
POLITECNICO DI TORINO
Master’s Degree in Mechatronic Engineering

Master’s Degree Thesis

Design of a NMPC System for
Automated Driving and Integration into

the CARLA Simulation Environment

Supervisors

Prof. CARLO NOVARA

Prof. FABIO TANGO

Prof. MATTIA BOGGIO

Candidate

STEFANO CATOZZI

December 2024

Abstract

The development of autonomous vehicles is one of the most significant and promis-
ing technological challenges of the modern era, with substantial potential benefits
in terms of road safety, traffic efficiency, and environmental sustainability. However,
the complexity of the control systems required for fully autonomous driving de-
mands advanced approaches capable of managing dynamic scenarios and variable
operating conditions. In this context, simulators play a crucial role in testing and
validating these technologies by providing a safe and controlled environment to
replicate diverse driving scenarios without real-world risks. This thesis presents
the design of a control system for autonomous driving implemented in MATLAB,
co-simulated with the CARLA simulator. The project focuses on the implementa-
tion of a Nonlinear Model Predictive Control (NMPC) for advanced path tracking
and decision-making functions in realistic and dynamic scenarios. The choice of
NMPC is motivated by the need to ensure high performance in nonlinear con-
texts, while also considering strict constraints on vehicle states and inputs. To
enable seamless integration of the NMPC controller, this thesis developed sev-
eral key functionalities within the control system, including vehicle output data
analysis, optimal trajectory generation based on velocity and path curvature, and
the manipulation of input signals to govern the vehicle’s behavior. Additionally,
system identification was employed to examine the longitudinal dynamics of the
vehicle under various throttle and braking conditions, enhancing the control system
through a dispatching function that converts desired acceleration into appropriate
input commands for the vehicle. A detailed analysis of the NMPC controller’s
tuning parameters was conducted to achieve a balance between tracking accu-
racy, robustness, and computation time—critical aspects for real-time system
implementation. Moreover, the interface between Matlab and CARLA was signif-
icantly improved compared to previous studies, ensuring the controller’s proper
integration into the CARLA environment. The co-simulation between MATLAB
and CARLA provides a realistic and modular testing environment, allowing the
simulation of different traffic scenarios and variable road conditions. The results
demonstrate how the NMPC controller, supported by the newly developed system
functions, can effectively adapt to diverse operating conditions, optimizing the
vehicle’s trajectory and enhancing real-time decision-making capabilities. This
work represents a significant step toward integrating advanced predictive control
techniques in autonomous driving systems, highlighting both the advantages and
challenges of MATLAB-CARLA co-simulation for autonomous driving applications.

Keywords: Autonomous vehicles, Control system, Path tracking, Decision mak-
ing, NMPC (Nonlinear Model Predictive Control), MATLAB, CARLA simulator,
Co-simulation, Output data analysis, Trajectory generation, Input

Table of Contents

List of Figures iv

Acronyms viii

1 Introduction 1
1.1 Autonomous Driving . 1
1.2 AV System Architectures . 4
1.3 Simulation’s Crucial Role in ADS Testing 8
1.4 Simulator’s Technical Requirements 12
1.5 Simulators’ State of Art . 14

1.5.1 CARLA . 15
1.5.2 LGSVL . 16
1.5.3 Sim4CV . 18

1.6 Goal of the Thesis . 19
1.7 State of Art . 21
1.8 Outline and Contributions . 25

2 Vehicle Models and Control Systems 27
2.1 Dynamical Vehicles Models . 27

2.1.1 Dynamic Single Track Model 29
2.1.2 Tire Models . 30

2.2 Control System Architecture for ADS 32
2.3 Trajectory Planning and Control Algorithms 35

2.3.1 NMPC . 39

3 CARLA Co-Simulation 46
3.1 CARLA Features and Architecture 46
3.2 CARLA Traffic Manager . 48
3.3 Anaconda Interface . 50
3.4 Data Gathering Autonomous Mode 51
3.5 Manual Control Data Gathering . 53

ii

3.6 MATLAB Interface . 54
3.7 CARLA Enviroment in Simulink 55

4 Control System Design 60
4.1 Project specifications . 60
4.2 NMPC controller . 61
4.3 Vehicle Model . 64

4.3.1 Car Parameters . 64
4.3.2 Differential Equations . 64

4.4 MATLAB Controller Implementation 66
4.5 Simulink Control System . 68

4.5.1 Transform Function . 68
4.5.2 Localization Function . 69
4.5.3 Path Planning Function . 73
4.5.4 Error function . 74

4.6 Identification of the Vehicle Model 75
4.6.1 Dispatching Function . 77

5 Simulation Results 79
5.1 Path Tracking in Urban Scenario 79

5.1.1 NMPC vs CARLA Autopilot 80
5.1.2 NMPC vs Manual Driving 85

5.2 Path tracking with augmented velocity 86
5.3 Obstacle avoidance . 89
5.4 Overtaking maneuver . 91

6 Conclusion 93
6.1 Thesis Results . 93
6.2 Limitations of the Work . 94
6.3 Future work . 95

A Additional Functions 97

Bibliography 100

List of Figures

1.1 SAE Autonomous levels . 2
1.2 Waymo autonomous vehicle . 3
1.3 Example of AV sensors positions . 5
1.4 Pipeline software architecture . 6
1.5 End-to-end software architecture 7
1.6 Vehicle to everything system . 9
1.7 CARLA simulator advanced interface with Synkrotron Oasis 9
1.8 V-Cycle development process ISO 26262 10
1.9 CARLA logo and environment . 15
1.10 LGSVL logo and environment . 17
1.11 Sim4CV logo and environment . 18

2.1 Vehicle coordinates system . 28
2.2 Single track bicycle model . 29
2.3 Fy lateral force vs α side slip angle 31
2.4 AV Software FAV . 33
2.5 AV architecture whit control feedback 34
2.6 Feedback loop design . 35
2.7 PID controller architecture . 36
2.8 Sliding mode controller with chattering 37
2.9 NMPC control loop . 40
2.10 NMPC controller strategy . 41

3.1 CARLA simulator server and client representation 47
3.2 CARLA simulation with cars and pedestrians 47
3.3 CARLA traffic manager architecture 48
3.4 Anaconda interface to run scripts made with Spyder and Python on

CARLA environment . 50
3.5 Steering wheel and pedals setup for manual driving 53
3.6 MATLAB and Python interface with CARLA environment 54

iv

4.1 Text files before and after trajectory cleaning function 67
4.2 Simulink control system . 68
4.3 Localization bug situation . 70
4.4 Study of longitudinal acceleration under specific throttle and brake

input, 0.8 and 0.6 respectively . 76
4.5 Average acceleration values in second gear 76
4.6 Complete acceleration map for first to fourth gear 77

5.1 Path reference in CARLA . 80
5.2 Comparison between NMPC and CARLA Autopilot velocity 81
5.3 Path curvature calculated by system localization function 81
5.4 Comparison between NMPC and CARLA Autopilot cross track error 82
5.5 Comparison between NMPC and CARLA Autopilot steering commands 83
5.6 Ego-vehicle acceleration compared to NMPC desired acceleration

during path tracking scenario . 84
5.7 Ego vehicle yaw rate during path tracking scenario 85
5.8 Manual driving with steering wheel in CARLA results 86
5.9 Comparison between NMPC and CARLA Autopilot cross track error

in augmented velocity scenario . 87
5.10 Ego-vehicle acceleration compared to NMPC desired acceleration in

augmented velocity scenario . 88
5.11 Obstacle avoidance maneuver . 90
5.12 Obstacle avoidance maneuver steering commands, yaw angle and

yaw rate . 90
5.13 Overtaking maneuver . 92
5.14 Overtaking maneuver vehicles velocity and ego-vehicle CTE 92

Listings

3.1 Python data gathering function . 52
3.2 CARLA camera view settings . 53
3.3 MATLAB environment . 56
4.1 CARLA get physics parameters . 64
4.2 MATLAB single track model function 65
4.3 Simulink transform function . 69
4.4 Simulink localization function . 71
4.5 Simulink path generation function 73
4.6 Simulink errors function . 74
4.7 Simulink dispatching function . 78
A.1 Curvature function . 97

vi

Acronyms

AV
Autonomous Vehicle

ADS
Automated Driving System

LiDAR
Light Detection And Ranging

ECU
Electronic Control Units

AI
Artificial Intelligence

ADV
Autonomous Driving Vehicle

SAE
Society of Automotive Engineers

DDt
Dynamic Driving Task

ODD
Operational Design Domain

GPS
Global Positioning System

viii

ADAS
Advanced Driver Assistance Systems

DQN
Deep Q Networks

RNN
Recurrent Neural Network

V2X
Vehicle To Everything

VANET
Vehicular Ad hoc Networks

ICN
Information Centric Networking

VCC
Vehicular Cloud Computing

IoV
Internet of Vehicles

XIL
Everything In the Loop

MIL
Model In the Loop

SIL
Software In the Loop

PIL
Process In the Loop

HIL
Hardware In the Loop

I/O
Input/Output

API
Application Programming Interface

IMU
Inertial Measurement Unit

SLAM
Simultaneous Localization and Mapping

PID
Proportional–Integral–Derivative

MPC
Model Predictive Control

NPC
Non Player Character

RGB
Red, Green, and Blue

GNSS
Global Navigation Satellite System

CARLA
Car Learning to Act

SUMO
Simulation of Urban MObility

LGSVL
LG Silicon Valley Lab Simulator

FMI
Functional Mockup Interface

Sim4CV
Simulation for Computer Vision

UE4
Unreal Engine 4

UAV
Unmanned Aerial Vehicle

NMPC
Nonlinear Model Predictive Control

LQR
Linear Quadratic Regulator

OCP
Optimal Control Problem

VehIL
Vehicle In the Loop

PFT
Preview-Follower Theory

SMPC
Stochastic Model Predictive Control

GMM
Gaussian Mixture Model

CAV
Connected and Automated Vehicles

FAV
Functional Architecture View

SQP
Sequential Quadratic Programming

QP
Quadratic Programming

NLP
Nonlinear Programming

SMC
Sliding Mode Controller

MIMO
Multiple Input Multiple Output

LQRY
Linear Quadratic Regulator with Output Weighting

TM
Traffic Manager

ALSM
Agent Lifecycle & State Management

PBVT
Path Buffers & Vehicle Tracking

DST
Dynamic Single Track

CTE
Cross Track Error

RMSE
Root Mean Square Error

Chapter 1

Introduction

1.1 Autonomous Driving

Autonomous vehicles (AVs), also known as self-driving cars and driver-less cars,
are vehicles that are able to perceive the environment in which they’re in and
navigate through this environment without the help or intervention of a human
being [1]. Since the middle 1980s, Automated Driving Systems (ADSs) have been
studied and developed by many universities, research centers, car companies, and
entities of other industries around the world [2] with the promise of preventing
accidents, increase efficiency in transportation, reduce congestion, lower emissions,
transporting the mobility-impaired and reducing driving related stress. Autonomous
vehicles are categorized based on their level of automation, which refers to the degree
to which they can operate without human intervention. The classification system,
defined by the Society of Automotive Engineers (SAE) in 2014, provides the most
widely accepted framework for understanding the various stages of automation in
vehicles. They developed a harmonized system to describe six degrees of automated
driving, it ranges from Level 0 (no automation) to Level 5 (full automation). This
system helps differentiate respectively between vehicles that assist drivers and those
capable of completely autonomous driving in all conditions. For better presenting
the SAE classification system, some terms need to be totally clarified. Those terms
were shaped by SAE with the best efforts to fully cover the automated system
terms and his uses and do not let any lacuna for double interpretation. For instance,
the Dynamic Driving Task (DDT) encompasses all functions required to operate a
vehicle in on-road traffic, while the Operational Design Domain (ODD) defines the
specific conditions under which the system or feature is intended to operate. The
Automated Driving System refers to the combination of hardware and software
capable of performing the entire DDT. The DDT Fallback, or Dynamic Driving
Task Fallback, is the response by either the driver or the ADS to perform the

1

Introduction

DDT or to bring the vehicle to a minimal risk condition. The driving automation
system’s manufacturer is responsible for defining the system’s requirements, ODD,
operating characteristics, appropriate use cases, and the system’s level of driving
automation. To determine the automation level of a driving system, aspects like
the system’s functionalities, the roles of DDT, and the DDT fallback are considered.
According to SAE’s six automation levels, as shown in Figure 1.1, levels 1 and 2
refer to cases in which the (human) driver continues to perform part of the DDT
while the driving automation system is engaged. The upper three levels of driving
automation (3-5) refer to cases in which the Automated Driving System performs
the entire the DDT on a sustained basis while it is engaged [3].

Figure 1.1: SAE Autonomous levels

• At level 0 the human driver is entirely responsible for controlling the vehicle at
all times. There might be automated systems like warning alerts or emergency
braking assistance, but they do not control the vehicle autonomously;

• At Level 1 (driver assistance) vehicle provide basic automation features like
adaptive cruise control or lane-keeping, during a specific condition the system
does either the lateral or the longitudinal motion control but never the both
simultaneously, and the driver performs the remaining tasks of it;

• At Level 2 (partial driving automation) during a specific condition, the system
does both the lateral and the longitudinal motion providing simultaneously
steering and acceleration/deceleration, such as on highways, and the driver
supervise the system and performs other tasks;

• At Level 3 (conditional driving automation) during a specific condition, the
system performs the entire DDT excepting to the DDT fallback, which is done
by the user if the system requires when the vehicle encounters situations it

2

Introduction

cannot handle or if the DDT present any relevant failure. By this level the
feature is capable of performing the entire DDT in low-speed, stop-and-go
and freeway traffic;

• At Level 4 (high driving automation) during a specific condition, the system
does the entire DDT and DDT fallback, without expecting that the user will
respond to intervene if requested. At this level, the feature performs the entire
DDT operation on a motorway or freeway but it may require human control
in complex or undefined environments like rural roads;

• At Level 5 (full driving automation) there is no specific condition to the system
operates, the feature must be capable of doing the entire DDT and DDT
fallback, without expecting that the user responds a request to intervene. At
this level, the system is capable of guiding the vehicle throughout complete
trip, regardless of the starting and ending points or intervening road, traffic
and weather condition. There is no need for steering wheels or pedals, as the
system is designed to operate independently in all situations.

