
POLITECNICO DI TORINO

Master’s Degree in Data Science and Engineering

Master’s Degree Thesis

Ternary Neural Networks for Efficient
Biometric Data Analysis

Supervisors

Prof. Enrico MAGLI

Prof. Tiziano BIANCHI

Prof. Andrea MIGLIORATI

Candidate

Giacomo AGNETTI

December 2024

Summary

Advancements in artificial intelligence, especially deep neural networks (DNNs),
have driven significant progress in fields like computer vision and natural language
processing. However, the high computational demands of these models present
challenges for deployment on power-constrained and memory-limited devices, such
as wearable ones. This thesis addresses these challenges in the context of gait
analysis for biometric applications on resource-constrained wearable devices. While
smartphones and smartwatches offer convenient platforms for capturing gait data
via IMU sensors, their limited computational resources hinder real-time DNN
deployment.

To overcome this, we introduce a Ternary Neural Network (TNN) framework that
combines quantization and pruning to achieve high sparsity, setting most weights
to zero to reduce memory and energy usage while maintaining model accuracy. Our
approach dynamically adjusts quantization during training, achieving sparsity rates
above 90% with entropy levels below 1 bit per symbol, making the model both
highly compressible and effective. We evaluate the model on two biometric tasks:
identification, where the model differentiates individuals based on gait patterns,
and authentication, which verifies identity by comparing gait against a reference.
Results indicate that TNNs retain strong discriminative power, enabling efficient
and accurate gait-based biometric recognition.

ii

Table of Contents

List of Tables vi

List of Figures vii

Acronyms x

1 Introduction 1

2 Background 4
2.1 Neural Networks . 4

2.1.1 Origins and Evolution . 5
2.1.2 Common Network Architectures 7
2.1.3 Training Neural Networks 10

2.2 Biometric Data . 15
2.2.1 Biometric Modalities . 15
2.2.2 Applications . 17
2.2.3 Biometric Systems . 18

2.3 Model Compression . 21
2.3.1 Pruning . 21
2.3.2 Parameter Quantization . 22
2.3.3 Other Methods . 24

3 Methodology 27
3.1 Dataset . 27

3.1.1 Data Format . 28
3.1.2 Data Collection . 28
3.1.3 Preprocessing . 28

3.2 Network Topology . 31
3.3 Quantized Training . 32

3.3.1 Binary Training . 32
3.3.2 Ternary Training . 36

iv

3.4 Identification Task . 39
3.4.1 Problem Formulation . 39
3.4.2 Criterion and Training . 39
3.4.3 Evaluation Metrics . 40

3.5 Authentication Task . 42
3.5.1 Problem Formulation . 42
3.5.2 Criterion and Training . 42
3.5.3 Evaluation Metrics . 44

4 Experimental Results 48
4.1 Setup . 48
4.2 Identification Task . 49

4.2.1 Hyper-Parameter Optimization 49
4.2.2 Results . 51

4.3 Authentication Task . 55
4.3.1 Hyper-Parameter Optimization 55
4.3.2 Results . 55
4.3.3 Open Set Results . 62

5 Conclusions 65

Bibliography 68

v

List of Tables

4.1 Hyper-parameter search values found for full precision, binary, and
ternary quantization methods. The best values for the ternary model
are referred to a constant ∆ value of 0.2. 49

4.2 Best test accuracy, sparsity rate, and entropy comparison for different
∆ growth regimes. In the top half, we show results for competing
state-of-the-art techniques, obtained from different FP baselines. In
the bottom half, we report the full precision and binary baselines
for our method. Note that the number of parameters for ternary
models is obtained by multiplying the total number of parameters
by the sparsity rate. 51

4.3 Hyper-Parameter search grid for the authentication task. Best
values are shown separately for the full precision, binary, and ternary
quantization methods. The margin hyper-parameter has different
best values depending on the distance function used in the triplet loss. 56

4.4 Performance metrics for the authentication task. ROC AUC column
reports values for ROC curves where pairwise distances are com-
puted with different distance functions. Classification and Clustering
columns report metrics used to evaluate the embeddings on the two
downstream tasks. Each row corresponds to a model trained with a
specific training method and quantization scheme. 57

4.5 Classification results for models trained with cross-entropy when
the last fully connected layer is in full precision. Binary[full-fc]
and Ternary[full-fc] rows report the delta accuracy compared
to their counterparts with a quantized fully connected layer. 61

4.6 Performance metrics for the open set authentication task. Same
metrics as in Table 4.4 with deltas ∆os-cs representing the difference
between open-set (os) and closed-set (cs) results. 62

vi

List of Figures

3.1 DCNN used to partition walking and non-walking sections; originally
from [15]. 29

3.2 Acceleration vector module evolution over time. Used to detect steps
cycles [15]. 30

3.3 Base network architecture used for identification and authentication
tasks. Convolutional layers are swapped for quantized ones when
testing compressed models. The last FC layer is discarded when
extracting embeddings for the authentication tasks. 31

3.4 STE forward versus backward pass difference [16]. 35

4.1 Examples of ∆ growth regimes for different f functions. Only the
growth regimes with ∆max = 0.3 and tmax = 100 are shown in the plot. 50

4.2 Examples of how the sparsity rate changes with the training epoch
for two different growth regimes (square and log) and three different
∆max values (∆max = 0.1, 0.2, 0.3), reached at the 250th training
epoch. For ∆max > 0.3, the training becomes unstable and leads to
sub-optimal results, as can be seen in Figure 4.3. 52

4.3 Test accuracy against sparsity rates. The charts collect performance
on the whuGAIT dataset [15] for different ∆max (reached either
at the 100th or 250th training epoch, tmax) and ∆ growth regimes.
The graphs also indicate the full-precision (W32A32) and binary
(W1A1) baselines (dotted lines). The best performance is located in
the top-right corner, corresponding to high classification accuracy
and high sparsity rates. 53

vii

4.4 Test accuracy against entropy rates. The charts collect performance
on the whuGAIT dataset [15] for different ∆max (reached either at
the 100th or 250th training epoch, tmax) and ∆ growth regimes. The
plot also indicate the full-precision (W32A32) and binary (W1A1)
baselines (dotted lines and star, respectively). The best performance
is located in the top-left corner, corresponding to high classification
accuracy and low entropy. Figure 4.3 is essentially an x-axis mirrored
version this plot. 54

4.5 ROC curves calculated using Euclidean distance for models trained
with triplet loss and cross-entropy loss, shown separately for each
quantization scheme. 58

4.6 Distributions of distances shown separately for matching and non-
matching test samples. The top row represents cross-entropy loss
training, while the bottom row represents triplet loss training. Match-
ing pairs are shown in blue (top) and green (bottom), while non-
matching pairs are shown in orange (top) and red (bottom). 59

4.7 T-SNE visualization of test set embeddings for the first 12 subjects.
Cross-entropy trained models are shown in the top row, while triplet
loss models are shown in the bottom one. 60

4.8 ROC curves calculated using Euclidean distance for models trained
with triplet loss and cross-entropy loss, shown separately for each
quantization scheme. Extension of Figure 4.5 with the addition of
the ROC curves for the models evaluated on the open set scenario
(green curve). 63

viii

Acronyms

Adam
adaptive moment estimation

AI
artificial intelligence

BNN
binary neural network

CNN
convolutional neural network

COS
cosine similarity

CS
closed set

DCNN
deep convolutional neural network

EUC
Euclidean distance

FC
fully connected

FP
full precision

x

FNN
feed-forward neural network

GPU
graphics processing unit

HAMM
Hamming distance

ML
machine learning

NN
neural network

OS
open set

RNN
recurrent neural network

ReLU
rectified linear unit

SGD
stochastic gradient descent

TNN
ternary neural network

xi

Chapter 1

Introduction

Recent advancements in artificial intelligence, particularly deep neural networks
(DNNs), have driven progress across diverse fields, from computer vision to natural
language processing. However, the high computational demands of these models
pose challenges for deployment on resource-constrained devices such as wearables,
which are limited by power and memory. Wearable devices, including smartwatches
and smart glasses, have surged in popularity and are equipped with sensors that
generate substantial data streams useful for various applications. Yet, the limited
computational resources of these devices make running complex DNNs in real time
a significant challenge. This has led to an increased focus on model compression
techniques that reduce model size and energy consumption, enabling efficient
deployment without sacrificing performance.

Biometric systems have become crucial for secure authentication and identifi-
cation, often outperforming traditional methods like passwords. These systems
leverage unique physiological and behavioral characteristics, providing a reliable
and user-friendly alternative for verifying identity. Among these modalities, gait
analysis has gained attention as a non-invasive biometric that can be captured
unobtrusively, making it particularly suitable for wearable devices. This study
investigates how neural network-based models can improve the accuracy and effi-
ciency of gait-based biometric systems by exploring quantization techniques that
optimize model performance within the constraints of wearable devices.

While neural networks have shown significant promise in biometric applications,
deploying these networks on edge devices requires carefully designed, resource-
efficient architectures. This thesis investigates specific neural network architectures
and training methods optimized for biometric recognition within memory and power
constraints. By optimizing model size and efficiency, we aim to make biometric
models viable for real-world, low-power scenarios.

To achieve this, we employ Ternary Neural Networks (TNNs), which combine
quantization with parameter pruning to reduce computational requirements. TNNs

1

Introduction

set a large proportion of weights to zero, resulting in a sparse model that maintains
performance while using significantly less memory and storage space. We propose a
ternarization framework that aims at achieving high sparsity rates while minimizing
the performance loss due to quantization. It operates by dynamically changing
the quantization function during training in order to push the model into higher
sparsity gradually during training. Our approach achieves high sparsity rates—often
exceeding 90%, with less than 10% of parameters active. This results in a ternary
parameter distribution with entropy significantly below 1 bit per symbol, making it
more compressible than traditional binary networks while also delivering superior
performance.

The specific biometric signal used in this study is gait, represented by Inertial
Measurement Unit (IMU) signals from a smartphone. Smartphones offer the
advantage of widespread availability and ease of use, as they can unobtrusively
capture gait data during daily activities without requiring dedicated equipment.
This allows for a more practical and scalable biometric system that leverages widely
available hardware. The models are tested in two scenarios: identification, where
the model must recognize individuals based on their unique gait patterns, and
authentication, where the goal is to verify a person’s identity by comparing their
gait against a stored reference.

This thesis is structured as follows: Chapter 2 provides an overview of neural
networks, biometric data, and network compression techniques, establishing the
foundation for our methods. Chapter 3 details the experimental setup, including
dataset preparation, network architecture, and training methods. Chapter 4
presents the results, comparing ternary quantization with baseline models and
evaluating model performance on key metrics. Finally, Chapter 5 summarizes the
findings and discusses future directions for enhancing efficient biometric systems in
resource-constrained environments.

2

Chapter 2

Background

In this chapter, we provide the foundational concepts and techniques essential
for understanding the methods and experiments conducted in this study. This
background knowledge sets the stage for the work that follows, covering the core
topics necessary to contextualize our approach and results.

We begin by introducing neural networks, which serve as the primary models
used in our work. This section covers the general architecture and training process
of neural networks, as well as key network types relevant to this study. Next, we
delve into biometric data, focusing on its role in identification and authentication
tasks. This section explores various biometric modalities, the unique challenges
they present, and their suitability for different applications. Lastly, we examine
compression techniques for neural networks, an important consideration for de-
ploying models in resource-constrained environments. Here, we review popular
methods for reducing model size and improving computational efficiency, including
quantization and pruning, which are relevant to the efficient deployment of models
trained on biometric data.

2.1 Neural Networks
Neural networks are computational models inspired by the structure and functioning
of the human brain. Comprising interconnected layers of nodes or "neurons," these
networks are designed to process information by emulating how biological neurons
transmit and process signals. Neural networks form the backbone of many AI
applications, particularly in areas that require pattern recognition, classification,
and decision-making. Unlike traditional algorithms based on rule-based logic,
neural networks learn directly from data, adjusting weights and biases to reduce
error and improve accuracy over time.

Applications of neural networks span a wide range of fields, including computer

4

Background

vision, natural language processing, healthcare, and finance. They are especially
valuable for tasks involving high-dimensional and complex data. Neural networks are
adept at identifying non-linear relationships and intricate patterns that traditional
methods may overlook, providing enhanced predictive power and automation
capabilities.

2.1.1 Origins and Evolution
The development of neural networks has been marked by significant advancements
over the decades. In the following, we report an exploration of key models that
contributed to the evolution of neural networks, along with essential formulas that
define their mechanisms.

McCulloch and Pitts Model (1943)

The McCulloch and Pitts model is often regarded as the first theoretical model
of a neuron, laying the groundwork for artificial neural networks [1]. Proposed by
Warren McCulloch and Walter Pitts, this model introduced a binary neuron that
activates based on a threshold rule, analogous to a step function. Each neuron
receives multiple binary inputs (0 or 1) from other neurons, with each connection
assigned an equal weight of one. If the sum of these inputs exceeds a certain
threshold, the neuron "fires" or activates.

The McCulloch and Pitts model can be represented mathematically as follows:

y =
1 if qn

i=1 xi ≥ θ

0 otherwise

where y represents the output, xi denotes each binary input, and θ is the threshold.
Despite its simplicity, this model introduced key concepts, such as thresholds and
binary activation, that remain foundational in modern neural networks.

Rosenblatt’s Perceptron (1957)

Frank Rosenblatt expanded on the concept of artificial neurons with the development
of the Perceptron, an algorithm capable of learning from data [2]. The perceptron
model is a single-layer neural network that can classify linearly separable data.
During the training process, the perceptron algorithm adjusts weights based on
errors in its output, allowing it to "learn" simple patterns.

The mathematical representation of the perceptron’s output is as follows:

y = sign
A

nØ
i=1

wixi + b

B

5

Background

where wi represents the weights associated with each input xi, b is a bias term,
and sign is the activation function that determines the output (usually 1 or -1 for
binary classification). Rosenblatt’s Perceptron introduced the concept of trainable
weights, which are adjusted to minimize classification errors during training.

Hopfield Networks (1982)

John Hopfield introduced a different type of neural network, known as the Hopfield
Network, designed for tasks involving associative memory [3]. Unlike the feed-
forward structure of perceptrons, Hopfield networks are recurrent, with neurons
interconnected in a way that each neuron influences every other neuron. Hopfield
networks aim to minimize an "energy" function, guiding the network to stable states
that represent stored patterns or memories.

The energy function E in a Hopfield network is given by:

E = −1
2

nØ
i=1

nØ
j=1

wijsisj

where si and sj are the states of neurons i and j, and wij is the weight connecting
them. The minimization of this energy function enables the network to reach stable
patterns, which can be used to retrieve stored memories, making Hopfield networks
useful for certain optimization and pattern recognition tasks.

