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Abstract

Virtualization has become an essential component of modern applications,
providing flexibility and scalability at a manageable cost. This thesis exam-
ines network performance in virtualized Linux environments, with partic-
ular focus on the impact of CPU allocation on achievable throughput and
the overhead introduced by system and virtualization layers. By analyzing
different communication scenarios between hosts and virtual machines, the
study explores how resource constraints affect network performance. The
collected data are further examined through a targeted analysis of CPU be-
havior and workload distribution across both host and virtualized contexts.

The main objective is to quantify overhead in terms of CPU utilization and
network performance, identifying conditions under which performance pa-
rameters remain within predictable ranges and revealing any deviations that
might impact throughput. This analysis helps identify potential bottlenecks
that arise under different configurations and serves as a foundation for de-
veloping advanced scheduling strategies in containerized and orchestrated
environments. For applications that require guaranteed data transfer levels
as part of specific Quality of Service (QoS) requirements, the findings pro-
vide guidance for scheduling policies that take into account CPU load, node-
specific characteristics, and workload demands. In environments such as
Kubernetes, this work can support the development of intelligent scheduling
policies that optimize resource placement and allocation through informed
decisions on CPU affinity, node selection, and replication strategies. In do-
ing so, this thesis offers a systematic methodology and valuable insights for
improving network performance in virtualized systems, contributing to ef-
fective resource management in modern, performance-driven network in-
frastructures.
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Chapter 1

Introduction

The increasing reliance on virtualized environments for running networked
applications presents unique challenges, particularly in understanding how
CPU resource allocation impacts network performance. Virtualization offers
scalability and flexibility, making it an essential component of cloud com-
puting and containerized infrastructures. However, it introduces an inher-
ent computational overhead that can degrade network throughput and ef-
ficiency, especially when processes compete for shared resources within the
host system and across virtual machines (VMs).

This thesis investigates the interplay between CPU consumption and net-
work throughput in virtualized Linux environments. It seeks to identify bot-
tlenecks in the network stack and evaluate how these vary under different
configurations. The research explores how virtualization impacts commu-
nication efficiency and offers insights into optimizing resource allocation to
enhance performance.

The central issues addressed in this study are twofold:

• Assessing how CPU allocation influences network throughput in virtu-
alized settings.

• Pinpointing specific areas of overhead within the network stack that
negatively affect performance.

These challenges are particularly critical in scenarios demanding strin-
gent Quality of Service (QoS) guarantees, where stable and predictable net-
work performance is essential. Real-time applications rely on consistent through-
put to maintain optimal performance and meet service-level requirements.
By investigating the complexities inherent to virtualized environments, this
thesis aims to provide insights for optimizing resource allocation and work-
load distribution, particularly in high-throughput use cases.

This research adopts an experimental approach, conducting detailed anal-
yses across various configurations to uncover the relationship between CPU
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Introduction

cycles consumed by communication processes and the resulting network
throughput. By directly correlating these factors, the study provides valu-
able insights into the efficiency of intra-server communication within virtu-
alized systems. These findings aim to inform strategies for resource schedul-
ing and workload distribution, particularly for optimizing high-throughput
applications. Additionally, the research highlights opportunities to minimize
overhead, enhance scalability, and improve the overall efficiency of virtual-
ized network infrastructures, laying a foundation for future advancements
in performance optimization under diverse workloads.

With this objective in mind, the study investigates how CPU usage is
distributed across the processes involved in network communication. By
analyzing the allocation of CPU cycles between transmission and reception
tasks, it identifies critical points where resource contention occurs. Special
attention is given to the function chains within the Linux network stack,
where specific patterns and behaviors emerge based on system configura-
tions. Both TCP and UDP protocols are examined to understand how dif-
ferent communication models impact performance. The research highlights
how TCP’s flow control mechanisms affect CPU resource consumption and
throughput, while the stateless nature of UDP presents distinct challenges
related to packet loss and data reliability. Parameters such as CPU limits,
datagram sizes, and buffer configurations are varied to observe their impact
on system behavior, enabling a comprehensive analysis of how processing
resources influence network performance in virtualized environments.
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Chapter 2

Fundamentals

To effectively analyze the virtualization overhead introduced by intra-server
communication between virtual machines (VMs), it is essential to first under-
stand the underlying technologies and system components that facilitate this
communication. A foundational understanding of the following key areas is
necessary:

• Linux Network Stack: Understanding intra-server communication be-
tween VMs requires a thorough look into the Linux network stack. This
section will focus on how data packets are managed at the kernel level,
traversing various levels of abstraction and network interfaces.

• Virtualization and Hypervisor: The concept of virtualization is intro-
duce, with a specific focus on the role of the hypervisor. In this context,
QEMU is explored, the open-source hypervisor used for system virtu-
alization, describing its core functions and role in managing virtual re-
sources.

2.1 Linux Network Stack

In the Linux networking stack, Figure 2.1, network functionality is divided
into layers that closely correspond to the OSI model. However, Linux or-
ganizes these components specifically for kernel and user-space operations.
One of the core design principles in Linux networking is the separation be-
tween kernel space and user space. Kernel space manages low-level net-
working operations, such as packet routing, network interfaces, and proto-
col processing. This structure enhances both security and performance, as
user-space applications can access networking capabilities without interfer-
ing with critical system-level processes[1].

• Applications: User space is where applications run, such as web browsers,
email clients, and networking tools (e.g. ping, curl or iperf3). These
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Fundamentals

Figure 2.1: Representation of the Linux networking stack, highlighting the
separation between user space and kernel space

applications interact with the kernel’s networking components through
system calls, using sockets as their interface to the network stack. Since
applications operate in user space, any errors in these programs do not
compromise the kernel, thereby ensuring system stability.

The kernel is responsible for handling core networking operations in the
Linux stack, with a structure that aligns with traditional networking mod-
els. The layers in the kernel space include:

• Socket (INET) Layer: This is the first point of contact for user-space ap-
plications, allowing them to establish network connections. The socket
interface provides an endpoint defined by an IP address and port, sup-
porting both TCP and UDP connections.

• Transport Layer (TCP/UDP): The kernel processes data according to
the protocol specified by the socket. TCP (Transmission Control Proto-
col) provides reliable, connection-oriented communication, while UDP
(User Datagram Protocol) offers faster, connectionless data transfer. This
layer ensures that data is organized and passed to the correct applica-
tions.

• Network Layer (IP): Within the Linux kernel lies the IP stack, respon-
sible for all network layer functions, including IP protocols. This stack
handles packet routing, determining the direction and destination of
each packet based on routing tables and network rules.
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• Physical and Data Link Layer: In Linux, the physical and data link lay-
ers are managed through network interfaces, both physical and virtual,
which establish the connection between the system and the network.
Devices such as Ethernet cards, Wi-Fi adapters, and the loopback inter-
face (lo) are accessed through specific drivers that communicate directly
with the hardware or virtual interface.

2.1.1 Socket Buffer in Linux

One of the core data structures used for managing network traffic within
the kernel is the socket buffer (sk_buff). The sk_buff is employed to store
packets temporarily as they pass through the various layers of the network
stack, handling both packet data and metadata. This structure is fundamen-
tal to the operation of the kernel’s networking components and is utilized
throughout the transport, network, and interface layers .

The kernel manages incoming and outgoing network packets by associ-
ating them with sk_buff structures. These buffers hold the packet data and
related metadata, such as pointers to the data, source, and destination in-
formation. Various network layers interact with the sk_buff to modify or
forward packets efficiently as they traverse through the kernel. The sk_buff

ensures efficient handling of packet data by allowing direct manipulation of
pointers and enabling memory sharing between processes, which reduces
the overhead of copying data. This modular approach contributes to both
packet processing performance and scalability across the network stack [2].

2.2 The KVM-QEMU model

The KVM/QEMU model, shown in Figure 2.2, enables virtualization within
Linux. KVM (Kernel-based Virtual Machine) provides virtual CPUs (vC-
PUs) to guest systems, mapped to the host’s physical CPUs, using hardware-
assisted virtualization for performance. While KVM executes guest code on
these vCPUs, QEMU manages the virtual machine lifecycle, including pro-
cess startup, memory allocation, I/O device emulation, and communication
with KVM for process control [3].
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Figure 2.2: Overview of the KVM/QEMU virtualization model in Linux

2.2.1 NIC Emulation Architecture Inside Virtualized Systems

A virtual network setup within a virtualized environment is shown in Fig-
ure 2.3, where emulated network interface cards (NICs) are essential for en-
abling communication between virtual machines (VMs) and the host system.
This setup relies on three primary components: the frontend managed by
QEMU, the backend implemented via a TAP device on the host, and KVM
(Kernel-based Virtual Machine), which ensures efficient execution of guest
code and manages vm exits when necessary. In this configuration, QEMU
acts as the frontend, emulating the virtual NIC and providing an interface
that the guest operating system recognizes as a standard network interface.
By simulating the NIC’s registers and buffers, QEMU enables the VM to in-
teract with the NIC as though it were a physical device. When the guest
performs read or write operations on the emulated NIC’s registers, it may
trigger a vm exits, a context switch that transfers control to KVM on the host.

The backend is represented by a TAP device on the host, which serves as a
bridge between the emulated NIC and the host’s networking stack. The TAP
device functions as a virtual network interface, facilitating the packet flow
between the guest and the host’s networking infrastructure. In this arrange-
ment, the TAP driver creates a virtual bridge and a dedicated TAP interface
for each VM, thereby enabling communication both externally and between
VMs[4].
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Figure 2.3: VM network connectivity via QEMU, TAP devices, and host
bridge

KVM plays a crucial role in this setup by ensuring the efficient execution
of guest code and managing VM exits. When the guest interacts with the
NIC—for example, by writing data to a register—KVM detects the exit condi-
tion and calls on QEMU to handle the emulation in user space. Once QEMU
completes the task, which may involve processing a transmission request,
KVM resumes the guest’s execution. This collaboration establishes an effi-
cient emulation framework, where KVM handles low-level context switch-
ing and resource management, while QEMU performs higher-level emula-
tion tasks [5].

2.2.2 Emulation of packets transmission

During packet transmission emulation via a virtual NIC, a structured se-
quence is triggered when a virtual machine (VM) sends data. The process
begins with the VM preparing data for transmission, which triggers an event
notifying the host of data ready to be sent. This event initiates a vm exits,
transferring control to the KVM module on the host Figure 2.4. At this point,
KVM invokes QEMU to manage the emulation in user space.

With control in user space, QEMU accesses the data in the VM’s mem-
ory, translating the VM’s memory addresses into host virtual addresses and
packaging the data into network frames. These frames are then sent to the
TAP backend, where the backend functions like a physical NIC, forwarding
the packets to the host’s networking stack.

The packets can then be routed either to another VM on the same host or
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Figure 2.4: Transmission process: inter-working of QEMU and KVM

to an external network via a physical NIC, Figure 2.5.

After the transmission, QEMU signals the guest OS that the operation is
complete by emulating an interrupt. This notification may cause another VM
exit, allowing KVM to process the event and resume the guest’s execution.

Figure 2.5: Trasmission Pipeline
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2.2.3 Emulation of packets reception

In a virtualized network setup the process of receiving packets on an emu-
lated NIC begins at the TAP interface on the host system. Incoming packets
are buffered at this TAP interface until QEMU’s I/O thread retrieves them for
further processing, as shown in Figure 2.6. At this initial stage, KVM is not
involved, since the I/O operations proceed asynchronously, independent of
the guest VM’s execution cycle.

Figure 2.6: Reception process: inter-working of QEMU and KVM

Following the arrival of packets at the TAP interface, the TAP device reads
the buffered data and alerts QEMU’s I/O thread. QEMU then pulls this
packet data from the TAP interface, processing it for compatibility with the
guest’s virtual NIC, as illustrated in Figure 2.6. This step includes translat-
ing the packet structure and filling the receive buffers within the guest VM’s
memory, making the data accessible to the guest OS.

Once processed, QEMU transfers the packet data into the designated buffers
for the guest’s NIC, marking it as ready for the guest OS to handle. At this
point, QEMU issues a receive (RX) interrupt to notify the guest that new data
has arrived. This RX interrupt triggers a VM exit, allowing KVM to manage
the event and signal the guest OS, as detailed in Figure 2.7.
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Figure 2.7: Reception Pipeline

2.2.4 Interrupt Management

The New API (NAPI) framework in Linux networking is designed to im-
prove the efficiency of handling high volumes of network packets. During
typical network operation, Network Interface Card (NIC) drivers use inter-
rupt routines to respond to incoming packets by triggering an interrupt re-
quest (IRQ). However, excessive interrupts can cause system delays and de-
grade performance, as the CPU is forced to handle frequent context switches.
To address this, NAPI reduces interrupt load by deferring heavy process-
ing tasks to a kernel thread through the use of software interrupts (softirqs).
When an interrupt occurs, the NIC driver initially disables further interrupts
and instead schedules a poll callback via NAPI, which allows the kernel to
process packets in batches, reducing the need for constant interrupts.