To be capable of navigating and operating without human intervention, an
autonomous car has to rely on a combination of advanced hardware and software
technologies to perceive their environment, process data in real-time, make driving
decisions and control the vehicle to execute maneuvers [4]. Example of these
technologies, as can be seen on a Waymo autonomous vehicle in Figure 1.2, are
sensors, cameras, radars, LiDARs, electronic control units (ECUs), artificial intelli-
gence (AI) and control systems. In particular, the system software architecture in

Figure 1.2: Waymo autonomous vehicle

Autonomous Driving Vehicles (ADVs) plays a critical role in ensuring that all the
vehicle’s software components work seamlessly together to achieve safe, reliable,
and efficient autonomous driving. The architecture serves as the blueprint that

3

Introduction

defines how different software modules are organized, how they communicate, and
how they handle various tasks such as perception, decision-making, and control.
Equally important are the software functions that operate within this architecture.
These functions, such as sensor fusion, object detection, path planning, and vehi-
cle actuation, form the core processes that enable autonomous operation. Each
function must be precisely designed, implemented, and tested to ensure the vehicle
can perceive its environment, make informed decisions, and execute appropriate
actions in real time. Any failure in these functions could compromise the safety and
reliability of the system. A well-designed software architecture not only provides a
robust framework for integrating these critical functions but also ensures that they
interact efficiently and reliably under diverse operating conditions. Moreover, it
facilitates scalability, allowing the addition of new functionalities or improvements
to existing ones, and supports rigorous testing and validation processes, which
are essential for deployment and long-term maintenance of autonomous driving
systems.

Finally, developing autonomous driving for everyday use faces several challenges,
including ensuring safety in complex urban environments, handling unpredictable
behaviors from human drivers and pedestrians, and addressing regulatory and public
acceptance issues. Despite these obstacles, autonomous cars are already being used
for passenger transport in cities, primarily in pilot programs or as autonomous
taxis. Companies like Waymo (USA), Cruise (USA), and Baidu (China) operate in
selected areas with well-mapped streets and compatible infrastructure. In cities
such as Phoenix, San Francisco, and Beijing, these vehicles are now available for
commercial services or ride-hailing.

1.2 AV System Architectures
The architectures of ADSs can be classified as either standalone, ego-only systems
(where ego stands for the controlled vehicle), or connected multi-agent systems. Ad-
ditionally, these design principles are implemented through two different approaches:
modular or end-to-end driving[5].

EGO-ONLY SYSTEMS The ego-only approach up to now is the most widely
used among the state-of-the-art ADSs. The philosophy is to carry all of the
necessary automated driving operations on a single self-sufficient vehicle at all
times, whereas a connected ADS may or may not depend on other vehicles
and infrastructure elements given the situation. This lead to a more easily-
manageable and practical situation in which design and development are done
on a self-sufficient platform with the possibility to be opened to additional
challenges of connected systems.

4

Introduction

Figure 1.3: Example of AV sensors positions

MODULAR SYSTEMS Modular systems are characterized by a cascade of
separate components connecting sensory inputs, as shown in Figure 1.3, to
actuator outputs [6]. The main functions of a modular ADS can be synthesized
as: localization and mapping, perception, assessment, planning and decision
making, vehicle control, and human-machine interface. In a typical pipelines,
as can be seen in Figure 1.4, raw sensor inputs are fed to localization and
object detection modules, followed by scene prediction and decision making.
Next, the control module generates motor commands applied at the end of
the stream to the vehicle. This structure allow to develop individual modules
separately splitting into an easier-to-solve set of problems the challenging task
of automated driving. The major advantage of this is that these sub-tasks have
their corresponding literature in robotics [7], computer vision [8] and vehicle
dynamics [9], allowing direct transfer of accumulated know-how and expertise.
Furthermore in a modular design, functions and algorithms can be integrated
or built upon each other. E.g, a safety constraint [10] can be implemented on
top of a sophisticated planning module so that, in case of emergency, can force
some hard-coded rules without modifying the inner workings of the planner.
As a result the design is redundant but architecture is reliable. On the other
side the major disadvantages of modular systems are being prone to error
propagation and over-complexity. The first ADS related fatality was caused by
an error in the perception module of a Tesla in the form of a misclassification
of a white trailer as sky, propagated down the pipeline until failure [11].

END-TO-END DRIVING End-to-end driving approach generates ego-motion
directly from sensory inputs, without any intermediate processing, as for
example in Figure 1.5. The three main techniques for end-to-end driving
are: direct supervised deep learning, neuro-evolution and the more recent

5

Introduction

Figure 1.4: Pipeline software architecture

deep reinforcement learning. In direct supervised deep learning a connected
networks model is trained typically from image inputs. In this case the ground
truth, thus the real-world data used as a benchmark to evaluate the model
behavior, is the ego-action sequence of an expert human driver. As consequence,
since the appropriate driving actions in the perception indicators are generated
by a separate module, this approach is not fully end-to-end. Artificial neural
network research advances were crucial to implement deep convolutional and
temporal networks in automated driving tasks. In [12] was proposed a deep
convolutional neural network that takes image as input and outputs steering
commands. In [13] a spatiotemporal network was developed for predicting ego-
vehicle motion. Another convolutional model that tries to learn a set of discrete
perception indicators from the image input is DeepDriving [14]. Different is
the approach of deep reinforcement learning model, Deep Q Networks (DQN),
where reinforcement learning is combined with deep learning [15]. Here actions
are generated first with random initialization, then the aim of the network is
to select a set of actions that maximize cumulative future rewards. Where
the optimal action reward function is approximated by a deep convolutional
neural network. The model adjust its parameters with experience instead of
direct supervised learning. An automated driving framework using DQN was
introduced in [16], and then tested in a simulation environment. While in a
countryside road without traffic was achieved the first real world run with
DQN [17]. DQN based systems learn the optimum way of driving instead
of imitate the human driver. Neuroevolution driving approac instead is not
popular as DQN and direct supervised learning. The goal in neuroevolution is
use evolutionary algorithms to train artificial neural networks [18]. Real world
end-to end driving with neuroevolution is not achieved yet based on our current
best knowledge. However, some promising simulation results were obtained.
ALVINN (Autonomous Land Vehicle In a Neural Network), that was one of
the earliest successful demonstrations of using neural networks for real-time

6

Introduction

decision-making in self-driving cars in the end of 80’s [19], was trained with
neuroevolution and outperformed the direct supervised learning version [20].
A Recurrent Neural Network (RNN) was trained with neuroevolution in [21]
using a driving simulator. The biggest advantage of neuroevolution is that
backpropagation can be removed, thus direct supervision is no more needed.
End-to-end driving shows promise, but its application in real-world urban
environments remains limited, with only a few controlled demonstrations.
The main challenges of end-to-end driving include a lack of built-in safety
mechanisms and limited interpretability [22]. Additionally, approaches like
Deep Q-Networks and neuroevolution have a significant drawback compared
to direct supervised learning: they require continuous online interaction with
the environment and rely on trial and error to learn the desired behaviors, and
failing could lead to severe incidents. In contrast, direct supervised learning
networks can be trained offline using human driving data, ensuring that, once
trained, the system should operate without failures.

Figure 1.5: End-to-end software architecture

CONNECTED SYSTEMS Some researchers believe that the future of driving
automation will be operational connected ADSs. In this emerging technology,
not in use yet, the basic operations of automated driving can be distributed
among agents. V2X, or "vehicle to everything", enables a vehicle to access a
vast amount of data from various sources, such as pedestrians’ mobile devices
and stationary sensors on traffic lights [23], example shown in Figure 1.6.
By sharing detailed traffic network information, V2X can help overcome the
limitations of ego-only systems, including restricted sensing range, blind spots,
and computational constraints. More V2X applications are anticipated to
improve safety and traffic efficiency in the near future [24]. Vehicular Ad
hoc Networks (VANETs) can be implemented through two main approaches:
conventional IP-based networking and Information-Centric Networking (ICN)

7

Introduction

[25]. In vehicular contexts, where data needs to be shared among agents that
may experience intermittent or suboptimal connections while maintaining high
mobility, conventional IP-based protocols are often insufficient [26]. Unlike IP-
based networking, ICN allows vehicles to broadcast query messages to a general
area rather than targeting a specific address, and they can accept relevant
responses from any available source [27]. This approach is better suited to the
high mobility and dispersion of vehicles on road networks, where the identity
of the information source is less important. Furthermore, local data often
holds greater relevance for immediate driving tasks, such as avoiding a rapidly
approaching vehicle in a blind spot. Early studies, like the CarSpeak system
[28], demonstrated that vehicles can leverage each other’s sensors and shared
information to perform dynamic driving tasks. However, to make information
sharing feasible across hundreds of thousands of vehicles in a city, it is essential
to reduce the vast amounts of continuous driving data being exchanged. A
semiotic framework was proposed in [29] to integrate various information
sources and transform raw sensor data into meaningful insights. In [30], the
concept of Vehicular Cloud Computing (VCC) was introduced, highlighting its
advantages over traditional Internet cloud applications. The key distinction
lies in sensor data management: in VCC, sensor data remains on the vehicle
and is shared only when queried by another vehicle, potentially reducing the
costs of continuous data transfer to the web. Additionally, the high relevance of
local data enhances VCC’s feasibility. Comparisons between traditional cloud
computing and vehicular cloud computing indicated that VCC is technically
feasible [31]. The term "Internet of Vehicles" (IoV) was introduced to describe
a connected Automated Driving System, while "vehicular fog" was presented in
[27]. Creating an efficient Vehicular Ad hoc Network with thousands of vehicles
in an urban setting poses considerable challenges. For Information-Centric
Networking -based VANETs, key issues include security, mobility, routing,
naming, caching, reliability, and multi-access computing [32]. Despite the
significant potential benefits of a connected vehicular system, these challenges
greatly increase the system’s complexity, and no fully operational connected
system has been achieved yet.

1.3 Simulation’s Crucial Role in ADS Testing
Testing autonomous driving vehicles is a crucial step in ensuring the safety, reliability,
and efficiency of the complex systems involved in making a self-driving vehicle.
However, testing algorithms for autonomous vehicles in real world is an expensive
and time consuming process. Also, in order to utilize recent advances in machine
intelligence and deep learning we need to collect a large amount of annotated

8

Introduction

Figure 1.6: Vehicle to everything system

training data in a variety of conditions and environments [33] where certain type
of infrastructure can not be present and with conditions not always reproducible.
This issue is enhanced by the fact that during the training phase autonomous
vehicles are often unsafe, jeopardizing the safety of public. Simulation plays a key
role in supplementing and accelerating the real world testing. It allows to test
scenarios that are otherwise highly regulated on public roads because of safety
concerns [34]and is reproducible, scalable and cuts the development without extra
cost required. Example of simulation based testing framework in Figure 1.7.

Figure 1.7: CARLA simulator advanced interface with Synkrotron Oasis

Due to the high stakes associated with allowing machines to make decisions
in real-time traffic scenarios, ADV testing is multi-faceted, rigorous, and involves
several phases, from virtual simulation to real-world deployment. The goal is
to verify that all hardware, software, and decision-making algorithms function
correctly in various conditions and edge cases. Standard ISO 26262, published
in November 2011, defines the safety aspects of the development, from design
to test, of electric and electronic automotive systems. In Figure 1.8 the ISO
26262 V-cycle Development Process. A significant innovative approach for system
safety of ISO 26262 is that it recommends at each design stage tests and fault

9

Introduction

injection [35]. At each step of design a specific approach using only software or

Figure 1.8: V-Cycle development process ISO 26262

both, software and hardware, is used to test the designed controller according
to the predefined requirements. In addition, the tests should cover most of the
potential operating conditions, and cover all the parts of the developed control
logic. Tests are conducted by integrating the control logic in a loop with the plant
model, known as X-In-the-Loop (XIL) testing. XIL encompasses several types of
tests, including Model-In-the-Loop (MIL), Software-In-the-Loop (SIL), Processor-
In-the-Loop (PIL), and Hardware-In-the-Loop (HIL) testing. In particular:

MIL MIL tests are used during control system development. In this stage, the
plant is modeled and used to provide the signals required by the controller.
Both controller and model are developed and run on the same computer. At
this step any vital problem in the control logic can be detected .

SIL The developed control model is compiled to executable code into a system-
function (S-Function) block. This S-Function block is connected to the plant
and will be tested with the same tests designed for MIL. This approach
increases simulation speed and it’s useful to debug and analyze the generated
code and controller performance. Both controller and plant are still on the
same computer. SIL is the most cost-effective method for testing production
code without requiring any physical hardware. However, low-level processes
such as ECU communication, CAN, etc. are not modeled in a typical SIL
environment [36].

PIL In PIL, the control model is compiled, and the resulting production code
is loaded onto the embedded target processor. Unlike MIL and SIL, where
everything is typically run on a single PC, in PIL, the controller and plant

10

Introduction

model are hosted on two separate machines. The model running on the PC
interacts with the software on the processor via a communication link, such
as standard Ethernet. PIL tests do not involve any physical I/O devices like
sensors or actuators.