Backpropagation and Multilayer Perceptrons (1986)

The introduction of the backpropagation algorithm in 1986 by David Rumelhart,
Geoffrey Hinton, and Ronald Williams marked a pivotal advancement in neural
networks, allowing for the training of multilayer perceptrons (MLPs) [4]. Unlike
single-layer perceptrons, MLPs consist of multiple layers of neurons, enabling them
to learn more complex patterns. The backpropagation algorithm calculates the
gradient of the error with respect to each weight, adjusting weights to minimize
error iteratively.

The weight update rule in backpropagation is given by:

wi ← wi − η
∂L

∂wi

where η is the learning rate, L is the loss function (typically Mean Squared Error
or Cross-Entropy for classification tasks), and ∂L

∂wi
represents the partial derivative

of the loss function with respect to weight wi. This algorithm allowed MLPs to
improve their performance through learning, driving significant advancements in
neural networks and enabling the development of deeper architectures.

6

Background

Convolutional Neural Networks (CNNs) (1989)

Yann LeCun introduced Convolutional Neural Networks (CNNs) in 1989, designing
them for image recognition tasks [5]. CNNs utilize convolutional layers with spatial
filters to capture local patterns and spatial hierarchies, enabling efficient processing
of high-dimensional data by sharing weights across regions. This architecture is
particularly effective for images, as it reduces the number of parameters required,
allowing CNNs to handle complex visual data with improved efficiency.

Core components of CNNs include convolutional layers for feature extraction,
pooling layers to reduce spatial dimensions, and fully connected layers for high-level
classification. Together, these components allow CNNs to excel in computer vision
applications such as image classification, object detection, and facial recognition.
CNNs’ capability to learn hierarchical spatial features has solidified their role as a
fundamental model in deep learning and AI.

2.1.2 Common Network Architectures
Neural network architectures consist of interconnected layers, each designed to
transform the input data through various learned parameters and activation func-
tions. Typically, these networks contain input, hidden, and output layers, where
each hidden layer processes input data through a series of transformations and
non-linear activation functions to capture complex patterns.

Activations play a critical role by introducing non-linearity, enabling networks
to approximate more complex functions beyond linear mappings. Some of the most
used activation functions are:

• ReLU: Rectified Linear Unit (ReLU) is one of the most widely used activation
functions in deep learning, particularly in convolutional networks, due to its
computational efficiency and ability to mitigate the vanishing gradient problem.
ReLU is defined as:

f(x) = max(0, x),

where values below zero are set to zero, introducing sparsity and reducing
computation in subsequent layers.

• HardTanh: HardTanh is a bounded, non-linear activation function that
limits the output within a fixed range, making it useful in situations where
controlled output ranges are needed, such as signal processing. The function
is defined as:

f(x) =

1 if x > 1
x if − 1 ≤ x ≤ 1
−1 if x < −1

7

Background

This bounded range helps prevent extreme output values, stabilizing learning
in certain network structures.

• Softmax: The Softmax activation function is commonly used in the output
layer of classification networks, where it converts raw output values into
probabilities that sum to one across classes. It is defined as:

f(xi) = exiq
j exj

,

where xi represents the output of each class, and the function scales these into
a probability distribution over classes.

Neural networks come in various architectures, each tailored to specific data
types and learning tasks. Different network structures, such as Feed-forward Neural
Networks (FNN), Recursive Neural Networks (RNN), and Convolutional Neural
Networks (CNN), are designed to handle unique data characteristics—whether
they be tabular, sequential, or spatial data. These architectures differ in how they
connect neurons, process information, and learn from data, allowing them to address
a wide range of applications. Below, we explore the structures, functionalities, and
use cases for each of these common neural network types.

Feed-forward Neural Network (FNN)

A Feed-forward Neural Network (FNN) is a simple yet foundational neural network
structure where information flows in a single direction from the input layer through
one or more hidden layers to the output layer. There are no loops or cycles, making
the network structure straightforward.

In FNNs, each layer is typically a fully connected layer, where each neuron in
a layer is connected to every neuron in the following layer. The output of each
neuron in a fully connected layer is computed as:

y = f

A
nØ

i=1
wixi + b

B
,

where wi represents the weights, xi the inputs, b the bias term, and f the activation
function applied to the weighted sum. This structure enables FNNs to learn
intricate representations, especially in tabular data contexts.

FNNs are commonly used in supervised learning tasks with structured data,
such as classification and regression problems, where spatial or sequential patterns
in data are less critical.

8

Background

Recursive Neural Network (RNN)

Recursive Neural Networks (RNNs) are designed to process sequential data, such
as time series or natural language, by maintaining an internal memory to capture
dependencies between sequence elements. Each layer in an RNN is connected in a
loop, allowing information to persist across time steps.

A simple RNN layer computes its output based on the current input and the
previous hidden state:

ht = f(Wxt + Uht−1 + b),
where ht is the hidden state at time t, xt the input at time t, W and U are weight
matrices, b is the bias, and f is the activation function, often a non-linear function
like tanh or ReLU. This formulation allows RNNs to capture dependencies across
time steps.

RNNs are widely used for applications where data has temporal dependencies,
such as language modeling, machine translation, and speech recognition, where the
order and context of data points play a critical role.

Convolutional Neural Network (CNN)

Convolutional Neural Networks (CNNs) are specialized for spatial data, especially
image and video analysis, by exploiting spatial hierarchies through convolutional
layers.

The convolutional layer is the fundamental building block of CNNs, where a
small filter (or kernel) slides over the input data to produce feature maps that
capture local patterns in the data. Each filter learns a unique set of weights
to detect specific features, such as edges or textures, within its receptive field.
Mathematically, the convolution operation for an input x and a filter w is defined
as:

yi,j =
Ø
m

Ø
n

xi+m,j+n · wm,n,

where yi,j is the output at position (i, j) in the resulting feature map, and wm,n

represents the filter weights. By convolving multiple filters across the input,
the convolutional layer creates multiple feature maps, each highlighting different
patterns or aspects of the input data.

Pooling layers reduce the spatial dimensions of feature maps X , preserving
essential information while reducing computational load. The two common types
of pooling are max pooling and average pooling, given a region x ∈ X with N
elements in it, the output corresponding to that region y can be defined as:

• Max Pooling: selects the maximum value within each pooling window:

y = Nmax
0

(xi).

9

Background

This operation helps highlight the most prominent features in each region,
making the model more robust to minor variations in the position of features.

• Average Pooling: computes the average of values within each pooling
window:

y = 1
N

NØ
i=1

xi.

This operation is useful for retaining more spatial information than max
pooling, which can be helpful for tasks requiring fine details.

Convolutional networks often conclude with fully connected layers that transform
the learned spatial features into a final classification or regression output. These
layers aggregate information from the convolutional layers, acting as a final decision-
making component.

CNNs are extensively used in computer vision tasks, including image classifica-
tion, object detection, time series processing, and segmentation, where they excel
in learning and extracting hierarchical spatial features from visual data.

2.1.3 Training Neural Networks
Training a neural network is the process of optimizing its parameters to minimize
the difference between predicted and actual outcomes. This involves multiple
steps, including forward propagation to produce predictions, evaluating prediction
accuracy using a loss function, and applying backpropagation to adjust weights
based on error gradients. To efficiently reach optimal parameter values, various
optimization techniques are used, along with regularization methods to prevent
overfitting.

Forward Propagation

Forward propagation is the process by which input data flows through a neural
network to produce an output prediction. In each layer, data is transformed by
layer-specific operations, such as convolutions in convolutional layers or weighted
summations in fully connected layers, followed by an activation function.

For a general layer l, the output a[l] can be represented as:

a[l] = f [l](L(a[l−1]; W [l])),

where f [l] is the activation function, L denotes the layer-specific transformation
(e.g., convolution, matrix multiplication), and W [l] represents the parameters (such
as weights or filters) of layer l.

The final output layer produces the network’s prediction, which is then evaluated
with a loss function to measure the prediction error.

10

Background

Loss Functions

The loss function quantifies the difference between the network’s predictions and
the actual target values. Minimizing the loss function is essential, as it directly
correlates with improving the network’s prediction accuracy. During training,
the network’s parameters (weights and biases) are adjusted to minimize this loss,
leading to better performance on unseen data.

• Mean Squared Error (MSE): Mean Squared Error (MSE) is commonly
used in regression tasks, measuring the average squared differences between
predicted and true values. It is given by:

MSE = 1
N

NØ
i=1

(yi − ŷi)2,

where yi is the true value, ŷi the predicted value, and N the number of samples.
MSE penalizes larger errors more heavily, which can be beneficial for achieving
high accuracy in regression tasks.

• Cross Entropy: Cross Entropy is widely used in classification tasks, as it
measures the difference between two probability distributions: the true labels
and the predicted probabilities. For a target class y and predicted probability
ŷ, cross-entropy loss is defined as:

Cross Entropy = −
CØ

i=1
yi log(ŷi),

where C is the number of classes. Cross Entropy encourages the model to
increase the likelihood of the correct class, leading to more confident and
accurate predictions.

• Triplet Loss: Triplet Loss is used in tasks requiring similarity learning, such
as facial recognition, to ensure that similar inputs are closer in the feature
space than dissimilar ones. It operates on triplets of anchor A, positive P ,
and negative N samples, with the loss defined as:

Triplet Loss = max(0, d(f(A), f(P))− d(f(A), f(N)) + m),

where d(·, ·) represents a generic distance function (e.g., Euclidean or cosine
distance), and m is a margin parameter. This loss encourages the distance
between A and P to be smaller than the distance between A and N by a
margin of α, promoting tighter clustering of similar inputs in the feature space.

11

Background

Backpropagation

Backpropagation is the algorithm used to minimize the loss function by iteratively
adjusting the network’s parameters. It calculates the gradient of the loss function
with respect to each parameter in the network, enabling efficient parameter updates
in the direction that minimizes the loss. This process involves two passes: the
forward pass computes predictions, while the backward pass propagates the loss
gradients back through the network.

Mathematically, backpropagation uses the chain rule to compute gradients for
each layer. For a weight W [l] in layer l, the gradient ∂L

∂W [l] is computed as:

∂L

∂W [l] = ∂L

∂a[l] ·
∂a[l]

∂W [l] ,

where ∂L
∂a[l] represents the gradient of the loss with respect to the activations at

layer l. This process continues for each layer until gradients for all parameters
are computed, enabling to update them according to the optimization method of
choice.

Optimization

Optimization in neural networks refers to the process of updating model param-
eters to minimize the loss function. By iteratively adjusting weights and biases,
optimizers guide the network toward a configuration that reduces prediction error.
Optimization algorithms use gradient information to determine the step size and
direction for each parameter update, balancing convergence speed and accuracy.
Two of the most used optimization methods are:

• Stochastic Gradient Descent (SGD): Stochastic Gradient Descent (SGD)
is a fundamental optimization algorithm that updates parameters based on
individual samples, rather than the entire dataset. The update rule for a
weight W in SGD is:

Wt = Wt−1 − η
∂L

∂W
,

where η is the learning rate, and ∂L
∂W

is the gradient of the loss with respect to
W . By processing one sample at a time, SGD introduces noise that can help
the network escape local minima, though it may converge slowly.

• Adaptive Moment Estimation (Adam): Adam is an adaptive optimization
algorithm that combines the benefits of SGD with momentum and adaptive
learning rates, making it effective for a wide range of tasks. Adam maintains

12

Background

two moving averages, mt and vt, for the gradients and squared gradients,
respectively, and updates each parameter W as follows:

mt = β1mt−1 + (1− β1)
∂L

∂W
,

vt = β2vt−1 + (1− β2)
A

∂L

∂W

B2

,

Wt = Wt−1 − η
mt√
vt + ϵ

,

where β1 and β2 are decay rates for the moving averages, η is the learning
rate, and ϵ is a small constant for numerical stability. Adam’s adaptive design
allows it to converge faster and more reliably in practice.

Regularization Techniques

Overfitting is a common problem in training neural networks, where the model
learns to perform exceptionally well on the training data but fails to generalize
to new, unseen data. This occurs when the model captures noise or random
fluctuations in the training data, leading to poor performance on the test set.

Regularization is a set of techniques used to prevent overfitting by adding
constraints or modifications during training. These techniques help the network
maintain simplicity and robustness, reducing its capacity to fit noise in the data. It
is essential for achieving models that generalize well and perform accurately on new
data, leading to more stable and reliable networks. Some of the most regularization
techniques are:

• L1 and L2: L1 and L2 regularization are techniques that add penalty terms to
the network’s loss function based on the magnitude of the weights, effectively
discouraging large weights. L1 regularization adds an absolute value penalty,
promoting sparsity by setting some weights to zero. The L1 penalty term is:

LL1 = λ
Ø

i

|wi|,

where λ is the regularization parameter controlling the penalty’s strength, and
wi represents individual weights.
L2 regularization, also known as Ridge regularization, penalizes the square
of the weight values, which discourages large weights but tends to keep all
weights small without driving them to zero. The L2 penalty term is:

LL2 = λ
Ø

i

w2
i .

13

Background

Both L1 and L2 regularization terms are added to the loss function to achieve
more generalized weight distributions, improving the model’s generalization
ability.

• Dropout: Dropout is a regularization technique where randomly selected
neurons are “dropped” or set to zero during each training iteration. This
prevents neurons from becoming overly reliant on specific patterns and forces
the network to learn more robust features. During training, a neuron is
retained with probability p and dropped with probability 1− p, defined as:

Output of neuron =
0 with probability (1− p)

original output/p with probability p

where dividing by p ensures that the expected output during training matches
the output during inference, when dropout is not applied. Dropout is especially
effective in large networks where overfitting is prevalent.

• Batch Normalization: Batch Normalization is a technique that normalizes
the input of each layer to have a mean of zero and a variance of one, reducing
internal covariate shift. This stabilizes the training process and allows the
network to use higher learning rates, which can also serve as an indirect form
of regularization. For a batch of inputs x, batch normalization transforms
each input as follows:

x̂ = x− µBñ
σ2

B + ϵ
,

where µB and σ2
B are the mean and variance of the batch, and ϵ is a small

constant to prevent division by zero. Additionally, two trainable parameters, γ
and β, scale and shift x̂ to allow the layer to learn an optimal representation:

y = γx̂ + β.

Batch Normalization helps reduce dependency on initialization and acts as a
regularizer by introducing noise from batch statistics, mitigating overfitting.

