
Master of Science in Computer Engineering

Master’s Degree Thesis

Developing the Context Discovery
Actuator Profile for OpenC2

language

Supervisors:
Prof. Fulvio Valenza
Prof. Matteo Repetto
Dott. Daniele Bringhenti

Candidate:
Dott. Silvio Tanzarella

Academic Year 2023-2024



Abstract

The OpenC2 language standard provides a unified syntax and structure to send
instructions to various security tools developed by different vendors that are not able
to talk to each other using a common language. In this way, OpenC2 reduces the
dependency on custom integrations and allows the organizations to build flexible,
scalable, and vendor-agnostic security frameworks.

The openc2lib library implements the standard language described in the OpenC2
normative specifications and it can be extended by new encoders and transfers
protocols. In this way, the library is suitable to create custom openC2 stacks by a
minimal effort, allowing the Producer to efficiently send commands to a Consumer
and receive responses. Also, the library can be extended by new Actuator Profiles,
which define the semantic constraints and language extensions for specific cyber-
defence functions.

The main contribution of this work is the development of a new Actuator Profile
for the OpenC2 language, called Context Discovery (CTXD). Now, if the Consumers
implement the CTXD Actuator Profile, the Producer can identify the services running
on the digital resources, the security features they implement, and the connections
among different services.

To achieve this, the architecture of the CTXD was defined, and a data model was
introduced to represent the information gathered by this profile. New data types,
absent from the original OpenC2 specifications, were created and implemented
within the library to support the profile’s functions. Additionally, conformance
clauses were added to regulate the profile’s behaviour and to standardize its usage.

Then, a use case was implemented where a Producer asks each Consumer for the
security functions it provides and its connections to other Consumers. This approach
generated a complete map of the network, providing the Producer with full visibility
into the entire system. The key achievement is that the Producer only needs to know



iii

how to connect to the first Consumer and, starting from the data collected, can obtain
the information about connecting to other Consumers linked with the first one. The
discovery process results in a directed graph where nodes represent services and
edges indicate the connections between them.

In the final part of the thesis, tests were conducted to verify the correct behaviour
of the new Actuator Profile. Also, it was evaluated the ability of the CTXD to detect
changes when failures happen in the system. Semantic tests were implemented to
ensure the correctness of the newly introduced data types.



Contents

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Active Cyber Defense (ACD) . . . . . . . . . . . . . . . . . . . . . 1

1.2 Security Operation Centers (SOCs) . . . . . . . . . . . . . . . . . . 2

1.3 GUARD framework . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 OpenC2 4

2.1 Introduction to OpenC2 . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 OpenC2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Base Components and Structures . . . . . . . . . . . . . . . . . . . 11

2.5 Actuator Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 OpenC2 library 13

3.1 Introduction to OpenC2 library . . . . . . . . . . . . . . . . . . . . 13

3.2 The openc2lib Architecture . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Serialization and deserialization processes of a message . . . . . . . 17

3.4 Message Transfer and Reception via HTTP . . . . . . . . . . . . . 18



Contents v

3.5 Using openc2lib . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5.1 Server Implementation . . . . . . . . . . . . . . . . . . . . 19

3.5.2 Controller implementation . . . . . . . . . . . . . . . . . . 20

3.5.3 Sending OpenC2 Commands . . . . . . . . . . . . . . . . . 21

4 Thesis objectives 22

5 OpenC2 Profile for Context Discovery 24

5.1 Adding a new Actuator Profile . . . . . . . . . . . . . . . . . . . . 24

5.2 “Query features” Command . . . . . . . . . . . . . . . . . . . . . . 25

5.3 Goals of Context Discovery . . . . . . . . . . . . . . . . . . . . . . 26

5.4 Data model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.5 Command Components . . . . . . . . . . . . . . . . . . . . . . . . 28

5.5.1 Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.5.2 Target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.5.3 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.5.4 Command Arguments . . . . . . . . . . . . . . . . . . . . 30

5.5.5 Actuator Specifiers . . . . . . . . . . . . . . . . . . . . . . 31

5.6 Response Components . . . . . . . . . . . . . . . . . . . . . . . . 31

5.6.1 Response status code . . . . . . . . . . . . . . . . . . . . . 31

5.6.2 Common Results . . . . . . . . . . . . . . . . . . . . . . . 32

5.6.3 CTXD Results . . . . . . . . . . . . . . . . . . . . . . . . 33

5.7 CTXD data types . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.7.1 Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.7.2 Operating System (OS) . . . . . . . . . . . . . . . . . . . . 34

5.7.3 Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.7.4 Service-Type . . . . . . . . . . . . . . . . . . . . . . . . . 35



vi Contents

5.7.5 Application . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.7.6 VM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.7.7 Container . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.7.8 Web Service . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.7.9 Cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.7.10 Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.7.11 IOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.7.12 Network-Type . . . . . . . . . . . . . . . . . . . . . . . . 41

5.7.13 Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.7.14 Peers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.7.15 Link-Type . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.7.16 Peer-Role . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.7.17 Consumer . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.7.18 Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.7.19 Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.7.20 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.7.21 OpenC2-Endpoint . . . . . . . . . . . . . . . . . . . . . . 45

5.8 Communication example . . . . . . . . . . . . . . . . . . . . . . . 45

6 CTXD implementation and validation in openc2lib 53

6.1 Structure of the CTXD Profile in openc2lib . . . . . . . . . . . . . 53

6.2 Behaviour of the CTXD Profile in openc2lib . . . . . . . . . . . . . 54

6.3 Implementation scope . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.4 OpenStack discovery process . . . . . . . . . . . . . . . . . . . . . 55

6.5 Kubernetes discovery process . . . . . . . . . . . . . . . . . . . . . 56

6.6 Consumer implementation . . . . . . . . . . . . . . . . . . . . . . 57

6.7 Producer implementation . . . . . . . . . . . . . . . . . . . . . . . 57



Contents vii

6.8 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.8.1 Functional test . . . . . . . . . . . . . . . . . . . . . . . . 59

6.8.2 Dynamic tests . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.8.3 Semantic tests . . . . . . . . . . . . . . . . . . . . . . . . 67

7 Conclusions 69

Bibliography 71



List of Figures

2.1 OpenC2 communication model [7] . . . . . . . . . . . . . . . . . . 5

2.2 example of OpenC2 Command [7] . . . . . . . . . . . . . . . . . . 6

2.3 example of OpenC2 Response [7] . . . . . . . . . . . . . . . . . . 7

2.4 OpenC2 Architecture [7] . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 HTTP message carrying an OpenC2 Command [10] . . . . . . . . . 10

2.6 HTTP message carrying an OpenC2 Response [10] . . . . . . . . . 11

3.1 OpenC2 library architecture . . . . . . . . . . . . . . . . . . . . . 14

5.1 Example of OpenC2 communication with CTXD . . . . . . . . . . 27

5.2 CTXD data model . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3 Response status code [8] . . . . . . . . . . . . . . . . . . . . . . . 32

5.4 Common results [8] . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.1 5G network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2 directed graph of the my5gtestbed namespace . . . . . . . . . . . . 60

6.3 directed graph of the my5gtestbed and kube-flannel namespaces . . 61

6.4 directed graph of the my5gtestbed namespace after shutting down
upf-0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.5 directed graph of the my5gtestbed namespace after shutting down
Kubernetes service . . . . . . . . . . . . . . . . . . . . . . . . . . 64



List of Figures ix

6.6 directed graph of the my5gtestbed namespace after shuting down
Kubernetes service and upf-0 . . . . . . . . . . . . . . . . . . . . . 65



List of Tables

6.1 Containers IPv4 addresses . . . . . . . . . . . . . . . . . . . . . . 66

6.2 Semantic tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



Chapter 1

Introduction

In an increasingly interconnected world, it’s crucial to protect against cyberattacks
to prevent threats that could compromise the integrity of information systems. In
addition to increasing in volume, attacks have also become more complex over time,
adopting more sophisticated techniques to avoid the defences implemented by even
the most advanced systems. This evolution of attacks has led to their automation,
becoming faster and independent from human beings.

In a rapidly evolving context such as the one mentioned above, the techniques
dedicated to the defence of computer networks must be equally efficient, changeable,
and reactive. The interaction between the different components of the defensive
system can ensure a rapid response to the attacks by coordinating the monitoring,
detection, and mitigation actions of threats. However, products from different
vendors may not be able to communicate effectively, often requiring proprietary
languages to bridge the gap. Adopting standard solutions can help mitigate this issue.

1.1 Active Cyber Defense (ACD)

Active Cyber Defense [1] focuses on combining and automating a range of services
and systems to enable rapid response actions in cyber-related situations. It consists
of six functional components: Sensing, Sense-Making, Decision-Making, Acting,
Messaging/Control and ACD Mission Management. These functional areas describe
the expected behaviour that a cyber-defence system should have to protect the IT in-
frastructure. It starts from the collection and analysis of the data (Sensing and Sense



2 Introduction

Making) that guide decision-makers in selecting and implementing the optimal solu-
tion from the available options (Decision-Making and Acting). Messaging/Control
involves establishing communication channels between resources and coordinating
response actions. Finally, ACD Mission Management ensures internal control over
workflow within the specific operating environment.

1.2 Security Operation Centers (SOCs)

Security Operations Centers (SOCs) follows the steps established by the ACD
functional areas. Their primary responsibility is to identify, assess, and address
cybersecurity threats and incidents through the integration of skilled personnel and
advanced technologies [2]. Defining SOCs is challenging because every organization
has the flexibility to construct its own infrastructure tailored to its needs. Therefore,
there is no clear model or detailed guide for setting up a SOC [3].

However, some components are common to multiple SOCs, such as SIEM, which
fulfil the requirements specified in the first two functional areas of ACD (Sensing
and Sense-Making) by offering security analytics capabilities through the use of
log events. SIEM systems can identify ongoing attacks and anomalies, but they
implement rigid solutions due to the need to locate security appliances at specific
points within the infrastructure and the need for redeployment and reconfiguration
when there are changes in physical topology [4]. Indeed, managing all system
resources can be challenging because of the insufficient visibility into the network
infrastructure [5].