HIL In HIL both the model and controller are compiled, and the generated code
is uploaded to the respective hardware components. The controller’s code is
loaded onto the Electronic Control Unit, while the plant’s code is uploaded
to the model simulator. HIL setups enable the connection to external inputs
from real physical systems, such as steering wheel commands or brake/gas
pedal positions. Additionally, HIL tests include a physical component under
test, which could be an actuator, sensor, or a vehicle part like the engine,
transmission, or battery pack. In an HIL test, the plant is a combination of
the components under test and the model running in the simulator. There
are two types of input/output (I/O) in HIL: virtual I/O and physical I/O.
Virtual I/O refers to the communication between the ECU and the simulator
via CAN bus, while physical I/O involves CAN communication between the
ECU and physical components, such as the ECU interacting with actuators,
sensors, or other vehicle systems [37].

Now, it’s essential to consider which types of features can be effectively tested
through simulation. According to [38], five distinct categories of accident exposure
factors have been identified in ADS testing:

1. Failure of components and hardware deficiencies

2. Deficiencies in sensing road, traffic and environmental conditions

3. Deficiencies in control algorithms (complex and difficult situations)

4. Behavior dependent accidents (adequate behavior and rule compliance)

5. Faulty driver and vehicle interaction (mode confusion and false commanding)

The robustness of components and hardware (category 1) must be assessed through
bench testing and on proving grounds. For Hardware-In-the-Loop testing, an envi-
ronment simulation is necessary. While these tests align with standard automotive
component testing, they now demand lower acceptable failure rates and stricter
safety integrity level requirements. The testing of category 2 environment sensors is
influenced by factors like weather, environmental conditions, visibility, and lighting.
Field tests are essential to assess sensor performance under diverse real-world
conditions. For standardized performance assessments, specialized test areas can
provide the controlled environments needed for certification tests. If suitable sensor
models are developed based on field test results —simulating sensor responses under

11

Introduction

various conditions— sensor fusion algorithms can then be evaluated in simulations.
Category 3 testing focuses on control algorithms under challenging driving scenarios,
with Software-in-the-Loop simulations being a central part of this process. When
combined with Hardware-in-the-Loop tests, which incorporate actuator responses,
the testing procedure can be completed before verifying the entire system through
proving ground tests. Compliance with rules and appropriate behavior (category
4) in interactions with infrastructure and during specific scenarios, such as the
presence of emergency vehicles, can be partially evaluated through Software-in-the-
Loop simulations. However, full verification of behavior requires additional testing
on proving grounds and in real-world field conditions. Validating the interaction
between driver and vehicle (category 5) —particularly focusing on issues like mode
confusion and unintended commands— is a primary application for driving simula-
tor studies, where driver-in-the-loop simulations provide a controlled environment
to observe these interactions. Following simulator studies, proving ground and
field tests provide further insights and complete this phase of testing. SIL test
environments and driving simulators represent distinct hardware setups, each with
specific focuses and challenges. However, the core requirement for both—whether
in SIL or driver-in-the-loop studies—is the simulation and precise control of the
traffic environment to ensure consistent, reproducible testing conditions [39].

1.4 Simulator’s Technical Requirements
A good automotive simulator must meet several critical requirements to effectively
simulate autonomous vehicles, driving scenarios, and the interaction between
various vehicle components [40]. These requirements ensure that the simulator
can accurately model real-world driving conditions, vehicle dynamics, and system
behavior. Below are some key requirements desired from any good automotive
simulator:

1. Game Engine: Automotive simulators are often developed as extensions of
game engines like Unreal Engine and Unity [41], which offer frameworks for
rendering, physics, and scripting. Their advanced 3D graphics capabilities
make them ideal for creating realistic environments that simulate vehicle
interactions, road scenarios, and the behavior of other road users;

2. Perception: A crucial element of self-driving cars is perception—the system’s
ability to interpret its surroundings using various sensors like cameras, LiDAR,
radar, GPS, and IMU [42]. These sensors provide data, which is processed by
software for decision-making. To test perception systems effectively, simula-
tors require realistic sensor models or real sensor data integration, allowing
researchers to validate methods like sensor fusion [43] and optimize sensor
placement in real vehicles;

12

Introduction

3. Simultaneous Localization and Mapping (SLAM) is a key component of
autonomous driving systems, responsible for creating maps of unknown envi-
ronments and tracking the vehicle’s location within these maps. To effectively
support SLAM applications, simulators must provide camera calibration data,
including intrinsic and extrinsic features. This information enables the SLAM
algorithm to utilize multi-view geometry for estimating camera position and
localizing the autonomous system within a global map;

4. Path Planning: Path planning involves determining a route for a mobile
agent to navigate autonomously while avoiding collisions. For autonomous
vehicles, this process builds on research in mobile robotics, distinguishing
between global and local planning. Global planners use static maps of the
environment, while local planners adapt to the agent’s immediate surroundings.
Various planning algorithms [44], such as A*, D*, and RRT [45], are essential
for developing these planners. Therefore, simulators must provide built-in
mapping functions or interfaces for importing maps, as well as the capability
to program customized algorithms;

5. Vehicle control: control involves executing a planned collision-free trajec-
tory using control inputs like throttle, brake, and steering [46], monitored
by closed-loop control algorithms [47]. Common algorithms include Propor-
tional–Integral–Derivative (PID) and Model Predictive Control (MPC) [48].
For effective implementation of these intelligent control algorithms, simulators
must be able to create vehicle dynamic models and program the algorithms
mathematically;

6. 3D Virtual Environment: To effectively test a vehicle’s functional elements,
simulators require a realistic 3D virtual environment. This includes both
static objects, like buildings and trees, and dynamic ones, such as vehicles
and pedestrians [49], which must behave realistically. Simulators can create
these environments using game engines or HD maps of real locations. They
should also support various terrains and weather conditions. The level of
detail varies by application; companies like Uber and Waymo may use simpler
environments [50] if they do not rely on simulations for perception model
testing, while high-detail environments are essential when testing perception
systems;

7. Traffic infrastructure: Simulations should include traffic infrastructure elements
like traffic lights and road signs [51] to regulate traffic and ensure safety for
all road users. While infrastructure may evolve to support connected vehicles
in the future [52], current self-driving cars must still follow traditional traffic
rules, similar to human drivers;

13

Introduction

8. Traffic Scenarios Simulation: The ability to create diverse traffic scenarios is
crucial in a simulator, enabling researchers to re-create real-world situations
and explore "what-if" scenarios that may be unsafe to test otherwise. This
requires support for a wide range of dynamic agents—such as pedestrians,
bicycles, and various vehicle types—and a flexible API for managing complex
elements like agent behaviors, crashes, weather, and traffic controls;

9. 2D/3D Ground Truth To generate training data for AI models, the simulator
should supply object labels and bounding boxes for items within the scene.
Each video frame from the sensors should display objects enclosed within
bounding boxes;

10. Simulators require several non-functional qualities to support diverse testing
needs. Comprehensive documentation is essential for usability, ensuring smooth
updates with mappings for API changes to maintain compatibility. Flexibility
and modularity are also important, as open-source simulators should allow
developers to customize scenarios, sensors, and agents quickly. Portability
across different operating systems enhances accessibility and saves time. Addi-
tionally, a scalable server-client architecture enables multi-user simulations of
complex scenes, such as traffic congestion. Open-source availability further
fosters collaboration, shared learning, and collective advancements within the
field. Finally, Co-simulation capability in a simulator allows it to integrate
with other simulation tools, such as those for traffic generation, mobility, V2X
communications, or autonomous driving platforms like Autoware [53] and
Baidu Apollo [54]. This integration expands the simulator’s functionality,
enabling support for additional features beyond its original scope.

1.5 Simulators’ State of Art
Numerous simulators are available for testing self-driving car software. Many are
proprietary tools developed by autonomous driving companies, such as Waymo’s
CarCraft and SurfelGAN, Cruise’s Webviz and The Matrix, and Uber’s DataViz.
Other simulators are open-source, as Gazebo, CARLA, LGSVL, AirSim, AWSIM,
DeepDrive, and sim4CV, they are widely utilized in both academic and industrial
research. They are freely accessible, with open code that can be extended, adapted,
and supported by the community, making them ideal for academic researchers
and smaller teams with limited resources, as well as for industry use. Commercial
simulators instead, like MATLAB/Simulink, CarSim, PreScan, NVIDIA DRIVE
Sim, Cognata and IPG Automotive CarMaker, are more widely accessible and
offer a broader range of functionalities, with ongoing support through patches
and updates that improve their reliability. Probably one of the most widely

14

Introduction

used is SCANeR Studio V, a modular simulation software suite developed by
AVSimulation for designing, testing, and validating vehicle systems. It is widely
used in the automotive industry, particularly in research and development of ADAS,
autonomous driving, and vehicle dynamics. However, as paid solutions, commercial
simulators can be costly, making them more feasible for industry use, where budgets
are typically larger, than for academic researchers [55].

Following in this section three of the most used and developed open source
simulators up to now will be presented, which were candidates for this thesis work.
The feature in which we were mainly interested were ability to provide realistic 3D
environments, graphic quality, accuracy of the physics engine, sensor simulation,
simulation of traffic and pedestrians, weather conditions, and the ability to simulate
at different times of the day.

1.5.1 CARLA

(a) CARLA logo (b) CARLA environment

Figure 1.9: CARLA logo and environment

CARLA (Car Learning to Act) [56] is an open-source simulator that has been
developed to support training, prototyping, and validation of autonomous driving
models, including both perception and control. The simulator is developed based
on the Unreal Engine [57]. The engine provides state-of-the-art rendering quality,
realistic physics, basic NPC logic, and an ecosystem of interoperable plugins.
CARLA simulates a dynamic environment and offers an intuitive interface for agents
interacting with this world. It operates on a scalable client-server architecture, where
simulation tasks are handled by the server. This includes scene rendering, world-
state updates, sensor rendering, and physics calculations. To achieve realistic results,
the server should be equipped with a dedicated GPU. The client API is implemented

15

Introduction

in Python and is responsible for the interaction between the autonomous agent and
the server via sockets. It is customizable by users and provides control over the
simulation. The CARLA API is based on Python and C++. CARLA simulates a
wide range of vehicle sensors, critical for autonomous driving research, including:
Cameras (RGB, depth, semantic segmentation, infrared), LiDAR, GNSS (GPS),
IMU and Ultrasonic sensors. These sensor models replicate real-world performance,
allowing users to test perception, object detection, tracking, and sensor fusion
algorithms. Also a variety of atmospheric conditions and illumination, as in Figure
1.9 regimes are implemented. These differ in the position and color of the sun, the
intensity and color of diffuse sky radiation, as well as ambient occlusion, atmospheric
fog, cloudiness, and precipitation. Therefore, CARLA tries to meet the requirements
of various use cases of ADAS, for instance training the perception algorithms or
learning driving policies. It leverages the OpenDRIVE(citare) standard to define
roads and urban settings. The simulator supports dynamic traffic with AI-driven
vehicles, cyclists, and pedestrians. These actors follow traffic rules, respond to road
conditions, and can be programmed for specific behaviors (e.g., pedestrians crossing
the street unpredictably or vehicles swerving). Users can design custom traffic
scenarios to test edge cases like near-accidents, emergency braking, and evasive
maneuvers.

CARLA is designed with artificial intelligence and machine learning in mind,
allowing the training of autonomous driving models in simulated environments. It
can generate large amounts of data required for training perception systems, such
as object detection and semantic segmentation models. It is also possible to create
maps from scratch in CARLA using the unreal engine and the predefined features
in the CARLA library such as buildings, traffic lights, roads, also customizing the
predefined routes within the map. CARLA supports co-simulation, i.e., it can be
used with other simulators. It has native support for Simulation of Urban MObility
(SUMO) [58], CarSim, Matlab amd many others. Another significant feature of
CARLA is its active GitHub community, which assists users not only in resolving
bugs and addressing identified issues but also in providing guidance on how to
effectively use the tool.

1.5.2 LGSVL
The LGSVL (LG Silicon Valley Lab Simulator) Simulator is a high-fidelity tool
designed for autonomous driving and related systems. It has been integrated with
the Autoware and Apollo autonomous driving stacks for comprehensive end-to-end
testing, example in Figure 1.10, and can be easily adapted for other similar ADS.
As an open-source simulation engine, it promotes an open ecosystem, allowing
users to apply the LGSVL Simulator to various applications and contribute to its
development. The simulator is also regularly updated to meet the evolving needs

16

Introduction

(a) LGSVL logo (b) LGSVL environment

Figure 1.10: LGSVL logo and environment

of the user community.
LGSVL Simulator utilizes Unity’s game engine for simulation and it’s capable to

to simulate photo-realistic virtual environments that match the real world taking
advantage of the latest technologies in Unity. The set of Functions the simulation
engine can process are divided into: environment simulation, sensor simulation, and
vehicle dynamics and control simulation of an ego vehicle. Also traffic simulation as
well as physical environment simulation, like weather and time-of-day, are included
in the Environment simulation. Aspects that are vital components for test scenario
simulation. All features and settings of environment simulation can be controlled
through the Python API. The source code is available publicly on GitHub since
The simulation engine of LGSVL Simulator is developed as an open source project,
executable files can be found and downloaded for free use. The default simulator
set of sensors to choose include camera, LiDAR, Radar, GPS, and IMU as well as
different virtual ground truth sensors. Furthermore, Users can additionally build
their own custom sensors and add them to the simulator as sensor plugins.