14

Background

2.2 Biometric Data
Biometric data refers to the measurement and statistical analysis of people’s unique
physical and behavioral characteristics. Unlike traditional identification methods
such as passwords or tokens, biometric systems leverage intrinsic human features
for identification, providing a robust and often more secure means of recognizing
individuals. These characteristics are typically challenging to replicate or steal,
thereby offering a higher level of assurance in authentication and security processes.

The significance of biometric data in modern security and authentication systems
has grown substantially, as these methods promise improved safety, reduced fraud,
and streamlined access control. By relying on the distinct attributes of individuals,
biometric authentication offers greater protection against unauthorized access.
Consequently, biometric systems are increasingly deployed across sectors where
security is critical, including financial services, healthcare, government facilities,
and personal devices.

Over recent decades, biometric technologies have evolved from experimental
applications to mainstream tools for identity verification. This progression has
been driven by advances in data capture, machine learning, and data storage, as
well as a growing acceptance of biometric methods. As a result, biometrics are
now embedded in a variety of industries, offering solutions for various security
challenges and enhancing user convenience.

2.2.1 Biometric Modalities
Biometric modalities are generally categorized into two main types: physiological
and behavioral. Physiological modalities rely on biological traits like fingerprints,
facial features, and iris patterns, which remain relatively constant over time.
Conversely, behavioral modalities focus on how individuals perform certain actions,
such as their voice characteristics or walking style, which can vary but are distinct
to each person. Each type of modality offers unique applications and is associated
with particular strengths and challenges.

Physiological

Physiological biometric modalities leverage biological features that are inherently
unique to individuals. These features are typically stable, providing reliable
identifiers that can be used across various applications.

• Fingerprint Fingerprint recognition is one of the oldest and most widely
adopted biometric methods. It analyzes the unique ridge patterns on an
individual’s fingers, which remain largely unchanged over a person’s lifetime.

15

Background

Fingerprint systems are commonly used in smartphones, secure entry systems,
and law enforcement due to their high accuracy and cost-effectiveness.

• Face Facial recognition technology analyzes facial features such as the distance
between eyes, nose shape, and jawline. Facial biometrics are advantageous for
non-intrusive, contactless authentication, making them suitable for surveillance,
personal devices, and border control. However, face recognition systems can
be vulnerable to variations in lighting, pose, and facial expressions, which may
affect accuracy.

• Iris, Retina Iris and retinal scanning are highly accurate biometric modalities
that analyze unique patterns in the eye. Iris recognition captures the intricate
structures of the iris, which remain stable throughout life, whereas retinal
scanning maps the unique patterns of blood vessels at the back of the eye.
These methods are frequently used in high-security environments, as they offer
a high level of precision but may require more complex equipment and user
cooperation.

Behavioral

Behavioral biometrics focus on the unique ways individuals perform certain actions,
which are often less stable over time compared to physiological traits. These
biometrics add an extra layer of security by analyzing habits that are difficult to
replicate.

• Voice Voice recognition analyzes an individual’s speech patterns, including
pitch, tone, and rhythm. It has become increasingly common in customer
service and mobile applications, as it allows hands-free interaction. However,
voice biometrics face challenges with accuracy due to background noise, health
conditions affecting vocal quality, and the potential for imitation.

• Gait Gait analysis identifies individuals based on their unique walking patterns.
This modality can be captured from a distance and does not require active
cooperation from the individual, making it useful for surveillance. However,
gait can be affected by temporary factors like injury or mood, posing challenges
for consistent identification.

Others

Emerging biometric modalities, such as vein pattern recognition and electrocardio-
gram (ECG) signals, are gaining attention for their potential in secure authenti-
cation. Vein pattern recognition uses infrared imaging to map the vein patterns
beneath the skin, which are unique to each individual and difficult to replicate.

16

Background

ECG biometrics capture the heart’s electrical activity, providing a unique and
continuous form of authentication that is both physiological and behavioral. These
technologies are still developing but hold promise for future applications in medical
and high-security environments.

2.2.2 Applications
Biometric technologies have found numerous applications across various sectors,
where their unique identification capabilities provide advantages over traditional
methods. By utilizing inherent physiological and behavioral traits, biometrics
offer enhanced security, user convenience, and efficiency, which can be particularly
advantageous in sensitive or high-demand environments. Below are several key
areas where biometric applications are gaining traction.

Health In healthcare, biometric systems are used to securely manage patient
records, streamline access to medical information, and authenticate staff. For
example, hospitals implement fingerprint or facial recognition systems to ensure
that only authorized medical personnel access restricted areas or sensitive data.
Biometrics also aids in patient identification, reducing errors in treatment by
confirming the correct patient identity, particularly in emergency or high-traffic
settings. Additionally, emerging biometrics like vein and ECG recognition are being
researched for their potential to continuously monitor patients, adding a new layer
to remote healthcare solutions.

Security Security is one of the primary fields where biometrics have become
essential, offering reliable solutions for identity verification and access control. For
instance, fingerprint and iris scanning are widely used in secure entry systems
for government buildings, airports, and financial institutions, ensuring that only
authorized individuals gain entry. Facial recognition is also extensively deployed in
surveillance, enabling quick identification of individuals in public spaces or during
large events. Furthermore, biometric authentication in personal devices, such as
smartphones and laptops, has added an extra layer of security to protect users’
personal data.

Transportation In the transportation sector, biometrics enhance both security
and passenger convenience. Airports, for example, utilize biometric boarding
systems where passengers use facial recognition to verify their identity, expediting
the boarding process. Biometric systems are also applied in immigration control,
where iris and fingerprint recognition streamline the identification process, reducing
wait times and increasing security. Public transportation systems in several cities
now experiment with biometric fare systems, where commuters can use fingerprint

17

Background

or facial recognition for seamless ticketing, bypassing the need for physical passes
or tickets.

IoT The integration of biometrics with the Internet of Things (IoT) opens up
innovative possibilities for smart home and connected device security. Biometric
authentication in IoT applications can control access to smart homes, cars, and
personal devices through fingerprint, facial, or voice recognition, making these
devices more secure and user-friendly. For instance, a smart lock system might use
facial recognition to allow household members or trusted individuals to enter, while
denying access to unknown persons. Biometrics also enhance security in wearable
IoT devices, like fitness trackers or smartwatches, which can use ECG or fingerprint
data for user authentication, providing access only to authorized individuals.

2.2.3 Biometric Systems
A biometric system is a specialized pattern recognition system designed to automat-
ically recognize individuals based on their unique physiological and/or behavioral
characteristics. As Jain et al. (2004) discuss [6], these systems operate by capturing
biometric data from individuals, extracting features, and comparing them against
stored templates in a database. This approach ensures secure, efficient identification
or verification by analyzing distinct personal attributes, enabling authentication
processes based on "who a person is" rather than "what they possess" (e.g., an ID
card) or "what they know" (e.g., a password).

Biometric systems operate in two primary modes: authentication and identifica-
tion. In authentication (or verification) mode, the system performs a one-to-one
comparison, confirming a user’s claimed identity by matching their biometric data
against a stored template associated with that identity. In contrast, the identifica-
tion mode involves a one-to-many search across a database of biometric templates
to identify an individual without requiring them to claim an identity.

Identification Identification mode in biometric systems involves determining
an individual’s identity by comparing their biometric data against multiple stored
templates, without any prior identity claim. Formally, given an input feature vector
x, the system must determine the identity i from a set {1, 2, . . . , N}, where N is
the number of enrolled users, by maximizing the similarity function S(x, ti) over
all templates ti. Mathematically, this can be expressed as:

identify i such that max
j∈{1,2,...,N}

S(x, tj) ≥ τ,

where τ is a predefined threshold that determines the acceptance level for a
match. Identification systems are critical in contexts requiring high security, as

18

Background

they establish identity through a one-to-many search, making them suitable for
both positive (e.g., airport security) and negative recognition applications (e.g.,
identifying a person against criminal databases).

Authentication Authentication, also referred to as verification, is a process in
which the biometric system validates a user’s claimed identity by performing a
one-to-one comparison with the stored template associated with that individual.
If a user claims to be individual i, the system matches the input feature vector x
with the template ti and accepts the claim if the similarity score S(x, ti) meets or
exceeds a threshold τ :

verify identity if S(x, ti) ≥ τ.

Authentication is typically employed in scenarios where positive recognition is
required, such as secure access control, where the aim is to prevent multiple people
from using the same identity. This mode allows systems to offer reliable identity
verification while ensuring user convenience and security, crucial in both commercial
and personal applications.

Approach

The approaches used in biometric systems have evolved significantly over recent
years, moving from traditional pattern-matching methods to more advanced machine
learning techniques. This shift has been driven by a need for higher accuracy,
robustness, and adaptability in diverse application environments. While traditional
methods provided foundational solutions, modern deep learning approaches have
improved the precision and scalability of biometric systems, despite introducing
new challenges related to computational demands.

Traditional Approach Traditional biometric systems primarily relied on statis-
tical and pattern recognition techniques, using fixed feature extraction methods
and simple classifiers. Examples include fingerprint recognition systems based on
minutiae matching, where ridge endings and bifurcations in fingerprint images are
compared, or facial recognition systems using geometric features like distances
between facial landmarks (e.g., eyes, nose, and mouth). These methods were often
implemented with algorithms such as principal component analysis (PCA) for
dimensionality reduction or linear discriminant analysis (LDA) for enhancing class
separability.

However, these traditional approaches come with notable limitations. They
typically lack flexibility in handling variations in data, such as changes in lighting,
pose, or noise, which are common in real-world environments. Furthermore, they
may fail to generalize effectively across diverse datasets or adapt to new data,

19

Background

requiring manual adjustment and optimization of feature extraction methods for
different biometric traits, which limits scalability.

Deep Learning Approach The deep learning approach represents a modern shift
in biometric recognition, leveraging neural networks to automatically learn relevant
features from raw biometric data. Deep learning models, especially convolutional
neural networks (CNNs), have proven highly effective in facial recognition, iris
detection, and fingerprint analysis due to their capacity to learn complex patterns
directly from data, minimizing the need for manual feature engineering. These
networks enable the creation of high-dimensional embeddings that can distinguish
individuals with exceptional precision and resilience to variations, such as lighting
and pose.

Deep learning-based biometric systems operate by feeding raw or pre-processed
biometric data into a network, which processes it through multiple layers, each
extracting increasingly complex features. For instance, in face recognition, a CNN
model learns low-level features such as edges in the initial layers and progressively
builds more abstract representations, capturing unique aspects of an individual’s
face in the deeper layers. This approach results in robust feature vectors that
enable accurate and efficient matching against stored templates.

This method outperforms traditional approaches in terms of accuracy, adapt-
ability, and scalability. Deep learning models are particularly adept at handling
complex variations in data, as they learn hierarchical representations that make
them resilient to environmental changes. Additionally, deep learning systems often
achieve higher accuracy with larger datasets, making them ideal for large-scale bio-
metric applications where consistent accuracy is critical. Their ability to generalize
across varied datasets has made deep learning a standard in modern biometric
solutions.

Despite their advantages, deep learning approaches present challenges, primarily
in terms of computational complexity. Training and running deep networks require
significant processing power and memory, making them less suitable for resource-
constrained devices, such as embedded systems or mobile platforms. Moreover,
their high storage and power requirements complicate deployment on devices where
low latency and efficiency are essential. Addressing these limitations has led to
recent research in model compression and optimization techniques, aiming to make
deep learning approaches more compatible with embedded applications, which will
be discussed in the next section.

20

Background

2.3 Model Compression
Model compression is essential for deploying deep neural networks in real-world
applications, particularly when resource constraints are a concern. Large neural
networks often require significant memory, computational power, and energy, which
can limit their deployment on devices with limited resources, such as mobile
and embedded systems. Compression techniques aim to reduce the size and
computational complexity of these networks without significantly degrading their
performance. By compressing a network, we can make it more efficient, enabling
faster inference and reducing memory usage.

Compression is particularly beneficial for biometric data processing. Biometric
models, which often involve high-dimensional data such as fingerprints, iris scans,
and gait patterns, require efficient inference to enable real-time authentication and
identification on resource-constrained devices. Compressing these models reduces
latency and power consumption, making biometric data processing feasible on
mobile and embedded platforms.

In this section, we review several compression techniques that can reduce the size
of neural networks, including pruning, parameter quantization, and other advanced
methods [7].

2.3.1 Pruning
Pruning is a model compression technique that reduces the number of parameters
in a neural network by removing less significant weights or neurons. By eliminating
weights that have minimal impact on the model’s performance, pruning can sig-
nificantly reduce model size and improve computational efficiency. The goal is to
maintain accuracy while reducing the network’s footprint, making it more efficient
for deployment in environments with resource constraints.

Unstructured Pruning

Unstructured pruning removes individual weights based on their importance, leaving
the network’s structure largely unchanged. In their seminal work, LeCun et al. [8]
introduced this concept, demonstrating that removing certain weights has little
impact on the model’s accuracy. Unstructured pruning is typically followed by a
process of retraining, as outlined by Han et al. in [9], to recover any accuracy lost
during pruning.

Regularization techniques, such as L1 and L2 regularization, are often employed
during training to encourage sparsity, further enhancing the effects of pruning.
Additionally, energy metrics can be used to guide pruning, as proposed by Yang et
al. [10], which helps in designing energy-efficient models. However, unstructured

21

Background

pruning introduces irregular memory access patterns, which can be inefficient on
certain hardware architectures.

Structured Pruning

Structured pruning is a model compression technique that removes entire structures
within a neural network, such as neurons, filters, channels, or layers. Unlike
unstructured pruning, which removes individual weights in an irregular pattern,
structured pruning targets groups of parameters, resulting in a more organized and
hardware-friendly network architecture. By reducing larger structures, structured
pruning decreases both parameter count and computational complexity, making
neural networks more feasible for resource-limited devices.

This technique is often preferred over unstructured pruning because it preserves
the overall structure of the network, which enables more efficient processing on
hardware like GPUs or mobile processors. The regular pattern of parameter removal
facilitates better memory access patterns, minimizing irregular memory access that
could hinder inference speed. Additionally, structured pruning aligns well with
hardware accelerators, which benefit from dense computations and regular network
patterns.

Structured pruning can be applied at different levels of network architecture,
each with distinct advantages. Neuron pruning removes entire neurons based
on their impact, often applied to fully connected layers to simplify computation.
Filter or kernel pruning focuses on removing redundant filters in convolutional
layers, reducing the computational load in CNNs [11] [12]. Channel-based pruning
eliminates feature map channels, saving memory while preserving layer connectivity
[13]. Finally, layer-based pruning removes entire layers or blocks, which can
dramatically reduce model size and computation. These structured pruning methods
offer adaptable strategies to create compressed models suited for various hardware
and efficiency requirements.

