler decreases the learning rate value by a
factor of 0.1 after 5 epochs without any improvement in the validation loss. The maximum
number of training epochs is 100, but early stopping is employed if no improvement of
the validation loss is recorded of at least 1e − 5 after 10 epochs. Moreover, a batch size
equal to 32 was used for all models. Regarding the focal loss hyper-parameters, α was
set to 0.2 and γ was always tested between 2 and 3.

The MLP CD model was trained using a learning rate of 1e−3, 0.3 dropout probability
and 1e − 4 weight decay.

The BASE MODEL was trained using a learning rate equal to 1e − 5, dropout prob-
ability 0.3, weight decay 1e − 4 and γ equal to 2. The best performing configuration,
reported in the table, makes use of clinical data.

The WDT CONV model was trained again using a learning rate equal to 1e − 5,
dropout probability 0.1, weight decay 1e−4 and γ equal to 2. This configuration exploited
clinical data too.

The CONV LSTM model was trained using a learning rate equal to 1e − 5, dropout
probability 0.1, weight decay 1e − 4 and γ equal to 3. For what concerns the LSTM
network, the used configuration was 2 layers with an hidden size of 48. Still the results
shown are obtained by exploiting clinical data.

Lastly, the TRANS MED model was trained with a learning rate of 1e − 5, dropout
probability 0.2, weight decay 1e − 4, and γ equal to 2. The DeiT backbone was set with
a depth attention of 8 and patch size equal to 1. This configuration does not make use
of clinical data.

Table 4.1 shows the obtained results:

Model ACC REC SPEC PREC F1 AUPR AUROC
MLP CD 0.79 0.35 0.83 0.18 0.24 0.15 0.64

BASE MODEL 0.88 0.04 0.97 0.13 0.06 0.17 0.68
WDT CONV 0.86 0.22 0.93 0.25 0.23 0.18 0.60
CONV LSTM 0.85 0.22 0.92 0.22 0.22 0.16 0.65
TRANS MED 0.64 0.35 0.67 0.10 0.16 0.15 0.65

Table 4.1: Cross validation result on the whole dataset.

The MLP CD model shows minimum capabilities of discrimination between recur-
rent and stable sample: the AUPR is greater than the lower bound, represented by the
proportion of the minority class, and the AUROC is greater than 0.5.

The other models did not achieve much greater results. By referring to the AUPR
metric, BASE MODEL and WDT CONV reached the highest values of respectively 0.17
and 0.18. Additionally, BASE MODEL shows that the chosen threshold is not optimal
given the low F1 score.

For what concerns the TRANS MED configuration, the best results were not obtained
by exploiting clinical data. This could mean that the technique used to fuse clinical
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features may not have been the best for this model. Moreover, the DeiT backbone should
be able to deliver high performances thanks to the patch mechanism too: positional
embeddings are able to decode the original position of the patch, demonstrating to have
learned intrinsic characteristics of such image. Choosing a patch size equal to 1 means
that a single patch covers the whole 2D slice: this choice was taken since the majority
of the lesions occupy few pixels in many slices. Dividing them in smaller patches would
lead to mostly empty slices from which extracting any kind of meaningful feature would
be impossible.

Overall the obtained results demonstrate that the proposed models are able to extract
minimum relevant relationships between clinical data, imaging and treatment outcome
but clearly do not reach satisfactory results.

4.3 Cross validation with fixed test set
We chose to perform additional experiments by exploiting the same test set described
in the article proposing the dataset [4]. In this way we can have a direct comparison
with the baseline evaluations disclosed by the article (only F1 score, Precision, Recall,
Specificity and Accuracy) and register additional performance metrics that can help us
diagnostic the previously obtained low performances.

We ran the previously discussed configurations and registered the average perfor-
mances, along with corresponding minimum and maximum values. We took advantage
of the fixed external test set to choose a final optimal threshold by averaging the optimal
thresholds chose within different training/validation splits, hoping to achieve an even
more optimal and general one.