LGSVL Simulator supports a basic vehicle dynamics model for physic simulation
of ego vehicles. Also, the vehicle dynamics system is set up to allow integration
of external third party dynamics models through a Functional Mockup Interface
(FMI) [59], shared libraries that can be loaded into the simulator, or separate
IPC interfaces for co-simulation. As a result, users can join together LGSVL
Simulator with third party vehicle dynamics simulation tools to take advantage
of both systems. LGSVL allow the creation of synthetic 3D environments to be
used in simulation, however can also replicate and simulate real world locations by
creating a digital twin of a real scene from logged data (images, point cloud, etc.).
Map annotations (like traffic lanes, lane boundary lines, traffic signals, traffic signs,

17

Introduction

pedestrian walking routes) can then be followed by other agents that are part of a
scenario (nonego vehicles, pedestrians, controllable plugin objects). This means
that vehicle agents and pedestrians in simulation will be able to obey to traffic
rules, as well as traffic lights, stop signs, lanes, and turns, following a annotated
route. Finally, Python API allows users to control and interact with simulated
environments. With deterministic physics, scripting allows for repeatable testing
in simulation [60].

1.5.3 Sim4CV

(a) Sim4CV logo (b) Sim4CV environment

Figure 1.11: Sim4CV logo and environment

Sim4CV (Simulation for Computer Vision) is a photo-realistic simulator designed
for training and evaluation, with wide-ranging applications in computer vision.
Developed using the Unreal Engine, it features physics-based vehicles, unmanned
aerial vehicles (UAVs), and animated human characters set in intricate 3D urban
and suburban landscapes. The simulator includes an intuitive graphical user
interface that allows users to easily adjust all pertinent settings. The sim4CV
simulator features immersive environments for both driving and flying, including
multiple vehicles such as two passenger cars, an RC truck, and two UAVs, along
with several thoughtfully crafted maps. An external map editor enables users
to create their own custom maps, as shown in Figure 1.11. Additionally, the
communication interface allows for the integration of external programs, enabling
them to receive images and vehicle state information from the simulator, as well as
send control signals, compatible with languages like C++, Python, and MATLAB.

The simulator is built on Epic Games’ Unreal Engine 4 (UE4), leveraging its
modern game engine architecture for real-time rendering of not just RGB images

18

Introduction

but also enabling the generation of pixel-level segmentation, bounding boxes, class
labels, and depth information with minimal effort. Users can set up multiple
cameras within a scene, attach them to actors, and programmatically adjust their
positions during each rendering frame. This functionality facilitates the creation of
synthetic data, including simultaneous multi-view rendering, stereoscopy, structure-
from-motion, and view augmentation. Additionally, UE4 features an advanced
physics engine that allows for the design and measurement of complex vehicle
movements, enabling realistic simulations of moving objects along with detailed
physics measurements at every frame. Lastly, the extensive compatibility with
flight joysticks, racing wheels, game consoles, and RGB-D sensors enables human
control and input, allowing for motion capture to be synchronized seamlessly with
the visually and physically rendered environment.

One application of the Sim4CV simulator is the automatic generation of datasets
with free ground truth data, enabling the evaluation of cutting-edge computer
vision tracking algorithms "in-the-loop" under conditions that closely resemble
the real world. The simulator allows for the automatic creation of virtual driving
environments, ranging from small neighborhoods to entire cities, using an overhead
view editor. Users can manipulate standardized blocks of various sizes to represent
objects like roads, trees, and houses, or they can opt to create the road network
randomly. This approach facilitates the easy generation of diverse training and
testing environments. In contrast to many other autonomous driving simulators,
Sim4CV places a strong emphasis on vision-based tasks. This focus makes it
particularly well-suited for research areas such as SLAM, visual odometry, and
object recognition [61].

1.6 Goal of the Thesis
In the rapidly expanding field of autonomous driving, it is essential to investigate new
control methods that can enhance the performance and reliability of autonomous
systems. Additionally to test these algorithms well robust platforms are needed
to evaluate real-time integration and behavior, automotive simulators are state
of art for test these solutions before real world displacement. In this context,
the goal of this thesis is to develop and integrate an advanced control system
for autonomous driving that leverages MATLAB and the CARLA simulator for
co-simulation. The control system aims to implement a pipeline strategy for path
tracking and trajectory planning based on Nonlinear Model Predictive Control
(NMPC) that takes into account velocity and path curvature, as well as demonstrate
that implementation for future decision making functionalities is possible.

NMPC compared to traditional controllers, such as PID or linear model-based
controllers, offers numerous advantages in the context of autonomous driving,

19

Introduction

especially for managing complex and dynamic scenarios. An NMPC can directly
account for the inherent nonlinearity of the vehicle system and its dynamics,
which are often not adequately represented by linear controllers like LQR or PID.
Unlike traditional controllers, which typically respond to state errors without
explicitly predicting future states, NMPC can anticipate system behavior and
act proactively to optimize performance. Infact, NMPC incorporates predictive
optimization using a model that considers real constraints, such as the vehicle’s
physical limits, obstacles, and safety boundaries, to plan the optimal trajectory
over a defined time horizon. This feature is crucial in autonomous driving, where
decisions must be based not only on the current situation but also on predictions
of the upcoming moments to ensure safety and smooth driving. It is worth
underlining the fact that, while the linear model predictive control MPC is more
widely used in this field also because the resolution of optimization problem is
convex, the nonlinear model predictive control presents non-convex solutions,
for which ad hoc algorithms must be developed and optimized. This increase
the computational difficulty and integration challenge in real-time systems but
allowing better performances due to accounted nonlinear behaviors. Indeed facing
with nonlinear system MPC performances drops due to the necessity to have an
approximated linear model, often requiring linearization of the dynamics near a
specific working point or along a defined trajectory that can results non trivial
especially in tracking problems. Furthermore linear MPC requires constraints
convexification that can be complicated, while NMPC uses simple inequalities
to describe constraints. In summary, the choice of an NMPC over traditional
controllers is justified by its ability to accurately model the vehicle’s nonlinear
dynamics, include safety constraints, and predict the effects of control actions,
enhancing the responsiveness and overall effectiveness of the autonomous driving
system.

The choice to validate the control system on CARLA stems from several com-
pelling reasons that align with the goals of developing robust and reliable au-
tonomous vehicle algorithms. CARLA is a cutting-edge open-source simulator
designed specifically for autonomous driving research, providing a versatile plat-
form that can accurately mimic real-world driving conditions. One of the primary
advantages of using CARLA is its ability to simulate realistic urban environments,
dynamic traffic scenarios, and a wide range of environmental conditions, which are
crucial for testing the resilience and adaptability of control algorithms. Moreover,
CARLA allows for the rapid iteration of experiments without the inherent risks
and costs associated with real-world testing. This is particularly important when
developing novel control strategies, as it enables researchers to evaluate the perfor-
mance of their algorithms in a safe and controlled setting. The flexibility of CARLA
also facilitates the exploration of various scenarios, including rare or hazardous
situations that are difficult to replicate in physical environments, thereby enhancing

20

Introduction

the comprehensiveness of the testing process. Finally, significant advantage of using
CARLA is its capability for real-time integration with control algorithms. This
feature allows for the seamless implementation and testing of control systems in
real-time scenarios, enabling developers to observe the immediate effects of their
algorithms on vehicle behavior. Real-time integration is essential for validating the
responsiveness and effectiveness of control strategies, as it mirrors the time-critical
decision-making required in actual driving situations. By utilizing CARLA for
validation, we aim to ensure that the developed control systems can effectively
manage the challenges of real-world driving, ultimately contributing to safer and
more efficient autonomous vehicles.

However the most critical aspect of the work is developing the control system
making possible the integration of the NMPC controller with CARLA. This re-
quires designing an architecture that enables the NMPC to operate effectively
within the simulated vehicle environment, ensuring that all necessary functions are
implemented and optimized to maximize performance. To achieve this integration,
the control system must receive real-time data from the simulator, such as position,
speed, orientation, and environmental conditions. It must also generate control
commands, such as steering, acceleration, and braking, that are compatible with
CARLA’s interface, while addressing computational and communication delays
introduced by the simulator to ensure stability and performance. Key component
of this process is the tuning of the predictive model used by the NMPC to align it
with the physical behavior of the simulated vehicle in CARLA. Parameters such
as grip coefficients, inertia, or command response dynamics must be calibrated to
accurately reflect the simulated behavior.

The integration and optimization aim to enhance trajectory tracking, ensuring
the vehicle closely follows the desired path, improve responsiveness to disturbances
such as obstacles or trajectory changes, and increase computational efficiency to
allow the NMPC to operate in real time, showcasing the benefits of integrating
MATLAB with the CARLA simulation environment for testing. Success lies in
designing functions that manage the interfaces and communication between the
predictive model and the simulator while fine-tuning the model to maximize overall
system performance.

1.7 State of Art
In recent years, the implementation of nonlinear model predictive control models
in automotive applications has garnered increasing interest within the research
community. NMPC has proven to be one of the most advanced and efficient
control techniques for handling the complexity and nonlinearity inherent in au-
tonomous driving systems, being widely used for path tracking and trajectory

21

Introduction

generation, demonstrating robustness in maneuvers such as obstacle avoidance and
overtaking. In [62] a trajectory planner for urban autonomous driving based on
a Nonlinear Model Predictive Control is presented. The algorithm leverage tools
like the ACADO toolkit and the qpOASES solver. Simulation results on CarMaker
demonstrated the planner’s effectiveness in complex scenarios, such as overtaking
slower vehicles and emergency stops to avoid unexpected obstacles. The paper
[63] details the development and testing of a real-time Nonlinear Model Predictive
Control system for autonomous driving, implemented on a Ford Focus vehicle. This
control strategy aims to handle complex driving tasks, including collision avoidance,
lane keeping, and trajectory tracking in various environments. The NMPC was
validated using a sequential testing framework, progressing from simulation (MIL)
to hardware-in-the-loop (HIL), and finally to full vehicle-in-the-loop (VehIL) with
physical testing. In [64] a framework to design, formulate and implement a path
tracker for self-driving cars based on a nonlinear model predictive control approach
was proposed. It allows the designer to easily integrate multiple objective terms
in the cost function either opposing or correlating. The proposed design of the
controller not only targets accurate tracking but also comfortable ride and fast
travel time by introducing several sub-objective terms in the main cost function
to satisfy these goals. These sub-objective terms are weighted according to their
contribution to the optimization problem. [65] introduces a Nonlinear Model
Predictive Control approach for real-time trajectory generation in highway driving
for long truck. integrating road features (e.g., curvature) and traffic information
over the prediction horizon. The objective function balances tracking performance,
driver comfort, and maintaining safe distances from other road users. The Optimal
Control Problem (OCP) is solved using ACADO code generation, and results are
compared with a feedback scheme using the IPOPT interior-point solver. Many
other studies have been published demonstrating the effectiveness and performance
of NMPC for obstacle avoidance and evasive maneuvers [66, 67], as well for urban
traffic implementation [68]. Further studies aimed at developing NMPC in different
road conditions, as in [69] where a trajectory tracking for autonomous vehicles on
varying road surfaces by friction-adaptive nonlinear model predictive control was
presented. Others tried to minimizing the complexity, optimizing the solver or
reducing computational time, e.g., [70, 71, 72, 73].

One of the most used simulators in the literature for validation of model predictive
control approach on vehicles is certainly CarSim, which offers easy integration
with MATLAB/Simulink. Many articles have been released about path tracking
and yaw stability using NMPC [74] and MPC [75, 76, 77, 78, 79, 80], with
validation within the CarSim environment. The paper [81] presents an enhanced
trajectory tracking method for autonomous vehicles by combining model predictive
control with Preview-Follower Theory (PFT). This approach aims to improve
tracking accuracy and lateral stability by extending the effective reference path

22

Introduction

without increasing computational load. The system was tested through simulations
using MATLAB/Simulink and CarSim, showing superior performance in terms of
response speed and stability compared to standalone MPC or PFT, especially in
challenging maneuvers like lane changes and slalom. In [82] collision avoidance
strategy was developed using steering and braking simultaneously with nonlinear
model predictive control method. In this paper, constraints on the wheel steering
angle is proposed in consideration of vehicle’s predicted lateral acceleration, which
should be smaller than the threshold in order to maintain lateral vehicle’s stability.
To verify the performance of the proposed strategy, two simulation scenarios were
tested in MATLAB and CarSim simulation environments.

Regarding the implementation of NMPC in CARLA Simulator we have [83],
which used Simulink as the controller design environment and CARLA as the
simulation environment. Both PID and NMPC were tested in co-simulation in
CARLA. These two methods are applied to both lateral and longitudinal control
of the vehicle, using the single-track model for PID tuning and as internal model
of the NMPC.