2.3.2 Parameter Quantization
Parameter quantization is a model compression technique that reduces the precision
of weights and activations by representing them with fewer bits. By limiting
the number of possible values, quantization reduces memory requirements and
computational load, making neural networks more suitable for deployment on
resource-constrained devices, such as mobile and embedded systems. Quantization
is particularly useful in applications requiring low latency and power efficiency, as
it enables faster inference by simplifying arithmetic operations.

Quantization-aware training (QAT) is a technique where the model is trained to
accommodate quantized parameters from the beginning. During QAT, quantization

22

Background

effects are simulated in each training step, allowing the model to learn to maintain
accuracy despite lower precision. This approach minimizes accuracy loss, as the
network adapts to quantization during the learning process, making it ideal for
high-stakes applications where model performance cannot be compromised.

Post-training quantization (PTQ), on the other hand, involves training a model in
full precision and then applying quantization to the trained weights and activations.
PTQ is less computationally intensive than QAT and is often faster to implement,
but it may result in a slight accuracy drop due to the model’s lack of adaptation
to quantized representations during training. PTQ is useful for models that can
tolerate minor accuracy losses, offering a quick method to reduce model size and
complexity after training.

In this thesis, we adopt a standard QAT method as a baseline to compare with
our proposed ternarization approach, allowing us to assess whether ternarization
provides meaningful improvements in sparsity and efficiency while maintaining
accuracy. The following sections offer a general summary of binarization and
ternarization methods, while Chapter 3 provides a detailed explanation of the
specific methods considered in this study.

Binary Quantization

Binary quantization is a form of quantization-aware training where weights and
activations are restricted to two possible values, typically {−1, +1}. This method
minimizes memory and computational requirements by converting standard multi-
plications into simpler binary operations, which makes binary quantization highly
efficient for embedded and low-power devices.

In binary quantization, the model is trained with binarized weights and activa-
tions, while the straight-through estimator (STE) is used during back-propagation
to approximate gradients [14]. The STE allows gradients to flow through the binary
layers despite the non-differentiable binarization step. This approach ensures that
the network can learn meaningful representations even under extreme quantization,
making binary quantization a powerful tool for resource-limited environments.

Ternary Quantization

Ternary quantization is similar to binary quantization but allows weights and
activations to take on three possible values, typically {−1, 0, +1}. The inclusion of
zero enables increased sparsity, which can lead to additional memory savings and
power efficiency, as zero-valued weights can be pruned from the network structure,
further reducing computational load.

Compared to binarization, ternary quantization provides more flexibility and
often retains higher accuracy due to the added zero value. This additional degree

23

Background

of freedom allows the model to approximate complex functions more closely than a
purely binary model.

2.3.3 Other Methods
Beyond pruning and quantization, several other model compression techniques
exist that aim to reduce model complexity while maintaining performance. These
methods provide alternative approaches to creating lightweight models, particularly
useful when specific hardware requirements or model architectures do not align
well with pruning or quantization. Techniques like low-rank decomposition and
knowledge distillation offer different strategies for compressing models by focusing
on the internal representations of parameters and outputs.

Low-rank Decomposition

Low-rank decomposition compresses a neural network by approximating large
weight matrices with lower-rank representations. By factoring weight matrices
into products of smaller matrices, low-rank decomposition reduces the number of
parameters in dense layers, which is particularly effective for compressing fully
connected layers and certain convolutional layers. This decomposition leverages
the idea that the full rank of a matrix may not be necessary to capture the most
informative features within the data.

One of the main advantages of low-rank decomposition is its ability to signifi-
cantly reduce the parameter count and computational load, especially for large-scale
networks. However, it may lead to a slight performance loss if the rank is reduced
too aggressively, as lower-rank approximations may fail to capture some details
in the data. Low-rank decomposition is most effective in cases where network
redundancy is high, making it ideal for tasks with large amounts of data and dense
model structures but less suitable for tasks where high-rank representations are
crucial.

Knowledge Distillation

Knowledge distillation is a compression technique where a smaller "student" model
is trained to mimic the behavior of a larger "teacher" model. Introduced by Hinton
et al., this method involves using the teacher model’s output, often softened by
temperature scaling, as labels for the student model. By learning from the teacher’s
output distribution, the student model can achieve performance levels close to the
teacher’s, despite having significantly fewer parameters.

The primary advantage of knowledge distillation is that it enables the student
model to inherit the performance of a larger model without needing its full com-
plexity, making it highly suitable for resource-constrained environments. However,

24

Background

knowledge distillation may require extensive computational resources for training,
as the student model must learn the teacher’s nuanced output behavior. Addi-
tionally, this method depends heavily on the quality of the teacher model; if the
teacher model has limitations, these may be transferred to the student model.

25

Chapter 3

Methodology

In this chapter, we outline the methodologies and experimental setups used to
investigate the effectiveness of neural network models for biometric tasks. This
chapter provides a detailed overview of the data, network architectures, training
approaches, and quantization techniques central to our approach.

We begin by describing the dataset and data types considered in this study,
including the specific biometric features used for identification and authentication.
This section establishes the basis for subsequent experiments and contextualizes
the data requirements for effective model training. Next, we introduce the basic
network topology employed across our experiments, detailing the foundational
architecture on which our models are built. This consistent structure serves
as a comparative baseline for evaluating different quantization methods. Then,
we present the binary training approach, which serves as the initial baseline for
quantized models. Binary quantization reduces the model weights to two levels,
providing a benchmark for efficiency and performance. Further on, we introduce
our proposed ternary quantization method, which extends the binary approach
by allowing weights to take on three discrete values. This section details the
implementation of ternarization within the network and highlights its potential
advantages in terms of model efficiency and performance. Finally, we formalize
the biometric tasks of identification and authentication, explaining each task’s
requirements, evaluation metrics, and relevance to the study.

3.1 Dataset
While the proposed ternarization method could be applied to various biometric
signals, this thesis focuses on smartphone IMU data collected from multiple subjects
in an unconstrained environment for gait analysis. The dataset utilized for this
study is Dataset #1 from the whuGAIT dataset collection [15]. This section

27

Methodology

outlines the data format, the collection process, and the steps involved in data
preprocessing.

3.1.1 Data Format
The dataset contains input samples x ∈ X in the form of 6×T matrices, representing
the evolution of three-axis accelerometer and three-axis gyroscope readings over
time. Specifically, we have:

x = (x1 x2 . . . xT −1 xT)
xt = (axt ayt azt gxt gyt gzt)T

where T is the number of readings in each sample, axt, ayt, and azt represent
the accelerometer readings along the X, Y , and Z axes respectively for the t-th
reading, and similarly, gxt, gyt, and gzt represent the gyroscope readings. Each
sample x is associated with a label y ∈ {1, 2, . . . , S}, indicating which of the S
subjects the sample belongs to.

3.1.2 Data Collection
The whuGAIT dataset was collected by having each subject install an Android app
on their smartphone, which continuously recorded IMU signals in the background
at a sampling rate of 50 Hz while they performed everyday activities, such as
commuting, working, or cooking, with no specific restrictions on their behavior.

As a result, the recorded data streams include both walking and non-walking
sessions without any predetermined structure. Several preprocessing steps are
required to achieve the data format described in Section 3.1.1.

3.1.3 Preprocessing
Semantic Partition Since only walking data is relevant for gait analysis, the first
preprocessing step involves partitioning each inertial time series into walking and
non-walking sections. This can be accomplished using a one-dimensional semantic
segmentation DCNN inspired by U-Net [15]. The network can be trained on a
small subset of the collected data that can be manually labeled with minimal time
investment, as only a few labeled samples are needed. Additionally, the segments
of the raw data stream where a subject was walking can be easily identified by
visual inspection, making the labeling process straightforward.

Figure 3.1 illustrates the network architecture in detail. The raw inertial time
series are divided into samples made of 1024 readings, which, at a sampling rate
of 50 Hz, correspond to about 20 seconds of data. Then each input sample goes
through a compression network which consists of blocks composed of two 1× 16

28

Methodology

convolution layers with ReLU activations, followed by 2× 2 max-pool layers with
stride 2 that act as down-samplers. The expansion network is composed of similar
blocks where the max-pooling layer is replaced by an up-convolution layer. The
number of channels in the feature maps is doubled with every down-sample and
halved with every up-sample. The resulting output is a 1 × 1024 array used to
identify parts of the sample likely representing walking.

Figure 3.1: DCNN used to partition walking and non-walking sections; originally
from [15].

29

Methodology

Gait Cycle Partition Once the walking sections are extracted by the segmenta-
tion network, they are subsequently divided into separate steps, where a step is
defined as the interval between two consecutive ground contacts of the same foot.
Without loss of generality, each ground contact can be detected by identifying local
maxima in the magnitude of the acceleration vector, ∥at∥ =

ñ
a2

x,t + a2
y,t + a2

z,t,
as shown in Figure 3.2. The magnitude is used instead of individual axis values
because the smartphone orientation is unknown. The peak detection algorithm
is calibrated by analyzing a small subset of samples to determine appropriate
amplitude and cycle time thresholds for each subject.

Figure 3.2: Acceleration vector module evolution over time. Used to detect steps
cycles [15].

Linear Time Interpolation Once the beginning of each step is annotated,
each input sample x is generated by extracting slices that contain two consecutive
steps and fitting them into an array of size 128 using linear interpolation. It is
important to note that this two-step slicing method is specific to Dataset #1,
which is the dataset used for the experiments. The samples in the other datasets
are generated using different methods. For example, Dataset #2 creates fixed-
length slices starting from the beginning of each step annotation, while Dataset
#3 employs fixed-length slices without considering step annotations.

30

Methodology

3.2 Network Topology

Figure 3.3: Base network architecture used for identification and authentication
tasks. Convolutional layers are swapped for quantized ones when testing compressed
models. The last FC layer is discarded when extracting embeddings for the
authentication tasks.

Figure 3.3 illustrates the network architecture that serves as the foundation for
the models discussed in the following sections. This architecture consists of two
main components: a convolutional section followed by a fully connected layer.

The convolutional section contains four blocks, each composed of a convolutional
layer, batch normalization, and an activation function. Max-pooling is applied after
the first and third blocks, using a 1× 2 max-pooling layer with a stride of 2, which
reduces the size of the feature maps by half along the time dimension. The number
of channels increases from 32 to 128 as data progresses through the network. The
first three convolutional layers use one-dimensional kernels of varying sizes (1×K)
to operate along the time dimension. The fourth layer, however, combines both
the 3-axis accelerometer and 3-axis gyroscope data using a 6 × 1 kernel, which
operates along the spatial dimension (size 6). As a result, an input of size 6× 128
is reduced to a feature map of size 1× 16, with a depth of 128. These feature maps,
now of size 128 × 1 × 16, are flattened into arrays of size 128 × 1 × 16 = 2048.
These arrays are then passed into the final fully connected layer, whose output size
is customizable based on the task, such as matching the number of classes in a
classification problem.

When evaluating quantized models, the network architecture remains largely
unchanged. The main difference lies in the activation function: the full-precision
model uses ReLU, whereas the quantized models employ HardTanh, as recommended
in previous studies [16]. Additional considerations specific to quantized training
are necessary; these will be discussed in detail in the following section (3.3).

31

Methodology

3.3 Quantized Training
The network described in Section 3.2 contains approximately 337K parameters,
which are typically represented using 32-bit floating-point precision. As a result,
running inference for a single sample requires millions of floating-point multiplica-
tions. While this is manageable for devices equipped with specialized hardware,
such as GPUs, which support heavy parallel processing, deploying such a network on
power- and computation-constrained devices—like wearables or IoT devices—poses
significant challenges [17]. As explained previously, several compression methods
have been developed to address the challenges posed by computational and storage
constraints by reducing the computational burden on the hardware. This thesis
investigates the effectiveness of quantization as a compression method when ap-
plied to IMU signals for gait authentication and identification. Specifically, we
propose a novel method for ternarization and compare its performance with both
a full-precision baseline and more conventional quantization techniques, such as
binarization.

In binary networks, weights and activations are limited to {−1, +1}. In contrast,
ternary networks allow weights to take the additional value of 0, which enables
further memory reduction by eliminating zero-weighted neurons. This makes ternary
architectures particularly appealing for applications where maximizing storage
compression is essential. A straightforward approach to obtaining a quantized
network involves taking a fully-trained, full-precision model and applying a typical
quantization function. However, this would result in quantized weights that are too
different from the optimal ones learned during training, leading to a significant loss
in performance. To address this issue, it is necessary to incorporate quantization
during the training process itself. By doing so, the network can adapt to the
quantization constraints and retain better performance. The following sections
describe the binarization method used to train a quantized baseline model. This is
followed by the introduction of a custom ternarization method, specifically designed
to produce a highly compressible model by encouraging a large portion of the
weights to be set to zero.

3.3.1 Binary Training
While it is possible to implement Binarized Neural Networks (BNNs) using full
precision activations, in this study we quantize both the weights and activations
to maximize efficiency, which is crucial for resource-constrained devices. The sign
quantization function used is defined as follows:

xb = Binarize(x) = Sign(x) =
+1 if x ≥ 0,

−1 otherwise.
x ∈ R (3.1)

32

Methodology

Here, x is a floating-point value (either a weight W or an activation a), and xb

represents its binarized version (denoted as W b or ab). Since the derivative of the
quantization function 3.1 is zero for all input values, standard back-propagation
cannot be used to accumulate gradients in the weights, as these gradients would
also be zero everywhere. To understand this issue, let us consider a generic layer
k with weights Wk. During the forward pass, this layer receives the quantized
activations from the previous layer, ab

k−1, as input and produces the activations for
the current layer, ak = W b

k · ab
k−1. These activations will then be quantized before

being forwarded to the next layer, ab
k = Sign(ak).

During back-propagation, the gradient is computed as:

∂C

∂ak

= ∂C

∂ab
k

· ∂ab
k

∂ak

or equivalently gak
= gab

k
· ∂ab

k

∂ak

where gab
k

= ∂C
∂ab

k

is the gradient of the cost function C with respect to the quantized

activation ab
k. However, since ∂ab

k

∂ak
is the derivative of the sign function, which is

always zero, the gradient gab
k

cannot propagate any further, effectively blocking the
update of the weights. To overcome this issue, we need a method to calculate the
gradient gak

that bypasses standard back-propagation for the quantization function.
In [14], Bengio studied several methods for estimating gradients in stochastic

discrete neurons and found that the "straight-through estimator" (STE), originally
introduced in Hinton’s lectures [18], resulted in faster training. The method used
in this study was first presented by Courbariaux et al. in [19], where they adapted
the STE for use in Binarized Neural Networks (BNNs) that use a deterministic
quantization function, such as the sign function. This approach approximates the
gradient gak

as:

gak
= gab

k
1|ak|≤1

where 1|ak|≤1 is the indicator function, which equals 1 when |ak| ≤ 1 and 0 otherwise.