Table 4.2 reports the obtained results:

Model ACC REC SPEC PREC F1 AUPR AUROC
MLP
CD

0.65
(0.571, 0.747)

0.52
(0.0, 0.8)

0.667
(0.543, 0.84)

0.141
(0.0, 0.194)

0.221
(0.0, 0.304)

0.19
(0.088, 0.263)

0.634
(0.421, 0.772)

BASE
MODEL

0.815
(0.67, 0.89)

0.24
(0.0, 0.6)

0.886
(0.679, 1.0)

0.137
(0.0, 0.286)

0.159
(0.0, 0.286)

0.191
(0.113, 0.288)

0.65
(0.477, 0.753)

WDT
CONV

0.842
(0.802, 0.868)

0.38
(0.1, 0.6)

0.899
(0.827, 0.963)

0.309
(0.25, 0.385)

0.325
(0.143, 0.435)

0.313
(0.109, 0.485)

0.725
(0.368, 0.859)

CONV
LSTM

0.793
(0.626, 0.879)

0.24
(0.0, 0.6)

0.862
(0.63, 0.988)

0.167
(0.0, 0.333)

0.175
(0.0, 0.364)

0.206
(0.128, 0.326)

0.676
(0.504, 0.859)

TRANS
MED

0.732
(0.11, 0.89)

0.2
(0.0, 1.0)

0.798
(0.0, 1.0)

0.022
(0.0, 0.11)

0.04
(0.0, 0.198)

0.211
(0.134, 0.3)

0.682
(0.59, 0.791)

Table 4.2: Averaged performances reached between all folds. Minimum and maximum
values are shown within brackets.

The model that reached the highest average AUPR is WDT CONV, with a value of
0.313.

Interestingly, by focusing on the minimum and maximum registered values we can see
that some metrics can vary a lot. This could mean that some folds have much different
sample distribution and the models are not able to generalize well. At different iterations
the models try to gather discriminative features from the samples of the training set,
which probably differ considerably from the ones of validation and, most definitely, from
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the ones of the test set. Even though regularization techniques have been adopted, such as
data augmentation, dropout, and weight decay, trained models still do not show enough
generalization capabilities due to the high variability between samples of different sets.

4.4 Averaging predictions

A straightforward approach to leverage the knowledge from models trained on differ-
ent cross-validation splits is to average their output predictions. Table 4.3 shows the
performances reached with this method:

Model ACC REC SPEC PREC F1 AUPR AUROC
Baseline 0.90 0.10 0.89 1 0.18 - -
MLP CD 0.65 0.50 0.67 0.16 0.24 0.22 0.70

BASE MODEL 0.89 0.40 0.95 0.50 0.44 0.37 0.75
WDT CONV 0.84 0.40 0.89 0.31 0.35 0.39 0.83
CONV LSTM 0.86 0.10 0.95 0.20 0.13 0.32 0.87
TRANS MED 0.89 0 1 0 0 0.33 0.79

Table 4.3: Results obtained by averaging prediction of models trained on different cross-
validation splits.

By focusing mainly on AUPR and AUROC we can notice that WDT CONV reached
the highest scores with 0.386 AUPR and 0.828 AUROC. CONV LSTM and TRANS MED,
instead, show worse performances with respect to BASE MODEL by if we consider the
AUPR metric. This time TRANS MED shows an F1 score equal to 0 which demonstrates
again that the chosen threshold is not optimal.

These results indicate that it may be beneficial to actuate strategies that take into
consideration the decision taken by the same model trained on different data. We should
also point out that the slightly higher overall performances reached by choosing this test
set might indicate a more fortunate data split. Nevertheless, the results registered in the
last two experiments show valuable diagnostics that will help the development of future
strategies.

4.5 Discussion

The results obtained by cross validating the whole dataset showed some minimum signs
of learning, but are certainly not satisfactory. Additional experiments, by maintaining a
fixed test set and cross validating the remaining training set, showed high variance within
the performance metrics that can demonstrate the lack of generalization capabilities of
the models when facing different sample distribution between sets.