Widely is instead the literature about implementation of different type of linear
model predictive control strategy in CARLA, especially focusing on path tracking
[84] and realistic maneuvers. The paper [85] introduces an event-triggered MPC
strategy for autonomous vehicle path tracking to reduce computational demands
while maintaining performance. Unlike time-triggered MPC, this approach only
recalculates the control action when specific conditions (events) are met, using
past control sequences otherwise. The validation of this method was conducted in
CARLA simulator, demonstrating that event-triggered MPC significantly reduces
computation with minimal performance trade-offs compared to conventional time-
triggered MPC. In [86] presents a Stochastic Model Predictive Control (SMPC)
approach for autonomous driving at intersections, using Gaussian Mixture Models
(GMM) to capture multi-modal predictions of surrounding vehicles for collision
avoidance. The main contribution is an SMPC formulation that optimizes a new
feedback policy, tailored to leverage GMM structure, allowing for a less conservative
and convex programming-friendly solution. This feedback-based approach addresses
the uncertainties in vehicle predictions, which is especially important in intersections.
The method is evaluated in CARLA simulation using a kinematic bicycle model and
it is shown to improve mobility, comfort, and computational efficiency compared to
two baseline SMPC approaches that rely on open-loop strategies for multi-modal
collision avoidance. The paper [87] addresses real-time obstacle avoidance for
connected and automated vehicles (CAVs) in complex traffic, focusing on balancing
efficiency and computational feasibility. The authors propose a two-layer MPC
architecture that uses a differentially flat kinematic vehicle model. A fast, quadratic
programming-based MPC handles immediate, local obstacle avoidance, while an
asynchronous, more computationally intensive mixed-integer MPC provides globally

23

Introduction

optimal updates. Both layers operate in parallel, incorporating position predictions
of surrounding vehicles via V2X communication. High-fidelity co-simulations
in CARLA demonstrate the approach’s effectiveness for real-time, collision-free
navigation in urban intersections and highway scenarios. The paper [88] presents a
multi-constraint predictive control algorithm with a safety layer for reliable path
tracking and emergency obstacle avoidance. A controller-switching mechanism
alternates between a primary nonlinear MPC and an emergency controller. The
MPC’s performance is validated against Stanley and PID controllers for efficiency.
To ensure safety in critical situations where MPC’s computational load could cause
delays, an emergency braking and maneuver system is included, capable of activating
independently based on the situation. The approach is tested in two emergency
scenarios using the CARLA simulator and Python, demonstrating its effectiveness in
rapid response situations. In [89] a mixed autonomous driving control, focusing on
lateral and longitudinal navigation using Model Predictive Control and Proportional-
Integral-Derivative control respectively, is presented. The MPC handles lateral
control by predicting the vehicle’s trajectory and adjusting steering to stay on course,
while the PID controller manages longitudinal control, adjusting throttle and brakes
to maintain target speed and acceleration. Additionally, the Stanley control method
is employed for path tracking, enabling precise adherence to a predefined route
by accounting for road curvature and vehicle dynamics. Testing in the CARLA
simulator demonstrates that combining MPC, PID, and Stanley control achieves
accurate motion control and reliable, safe navigation for autonomous driving. The
paper [90] presents a MPC algorithm for path-following and collision avoidance
in autonomous vehicles, utilizing a time-varying, non-uniformly spaced prediction
horizon. This approach uses shorter time intervals for near-future predictions
and longer intervals for the distant future, allowing the algorithm to extend its
prediction horizon while maintaining a fixed number of prediction steps. This design
enhances obstacle detection by extending the vehicle’s foresight but can reduce
path-following accuracy on high-curvature routes. To address this, the algorithm
dynamically adjusts prediction intervals: short intervals improve path-following
on curved sections, while long intervals enhance obstacle detection over greater
distances. This method improves both path accuracy and obstacle avoidance range
without increasing computational load, validated through tests in the CARLA
simulator and real-time experiments [90].

As seen in this section the linear MPC has been more studied and integrated
in automotive simulators such as CarSim and CARLA also thanks to the convex
optimization problem which allows a lower computational burden in real-time
integration systems, different is instead the situation for NMPC that requires a
non-convex optimization, increasing the integration challenge in real-time systems.
This thesis aims to contribute to this rapidly evolving field by implementing and
testing an NMPC controller within the CARLA simulator, in order to evaluate the

24

Introduction

effectiveness of the model in a realistic context and to understand the challenges
related to its implementation and management in real time.

1.8 Outline and Contributions
The main objectives of this thesis focus on the development and implementation
of an advanced control system based on a Nonlinear Model Predictive Control
approach for autonomous driving, showing the results after being integrated in
CARLA simulator. Specifically, the following chapters of the thesis will be organized
as follows:

Chapter 2: Vehicle Models and Control Systems A comprehensive explo-
ration of various dynamics models pertinent to automotive systems will be
presented, providing a solid foundation for understanding vehicle behavior. In
particular for this thesis work, Detailed examination of the single track model,
highlighting its advantages and limitations in comparison to other models.
In-depth discussion of tire modeling, emphasizing its critical role in accurately
predicting vehicle dynamics. Following a tough description of typical control
system architectures employed in the automotive industry, showcasing the
evolution and effectiveness of each approach. Critical analysis of the most
commonly used control strategies, evaluating their strengths, weaknesses, and
practical applications. Special focus on the advantages of Nonlinear Model
Predictive Control algorithms as well as a Detailed formulation and theoret-
ical underpinnings of the NMPC algorithm used in this thesis is presented,
illustrating its potential to enhance vehicle control and stability.

Chapter 3: CARLA Co-simulation In-depth analysis of the architecture and
key features of the CARLA simulator, emphasizing its importance as a tool for
automotive research and development. Illustrating how it replicates real-world
scenarios to provide accurate and reliable data for control system tuning. The
integration with python will be presented, as well as python functions to gather
data from autonomous CARLA driving and manual driving, which will be
used for system tuning. Discussion on the integration of MATLAB within the
CARLA simulation environment, highlighting the steps and methods used to
achieve synchronized simulations. Presentation of the MATLAB environment
developed for these synchronized simulations, showcasing its effectiveness
in improving control system accuracy and performance. Section 3 develops
certain preliminary elements that establish the methodological and theoretical
foundation of the research, providing the necessary context to understand the
following sections.

25

Introduction

Chapter 4: Control System Design Control System Description: Detailed de-
scription of the developed control system, explaining its architecture, compo-
nents, and operational principles. Presentation of the model used for predictive
control, highlighting its parameters and details. Explanation of the tuning
process for NMPC and the design of its cost function, focusing on optimizing
performance and ensuring safety. Development and implementation of new
system functions for localization and trajectory tracking, based on parameters
like velocity and path curvature, enhancing the accuracy and efficiency of
vehicle control. Detailed analysis of the system identification process on the
CARLA vehicle to create an acceleration map based on gear, throttle, and
brake input commands. This map is crucial for understanding vehicle dynam-
ics and improving control strategies. Derivation of dispatching functions to
determine the appropriate input signal commands for the vehicle, ensuring
smooth and precise vehicle operation. Section 4 delves into the core contribu-
tions and represents the heart of the research, as this section details the most
innovative and significant developments of the work carried out.

Chapter 5: Simulation Results Comprehensive analysis of simulations con-
ducted in the CARLA environment, providing a realistic testing ground for the
developed control system. Detailed comparison between manual driving, au-
tonomous CARLA driving, and the newly implemented NMPC control system
in path tracking, highlighting the strengths and weaknesses of each approach.
Simulation of an obstacle avoidance scenario, showcasing the capabilities of
the NMPC control system to react swiftly and safely to unexpected obstacles.
Simulation of an overtaking maneuver, demonstrating the system’s ability to
handle everyday realistic driving tasks with precision and efficiency.

26

Chapter 2

Vehicle Models and Control
Systems

2.1 Dynamical Vehicles Models
Vehicle dynamics is the study of the behavior of a vehicle in motion in response
to external forces such as those generated by tires, aerodynamics, acceleration,
braking and gravity. The goal of vehicle dynamics is to understand and model how
a vehicle responds to driver commands and road conditions, to improve vehicle
performance, safety and comfort. The system of coordinates that is used to describe
the vehicle motion is shown in Figure 2.1. Each axis of the car frame is subjected
to forces and moments. Longitudinal forces arise from the acceleration and braking
of the vehicle. These forces are mainly generated by the tires through friction
between the tires and the road surface. Lateral forces appear during turns. These
are the forces that act laterally on the tires and determine the vehicle’s ability to
steer and maintain the desired trajectory. Vertical forces are associated with the
weight of the vehicle and the distribution of forces on the suspension and tires.
These influence the grip of the tires on the road. Roll, Pitch and Yaw Moments
are respectively rotation of the vehicle around its longitudinal axis (from side to
side), inclination of the vehicle around the transverse axis (from back to front),
typical during braking or acceleration, and rotation around the vertical axis, linked
to changes in direction of the vehicle.

To describe the dynamics of a vehicle, different models are used, each with
different degrees of complexity depending on the applications, the most important
based on engineering application and usage are: the Single Track Dynamical Model,
or Bicycle Model, that is a 2D model of the vehicle with 3 degrees of freedom,
representing the vehicle as two wheels (one front and one rear) where forces acting
on wheels on same axle are lumped together. It is used to study lateral dynamics

27

Vehicle Models and Control Systems

Figure 2.1: Vehicle coordinates system

in relation to steering, especially to understand how the vehicle reacts to changes in
direction. It also describes the interaction between longitudinal and lateral forces
and is useful for cornering stability analysis. Moreover the model can be extended
to include roll and pitch effects. The Full Vehicle Dynamics Model, or Double
Track Dynamical Model, instead consider the vehicle as a rigid body and take into
account all six degrees of freedom: longitudinal, lateral, vertical movement, rotation
around the axes (roll, pitch and yaw). They are used in advanced applications
where an accurate description of the three-dimensional dynamics of the vehicle is
necessary, such as for the analysis of suspension, roll, aerodynamics and overall
dynamics of the vehicle. The longitudinal, lateral and vertical forces for each
wheel are calculated separately, making the model much more realistic. It Allows
to accurately model the behavior of the suspension, the load transfer between
the wheels during cornering, braking or acceleration. Its applications are mainly
the development of racing cars or high-performance vehicles where it’s used near
advanced simulations and crash analysis.

For performance driving, utilizing a double-track chassis model, which accounts
for both lateral and longitudinal load transfer [91], can be beneficial. However,
research indicates that a single-track model is adequately accurate for most of
driving conditions [92], even when tire forces enter the nonlinear region, as the roll
and pitch angles remain relatively small in those situations. Additionally, the single-
track model is generally sufficient for most evasive maneuvers, where the primary
concern is maintaining safety rather than achieving optimal performance, making

28

Vehicle Models and Control Systems

a highly precise model often unnecessary. Furthermore, the single-track model
reduces computational demands, which is advantageous in automotive applications
[93], especially during evasive maneuvers [69].

2.1.1 Dynamic Single Track Model
The half car dynamical model, often referred to as bicycle model, is used in
applications where the vehicle’s position, heading, and sideslip are of primary
interest [94]. The model assumes that the vehicle moves on a two-dimensional
plane, which means it does not account for roll, pitch, or vertical forces. It is
primarily concerned with lateral, longitudinal, and yaw dynamics. The left and
right track of the car are lumped into a single centered track assuming same forces
on wheel on same axle as shown in Figure 2.2. Hence, only a single front and a
single rear tire are considered, and roll and pitch dynamics are ignored, resulting in
two translational and one rotational degrees of freedom [69]. The vehicle variables

Figure 2.2: Single track bicycle model

and parameters are:

• δf : steering angle;

• β ; vehicle slip angle = angle between the vehicle longitudinal axis and velocity;

• αf , αr : tire slip angles = angles between the tire longitudinal axis and velocity;

• O ≡ CoG center of gravity;

• ψ : yaw angle;

29

Vehicle Models and Control Systems

• Lf : distance CoG to front axle

• Lr : distance CoG to rear axle.

Taking the longitudinal and lateral velocities in the vehicle frame, vX ,vY , and
the yaw rate, ψ̇, as states, the single-track model is described by:

v̇X − vY ψ̇ = 1
m

(F x
f cos(δf) + F x

r − F y
f sin(δf)) (2.1a)

v̇Y + vXψ̇ = 1
m

(F y
f cos(δf) + F y

r − F x
f sin(δf)) (2.1b)

Jψ̈ = LfF
y
f cos(δf) − LfF

y
r + LfF

x
f sin(δf) (2.1c)

Where F x
i , F y

i are the total longitudinal/lateral forces in the tire frame for the
lumped left and right tires, and the subscripts i = f, r indicate front and rear,
respectively, m is the vehicle mass, J is the vehicle inertia about the vertical
axis. The vehicle position in global coordinates p = (pX , pY) is obtained from the
kinematic equation: C

ṗX

ṗY

D
= R(ψ)

C
vX

vY

D
Where R is a rotation matrix dependent from the yaw angle ψ. The tire model
describes how the tire forces F x

i and F y
i in (2.1) are generated [69].

2.1.2 Tire Models
In the field of autonomous driving, a range of tire models have been employed,
spanning from simple to complex. The simplest wheel model, sufficient to describe
lateral dynamics in urban scenarios, constrains the attainable force based on a
geometric shape. Subsequently, certain tire models exclusively analyze lateral
forces, assuming negligible tire longitudinal slip. Others tire models instead that
accounts for slips in both the longitudinal and lateral directions, they’re mostly
used in racing application and complex scenarios.

Furthermore the relation between lateral force and the slip angle must be
investigated. Where the relationship between the lateral force and the slip angle
is nearly proportional, this is called linear region, as shown in Figure 2.3, the
tire operates at small slip angles (or slip ratios). This is where the tire grip is
predictable, and there is minimal sliding or saturation. As the slip angle increases
beyond a certain point, the tire’s behavior becomes non-linear. The lateral force
no longer increases linearly with slip angle, and the tire starts to approach its peak
lateral force. Once the tire exceeds its peak force, it enters the non-linear region
where the force starts to level off or decrease.

Regarding the correlations between tire slip angle and forces, several models
have been developed. These include the linear model, the simplified Pacejka model,

30

Vehicle Models and Control Systems

Figure 2.3: Fy lateral force vs α side slip angle

the Pacejka model, and the Fiala brush model, each with specific underlying
assumptions. The linear and Pacejka models will be presented next.

Since the longitudinal slip angle is not taken into account under the assumption
of small slip angles, the vehicle’s longitudinal behavior is primarily determined by
longitudinal models without considering tire saturation. Additionally, the camber
angle of a wheel is not considered. This simplification allows for the straightforward
derivation of tire slip angles. In the case of a front steering vehicle, based on
a single-track model, the lateral slip angles α of its front and rear tires can be
expressed as [95]:

αf = arctan
3
vY + lfω

vX

4
− δf

αr = arctan
3
vY − lrω

vX

4
with w = ψ̇., and resulting in:

F y
f = −Cα,fαf cos(δf) F y

r = −Cα,rαr

where Cα,i represents the constant cornering stiffness of the respective single tire,
front and rear.