Instead of using the derivative of the sign function, ∂ab
k

∂ak
, we simply set gak

= gab
k

when the absolute value of the neuron’s activation is relatively small (i.e., |ak| ≤ 1).
Conversely, we set gak

= 0 when the neuron’s activation is large (i.e., |ak| > 1).
This introduces a saturation effect, where neurons that are strongly activated,
either positively or negatively, do not propagate their gradient backward. This
behavior is equivalent to back-propagating the gradient through a HardTanh(ak)
function, whose derivative is 1|ak|≤1, as illustrated in Figure 3.4.

33

Methodology

Algorithm 1 Binary training. C is the cost function for mini-batch, the functions
Binarize(· · ·) and Clip(· · ·) specify how to binarize and clip weights, L is the
number of layers, Update(· · ·) is the optimization method of choice (such as SGD
or Adam. BatchNorm layers and layer biases bt are omitted for clarity.
Require: a mini-batch of (a0, a∗) (inputs, targets), previous parameters Wt

(weights) and learning rate η.
Ensure: updated weights Wt+1.

1: ▷ 1. Forward propagation
2: for k = 1 to L do
3: W b

t ← Binarize(Wt)
4: if k = 1 then
5: ak ← ak−1 ·W t

b ▷ Do not binarize inputs
6: else
7: ak ← ab

k−1 ·W t
b

8: end if
9: if k /= L then

10: ab
k ← Binarize(ak)

11: end if
12: end for
13: ▷ 2. Backward propagation
14: Compute gaL

= ∂C
∂aL

knowing aL and a∗

15: for k = L to 1 do
16: if k /= L then
17: gak

← gab
k
◦ 1|ak|≤1

18: end if
19: gab

k−1
← gT

ak
·W b

k

20: gW b
k
← ab

k−1
T · gak

21: end for
22: ▷ 3. Parameter update
23: for k = 1 to L do
24: Wt+1 ← Clip(Update(Wt, η, gW b

t
), −1, 1)

25: end for

34

Methodology

Figure 3.4: STE forward versus backward pass difference [16].

Forward Pass During the forward pass, for each of the L layers, we take the
binarized activations from the previous layer and combine them with the binarized
weights, according to the layer type (i.e., convolutional or linear). However, we do
not binarize the input layer a0 or the output layer aL, as doing so would result in
excessive loss of information.

Backward Pass During the backward pass, for each layer, we take the gradient
flowing from the next layer, gb

a, and bypass the quantization function’s chain rule
by directly setting ga = 1|ak|≤1 as explained earlier. This modified gradient is
then propagated back to the previous layer using the chain rule: gab

k−1
← gT

ak
·W b

k ,
and similarly into the weights: gW b

k
← ab

k−1
T · gak

. It is important to note that
while both the weights W b

k and activations ab
k are quantized, their corresponding

gradients, gW b
k

and gab
k
, are not. Therefore, these gradients must be accumulated

in full precision. This does not pose any issues since these full-precision variables
are only needed during training and are discarded afterward.

Parameter Update During optimization, we update the full-precision weights
Wt+1 using the gradients accumulated from the binarized weights, gW b

t
. This is

necessary because making small adjustments to W b
t directly would not lead to

meaningful changes in the binarized weights. After each update, the full-precision
weights Wt+1 are clamped to the interval [−1, 1] to ensure they do not drift too
far from their binarized counterparts. This procedure is compatible with various
optimization strategies, such as ADAM or SGD, as they only require the parameter
values and their corresponding gradients.

35

Methodology

3.3.2 Ternary Training
Ternary networks offer an advantage over binary networks because weights can
also take the value 0, allowing for further model compression and enabling faster,
more power-efficient inference. If a large portion of the weights are zero, these
weights can be removed from the network topology when deploying the model
on resource-constrained devices, reducing both storage and computational costs.
Therefore, during training, it is crucial to control the percentage of zero weights to
strike the right balance between compression and performance.

To train the ternary model, we use the same approach as for the binary network,
with the primary difference being the quantization function, which is adapted to
allow weights and activations to be set to zero. Specifically, we use the following
ternary quantization function:

xq = Ternarize(x; ∆) =

+1 if x > ∆,

0 if |x| ≤ ∆,

−1 if x < −∆.

where x is a floating-point value (which could be a weight W or an activation a),
and xq represents its ternarized version (denoted as W q or aq). The threshold value
∆ is a hyperparameter that controls the number of weights set to zero, directly
affecting the sparsity rate. A higher ∆ increases the number of weights quantized to
zero, allowing for greater compression but potentially limiting the model’s learning
capacity. Since the derivative of the quantization function is still zero for all input
values, we use the same straight-through estimator (STE) as described for binary
training in 3.3.1. This approach can be easily adapted to ternary networks, as the
gradient estimation is not dependent on the specific quantization function used.
As outlined in Algorithm 2, the rest of the training procedure remains mostly
unchanged, with two major exceptions.

Delta Regimes

Initial experimental results suggested that increasing the quantization threshold ∆
during training, instead of keeping it constant, could lead the model to perform
better while achieving higher sparsity rates. Hence, we define the growth schedule
for ∆t as:

∆t = min (∆0 + (∆max −∆0)f(t/tmax), ∆max) ,

where ∆0 is the delta value at epoch 0, ∆max is the threshold value at epoch tmax,
and f is a profile function that is defined in the intervals [0, 1] → [0, 1]. The
function f can be used to control the growth of ∆ from epoch 0 to tmax. After
reaching tmax, the threshold remains constant at ∆max.

The growth profiles taken into consideration in this study are:

36

Methodology

• Linear: constant growth

flinear(x) = x ∀x ∈ [0, 1]

• Square: slow ramp up

fsquare(x) = x2 ∀x ∈ [0, 1]

• Square Root: fast ramp up with f ′(0) = +∞

fsqrt(x) =
√

x ∀x ∈ [0, 1]

• Logarithmic: fast ramp up with f ′(0) = 1

flog(x) = log(x + 1)/ log(2) ∀x ∈ [0, 1]

Delta Adjustment

When training with high initial values of ∆0, it is possible that training fails to
start. This happens because most weight initialization methods produce small
initial values, and a high threshold ∆0 would cause all the weights to be set to zero,
effectively halting the training process. To address this issue, during the forward
pass of each epoch t, we scale down ∆t as follows:

∆adj
t = ∆t ·max(|Wt|)

where Wt are the full-precision weights for a given layer. If the initial weights are
small, this adjustment reduces the threshold ∆adj

t to be more compatible with these
small values. Since the weights Wt are clamped within the range [−1, 1], after a
reasonable amount of epochs, max(|Wt|) will equal 1, as at least one of the weights
will reach the clipping bound. This ensures that the threshold adjustment only
affects the early phases of training, leaving later stages unaffected.

37

Methodology

Algorithm 2 Ternary training. C is the cost function for mini-batch, the functions
Ternarize(· · ·) and Clip(· · ·) specify how to ternarize and clip weights, L is the
number of layers, Update(· · ·) is the optimization method of choice (such as SGD
or Adam). BatchNorm layers and layer biases bt are omitted for clarity.
Require: a mini-batch of (a0, a∗) (inputs, targets), previous parame-

ters Wt (weights) and learning rate η, delta regime hyperparameters
(f(), ∆0, ∆max, tmax).

Ensure: updated weights Wt+1 and delta threshold ∆t+1.
1: ▷ 1. Forward propagation
2: for k = 1 to L do
3: ∆adj

t ← ∆t ·max(|Wt|)
4: W q

t ← Ternarize(Wt; ∆adj
t)

5: if k = 1 then
6: ak ← ak−1 ·W q

t ▷ Do not binarize inputs
7: else
8: ak ← ab

k−1 ·W
q
t

9: end if
10: if k /= L then
11: aq

k ← Ternarize(ak; ∆adj)
12: end if
13: end for
14: ▷ 2. Backward propagation
15: Compute gaL

= ∂C
∂aL

knowing aL and a∗

16: for k = L to 1 do
17: if k /= L then
18: gak

← gaq
k
◦ 1|ak|≤1

19: end if
20: gaq

k−1
← gT

ak
·W q

k

21: gW q
k
← aq

k−1
T · gak

22: end for
23: ▷ 3. Parameter update
24: for k = 1 to L do
25: Wt+1 ← Clip(Update(Wt, η, gW b

t
), −1, 1)

26: ∆t+1 ← min
1
∆0 + (∆max −∆0)f(t+1

tmax
), ∆max

2
27: end for

38

Methodology

3.4 Identification Task
Identification in gait analysis refers to the process of recognizing an individual
based on their unique gait patterns from a database of multiple potential known
subjects. Unlike authentication, which can be seen as a one-to-one verification
process, identification operates under a one-to-many comparison model. The goal
is to determine the identity of an individual by matching their gait data to the
corresponding records within a database of known subjects.

3.4.1 Problem Formulation
Identification can be modeled as a n-class classification task, where, given an input
gait curve x (described in 3.1.1), the objective is to find which of n knows subjects
S = {s1, . . . , sn} the sample belongs to.

Recalling the network described in 3.3 we consider: N the convolutional layer,
L the final fully connected layer, than we have:

o = {o1, . . . , on} = softmax(L(N (x))),

where ok is probability of sample x belonging to subject si, i.e. ok = p(sk|x).

3.4.2 Criterion and Training
We define the training dataset as D = {(x1, o∗

1), . . . , (xN , o∗
N)}, where N is the

total number of training samples, and each pair (xi, o∗
i) consists of an input sample

xi and its corresponding target label o∗
i . The target labels o∗ are defined such that

they represent the class memberships of the input samples. Specifically, o∗ is a
one-hot encoded vector, where each element corresponds to a particular class (in
this case, a subject) and is defined as follows:

o∗ = {o∗
1, . . . , o∗

n}, (3.2)

o∗
k =

1 if x belongs to subject sk,

0 otherwise.
(3.3)

This means that for a given input x, the value o∗
k = 1 if the input sample belongs

to the k-th subject, and all other entries in the vector o∗ are 0. To train the network,
we minimize the cross-entropy loss, a standard loss function for classification tasks,
which measures the difference between the true labels o∗ and the predicted outputs
o of the network. The cross-entropy loss function for a single sample is defined as:

lcross(o∗, o) = −
nØ

k=1
o∗

k log(ok) + (1− o∗
k) log(1− ok)

39

Methodology

This loss function penalizes the model if the predicted probability ok for the
true class o∗

k = 1 is low, encouraging the model to assign higher probabilities to
the correct class.

Next, in each training iteration, we typically work with mini-batches, i.e., random
subsets of the dataset. Let D̃ ⊂ D represent a mini-batch of the dataset. The
total training cost C(W), which we seek to minimize, is computed as the average
cross-entropy loss over the mini-batch. It is given by:

C(W) = 1
|D̃|

|D̃|Ø
i=1

lcross(o∗
i ,LW (NW (xi)))

Here:

• D̃ is the mini-batch of samples,

• |D̃| is the size of the mini-batch,

• xi is the i-th input sample in the mini-batch,

• NW (xi) is the network’s output for sample xi, parameterized by W , and

• LW applies the softmax function to the network’s output to produce a proba-
bility distribution over classes.

In summary, the goal during training is to minimize the total training cost C(W)
over all mini-batches. By iteratively updating the model weights W to reduce this
cost, the network learns to classify input samples accurately.

3.4.3 Evaluation Metrics
In this section, we outline the evaluation metrics used to assess model performance
on the identification task. The primary metric is top-1 accuracy, which measures the
each model’s ability to correctly identify the target in its highest-ranked prediction.
For the ternary model, we also consider the sparsity rate, reflecting the model’s
compactness and memory efficiency.

Top-1 Accuracy

Top-1 accuracy is a widely used metric in classification tasks and is defined as the
percentage of times the model’s top prediction matches the true label of the input.
It is a robust metric for tasks where identifying the exact class is critical, such as
in subject identification.

Formally, let the dataset D = {(x1, y1), . . . , (xN , yN)}, where xi is the input
sample and yi is the true label corresponding to subject si. The model produces

40

Methodology

a set of predicted probabilities o = {o1, o2, . . . , on} for n possible classes. The
predicted class ŷi is the one with the highest probability:

ŷi = arg max
c

oc

Top-1 accuracy is then defined as:

Top-1 Accuracy = 1
N

NØ
i=1

I(ŷi = yi)

where:

• N is the total number of samples in the dataset,

• I(ŷi = yi) is an indicator function that equals 1 if the predicted class ŷi matches
the true class yi, and 0 otherwise.

Sparsity Rate

In the ternary model, the sparsity rate (SR) refers to the percentage of weights
that are set to zero, effectively reducing the number of active parameters. A higher
sparsity rate indicates that the model is more compact, using fewer weights, which
means lower storage requirements and lower power consumption.

Formally, the sparsity rate SR can be defined as:

SR = Number of zero weights
Total number of weights × 100%.

For a comprehensive evaluation, the ternary model’s performance cannot be
assessed based solely on accuracy. Instead, accuracy should be considered along
with the sparsity rate, as SR directly influences the model’s deployability on
resource-constrained devices by defining its compressibility and efficiency.

Shannon Entropy can also serve as a metric to evaluate the compressibility of a
quantized model. For a model where weights assume discrete values (e.g., −1, 0, 1
in a ternary model), the entropy H is defined as:

H = −
Ø

i

pi log2(pi),

where pi is the probability of a weight taking each discrete value i. A lower entropy
indicates higher compressibility, as fewer unique weight values lead to greater
redundancy and thus a more potentially compact model.

For binary models, where weights are typically equally split between +1 and
−1, the Shannon entropy is close to 1. In contrast, for ternary models, if weights
are evenly distributed among −1, 0, and 1, the entropy would reach approximately

41

Methodology

1.6, making the model heavier than its binary counterpart. However, by increasing
the sparsity rate to around 75%, a ternary model can achieve the same size as a
binary model. With sparsity rates beyond 75%, the ternary model becomes more
compressible than the binary model, despite leveraging three possible weight values
instead of two.

3.5 Authentication Task
Authentication in gait analysis refers to the process of verifying an individual’s
identity by comparing their current gait pattern to a previously stored profile.
Unlike identification, which seeks to determine who a person is from a group of
potential candidates, authentication operates under a one-to-one comparison model,
confirming whether the individual is who they claim to be.