1.3 GUARD framework

The GUARD framework is as an innovative approach for deploying detection and
analytics processes across digital service chains [6]. Its goal is to facilitate the
development and the integration of these processes in dynamic environments by
automating the configuration of security analytics pipelines, so the GUARD Platform
serves as a bridge, connecting security agents with detection and analytics services.
The security analytics pipeline is a processing chain that begins with collecting and



1.3 GUARD framework 3

processing security data available in digital resources and ends with the analysis of
this data to detect potential threats and to determine the appropriate response.

The Context Broker Manager abstracts the deployment of security agents and
communication protocols, providing a logical representation of the entire service
sequence. The main security properties of each digital resource and the kind of
relationship with other resources are retrieved by the CB-Manager. Communication
between the CB-Manager and digital resources can be implemented using an applica-
tion interface (API), but it must consider the various types of resources provided by
different vendors, so multiple interfaces are needed. A solution can be the creation
of standard interfaces to security functions like the OpenC2 language.



Chapter 2

OpenC2

2.1 Introduction to OpenC2

In a heterogeneous environment where different vendors provide various security
functions, a standard language is crucial for coordinating diverse technologies that
would otherwise be unable to work together. The aim of OpenC2 is to facilitate
synchronized cyber defence in real time among separate components that carry out
cybersecurity tasks, thereby implementing the “Acting” phase of the Active Cyber
Defense (ACD) framework.

It is a standardized language for machine-to-machine communication, used to
issue commands and receive responses, and it is designed to be technologically
agnostic to allow interoperability between different products, so it is not tied to
any specific technology. This language can be extended by new cyber defence
technologies, so it is not static, but it is expected to evolve in the future.

OpenC2 is an open-source project defined across multiple specifications devel-
oped by the “Organization for the Advancement of Structured Information Standards”
(OASIS), a nonprofit international consortium. All the specifications and detailed
information about this project can be found on the official website openc2.org.

openc2.org


2.2 OpenC2 Architecture 5

2.2 OpenC2 Architecture

The OpenC2 Architecture [7] defines two different entities that are involved in the
communication: Producer and Consumer. The Producer generates a Command with
an Action that the Consumer will receive and carry out. Finally, the Consumer
creates a Response and sends it back to the Producer. This schema is represented in
the figure below.

Fig. 2.1 OpenC2 communication model [7]

OpenC2 Command is composed of four fields:

• Action (required): the operation to be carried out.

• Target (required): the object upon which the action is carried out.

• Arguments (optional): it specifies how the Command should be executed.

• Actuator (optional): the entity responsible for performing the action.

The Response provides information about the results of carrying out a Command. It
is composed of three fields:

• Status (required): integer status code.

• Status text (optional): description of the Response status.

• Results (optional): results derived from the executed Command.



6 OpenC2

Command fields follow typical language patterns, allowing for the identification
of a subject (Actuator), a verb (Action), an object (Target), and complements (Argu-
ments), with each command requiring one Action and one type of Target. OpenC2
Language Specification [8] defines a set of actions, and adding new ones is not
permitted to ensure compatibility with different systems.

However, it is possible to define new Targets beyond those in the specification by
creating a new Actuator Profile. Actuator Profiles establish semantic constraints and
extend the language for specific cyber-defence functions. This is necessary because
not all actions are suitable for every use case, and certain constraints are required to
more accurately model real-world scenarios. The Actuator field allows selecting the
profile that will execute the Action.

All OpenC2 messages must follow the conformance clauses defined in the
specifications, which explain how the language should be used.

The following example illustrates an OpenC2 command in which the Producer
requests that the Consumer, responsible for implementing the StateLess Packet Filter
Profile, permit an IPv6 connection. As seen in the figure, the command indicates the
source port, destination address, and allowed protocol.

Fig. 2.2 example of OpenC2 Command [7]

Then, the Consumer returns, in the OpenC2 Response, a rule number associated
with the allowed interaction.



2.3 Implementation 7

Fig. 2.3 example of OpenC2 Response [7]

2.3 Implementation

OpenC2 language can be integrated into a layer model, such as the one in the figure
below, where different standards and protocols are used. The OpenC2 Language
Specification [8] describes the meaning of the main elements of the language while,
OpenC2 Actuator Profiles [9] outline the specific parts of the language applicable to
the functions of different actuators.



8 OpenC2

Fig. 2.4 OpenC2 Architecture [7]

The OpenC2 language does not mandate a specific message encoding, although
JSON is the default solution. Additionally, metadata such as content type, ver-
sion, sender, timestamp, and correlation ID are typically included in the messages.
OpenC2 Transfer Specifications outline how messages can be transmitted using
transfer protocols such as HTTPS [10] or MQTT [11]. Security features can be
applied using standard protocols such as TLS, IPSEC, or S/MIME to guarantee the
authentication of endpoints and confidentiality and integrity of messages. Finally,
transport protocols like TCP or SCTP are used to send packets over the network.

For example, OpenC2 messages can be transmitted using the Hypertext Transfer
Protocol (HTTP) layered over Transport Layer Security (TLS). To achieve this,
the Producer must first establish a TCP connection with the Consumer, followed
by initiating a TLS session, which ensures endpoint authentication and provides
enhanced security. TLS provides encryption to protect data in transit, integrity to
detect tampering, and authentication to verify the identities of the communicating



2.3 Implementation 9

parties. Once the session is established, endpoints can issue OpenC2 Commands
and Responses by sending HTTP requests via the POST method. OpenC2 messages
are required to use a specific Uniform Resource Identifier (URI) path, which must
be set to “/.well-known/openc2”. The “/.well-known/” prefix is commonly used for
well-known locations.

The code provided in the figure 2.5 illustrates an example of an HTTP message
carrying an OpenC2 Command. In particular, the HTTP method used is always
POST because it is required by the General Requirements of the HTTP specification
[10]. Also, the URI is a “/.well-known/” path. The “Content-type” indicates that the
HTTP message body contains OpenC2 messages in JSON format, following by the
version 1.0 of the OpenC2. The extension header "X-Request-ID" serves the purpose
of uniquely identifying commands and responses, allowing for the correlation of
activity between them. The Producer must include a unique identifier in the "X-
Request-ID" HTTP header or in the "request_id" OpenC2 message header. In this
way, each command and its corresponding response can be linked. The header of
the OpenC2 Command has the original “request_id” value, which is then copied
into the HTTP header. The body is the content of the OpenC2 Command. Both the
HTTP and OpenC2 header of the Response message contain the same fields of the
Command.



10 OpenC2

Fig. 2.5 HTTP message carrying an OpenC2 Command [10]

The Response to this OpenC2 Command is the following [10]:



2.4 Base Components and Structures 11

Fig. 2.6 HTTP message carrying an OpenC2 Response [10]

2.4 Base Components and Structures

The abstract terminology used to specify OpenC2 data types is unaffected by how
they are implemented in particular scenarios. By defining data types in this abstract
way, OpenC2 ensures flexibility and interoperability, allowing the same commands to
be represented and communicated across different systems and platforms, regardless
of the underlying formats or protocols. OpenC2 data can be divided into two different
types: primitive and structures.

Primitive types are the most basic forms of data in programming languages (e.g.,
binary, boolean, integer). Structures, on the other hand, are collections of multiple
data elements grouped together under a single unit. Some examples of structures
used in OpenC2 include:

• ArrayOf(vtype);

• Choice;



12 OpenC2

• Enumerated;

• Map;

• Record.

2.5 Actuator Profile

An OpenC2 Actuator Profile describes the security functions performed by an entity
within the network by defining a subset of the OpenC2 language. To achieve this, a
Profile has the possibility to extend the OpenC2 language with new targets, Command
Arguments and Actuator Specifiers.

There is currently only one Actuator Profile (AP) that has been approved by the
OASIS Technical Committee, which is the “Stateless Packet Filter” [12], identified
by the namespace identifier (nsid) “slpf”. The purpose of the Stateless Packet Filter
is to allow or block network traffic based on fixed criteria, such as the source address,
destination address, and port numbers. SLPF cannot introduce new Actions due to
the conformance clause, but it defines a new Target and four Command Arguments
beyond those specified in the Language Specification [8]. Also, it is possible to
specify specific actuator specifiers to address the SLPF. Two matrices are specified
to highlight which pairs of Action-Target and Action-Command Arguments are
permitted. Additionally, new conformance clauses are introduced to standardize the
implementation of the SLPF.



Chapter 3

OpenC2 library

3.1 Introduction to OpenC2 library

An OpenC2 library, called “openc2lib”, was created to implement the functions
defined by the OpenC2 initiative, and it was written in Python because this language
can be easily used in different software environments. Also, Python supports reflec-
tive programming paradigms, which is the ability to examine, introspect, and modify
its own structure and behaviour while executing, so the user can add new profiles,
transport protocols, and encoding formats without changing the core of the library.

The goal of the library is to create a dynamic stack for transferring Commands
and Responses as defined in OpenC2 specifications. With the library, it is possible
to implement both the Consumer and the Producer and define the full stack for
each one. Furthermore, the library provides a flexible and extensible mechanism
for serialization using Python dictionaries as intermediary data abstraction. Python
dictionaries are ordered and changeable collections that do not allow duplicates and
they are used to store data values in key:value pairs. With the intermediary dictionary
representation, OpenC2 objects can be serialized without the need to create custom
and repetitive methods for each of them, because the library can easily be extended
with additional serialization formats, such as XML, YAML and JSON (only the latter
is currently implemented).

The overall architecture and workflow of the OpenC2 library are shown in the
figure below, where it is possible to note that the encoding workflow of the Producer
is the same as the decoding one of the Consumer, but they operate in different



14 OpenC2 library

directions. The Security Controller is an external software which uses the library to
send and receive OpenC2 messages. The JSONEncoder permits the serialization of
messages in JSON format, while HTTPSTransfer enables message transfer via the
HTTPS protocol. Furthermore, the Consumer can select the right actuator specified
in the Command that has just been received.

Fig. 3.1 OpenC2 library architecture

3.2 The openc2lib Architecture

The openc2lib architecture can be divided into different modules, with each one
implementing a different part of the specifications.

• Data types and structures are implemented in the “types” folder which contains
three subfolders:

– Base: base types (structures) in the Language Specification [8] (section
3.1.1). Each OpenC2 object must derive from these classes, which affects
serialization operations. This folder contains the implementations of the
Choice, ArrayOf, Record, and other classes of OpenC2 structures. Every
base type must implement todict and fromdict method to transform the
object into a Python dictionary and vice versa.