This polling mechanism, where the system temporarily switches from
interrupt-driven to poll-driven processing, optimizes throughput and lowers
the frequency of high-overhead interrupt handling. Specifically, each NAPI
poll cycle is limited by a limited number of packets to process in a single run,
which prevents any single NIC from monopolizing CPU resources. Once
the processing budget is met, the NAPI thread releases control, allowing fair
scheduling across multiple devices. If more packets are pending after the
number is exhausted, the poll is rescheduled to avoid latency accumulation.
As illustrated Figure 2.8, NAPI’s adaptive switching between interrupt and
polling modes balances processing efficiency with low receive latency, ensur-
ing stable network performance even under heavy load [6].
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Figure 2.8: NAPI’s interrupt and polling mechanisms
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Chapter 3

System Design and
Implementation

The design and implementation of a system model are presented, aimed at
investigating CPU overhead in network communication, with a focus on un-
derstanding the relationship between CPU performance metrics and data
transfer rates measured using iperf3. The study uses iperf3 to assess net-
work throughput and employs the Linux perf tool for a detailed analysis of
CPU performance during data transfer.

The primary objective is to explore the correlation between CPU usage
and network throughput by capturing key CPU metrics, such as CPU cycles
and CPU clock. By analyzing how these metrics impact throughput under
different network conditions, the approach uncovers insights into communi-
cation performance and highlights CPU inefficiencies that may hinder data
transfer.

The system model and environment setup are also outlined, detailing the
tools and methods used for analysis, including iperf3 for network perfor-
mance testing, and perf stat and perf record for monitoring CPU per-
formance. These tools are utilized to measure CPU overhead and network
throughput, providing a comprehensive understanding of their interrela-
tionship.
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3.1 System Model and Environment Setup

This section presents the system model and testing environment, detailing
the hardware and software specifications of the primary machine used for
experiments. Table 3.1 lists the key parameters of the test system, including
the CPU model and core count, RAM, and the operating system version.

Parameter Specification
CPU Model Intel(R) Core(TM) i5-4278U CPU @ 2.60GHz
Number of CPU Cores 4
RAM 8 GB
Operating System Ubuntu 24.04
Virtualization Tool Multipass/QEMU
Kernel Version 6.8.0-48-generic
CPU Architecture x86_64
Power Mode Performance Mode

Table 3.1: System Specifications for Testing Environment

To simulate realistic network conditions, a virtualized environment is cre-
ated and managed using Multipass, which leverages the QEMU driver. Mul-
tipass is a lightweight VM manager that allows for easy creation and man-
agement of Ubuntu virtual machines on various platforms, including Linux,
macOS, and Windows. It is particularly useful for setting up isolated envi-
ronments for testing and experimentation without requiring complex virtu-
alization setups [7]. By using Multipass, the impact of virtualization over-
head on CPU performance can be analyzed by comparing virtualized and
non-virtualized environments.

3.1.1 Multipass Set-Up for Virtual Machines

To create a virtual machine (VM) with custom specifications using Multipass,
the command 3.2 can be used.

multipass launch -n VM1 -c 1 -m 4G -d 10G

Listing 3.1: Command to launch a VM in Multipass

In the command 3.2, the -c parameter specifies the number of virtual
CPUs allocated to the VM, the -m parameter defines the memory, and the
-d parameter sets the disk size. If none options about the specific OS to in-
stall is specified, multipass automatically installs the latest Ubuntu image in
the VM.
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To modify the parameters of the VM after it has been created, the com-
mands listed in 3.2 can be used.

$ multipass set local.VM1.cpus=2

$ multipass set local.VM1.memory =8G

$ multipass set local.VM1.disk =20G

Listing 3.2: Multipass commands usefull to modify the virtual machine set
up

These commands allow adjustments to the number of CPU cores (local.VM1.cpus),
memory allocation (local.VM1.memory), and disk size (local.VM1.disk), en-
abling customization of the virtual machine’s configuration. Before applying
any changes, the VM must be stopped. After the modifications are made, the
VM can be restarted without data loss.

3.2 Iperf3 for Network Performance Testing

The iperf3 tool is utilized in this study to measure network throughput
across different test environments. iperf3 is a popular open-source net-
work testing tool designed to measure bandwidth between two endpoints
over both TCP and UDP protocols. It operates as a client-server application,
where one system runs the server process and the other runs the client pro-
cess. The client initiates the communication. If the -R option is not specified,
the client process transmits data while the server receives it. The tool sup-
ports a variety of options for controlling test behavior, including the ability
to specify test duration, the number of parallel streams, and the desired data
size [8].

Option Description
-s, –-server Run iperf3 in server mode
-D, –-daemon Run the server as a background daemon
-p Specify the port to listen on (default is 5201)

Table 3.2: iperf3 Server Options used in this thesis
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Option Description
-c <host> Specify the server hostname or IP address
-u Use UDP instead of TCP for testing
-P n Run n parallel client streams
-R Reverse the test direction (server sends to client)
-l n[KMGT] Specify buffer length (default: 128KB for TCP)

Table 3.3: iperf3 Client Options used in this thesis

3.3 Cpulimit as a CPU Usages Limiter

The cpulimit command-line tool is used to restrict the CPU usage of a spe-
cific process by sending SIGSTOP and SIGCONT signals to it, controlling the
average CPU consumption over time [9]. This control can be useful in exper-
imental setups involving iperf3, where limiting CPU usage on the trasmis-
sion side may be necessary to observe performance under constrained con-
ditions.

The primary options for cpulimit used in these experiments is 3.3:

$ cpulimit -p <PID > -l <LIMIT >

Listing 3.3: Command to set CPU usage limit

where:

• -p, –-pid=N: specifies the process ID of the target process.

• -l, –-limit=N: sets the CPU usage limit as a percentage.

3.4 Performance Monitoring Tools

Often referred to as perf_events, perf is a powerful performance analysis
tool in Linux. Accessed from the command line, it offers a variety of subcom-
mands for statistical profiling of both kernel and userland code. It supports
hardware performance counters, tracepoints, software performance coun-
ters, and dynamic probes, making it versatile for performance monitoring
across the entire system [10]. Table 3.4 provides a summary of the commands
used in the experiments to measure performance, enabling the correlation of
bitrate with CPU usage.

Further in the details, the thesis focuses on perf stat and perf record

(along with perf report), which are instrumental in assessing CPU perfor-
mance. These tools capture essential CPU metrics, such as cycles, CPU fre-
quency, and active CPU time during execution.
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Command Description
perf stat Collects and displays performance counters, such as

CPU cycles, instructions, and cache hits/misses.
perf record Records events for later analysis, capturing event

traces and statistics for post-execution review.
perf report Analyzes recorded events, organizing results by

process, function, or other criteria.

Table 3.4: Commonly Used perf Commands

3.4.1 perf stat

The perf stat command collects and displays performance counter data in
real time, enabling immediate monitoring of specific events during applica-
tion execution. Unlike perf record, perf stat updates event counters in
real time, incrementing them each time a monitored event occurs in the tar-
get process. In these analysis, perf stat primarily monitors three events:
‘cycles‘ and ‘cpu-clock‘.

• cycles: Reflects the total number of CPU cycles used by the CPU to
execute the program.

• cpu-clock: Measures the total time (in milliseconds) that the CPU spends
running the application.

3.4.2 perf record and perf report

The perf record command enables detailed event tracing by capturing per-
formance data over a specified time period, generating a comprehensive
log for post-execution analysis. Unlike perf stat, which provides instan-
taneous statistics, perf record samples events at regular intervals (default:
4 kHz), taking snapshots of the system state. If no specific event is selected,
the default event cycles is used, offering a detailed view of application be-
havior over time. Due to its sampling nature, however, rapid or transient
events might not be fully captured if they occur between sampling intervals,
depending on the chosen frequency [11].

When the call-graph option is enabled, perf record also captures the
call stack, allowing for a detailed reconstruction of the function call chain
during the monitored process [12]. Once the recording is complete, the data
is saved in the perf.data file, which can be analyzed using the perf report

command. Through the call graph extension, it is possible to visualize the
chain of functions traced during the execution and monitoring of an active
process. Once the data is collected, perf report processes and organizes the
recorded events, enabling a detailed analysis by function, process, or other
criteria [13].
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Chapter 4

Methodology and Objectives
in Performance Analysis

Following the discussion of the theoretical concepts and tools, the methodol-
ogy employed to achieve the performance analysis results is introduced. A
detailed explanation of the experimental setup follows, including the tools
and commands used to measure key performance indicators such as CPU
usage, throughput, and network behavior. Particular emphasis is placed on
the synchronization between machines involved in the experiments, which
was critical for ensuring accurate and reliable data collection. Additionally,
the chapter discusses the challenges and limitations encountered throughout
the analysis, including the impact of system configurations and measure-
ment precision that may have influenced the results. By addressing both
the strengths and constraints of the approach, this section aims to provide a
comprehensive understanding of the experimental process and its implica-
tions for the overall findings. Finally, this section explains the motivations
behind this research and the objectives, which include identifying resource
bottlenecks and understanding a possible virtualization setup to achieve a
specific rate.
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4.1 Data Collection and Analysis using perf stat
and perf record

Using perf stat and perf record for performance analysis may initially ap-
pear redundant, as perf record alone could be considered sufficient. How-
ever, combining both tools provides a more comprehensive and accurate
analysis due to differences in their data collection techniques.

perf stat is first employed to measure the CPU usage of both the iperf3

client and server processes. By correlating the output of iperf3, which re-
ports the communication bitrate, with the CPU usage statistics obtained from
perf stat, it becomes possible to determine the CPU resources required to
transmit a specific amount of data at a given rate. In contrast, perf record

provides insight into how the processes operate by visualizing the hierar-
chy of function calls, showing how various functions interact to support the
overall functionality of the process.

To clarify the rationale for using both perf stat and perf record, exam-
ples of monitoring an iperf3 process receiving data through the loopback
interface are presented in 4.1 and 4.2.

>> sudo perf stat -e cycles ,cpu -clock -- iperf3 -c
localhost -R

Performance counter stats for ’iperf3 -c localhost ’:

10 ,873 ,017 ,210 cycles # 2.814 GHz
3 ,864.46 msec cpu -clock # 0.772 CPUs utilized

5.004781651 seconds time elapsed

Listing 4.1: Output of the perf stat command

To clarify the rationale for using both perf stat and perf record, examples
of monitoring an iperf3 process receiving data through the loopback inter-
face are presented 4.1, 4.2.

In this case, perf stat provides precise measurements related to cycles
and cpu-clock, offering an overview of the total CPU usage of the process.

On the other hand, perf report, when sorted by the PID option, reveals
the hierarchical structure of functions associated with each monitored pro-
cess. In the example provided in 4.2, the iperf3 process is attributed with
99.94% of the total recorded cpu-clock events. This percentage does not im-
ply that the process occupies an entire CPU core; rather, it reflects that 99.94%
of the sampled CPU cycles are associated with this process. Given that only
this process is under analysis, such a high percentage is expected.
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# Children Self Command Shared Object Symbol
# ........ .... ....... ............. .......
#

99.94% 0.00% iperf3 [kernel.kallsyms] [k]
iperf3

|
---entry_SYSCALL_64_after_hwframe

do_syscall_64
x64_sys_call
|
|--67.43%-- __x64_sys_read
| ksys_read
| vfs_read
| sock_read_iter
| sock_recvmsg
| inet_recvmsg
| tcp_recvmsg
| tcp_recvmsg_locked
| |
| |+66.90% - - skb_copy_datagram_iter
| |
| --0.53%-- tcp_cleanup_rbuf
| tcp_send_ack
| __tcp_send_ack.part.0
| __tcp_transmit_skb
| ip_queue_xmit
| __ip_queue_xmit
| ip_local_out
| ip_output
| ip_finish_output
| neigh_hh_output
| __dev_queue_xmit
| dev_hard_start_xmit
| loopback_xmit
|
--32.51%-+ __x64_sys_pselect6

Listing 4.2: Example output of the perf report command for the iperf3

reception process using the TCP protocol

By examining the hierarchical breakdown of functions, it becomes possible
to analyze the internal interactions within iperf3. Each function is repre-
sented with either an accumulated percentage, encompassing the overhead
of the function and all its sub-functions, or a self percentage %, which reflects

��



Methodology and Objectives in Performance Analysis

the overhead attributable solely to the specific function. In this case, the self
percentages are not displayed, as the sampling frequency was reduced to 1
kHz for illustrative purposes.

At lower sampling frequencies, functions with minimal CPU impact may
not be fully captured, potentially leading to incomplete data on less resource-
intensive operations. However, this does not compromise the overall anal-
ysis. The primary objective of using perf stat is to identify bottlenecks
and throughput limitations in the traffic flow. Consequently, the omission
of minor functions is inconsequential for detecting critical performance con-
straints.

It is important not to confuse the percentage reported by perf record

with the CPU clock percentage shown by perf stat. In the examples provided
by both tools, the same event was monitored in parallel. While perf record

shows an overhead of 100%, perf stat reports a CPU clock percentage of
77%.

To estimate the CPU usage attributed to specific functions within the pro-
cess, the CPU clock percentage from perf stat is used as a reference. This
value is then scaled based on the overall CPU usage percentage for the mon-
itored process. For instance, in 4.1, the CPU usage is reported as 0.7772
(77.72%). This percentage is then scaled by the value from perf record,
which reports an overhead of 99.94%. The scaling factor is calculated as:

Scaling Factor =
77.72

99.94
⇡ 0.77

This scaling factor is applied to the percentages of individual functions re-
ported by perf report. For example, the function skb_copy_datagram_iter

is reported as consuming 66.9% of the CPU usage in the perf report output.
Applying the scaling factor:

Adjusted Usage = 66.9%⇥ 0.77 ⇡ 52.02%

By scaling the results, more consistent measurements across the two tools
are obtained. This allows for a better understanding of the relative CPU con-
sumption of each function in the context of the overall CPU usage reported
by perf stat. The scaling ensures that a comparison between the CPU us-
age reported by perf record and the global values from perf stat is made,
providing a more coherent and accurate analysis of the CPU usage at both
the process and function levels.
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4.2 Experiment Initialization and Data Transmis-
sion Setup

To conduct the performance experiments, two iperf3 processes are employed
on client and server sides.