Lateral forces F y
i exerted by tires within specific lateral slip angles exhibit a

nearly linear relationship with the corresponding αi. This allows for the use of

31

Vehicle Models and Control Systems

a linear model to approximate tire behavior in this range, resulting in what is
commonly referred to as a linear tire model, expressed as [96]:

αf =(v
Y + lfω

vX
) − δf

αr =(v
Y − lrω

vX
)

F y
i = − Cα,iαi i = f, r

where Cα,i represents the constant cornering stiffness of the respective single tire,
front and rear.
F y linearly increases with increasing α, corresponding to the effective range

of the linear model. As the absolute value of α further increases, F y gradually
approaches saturation and remains approximately constant. The Pacejka model,
widely more used with the complete car dynamical model, often referred to as
the Magic Formula, is designed to fit experimental tire response curves [97] and is
based on the following equation [98]:

µy.P = B1 sin(B2 arctan(B3α−B4(B3α− arctan(B3α))))

where B1 denotes the peak value, B2 is a shape factor, B3 represents the stiffness
factor, and B4 stands for a curvature factor. Although variations may exist
in different literature sources, such as accounting for aerodynamic effects as an
additional coefficient function [99], these variations are mainly focused on the
derivation of F z, the vertical force, which is crucial for lateral tire force. However,
the Pacejka model is employed to estimate µ, which is subsequently used to compute
lateral force F y by multiplying it with F z. In this context, a constant B1 is adequate
for adjusting the maximum value of µ [100].

At low slip angles α, where the lateral force F y increases almost linearly with
the slip angle, and the tire is within its elastic deformation limits. In this region,
the stiffness factor B3 primarily controls the slope of the curve. Mathematically, in
the small slip angle region the Pacejka formula simplifies [101] to:

Fy ≈ k ∗ α, k = B1B2B3

2.2 Control System Architecture for ADS
An autonomous driving controller is a system that manages and regulates the
behavior of an autonomous vehicle, making real-time decisions based on data from
sensors and maps. In control systems the term functional architecture can be used
according the notion of functional concept expressed in the ISO26262 automotive
functional safety standard. Where functional concept is defined as ”specification

32

Vehicle Models and Control Systems

of the intended functions and their interactions necessary to achieve the desired
behavior”. A functional architecture then refers to logical decomposition of the
system into components and subcomponents, as well as the data-flows between them.
However it doesn’t prejudice the technical implementation of the architectural
elements in terms of hardware and software. A similar term, recommended by
ISO 42010 [102] for the architectural functional description of software intensive
systems, is functional view of the architecture description. Since autonomous
systems are highly software intensive, joining these two terms together we would
refer to functional architecture view (FAV) to the functional view of the system
software architecture [103]. Referring to pipeline control model of an AV Functional
architecture view of control software consists typically of three layers: perception
layer, decision/planning layer, and vehicle platform manipulation/trajectory control
layer as shown in Figure 2.4.

Figure 2.4: AV Software FAV

In the perception layer, the sensing components can be categorized into those
sensing the states of the ego vehicle, like IMU, wheel encoders, brake pressure,
throttle position and steering angle sensor, and those sensing the states of the envi-
ronment, sensors like camera, radar, LiDAR, and laser etc.. Combining real-time
information/data by using filtering, estimation, fusion, association and classifica-
tion, activities such as localization, neighboring vehicle detection, static obstacle
detection, object classification, lane detection, road detection and perception map
are executed in the perception layer.

The decision and control layer refers to those functional components which
are concerned by the vehicle characteristics and behavior in the context of the
external environment it is operating in. In this layer energy and fault management
play a crucial role in vehicle’s motion and reactive control to unexpected events.
However one of the core functions of the whole software architecture of AV is motion
planning. There are three main features of the planning layer: route planning,
behavior planning, and path planning and trajectory planning. A root can be

33

Vehicle Models and Control Systems

defined as a trip from initial position to the final destination through the road
network. The route planner provides a long term planning and generates the
optimal route according to traffic and distance from start point to destination
point. The physical space should be transformed into a configuration space in
search space planner to be the representation of environment. Another important
module of the planning layer is the driving behavior planner, which is essentially a
decision-making module to provide reasonable obstacle avoidance as well as safe
driving actions and other types of maneuvers. Path planner and trajectory planner
generates a safe, comfort and feasible trace to follow. The path is a sequence of
configuration vectors (way-points) in a collision free space of independent attributes
like position, orientation, linear velocity, angular velocity, acceleration, and steering
angle etc. A trajectory can be defined as a sequence of spatio-temporal states in
the free space (time varying way-points) which are feasible for vehicle dynamics,
give the answer about how to move along the collision free path with considering
mechanical limitation and kinematic constraints of vehicle [104].

Finally, in Vehicle platform manipulation layer the trajectory execution compo-
nents are responsible for actually executing the trajectory generated by decision
and control layer. Generation of appropriate control is achieved by a combina-
tion of longitudinal acceleration (propulsion), lateral acceleration (steering) and
deceleration (braking).

A feedback control architecture is a foundational approach in control systems
used to ensure that a system behaves as desired by continuously adjusting its
inputs based on the difference between the system’s actual performance and the
desired performance (referred to as error), Figure 2.5. It is particularly important
in autonomous vehicles and other dynamic systems, where real-time adjustments
are critical for maintaining stability, accuracy, and safety.

Figure 2.5: AV architecture whit control feedback

34

Vehicle Models and Control Systems

2.3 Trajectory Planning and Control Algorithms
In control systems, a feedback strategy is a crucial mechanism where the system
continuously monitors its output and compares it to the desired reference or set
point. If there is any discrepancy (referred to as an error), the system takes
corrective action to minimize that error, adjusting its inputs accordingly. Feedback
control is essential for achieving stability, accuracy, and robustness. In feedback
controllers (also called closed-loop controllers) an input or reference r is compared
with a measured output variable y. On the basis of the resulting error r − y a
suitable value is generating for the manipulated variable u, that is a plant input
signal, as in Figure 2.6. Controllers can be categorized [105] by their operating

Figure 2.6: Feedback loop design

principles into classical, predictive, and repetitive types. Classical controllers—such
as PID, bang-bang, and state controllers—respond reactively, adjusting only based
on past and current system behavior. Predictive controllers, in contrast, utilize
a model of the system to forecast future behavior and adjust in anticipation
deviations w.r.t. the reference [106]. Repetitive controllers leverage the behavior
from a previous cycle to compute an optimized trajectory for the following cycle,
enhancing accuracy over repeated actions [107].

Two of the most widely used in control history of classical controllers are PID
controllers and sliding mode controller (SMC). PID controller has simple design
and theory and is a common controller usually used in industrial and vehicles
applications. It consists of three terms and typically triggered by the error between
actual feedback response and a desired reference. The three terms are Proportional,
P, Integral, I, and Derivative, D, which corresponds, respectively, to the action that
each term applied to the error signal, Figure 2.7. It is usually used in trajectory
tracking to control the steering input as well as velocity input depending on a
desired steering and velocity that trajectory planner imposes. While on one side
PID controllers are particularly easier to implement due to its simplicity, on the

35

Vehicle Models and Control Systems

other hand tuning of its parameters can be challenging. In case of fast varying
system such as vehicles, one set of parameters may perform well only for certain
range of operating condition and any operating condition outside of this range
will require further tuning of the controller. To address this limitation, adaptive
PID controllers have been developed. These controllers adjust the PID parameters
automatically in response to changing system conditions, improving robustness in
fast-changing environments [108, 109].

Figure 2.7: PID controller architecture

The sliding mode controller is another type of classical controller. In SMC, both
state feedback and control signals are treated as discontinuous functions, making
the controller unaffected to parametric uncertainties and external disturbances
[110]. This robustness is a key reason why SMC is well-suited for nonlinear systems.
The term "Sliding Mode" refers to the system’s motion as it moves along predefined
boundaries, called sliding surfaces, within the control structure. The control law
employs a fast switching strategy to guide and maintain the system’s state trajectory
on these sliding surfaces [111] as depicted in figure 2.8. This characteristic gives
SMC its strengths: it acts as a nonlinear controller with a rapid response and
strong robustness under system uncertainties and disturbances. However, the fast
switching mechanism used by SMC leads to an effect called chattering, which refers
to high-frequency oscillations in the control signal. Chattering in control signal
is inevitable and in real-world systems can cause issues such as actuator wear,
plant damage, energy loss, and unintended disturbances, especially in systems with
delays or imperfections in physical actuators [112]. Despite these challenges, SMC
has been successfully implemented in various studies on path-tracking control for
mobile robots and vehicle platforms [113, 114, 115].

The Linear Quadratic Regulator (LQR) is one of the most popular predictive
controller, it uses optimal control theory where the controller gain was determined

36

Vehicle Models and Control Systems

Figure 2.8: Sliding mode controller with chattering

using linear quadratic optimization approach. LQR is an optimal control technique
used to determine the control inputs that drive a dynamic system to operate
efficiently while minimizing a certain cost function. It is widely applied in control
systems for its ability to manage stability, performance, and energy consumption in
linear systems, making it particularly useful in robotics, aerospace, and autonomous
vehicles. While it requires careful tuning of the weighting matrices and works best
for linear systems, it remains a key tool in control engineering for efficient and stable
system operation. LQR assumes a linearized model of vehicle dynamics, which may
not always be accurate for highly nonlinear or time-varying systems. The goal of
LQR is to minimize a cost function that reflects the trade-off between minimizing
the error and the energy used for control. The LQR control law determines
the optimal control input that minimizes the cost function. By adjusting the Q
and R matrices, called weight, in the cost function the designer can prioritize
either the minimization of state errors (making the system more responsive) or
the minimization of control effort (making the system less aggressive and more
energy-efficient). A higher Q will result in more precise control, while a higher R
will reduce control energy but potentially allow more error in the system. Optimal
controllers may provide simpler control law structure of U = −kx compared to
other controllers, where U is the control signal, k is the controller gains and x is
the vehicle’s states. Determination of k is done offline [116, 9] in the controller
development stage solving the so called Riccati equation, which give the simple
structure. The LQR controller guarantees stability if the system is controllable (i.e.,
if the system’s states can be influenced by the input), as it minimizes a quadratic
cost and drives the system to the desired equilibrium point [117]. However, this
may not be the case for controllers that employ online tunings.

The effectiveness of any feedback design is inherently constrained by the system’s

37

Vehicle Models and Control Systems

dynamics and the accuracy of its model. Therefore, even in theory, perfect tracking
of time-varying reference trajectories cannot be achieved using feedback control
alone, regardless of the design approach [118]. In specific situations, like the
technical limitations of actuators, tailored solutions are required. These solutions
are often heuristic, making them difficult to understand and maintain. Advanced
control methods, such as sliding mode or back-stepping controllers, also tend to be
abstract and complex in their interpretation [119]. The founders of MPC theory
[120, 121] emphasized that classic control methods are effective for approximately
90% of control problems, with advanced control only needed for the remaining cases.
However, MPC is a valuable approach for almost any control challenge—even those
previously left unaddressed due to limited theoretical understanding or concerns
about feasibility. MPC operates by continuously performing real-time optimization
using a mathematical model of the system [106]. This model enables MPC to
predict the future behavior of the system, incorporating these predictions into an
optimization process that determines the optimal trajectory for the control variable.
MPC offers an intuitive approach to parametrization by fine-tuning a process model,
albeit with a higher computational demand compared to traditional controllers.
Its ability to anticipate future states and incorporate hard constraints makes it
especially valuable for real-world applications. With advances in computational
power and the increasing availability of complex process models across various fields,
MPC now facilitates the control of systems that were once considered impractical.
Because MPC relies on models, which exist in nearly every discipline, it leverages
established knowledge without requiring the explicit formulation of a control law—a
task traditionally reserved for control specialists. Instead, MPC automatically
derives the control law through model-based optimization. This implicit approach,
coupled with flexibility and model integration, are key advantages of MPC and
underscore its potential in engineering applications [105].

Furthermore comparing MPC to LQR, they are both expressions of optimal
control, with different schemes of setting up optimization costs. The main differences
between MPC and LQR are that LQR optimizes across the entire time window
(horizon) whereas MPC optimizes in a receding time window [122], and that
with MPC a new solution is computed often whereas LQR uses the same single
(optimal) solution for the whole time horizon. Therefore, MPC typically solves the
optimization problem in a smaller time window than the whole horizon and hence
may obtain a suboptimal solution. However, because MPC makes no assumptions
about linearity, it can handle hard constraints as well as migration of a nonlinear
system away from its linearized operating point, both of which are major drawbacks
to LQR. This means that LQR can become weak when operating away from stable
fixed points. MPC can chart a path between these fixed points, but convergence of a
solution is not guaranteed, especially if thought as to the convexity and complexity
of the problem space has been neglected.

38

Vehicle Models and Control Systems

However, MPC has best performance if the plant model is linear or the plant
nonlinear model can be approximate to linear model in a good way, for example
industrial systems whose models are defined as ’almost linear’, thus allowing good
controller performance. In nonlinear systems, for example in robotics, automotive,
aerospace or biomechanics, it is difficult to approximate the complex nonlinear
system to a linear system. this is where nonlinear model predictive control comes
into play, capable of predicting and optimizing non-linear systems ensuring better
performance, but which requires higher computational resources to solve non-linear
optimization problems, which are often non-convex.