– Data: data types defined in the Language Specification [8] (section
3.4.2). The classes are named according to the definitions provided
by the specification. Example of data types are IPv4Addr, L4Protocol



3.2 The openc2lib Architecture 15

and Nsid. A data type class must be a child class that inherits all the
attributes and methods of a parent class, which is a base type, in order to
be automatically serialized.

– Targets: Targets defined in the Language Specification [8] (section 3.4.1).
A target class must be a child class that inherits all the attributes and
methods of a base type. An example of target is the Features class,
which is defined as ArrayOf(Feature), where ArrayOf is the base type
and Feature is the data type.

–

• The folder named “core” contains the classes that are useful to implement
the OpenC2 standard language starting from the data already defined. The
modules can be divided based on their function. The first group defines the
fields of the OpenC2 Commands and Responses:

– Actions: it outlines the list of Actions defined in the Language Specifica-
tion [8] (section 3.3.1.1).

– Actuator: it describes the “Actuator” element used in Commands. It
does not include any element concerning the concrete implementation of
Actuators for specific security functions. Its only attribute is the Profile
namespace identifier (nsid).

– Args: it details the Command Arguments as specified in the Language
Specification [8] (section 3.3.1.4). It is structured as a Map because new
instances can be added when implementing new profiles.

– Command: this module describes the OpenC2 Command structure as
defined in the Language Specification [8] (section 3.2).

– StatusCode: it indicates the status of processing an OpenC2 Command.

– Results: it defines the basic structure for Results carried in a Response.
This class can be extended by profiles definitions with additional fields.
It implements the definition of Result in the Language Specification [8]
(section 3.3.2.2).

– TargetRegister: this class registers all available Targets, both provided by
the openc2lib and by Profiles.



16 OpenC2 library

– Profile: it is the openc2lib interpretation of the Profile concept. It ba-
sically defines a Profile namespace and the language extensions that
are defined for that message. A Profile is fully transparent to concrete
implementation for controlling specific security functions.

– Register: this class registers all available elements, both provided by
the openc2lib and by Profiles. Profiles may fill in with additional defini-
tions, to make their classes and names available to the core system for
encoding/decoding purposes.

The second group defines the Producer and the Consumer:

– Producer: it is used to create an OpenC2 stack with an “Encoder” and a
“Transfer” protocol. It implements the function sendcmd that sends an
openc2lib Command and internally create the ‘Message’ metadata that
will be encoded and transferred.

– Consumer: it implements the expected behaviour of an OpenC2 Con-
sumer server that dispatches OpenC2 Commands to the Actuators. It
creates the OpenC2 stack to process a Message. The function run allows
the Consumer to receive message in the network while the function dis-
patch scans the Actuator Profile carried in the Command and select one
or more Actuators that will process the Command.

The third group defines how a message must be transmitted:

– Encoder: this module provides base encoding functions to translate
openc2lib objects into an intermediary dictionary-based representation
and vice versa.

– Transfer: it is the interface that defines the basic behaviour of the Transfer
protocols.

– Message: it defines the OpenC2 Message structure, as defined in Lan-
guage Specification [8] (section 3.2).

• In the folder “encoders” all possible encoders are specified:

– JSONEncoder: this class implements the “Encoder” interface for the
JSON format. It leverages the intermediary dictionary representation. It
can be used to create an OpenC2 stack in Consumer and Producer.



3.3 Serialization and deserialization processes of a message 17

• In the folder “transfers” all possible transfers protocols are specified, but only
HTTP/HTTPS protocol is implemented in “http” folder with two modules:

– HTTPTransfer: it provides an implementation of the HTTP Specification
[10]. it can be used to create an OpenC2 stack in the Consumer and
Producer. The function send can transmit an HTTP message over the
network while the function receive allows to listen and receive OpenC2
messages.

– Message: this class implements the HTTP-specific representation of the
OpenC2 Message metadata defined in HTTP Specification [10] (section
3.3.2).

• The “actuators” folder contains all the actuators for all profiles. Each actuator
is a distinct class, and its behaviour is defined according to the profile it
implements.

• The “profiles” folder contains the definition of profiles provided with openc2lib.
Within this folder, the Stateless Packet Filter Profile (SLPF) is defined, includ-
ing all its specifiers, command arguments, and result types. Additionally, the
SLPF specifies a unique target for this profile (RuleID) and the data types
that extend the command arguments, which are not included in the Language
Specification [8] (DropProcess and Direction) are present in this folder. A
validation module establishes the constraints for usable Actions and Command
Arguments within the SLPF.

3.3 Serialization and deserialization processes of a
message

When a Command or Response is ready, it must be encoded or decoded into a
serialization format. While JSON is the most common encoding format for OpenC2
messages, other formats are also permitted. The choice of the encoder is influenced
by the environment in which OpenC2 is applied, as well as the capabilities and
limitations of the selected transfer protocol.

Python dictionaries cannot serialize directly all OpenC2 data because OpenC2
defines its own data types and structures in the Language Specification [8] so, to



18 OpenC2 library

overcome this issue, it is necessary to define two functions for the base types: the
first function creates a dictionary from OpenC2 element, and the second one creates
OpenC2 elements from a dictionary.

The deserialization process is similar to the serialization one but operates in a
different direction. It takes as input the JSON message to decode and the openc2lib
class to convert the JSON to. First, the JSON message is deserialized into a dictionary,
and then the dictionary is transformed into the openc2lib class.

The deserialization and serialization processes work recursively because if the
object cannot be transformed directly into a dictionary, these processes keep calling
the Encoder class until the object is successfully converted.

3.4 Message Transfer and Reception via HTTP

Once an OpenC2 Command has been encoded in the appropriate serialization format,
it must be sent to the Consumer. The transfer of a message is based on a common
module, the Transfer class, which provides the base methods to send and receive
messages. For each protocol, a child class must be implemented which inherits the
attributes and functions of the Transfer class and defines the appropriate format of
the message. For HTTP communication, the child class is the HTTPTransfer, which
implements the interface for the HTTP and HTTPS protocols. It is built on Flask,
which simplifies HTTP communication for development and testing.

A new transfer message is created using the Message class from the ’trans-
fers/http’ folder, with the encoded OpenC2 Command as its body. This class defines
the appropriate format of the HTTP message. It is important to note that the “re-
quest_id” field in the header serves as a unique identifier generated by the Producer
and is carried over by the Consumer into all Responses, allowing for reference to a
specific Command, transaction, or event chain.

Next, the HTTP message header is created in accordance with the HTTPS
Specification [10] (section 3.3.2), which includes the content type, date, and the
unique identifier. At this point, the HTTP message is ready to be sent to the Consumer
via the POST method to the “/.well-known/openc2” endpoint, as per the specification
[10].



3.5 Using openc2lib 19

Vice versa, the Consumer must be able to receive an HTTP message, decode its
content, generate a Response, and sent it back to the Producer. To achieve this, the
receive method, in the HTTPTransfer module, implements the Transfer interface to
listen for and receive OpenC2 messages. Internally, it uses Flask as the HTTP server,
and the process of creating the appropriate headers is similar to what is done on the
Producer side.

3.5 Using openc2lib

Up to this point, the technical characteristics of the Python library have been dis-
cussed. Now, the focus shifts to the implementation process. Two entities are
introduced to implement the openc2lib library: Server and Controller. The former
simulates the behaviour of the OpenC2 Consumer which could be a firewall or an
IoT device. The latter simulates the OpenC2 Producer, which could be, for example,
a SOAR that dispatches commands to various consumers within the network.

In the following sections, the implementations of both the Server and the Con-
troller will be defined to utilize the openc2lib and initiate OpenC2 communication.
Furthermore, an example of sending OpenC2 Command is reported in the last
section.

3.5.1 Server Implementation

A Server is intended to instantiate and run the OpenC2 Consumer. Instantiation
requires the definition of the protocol stack and the configuration of the Actuators
that will be exposed. The Consumer object is initialized with a constructor that takes
as parameters: a string that identifies the Consumer, a list of available Actuators, an
instance of the Encoder and of the Transfer protocol that will be used to send and
receive messages. For both the Encoder and Transfer, the constructor requires not
the generic class, but their more specific child classes, such as JSONEncoder and
HTTPTransfer. The run function is the entry point for the Consumer and must be
called to enable the Server to listen for messages on the network. In the example
provided in the code below, a Server is instantiated with an Actuator that implements
the SLPF Profile and listens on the HTTP channel at a specified IP address and port
(in this case, it will be listening on the loopback interface).



20 OpenC2 library

import openc2lib as oc2

from openc2lib.encoders.json_encoder import JSONEncoder
from openc2lib.transfers.http_transfer import HTTPTransfer

import openc2lib.profiles.slpf as slpf
from openc2lib.actuators.iptables_actuator import IptablesActuator

actuators = {}
actuators[(slpf.Profile.nsid,’iptables’)]=IptablesActuator()
c = oc2.Consumer("consumer.example.net",

actuators,
JSONEncoder(),
HTTPTransfer("127.0.0.1", 8080))

c.run()

3.5.2 Controller implementation

A Controller is intended to instantiate an OpenC2 Producer and to use it to control a
remote security function. It is initialized with a constructor that takes as parameters:
a string that identifies the Producer, an instance of an Encoding class derived from
base “Encoder” and an instance of a Transfer protocol derived from base “Transfer”.
For both the Encoder and Transfer, like for the Server, the constructor requires not
the generic class, but their more specific child classes, such as JSONEncoder and
HTTPTransfer. Below there is an example of a correct initialization of an openc2lib
Producer that encodes messages in JSON and sends them to an openc2lib Consumer
at a specified IP address and port:

import openc2lib as oc2
from openc2lib.encoders.json import JSONEncoder
from openc2lib.transfers.http import HTTPTransfer

p = oc2.Producer("producer.example.net",
JSONEncoder(),
HTTPTransfer("127.0.0.1", 8080))



3.5 Using openc2lib 21

3.5.3 Sending OpenC2 Commands

Once the Controller has been defined, the OpenC2 Command can be defined with all
its fields. Command Arguments that will be used in the Command can be defined in
this way:

arg = oc2.Args({’response_requested’: oc2.ResponseType.complete})

The Command below indicates that the Producer wants to know with a query
Action the OpenC2 versions and profiles supported by the Consumer. Note that no
actuators are specified.

cmd = oc2.Command(oc2.Actions.query,
oc2.Features([oc2.Feature.versions, oc2.Feature.profiles),
arg,
actuator= None)

In this further example, the SLPF with hostname “firewall” is the chosen Actuator
Profile and will allow incoming traffic for the specified range of IPv4 address, and
this Command must be executed, on the Consumer side, by the SLPF Profile. After,
the Controller sends the Command with the function sendcmd, which returns the
Response.

import openc2lib.profiles.slpf as slpf
pf = slpf.Specifiers({’hostname’:’firewall’})
arg = slpf.Args({’response_requested’: oc2.ResponseType.complete,

’direction’: slpf.Direction.ingress})

cmd = oc2.Command(oc2.Actions.allow,
oc2.IPv4Net("172.19.0.0/24"),
arg, actuator=pf)

resp = p.sendcmd(cmd)



Chapter 4

Thesis objectives

OpenC2 language is defined through a series of specifications and can be extended by
new Actuator Profiles, which represent additionally security capabilities. Defining a
new Actuator requires adherence to the standards set by OpenC2. By following these
specifications, the Profile ensures compatibility with other endpoints that implement
the OpenC2 language, enabling seamless interoperability across different systems.