Client Side In each test scenario, the client-side iperf3 is initiated as 4.3.
In this sequence, the client-side iperf3 starts transmitting data, and its PID
is saved immediately after initialization.

#START TRANSMIT DATA
>> iperf3 -c localhost -t 10 &

#SAVE IPERF3 PID
>> IPERF_CLIENT_PID=$!

#LIMIT CPU ON IPERF3 THROUGH ITS PID
>> cpulimit -l $cpu_limit -p $IPERF_CLIENT_PID &

#START PERF MEASUREMUENTS
>> sudo perf stat -p "$IPERF_CLIENT_PID" -e cpu -clock ,

cycles ,context -switches -o "$PERF_CLIENT_FILE"
--timeout 9500 &

>> PERF_STAT_CLIENT_PID=$!

>> sudo perf stat -p "$IPERF_SERVER_PID" -e cpu -clock ,
cycles ,context -switches -o "$PERF_SERVER_FILE"
--timeout 9500 &

>> PERF_STAT_SERVER_PID=$!

#WAIT UNTIL IPERF PROCESS IS OVER
>> wait "$IPERF_CLIENT_PID"

#IF THESE PROCESSES ARE STILL ACTIVE , TERMINATE THEM
>> kill -INT "$PERF_STAT_CLIENT_PID" || true
>> kill -INT "$PERF_STAT_SERVER_PID" || true
>> kill -TERM "$CPULIMIT_PID" || true

Listing 4.3: Command to set CPU limit through the iperf3 PID in a loopback
network interface scenario

Following this, cpulimit is applied to restrict the client’s CPU usage, and
only after data transmission begins does the perf measurement process start.
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The perf stat command starts after cpulimit to ensure that CPU measure-
ments reflect the restricted state. To synchronize the processes, both cpulimit

and perf stat are set to match the duration of iperf3. However, in prac-
tice, the duration of the perf stat measurements is slightly shorter than
the data transmission duration. This decision is made to account for the
inherent overhead between the execution of commands, as they are not ex-
ecuted in parallel at the exact same instant. Specifically, a timeout of 9500
ms for the perf stat measurements is chosen. This ensures that any idle
time of processes, should they still be running after the transmission ends,
is excluded from the measurements. By setting the measurement duration
slightly shorter, the results avoid capturing any "dead time" or idle periods,
minimizing noise in the data.

Once iperf3 terminates, both cpulimit and perf (if perf is still alive) are
stopped using the kill command.

Server Side The server runs in daemon mode, enabling it to manage in-
coming connections in the background. This setup allows the client mode to
be activated independently for each experiment.

>> iperf3 -s -D -p 5201

Listing 4.4: wait until iperf3 stop its execution

From the server side, the 4.4 setup ensures that the server is always ready
to accept data from the client, exposing its port for incoming connections. By
running the server in the background, its process ID (PID) can be known in
advance, allowing for the use of perf to monitor the server side even before
the actual data transmission begins.

>> sudo lsof -i :5201

COMMAND PID USER TYPE NODE NAME
iperf3 832 iperf3 IPv6 TCP *:5201 (LISTEN)

Listing 4.5: Checking the PID of the iperf3 server

While the server side is idle, neither the cycles nor the CPU usage are
reported by perf since there is no active execution. Indeed, after identifying
the PID of the iperf3 server (in this case, PID 832), perf stat can be used to
track its resource consumption. However, since the server is in idle mode, the
following output indicates that neither the cycles nor the cpu-clock events
are counted:
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>> sudo perf stat -e cycles ,cpu -clock -p 832

Performance counter stats for process id ’832’:

<not supported > cycles
<not counted > msec cpu -clock

6.188331646 seconds time elapsed

Listing 4.6: Monitoring the idle server with perf

As shown 4.6, during the monitoring period of approximately 6.2 sec-
onds, no cycles or CPU clock events are recorded because the process is not
actively running.

4.3 Synchronization for the Experimental Environ-
ments

This thesis explores the performance of network communication by analyz-
ing three distinct testing environments. The first involves loopback com-
munication, which is tested directly on the host machine. The second sce-
nario examines the loopback communication tested inside a virtual machine,
and finally, the third setup focuses on communication between two separate
VMs, each isolated from the other to provide a controlled and independent
environment for testing. These configurations provide a comprehensive per-
spective on network performance across varying levels of abstraction and
isolation.

4.3.1 Synchronization of Measurements in the Loopback Com-
munication on the Host

For the loopback environment, as illustrated in Figure 4.1, the synchroniza-
tion process is straightforward. Once the script that initiates communication
and measurements is executed, the commands follow the order presented
in the sreferenced cript 4.3. In this setup, no additional synchronization is
required since all operations occur within the same system (host machine),
ensuring that the measurements are effectively synchronized.
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START

iperf3 server is run in 
background

Limit CPU of TX 
process

Measuring processes

Wait TX is over

EXIT

Start execute iperf3 client

Kill cpulimit process

Figure 4.1: Flow of commands that are executed in sequence to ensure syn-
chronized measurements during the communication process for loopback in
host
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4.4 Synchronization of Loopback Communication
in Virtualized Environments

For the loopback scenario within a virtualized environment, synchroniza-
tion between the host, which externally monitors the entire virtual machine
process, and the virtual machine itself, where the loopback communication
occurs via iperf3, is essential. As shown in Figure 4.2, the process begins
on the host, which is responsible for initiating communication and conduct-
ing performance measurements. The host first enables the execution of the
iperf3 process inside the virtual machine using the command referenced in
4.7.

>> multipass exec VM -- ./ start_script_iperf_TX &
>> VM_txProcee_ID=$!

Listing 4.7: example of starting multipass script able to start the
communication with the host

This command runs the process in the background while saving the PID of
the running program. Once initiated within the virtual machine, the host
monitors it externally using perf stat. The host waits for the VM process to
complete before concluding the entire tracking session. The execution flow
inside the VM follows the same sequence as in the previous environment
setup.

To ensure the measurements exclude idle time after the data transmission
ends, all measurements are configured with a timeout of 9500 ms. Further-
more, the host script waits for the completion of the iperf3 transmission
process inside the VM by using the wait $PID command. The script only
exits after the transmission process on the VM has fully terminated.
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START

iperf3 server in 
background

Start execute iperf3 
client

Limit CPU of TX 
process

Measuring processes

Kill cpulimit 
process

Wait tx is over

EXIT

Measure qemu process

Wait Multipass 
process is over

EXIT

START process in VM

1 2

Figure 4.2: Flow of commands that are executed in sequence to ensure syn-
chronized measurements during the communication process for loopback in
virtualized environment
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4.4.1 Synchronization of Communication Between Virtual Ma-
chines

For VM-to-VM communication,Figure 4.3, the host serves as a coordinator,
even though it does not directly participate in the communication (acting nei-
ther as the client nor the server). The host ensures synchronization between
the two VMs and monitors the qemu processes for both. The process begins
with the host starting the transmission process on VM1, where the iperf3

client is running. This step also involves applying cpulimit and initiating
performance measurements. Next, the host initiates the measurement of the
server-side process on VM2, which monitors the iperf3 server daemon pro-
cess. Both VM1 and VM2 run their respective operations with synchronized
timeouts of 9500 ms. Each VM script exits automatically after completing
its measurements. Simultaneously, the host measures the qemu processes for
both VMs, allowing it to assess the virtualization overhead during the com-
munication. The entire test concludes once the processes on both VMs termi-
nate, ensuring all measurements are properly synchronized.

��



Methodology and Objectives in Performance Analysis

V

Start execute 
iperf3 client

Limit CPU of TX 
process

Measuring 
processes

Kill cpulimit 
process

Wait tx is over

EXIT

EXIT

1 2

iperf3 
server in 

Start 
measuring

Wait measures 

EXIT

3

START

Wait VM’s 
processes 

START VMs 
processes

Measure qemu 

VM

VM

Figure 4.3: Flow of commands executed to ensure synchronized measure-
ments during VM1-to-VM2 communication in a virtualized environment
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4.5 Possible Noisy Measurements and Uncertain-
ties

In conducting the experiments, the possibility of noisy measurements is ac-
knowledged, arising from various factors, particularly since measurements
are taken on both the host and the virtual machine (VM). Network condi-
tions, resource contention, and background processes all introduce variabil-
ity in the results. To mitigate the effects of noise, each experiment is repeated
ten times, allowing for the calculation of an average of the measurements.
Subsequently, a 95% confidence interval is computed to better assess the re-
liability of the results.

Additionally, it is important to consider the limitations imposed on CPU
usage. The CPU limitation is applied after the execution of the iperf3 com-
mand has commenced. This results in a transient phase where CPU con-
sumption initially peaks before being constrained by the subsequent com-
mand. Given that each experiment lasts approximately 20 seconds, this tran-
sient behavior could skew the measurements if not adequately accounted
for. The analysis ensures that this initial peak in CPU utilization is consid-
ered, focusing on steady-state performance once the CPU limitations are in
effect.

Moreover, an additional limitation is the inability to use perf record for
all experiments, which is required to calculate the average and confidence
interval for the tracing to obtain the chain of functions of the processes. This
is due to the perf.data log being in a format that can only be loaded via
perf report, and once the log is converted into a text file, it becomes diffi-
cult to manage. The resulting format complicates the creation of a script to
extract the data. Consequently, the values obtained from perf report are
interpreted manually. Although this may not be considered an ideal engi-
neering practice, this approach is adopted to perform an additional run of
the experiments for post-tracing analysis of CPU usage. While this method
is not entirely precise, it provides a general overview of CPU consumption
and can offer insights for further research aimed at improving the feasibility
of these data for more accurate analysis.

By systematically addressing these concerns, a comprehensive analysis of
CPU overhead in network communication is presented. The consideration
of measurement noise, transient states, and the limitations of performance
tracing is crucial for interpreting the results accurately and drawing valid
conclusions regarding the performance of different configurations and pro-
tocols.
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4.6 Experimental Objectives

Building on the theoretical framework of networking in virtualized environ-
ments, this study investigates the utilization of the TAP interface to emu-
late network connectivity within virtualized environments, with QEMU and
KVM serving as the hypervisors managing the virtual machines. Specifically,
the research focuses on intra-server communication within Linux-based vir-
tualized setups, examining interactions that occur entirely within the virtu-
alized system, without involving physical network devices. The study ex-
plores the Linux network stack, particularly how virtualized networking in-
terfaces, like TAP, integrate into the network communication processes.

The primary goal of this research is to quantitatively assess CPU utiliza-
tion patterns in both native and virtualized environments, identifying how
different virtualization configurations influence resource distribution across
processes involved in network communication. Emphasis is placed on un-
derstanding the impact of network protocols, specifically TCP and UDP, on
CPU overhead during intra-server communication. The role of packet size
and its effect on CPU consumption is also examined, providing insights into
how network traffic characteristics affect overall system performance.

Additionally, the study aims to estimate the minimum CPU resources re-
quired to achieve target throughput under varying network conditions, pro-
viding a basis for optimizing virtualized network performance. Through an
analysis of CPU overhead, protocol efficiency, and resource consumption,
the study aims to contribute to a deeper understanding of performance bot-
tlenecks in virtualized networking, offering insights that can support the de-
sign and management of more efficient virtualized network environments.
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Chapter 5

Analysis of Data Pathways
and Network Stack Functions

The analysis focuses on constructing detailed schematics of the network stack
across various test environments, tracing the path of data as it moves from
the application layer through the socket layer, transport protocols (TCP/UDP),
and the virtualization layers managed by QEMU and KVM, down to the TAP
interface, and back to the application upon reception.

Using perf report, the study identifies and categorizes the key functions
involved at each stage of transmission and reception, highlighting the in-
teraction between user space and the kernel. This process emphasizes how
virtualization impacts the flow of data through the network stack, with par-
ticular attention to how CPU cycles are distributed across different layers
and functions. The definitions and details of these functions were sourced
from the Linux Kernel documentation [14], the Linux Kernel Git Repository
[15], and the Linux man pages [16], which provide in-depth explanations of
kernel operations and system calls relevant to the study.

These schematics serve as a critical reference point for understanding how
the network stack operates within each environment. By identifying poten-
tial bottlenecks and analyzing resource allocation, the diagrams provide a
foundation for evaluating the performance constraints introduced by virtu-
alization, offering insights into optimizing communication processes in intra-
server scenarios.
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5.1 Communication Over Loopback Interface

The loopback interface, used for communication between a client and server
irrespective of the TCP or UDP protocol, is depicted in Figure 5.1. The di-
agram illustrates the fundamental setup where a client (transmitter) com-
municates with a server (receiver) via the loopback network interface, utiliz-
ing designated ports within the host system. Unlike traditional networking,
which involves physical interfaces, communication over loopback bypasses
external hardware, operating exclusively within the kernel’s network stack.

server - RX client - TX

port 8080

Loopback Network Interface

HOST

port 5201

Figure 5.1: Client-server communication over the loopback interface.