3.5.1 Problem Formulation
Authentication can be modeled as a binary classification task where the objective
is to determine if two gait curves (xa, xb) belong to the same subject. Recalling
the network described in 3.3 we consider: N the convolutional layer, than we have:

e = {e1, . . . , em} = N (x),

where e is an m-dimensional embedding that represents the input sample x, in a
lower dimensional space. We can say a pair of input samples (xa, xb) belong to
same subject if:

d(ea, eb) = d (N (xa), N (xb)) < d∗, d∗ ∈ R,

where d is an arbitrary distance function, while d∗ is a distance threshold that can
be determined during training.

3.5.2 Criterion and Training
To train the network N , we need to ensure that input samples from the same
subject produce embeddings that are close to each other, while those from different
subjects produce embeddings that are far apart. For this reason, we use the triplet
loss as a loss function, which can be defined as:

ltri(e0, e+, e−) = max(d(e0, e+)− d(e0, e−) + m, 0).

where e0 is the embedding of an arbitrary input sample used as the reference
(anchor), e+ and e− are the embeddings of input samples that belong to the same

42

Methodology

subject (positive) and a different subject (negative), respectively. The triplet loss
becomes zero when the negative sample embedding is further away from the anchor
than the positive sample embedding by more than a margin m. Conversely, it
assumes a high value when the positive embedding is farther from the anchor than
the negative sample.

We consider the dataset D3 = {(x0, x+, x−)i}N
1 made of N training triplets where

x+ belongs to the same subject as x0 while x− does not. Then we define the cost
function C on a mini-batch D̃3 ⊂ D3 as:

C(W) =
Ø

(x0,x+,x−)∈D̃3

ltri(NW (x0), NW (x+), NW (x−)).

Distance Functions

To evaluate the effectiveness of different embedding representations in distinguishing
between subjects, we experiment with various distance functions d(ea, eb) in the
triplet loss. Each distance metric offers unique properties that may impact the
model’s ability to accurately cluster similar gait patterns while separating dissimilar
ones. The specific distance functions tested are:

• Euclidean Distance: The Euclidean distance deuc(ea, eb) measures the
straight-line distance between two embedding vectors ea and eb in a multidi-
mensional space. This metric is particularly suitable for embeddings where
absolute differences in feature space are meaningful, as it emphasizes the
overall magnitude of dissimilarity. The Euclidean distance formula is:

deuc(ea, eb) = ||ea − eb||2

where || · ||2 represents the L2 norm, calculating the square root of the sum of
squared differences between corresponding elements in ea and eb.

• Cosine Distance: Cosine distance dcos(ea, eb) assesses the angular difference
between two embedding vectors, making it particularly effective when the
direction of embeddings (rather than their magnitude) is crucial for comparison.
This is defined as:

dcos(ea, eb) = 1− ea · eb

||ea||2||eb||2
Here, ea · eb is the dot product, while the denominator normalizes by the Eu-
clidean norms of ea and eb. Cosine distance ranges from 0 (indicating identical
embeddings) to 1 (orthogonal embeddings), making it well-suited for high-
dimensional embeddings where vector orientation carries more information
than magnitude.

43

Methodology

• Pseudo-Hamming Distance: For binary or ternary embeddings, we ap-
ply a custom distance metric, the Pseudo-Hamming distance, optimized for
quantized vector spaces. This metric, dhamm(eq

a, eq
b), is defined as:

dhamm(eq
a, eq

b) = ||e
q
a − eq

b||1
m

where eq
a and eq

b are the quantized embeddings, and m denotes the dimension-
ality of the vectors. The L1 norm || · ||1 sums the absolute differences between
elements of eq

a and eq
b, capturing a distance that approximates Hamming dis-

tance but remains differentiable for training. This metric is particularly useful
in optimizing quantized models, allowing us to measure similarity efficiently
while maintaining model differentiability.

3.5.3 Evaluation Metrics
In this section, we describe the evaluation metrics used to assess the performance of
the models on the authentication task. The chosen metrics provide a comprehensive
view of how well the learned embeddings can be used to authenticate a subject, as
well as how they allow to solve different down-stream tasks such as classification
and clustering.

ROC AUC

The ROC AUC (Receiver Operating Characteristic - Area Under the Curve) is a
metric used to evaluate the performance of a binary classification model, providing
insight into the model’s ability to distinguish between two classes. In our case,
ROC AUC measures the model’s ability to determine if a subject’s gait matches
a reference gait or not, making it a valuable metric for evaluating identification
and authentication tasks. After training, we calculate the embeddings for each
sample in the test set using each model. From these embeddings, we compute a
pairwise distance matrix where each element represents the distance between a pair
of embeddings. This distance is calculated using a specific distance function, which
may differ from the one used during training with the triplet loss. The matrix is
then divided into two groups: "matching" pairs, where the embeddings correspond
to the same subject (positive class, labeled as 1), and "non-matching" pairs, where
the embeddings correspond to different subjects (negative class, labeled as 0).

To evaluate model performance, we use the ROC curve, which plots the True
Positive Rate (TPR) against the False Positive Rate (FPR) at various distance
thresholds. The TPR (sensitivity) is defined as:

TPR = True Positives
True Positives + False Negatives ,

44

Methodology

and the FPR is defined as:

FPR = False Positives
False Positives + True Negatives .

By varying the distance threshold, we observe changes in TPR and FPR, allowing
us to assess how well the model differentiates between matching and non-matching
pairs.

The Area Under the ROC Curve (AUC) provides a single scalar value summa-
rizing the model’s performance across all thresholds. A higher AUC value, closer
to 1, indicates better discriminative ability, meaning the model is more effective at
separating matching and non-matching pairs. An AUC of 0.5, by contrast, would
indicate performance no better than random guessing. Thus, ROC AUC serves as
a comprehensive metric for assessing the model’s ability to identify matching gaits
accurately.

Downstream Classification: Top-1 Accuracy

A downstream task evaluates how effectively the model’s learned embeddings
perform in a practical application. Here, we select a classification task to assess
the model’s ability to generate discriminative embeddings for gait curves, enabling
differentiation between classes (e.g., individuals). In practice, after training we use
the model to generate embeddings for gait curves in both the training and test
sets. These embeddings provide compact, high-level representations of the input
data. To evaluate their separability, we train a Support Vector Machine (SVM)
on the training set embeddings and classify the test set embeddings. The top-1
accuracy metric measures performance, representing the proportion of samples
correctly classified when the top predicted class matches the true label.

Downstream Clustering: Rand Index and Silhouette Score

We also consider a clustering downstream task to evaluate the model’s effectiveness
in an unsupervised scenario, where the goal is to assess how well the learned em-
beddings represent distinct classes without prior labels. To perform this evaluation,
we first use the trained model to generate embeddings for gait curves in the test
set. We then apply K-Means clustering on these embeddings to determine how
well they naturally group similar samples. For this assessment, we consider the
following two metrics:

• Adjusted Rand Index (ARI): ARI measures the similarity between the
predicted clusters and the true class labels, adjusting for chance. The ARI
score ranges from -1 to 1, where a score of 1 indicates perfect agreement
between the clustering and the ground truth, 0 indicates random clustering,

45

Methodology

and negative values suggest worse-than-random clustering. ARI is particularly
useful when the number of clusters differs from the number of classes.

• Silhouette Score: The silhouette score measures how similar an object is
to its own cluster compared to other clusters. The score ranges from -1 to 1,
where a score close to 1 indicates that the sample is well clustered, with a large
distance between clusters. A score of 0 means the sample is on or very close
to the decision boundary between two clusters, while negative values indicate
that the sample may have been assigned to the wrong cluster. This metric
provides insight into the compactness and separability of clusters formed by
the embeddings.

46

Chapter 4

Experimental Results

In this chapter, we present the experimental results to evaluate the performance
of our models across key biometric tasks, focusing on how ternary quantization
compares to both full-precision and binary baselines.

We start by detailing the experimental setup, including the configurations,
parameters, and evaluation metrics used to ensure consistency and reliability in
our results. Next, we present the results for the identification task, comparing
the accuracy and efficiency of the ternary model against full-precision and binary
models. This analysis highlights the potential benefits of ternary quantization in
maintaining or improving accuracy while enhancing model efficiency. Finally, we
report the results for the authentication task, using the same comparative framework
to assess the effectiveness of ternary quantization in delivering resource-efficient
models without compromising authentication accuracy.

4.1 Setup
As outlined in Section 3.1, the dataset used for the experiments is Dataset #1 from
the whuGAIT dataset collection. It comprises 36,844 labeled gait samples from
118 subjects, split into 33,104 training samples and 3,740 test samples, with no
overlap between the splits. The training and test sets are both reasonably balanced
across labels, ensuring robustness during model evaluation.

The network topology is detailed in Section 3.2. All models, whether utilizing full,
binary, or ternary quantization schemes, follow this same network architecture. The
training process is consistent across models, with the primary difference being that,
for the binary and ternary models, a quantization function is applied during the
forward pass. During backpropagation, gradients are estimated using the straight-
through estimator, as discussed in Section 3.3. The models are implemented in
PyTorch [20] and trained on a Linux system equipped with an RTX 2070S GPU.

48

Experimental Results

The number of training epochs is chosen to ensure that both identification and
authentication tasks can be completed within one hour while allowing the model to
converge. Network parameters are initialized following the method of He et al. [21],
where weights are sampled from a normal distribution W ∼ N (0,

ñ
2

nk
), with nk

representing the number of parameters in the convolutional kernel or linear layer.

4.2 Identification Task
For the identification task, models are trained using stochastic gradient descent
(SGD) with a momentum of 0.9, regardless of the quantization scheme. Each model
is trained for a maximum of 500 epochs. We also use an early stopping criterion to
prevent overfitting. Specifically, every 10 epochs, we evaluate the model’s accuracy
on the validation set, and in the results, we report the best-performing model, not
necessarily the final one.

4.2.1 Hyper-Parameter Optimization
To achieve optimal performance, we conduct a grid search to identify the best
hyperparameters for each of the three quantization methods considered: full
precision, binary, and ternary. For the full-precision model, we search for the
optimal values of learning rate η and batch size B. The binary model also relies
on these two hyperparameters, as the binarization algorithm does not introduce
any additional configurations. For the ternary model, we additionally explore the
impact of different growth regimes for the threshold ∆ to identify configurations
that yield the best performance with high sparsity rates. Figure 4.1 illustrates
example growth regimes for each profile described in Section 3.3.2, with a maximum
threshold value ∆max = 0.3 achieved at epoch 100.

Hyper-Parameter Values Best Value
Full Precision Binary Ternary

Learning rate η 0.001, 0.01, 0.02, 0.03 0.001 0.02 0.01
Batch size B 128, 256, 512 256 128 256

Table 4.1: Hyper-parameter search values found for full precision, binary, and
ternary quantization methods. The best values for the ternary model are referred
to a constant ∆ value of 0.2.

Table 4.1 shows the range of values explored during the grid search for learning
rate and batch size, alongside the best-performing configurations identified for each
of the three quantization methods. For the ternary model, we first search for the

49

Experimental Results

Figure 4.1: Examples of ∆ growth regimes for different f functions. Only the
growth regimes with ∆max = 0.3 and tmax = 100 are shown in the plot.

optimal η and B with ∆ held constant at 0.2. Afterward, we use the best-found
values to study how different growth profiles affect the model’s performance and
sparsity rate. This approach helps reduce the size of the grid search and allows for
a more meaningful comparison between growth regimes. The considered growth
regimes and their respective performances are presented in the next section, as
determining the absolute best model is non-trivial due to the trade-off with sparsity,
which impacts the model’s compressibility.

50

Experimental Results

4.2.2 Results
Table 4.2 reports the best test accuracy, sparsity rates, and entropy values obtained
for each quantization method. In the top half, we show results for state-of-the-art
techniques that use full precision weights. In the bottom half, we show results for
our full precision and binary baselines, alongside several ternary models trained with
different ∆ regimes. Our full-precision (FP) baseline performance is comparable
to other state-of-the-art models, despite its lightweight design (372k parameters),
achieving an accuracy of 94.27%. The binary model loses about 1.8 percentage
points due to quantization. Most ternary models outperform the binary models
while maintaining high sparsity rates, consistently above 80%. The best-performing
growth regime is the log profile, which results in a model that loses only 1.2
percentage points relative to the FP baseline while achieving a sparsity rate of
91.1%. This translates to significant model compression, as with a sparsity rate
of 90%, only around 37k parameters remain in the network, with the rest being
pruned.

We also note that, while maintaining a constant ∆ threshold during training can
achieve good sparsity rates, it leads to sub-optimal classification accuracy when
compared to the increasing ∆ growth regimes. This underscores the rationale for
gradually increasing ∆ with each epoch as training progresses.

Acc. (%) Sparsity (%) Entropy (bits/sym) Acc. Diff. (%) Params. (#)

CNN+LSTM [22] 93.52 - - - -
IdNet [23] 92.91 - - - -
DeepConvLSTM [24] 92.25 - - - > 996K
MFEBP [25] 95.38 - - - -
FCN-BiLSTM [26] 95.27 - - - 2.89M
Ours (FP) 94.27 - - - 372K
Ours (BNN) 92.41 1 1 -1.86 372K
Ours (TNN, ∆ const) 92.39 91.2 0.54 -1.88 33K
Ours (TNN, ∆ linear) 92.02 87.2 0.65 -2.25 48K
Ours (TNN, ∆ square) 92.78 91.3 0.53 -1.49 32K
Ours (TNN, ∆ sqrt) 92.68 85.2 0.75 -1.59 55K
Ours (TNN, ∆ log) 93.01 91.1 0.55 -1.26 34K

Table 4.2: Best test accuracy, sparsity rate, and entropy comparison for different
∆ growth regimes. In the top half, we show results for competing state-of-the-art
techniques, obtained from different FP baselines. In the bottom half, we report
the full precision and binary baselines for our method. Note that the number
of parameters for ternary models is obtained by multiplying the total number of
parameters by the sparsity rate.

51

Experimental Results

Figure 4.2 shows the progression of sparsity rates throughout training for two
growth regimes, square and log, across three different values of ∆max (∆max =
0.1, 0.2, 0.3), with each maximum value reached at the 250th training epoch
(tmax = 250). After epoch tmax, we observe that the sparsity rate stabilizes,
largely determined by ∆max and with limited effect from the growth profile. As
expected, higher ∆max values lead to increased sparsity, with ∆max = 0.1 yielding
around 70% sparsity, while ∆max = 0.2 and ∆max = 0.3 result in approximately
85% and 90%, respectively. However, setting ∆max above 0.3 destabilizes training,
likely due to the high proportion of zero weights, leading to significantly degraded
performance. For clarity, results for ∆max > 0.3 are omitted in Figure 4.2 but can
be found in Figure 4.3, which includes multiple experimental runs to provide a
comprehensive evaluation of the proposed ternary quantization method.