The main objective of this thesis is the development of a new Actuator Profile
for the OpenC2 language, called Context Discovery (CTXD). It has been introduced
because the Producer does not have detailed knowledge of the services that are
running into the network, the interactions between them and the security features
that they implement. Identifying a service involves finding key details such as the
operating system, hostname, or application type. By using only the standard OpenC2
language, these details cannot be obtained because there are no Targets that provide
this information.

One of the key pieces of information collected by the CTXD from a service is the
details on how to connect to its associated peers. This data is crucial for enabling a
recursive discovery process. Starting with an OpenC2 Consumer, the CTXD allows
the OpenC2 Producer to identify its connected peers. Once identified, the Producer
then connects to each peer and queries them for their own attributes and connection
details. In this way, the Producer only needs to know how to connect to the first
Consumer and then, with the recursive discovery, can have full visibility into the
network. The discovery process results in a directed graph where nodes represent
services and edges indicate the connections between them.



23

Once the main objectives of the CTXD Actuator Profile were defined, its ar-
chitecture was designed in accordance with OpenC2 guidelines. This resulted in
the creation of new data types, which are not part of the original standard and are
detailed in this thesis. The entire architecture and behaviour of the CTXD was then
implemented in the openc2lib library.

In the end, the CTXD was validated in a use case scenario which involves
a web server deployed as a Kubernetes application within an OpenStack-based
cloud infrastructure. The goal was to explore the relationships between OpenStack,
Kubernetes, cloud-based virtual machines (VMs), and containers. The result of
this validation process was a directed graph which represents these relationships.
Additionally, failures were deliberately introduced to test if the discovery process
could adapt to changes in the environment



Chapter 5

OpenC2 Profile for Context Discovery

5.1 Adding a new Actuator Profile

New cyber defence functions can be added to the OpenC2 language by defining new
Actuator Profiles. The starting point, for implementing a new Actuator Profile, is the
identification of the security functions, and it is important to verify that they are not
already implemented by the standard OpenC2 to prevent unnecessary duplication.

Once the goals have been defined, the next step is to determine what type of data
the new Profile will manage. If these data are not already included in the OpenC2
specification, they can be defined, but they will be valid only within the context of
the Actuator Profile. Defining a new data type involves selecting the appropriate
base type (e.g. ArrayOf(vtype), Map, Choice. . . ), providing a description of what
the data represents and, if necessary, specifying any conformance clauses associated
with the data type.

After defining the new data types, the Actuator Profile can introduce new Targets
and Command Arguments, which can only be used in the Command if the specified
Profile matched the Actuator Profile that was just defined. The Response may also
include these new data types. However, according to OpenC2 specifications, the
Actuator Profile cannot add new Actions to the ones already defined.

Finally, all conformance clauses must be defined to ensure the correct behaviour
of the Actuator Profile. This includes specifying the allowed set of Targets for



5.2 “Query features” Command 25

each supported Action and defining how the Consumer should respond based on
Command Arguments.

This chapter defines the architecture of a new Actuator Profile, starting with
the causes that drive the need for its implementation. Then, all the new data types
introduced will be defined along with their conformance clauses. In the final sections,
practical examples are provided to demonstrate how the Profile works.

5.2 “Query features” Command

When implementing the OpenC2 standard language, the Producer does not have de-
tailed knowledge of the security features or configurations of every device connected
to the network. As a result, the Producer must function without a comprehensive
view of the entire network and rely on discovery mechanisms to gather the necessary
information about devices, security services, and their interconnections.

The OpenC2 language, using the query Action along with the Target features,
allows the Producer to gather information about the Actuator’s capabilities. This
enables the Producer to obtain detailed information about the OpenC2 Language
versions, profiles, rate limit, supported Actions and applicable Targets implemented
by the Actuator. According to the specification [8], all OpenC2 devices must
implement the “query features” Command. Below a practical example is shown.

Command:

{
"action": "query",
"target": {

"features": ["rate_limit", "profiles", "versions"]
}

}

Response:

{
"status": 200,
"results": {



26 OpenC2 Profile for Context Discovery

"versions": ["1.0"],
"profiles": ["slpf"],
"rate_limit": 30

}
}

However, the “query features” does not allow the Producer to know the devices
connected to the Consumer and no other Actions or Targets, defined in the OpenC2
specifications, permit to do so.

5.3 Goals of Context Discovery

To fill the gap left by the OpenC2 specifications, a new Actuator Profile has been
introduced with the goal to abstract the services that are running into the network, the
interactions between them and the security features that they implement. Identifying
a service involves determining its type and the specific characteristics of that type.
The service also provides essential information, such as hostname, encoding format,
and transfer protocol, for connecting to it and to any linked services. In this way, the
context in which the service is operating is identified. This new Actuator Profile has
been named “Context Discovery”, herein referred as CTXD, with the nsid “ctxd”.

The Context Discovery employs a recursive function to achieve this task, querying
each digital resource to determine its features. Thus, once the Producer has obtained
from the Consumer the information on how to connect to the digital resources linked
to the Consumer, it will query each new digital resource to determine its features,
thereby producing a map.

The Context Discovery profile is implemented on the Consumer side and is one
of the possible Actuator Profiles that the Consumer can support. Communication
follows the OpenC2 standard, where a Producer sends a Command specifying that
the Actuator to execute it is CTXD. If the Consumer implements CTXD, it will
return a Response. The figure below summarizes this communication.



5.4 Data model 27

Fig. 5.1 Example of OpenC2 communication with CTXD

5.4 Data model

A data model is implemented to define which data the CTXD stores and the relation-
ship between them. The most important data stored are:

• Service: it is the main class of the data model, and it describes the environment
where the service is located, its links to other services, its subservices, the
owner, the release, the security functions and the actuator.

• Service-Type: this class identifies the specific type of service. Each instance
has its own parameters, and the Service has only one type. Examples: VM,
Container, Cloud, etc.

• Link: this class describes the connection between the services. The field
“peers” specifies the services that are on the other side of the link so, this class
is useful for the recursive discovery. Also, security functions applied on the
link are specified and they are described as OpenC2 Actuator Profiles.

• Consumer: It manages information about various services, including the
security functions that protect them.

• OpenC2-Endpoint: they are described in the OpenC2-Endpoint class and cor-
respond to both the OpenC2 Actuator Profile and the endpoint that implements
it. A service can implement multiple security functions.

• Peer: this class describes the service that is connected to the service under
analysis.



28 OpenC2 Profile for Context Discovery

Fig. 5.2 CTXD data model

5.5 Command Components

This section identifies the applicable components of an OpenC2 Command. The
components of an OpenC2 Command include:

• Action: list of Actions that are relevant for the CTXD. This Profile cannot
define Actions that are not included in the OpenC2 Language Specification,
but it may extend their definitions.

• Target: list of Targets included in the Language Specification [8] and one
Target (and its associated Specifiers) that is defined only for the CTXD.

• Arguments: list of Command Arguments that are relevant for the CTXD.

• Actuator: list of Actuator Specifiers that are relevant for the CTXD.

5.5.1 Actions

Action is a mandatory field in Command message and no Actuator Profile can add a
new Action that is not present in the specifications.



5.5 Command Components 29

Type: Action (Enumerated)

ID Name Description
3 query Initiate a request for information.

5.5.2 Target

Target is a mandatory field in Command message, and it is possible to define new
Targets that are not present in the specifications. Only one Target is allowed in a
Command, and that’s why the cardinality of each one equals to 1.

Type: Target (Choice)

ID Name Type # Description
9 features Features 1 A set of items used with the query Ac-

tion to determine an Actuator’s capa-
bilities.

2048 context Context 1 It describes the service environment,
its connections and security capabili-
ties.

A new target, called “context” is inserted because the Target “features” refers only to
the Actuator capabilities and not to the characteristics of the execution environment.

5.5.3 Context

Type: Context (Record)

ID Name Type # Description
1 services ArrayOf(Name) 0..1 List the service names that the com-

mand refers to.
2 links ArrayOf(Name) 0..1 List the link names that the command

refers to.

The Target Context is used when the Producer wants to know the information of all
active services and links of the Consumer. The Producer can specify the names of
the services and links it is interested in.



30 OpenC2 Profile for Context Discovery

Usage requirements:

• A Producer may send a “query” Command with no fields to the Consumer,
which could return a heartbeat to this command.

• A Producer may send a “query” Command containing an empty list of services.
The Consumer should return all the services.

• A Producer may send a “query” Command containing an empty list of links.
The Consumer should return all the links.

• A Producer may send a “query” Command containing an empty list of services
and links. The Consumer should return all the services and links.

5.5.4 Command Arguments

Type: Args (Map)

ID Name Type # Description
4 response_requested Response-

Type
0..1 The type of Response re-

quired for the Command:
none, ack, status, com-
plete.

2048 name_only Boolean 0..1 The response includes ei-
ther only the name or all
the details about the ser-
vices and the links.