This type of communication traverses the network stack of the host sys-
tem. Although the implementation differs slightly between TCP and UDP
protocols, they share many similarities in this context. The following subsec-
tions delve into the specific behavior of each protocol and their interaction
with the network stack, accompanied by schematic representations and out-
puts from the perf tool. Note that detailed analysis of CPU cycle percentages
for each function is deferred to the next chapter.
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5.1.1 Communication Stack in TCP

TCP communication over the loopback interface provides a reliable, connection-
oriented mechanism for transmitting and receiving data entirely within the
host system. First, the process related to the transmission of data via iperf is
explained, detailing how the data flows through the network stack, starting
from the application layer and traversing through the TCP/IP layers until it
reaches the loopback interface for transmission. Then, the reception process
is analyzed, focusing on how the loopback interface processes the incoming
data, including its interaction with the relevant network stack components.

Transmitter Process for TCP protocol

Through Figure 5.21, the following pipeline process is observed. The trans-
mission begins at the application layer, where a user-space application like
iperf3 generates the data to be transmitted. Once created, this data is passed
to the kernel via the write() system call, initiating a sequence of operations
that include memory allocation, buffer management, and preparation for
network transmission.

The data enters the transport layer through the tcp_sendmsg_locked()

function, which acts as a critical point where multiple processes diverge.
From this point, the kernel invokes skb_do_copy_data_nocache(), a func-
tion responsible for copying the data from user space into kernel-managed
socket buffers (SKBs). This ensures the kernel gains exclusive control over
the data during transmission, preventing any further modifications by the
application. Concurrently, sk_page_frag_refill() manages the memory al-
location for the SKB, guaranteeing there’s sufficient space for the data as it
traverses the network stack.

At this stage, the tcp_push() function is triggered, initiating the actual
transmission process. This leads to a chain of calls, including tcp_write_xmit(),
which prepares and pushes the data further down the stack. The data is sub-
sequently passed to the IP layer through ip_xmit, which processes it before
it is transmitted through the network interface.

Separately, the release_sock function ensures that the socket is properly
released and its resources cleaned up. Other functions, such as
tcp_rcv_established, tcp_ack, and tcp_clean_rtx_queue, are responsible
for managing the reception and acknowledgment of packets. Meanwhile,
tcp_push_pending_frames ensures that any pending data is pushed to the
network.

1Note that the colors organizing the functions into blocks correspond to the colors repre-
senting the different network stacks, which are later shown in Figure 5.4
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Regarding the loopback network interface, once the entire pipeline of the
Linux network stack has been followed, the dev_queue_xmit function is in-
voked. Here, the loopback interface processes the packet, handling not only
its transmission but also part of its reception. The loopback interface first pro-
cesses the packet at the IP layer, then hands it over to the TCP layer, where
it is treated as if it were an incoming packet. This dual role of the loopback
interface highlights its unique position in managing both the transmission
and reception within the local host.

 iperf3          
   |- Nwrite 
   |- ksys_write 
   |- vfs_write 
   |- sock_write_iter 
   |- inet_sendmsg 
   |- tcp_sendmsg 
       |           
       |-tcp_sendmsg_locked             
       |  - skb_do_copy_data_nocache        
       |  - sk_page_frag_refill 
       |  - tcp_push 
       |    - tcp_write_xmit  
       |    - tcp_transmit_skb 
       |            - ip_xmit 
       |              - ip_output 
       |             - ip_finish_output 
       |               - neigh_hh_output 
       |                 - __dev_queue_xmit 
       |                   - __do_softirq - handle_softirqs 
       |                    - net_rx_action 
       |                     - __napi_poll 
       |                         - netif_receive_skb 
       |                       - ip_rcv 
       |                        - ip_input 
       |                         - ip_input_finish 
       |                          - ip_protocol_deliver_rcu 
       |                           - tcp_rcv 
       |                            - tcp_rcv_established 
       |                             - tcp_data_queue 
       |                              - tcp_data_ready 
       |                               - pollwake 
       |- release_sock 
                 tcp_rcv_established 
                 tcp_ack  
                 tcp_clean_rtx_queue 
    tcp_push_pending_frames

Figure 5.2: Function chain for the TCP transmitter process detected using
perf record
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Receiver Process for TCP Protocol

On the receiving side, as shown in Figure 5.3, the process begins when the
kernel’s network stack receives the looped-back packets, which are handled
internally without involving external network interfaces. Once the loopback
network interface completes the packet processing, it uses the pollwake func-
tion to wake up the receiver process, signaling that new packets are available.
This triggers the scheduling process, invoking methods like schedule() and
sock_poll() to begin the packet processing.

 iperf3          
   - Nread 
   |- ksys_read 
   |- vfs_read 
   |- sock_read_iter 
   |- inet_recvmsg 
   |- tcp_recvmsg 
   |    |           
   |    |- tcp_recvmsg_locked             
   |      - skb_copy_datagram_iter  
   |      - tcp_do_rcv              
   |       - tcp_cleanup_rbuf 
   |       - tcp_send_ack  
   |         - tcp_write_xmit  
   |             .      
   |               .      
   |                 .      
   |  
   |- sys_pselect6 
       - do_select 
         - schedule 
         - sock_poll

Figure 5.3: Function chain for the TCP transmitter process detected using
perf record
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At this point, the kernel performs integrity checks on the received packet
to ensure that it matches the original data sent by the transmitter. The packet
then enters the TCP layer, where the function tcp_recvmsg() is invoked to
manage the reception. This function calls several sub-functions to ensure
correct handling:

• tcp_recvmsg_locked(): This function handles the reception of data in a
thread-safe manner by locking the socket buffer. It ensures that multiple
threads can receive data concurrently without causing conflicts.

• skb_copy_datagram_iter(): This function copies the received data from
the kernel buffer into user-space buffers, preparing the data for further
processing by the receiving application.

Flow control is managed by the TCP protocol’s acknowledgment mecha-
nism. The function tcp_send_ack() sends an acknowledgment (ACK) back
to the transmitter, indicating that the data has been successfully received.
This acknowledgment process follows the same flow as the transmission pro-
cess.

To ensure the data is received in the correct order, the TCP layer performs
reassembly of incoming packets. The function tcp_do_rcv() handles the
reassembly of fragmented packets, while tcp_cleanup_rbuf() ensures that
any leftover buffers are cleared after processing.

After the data has been successfully reassembled and validated, it is copied
from the kernel buffers to user space. The function skb_copy_datagram_iter()

reads the data from the socket and transfers it to the application’s user-space
buffer. The application, such as iperf3, can now access and process the data.
Simultaneously, system calls like sys_read() and ksys_read() provide the
interface for the application to request the data, while vfs_read() interacts
with the virtual file system to complete the read operation.

Integrated View of the Communication Stack in TCP

The entire TCP communication flow over the loopback interface, from trans-
mission to reception, is illustrated in Figure 5.4. This diagram provides an
integrated view of how data moves through the network stack, emphasiz-
ing critical components such as memory management, data segmentation,
and flow control. The transmission process begins with the allocation and
queuing of data for transmission. The loopback interface, operating as an
internal network device, reroutes the data back to the kernel for immedi-
ate processing. Polling mechanisms and softirqs ensure that the packets are
promptly delivered to the receiving application, maintaining low latency and
high throughput. On the receiver side, data is validated, reassembled, and
copied back to user space, where it becomes accessible to the application.
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User Plane

iperf3 -client

Kernel

Socket Read Queue 
skb_copy_datagram()

iperf3 -server
Receiver

read()

Socket Write Queue 
skb_do_copy_data()

write()

Transmitter

ip_xmit()

TCP LAYER TCP LAYER

dev_queue_xmit ()

tcp_push()

tcp_sendACK()

Loopback

net_rx_actio

ip_rcv() IP LAYER

IP LAYER

TCP data queue

tcp_rcv() 

Polling and 
Scheduling Timeout

pollwake() 

Figure 5.4: Schematic of TCP communication over the loopback interface,
showing TX, loopback, RX processes, and memory copying operations
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5.1.2 Communication Stack in UDP

UDP communication on the loopback interface bypasses some of the com-
plexities of connection-oriented protocols like TCP. Unlike TCP, which han-
dles reliable data transfer through flow control, congestion control, and ac-
knowledgment, UDP is a connectionless protocol that does not guarantee
reliability. This characteristic of UDP leads to a more streamlined and less
resource-intensive communication process, which is ideal for scenarios that
require low overhead.

Transmitter Process for UDP

The UDP transmission process, as shown in Figure 5.5, is more straightfor-
ward compared to TCP due to the connectionless nature of UDP, which does
not require the same reliability mechanisms or flow control. The process
begins when the user-space application writes data to a socket, triggering
the ksys_write() and vfs_write() system calls, which prepare the data for
transmission. These functions pass the data to sock_write_iter() and sub-
sequently to inet_sendmsg(). Unlike TCP, UDP does not involve connec-
tion establishment or flow control mechanisms. This simplification results
in a more direct path to udp_sendmsg(), which prepares the UDP packet for
transmission. The data is placed into a socket buffer (skb) via ip_make_skb(),
bypassing the more complex packet segmentation and ordering required in
TCP.

Once the data is encapsulated in the skb, it is forwarded for IP processing
via udp_send_skb(). The IP layer then processes the packet with ip_output()

and queues it for transmission using dev_queue_xmit(). The absence of con-
nection tracking and acknowledgment handling results in a less resource-
intensive and lower-latency transmission process in UDP. When the data
reaches the loopback interface, it follows a similar path to the one in TCP,
but with UDP-specific handling. The loopback interface reroutes the data
back to the kernel, where it is immediately processed.

UDP Reception Process

The UDP reception process for loopback communication, as shown in Fig-
ure 5.6, begins once the packet arrives at the loopback interface. Since UDP
is a connectionless protocol, it doesn’t involve complex handshakes or state
management like TCP. The incoming packet is passed to the IP layer through
ip_rcv(), which, in the loopback case, directly processes the packet without
the need for network transmission steps. The packet is then handled by the
UDP layer via udp_rcv() and placed in the socket buffer (skb). From there,
the data is made available to the receiving user-space application. The ker-
nel directly delivers the data using udp_recvmsg() and sock_read_iter(),
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 iperf3          

 - Nwrite 

 - ksys_write 

 - vfs_write 

 - sock_write_iter 

 - inet_sendmsg 

 - udp_sendmsg 

   | - ip_make_skb    

   |    - ip_append_data 

   |      - skb_do_copy_data_nocache        

   |     - sk_page_frag_refill 

   | - udp_send_skb 

       - ip_send_skb 

          - ip_output 

             - ip_finish_output 

          - neigh_hh_output 

                  - __dev_queue_xmit 

             - __do_softirq - handle_softirqs 

                - net_rx_action 

                      - __napi_poll 

                        - netif_receive_skb 

                         - ip_rcv 

                         - ip_input 

                             - ip_input_finish 

                              - ip_protocol_deliver_rcu 

                                  - udp_rcv 

                                  - udp_rcv_established 

                                  - udp_data_queue 

                                   - udp_data_ready 

                                      - pollwake 

Figure 5.5: Function chain for the UDP transmitter process detected using
perf record

which are responsible for reading the data and transferring it to the user
space. Functions like skb_copy_datagram_iter() and skb_recv_udp() assist
in copying the packet’s contents from kernel buffers into user-space memory.
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 iperf3          
   - Nread 
   |- ksys_read 
   |- vfs_read 
   |- sock_read_iter 
   |- inet_recvmsg 
   |- udp_recvmsg 
   |    |                      
   |     -- skb_copy_datagram_iter         
   |    -- skb_recv_udp() 
   | 
   |- sys_pselect6 
       - do_select 
         - schedule 
         - sock_poll

Figure 5.6: Function chain for the UDP receiver process detected using perf

record.

Integrated View of the Communication Stack in UDP

An analogous representation of the entire UDP communication flow over
the loopback interface is illustrated in Figure 5.7. Similar to TCP, the UDP
communication process consists of the transmission, loopback, and recep-
tion stages. However, a key difference lies in the absence of acknowledg-
ment mechanisms for received packets in UDP, as it is a connectionless and
stateless protocol.

In the UDP transmission process, once the application writes data to the
socket, the data is processed and forwarded through the relevant kernel func-
tions, eventually reaching the IP layer and transmitted via the loopback in-
terface. On the reception side, the UDP packet is handled by the IP layer,
passed to the UDP layer, and directly placed into the socket buffer without
the need for acknowledgment or flow control, as seen in TCP.
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User Plane

iperf3 -client
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Polling and 

Scheduling Timeout

Socket Read Queue 
skb_copy_datagram()

iperf3 -server
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read()

Socket Write Queue 
skb_do_copy_data()

UDP LAYER

IP LAYER
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ip_rcv() 
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IP LAYER
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dev_queue_xmit ()
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ip_send_skb()

pollwake() 

Figure 5.7: Schematic of UDP communication over the loopback interface,
showing TX, loopback, RX processes, and memory copying operation
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5.2 Communication Flow Over Loopback in a Vir-
tual Machine

The loopback interface, used for communication between a client and server
within the same virtual machines is depicted in Figure 5.8.

ioctl(KVM_RUN) 

KVM module

HOST

server - RX

port 5201

client - TX

port 8080

Loopback Network Interface

Guest Code

VM

Figure 5.8: Client-server communication over the loopback interface inside a
VM

From a network stack perspective, there are no significant differences be-
tween loopback communication in a host system and within a virtual ma-
chine. The schematics presented in the previous sections, both TCP and UDP,
remain valid for this scenario. However, from an external perspective (i.e.,
from the host point of view), analyzing the communication flow using tools
such as perf or perf record reveals only the global process associated with
the VM. This limitation arises because the host can monitor the hypervisor
but cannot directly access the internal operations of the guest code without
additional tracing tools.