Figure 4.2: Examples of how the sparsity rate changes with the training epoch
for two different growth regimes (square and log) and three different ∆max values
(∆max = 0.1, 0.2, 0.3), reached at the 250th training epoch. For ∆max > 0.3, the
training becomes unstable and leads to sub-optimal results, as can be seen in Figure
4.3.

52

Experimental Results

Figure 4.3 illustrates classification accuracy and sparsity rate achieved by every
growth regime tested. The dashed lines denoted as W32A32 and W1A1 represent the
accuracy of the full precision and binary model, respectively.

With classification accuracy reaching 93% (a reduction of less than 1.5% com-
pared to the full precision baseline) and sparsity exceeding 91%, the logarithmic
growth regime with ∆max = 0.3 yields the best results among the considered growth
regimes. Furthermore, we note that the majority of ternary models significantly
outperform the binary baseline in terms of classification accuracy, while also ex-
hibiting entropy rates below 1. This demonstrates the advantage of utilizing the
ternary framework over binary networks. As anticipated, growth regimes with
∆max > 0.3 show heavily degraded performances.

Figure 4.3: Test accuracy against sparsity rates. The charts collect performance
on the whuGAIT dataset [15] for different ∆max (reached either at the 100th or
250th training epoch, tmax) and ∆ growth regimes. The graphs also indicate the
full-precision (W32A32) and binary (W1A1) baselines (dotted lines). The best
performance is located in the top-right corner, corresponding to high classification
accuracy and high sparsity rates.

53

Experimental Results

Figure 4.4 illustrates classification accuracy and entropy achieved by every
growth regime tested. It is essentially equivalent to Figure 4.3 with the distinction
of a mirrored x-axis scale, due to the inverse monotonic relationship between
entropy and sparsity rate.

Figure 4.4: Test accuracy against entropy rates. The charts collect performance
on the whuGAIT dataset [15] for different ∆max (reached either at the 100th

or 250th training epoch, tmax) and ∆ growth regimes. The plot also indicate
the full-precision (W32A32) and binary (W1A1) baselines (dotted lines and star,
respectively). The best performance is located in the top-left corner, corresponding
to high classification accuracy and low entropy. Figure 4.3 is essentially an x-axis
mirrored version this plot.

54

Experimental Results

4.3 Authentication Task
For the authentication task, the dataset triplets are constructed at each epoch by
associating each input gait with a randomly sampled positive gait, belonging to the
same subject, and a negative gait, belonging to a different subject. This process
is repeated for both the training and test splits. All models are trained using the
Adam optimizer, regardless of the quantization scheme. Each model is trained for
a maximum of 250 epochs, compared to 500 epochs for the identification task, as
early experiments showed that triplet loss training leads to much faster convergence.
We also apply an early stopping criterion to prevent overfitting. Specifically, at
every epoch, we evaluate the model’s performance by calculating the percentage
of triplets in the validation set where the anchor-positive distance is smaller than
the anchor-negative distance. For each run, we select the model snapshot from the
epoch that produced the highest value for this metric.

4.3.1 Hyper-Parameter Optimization
Similar to the identification task, we perform a grid search on the learning rate η
and batch size B. However, for this task, we also include the distance function d
and the margin value used in the triplet loss as additional hyperparameters. The
ROC AUC score is used as the primary metric for selecting the best values, as it
is the most representative of the model’s performance on the authentication task,
as described in Section 3.5.3. For the ternary model, we use the best-performing
delta growth ∆ we found for the identification task (log profile, ∆max = 0.3),
adjusting tmax to 125 to ensure that the regime still reaches its peak at the halfway
point of training, despite the reduced number of epochs (from 500 to 250). Early
experiments show that this specific growth regime performs comparably well on
the authentication task; consequently, an extensive search for alternative growth
regimes was not conducted. This suggests that once an effective regime is identified,
it may generalize well across tasks, reducing the need for task-specific fine-tuning.

Table 4.3 presents the values used in the grid search for learning rate, batch
size, and margin. Since the distance between two embeddings varies significantly
depending on the specific distance function used, we allow for a separate best
margin for each function (EUC, COS, HAMM).

4.3.2 Results
Table 4.4 presents the results for the authentication task. Each column contains
the evaluation metrics for the models, shown separately for each combination of
quantization scheme and distance function used in the triplet loss. This separation
allows for a detailed analysis of how each distance function affects the model’s ability

55

Experimental Results

Hyper-Parameter Values Full Precision Binary Ternary

Learning rate 0.001, 0.01 0.001 0.01 0.01
Batch size 128, 256 256 128 256
Margin (EUC) 1.5, 5.0, 10.0 10.0 1.5 1.5
Margin (COS) 0.001, 0.004, 0.008, 0.01, 0.04, 0.08, 0.1 0.2 0.01 0.01
Margin (HAMM) 0.001, 0.004, 0.008, 0.01, 0.04, 0.08, 0.1 - 0.08 0.04

Table 4.3: Hyper-Parameter search grid for the authentication task. Best values
are shown separately for the full precision, binary, and ternary quantization methods.
The margin hyper-parameter has different best values depending on the distance
function used in the triplet loss.

to learn meaningful embeddings under different quantization schemes. The models
in the first row, denoted as Cross-Entropy, are obtained by selecting the best-
performing models from the identification task and discarding the final linear layer
used for classification. Then, the flattened output of the last convolutional block is
used as the embedding for a given input sample. This setup allows us to evaluate
the quality of embeddings produced by models trained with authentication-specific
loss function (i.e. triplet loss) against a baseline model that uses a general-purpose
loss (i.e. cross-entropy loss).

The metrics adopted are divided into three column groups:

• ROC Curve, Area Under the Curve: This metric represents the ease of
finding an optimal threshold value d∗ to determine whether two embeddings,
derived from different samples, belong to the same subject. It is calculated
using the pairwise distances between embeddings in the test set. Notably, all
three distance functions are applied (not just the one used during triplet loss
training) to evaluate the model’s robustness to different distance functions.

• Classification: A downstream task is used to evaluate the separability of the
learned embeddings. After training, each model is used to generate embeddings
for both the training and test sets. These embeddings are then treated as a
new dataset, on which a Support Vector Machine (SVM) classifier is trained
to assess the quality and separability of the embeddings.

• Clustering: A downstream task is used to evaluate the robustness of the
learned embeddings. After training, each model is used to generate embeddings
for both the training and test sets, without using the labels. These embeddings
are then treated as a new dataset, on which clustering algorithms such as
K-Means are applied. The resulting clusters are analyzed to assess how well
the embeddings naturally group samples from the same subject, indicating
the quality and cohesion of the embeddings.

56

Experimental Results

Training Method Quantization ROC AUC CLASSIFICATION CLUSTERING
EUC COS HAMM Accuracy Silhouette Adj. Rand

Cross-Entropy
Full 94.4 96.5 - 94.2 0.176 0.580
Binary 97.7 97.7 97.5 93.2 0.144 0.791
Ternary 96.7 96.5 96.0 92.6 0.176 0.782

Triplet Loss (EUC)
Full 99.5 98.5 - 94.3 0.274 0.890
Binary 99.1 98.8 98.9 93.5 0.146 0.819
Ternary 99.3 99.2 98.9 93.6 0.167 0.825

Triplet Loss (COS)
Full 93.9 99.2 - 94.1 0.268 0.788
Binary 99.1 99.1 99.0 93.3 0.140 0.814
Ternary 99.3 99.4 98.3 93.3 0.172 0.812

Triplet Loss (HAMM)
Full - - - - - -
Binary 98.8 98.8 98.7 93.1 0.141 0.830
Ternary 98.9 98.9 98.8 93.0 0.172 0.833

Table 4.4: Performance metrics for the authentication task. ROC AUC column
reports values for ROC curves where pairwise distances are computed with different
distance functions. Classification and Clustering columns report metrics used to
evaluate the embeddings on the two downstream tasks. Each row corresponds to a
model trained with a specific training method and quantization scheme.

ROC Curve, Area Under the Curve When comparing models trained using
triplet loss to those trained with cross-entropy, it is evident that triplet loss
consistently leads to higher ROC AUC scores across all quantization schemes. For
example, the full precision model trained with triplet loss using the Euclidean
distance achieves an ROC AUC of 99.5 (compared to 94.4 for cross-entropy),
demonstrating the superiority of triplet loss in learning discriminative embeddings
for authentication tasks. Similarly, both the binary and ternary models exhibit
better performance with triplet loss across all distance functions.

Notably, for models trained with triplet loss, there is a clear hierarchy in
performance: the full precision models outperform the ternary models, which in
turn outperform the binary models. This pattern is consistent across virtually all
distance functions. For instance, in the case of Euclidean distance, the full precision
model achieves a ROC AUC of 99.5, followed by the ternary model at 99.3, and the
binary model at 99.1. In contrast, this hierarchy is not observed in models trained
with cross-entropy, where the full precision model achieves lower results than the
quantized ones. This can be explained by the fact that the model is not trained for
this specific task, but for multi-class classification problems. The models achieve
optimal performance when the distance function used during training matches the
one applied in the ROC AUC calculation. For example, the full-precision model
trained with Euclidean distance achieves its highest ROC AUC score (99.5) when
evaluated with Euclidean distance. This pattern holds across various distance
functions, indicating that alignment between training and evaluation distances
is critical. Interestingly, as long as this alignment is maintained, the choice of

57

Experimental Results

distance function—whether Euclidean, cosine, or Hamming—has minimal impact
on performance. This suggests that the embeddings learned by the models are
robust and generalize well across different distance metrics when trained with a
consistent configuration.

Lastly, the ternary models consistently outperform the binary baselines in terms
of ROC AUC, regardless of the distance function or quantization method. Whether
using cross-entropy or triplet loss, ternary models show better results across the
board. This highlights the effectiveness of ternary quantization in preserving
discriminative power while offering higher compression rates compared to binary
models.

Figure 4.5: ROC curves calculated using Euclidean distance for models trained
with triplet loss and cross-entropy loss, shown separately for each quantization
scheme.

Figure 4.5 shows how the ROC curves of the models trained with cross-entropy
are significantly worse than those trained with the triplet loss. Additionally, the
previously mentioned hierarchy among quantization schemes is also evident.

58

Experimental Results

FP Binary Ternary

Figure 4.6: Distributions of distances shown separately for matching and non-
matching test samples. The top row represents cross-entropy loss training, while
the bottom row represents triplet loss training. Matching pairs are shown in blue
(top) and green (bottom), while non-matching pairs are shown in orange (top) and
red (bottom).

Figure 4.6 shows how the pairwise distance distributions between same-subject
and different-subject samples change when using triplet loss. The top row illustrates
the distributions for full precision (FP), binary, and ternary models trained with
cross-entropy. There is significant overlap between same-subject (blue) and different-
subject (orange) distances, indicating poor separability of embeddings. In contrast,
the bottom row shows the results after training with triplet loss. For all models,
the distributions for same-subject (green) and different-subject (red) samples are
much more distinct, with minimal overlap. This demonstrates that triplet loss
greatly improves the separability of embeddings across all quantization schemes.

Notably, even in the binary and ternary models, the embeddings retain strong
separability after training with triplet loss, showing that it helps maintain robust
embedding quality despite quantization.

Classification and Clustering In the classification downstream task, as ex-
pected, the full precision model achieves the best performance, similar to when
the final linear layer is used directly for classification. Notably, the binary and
ternary models show comparable performance to each other, with both models
achieving a significant improvement in classification accuracy when an SVM, with
full precision parameters, is applied to the learned embeddings instead of using the

59

Experimental Results

final quantized layer for end-to-end classification. This suggests that the majority of
performance degradation could occur in the final fully connected layer, rather than
in the convolutional section of the network. This hypothesis is further explored in
a later paragraph.

FP Binary Ternary

Figure 4.7: T-SNE visualization of test set embeddings for the first 12 subjects.
Cross-entropy trained models are shown in the top row, while triplet loss models
are shown in the bottom one.

Figure 4.7 presents t-SNE visualizations of the embeddings for a subset of the
first 10 subjects from the dataset, before and after training with triplet loss. In the
top row, the models are trained with cross-entropy loss, while in the bottom row,
the models are trained with triplet loss. A modest improvement in separation is
noticeable, particularly for the full precision model, which shows the most significant
increase in separation as it performed the worst when trained with cross-entropy.

In the clustering downstream task, models trained with cross-entropy show
relatively lower performance, with fewer distinct clusters forming across all quanti-
zation schemes. On the other hand, triplet loss significantly enhances clustering
performance, leading to better-defined clusters that more accurately correspond to
individual subjects. Notably, the Euclidean distance appears to perform better for
the full precision model, while the quantized models (binary and ternary) seem
less sensitive to the choice of distance function.

Effect of Quantization on the Final Linear Layer We observed that, for the
quantized models, training an SVM on the embeddings yields significantly better
classification accuracy compared to using a quantized fully connected layer. To

60

Experimental Results

examine the extent to which quantizing the final layer degrades performance, we
repeat the training for the identification task (i.e., classification), this time using a
full-precision linear layer instead of a quantized one.

In Table 4.5, we observe that both the binary and ternary models improved by
0.6 percentage points in classification accuracy, with the ternary model achieving
93.6%, only 0.6 percentage points below the full precision (FP) baseline. Therefore,
most of the performance degradation in quantized models seems to stem from the
quantization of the final fully connected layer, rather than from the convolutional
layers, and using a full precision linear layer when applicable can significantly
mitigate this issue.

Training Method Quantization Accuracy

Cross Entropy

Full 94.2
Binary 92.4
Binary [full-fc] 93.0 (+0.6)
Ternary 93.0
Ternary [full-fc] 93.6 (+0.6)

Table 4.5: Classification results for models trained with cross-entropy when the last
fully connected layer is in full precision. Binary[full-fc] and Ternary[full-fc]
rows report the delta accuracy compared to their counterparts with a quantized
fully connected layer.

61

Experimental Results

4.3.3 Open Set Results
The results in the previous section 4 assume that the problem is a closed-set one,
meaning that all classes or subjects present during testing are already known and
included in the training set. This makes the task relatively easy, as the model only
needs to differentiate between subjects it has already encountered. In contrast,
the open set problem is significantly more challenging, as it requires the model to
generalize to previously unseen subjects during testing. In this scenario, the model
must learn embeddings that not only effectively separate known subjects but can
also generalize to new, unseen individuals. Given the relevance of this scenario
for real-world authentication tasks, we provide the same results as in the previous
section, but for the open set case.