2.3.1 NMPC
Nonlinear Model Predictive Control is emerging as a vital technology due to its
ability to develop control algorithms for multivariable nonlinear systems while
handling constraints on states, inputs, and outputs (see, e.g., [123, 124, 125,
126]). As in linear MPC, NMPC requires the iterative solution of optimal control
problems on a finite prediction horizon. While these problems are convex in
linear MPC, where a quadratric optimization is solved [127], in nonlinear MPC
they are not necessarily convex anymore. This poses challenges for both NMPC
stability theory and numerical solution[128, 129]. This is the reason why to address
these complexities related to nonlinear dynamics, constraints, and non-convex
performance criteria, Nonlinear MPC (NMPC) was developed[130]. Both MPC
and NMPC require fast and dependable optimization algorithms to meet the
stringent timing requirements of real-time closed-loop control. This is particularly
challenging in NMPC, where solving nonconvex optimization problems online
requires advanced algorithms with significantly higher computational demands
compared to linear MPC [131]. Infact, the nonlinear nature of the problem
may necessitate a substantial number of computations at each sampling moment
due to the potential for multiple local minimum solutions, without ensuring the
attainment of the best possible optimal solution. Consequently, NMPC requires
the iterative resolution of an optimal control problem at each sampling instant in
a receding horizon manner. Regrettably, there’s no assurance that this receding
horizon strategy of implementing a series of open-loop optimal control solutions will
perform effectively or remain stable when applied to the closed-loop system. On the
other hand when dealing with nonlinear systems, the performance of MPC often
degrades because it relies on an approximate linear model. This typically requires
linearizing the system dynamics either around a specific operating point or along a
predefined trajectory, which can be particularly challenging in tracking scenarios.
Moreover, linear MPC demands the convexification of constraints, a process that
can be complex. In contrast, NMPC allows constraints to be represented directly
as simple inequalities, simplifying their formulation and implementation. Over

39

Vehicle Models and Control Systems

the past few decades, considerable advancements have been made to reduce the
computational burden associated with the NMPC approach. Nevertheless, in
recent years, advancements in nonlinear optimization algorithms have led to the
development of efficient NMPC implementations suitable for real-time applications.

Mathematical formulation
Model predictive control approach is also known as receding horizon control or
moving horizon control. They make use of an explicit dynamic plant model to
predict the effect of future reactions of the manipulated variables on the output
and the control signal obtained by minimizing the cost function [132], loop example
in Figure 2.9. The performance of the controller is highly influenced by how well
the dynamics of the system is described by the input–output model that is used
for the design of the controller [133]. Nonlinear Model Predictive Control typically
incorporates three core step:

1. An explicit model is used to predict the process output over a defined future
time horizon, called prediction horizon.

2. A control sequence is calculated to optimize a specific performance index.

3. A receding horizon approach is applied, shifting the time horizon forward at
each step and implementing only the first control action from the calculated
sequence at each interval.

Figure 2.9: NMPC control loop

This prediction and optimization process is repeated at each time step. The core
idea is that achieving optimality over a short prediction horizon leads to overall
optimality over the long term [134], as the error in near-term predictions is typically
smaller than in long-term predictions.

40

Vehicle Models and Control Systems

Assuming an arbitrary Multiple-Input-Multiple-Output(MIMO) nonlinear dy-
namic system described by the following state equations:

ẋ = f(x, u)
y = h(x, u)

(2.2)

Where x ∈ Rnx x is the state, u ∈ Rnu is the command input and y ∈ Rny is the
output; Respectively, f : RnxxRnu → Rnx and h : RnxxRnu → Rny are two functions
characterizing the system dynamics and output variables. Assume that the state is
measured in real-time, with a sampling time Ts, according to:

x(tk), tk = Tsk, k = 0,1, . . .

If the state is not measured, an observer or (2.2) in input-output form has to be
employed. NMPC is based on two key operations: prediction and optimization. At
each time t = tk, the system state and output are predicted over the time interval
[t, t+ Tp], where Tp is called the prediction horizon. The prediction horizon is the
number of future time steps over which the NMPC predicts the system’s behavior
based on the model, in particular by integration of (2.2). For any τ ∈ [t, t+Tp], the
predicted output ŷ(τ) is a function of the "initial state" x(t) and the input signal:

ŷ(τ) ≡ ŷ(τ, x(t), u(t : τ))

where u(t : τ)) denotes the input signal in the interval [t, τ]. Within the time
frame [t, t + Tp], u(τ) acts as an open-loop input, meaning it does not rely on
x(τ). The control horizon instead is the number of time steps within the prediction

Figure 2.10: NMPC controller strategy

41

Vehicle Models and Control Systems

horizon during which the control inputs are optimized. After this horizon, the
control inputs are typically held constant (or follow a predefined strategy), in our
work the control horizon will be considered equal to the prediction horizon and
the so called "moving blocking" strategy, explained after, will be applied. The full
typical NMPC control strategy is depicted in Figure 2.10.

The basic idea of NMPC (and of the most predictive approaches) is to look for
an input signal

u∗(t : τ)

at each time t = tk, such that the prediction

ŷ(τ) ≡ ŷ(τ, x(t), u∗(t : τ))

has a desired behavior in the time interval [t, t + Tp]. The concept of desired
behavior is formalized by defining the objective function:

J(u(t : t+ Tp)) =̇
Ú t+Tp

t
(||(ep(τ))||2Q + ||(u(τ))||2R)dτ + ||(ep(t+ Tp))||2P

where ep(τ)=̇r(τ) − ŷ(τ) is the predicted tracking error, r(τ) ∈ Y ⊂ Rny is a
reference to track, Y is a bounded set. || · ||∗ is a weighted Euclidean norm. For
example, letting Q be a positive definite weight matrix, the norm of a column
vector w is defined as:

||w||2Q = wTQw =
nØ

i=1
qiw

2
i , Q = diag(q1, . . . , qn) ∈ Rnxn

The objective is to minimize, at each time tk , the square norm of the tracking error
||ep(τ)||2Q = ||r(τ) − ŷ(τ)||2Q over a finite time period. The term ||(ep(t + Tp))||2P
emphasizes the significance of the final tracking error. The term ||(u(τ))||2R enables
the management of the trade-off between performance and command activity.

The input signal u∗(t : t+Tp) is chosen as one minimizing the objective function
J(u(t : t+ Tp)). In particular at each time t = tk, for τ ∈ [t, t+ Tp], the following
nonlinear Optimal Control Problem is solved:

u∗(t : t+ Tp) = arg min
u(·)

J(u(t : t+ Tp)) (2.3)

subject to:
˙̂x(τ) = f(x̂(τ), u(τ)), x̂(τ) = x(τ)
ŷ(τ) = h(x̂(τ), u(τ))
x̂(τ) ∈ Xc, ŷ(τ) ∈ Yc, u(τ) ∈ Uc.

42

Vehicle Models and Control Systems

The first two constraints in this problem ensure that the predicted state and output
are consistent with the system equation (2.2). The sets Xc and Yc account for other
constraints that may hold for the predicted state/output (e.g., obstacles, barriers).
The set Uc accounts for input constraints (e.g., input saturation). The optimal
problem (2.3) is generally non-convex. Moreover, the decision variable u(·) is a
signal, and optimizing a function with respect to a signal is generally a difficult
task. To overcome this problem, the prediction interval [tk, tk + Tp] can be divided
into ns sub intervals [tk + τi, tk + τi+1] ⊂ [tk, tk + Tp], i ∈ {1,2, . . . , ns}, where the
τi’s are called nodes, and u and r can be kept constant on each sub-interval [72].
Hence, uki and rki denote the command and the reference values at time k in the ith
sub-interval, respectively. The command and reference sequences in the prediction
interval are indicated with uk=̇(uk1, . . . , ukns) and rk=̇(rk1, . . . , rkns), respectively.
In this way, the optimal problem reduces to a finite-dimensional problem, which
can be solved using an efficient numerical optimization algorithm. The NMPC
closed-loop command is obtained according to a so-called receding horizon strategy.
At time t = tk the input signal u∗(t : t+ Tp) is computed by solving (2.3). Then,
only the first optimal input value u(τ) = u∗(tk) is applied to the plant, keeping it
constant for ∀τ ∈ [tk, tk+1]. The complete procedure is repeated at the next time
steps t = tk+1, tk+2,

When examining the choosing of the parameters
The choice of control parameters is essential in the design of predictive control, as
these parameters significantly influence the system’s performance, stability, and
computational efficiency.

• Ts: In many cases, the sampling time is fixed and cannot be adjusted. However,
when adjustable, a trial-and-error approach during simulation can be employed.
The sampling time should be sufficiently small to capture the system’s dynamics
effectively, in accordance with the Nyquist-Shannon sampling theorem. At the
same time, it should not be excessively small, as this could lead to numerical
instabilities and increased computational overhead.

• Tp: The prediction horizon can also be determined through a simulation-
based trial-and-error process. A larger Tp generally improves the closed-loop
system’s stability. However, an excessively large Tp may reduce the accuracy
of short-term tracking and increase the computational burden.

• Choosing Q, R, P values can be similar to the parameters in LQR/LQRY.

When examining the solution of the OCP
In the context of Nonlinear Model Predictive Control, to determine the control
inputs typically minimizing (or maximizing) an objective function, optimization
plays a crucial role since the problem to solve is often nonlinear, constrained, and
non-convex. Optimization algorithms for NMPC need to balance accuracy, speed,

43

Vehicle Models and Control Systems

and robustness. The most used solution methods for solving the Optimal Control
Problem in Nonlinear Model Predictive Control are direct methods, due to their
robustness, flexibility, and ability to handle complex dynamics and constraints.
In direct methods, the OCP is discretized into a finite-dimensional optimization
problem, typically a Nonlinear Programming (NLP) problem. These methods focus
directly on numerical optimization. In indirect methods instead, the OCP is solved
by deriving and solving the necessary optimality conditions, typically through
the calculus of variations or Pontryagin’s Maximum Principle [135]. Indirect
methods are rarely used in NMPC due to their sensitivity and lack of robustness
for large-scale, nonlinear, or constrained problems.

Most used direct methods in NMPC OCP solving are [134, 72]: Sequential
Quadratic Programming (SQP) and Interior-Point Method. SQP solves nonlinear
optimization problems by transforming them into a sequence of Quadratic Pro-
gramming (QP) problems, each easier to solve. It is highly efficient for nonlinear
problems with constraints and performs well near the optimal solution. However,
it may require good initialization and can have high computational costs for large
problems. In NMPC, it is frequently used for real-time applications, especially
when the model is highly nonlinear but well-conditioned. Another method is the
Interior-Point Method that solves constrained nonlinear problems by transforming
them into unconstrained ones using logarithmic barrier functions. These methods
are effective for problems with many constraints and have faster convergence than
other gradient-based methods. However, they require careful parameter tuning and
are often applied in NMPC problems with numerous inequality constraints.

Instead for OCP formulation, the most used direct methods in NMPC are
the Direct Single Shooting, Direct Multiple Shooting and Direct Collocation.
Direct Single Shooting that is a method for solving Optimal Control Problems by
parameterizing the control inputs over the prediction horizon. Starting from an
initial state, the system dynamics are integrated forward in time using these controls,
generating the state trajectory implicitly. The optimization problem minimizes a
cost function, such as tracking error or energy use, while respecting constraints on
the control variables. This approach is computationally efficient because it only
optimizes the control inputs, resulting in smaller nonlinear programming problems.
However, it is sensitive to the initial guess for the controls and handles state
constraints less effectively since they are indirectly influenced through the controls.
It is best suited for systems with simple dynamics and fewer constraints on the
states. Direct Multiple Shooting instead focuses on the optimization of both inputs
and state, it divides the prediction horizon into smaller intervals and optimizes
them separately while ensuring continuity through constraints. This method is
robust compared to global methods and efficient for complex nonlinear dynamic
models, although it may require many iterations to converge. It is widely applied
in industrial and robotic control. Another strategy used is Direct Collocation ,

44

Vehicle Models and Control Systems

it approximates the system dynamics using discrete collocation points and solves
the problem as a large nonlinear optimization problem. It is suitable for systems
with slow dynamics and reduces computational complexity compared to multiple
shooting. However, it is sensitive to the choice of collocation points and is applied
in NMPC for systems with slow dynamics or many state variables.

The choice of algorithm depends on the model complexity, the available com-
putational resources, and the required solution quality. In this thesis work the
NMPC control algorithm made use of a direct single shooting approach for OCP
formulation and SQP method for solving it.

45

Chapter 3

CARLA Co-Simulation

3.1 CARLA Features and Architecture
Developing and testing autonomous driving technologies demands a reliable simula-
tion environment that can realistically represent the real world, including vehicles,
pedestrians, and diverse environmental conditions. This environment should also
offer extensive sensor simulation capabilities and allow seamless integration with
analytical tools like MATLAB. CARLA has been chose among other simulators
possibilities to develop and test Autonomous driving algorithms in different sce-
narios and conditions. CARLA provides high-quality graphics with Unreal Engine
4 and its physics engine accurately models vehicle dynamics and environmental
interaction, simulating a wide range of sensors used in autonomous vehicles. Finally,
one of the most important features for us, CARLA’s Python API enables smooth
integration with MATLAB, allowing for an efficient workflow in data analysis and
algorithm testing.

The CARLA simulator consists of a scalable client-server architecture, as repre-
sented in Figure 3.1:

Server The server manages all simulation processes, such as sensor rendering,
physics calculations, world-state updates, actor management, and other related
tasks. To ensure high realism, it ideally operates on a dedicated GPU, which
is especially advantageous for machine learning applications.

Client The client consists of several modules responsible for controlling actor
behavior and configuring environmental conditions. This is facilitated by the
CARLA API (available in Python and C++), which serves as an interface
between the server and client, continually evolving to incorporate new features.