Command Arguments are optional, and a new one called “name_only” has been
defined, which is not present in the Language Specification [8].

Usage requirements:

• The "response_requested": "complete" argument can be present in the "query
features" Command. (Language specification 4.1 [8])

• The “query context” Command may include the "response_requested": "com-
plete" Argument.



5.6 Response Components 31

• The “query context” command may include the “name_only” argument:

– If TRUE, the Consumer must send a Response containing only the names
of the services and/or links.

– If FALSE, the Consumer must send a Response containing all the details
of the services and/or links.

5.5.5 Actuator Specifiers

List of Actuators Specifiers that are applicable to the Actuator. This is an optional
field. These specifiers are not present in the Language Specification [8].

Type: Specifiers (Map)

ID Name Type # Description
1 domain String 0..1 Domain under the responsability

of the actuator
2 asset_id String 0..1 Identifier of the actuator

5.6 Response Components

This section defines the Response Components relevant to the CTXD Actuator
Profile. The table below outlines the fields that constitute an OpenC2 Response.

Type: OpenC2-Response (Map)

ID Name Type # Description
1 status Status-Code 1 status code
2 status_text String 1 description of the Response sta-

tus
3 results Results 1 results derived from the executed

Command

5.6.1 Response status code

Type: Status-Code (Enumerated.ID)



32 OpenC2 Profile for Context Discovery

Fig. 5.3 Response status code [8]

5.6.2 Common Results

This section refers to the Results that are meaningful in the context of a CTXD and
that are listed in the Language Specification [8].

Type: Results (Record0..*)



5.6 Response Components 33

Fig. 5.4 Common results [8]

5.6.3 CTXD Results

These results are not included in the Language Specification [8] and are introduced
specifically for the CTXD Actuator Profile.

Type: Results (Map0..*)

ID Name Type # Description
2048 services ArrayOf(Service) 0..1 List all the services
2049 links ArrayOf(Link) 0..1 List all the links of the

services
2050 services_names ArrayOf(Name) 0..1 List the names of all ser-

vices
2051 link_names ArrayOf(Name) 0..1 List the names of all ser-

vices

Usage requirements:

• The response “services” can only be used when the target is “context”.

• The response “links” can only be used when the target is “context”.

• The response “services_names” can only be used when the target is “context”.



34 OpenC2 Profile for Context Discovery

• The response “services_names” can only be used when the target is “context”.

• service_names/link_names are mutually exclusive with services/links, respec-
tively. The choice is based on the value of the “name_only” argument in the
query.

5.7 CTXD data types

With the introduction of new data types that are not specified in the original specifi-
cations, it is necessary to define these types along with their attributes, base type and
eventually the conformance clauses. In this section, each new data type is defined,
and for some, a use case example is provided.

5.7.1 Name

The Name type is used to indicate the name of any object. When the Command
Argument is “name_only”, an array of Name is returned to the Producer.

Type: Name (Choice)

ID Name Type # Description
1 uri URI 1 Uniform Resource Identifier of

the service
2 reverse_dns Hostname 1 Reverse domain name notation
3 uuid UUID 1 Universally unique identifier of

the service
4 local String 1 Name without guarantee of

uniqueness

5.7.2 Operating System (OS)

It describes an Operating System.

type: OS (Record)



5.7 CTXD data types 35

ID Name Type # Description
1 name String 1 Name of the OS
2 version String 1 Version of the OS
3 family String 1 Family of the OS
4 type String 1 Type of the OS

5.7.3 Service

Digital resources can implement one or more services, with each service described
by a Service type. This type is a key element of the data model, as it provides the
information the Producer is seeking about the services.

type: Service (Record)

ID Name Type # Description
1 name Name 1 Id of the service
2 type Service-Type 1 It identifies the type of the

service
3 links ArrayOf(Name) 0..1 Links associated with the

service
4 subservices ArrayOf(Name) 0..1 Subservices of the main ser-

vice
5 owner String 0..1 Owner of the service
6 release String 0..1 Release version of the ser-

vice
7 security_functions ArrayOf(OpenC2-

Endpoint)
0..1 Actuator Profiles associ-

ated with the service
8 actuator Consumer 1 It identifies who is carrying

out the service

5.7.4 Service-Type

It represents the type of service, where each service type is further defined with
additional information that provides a more detailed description of the service’s
characteristics.

Type: Service-Type (Choice)



36 OpenC2 Profile for Context Discovery

ID Name Type # Description
1 application Application 1 Software application
2 vm VM 1 Virtual Machine
3 container Container 1 Container
4 web_service Web-

Service
1 Web service

5 cloud Cloud 1 Cloud
6 network Network 1 Connectivity service
7 iot IOT 1 IOT device

5.7.5 Application

It describes a generic application.

Type: Application (Record)

ID Name Type # Description
1 description string 1 Generic description of the appli-

cation
2 name String 1 Name of the application
3 version string 1 Version of the application
4 owner string 1 Owner of the application
5 type String 1 Type of the application

Sample Application object represented in JSON Format:

{
“description”: “application”,
“name”: “iptables”,
“version”: “1.8.10”,
“owner”: “Netfilter”,
“type”: “Packet Filtering”

}

5.7.6 VM

It describes a Virtual Machine.



5.7 CTXD data types 37

Type: VM (Record)

ID Name Type # Description
1 description String 1 Generic description of the VM
2 id String 1 ID of the VM
3 hostname Hostname 1 Hostname of the VM
4 os OS 1 Operating System of the VM

Sample VM object represented in JSON Format:

{
“description”: “vm”,
“id”: “123456”,
“hostname”: “My-virtualbox”,
“os”: {

“name”: “ubuntu”,
“version”: “22.04.3”,
“family”: “debian”,
“type”: “linux”

}
}

5.7.7 Container

It describes a generic Container.

Type: Container (Record)

ID Name Type # Description
1 description String 1 Generic description of the con-

tainer
2 id String 1 ID of the Container
3 hostname Hostname 1 Hostname of the Container
4 runtime String 1 Runtime managing the Container
5 os OS 1 Operating System of the Con-

tainer



38 OpenC2 Profile for Context Discovery

Sample Container object represented in JSON Format:

{
“description”: “container”,
“id”: “123456”,
“hostname”: “container_name”,
“runtime”: “docker”,
“os”: {

“name”: “ubuntu”,
“version”: “22.04.3”,
“family”: “debian”,
“type”: “linux”

}
}

5.7.8 Web Service

It describes a generic web service.

Type: Web Service (Record)

ID Name Type # Description
1 description String 1 Generic description of the web

service
2 server Server 1 Hostname or IP address of the

server
3 port Integer 1 The port used to connect to the

web service
4 endpoint String 1 The endpoint used to connect to

the web service
5 owner String 1 Owner of the web service

Sample Web Service object represented in JSON Format:

{
“description”: “web_service”,



5.7 CTXD data types 39

“server”: “192.168.0.1”,
“port”: 443,
“endpoint”: “maps/api/geocode/json”,
“owner”: “Google”

}

5.7.9 Cloud

It describes a generic Cloud service.

Type: Cloud (Record)

ID Name Type # Description
1 description String 1 Generic description of the cloud

service
2 id String 1 Id of the cloud provider
3 name String 1 Name of the cloud provider
4 type String 1 Type of the cloud service

Sample Cloud object represented in JSON Format:

{
“description”: “cloud”,
“cloud_id”: “123456”,
“name”: “aws”,
“type”: “lambda”

}

5.7.10 Network

It describes a generic network service. The Network-Type is described in the
following sections.

Type: Network (Record)



40 OpenC2 Profile for Context Discovery

ID Name Type # Description
1 description String 1 Generic description of the net-

work
2 name String 1 Name of the network provider
3 type Network-

Type
1 Type of the network service

Sample Network object represented in JSON Format:

{
“description”: “network”,
“name”: “The Things Network”,
“type”: “LoRaWAN”

}

5.7.11 IOT

It describes an IoT device.

Type: IOT (Record)

ID Name Type # Description
1 description String 1 Identifier of the IoT function
2 name String 1 Name of the IoT service provider
3 type String 1 Type of the IoT device

Sample IOT object represented in JSON Format:

{
“description”: “IoT”,
“name”: “Azure IoT”,
“type”: “sensor”

}



5.7 CTXD data types 41

5.7.12 Network-Type

This class describes the type of the network service. The details of these types are
not further elaborated upon in this document.

Type: Network-Type (Choice)

ID Name Type # Description
1 ethernet Ethernet 1 The network type is Ethernet
2 802.11 802.11 1 The network type is 802.11
3 802.15 802.15 1 The network type is 802.15
4 zigbee Zigbee 1 The network type is Zigbee
5 vlan Vlan 1 The network type is VLAN
6 vpn Vpn 1 The network type is VPN
7 lorawan Lorawan 1 The network type is LoRaWAN
8 wan Wan 1 The network type is WAN

5.7.13 Link

A Service can be connected to one or more Services, the module Link describes the
type of the connection, and the security features applied on the link.

Type: Link (Record)



42 OpenC2 Profile for Context Discovery

ID Name Type # Description
1 name Name 1 Id of the link
2 description String 0..1 Generic description of

the relationship
3 versions ArrayOf(version) 0..1 Subset of service fea-

tures used in this rela-
tionship (e.g., version
of an API or network
protocol)

4 link_type Link-Type 1 Type of the link
5 peers ArrayOf(Peer) 1 Services connected on

the link
6 security_functions ArrayOf(OpenC2-

Endpoint)
0..1 Security functions ap-

plied on the link

5.7.14 Peers

The Peer object is useful for iteratively discovering the services connected on the
other side of the link, enabling the Producer to build a map of the entire network.

Type: Peer (Record)

ID Name Type # Description
1 service_name Name 1 Id of the service
2 role Peer-Role 1 Role of this peer in the link
3 consumer Consumer 1 Consumer connected on the other

side of the link

5.7.15 Link-Type

This data type describes the type of the link between the peer and the service under
analysis.

Type: Link-Type (Enumerated)



5.7 CTXD data types 43

ID Name Type # Description
1 api API 1 The connection is an API
2 hosting Hosting 1 The service is hosted in an infras-

tructure
3 packet_flow Packet-

Flow
1 Network flow

4 control Control 1 The service controls another re-
source

The types of API, Hosting, Packet-Flow, and Control are not defined in this document.