To construct the open set dataset, we merge the original training and test sets
of the WhuGait dataset and then re-split the samples so that the training set
contains only a subset of the subjects, while the test set consists entirely of subjects
not seen during training. Specifically, we hold out 12 of the 118 subjects for the
test set, maintaining the original 90/10 split of the dataset. This allows for the
creation of 10 possible splits (keeping the subjects in order), which can be averaged
to obtain more stable results by smoothing out potential variations in performance
due to easier or harder splits.

Training Method Quantization ROC AUC CLASS CLUSTERING
EUC ∆os-cs COS ∆os-cs HAMM ∆os-cs Accuracy Silh. ∆os-cs Adj. Rand ∆os-cs

Classification
Full 94.4 - 96.5 - - - 94.2 0.176 - 0.580 -
Binary 97.7 - 97.7 - 97.5 - 93.2 0.144 - 0.791 -
Ternary 96.7 - 96.5 - 97.5 - 92.6 0.176 - 0.782 -

Triplet Loss (EUC)
Full 98.3 -1.2 97.4 -1.1 - - - 0.264 -3.6% 0.919 +3.3%
Binary 97.9 -1.2 97.8 -1.0 97.6 -1.3 - 0.218 +49.3% 0.833 +1.7%
Ternary 98.1 -1.2 98.0 -1.2 97.5 -1.4 - 0.268 +60.5% 0.887 +7.5%

Triplet Loss (COS)
Full 91.0 -2.9 98.2 -1.0 - - - 0.219 -18.3% 0.810 +2.8%
Binary 98.1 -1.0 98.1 -1.0 97.9 -1.1 - 0.168 +20.0% 0.891 +4.3%
Ternary 98.2 -1.1 98.3 -1.1 97.9 -0.4 - 0.197 +14.5% 0.893 +10.0%

Triplet Loss (HAMM)
Full - - - - - - - - - - -
Binary 98.1 -0.7 98.0 -0.8 98.0 -0.7 - 0.183 +29.8% 0.872 +5.1%
Ternary 98.3 -0.6 98.3 -0.5 98.3 -0.5 - 0.209 +21.5% 0.864 +3.7%

Table 4.6: Performance metrics for the open set authentication task. Same metrics
as in Table 4.4 with deltas ∆os-cs representing the difference between open-set (os)
and closed-set (cs) results.

Table 4.6 presents the results for the open set authentication, along with
the performance delta compared to the closed set case for each metric. The
downstream classification with SVM is omitted, as it is nonsensical due to the
different classes/subjects in the training and test sets. We can observe that
ROC AUC scores consistently decrease by around 1.0 percentage points across
all quantization strategies and distance functions, except for Hamming, where
the loss is limited to approximately 0.6 percentage points. This demonstrates the

62

Experimental Results

models’ ability to generalize to the open set case, with quantization not significantly
impacting their transferability to open set scenarios. In the downstream clustering
task, performance is significantly improved because the clustering only involves 12
classes, rather than 118, making it a less challenging problem. Figure 4.8 extends
Figure 4.5 by adding the ROC curves for the models trained with the open set
dataset. Notably, despite the slight performance drop, the open-set models trained
with triplet loss still significantly outperform those trained with cross-entropy
on the closed-set. This highlights the effectiveness of triplet loss in producing
embeddings that generalize well, even for unseen subjects.

Figure 4.8: ROC curves calculated using Euclidean distance for models trained
with triplet loss and cross-entropy loss, shown separately for each quantization
scheme. Extension of Figure 4.5 with the addition of the ROC curves for the
models evaluated on the open set scenario (green curve).

63

Chapter 5

Conclusions

This thesis has explored the challenges and solutions for deploying deep neural
networks (DNNs) on resource-constrained wearable devices, particularly for gait-
based biometric recognition. Despite the advancements in artificial intelligence
and the promise of deep learning, the high computational demands of DNNs make
real-time deployment on devices like smartwatches and smartphones challenging
due to their limited power and memory. This work has addressed these challenges
by focusing on model compression techniques, specifically quantization, to enable
efficient DNN deployment without compromising performance.

Our study has demonstrated that biometric systems leveraging physiological and
behavioral data, such as gait patterns, can effectively provide secure authentication
and identification. Gait analysis was chosen for its non-intrusive nature, making
it suitable for wearables, which offer practical platforms for capturing gait data
through widely available IMU sensors. By utilizing neural network-based models
and quantization techniques, this thesis has shown the potential to enhance both
the accuracy and efficiency of gait-based biometric systems in resource-limited
settings.

Central to our approach is the development of Ternary Neural Networks (TNNs),
which combine quantization with parameter pruning, achieving high sparsity and
reducing the computational load. Our ternarization framework dynamically adjusts
quantization during training, reaching sparsity rates often exceeding 90% with
an entropy level below 1 bit per symbol. This approach has proven effective in
creating models that are both highly compressible and high-performing, surpassing
traditional binary networks in memory efficiency and maintaining robust discrimi-
native power. In evaluating TNNs on identification and authentication tasks, the
results confirm that ternary quantization can significantly reduce memory and
energy requirements while preserving the accuracy needed for gait-based biometric
recognition. By leveraging smartphone-based IMU data, this thesis has shown
the practicality of implementing gait recognition on widely available hardware,

65

Conclusions

making the approach viable for real-world applications in secure authentication
and identification.

In conclusion, this work provides a framework for achieving efficient and accurate
biometric systems deployable on resource-constrained devices. Future research
can extend these findings by exploring additional quantization methods, such as
adaptive or mixed precision quantization, which could further balance the trade-off
between efficiency and accuracy. Additionally, optimizing the training process by
incorporating techniques such as knowledge distillation or reinforcement learning
could improve the robustness and adaptability of quantized models. Expanding
the framework to include other biometric modalities—such as voice, face, or
keystroke dynamics—could broaden its applicability to multi-modal biometric
systems, enhancing security and reliability. Finally, testing this approach in several
real-world conditions and across different hardware platforms would offer valuable
insights for further refining resource-efficient biometric recognition in dynamic,
low-power environments.

66

Bibliography

[1] Warren S. McCulloch and Walter Pitts. «A Logical Calculus of the Ideas
Immanent in Nervous Activity». In: Bulletin of Mathematical Biophysics 5
(1943), pp. 115–133 (cit. on p. 5).

[2] Frank Rosenblatt. The Perceptron: A perceiving and recognizing automaton.
Tech. rep. 85-460-1. Ithaca, New York: Cornell Aeronautical Laboratory, Jan.
1957 (cit. on p. 5).

[3] John J. Hopfield. «Neural networks and physical systems with emergent
collective computational abilities». In: Proceedings of the National Academy
of Sciences. Vol. 79. 8. National Academy of Sciences, 1982, pp. 2554–2558.
doi: 10.1073/pnas.79.8.2554 (cit. on p. 6).

[4] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. «Learning
representations by back-propagating errors». In: Nature 323 (1986), pp. 533–
536. doi: 10.1038/323533a0. url: https://doi.org/10.1038/323533a0
(cit. on p. 6).

[5] Yann LeCun, Bernhard Boser, John S. Denker, Donnie Henderson, Robert
E. Howard, Wayne Hubbard, and Lawrence D. Jackel. «Handwritten Digit
Recognition with a Back-Propagation Network». In: Advances in Neural In-
formation Processing Systems. Vol. 1. Neural Information Processing Systems
Foundation, 1989, pp. 396–404 (cit. on p. 7).

[6] Anil K. Jain, Arun A. Ross, and Karthik Nandakumar. Introduction to
Biometrics. Springer New York, 2011. isbn: 978-0-387-77325-4. doi: 10 .
1007/978-0-387-77326-1 (cit. on p. 18).

[7] Chao Zhong, Xue Mu, Xin He, Jin Wang, and Ming Zhu. «Model Compression
for Deep Neural Networks: A Survey». In: Computers 12.3 (2023), p. 60.
doi: 10.3390/computers12030060. url: https://www.mdpi.com/2073-
431X/12/3/60 (cit. on p. 21).

[8] Yann LeCun, John S. Denker, and Sara A. Solla. «Optimal Brain Damage».
In: Neural Information Processing Systems. 1989. url: https://api.semant
icscholar.org/CorpusID:7785881 (cit. on p. 21).

68

https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1007/978-0-387-77326-1
https://doi.org/10.1007/978-0-387-77326-1
https://doi.org/10.3390/computers12030060
https://www.mdpi.com/2073-431X/12/3/60
https://www.mdpi.com/2073-431X/12/3/60
https://api.semanticscholar.org/CorpusID:7785881
https://api.semanticscholar.org/CorpusID:7785881

BIBLIOGRAPHY

[9] S. Han, H. Mao, and W. J. Dally. «Learning both Weights and Connections
for Efficient Neural Networks». In: Advances in Neural Information Processing
Systems. 2015 (cit. on p. 21).

[10] Y. Yang, H. Qin, R. Gong, and X. Liu. «Designing Energy-Efficient Con-
volutional Neural Networks using Energy-Aware Pruning». In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 2020 (cit. on p. 21).

[11] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf.
«Pruning Filters for Efficient ConvNets». In: International Conference on
Learning Representations (ICLR). 2017 (cit. on p. 22).

[12] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. «ThiNet: A Filter Level Pruning
Method for Deep Neural Network Compression». In: Proceedings of the IEEE
International Conference on Computer Vision (ICCV). 2017, pp. 5058–5066
(cit. on p. 22).

[13] Yihui He, Xiangyu Zhang, and Jian Sun. «Channel pruning for accelerat-
ing very deep neural networks». In: Proceedings of the IEEE International
Conference on Computer Vision (ICCV). 2017, pp. 1389–1397 (cit. on p. 22).

[14] Yoshua Bengio, Nicolas Léonard, and Aaron C. Courville. «Estimating or
Propagating Gradients Through Stochastic Neurons for Conditional Compu-
tation». In: arXiv preprint arXiv:1308.3432 (2013). url: https://arxiv.
org/abs/1308.3432 (cit. on pp. 23, 33).

[15] Q. Zou, Y. Wang, Q. Wang, Y. Zhao, and Q. Li. «Deep Learning-Based
Gait Recognition Using Smartphones in the Wild». In: IEEE Transactions
on Information Forensics and Security 15 (2020), pp. 3197–3212 (cit. on
pp. 27–30, 53, 54).

[16] Chunyu Yuan and Sos S. Agaian. «A comprehensive review of Binary Neural
Network». In: Artificial Intelligence Review (2021), pp. 1–65. url: https:
//api.semanticscholar.org/CorpusID:238743860 (cit. on pp. 31, 35).

[17] F. J. Ordoñez and D. Roggen. «Deep Convolutional and LSTM Recurrent
Neural Networks for Multimodal Wearable Activity Recognition». In: Sensors
16.1 (2016), p. 115 (cit. on p. 32).

[18] Geoffrey Hinton. Neural Networks for Machine Learning. Coursera, video
lectures. 2012. url: https://www.coursera.org/learn/neural-networks-
ml (cit. on p. 33).

[19] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio. «Bina-
rized Neural Networks: Training Deep Neural Networks with Weights and
Activations Constrained to +1 or -1». In: arXiv preprint arXiv:1602.02830
(2016) (cit. on p. 33).

69

https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1308.3432
https://api.semanticscholar.org/CorpusID:238743860
https://api.semanticscholar.org/CorpusID:238743860
https://www.coursera.org/learn/neural-networks-ml
https://www.coursera.org/learn/neural-networks-ml

BIBLIOGRAPHY

[20] Adam Paszke et al. «PyTorch: An Imperative Style, High-Performance Deep
Learning Library». In: arXiv preprint arXiv:1912.01703 (2019) (cit. on p. 48).

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. «Delving Deep into
Rectifiers: Surpassing Human-Level Performance on ImageNet Classification».
In: Proceedings of the IEEE International Conference on Computer Vision
(ICCV). 2015, pp. 1026–1034 (cit. on p. 49).

[22] Q. Zou, Y. Wang, Q. Wang, Y. Zhao, and Q. Li. «Deep learning-based
gait recognition using smartphones in the wild». In: IEEE Transactions on
Information Forensics and Security 15 (2020), pp. 3197–3212. doi: 10.1109/
TIFS.2020.2964705 (cit. on p. 51).

[23] M. Gadaleta and M. Rossi. «Idnet: Smartphone-based gait recognition with
convolutional neural networks». In: Pattern Recognition 74 (2018), pp. 25–37.
doi: 10.1016/j.patcog.2017.10.019 (cit. on p. 51).

[24] F. J. Ordoñez and D. Roggen. «Deep convolutional and LSTM recurrent
neural networks for multimodal wearable activity recognition». In: Sensors
16.1 (2016), p. 115. doi: 10.3390/s16010115. url: https://doi.org/10.
3390/s16010115 (cit. on p. 51).

[25] S. Shen, S.-S. Sun, W.-J. Li, R.-C. Wang, P. Sun, S. Wang, and X.-Y. Geng.
«A classifier based on multiple feature extraction blocks for gait authentication
using smartphone sensors». In: Computers and Electrical Engineering 108
(2023), p. 108663. doi: 10.1016/j.compeleceng.2023.108663 (cit. on
p. 51).

[26] N. Rifaat, U. K. Ghosh, and A. Sayeed. «Accurate gait recognition with
inertial sensors using a new FCN-BiLSTM architecture». In: Computers and
Electrical Engineering 104 (2022), p. 108428. doi: 10.1016/j.compeleceng.
2022.108428 (cit. on p. 51).

70

https://doi.org/10.1109/TIFS.2020.2964705
https://doi.org/10.1109/TIFS.2020.2964705
https://doi.org/10.1016/j.patcog.2017.10.019
https://doi.org/10.3390/s16010115
https://doi.org/10.3390/s16010115
https://doi.org/10.3390/s16010115
https://doi.org/10.1016/j.compeleceng.2023.108663
https://doi.org/10.1016/j.compeleceng.2022.108428
https://doi.org/10.1016/j.compeleceng.2022.108428

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Background
	Neural Networks
	Origins and Evolution
	Common Network Architectures
	Training Neural Networks

	Biometric Data
	Biometric Modalities
	Applications
	Biometric Systems

	Model Compression
	Pruning
	Parameter Quantization
	Other Methods

	Methodology
	Dataset
	Data Format
	Data Collection
	Preprocessing

	Network Topology
	Quantized Training
	Binary Training
	Ternary Training

	Identification Task
	Problem Formulation
	Criterion and Training
	Evaluation Metrics

	Authentication Task
	Problem Formulation
	Criterion and Training
	Evaluation Metrics

	Experimental Results
	Setup
	Identification Task
	Hyper-Parameter Optimization
	Results

	Authentication Task
	Hyper-Parameter Optimization
	Results
	Open Set Results

	Conclusions
	Bibliography