The adopted threshold strategy did not always deliver the most optimal one. This can
bee seen by looking at the minimums of recall and precision, which many times reached
even zero. Moreover, when averaging the predicted probabilities, while maintaining the
external test set, the chosen threshold for the TRANS MED model delivered 0 for both
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precision and recall. This can be another sign of the high degree of difference of sample
distribution between sets.

The MLP CD model, used as backbone for feature extraction of the clinical data, did
deliver some minimal performances when used alone to predict treatment outcome. Since
the imaging of small lesions do not contain much information, more discriminant clinical
data could really help to take better predictions. Moreover, 3 out of 4 models benefited
from employing clinical features extracted from this model which shows the importance
of clinical data inclusion in strategies dealing with treatment outcome prediction.

As we have previously seen, the dataset suffers from a severe data imbalance where
only 23 lesions are labeled as recurrent with respect to the 221 labeled as stable. Not
only that, the majority of the imaging do contain few information: by looking at the
masks shapes after resampling it is possible to notice that the majority of the lesions
have a volume of around 10x10x10 voxels. Fewer of them have higher volumes, reaching
a maximum of around 60x60x60. Since these models need fixed sized inputs, padding
must be introduced to bring all the images to the same shape. In this work we chose
to introduce constant padding, with 0 as constant value. This introduces artificial edges
which the model is going to learn anyway. One possible solution may be to resize lesions
with higher volumes, but this will lead to a considerable loss of valuable information.
One could think also to consider regions that are wider than the mask of smaller regions
in order to avoid padding. Still, this introduces information that do not directly impact
the task of treatment outcome since the farthest is the considered region from the treated
lesion the less it can contribute meaningfully to detect wether such lesion is recurrent
or not after radiosurgery. Moreover, by increasing the considered regions of smaller
lesions, we may risk to include other lesions and relative radiation treatment, affecting
the prediction of the actual target lesion.

35



36



Chapter 5

Future works

Even though we could not reach satisfactory results, this thesis can deliver a valuable
starting point for future works that aim to improve local tumor recurrence prediction after
SRS treatment. These following potential extensions aim to build upon the limitations
and findings of this thesis, paving the way for more robust methodologies.

For what concerns the raw MRI imaging, additional preprocessing techniques can be
explored, which are widely known to directly affect models’ performances. For example,
skull stripping is able to remove the pixel intensities regarding the skull, allowing nor-
malization steps to act exclusively on the target tissues. Additionally, more advanced
techniques such as histogram intensity equalization and de-noising might be able to in-
crease the quality of the raw MRI scans. In this work, we isolated the lesions and the
relative radiation dose maps through the ROI masks and applied 0 padding to achieve
the same dimension across different samples. The gathering of MRI scans with higher
resolution may allow to zoom in smaller lesions, thus avoiding padding and loosing too
much information.

Input fusion, in this domain, may be able to produce very good results as also shown
by our experiments. More advanced techniques could manage to produce fused input
representation capable of expressing the most relevant intel from both modalities. Despite
requiring higher level of expertise, these strategies do manage to make the most out of
the similar spatiality and structure, which can be obtained through proper resampling.

Planned radiation dose maps can surely be beneficial for what concerns SRS treatment
outcome prediction since knowing how much radiation dose is delivered on each part of
the lesion is a valuable information. Nevertheless, the current state of the surrounding
tissues as a result of the tumor proliferation has been shown to be very valuable for
this task. Additional imaging, among T2W, FLAIR, DWI, CT, and PET, may add
important complementary information regarding, not only the lesion characteristics, but
also its impact on surrounding healthy tissues and brain functionalities.

Yet, more information needs to be available in order to allow models to learn enough
intrinsic features to successfully predict local progression after SRS. Deep learning models
are known to be data-hungry, but in this case we really believe to be necessary: scarcity
of the minority class along with the 1:10 imbalance really do hurt the final performances.
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Additionally, we need to consider that a lot of the lesions are very small and, as a con-
sequence, models relating to imaging may not be able to extract relevant information.
Transfer learning should absolutely be taken into consideration: pretrained CNN back-
bones on larger brain MRI datasets might be able to effectively extract discriminant
features from the current lesions, despite the limited number of samples.