5.7.16 Peer-Role

It defines the role of the Peer in the link with the service under analysis.

Type: Peer-Role (Enumerated)

ID Name Description
1 client The consumer operates as a client in the client-server

model in this link
2 server The consumer operates as a server in the client-server

model in this link
3 guest The service is hosted within another service.
4 host The service hosts another service
5 ingress Ingress communication
6 egress Egress communication
7 bidirectional Both ingress and egress communication
8 control The service controls another service
9 controlled The service is controlled by another service

5.7.17 Consumer

The Consumer provides all the networking parameters to connect to an OpenC2
Consumer.

Type: Consumer (Record)



44 OpenC2 Profile for Context Discovery

ID Name Type # Description
1 server Server 1 Hostname or IP address of the

server
2 port Integer 1 Port used to connect to the actua-

tor
3 protocol L4-Protocol 1 Protocol used to connect to the

actuator
4 endpoint String 1 Path to the endpoint (e.g., /.well-

known/openc2)
5 transfer Transfer 1 Transfer protocol used to connect

to the actuator
6 encoding Encoding 1 Encoding format used to connect

to the actuator

5.7.18 Server

It specifies the hostname or the IPv4 address of a server.

Type: Server (Choice)

ID Name Type # Description
1 hostname hostname 1 Hostname of the server
2 ipv4-addr IPv4-Addr 1 32-bit IPv4 address as defined in

[RFC0791]

5.7.19 Transfer

This data type defines the transfer protocol. This list can be extended with other
transfer protocols.

Type: Transfer (Enumerated)

ID Name Description
1 http HTTP protocol
2 https HTTPS protocol
3 mqtt MQTT protocol



5.8 Communication example 45

5.7.20 Encoding

This data type defines the encoding format to be used. Other encodings are permitted,
the type Encoding can be extended with other encoders (e.g., XML).

Type: Encoding (Enumerated)

ID Name Description
1 json JSON encoding

5.7.21 OpenC2-Endpoint

This data type corresponds to both the OpenC2 Actuator Profile and the endpoint
that implements it.

Type: OpenC2-Endpoint (Record)

ID Name Type # Description
1 actuator Actuator 1 It specifies the Actuator Profile
2 consumer Consumer 1 It specifies the Consumer that im-

plements the security functions

“Actuator” type is described in Language Specification (section 3.3.1.3) [8].

5.8 Communication example

One helpful way to make clear the capabilities required for the CTXD profile is
to create sample OpenC2 Command and Response messages. In this section, an
example of an OpenC2 Communication is provided:

• First, the Producer requests the Actuator Profiles supported by the Consumer:

Command:

{
“action”: ”query”,
“target”: {



46 OpenC2 Profile for Context Discovery

“features” : [“profiles”]
}

}

Response:

{
“status”:200,
“results”:{

“profiles: [“ctxd", “slpf”]
}

}

• The Consumer implements the CTXD Actuator Profile so, it is possible to
query about the services of the Actuator using an empty list. The result
contains only the names of the services because the “name_only” argument is
set to TRUE in the command.

Command:

{
"action": "query",
"target": {

"context": {
"services": []

}
},
"args": {

"name_only": "TRUE"
},
"actuator": {

"ctxd": {}
}

}

Response:



5.8 Communication example 47

{
"status": 200,
"results": {

"services": [
{

"name": {
"local": "example_service"

}
}

]
}

}

• Now, a query for the service “example_service” is performed, requesting all
details. In this case a VM is shown with SLPF security functionality. The
service is connected to other services, the fields “links” is useful for OpenC2
discovery.

Command:

{
"action": "query",
"target": {

"context": {
"services": [

{
"name": {

"local": "example_service"
}

}
]

}
},
"args": {

"name_only": "FALSE"
},
"actuator": {



48 OpenC2 Profile for Context Discovery

"ctxd": {}
}

}

Response:

{
"status": 200,
"results": {

"services": [
{

"name": {
"local": "example_service"

},
"type": {

"description": "vm",
"id": "123456",
"hostname": "My-virtualbox",
"os": {

"name": "ubuntu",
"version": "22.04.3",
"family": "debian",
"type": "linux"

}
},
"links": [

{
"name": {

"local": "link_1"
}

}
],
"subservices": [

{
"name": {

"local": "example_subservice"



5.8 Communication example 49

}
}

],
"owner": "service_owner",
"release": "1.0",
"security_functions": [

{
"actuator": "slpf",
"consumer": {

"server": {
"ipv4-addr": "192.168.0.2"

},
"port": 80,
"protocol": "tcp",
"endpoint": "/.well-known/openc2",
"transfer": "http",
"encoding": "json"

}
}

],
"actuator": {

"server": {
"ipv4-addr": "192.168.0.2"

},
"port": 80,
"protocol": "tcp",
"endpoint": "/.well-known/openc2",
"transfer": "http",
"encoding": "json"

}
}

]
}

}



50 OpenC2 Profile for Context Discovery

Note that in this example, the Consumer is the same for the stateless packet
filter and for the CTXD.

• To discover the services that are connected to the previous one, another query
is performed using the name obtained from the links field. In this example,
the connection between these two services is monitored by an IDS hosted on
another server (a mock OpenC2 profile for IDS has been created).

Command:

{
"action": "query",
"target": {

"context": {
"links": [

{
"name": {

"local": "link_1"
}

}
]

}
},
"args": {

"name_only": "FALSE"
},
"actuator": {

"ctxd": {}
}

}

Response:

{
"status": 200,
"results": {

"link": [



5.8 Communication example 51

{
"name": {

"local": "link_1"
},
"description": "example-generic-description",
"versions": [

"1.0"
],
"link_type": {},
"peers": [

{
"service_name": {

"reverse-dns": "com.example-
connected-consumer"

},
"role": "host",
"consumer": {

"server": {
"ipv4_addr": "192.168.0.3"

},
"port": 80,
"protocol": "tcp",
"endpoint": "/.well-known/openc2",
"transfer": "http",
"encoding": "json"

}
},
{

"service_name": {
"local": "example_service"

},
"role": "guest",
"consumer": {

"server": {
"ipv4_addr": "192.168.0.2"



52 OpenC2 Profile for Context Discovery

},
"port": 80,
"protocol": "tcp",
"endpoint": "/.well-known/openc2",
"transfer": "http",
"encoding": "json"

}
}

],
"security_functions": [

{
"actuator": "ids",
"consumer": {

"server": {
"ipv4_addr": "192.168.0.4"

},
"port": 80,
"protocol": "tcp",
"endpoint": "/.well-known/openc2",
"transfer": "http",
"encoding": "json"

}
}

]
}

]
}

}



Chapter 6

CTXD implementation and validation
in openc2lib

6.1 Structure of the CTXD Profile in openc2lib

The Context Discovery Actuator Profile can be easily added to the openc2lib library,
which is designed to be extended with new profiles. A new subfolder named “ctxd”
was added to the “profile” folder in the library, containing all the data types from
Chapter 5 and the conformance clauses. This subfolder consists of the following
elements:

• Profile: specifies the NameSpace Identifier (NSID) used to refer to the CTXD.

• Actuator: contains the specifiers that are meaningful in the context of the
CTXD.

• Args: specifies the Command Argument “name_only” that can be used for
the CTXD, extending the Command Arguments defined in the Language
Specification [8].

• Results: extends the base Results specified in the Language Specification [8]
by adding the new results specific to the CTXD, including "services", "links",
"services_names" and "link_names".

• Validation: checks if the actions, targets, and arguments in the Command are
valid.



54 CTXD implementation and validation in openc2lib

• Target: this subfolder contains all the Targets introduced by the CTXD. The
only new Target added, not present in the specifications, is "Context," which
consists of two arrays of names corresponding to services and links.

• Data: This subfolder contains all the data types introduced in Chapter 5 that
are not present in the specifications. Each new data type is implemented as
a separate class and can inherit the properties and methods of the base types
defined in the Language Specification [8].

6.2 Behaviour of the CTXD Profile in openc2lib

While the structure of the CTXD Profile is implemented in the “profile” folder,
its behaviour is implemented in another folder named “actuator”. This separation
enables the openc2lib library to support multiple implementations of the same Profile.
The class CTXDActuator implements all the functions needed to create the correct
OpenC2 Response and does not concern itself with the encoding formats. Starting
from this class, child classes have been created which inherits all the functions to
manage different Configuration Management System (CMS).

When a Command is received, this class checks if the pair of Action and Target
is valid. Then, this class acts as a dispatcher, selecting the appropriate functions
based on the Actuator field to execute the operation and create the correct Response.

The only Action allowed is query, which is implemented by a function of the
same name. Based on the Target specified in the Command, this function dispatches
the computation within the same class. If the specified Target is features, the
corresponding function is selected. If the Target is context, a different function is
chosen.

The query_context function within the CTXDActuator class defines the behaviour
of the CTXD Actuator Profile and is called only when the Target is context. This
function returns a list of Services and Links if the Command Argument name_only
is false otherwise, returns a list of names corresponding to the Services and Links
implemented by the Consumer. If no fields are specified, an empty response is
returned, serving as a heartbeat to communicate to the Producer that the Consumer
is active.



6.3 Implementation scope 55

6.3 Implementation scope

Once the CTXD profile was completely added to the library, it was tested in a real
case scenario. Given the extreme heterogeneity of execution environments, the
first approach was to focus on the most dynamic environments, specifically cloud
systems, which include both VMs and containers. For this, two of the most popular
open-source CMS were considered: OpenStack and Kubernetes.

OpenStack is an open-source cloud computing platform that enables users to
build and manage their own cloud infrastructure. It provides Infrastructure-as-a-
Service (IaaS), which offers a framework for creating and controlling virtualized
resources such as computing power, storage, and networking on demand.

Kubernetes is an open-source container orchestration system, and it can manage
containerized applications across multiple hosts for deploying, monitoring, and
scaling containers. Containers are portable units that include the code and everything
the application needs to run.

The goal of CTXD is to discover the relationships between OpenStack, Kuber-
netes, cloud-based virtual machines (VMs), and containers. Additionally, the types
of connections between these resources are documented. Further extensions can
be implemented in the future to support additional CMS platforms, such as Docker
Compose, Azure, Google Cloud, VMware, and others.