In a virtualized environment, the Kernel-based Virtual Machine (KVM)
hypervisor plays a fundamental role in managing the execution of guest vir-
tual machines (VMs). When performing loopback communication within a
VM, as depicted in Figure 5.8, the entire network stack is processed within
the guest space—from the application layer down to the virtual network in-
terface. This ensures that loopback traffic remains confined within the VM,
without directly involving the host’s network stack.

Figure 5.8 illustrates a function chain captured through a perf report

during an iperf3 loopback test running entirely within the VM. The fig-
ure highlights system calls such as ioctl() from the guest kernel, which
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qemu-system-x86 

- __GI___ioctl  

 - entry_SYSCALL_64_after_hwframe  

  - do_syscall_64  

    - x64_sys_call  

     - __x64_sys_ioctl  

     - kvm_vcpu_ioctl  

      - vcpu_run  

Figure 5.9: monitoring VM process from host during iperf3 run

lead to the invocation of KVM-specific functions like kvm_vcpu_ioctl() and
vcpu_run(). These functions are responsible for managing the communi-
cation between the guest and the KVM hypervisor, ensuring that the guest
virtual CPU (vCPU) executes its workload correctly. However, they provide
limited insight into the specific execution details of the processes running
inside the VM.

For processes that execute entirely within the guest, the host can only
monitor the overall CPU consumption of the VM, represented by the global
qemu process. This limits the visibility of the host to a high-level comparison
between the CPU usage of the specific process inside the VM and the total
CPU consumption by the VM to execute that process. Beyond this, the host
lacks granular information about the internal execution of isolated processes
within the VM.
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5.3 Communication Flow Between Two Isolated Vir-
tual Machines on the Same Host

The communication between two isolated virtual machines (VMs) on the
same host, irrespective of whether the TCP or UDP protocol is used, is de-
picted in Figure 5.15. In this setup, the client residing in VM1 communicates
with the server located in VM2. Unlike loopback communication, where the
traffic remains confined within a single virtual environment, this scenario
requires the data to traverse multiple virtual network components.

ioctl() 

KVM module

HOST

KVM module

ioctl() 

server - RX client - TX

port 8080

Guest Code 1

VM1

Guest Code 2

VM2

port 5201

TAP_1 TAP_2

Virtual 
BRIDGE

Figure 5.10: Communication flow between two isolated virtual machines on
the same host.

The process begins when the client in VM1 sends data through its vir-
tual network interface, which is connected to a TAP (Tun/Tap) interface. The
TAP interface (TAP_1) acts as a virtual Ethernet device, responsible for for-
warding the outgoing packets from the VM to the host system [17]. Once
the packets reach the host, they are passed through a virtual bridge, which
functions as a software-based network switch, connecting multiple TAP in-
terfaces [18]. The virtual bridge forwards the packets to the receiving TAP
interface (TAP_2) associated with VM2. TAP_2, in turn, delivers the incom-
ing packets to the network stack of the receiving virtual machine. At this
point, the TAP interface notifies the guest operating system within VM2 of
the arrival of new packets, allowing them to be copied into the guest’s mem-
ory space and processed by the server application.

This multi-step process introduces additional overhead compared to loop-
back communication, as the packets must transition between the virtual net-
work interfaces, the bridge, and the TAP devices, requiring context switches
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and memory operations at each stage.

5.4 Communication Flow Between Two Virtual Ma-
chines

This section provides a detailed breakdown of the communication flow be-
tween two isolated virtual machines (VMs) on the same host, which occurs
over a virtual network. The process is divided into two main stages, each of
which is further subdivided into two sections.

The first stage focuses on the guest code running inside the VMs, specif-
ically the client and server processes of iperf on the two VMs. The second
stage delves into the network interface processes, examining the interaction
between the TAP interface and the virtual bridge. The first section studies the
TAP interface of the transmitting VM, which forwards the outgoing packets
to the virtual bridge. The virtual bridge is responsible for routing the packets
toward the receiving VM. The second section focuses on the network inter-
face of the receiving VM. The TAP interface on the receiving side retrieves
the forwarded packets from the virtual bridge and delivers them to the guest
operating system for further processing. This structured approach highlights
both the application-level and network-level mechanisms involved in inter-
VM communication on a single host.

5.4.1 Guest Code of the VMs

Guest Code of the Transmission Side

The data flow illustrated in Figure 5.11 progresses through several kernel
functions, starting from Nwrite and continuing until the packets reach the
TAP interface. This sequence includes function calls such as ksys_write,
vfs_write, sock_write_iter, and inet_sendmsg.

Once the data reaches the network stack, it is prepared for transmission.
Depending on the protocol in use, the function udp_sendmsg or tcp_sendmsg
encapsulates the data into UDP or TCP packets. These packets are then trans-
mitted through the virtual network interface (TAP) and forwarded by the
virtual bridge to the receiving VM.

A comparison between this flow and the loopback communication flow
reveals that the same kernel functions are involved. This is because both
flows traverse the same Linux network stack. However, unlike the loopback
scenario, where the transmitting process also handles part of the reverse path
of the network stack, in this case, the process is limited to forwarding the
packets to the TAP interface, with no involvement in handling the return
path.
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 iperf3          
   |- Nwrite 
   |- ksys_write 
   |- vfs_write 
   |- sock_write_iter 
   |- inet_sendmsg 
   |- tcp_sendmsg 
       |           
       |--tcp_sendmsg_locked             
       |  - skb_do_copy_data_nocache        
       |  - sk_page_frag_refill 
       |  - tcp_push  
       |   |- tcp_write_xmit  
       |     |- tcp_write_xmit  
       |       |- tcp_write_xmit      
       |         |- tcp_write_xmit 
       |           |- tcp_transmit_skb 
       |            |- ip_xmit 
       |             |- ip_output 
       |              |- ip_finish_output 
       |               |- neigh_hh_output 
       |                |- __dev_queue_xmit 
       |                 |- __dev_xmit_skb 
       |                   |- dev_hard_start_xmit 
       |                    |- start_xmit 
       | --release_sock 
             -tcp_rcv_established 
                 -tcp_ack  
                 -tcp_clean_rtx_queue 
    -tcp_push_pending_frames

Figure 5.11: Function chain for data transmission in the guest VM

Guest Code of the Reception Side

In the iperf3 process that receives data from outside the VM, it can be ob-
served that the function pipeline is essentially the same as in the loopback
process, except for the part related to net_rx_action and below. In this
case, net_rx_action is responsible for handling the processing of incoming
packets on the virtual network when a network interrupt is triggered. The
function handle_softirqs manages software interrupts (SoftIRQ), which are
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triggered to allow more efficient packet processing by deferring certain op-
erations to later stages. Once the packet is received by the virtual network,
it is processed by the network stack in reverse order. After the reception is
confirmed (through the send acknowledgment), the packet is prepared to be
passed on to the application layer.

 iperf3          
   - Nread 
   |- ksys_read 
   |- vfs_read 
   |- sock_read_iter 
   |- inet_recvmsg 
   |- tcp_recvmsg 
   |    |           
   |    |- tcp_recvmsg_locked             
   |      - skb_copy_datagram_iter 
   |       - net_rx_action 
   |        - handle_softirqs 
   |         - receive_buf 
   |          - tcp_rcv 
   |           - ip_list_receive 
   |      - tcp_cleanup_rbuf 
   |       - tcp_send_ack  
   |         - tcp_write_xmit  
   |             .      
   |               .      
   |                 .      
   |- sys_pselect6 
       - do_select 
         - schedule 
         - sock_poll

Figure 5.12: Function chain for data reception in the guest VM.
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5.4.2 Transmission and Reception Using TAP Interfaces and
Virtual Bridge

In this section, both the transmission and reception processes of TAP inter-
faces and the virtual bridge are examined. TAP interfaces in Linux are as-
sociated with a queuing discipline, or qdisc (Queue Discipline), which is a
kernel mechanism responsible for managing the packet queues of the device
[19]. The qdisc controls the flow of packets, temporarily storing them before
they are processed for transmission or reception. The qdisc allows the kernel
to manage how data is transmitted and received through the TAP interface,
ensuring that packets are handled in an orderly manner. It acts as a buffer,
holding packets in the queue until the network device is ready to process
them.

Transmission Process Using TAP Interfaces

The transmission process of data in the guest VM, as depicted in Figure 5.15,
begins when the client application writes data to the socket. The data is
passed through a series of functions, starting with do_writev and vfs_writev,
which initiate the write operation. The data is then forwarded to the TAP in-
terface using the tun_chr_write_iter function, which transfers the data to
the kernel’s buffer. Here, the function tun_get_user handles copying the
data from the user-space application into the kernel buffer.

After the data is copied into the buffer, the kernel function skb_copy_datagram_iter

moves the data into the TAP interface’s qdisc. At this stage, the data is tem-
porarily stored in the qdisc before being forwarded to the virtual bridge for
further processing. The virtual bridge, responsible for routing the data be-
tween the VMs, processes the packet and determines its destination. The for-
warding process involves functions such as br_handle_frame, br_pre_routing,
and br_forward, which manage the flow of the packet through the network
stack. The data is then sent to the appropriate destination VM, and the pro-
cess concludes with dev_queue_xmit, which transmits the packet.

The figure Figure 5.15 illustrates the entire process, from the moment the
data enters the TAP interface to when it is forwarded through the virtual
bridge. This flow ensures that data is efficiently transmitted from the guest
VM to the virtual network and ultimately to the destination VM.
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 qemu-system-x86 

          

   - do_writev 

   - vfs_writev 

   - tun_chr_write_iter 

       - tun_get_user          

       - skb_copy_datagram_iter 

         - tun_rx_batched 

           - br_handle_frame 

             - br_pre_routing 

               - br_pre_routing_finish 

                 - br_handle_frame_finish 

                   - br_forward 

                     - br_forward_finish 

                       - br_post_routing 

                         - br_dev_queue_push_xmit 

                           - dev_queue_xmit 

    

   

Figure 5.13: Function chain for data transmission from the guest VM through
the TAP interface and virtual bridge

5.4.3 Reception Process Using TAP Interfaces

On the receiving side, the process begins when the virtual bridge forwards
the incoming packets to the receiving VM’s TAP interface. In contrast to
the loopback communication, where the data is directly processed within
the guest’s network stack, the reception process in this case involves ad-
ditional stages. The data is copied into the kernel’s buffer via the func-
tion skb_copy_datagram_iter, making it ready for further processing by the
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guest VM.
The data is then handed off to the guest operating system, where it is pro-

cessed by the appropriate network stack functions. The functions tun_chr_read_iter
and tun_do_read are responsible for copying the data from the TAP interface
into the guest’s memory. This additional layer of processing, while ensur-
ing the efficient handling of packets in a virtualized environment, introduces
some overhead in terms of CPU usage.

 qemu-system-x86 

          

   - read 

   - ksys_read 

   - vfs_read 

   - tun_chr_read_iter 

       - tun_do_read          

       - skb_copy_datagram_iter 

   

Figure 5.14: Function chain for data reception in the guest VM from the vir-
tual bridge.

This reception process, while similar to the one in a non-virtualized en-
vironment, requires additional steps due to the involvement of the virtual
network interface and the management of packet forwarding. Despite these
complexities, the process remains efficient and is crucial for ensuring smooth
communication between VMs in a virtualized environment
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5.4.4 Integrated View of the Communication Stack including
Virtual Interfaces

After analyzing the function chains involved in both the transmission and
reception processes, the final diagram can now be composed to illustrate the
communication flow between the two isolated virtual machines. As shown
in Figure 5.15, this diagram provides a comprehensive visualization of how
data is transmitted from one VM to another, passing through the various
components of the virtual network stack.

The diagram integrates the different stages of the process, including the
involvement of the TAP interfaces, the virtual bridge, and the kernel’s net-
work stack. It encapsulates the entire flow of data between the transmitting
VM and the receiving VM, showing how the packets are forwarded, pro-
cessed, and eventually received by the destination application.

By capturing the key interactions between the guest code, TAP interfaces,
and the virtual bridge, the diagram serves as a visual summary of the com-
munication process described in the previous sections. It highlights the com-
plexity of the data flow, especially in a virtualized environment where net-
work packets traverse multiple virtual network components before reaching
their final destination.
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Figure 5.15: Client-Server communication between two isolated VMs

��



Chapter 6

Experimental - Analysis of
TCP/UDP Performance

An analysis of TCP and UDP traffic is conducted across two primary testing
environments, each focusing on different types of network interfaces. The
first environment examines the loopback interface, which facilitates inter-
nal communication within a single system. This is further divided into two
scenarios: one evaluates loopback communication directly on the host sys-
tem, without any virtualization, while the other explores the performance of
loopback communication within a virtual machine (VM). The second envi-
ronment investigates emulated network interfaces in a virtualized context,
where communication takes place between two isolated VMs hosted on the
same physical machine. Both environments leverage the iperf3 tool to assess
performance metrics such as bitrate and CPU utilization, offering insights
into the efficiency and potential overhead associated with different network
configurations.