We must underline the importance of complementary modalities: complementary in
the sense that each one has the potential to compensate for the lack of discriminant
characteristics of the others. Clinical data is surely beneficial in this sense, as shown
by some related works and our results too. Given these considerations, future works
may actuate output fusion techniques that are able to dynamically weigh the relevance
of the final prediction between models relying on imaging and others relying on clinical
features, by considering their level of confidence. Nevertheless, gathered clinical data
must be carefully chosen: different studies demonstrate the relevance of GPA score,
KPS index and number of metastases rather than usual demographics such as age and
gender, for what concerns treatment outcome prediction. A more in-depth research needs
to be performed in order to select preemptively known discriminative clinical data and
eventually add and study the relevance on unexplored ones. LASSO regression is a
popular strategy for what concerns feature selection as shown from related works. Lesion
location, primary tumor location, and tumor histology need a standardized formatting
in order to ensure consistency and free selection of specificity to successfully find the
most discriminant settings for maximum exploitation of such features. A medical expert
should supervise the processing of categorical values and suggest the choice of different
levels of specificity which can be tested to find the most optimal one.

This work specifically deals with local progression of metastatic brain tumors. Never-
theless, treatment outcomes of GK treatment extend also to Pseudo Progression (PsP),
temporary increase of volume as a response to the treatment, and Radio Necrosis (RN),
increase of the contrast-enhanced area due to the death of healthy tissues. Prognosis of
the described outcomes has potential relevance in the diagnostic domain, and can surely
be impactful for treatment design and planning.
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Chapter 6

Conclusions

In this thesis we addressed the challenge of local tumor recurrence prediction after Gamma
Knife therapy. The dataset includes pre-treatment T1W MRI with gadolinium contrast,
planned radiation dose maps, ROI masks and clinical data.

Preprocessing steps included imaging resample and registration in order to obtain
aligned structures sharing the same spacing. Moreover, categorical clinical information
have been standardized and generalized given the inhomogeneous terminology and the
overly fine-grained values. Focal loss and data augmentation were adopted in order to
mitigate the effects of data imbalance and scarcity of the minority class. Lastly, we tried
to calculate an optimal classification threshold by choosing the one that maximized the
F1 score during training time.

The proposed deep learning models adopt different multi-modal fusion strategies:
BASE MODEL concatenates the features extracted from different modalities, WDT
CONV fuses the imaging modalities voxel by voxel before the deep learning backbone,
CONV LSTM fuses the extracted features from each modality through an LSTM net-
work and finally TRANS MED exploits parallel self-attention mechanisms to find relevant
relationships between the extracted features of different modalities.

Although showing minimal performances, the models did not reach satisfactory re-
sults: by cross validating the whole dataset the best performing models, by looking at
the AUPR metric, where BASE MODEL and WDT CONV by reaching respectively
0.17 and 0.18 AUPR with correspondingly 0.60 and 0.68 AUROC. Every model, except
from TRANS MED, benefited from the inclusion of clinical features which demonstrates
their relevance. Additional experiments were conducted by using the same fixed test
set proposed in the dataset’s article and cross validating the remaining training set: the
noticeable difference of minimum and maximum values of the registered metrics shows
lack of generalization capabilities of the models when encountering high degree of differ-
ence of the sample distribution between sets. The highest average AUPR was reached
by the WDT CONV model with a value of 0.313 with a relative average AUROC of
0.725. Finally, by averaging the predictions of the models trained on different folds the
WDT CONV model reached the highest AUPR of 0.39 with an AUROC of 0.83, which
demonstrates the potential of models jointly contributing to generate a final prediction.

Throughout this work, several challenges were encountered including domain-specific
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imaging manipulation, data imbalance, scarcity of the minority class, and inhomogeneous
clinical information. Despite these obstacles, minimal results were achieved, along with
valuable insights that we hope will contribute to future works on this critical task. Im-
proving performances in such a challenging context could encourage the development of
better and richer datasets, ultimately magnifying the accuracy of local SRS outcome pre-
dictions and improving both treatment design and planning for patients with metastatic
brain tumors.
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