6.4 OpenStack discovery process

OpenStack is modelled as a Cloud Service in the CTXD, and, in this way, it is
able to describe itself and its links to other Services so, to provide this additional
information, a new Actuator called CTXDActuator_openstack is created. This new
Actuator inherits all the functions from the CTXDActuator. The discovering of the
services implemented by OpenStack is performed with the following command:

openstack service list -f json

The result is a JSON object containing all the services implemented by OpenStack
(e.g., Nova), which is then parsed and reformatted according to CTXD data structures.



56 CTXD implementation and validation in openc2lib

Then, to obtain the active servers (cloud-based VMs), it is necessary to run the
following command:

openstack server list --status ACTIVE -f json

6.5 Kubernetes discovery process

A new Actuator, called CTXDActuator_kubernetes, starts another discovery process
to retrieve information about the Kubernetes implementation. First, the Kubernetes
Service is described as a Cloud and its nodes are obtained with the following
command:

kubectl get nodes -o json

In this case, the nodes refer to the cloud-based VMs, which are the same as those in
the OpenStack Cloud. Additionally, the namespaces implemented by Kubernetes are
retrieved using a command, where the specific namespace is passed as a parameter:

kubectl get namespace <namespace_name> -o json

Next, the Actuator continues the discovery process to identify the relationships
between nodes and pods, which can be, for example, VMs and containers, using the
following command. The command takes the namespace and VM ID as parameters:

kubectl get pods -n <namespace_name>
--field-selector spec.nodeName=<vm_name>
-o json

Finally, each container is associated with its namespace via a link of the type “Packet
flow”.

When implementing the openc2lib Consumer, it is possible to specify the Ku-
bernetes namespaces to which the VMs and containers belong. These namespaces
can be listed in an array within a configuration file, after which the process can be
initiated. If no namespace is specified in the configuration file, the discovery process
will not filter any namespace and will be performed across all available namespaces.



6.6 Consumer implementation 57

6.6 Consumer implementation

The Consumer implementing the CTXD Actuator Profile must instantiate its Actua-
tors. To do so, the CTXDActuator class is added to a dictionary, where the key is
a tuple: the first element indicates the nsid of the CTXD Actuator Profile, and the
second one specifies the hostname of the Service (it is possible to specify also the
IPv4 address). The value is an Actuator that is initialized with its services, links,
domain name and asset id. In the example below, an Actuator for the VM Service is
shown:

actuators[(ctxd.Profile.nsid,str(vm.consumer.server.obj._hostname))] =
CTXDActuator(services= self.get_vm_service(

vm.consumer.server.obj._hostname),
links= self.get_vm_links(vm.consumer.server.obj._hostname),
domain=None,
asset_id=str(vm.consumer.server.obj._hostname))

Once all the Actuators are defined, the openc2lib Consumer class can be initialized. It
is possible to define a Consumer that implements multiple actuators or one Consumer
for each actuator.

6.7 Producer implementation

To correctly implement the discovery process, the Command Argument name_only
is set to False to retrieve all information about the Service. The target is the Context,
which consists of two empty ArrayOf(Name) to obtain all the data about all Services
and Links of the Consumer. Additionally, the Actuator field is populated with the
CTXD Actuator Profile.

The openc2lib Producer sends a Command to the Consumer that implements the
OpenStack Cloud Service. Then, the VMs are identified and only the master node,
that has the role of control-plane, hosts the Kubernetes Cloud Service. From the
Kubernetes Service the same VMs are identified again, followed by the containers
hosted on them. Finally, the relationships between the containers and their respective
namespaces are determined.



58 CTXD implementation and validation in openc2lib

To implement this research, a recursive function was created, with controls to
prevent infinite loops by avoiding already known links. A link is considered known
if both the nodes and the link type have been previously identified. Node and edges
are implemented with the Graphviz library to make a directed graph. In the graph,
along with the hostnames, other parameters such as the IPv4 address and the type
of service are also displayed. In the next sections, several graphs resulting from the
discovery processes will be presented.

6.8 Validation

Once the structure and behaviour of the Context Discovery Actuator Profile are
implemented in the openc2lib library, a validation process is required to ensure its
correct operation.

The use case implemented is a web server deployed as a Kubernetes application
within an OpenStack-based cloud infrastructure [13]. In Figure 6.1 it is shown the
architecture of the cloud-native application used to test the CTXD, where the web
server (Server-0) is connected to a container (UPF-0) and all the traffic of the web
server is routed through this User Plane Function which acts as an intermediary
between the server and other network functions. The communication between the
clients and gNB-0 is outside the scope of the validation process.

Fig. 6.1 5G network



6.8 Validation 59

The Kubernetes cluster is composed by three nodes (kube0, kube1, kube2), which
are mapped to the virtual machines within OpenStack environment. Kube0 serves as
the control-plane node and so it manages the Kubernetes cluster and schedules the
workloads. Pods (UPF-0, AMF-0, NRF-0...) are dynamically scheduled to run on
these Kubernetes nodes. The scope of the validation process is to identify the rela-
tionships between Kubernetes, its nodes and pods, and the OpenStack environment.
Relationships between different pods are not considered.

Finally, the Consumer and Producer described in the previous sections will be
used to perform the discovery process of the entire network. Note that all Consumers
must be capable of implementing the CTXD Profile.

6.8.1 Functional test

Functional tests are conducted to verify the capabilities of the Consumer to implement
the Context Discovery Actuator Profile and so, to parse and format data about its own
services and connections in a way that is compatible with the CTXD data architecture
and to send, in a correct way, to the Producer.

To verify the correct functioning of the software, the list of Kubernetes names-
paces will be modified in the configuration file. This will determine the number of
services discovered, depending on which namespaces are selected.

In the graph below, all Services and Links within the “my5gtestbed” namespace
are visualized. For the VMs and Containers, their type and IPv4 address are also
displayed. It’s important to highlight the relationship between Kubernetes and kube0,
as without proper controls, it could lead to an endless loop: Kubernetes controls
kube0, and kube0 hosts the Kubernetes Cloud Service.



60 CTXD implementation and validation in openc2lib

Fig. 6.2 directed graph of the my5gtestbed namespace

It is possible to select more than one namespace in the configuration file, as shown
in the figure below, where the selected namespaces are “my5gtestbed” and “kube-
flannel”:



6.8 Validation 61

Fig. 6.3 directed graph of the my5gtestbed and kube-flannel namespaces



62 CTXD implementation and validation in openc2lib

From Figure 6.3, it is possible to note that the relationships between the cloud
services (OpenStack and Kubernetes) with the VMs (kube0, kube1 and kube2) are
not modified because they don’t depend on a specific namespace. New containers
are added belonging to the new namespace “kube-flannel” that in the Figure 6.2 were
not present.

6.8.2 Dynamic tests

The dynamic tests simulate a failure of the whole Kubernetes service or an individual
pod, with the goal of verifying that the discovery process can detect changes in certain
variables, such as the IPv4 address, which is re-assigned each time a shutdown and a
restart occur.

The first test conducted was to shut down a single container (upf-0) with the
command line:

kubectl delete pod upf-0

After shutting it down, the scheduler will reactivate the container, and the result is
shown in the figure below:



6.8 Validation 63

Fig. 6.4 directed graph of the my5gtestbed namespace after shutting down upf-0

The result is the same as the Figure 6.4 but with a substantial difference: the
IPv4 address of the container upf-0 changed from 10.17.2.100 to 10.17.2.103.

Afterward, another test was performed, and the Kubernetes service was shut
down and then reactivated:



64 CTXD implementation and validation in openc2lib

Fig. 6.5 directed graph of the my5gtestbed namespace after shutting down Kubernetes service

It is possible to notice that the IPv4 addresses of each container and the VM
where they are hosted have changed compared to what is shown in Figure 6.4. Finally,
upf-0 was again shut down and then restarted:



6.8 Validation 65

Fig. 6.6 directed graph of the my5gtestbed namespace after shuting down Kubernetes service
and upf-0

The IPv4 address of the container upf-0 changed again, so the test was completed
successfully.

To sum up all the dynamic tests done, all the IPv4 are memorized in the following
table and the data are divided into 4 different phases.



66 CTXD implementation and validation in openc2lib

Before Shutting Down Kubernetes After Restarting Kubernetes
Name before delete

upf-0
after delete
and restart
upf-0

before delete
upf-0

after delete and
restart upf-0

amf-0 10.17.2.97 10.17.2.97 10.17.2.104 10.17.2.104
ausf-0 10.17.1.39 10.17.1.39 10.17.1.45 10.17.1.45
bsf-0 10.17.1.40 10.17.1.40 10.17.2.107 10.17.2.107
gnb-0 10.17.0.232 10.17.0.232 10.17.1.50 10.17.1.50
nrf-0 10.17.2.98 10.17.2.98 10.17.1.46 10.17.1.46
nssf-0 10.17.1.42 10.17.1.42 10.17.2.106 10.17.2.106
pcf-0 10.17.2.102 10.17.2.102 10.17.1.49 10.17.1.49
scp-0 10.17.1.41 10.17.1.41 10.17.1.47 10.17.1.47
smf-0 10.17.2.99 10.17.2.99 10.17.2.108 10.17.2.108
udm-0 10.17.1.43 10.17.1.43 10.17.1.48 10.17.1.48
udr-0 10.17.0.231 10.17.0.231 10.17.0.233 10.17.0.233
upf-0 10.17.2.100 10.17.2.103 10.17.2.105 10.17.0.234
webui-
79d945f56d-
8z4qq

10.17.2.101 10.17.2.101

webui-
79d945f56d-
wjzr5

10.17.2.109 10.17.2.109

Table 6.1 Containers IPv4 addresses



6.8 Validation 67

6.8.3 Semantic tests

The final type of test conducted focused on the semantics of the new data introduced
by the Context Discovery Actuator Profile, which are not included in the Language
Specification [8]. The tests were performed using the Python library pytest, with the
goal of providing both valid and invalid inputs to the class constructor.

Each data type introduced by the Context Discovery Actuator Profile was verified
through up to three tests:

• Valid parameters: the class is tested with a valid set of parameters to ensure
the object is created successfully.