6.1 TCP Performance Analysis

6.1.1 Loopback Interface Performance

The loopback network interface serves as the baseline for performance eval-
uation due to its ability to provide a controlled environment with minimal
overhead. It represents the most direct and low-latency communication path
within a system, capturing the raw performance potential of the network
stack. This approach ensures that results reflect the maximum achievable bi-
trate and CPU utilization under optimal conditions, before introducing addi-
tional complexity such as virtualization network interfaces. This streamlined
communication allows for highly predictable and consistent performance
metrics, making it ideal as a reference point. By establishing the loopback
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benchmark, the analysis gains a clear upper limit for network stack perfor-
mance in terms of achievable bitrate and CPU consumption. This baseline
provides a comparative foundation to evaluate the cost of additional over-
head introduced in more complex scenarios, such as communication involv-
ing virtual machines or inter-host connections.

To investigate the relationship between CPU utilization and achieved bi-
trate, iperf3 provides the -P option, which enables the use of parallel streams.
This option creates multiple client threads, each independently transmitting
data to the same server port. For these experiments, P is varied from 1 to 2.
The reason for limiting to two parallel processes is that, with P = 2, there
are two threads for transmitting and two additional threads receiving, re-
sulting in a total of four processes. Considering that the computer used for
these tests has 4 CPU cores, this number is chosen as an optimal configu-
ration. Increasing the number of parallel threads beyond 2 is found to in-
troduce additional overhead due to CPU migration and context switching,
which compromised the validity of the results. As the number of parallel
streams increases, total CPU consumption scales proportionally. Each client
thread adds approximately 100% CPU load, resulting in a total CPU capacity
offered (cpumax offered) that can be expressed as:

cpumax offered = P ⇥ 100

where P represents the number of parallel streams. For instance, when P =
1, the client operates as a single-threaded process with a maximum CPU us-
age of 100%, while at P = 2, the client utilizes up to 200% across two threads.

The achieved bitrate for each configuration depends on the number of
parallel streams and the corresponding CPU allocation. By varying P , this
experiment examines how increasing the offered CPU capacity impacts the
overall transmission rate, providing insights into CPU utilization efficiency
and network stack performance under different loads.

Loopback Communication in the Host System

The analysis focuses on the performance of the loopback interface on the
host system by varying the CPU usage allocated to the transmitter and the
number of parallel processes. The results are shown in Figure 6.1. In the left
column of the figure, each plot shows the measured CPU consumption as a
function of the CPU offered, controlled using cpulimit on the transmitting
process. It should be noted that the CPU utilization in this analysis reflects
the actual runtime CPU consumption on the client side, rather than the nom-
inal CPU quota imposed. This distinction emphasizes that the observed bi-
trate scaling is primarily influenced by the client’s effective CPU resources
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rather than by the theoretical CPU limit. In the right column, the plots dis-
play the resulting bitrate as a function of the CPU usage for both the server
and client processes. The experiments are organized in rows, with each row
representing a different value of -P, ranging from 1 to 2. This allows for a
clear illustration of the impact of parallelism on both CPU utilization and
achievable bitrate.

In each plot representing the bitrate, a theoretical line illustrates the ex-
pected relationship between the bitrate and CPU utilization of the transmit-
ting process. The slope of each line indicates how efficiently the bitrate in-
creases relative to CPU utilization. The configuration with P = 1 demon-
strates the steepest slope, reaching its maximum achievable bitrate more ef-
fectively. However, when comparing configurations, it is essential to con-
sider both the slope and the total CPU resources allocated for transmission.
Table 6.1 summarizes the line functions, CPU utilization ranges, and maxi-
mum bitrates for each configuration, offering a clear overview of the perfor-
mance characteristics across different settings. The slope of the line function
represents the transmission rate per unit of CPU usage. The maximum bi-
trate is derived by multiplying the slope by the maximum CPU usage for
each configuration. It is observed that configurations with higher CPU uti-
lization ranges achieve higher maximum bitrates, albeit with increased CPU
resource demands.

Line Function CPUC (%) CPUS (%) Max Bitrate (Gbps)

P=1 y = 0.28 Gbps
%CPUC

· x 0 : 91 0 : 68 26

P=2 y = 0.19 Gbps
%CPUC

· x 0 : 188 0 : 138 35.5

Table 6.1: CPU utilization and performance metrics for each parallel stream
configuration in a loopback host environment

An important observation is that the relationship between the number
of parallel processes and the achieved bitrate is non-linear. For example, if
P = 1 achieves a bitrate of 26 Gbps with a CPU usage of 91%, the expected
CPU usage for P = 2 to maintain the same rate would theoretically double
to 91⇥ 2 = 182%, and the expected bitrate would be 26 Gbps ⇥ 2 = 52 Gbps.
However, this linear scaling does not occur.
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Figure 6.1: Comparison of CPU consumption and achieved bitrate for differ-
ent parallel stream configurations (-P values from 1 to 2) in a loopback host
environment
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To investigate the reason behind the non-linear scaling of the bitrate, the
CPU usage of each parallel process is analyzed using perf record

1. In this
chapter, instead of analyzing each function in the chain, the focus will be on
the points where the function call sequence converges into a single path. At
these junctures, the CPU usage represents the total usage of all the functions
that follow in the chain.
Transmission Side (P = 1):

• tcp_sendmsg: 87.3%

– tcp_sendmsg_locked: 72.90%

* skb_do_copy_data: 40.9%

* tcp_push_one: 25.8%

– release_sock: 13.8%

* tcp_ack: 3.9%

* tcp_push_pending_frames: 8.8%

Reception Side (P = 1):

• pselect6: 15%

• tcp_recvmsg: 42.70%

– tcp_recvmsg_locked: 41.3%

* skb_copy_datagram_iter: 27.6%

* tcp_cleanup_rbuf: 11.85%
· tcp_send_ACK: 11.65%

Transmission Side (P = 2):

• tcp_sendmsg: 94%

– tcp_sendmsg_locked: 91.12%

* skb_do_copy_data: 39%

* tcp_push_one: 28.56%

– release_sock: 16.95%

* tcp_ack: 5%

* tcp_push_pending_frames: 9.7%

1It is important to note that the following analysis refers to a single run, which, while
reflecting the maximum CPU usage shown in the plots, does not represent a general case
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Reception Side (P = 2):

• pselect6: 17%

• tcp_recvmsg: 48.10%

– tcp_recvmsg_locked: 45.52%

* skb_copy_datagram_iter: 23.0%

* tcp_cleanup_rbuf: 19.5%
· tcp_send_ACK: 19.16%

The function chain analysis (see Section 5.2) reveals that, for P = 2, the
processes limiting the rate are mainly the server-side functions that han-
dle the received data. An increase in CPU utilization is observed in the
tcp_send_ACK function, which indicates a rise in the ACK transmission rate.
An increase in ACK transmissions reduces the overall throughput, as the
sender must wait for the acknowledgment before sending additional packets,
thereby limiting the transmission rate. As tcp_send_ACK increases, the func-
tions responsible for copying data from the kernel to the application, such
as skb_copy_datagram_iter, decrease because fewer data bytes are being re-
ceived. On the client side, the increase in CPU usage for functions related to
socket release, release_sock, suggests that more ACKs are being received,
which also correlates with the increased function tcp_push_pending_frames.
This indicates that more packets are being retransmitted, further limiting
the overall throughput. Therefore, while the expected increase in paral-
lelism (from P = 1 to P = 2) should theoretically double the through-
put, the congestion from the ACKs and the higher processing cost due to
the retransmission-related functions result in inefficient scaling. In addi-
tion, it is observed that CPU consumption associated with tcp_send_ack in-
creases, along with the functions directly linked to it, such as release_sock,
tcp_push, and related operations.
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Loopback Communication in a Virtual Environment

To ensure comparability with the host loopback experiment, a VM with 4 vC-
PUs, matching the host’s physical CPU count, is created. This configuration
allows for parallel process testing with P values ranging from 1 to 2, mir-
roring the host experiment. By varying P , the experiment investigates how
increased parallelism impacts achievable bitrate and CPU utilization in a vir-
tualized environment, accounting for the overhead introduced by QEMU.

Figure 6.4 illustrates the performance of the loopback scenario within the
VM. In the left column, the plots show the CPU utilization not only for the
client and server processes but also for the QEMU process managing the vir-
tual machine. The right column depicts the resulting bitrate as a function of
CPU consumption across both the client and server. This comparison high-
lights the impact of parallelism and virtualization overhead on overall per-
formance.

Table 6.2 provides a detailed view of performance metrics, now including
the overhead introduced by QEMU virtualization. This overhead is calcu-
lated as the percentage of CPU usage attributed to virtualization, defined
as the difference between total CPU usage and effective CPU usage for the
virtualized workload.

Line Function CPUC (%) CPUS (%) CPUQ (%) BitrateMAX

P=1 y = 0.27 Gbps
%CPUC

· x 0 : 91 0 : 74 0 : 179 25.3 Gbps

P=2 y = 0.17 Gbps
%CPUC

· x 0 : 185 0 : 153 0 : 356 31.9 Gbps

Table 6.2: CPU utilization and performance metrics for each parallel stream
configuration in a loopback virtual environment

Before delving into the results from a perf report run, it is essential to
highlight the discrepancy in CPU utilization between the qemu process and
the combined CPU usage of the client and server within the virtual machine
(VM). In the configuration with a single parallel process (P = 1), the total
CPU utilization reaches 179%. Out of this, 74% is consumed by the client,
while the server utilizes 91%, leaving an approximate overhead of 14% at-
tributed to the qemu process. This overhead reflects the computational re-
sources required by the hypervisor to manage and facilitate the VM’s opera-
tions. As the number of parallel processes increases to P = 2, the total CPU
utilization rises significantly to 356%. In this scenario, 185% of the CPU is
allocated to the client and 153% to the server, resulting in an increased over-
head of approximately 18% for the qemu process. This increase underscores
the additional computational burden imposed by the hypervisor, which must
manage the coordination and resource allocation of the virtualized environ-
ment, even when both client and server processes operate solely within the
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Figure 6.2: Comparison of CPU consumption and achieved bitrate for dif-
ferent parallel stream configurations (-P values from 1 to 2) in a loopback
virtualized environment
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guest system.
Despite the transmission process operating within a similar CPU range to

the host loopback experiment (see Section 6.1), the observed bitrate exhibits
minimal variation:

• P = 1 ): The bitrate decreases slightly from 26 Gbps (host loopback) to
25.3 Gbps.

• P = 2 ): The total bitrate decreases by approximately 4 Gbps compared
to the host scenario, highlighting the impact of virtualization.

Additionally, while the client process maintains a comparable CPU range
across both scenarios, the server process shows increased CPU consumption,
particularly for the parallel configuration (P = 2).
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To understand these results, a single perf report run is analyzed for each
configuration, focusing on key functions within the guest code.
Transmission Side (P = 1):

• tcp_sendmsg: 86.72%

– tcp_sendmsg_locked: 72.90%

* skb_do_copy_data: 51.14%

* tcp_push_one: 17.32%

– release_sock: 11.7%

* tcp_ack: 5.0%

* tcp_push_pending_frames: 5.3%

Reception Side (P = 1):

• pselect6: 14.1%

• tcp_recvmsg: 56.0%

– tcp_recvmsg_locked: 54.3%

* skb_copy_datagram_iter: 41.0%

* tcp_cleanup_rbuf: 9.2%
· tcp_send_ACK: 9.0%

Transmission Side (P = 2):

• tcp_sendmsg: 89.9%

– tcp_sendmsg_locked: 76.64%

* skb_do_copy_data: 46.7%

* tcp_push_one: 23.2%

– release_sock: 11.7%

* tcp_ack: 5.0%

* tcp_push_pending_frames: 6.0%

Reception Side (P = 2):

• pselect6: 17.8%

• tcp_recvmsg: 51.5%

– tcp_recvmsg_locked: 49.42%

* skb_copy_datagram_iter: 32.0%

* tcp_cleanup_rbuf: 10.63%
· tcp_send_ACK: 10.5%
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The CPU distribution in this experiment differs from that observed in the
previous scenario. The percentage associated with tcp_send_ack is lower,
indicating that the receiver is not significantly limiting the transmission by
sending excessive acknowledgments (ACKs). Instead, the performance ap-
pears to be more constrained by CPU availability on the transmitting side.
This is evident from the lower percentage allocated to data push operations
compared to the previous experiment, while a higher percentage is spent on
copying data. When comparing the configurations with P = 1 and P = 2,
a similar pattern emerges. The tcp_send_ack percentage for P = 2 is higher
than that for P = 1, suggesting that increased acknowledgment traffic in
the parallel process configuration could contribute to limiting the achievable
bitrate.
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6.1.2 Network Emulation Between Two Isolated Virtual Ma-
chines

The interaction between two isolated and identical virtual machines (VMs) is
examined, each configured with 2 vCPUs. This configuration is determined
by the limitations of the host system, which is equipped with only 4 physical
CPU cores. As a result, allocating 4 vCPUs to both VMs simultaneously is
not feasible. Instead, two identical VMs, each with 2 vCPUs, are deployed to
maintain a balanced and isolated environment. Given the available vCPUs,
the experiment is conducted using a single transmission process (P = 1) for
both the transmitter and receiver. Previous experiments have shown that
when the number of parallel processes equals the number of available CPU
cores, optimal performance is achieved when the system has at least twice
the number of cores relative to the parallel processes. This ensures sufficient
resources for both transmission and reception. With each VM limited to 2
vCPUs, running parallel processes equal to the number of cores would lead
to resource contention and increased context switching. Therefore, a single-
process configuration is preferred to maximize CPU efficiency and minimize
virtualization overhead.