• Invalid parameters: the class is tested with invalid inputs to verify that an ex-
ception is raised. If an exception is raised, the test is considered to have passed.
Classes with only string attributes were not tested with invalid parameters.

• No parameters: the class is tested to ensure that it can be initialized without any
parameters, verifying the default behaviour of the class constructor. Classes
that are subclasses of the Enumerated and Choice classes were not tested.

The results of all the tests can be summarized in the following table:



68 CTXD implementation and validation in openc2lib

Class Valid parameters Invalid parameters No parameters
Application Passed Passed Passed

Cloud Passed Passed Passed
Consumer Passed Passed Passed
Container Passed Passed
Encoding Passed Passed

Iot Passed Passed Passed
Link Passed Passed Passed

LinkType Passed Passed
Name Passed Passed

Network Passed Passed
Openc2Endpoint Passed Passed Passed

OS Passed Passed
Peer Passed Passed Passed

PeerRole Passed Passed
Server Passed Passed
Service Passed Passed Passed

ServiceType Passed Passed
Transfer Passed Passed

VM Passed Passed Passed
WebService Passed Passed Passed

Table 6.2 Semantic tests

Additionally, the JSON format of the Command and Response messages was
tested. First, a JSON schema was created, and then the Command and Response
messages were provided as input to verify that they conformed to this schema.
The schema helps maintain interoperability and prevents errors caused by incorrect
message formatting. Through unit tests, the schema’s validation process is verified
by decoding, encoding, and transferring valid and invalid OpenC2 messages. These
tests ensure that the messages conform to the expected format and that any issues
are caught early in the development cycle.



Chapter 7

Conclusions

Based on the OpenC2 specifications, a new Actuator Profile, called Context Dis-
covery (CTXD), was defined and implemented. Defining a new Actuator Profile
means extending the OpenC2 language to support new security capabilities that were
previously not representable. The first step was to establish why the CTXD Profile
was necessary and to demonstrate that the OpenC2 language, in its original form,
could not address this specific need. The CTXD Profile was introduced because the
Producer does not have complete knowledge of the services running in the network,
and mechanisms were needed to enable the discovery of these services. To address
this, the CTXD Profile abstracts the services running in the network, the interactions
between them, and the security features that they implement, all in a way that is
compatible with the OpenC2 language. The Profile also obtains from the service
under analysis, essential information, such as hostname, encoding format, and trans-
fer protocol, for connecting to it and to any linked services, which is crucial for
implementing recursive discovery. Therefore, the CTXD Profile not only provides
information about the service but also about the context in which it operates.

Once the structure was defined, the CTXD Profile was implemented in the
openc2lib library and tested in a use case scenario. The testing environment was a
Kubernetes application running within an OpenStack-based cloud infrastructure. The
CTXD Profile successfully discovered the relationships between nodes, pods and
namespaces. The main achievement was that the Producer only needed to know how
to connect to the first Consumer, and by obtaining the information about its links,



70 Conclusions

recursive discovery could take place, allowing the Producer to gather information
about other services within the network.

OpenC2 language is expected to evolve in the future with new releases of the
actual specifications and the addition of new Actuator Profiles. The openc2lib library
is updated with the most recent specifications and with the Stateless Packet Filter
Actuator Profile plus the addition of the Context Discovery Actuator Profile.

Future works can focus on the implementation of the CTXD in different use case
scenarios and about further parameters, over those just defined, that can modify the
data types already defined by the CTXD and can improve the discovery process.

Other future works can relate the maintenance of the entire library to keep up
to date it with the specifications that will be defined in the future. Also, the library
supports only the HTTP transfer protocol and the JSON encoder and so, the library
can be extended with other transfers or encoders.



Bibliography

[1] Michael J Herring and Keith D Willett. Active cyber defense: a vision for
real-time cyber defense. Journal of Information Warfare, 13(2):46–55, 2014.

[2] Manfred Vielberth, Fabian Böhm, Ines Fichtinger, and Günther Pernul. Security
operations center: A systematic study and open challenges. Ieee Access,
8:227756–227779, 2020.

[3] Stef Schinagl, Keith Schoon, and Ronald Paans. A framework for designing a
security operations centre (soc). In 2015 48th Hawaii International Conference
on System Sciences, pages 2253–2262. IEEE, 2015.

[4] Matteo Repetto, Alessandro Carrega, and Riccardo Rapuzzi. An architecture
to manage security operations for digital service chains. Future Generation
Computer Systems, 115:251–266, 2021.

[5] Faris Bugra Kokulu, Ananta Soneji, Tiffany Bao, Yan Shoshitaishvili, Ziming
Zhao, Adam Doupé, and Gail-Joon Ahn. Matched and mismatched socs: A
qualitative study on security operations center issues. In Proceedings of the
2019 ACM SIGSAC conference on computer and communications security,
pages 1955–1970, 2019.

[6] Alessandro Carrega, Giovanni Grieco, Domenico Striccoli, Manos Papout-
sakis, Tomas Lima, José Ignacio Carretero, and Matteo Repetto. A reference
architecture for management of security operations in digital service chains.
In Cybersecurity of Digital Service Chains: Challenges, Methodologies, and
Tools, pages 1–31. Springer International Publishing Cham, 2022.

[7] Open Command and Control (OpenC2) Architecture Specifi-
cation Version 1.0. Edited by Duncan Sparrell. 30 September
2022. OASIS Committee Specification 01. https://docs.oasis-
open.org/openc2/oc2arch/v1.0/cs01/oc2archv1.0- cs01.html. Latest stage:
https://docs.oasis-open.org/openc2/oc2arch/v1.0/oc2arch-v1.0.html.

[8] Open Command and Control (OpenC2) Language Specification Ver-
sion 1.0. Edited by Jason Romano and Duncan Sparrell. 24 Novem-
ber 2019. OASIS Committee Specification 02. https://docs.oasis-
open.org/openc2/oc2ls/v1.0/cs02/oc2ls-v1.0-cs02.html. Latest version:
https://docs.oasis-open.org/openc2/oc2ls/v1.0/oc2ls-v1.0.html.



72 Bibliography

[9] OpenC2 Actuator Profile Development Process Version 1.0. Edited by
David Lemire and David Kemp. 17 January 2024. OASIS Committee Note
01. https://docs.oasis-open.org/openc2/cn-appdev/v1.0/cn01/cn-appdev-v1.0-
cn01.html. Latest stage: https://docs.oasis-open.org/openc2/cn-appdev/v1.0/cn-
appdev-v1.0.html.

[10] Specification for Transfer of OpenC2 Messages via HTTPS Version 1.1.
Edited by David Lemire. 30 November 2021. OASIS Committee Specification
01. https://docs.oasis-open.org/openc2/open-impl-https/v1.1/cs01/open-impl-
https-v1.1-cs01.html. Latest stage: https://docs.oasis-open.org/openc2/open-
impl-https/v1.1/open-impl-https-v1.1.html.

[11] Specification for Transfer of OpenC2 Messages via MQTT Version 1.0.
Edited by David Lemire. 19 November 2021. OASIS Committee Speci-
fication 01. https://docs.oasis-open.org/openc2/transf-mqtt/v1.0/cs01/transf-
mqtt-v1.0 cs01.html . Latest stage: https://docs.oasis-open.org/openc2/transf-
mqtt/v1.0/transf-mqtt-v1.0.htmL.

[12] Open Command and Control (OpenC2) Profile for Stateless Packet Fil-
tering Version 1.0. Edited by Joe Brule, Duncan Sparrell and Alex
Everett. 11 July 2019. Committee Specification 01. https://docs.oasis-
open.org/openc2/oc2slpf/v1.0/cs01/oc2slpfv1.0- cs01.html. Latest version:
https://docs.oasis-open.org/openc2/oc2slpf/v1.0/oc2slpfv1.0. html.

[13] Matteo Repetto. Service templates to emulate network attacks in cloud-native
5g infrastructures. In 2023 IEEE 9th International Conference on Network
Softwarization (NetSoft), pages 498–503. IEEE, 2023.


	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Active Cyber Defense (ACD)
	1.2 Security Operation Centers (SOCs)
	1.3 GUARD framework

	2 OpenC2
	2.1 Introduction to OpenC2
	2.2 OpenC2 Architecture
	2.3 Implementation
	2.4 Base Components and Structures
	2.5 Actuator Profile

	3 OpenC2 library
	3.1 Introduction to OpenC2 library
	3.2 The openc2lib Architecture
	3.3 Serialization and deserialization processes of a message
	3.4 Message Transfer and Reception via HTTP
	3.5 Using openc2lib
	3.5.1 Server Implementation
	3.5.2 Controller implementation
	3.5.3 Sending OpenC2 Commands


	4 Thesis objectives
	5 OpenC2 Profile for Context Discovery
	5.1 Adding a new Actuator Profile
	5.2 “Query features” Command
	5.3 Goals of Context Discovery
	5.4 Data model
	5.5 Command Components
	5.5.1 Actions
	5.5.2 Target
	5.5.3 Context
	5.5.4 Command Arguments
	5.5.5 Actuator Specifiers

	5.6 Response Components
	5.6.1 Response status code
	5.6.2 Common Results
	5.6.3 CTXD Results

	5.7 CTXD data types
	5.7.1 Name
	5.7.2 Operating System (OS)
	5.7.3 Service
	5.7.4 Service-Type
	5.7.5 Application
	5.7.6 VM
	5.7.7 Container
	5.7.8 Web Service
	5.7.9 Cloud
	5.7.10 Network
	5.7.11 IOT
	5.7.12 Network-Type
	5.7.13 Link
	5.7.14 Peers
	5.7.15 Link-Type
	5.7.16 Peer-Role
	5.7.17 Consumer
	5.7.18 Server
	5.7.19 Transfer
	5.7.20 Encoding
	5.7.21 OpenC2-Endpoint

	5.8 Communication example

	6 CTXD implementation and validation in openc2lib
	6.1 Structure of the CTXD Profile in openc2lib
	6.2 Behaviour of the CTXD Profile in openc2lib
	6.3 Implementation scope
	6.4 OpenStack discovery process
	6.5 Kubernetes discovery process
	6.6 Consumer implementation
	6.7 Producer implementation
	6.8 Validation
	6.8.1 Functional test
	6.8.2 Dynamic tests
	6.8.3 Semantic tests


	7 Conclusions
	Bibliography