In this scenario, the impact of varying CPU resources on the transmitting
process is analyzed, similar to the previous experiments, by assessing how
the bitrate changes with different CPU limits, as shown in Table 6.3. When
the CPU is varied from 0% to 100%, a key difference compared to previous
tests is observed: with 100% CPU allocation (unlimited), the transmitter pro-
cess consumes approximately 90% of the available CPU, while in this case,
the maximum CPU usage for the transmitting process is limited to 38%. The
receiver process, however, shows a higher maximum CPU usage of 80%. This
indicates that the receiver process, rather than the transmitter, becomes the
more CPU-intensive process under these conditions.

The maximum bitrate achieved in this experiment is approximately 8 Gbps,
which is significantly lower than the 25.3 Gbps observed in the loopback ex-
periment with a single process. Additionally, the slope, which was 0.27 in
the loopback test, is now 0.24, indicating that more CPU cycles are required
to transmit the same amount of data.

CPUVM (%) CPUQEMU (%)

VM1 Transmitter 12 : 38 38 : 129

VM2 Receiver 20 : 80 41 : 135

Table 6.3: CPU utilization for both VMs
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Figure 6.3: Comparison of CPU utilization and achievable bitrate between
two isolated VMs during communication
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A critical factor in this observation is the role of the virtualized network
interface, which is not directly handled by the iperf3 process but is instead
managed within the CPU consumption of the QEMU process. Unlike in the
loopback tests, where the loopback interface was part of the transmission
process, here, the network interface is handled by QEMU, which emulates
the hardware devices, including the virtual CPU and network interface. As
discussed in the previous chapter, the QEMU process for the transmitting
VM includes both the TAP interface and the virtual bridge, thus accounting
for the additional CPU usage for packet forwarding. The receiving VM’s
QEMU process similarly includes the TAP interface, responsible for receiving
the packets.

To conclude, the distribution of CPU utilization between the processes
is analyzed, highlighting the different contributions of the transmitting and
receiving processes and the influence of virtualization overhead on overall
CPU consumption. From the host’s perspective, two active processes are in-
volved in the communication, one for VM1 (the transmitting process) and
one for VM2 (the receiving process). The analysis begins by examining the
guest code processes within each virtual machine—specifically, the iperf

client process in VM1 and the iperf server process in VM2. To provide a
broader perspective beyond the guest code, the analysis then focuses on the
corresponding qemu processes for both virtual machines, which manage the
underlying virtualized resources.
Transmission Side - Guest Code VM1:

• tcp_sendmsg: 34.8%

– tcp_sendmsg_locked: 32%

* skb_do_copy_data: 29.1%

* tcp_push_one: 1.76%

– release_sock: 2.16%

* tcp_ack: 0.8%

* tcp_push_pending_frames: 1.9%

Reception Side - Guest Code VM2:

• pselect6: 7%

• tcp_recvmsg: 63.2%

– tcp_recvmsg_locked: 59.22%

* skb_copy_datagram_iter: 52%

* tcp_cleanup_rbuf: 4.49%
· tcp_send_ACK: 4.0%
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Transmission Side - Host Code - QEMU VM1:

• ppoll: 8.28%

• write: 69.53%

– tun_get_user: 64.7%

* skb_copy_datagram_iter: 46.01%

* tun_rx_batched: 17.34%

• read: 1.38%

• ioctl: 49.87%

Reception Side - Host Code - QEMU VM2 :

• ppoll: 10.25%

• read: 31.05%

– tun_do_read: 26.7%

* skb_copy_datagram_iter: 20%

* consume_skb: 5.8%

• write: 5.4%

• ioctl: 87.9%

The transmission process consumes minimal CPU resources, with the ma-
jority of the load concentrated on the function skb_copy_datagram_iter. As
for the physical transmission, it is mainly limited to sending packets to the
network interface. Then the traffic is sent to the network interface with a con-
sumption of (1.76%). On the receiver side, the iperf process consumes more
CPU resources, with approximately 52% of the CPU used for data copying,
out of the total 78% consumed by the process.

From an external perspective, for the transmitting virtual machine VM,
polling is involved (similar to the receiver process). However, since data ex-
its the VM, it must first be copied into the qdisc associated with the TAP
interface. In this case, the process spends 46.5% of the CPU on copying data
and only 17.24% on transmission, virtual bridge included. The remaining
CPU usage is associated with the overall VM operation and the necessary
functions for its proper functioning. On the receiver side, CPU consumption
is lower compared to transmission. The VM spends 20% of CPU time copy-
ing data from the network buffer to the application buffer using the function
skb_copy_datagram_iter. The remaining 5.8% of CPU time is dedicated to
processing the packets with the consume_skb function, which removes the
packets from the buffer and marks them as processed, ensuring memory is
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properly freed and preventing memory leaks. Since this analysis involves
TCP communication, the receiver also sends ACKs. In both processes, the
qemu process includes minor read and write operations related to the trans-
mission and reception functions. For the transmitting qemu process, there are
minimal read functions, whereas the receiving qemu process handles more
read operations.

In conclusion, it is observed that the iperf processes do not reach the
maximum CPU consumption, as seen in the loopback experiments, due to
the backend virtualization layer. This additional overhead is caused by the
emulation of network interfaces and memory, which adds significant CPU
consumption.Unlike in the loopback experiments, where the primary over-
head comes from data copying during both transmission and reception, in
the virtualized environment, an additional overhead arises from the back-
end memory emulation. This is due to the TAP interface, which includes a
queuing discipline (qdisc). The qdisc acts as an intermediary memory space
where data is copied before being transmitted or received, adding further
CPU consumption as part of the network emulation process. This increased
overhead is inherent to the virtualization process, as it involves emulating
physical network interface functions, such as Ethernet interfaces.
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6.2 UDP Performance Analysis

To study UDP performance, the experiments focus on how the bitrate varies
with datagram size. UDP, being a connectionless protocol, handles data in
units called datagrams, which can vary in size. A UDP datagram consists of
both the payload and the headers. Therefore, analyzing UDP performance
requires considering the entire datagram, rather than just smaller packet
fragments. The size of a UDP datagram ranges from a minimum of 10 bytes
to a maximum of 65,535 bytes, with 8 bytes allocated for the UDP header and
up to 65,527 bytes for data. However, due to constraints imposed by the IPv4
protocol, the actual maximum data length is 65,507 bytes (65,535 bytes minus
the 8-byte UDP header and 20-byte IP header)[20].

While the previous section focused on analyzing the relationship between
CPU allocation and maximum bitrate, this section examines how changes
in the datagram size affect UDP transmission. Additionally, the data loss
percentage is calculated using the following formula:

loss_percentage =

✓
tx_bytes � rx_bytes

tx_bytes

◆
⇥ 100

The experimental setup remains the same as in the previous section, with
a shift in focus to UDP traffic and datagram loss behavior. The goal is to
analyze how the transmission rate changes with varying datagram sizes and
determine the percentage of datagrams lost under different conditions.

6.2.1 Loopback Interface Performance

As in the TCP performance analysis, the loopback interface is tested to eval-
uate the behavior of the network in terms of data transmission and packet
loss. The experiments are conducted in both environments, the host system
and a virtualized environment.

Loopback Communication in the Host System

The performance of the loopback interface within the host system is ana-
lyzed. In Figure 6.4, two plots are presented. The first plot illustrates the
variation in CPU consumption for both the server and client processes of
iperf3. The second plot shows the transmitted (TX) and received (RX) bi-
trates, highlighting the percentage of data loss as a function of the UDP data-
gram size.

As the datagram size increases, the overall CPU consumption remains
relatively constant. This behavior occurs because both the iperf3 client and
server processes attempt to maximize the achievable bitrate with different
datagram sizes. However, while the total CPU utilization remains stable, the
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Figure 6.4: CPU utilization, transmitted and received bitrates, and packet
loss for varying datagram sizes in a loopback host environment using UDP
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internal parameters and function calls of each process vary significantly with
changes in the datagram size.

Although UDP lacks flow control and reliability mechanisms, increasing
the number of parallel processes does not result in a linear increase in bi-
trate, despite a significant rise in CPU consumption. The analysis of the main
functions involved in transmission and reception reveals a similar CPU load
distribution across single and parallel process configurations, indicating that
the key functions behave consistently regardless of parallelism. However,
the increase in context switches with parallel processes introduces substan-
tial overhead, limiting the expected throughput gains.

To study CPU distribution as a function of UDP datagram size in single-
process configurations, two scenarios were analyzed: transmission with a
small datagram of 1 KB and a maximum-size datagram of 65.5 KB.
Transmission Side (P = 1 - l = 1000Bytes):

• udp_sendmsg: 64.32%

– ip_make_skb: 18.42%

– udp_send_skb: 41.55%

Reception Side (P = 1 - l = 1000Bytes):

• pselect6: 41.42%

• udp_recvmsg: 8.44%

– skb_copy_datagram_iter: 2.32%

– skb_consume_udp: 4.12%

Transmission Side (P = 1 - l = 65500Bytes):

• udp_sendmsg: 86.83%

– ip_make_skb: 68.78%

– udp_send_skb: 16.88%

Reception Side (P = 1 - l = 65500Bytes):

• pselect6: 23.89%

• udp_recvmsg: 45.7%

– skb_copy_datagram_iter: 37.28%

– skb_consume_udp: 5.9%
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A comparison between the CPU distribution for datagram lengths of l =
65500 Bytes and l = 1000 Bytes shows a significant shift in resource alloca-
tion. With l = 65500 Bytes, the transmission process primarily consumes
CPU in ip_make_skb (68.78%), indicating that a substantial amount of re-
sources is dedicated to buffer creation and packet preparation. In contrast,
with l = 1000 Bytes, CPU consumption in ip_make_skb drops to 18.42%,
while udp_send_skb increases to 41.55%. This shift suggests that the trans-
mission process becomes more packet-bound, as a higher number of packets
is required to transmit the same amount of data. Consequently, the system al-
locates more resources to handle the increased packet rate, resulting in higher
packet processing overhead per unit of data.

On the reception side, similar trends are observed. For l = 65500 Bytes,
skb_copy_datagram_iter accounts for 37.28% of CPU consumption, reflect-
ing the effort needed to copy large chunks of data from kernel space to user
space. With l = 1000 Bytes, this percentage decreases to 2.32%, as smaller
payloads reduce the required copy operations. However, the polling mech-
anism (pselect6) increases from 23.89% to 41.42%, indicating that frequent
polling is necessary to manage the higher packet rate, introducing additional
overhead.

Overall, the reduced datagram size shifts the bottleneck from data copy-
ing and buffer management to packet handling and polling. The system’s
resources are increasingly consumed by the need to manage a larger number
of smaller packets, rather than the efficient handling of fewer large packets.
This behavior underscores the trade-off between datagram size and CPU ef-
ficiency in UDP-based transmissions, particularly in scenarios where mini-
mizing packet loss is crucial.

Loopback Communication in a Virtualized Environment

The loopback interface using the UDP protocol within a virtualized system
follows the behavior shown in Figure 6.5.

A comparison between the two experiments, one conducted in the host
system and the other in a virtual machine, reveals that the packet loss per-
centage remains relatively constant, with both experiments showing a maxi-
mum loss of 0.3% while achieving a bitrate higher than 40 Gbps. Regarding
the achieved bitrates, for datagram sizes ranging from 1 KB to 50 KB, the
virtualized environment consistently shows bitrates approximately 1 Gbps
lower than those in the host environment. However, when transmitting data-
grams close to the maximum size, the bitrate difference increases to about 3.5
Gbps. In the host-based experiment, the maximum bitrate reaches 45.6 Gbps
with an average packet loss of 0.3%, whereas in the virtualized environment,
the maximum bitrate is 42.1 Gbps with a slightly lower packet loss of 0.2%.

Another significant difference is observed in the CPU usage of the iperf
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Figure 6.5: CPU utilization, transmitted and received bitrates, and packet
loss for varying datagram sizes in a loopback virtualized environment using
UDP
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process on the receiving side. In the host environment, the CPU usage is
around 78%, whereas in the virtualized environment, it averages around
85%. Meanwhile, both transmission processes consistently utilize the maxi-
mum CPU, operating at 95%. When analyzing the VM’s performance from
the host’s perspective, the CPU usage of the qemu process remains constant,
regardless of variations in bitrate and datagram size. The overhead remains
almost constant at 18%.

A more detailed analysis of the CPU distribution is conducted to identify
potential bottlenecks, focusing on both the minimum and maximum tested
datagram sizes. To investigate the significant drop in bitrate and understand
why the maximum achievable rate is higher than in the previous test, the
results of perf record are analyzed for datagram sizes of 1 kB, 50 kB, and
65.5 kB.
Transmission Side (P = 1 - l = 1000Bytes):

• udp_sendmsg: 62.65%

– ip_make_skb: 20.01%

– udp_send_skb: 38.12%

Reception Side (P = 1 - l = 1000Bytes):

• pselect6: 42.8%

• udp_recvmsg: 16.81%

– skb_copy_datagram_iter: 7.02%

– skb_consume_udp: 4.56%

Transmission Side (P = 1 - l = 65500Bytes):

• udp_sendmsg: 85.84%

– ip_make_skb: 70.63% +2

– udp_send_skb: 14% -2/3

Reception Side (P = 1 - l = 65500Bytes):

• pselect6: 21.08%

• udp_recvmsg: 51.95% 45.7

– skb_copy_datagram_iter: 42.4%

– skb_consume_udp: 8%
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The analysis of the two samples with datagram sizes of 1 kB and 65.5
kB reveals that the primary transmission function consumes a similar per-
centage of CPU in both cases, with each process utilizing approximately 95%
of the available CPU. However, when examining the critical functions in-
volved—specifically, those related to packet preparation and memory man-
agement as well as the actual transmission—a noticeable difference emerges.
In the virtualized loopback environment, the CPU time spent on transmission-
related functions is lower, indicating a reduced number of packets being
transmitted. Conversely, functions such as ip_make_skb, responsible for packet
preparation, show increased CPU utilization.

A similar trend is observed in the reception process. While polling func-
tions consume a comparable amount of CPU in both scenarios, functions re-
sponsible for copying data from the kernel to the application, such as
skb_copy_datagram_iter, exhibit higher utilization in the virtualized envi-
ronment. Despite this, the CPU remains unsaturated, allowing the system to
process nearly all incoming packets, with a maximum datagram loss rate of
only 0.2

Therefore, while the iperf transmission process consistently operates at
95% CPU utilization, a larger portion of this time is allocated to data prepa-
ration rather than actual transmission. This shift contributes to the slightly
lower throughput observed in the virtualized loopback environment com-
pared to the host-based loopback experiment.

6.2.2 Network Emulation Between Isolated Virtual Machines

The final experiment involves communication between two isolated virtual
machines (VMs), each equipped with 2 virtual CPUs. ?? consists of two sub-
plots: the first focuses on the CPU utilization of the iperf3 processes within
the VMs (guest code) and the corresponding qemu processes on the host,
while the second examines the network performance as a function of UDP
datagram size. The transmission process is configured to maximize through-
put using the iperf3 -c IP -u -b 0 command. In the upper subplot the
CPU usage of both the iperf3 processes and the qemu processes is analyzed.
The lower subplot investigates the achieved bitrate and the percentage of lost
datagrams as the datagram size varies. As observed in the TCP-based anal-
ysis, the network virtualization overhead in a virtualized environment is not
directly attributed to the CPU usage of the iperf3 transmission and recep-
tion processes. Instead, it is encapsulated within the background operations
of the qemu processes responsible for VM management.

From the plot, it can be observed that for small datagram sizes, such as
1 kB, the percentage of lost packets is significantly high, reaching approxi-
mately 28%.
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Figure 6.6: CPU utilization (upper plot) and bitrate with packet loss (lower
plot) during UDP communication between two isolated VMs.
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For the 20-second experiment with a 1 kB datagram and a 1.2 Gbps rate,
the total transmitted data is:

Total_Data = 1.2Gbps ⇥ 20 s = 24Gbit

The number of transmitted datagrams is:

Num_Datagrams =
Total_Data
1kB ⇥ 8

= 3.0⇥ 106

With a 28% loss rate, the number of lost datagrams is:

Lost_Datagrams = Num_Datagrams ⇥ 0.28 = 840,000

The lost data is:

Lost_Data = Lost_Datagrams ⇥ 1kB ⇥ 8 = 6.72Gbit

The effective receiver bitrate is:

Recv_Rate =
Total_Data � Lost_Data

20 s
= 0.86Gbps

As the datagram size increases, the packet loss rate decreases. For a data-
gram length of 20 kB, the transmission bitrate saturates, and further increas-
ing the datagram size leads to a minimal packet loss rate. For datagram sizes
ranging from 10 kB to the maximum size of 65507 bytes, the packet loss rate
oscillates between 1.3% and 4.0%.

In relation to CPU utilization, the transmitting iperf3 process exhibits
higher CPU usage for smaller datagram sizes, gradually decreasing as the
datagram size increases and stabilizing around 25%. The receiving iperf3

process, while consistently consuming more CPU than the transmitter, fol-
lows a similar trend, stabilizing at around 34%. Notably, once the CPU con-
sumption stabilizes for both processes (from a datagram length of approx-
imately 20 kB), the difference in CPU usage between the transmitting and
receiving processes remains around 9%.

Regarding the qemu processes, both the transmitting and receiving VMs
show a similar trend. Initially, for a datagram length of 1 kB, the CPU con-
sumption of the transmitting VM exceeds that of the receiving VM. However,
as the datagram length increases, the transmitting VM consistently consumes
less CPU than the receiving VM. Overall, as the datagram length increases,
the CPU consumption of both the iperf3 and qemu processes decreases.

To better understand this behavior, samples were analyzed for datagram
lengths of 1 kB and 65.5 kB.
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Transmission Side - Guest Code VM1 -( l = 1000Bytes):

• write: 65.26%

– udp_sendmsg: 46.39%

* ip_make_skb: 17.11%

* udp_send_skb: 20.7%

* ip_route_output_flow: 8.43%

Reception Side - Guest Code VM1 -( l = 1000Bytes):

• pselect6: 24.97%

• read: 22.0%

– udp_recvmsg: 8.45%

* skb_copy_datagram_iter: 1.91%

* skb_consume_udp: 2.84%

Transmission Side - Host Code - QEMU VM1 - ( l = 1000Bytes):

• ppoll: 1.51%

• write: 76%

– tun_get_user: 60.04%

* skb_copy_datagram_iter: 5.62%

* tun_rx_batched: 51%

• ioctl: 81.5%

Reception Side - Host Code - QEMU VM2 - ( l = 1000Bytes):

• ppoll: 24%

• read: 34.47%

– tun_do_read: 11.41%

* skb_copy_datagram_iter: 6.27%

* consume_skb: 3.01%

• ioctl: 95.56%
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Transmission Side - Guest Code VM1 -( l = 65507Bytes):

• write: 31.63%

– udp_sendmsg: 30.38%

* ip_make_skb: 14.67%

* udp_send_skb: 15.18%

* ip_route_output_flow: 0.47%

Reception Side - Guest Code VM1 -( l = 65507Bytes):

• pselect6: 11.06%

• read: 10.08%

– udp_recvmsg: 9.53%

* skb_copy_datagram_iter: 5.66%

* skb_consume_udp: 3.24%

Transmission Side - Host Code - QEMU VM1 - ( l = 65507Bytes):

• ppoll: 3.72%

• write:71.53%

– tun_get_user: 62.56%

* skb_copy_datagram_iter: 14.7%

* tun_rx_batched: 43.6%

• ioctl: 48.75%

Reception Side - Host Code - QEMU VM2 - ( l = 65507Bytes):

• ppoll: 8.25%

• read: 41.83%

– tun_do_read: 15.76%

* skb_copy_datagram_iter:8.54%

* consume_skb: 5.13%

• ioctl: 84.92%

The impact of datagram size on system performance has been evaluated
by analyzing the CPU usage and function behavior associated with datagram
lengths of 1 kB and 65.5 kB in a virtualized environment. Significant differ-
ences are observed in both transmission and reception operations depending
on the datagram size, influencing CPU utilization across various functions
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on the guest and host systems. For 1 kB datagrams during transmission, the
write system call on the guest side accounts for 65.26% of total CPU usage,
primarily due to the high frequency of invocations required to transmit nu-
merous small packets. Within the write call, udp_sendmsg consumes 46.39%,
as it handles the construction and queuing of UDP packets for transmis-
sion. This function further delegates tasks to ip_make_skb (17.11%), which
builds the socket buffer (SKB), udp_send_skb (20.7%), which sends the SKB
to the IP layer, and ip_route_output_flow (8.43%), which performs route
determination for each outgoing packet. The elevated CPU consumption of
ip_route_output_flow highlights the routing overhead associated with han-
dling a large number of small packets.

On the reception side, the pselect6 system call is responsible for polling
and scheduling incoming packets and contributes 24.97% to CPU usage. The
read function, which manages data retrieval from the SKB, accounts for 22.0%.
Within the read operation, udp_recvmsg consumes 8.45%, while lower-level
functions such as skb_copy_datagram_iter and skb_consume_udp contribute
1.91% and 2.84%, respectively, reflecting the frequent copying and consump-
tion of SKBs when processing small packets.

In contrast, for 65.5 kB datagrams, the CPU utilization shifts significantly.
The write system call on the guest side reduces its contribution to 31.63%,
as fewer large packets reduce the number of system calls required. The
udp_sendmsg function accounts for 30.38%, with ip_make_skb and udp_send_skb

consuming 14.67% and 15.18%, respectively. The routing overhead of
ip_route_output_flow decreases to 0.47%, demonstrating the efficiency gain
associated with transmitting larger datagrams. On the reception side, pselect6
and read exhibit reduced CPU usage at 11.06% and 10.08%, respectively,
while udp_recvmsg accounts for 9.53%. The functions skb_copy_datagram_iter
and skb_consume_udp show increased percentages of 5.66% and 3.24%, re-
spectively, as the processing cost scales with the size of each datagram.

From the host system perspective, the ioctl system call consistently ex-
hibits high CPU usage for both datagram sizes due to its role in managing
memory, virtualization, and data transmission between the virtual machine
and the external network. For 1 kB datagrams, tun_get_user, which reads
data from the tap interface, accounts for 60.04% of CPU usage. This in-
creases to 62.56% for 65.5 kB datagrams, highlighting the higher data vol-
ume per packet despite fewer packets being processed. Functions such as
skb_copy_datagram_iter and tun_rx_batched, responsible for copying and
batching data, show higher CPU usage when handling larger datagrams.
Conversely, read and related operations on the host system experience higher
load with 1 kB datagrams due to the increased frequency of packet process-
ing. The ppoll function, which manages the scheduling of incoming pack-
ets, exhibits higher CPU usage for small datagrams because of the frequent
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polling operations required for each individual packet. Larger datagrams,
on the other hand, benefit from reduced polling frequency, leading to a more
efficient processing pipeline.

In conclusion, the analysis demonstrates that small datagrams incur a
higher CPU overhead due to the increased frequency of system calls, rout-
ing decisions, and data copying operations. Larger datagrams, while reduc-
ing the frequency of these operations, introduce higher processing costs per
packet, particularly in memory management and data handling functions.
However, in the case of a datagram size of 65.5 kB, no compromise is nec-
essary, as this size achieves the optimal balance between transmitted data
and the number of packets lost. The 65.5 kB datagrams offer the most effi-
cient outcome in terms of CPU utilization and throughput, indicating that
this configuration provides a superior performance-to-loss ratio, making it a
preferable choice in environments prioritizing data integrity and transmis-
sion efficiency.
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Conclusion

The analysis conducted in this study highlights how the overhead intro-
duced by virtualization can significantly impact the transmission of bitrate.
In particular, local traffic within the same virtual machine (VM), when us-
ing the loopback interface with both TCP and UDP protocols, remains com-
parable to loopback traffic within a non-virtualized local host. The minor
reduction in bitrate is primarily attributed to the increased CPU utilization
required by virtualization processes, especially for memory operations such
as copying data between the kernel and application layers.

However, when considering communication scenarios that better reflect
real-world systems, virtualized environments exhibit entirely different be-
haviors. In loopback experiments, the bottleneck is often caused by the iperf3
processes themselves, which saturate the allocated CPU resources. In con-
trast, in inter-VM or intra-server communication, the limiting factor shifts
to backend processes that emulate the network interface. Despite occurring
within the same physical server, data is copied multiple times: once from
the guest’s application layer to the kernel space on the transmission side,
then to the TAP interface emulating a queuing discipline (qdisc). On the re-
ceiving side, the TAP interface performs another data copy to emulate the
qdisc, followed by a final copy from the kernel to the application layer of the
receiving guest. These additional memory operations introduce significant
overhead, primarily in CPU usage, due to the continuous transition between
the VM and host environments. The hypervisor, specifically KVM in this
case, is responsible for managing these transitions, handling the execution
of processes that require exiting the VM, performing context switching, and
ensuring memory isolation between the guest and host systems. This results
in considerable resource consumption and can severely limit network per-
formance.
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Conclusion

When comparing the two protocols, TCP and UDP, the impact of virtu-
alization becomes even more evident. While TCP can be leveraged in non-
virtualized environments for applications requiring low latency, its perfor-
mance in virtualized systems is notably superior compared to UDP. The ex-
periments show a significant reduction in bitrate for UDP, with through-
put dropping from approximately 8 Gbps for TCP to around 2 Gbps for
UDP, representing a 75% decrease. This disparity is primarily due to the
additional CPU consumption caused by the virtualization layers and the
memory-intensive operations discussed earlier.

In conclusion, while this research has provided valuable insights, it has
been conducted on a system with relatively limited resources. Future stud-
ies should aim to validate these findings on more performant hardware to
better understand the scaling behavior and potential bottlenecks. However,
the primary objective of this study is not solely to assess the absolute perfor-
mance metrics, as these may vary across different hardware configurations.
Instead, it aims to propose a methodology for analyzing intra-server traffic
behavior, offering benchmark values and guiding principles for resource al-
location in scenarios where applications require a lower bound of CPU and
network resources to achieve specific throughput guarantees. Such an ap-
proach could serve as a foundation for optimizing application deployment
strategies in virtualized environments, ensuring efficient resource utilization
and maintaining performance stability under varying workloads.
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