The client module is the user interface for requesting information or making
adjustments within the simulation. Each client connects through a designated IP

46

CARLA Co-Simulation

Figure 3.1: CARLA simulator server and client representation

address and port, interacting with the server via the terminal. Multiple clients
can operate concurrently, but efficient multi-client management requires in-depth
knowledge of CARLA and proper synchronization. The client object offers a range
of functions, including loading maps, recording simulations, and initializing the
traffic manager.

The world object represents the simulation environment, example in Figure 3.2,
acting as an abstraction layer with essential methods for spawning actors, adjusting
weather, retrieving the current world state, and more. Only one world instance
exists per simulation, and it resets whenever the map changes. Through this
world object, users can access various elements of the simulation—such as weather
conditions, vehicles, traffic lights, buildings, and the map—via its comprehensive
set of methods.

Figure 3.2: CARLA simulation with cars and pedestrians

In CARLA, actors are entities that perform actions within the simulation and
interact with other elements. These include vehicles, pedestrians, sensors, traffic

47

CARLA Co-Simulation

signs, traffic lights, and the spectator. Effective management of actors—such as
spawning, destruction, types, and control—is essential for simulation use. CARLA’s
flexible framework enables users to easily add new actors, each of which is a pre-
designed model with animations and various attributes. Certain attributes, like
vehicle color, the number of channels in a LiDAR sensor, or a pedestrian’s speed,
are customizable to suit specific simulation needs. The world object handles the
spawning and tracking of actors throughout the simulation. The CARLA actor
class offers "get()" and "set()" methods to manage actors on the map. Importantly,
actors do not automatically delete themselves when a Python script terminates;
they must be explicitly destroyed to free resources.

3.2 CARLA Traffic Manager
The Traffic Manager (TM) is a module that controls vehicles in autopilot mode to
simulate realistic urban traffic within the simulation environment. Users can adjust
various behaviors, including defining specific learning scenarios. TM operates on the
client side of CARLA and follows a structured, stage-based design. Each stage has
dedicated operations and objectives, enabling focused development of phase-specific
features and efficient data processing. These stages run on separate threads, with
synchronous messaging ensuring a one-way flow of information between stages to
optimize computational performance.

Figure 3.3: CARLA traffic manager architecture

The diagram above, in Figure 3.3, illustrates the internal architecture of the
Traffic Manager. The Agent Lifecycle & State Management (ALSM) system
continuously monitors the world to track all vehicles and pedestrians, removing

48

CARLA Co-Simulation

any entries for those that are no longer present. It collects data from the server
and processes it through multiple stages, functioning as the sole component that
directly communicates with the server. The vehicle registry maintains an array
of autopilot vehicles (controlled by the Traffic Manager) along with a list of non-
autopilot vehicles and pedestrians. The simulation state acts as a cache, storing
the position, velocity, and other relevant details of all vehicles and pedestrians
within the simulation.

Based on the current simulation state, the Traffic Manager generates the appro-
priate commands for each vehicle in the vehicle registry. The calculations for each
vehicle are carried out individually and are divided into separate stages. A control
loop maintains consistency across all calculations by enforcing synchronization
barriers between stages, ensuring that no vehicle progresses to the next stage until
the calculations for all vehicles in the current stage are finished. Each vehicle moves
through the following stages:

• Localization Stage: Paths are dynamically generated by selecting a sequence
of nearby waypoints from the In-Memory Map, which simplifies the simulation
map into a grid of waypoints. At junctions, the vehicle’s direction is chosen
randomly. Each vehicle’s path is stored and managed by the Path Buffers &
Vehicle Tracking (PBVT) component, enabling easy access and modifications
in the subsequent stages.

• Collision Stage: Bounding boxes are projected along each vehicle’s path to
identify and manage potential collision hazards.

• Traffic Light Stage: Similar to the Collision Stage, potential hazards affecting
each vehicle’s path—such as traffic lights, stop signs, and junction priori-
ties—are identified and managed.

• Motion Planner Stage: Vehicle movement is calculated along the designated
path, with a PID controller that navigate it toward the target waypoints.
The PID controller determines the required throttle, brake, and steering
inputs to reach the target values based on data from the Motion Planner
Stage. Adjustments are made according to the controller’s configuration, with
modifiable parameters as needed. These inputs are then converted into a
CARLA command for execution.

The commands generated in the previous step are assembled into a command array
and sent to the CARLA server as a batch, ensuring they are executed simultaneously
within the same frame.

49

CARLA Co-Simulation

Figure 3.4: Anaconda interface to run scripts made with Spyder and Python on
CARLA environment

3.3 Anaconda Interface
To control and interact with Carla the Python API has been used. Thus the python
version must be compatible with the Carla version installed. In order to keep under
control the synchronization of Carla and Python through new possible release, it’s
been preferred to work in a virtual environment. To do this the program Anaconda
Navigator was used to manage virtual environments, creating the one needed, install
and update libraries for CARLA and python both, keeping all the desired packages
under the same folder. It also provides quick access to system commands through
prompt window, activating virtual environment and running scripts. Nevertheless
it has a Python scripting environment program called Spyder in which scripts can
be opened and edited before launching them from the Anaconda prompt, flow
interface in Figure 3.4. The following steps were used to set up Carla-Anaconda
communication:

• Download Carla 0.9.14;

• Download Anaconda Navigator;

• Open anaconda’s prompt windows;

• Create A virtual environment as follows:
create -name ‘name_of_environment’ python=3.7;

• Activate this environment:
activate ‘name_of_environment’;

• The necessary Python modules were downloaded as follows:
pip install Carla, pygame, numpy, jupyter, opencv-python.

50

CARLA Co-Simulation

After completing these steps, the connection between Python and CARLA is
successfully established. Now it’s possible to navigate through change directory
’cd’ command in the folder where script are stored and run them. Some tutorial
examples are already present inside CARLA folder, we can run these to simulate
traffic, manually control a car using the keyboard, or drive a vehicle with a steering
wheel, along with many other types of simulations.

3.4 Data Gathering Autonomous Mode
As described above through python API is possible during the simulation to access
to actors’ parameters, such position, velocity and many else. In this project what
we are interesting in is collect data from our ego car driven in autonomous mode by
the CARLA traffic manager. These data will be then imported in MATLAB and
used to analyses the car behavior (vehicle dynamic) under certain input, generate
the reference data for the NMPC controller that will be built and understand
the trajectory errors done by autopilot PID based controller in CARLA. In order
to run the ego vehicle in autopilot mode is sufficient to run the script "manual
control" that spawn a vehicle in the map for manual drive through keyboard and
then use "P" button to enable the autopilot mode. The vehicle will start to drive
in autonomous mode (it can also be set directly from a script via CARLA world
method "settings" and assign autopilot variable as true).

All the data needed are collected with a specific implemented function function
"get_states" at each game iteration in the Pygame game loop. With an if statement
the function is called only if more than 50 ms are passed from previous call in
order to maintain a sample time as possible near to 50 ms. Each data is saved in
a Python list and at the end of the program all the data are written in in three
different text files. In the first there are the dynamical states of the ego vehicle,
this means x position, y position, yaw angle, x velocity, y velocity and yaw rate.
In the second there are input parameters as throttle, brake and steering data, as
well as the gear and the accelerations in x and y directions. Last in the third file
are saved the x ad y position of the nearest waypoint (point in the center of the
lane that are used as reference by the autopilot) in CARLA at the moment of the
function call. In both first and second file the time instant at which each data is
collected has been written in the text files. Additionally the spawn point were set
in the script from time to time on the base of the desired scenario.

Following the implemented code in Python script where get() functions such as
get_acceleration(), get_velocity(), get_transform(), and get_angular_velocity()
will be used. The get_transform() method includes both location of the object (X,
Y, Z in the map frame) in meters, and its rotation angles from which we took the
yaw values. It’s important to say that since a simplified 2D vehicle model will be

51

CARLA Co-Simulation

used the z coordinate, the pitch and roll angles will not be considered.

Listing 3.1: Python data gathering function
1 de f get_state (s e l f) :
2 g l o b a l time_data
3 time_data = pygame . time . ge t_t i cks ()
4 time . append (time_data)
5

6 l o c a t i o n = s e l f . p l aye r . ge t_ locat ion ()
7 v e l o c i t y = s e l f . p l aye r . g e t_ve loc i ty ()
8 trans form = s e l f . p l aye r . get_transform ()
9 yaw = transform . r o t a t i o n . yaw∗ math . p i /180

10 yaw_rate = s e l f . p l aye r . get_angular_ve loc i ty () . z∗ math . p i /180
11 a c c e l e r a t i o n = s e l f . p l aye r . g e t_acc e l e r a t i on ()
12

13 location_data_x . append (l o c a t i o n . x)
14 location_data_y . append (l o c a t i o n . y)
15 location_data_z . append (l o c a t i o n . z)
16

17 ve loc i ty_data . append (v e l o c i t y)
18 velocity_data_x . append (v e l o c i t y . x)
19 velocity_data_y . append (v e l o c i t y . y)
20

21 yaw_data . append (yaw)
22 angu la r_ve loc i ty . append (yaw_rate)
23

24 acce l e ra t i on_data . append (a c c e l e r a t i o n)
25 acce lerat ion_data_x . append (a c c e l e r a t i o n . x)
26 acce lerat ion_data_y . append (a c c e l e r a t i o n . y)
27

28 c = s e l f . p l aye r . get_contro l ()
29 t h r o t t l e . append (c . t h r o t t l e)
30 brake . append (c . brake)
31 gear . append (c . gear)
32 s teer ing_data . append (c . s t e e r)
33

34 map = s e l f . world . get_map ()
35 waypoint01 = map . get_waypoint (s e l f . p l aye r . ge t_ locat i on () ,

project_to_road=True , lane_type=(c a r l a . LaneType . Driv ing | c a r l a .
LaneType . Sidewalk))

36 waypoint_list_x . append (waypoint01 . trans form . l o c a t i o n . x)
37 waypoint_list_y . append (waypoint01 . trans form . l o c a t i o n . y)
38

39 re turn acce l e rat ion_data , accelerat ion_data_x ,
accelerat ion_data_y , steer ing_data , location_data_x ,
location_data_y , yaw_data , ve loc i ty_data , velocity_data_x ,
velocity_data_y , angu lar_ve loc i ty , waypoint_list_x ,
waypoint_list_y

52

CARLA Co-Simulation

3.5 Manual Control Data Gathering
Another method used for data collection in CARLA was the manual driving mode.
Using the steering wheel and pedals, Logitech G29 Driving Force setup, available in
the department office as well as a Sparco sport seat it was possible to collect data
and simulate driving scenario in which the human being was driving instead of the
autopilot. This will be used to compare human errors with CARLA autopilot and
the implemented control system.

Figure 3.5: Steering wheel and pedals setup for manual driving

The script we have to run to drive whit steering wheel and pedals is "man-
ual_control_steeringwheel" in which the same function get_state as described
before was implemented to collect all the data needed. Furthermore, since the
design camera position in the manual driving was a 3rd person view of the car, it
was necessary to change the camera position. The final set position of the camera,
that provide a first person view as it can be seen in Figure 3.5, was the following:

Listing 3.2: CARLA camera view settings
1 c l a s s CameraManager (ob j e c t) :
2 de f __init__(s e l f , parent_actor , hud , gamma_correction) :
3 . . .
4 bound_x = 0.5 + s e l f . _parent . bounding_box . extent . x
5 bound_y = 0.5 + s e l f . _parent . bounding_box . extent . y
6 bound_z = 0 .5 + s e l f . _parent . bounding_box . extent . z
7 Attachment = c a r l a . AttachmentType

53

CARLA Co-Simulation

8

9 i f not s e l f . _parent . type_id . s t a r t s w i t h (" walker . p ede s t r i an ") :
10 s e l f . _camera_transforms = [
11 (c a r l a . Transform (c a r l a . Locat ion (x=0.0∗bound_x , y

=−0.25∗bound_y , z =1.1∗bound_z) , c a r l a . Rotation (p i t ch =−18.0)) ,
Attachment . Rigid)]

12 . . .

This camera position lead to a more realistic driving view and to a better precision
and control of the car while manual driving.

3.6 MATLAB Interface

Figure 3.6: MATLAB and Python interface with CARLA environment

Communication between Carla and Matlab is not trivial since there is no direct
interface method. Two options are presented in CARLA documentation to let
CARLA and MATLAB work together. The first, which setup requires numerous
compatibilities and it operates more optimally on the Linux operating system, is
to use ROS bridge to connect MATLAB and CARLA. However, while this option
is more advantageous for processing large amounts of data, this advantage is not
necessary for our project, which also relies on computers with a Windows operating
system. The second option is the one that has been used: connection through
Python bridge, represented in Figure 3.6. To work correctly the Matlab and Python
versions have to be compatible. After have downloaded MATLAB version 2021b,
which is compatible with Python version 3.7 the steps required to establish the
CARLA-MATLAB connection are presented below:

To make the easy_install feature operational via Python, the following steps
are taken in anaconda prompts in the virtual environment previously created:

54

CARLA Co-Simulation

• pip install setuptools==33.1.1;
• Add C: \Python27 \Scripts to your ‘path’ (Environment variable) - C:

\Python34 \Scripts;
• easy_install pip;
• easy_install carla-0.9.14-py3.7-win-amd64.egg.

Then the following steps are then taken in MATLAB:

• pyversion (’D: \Program Files \Anaconda \envs \carla_env
\python.exe’) (place your own path here)

• insert (py.sys.path, int32(0),’D: \Program Files \Anaconda
\envs \carla_env \Lib \site-packages
\carla-0.9.14-py3.7-win-amd64.egg’) (place your own path
here)

• py.importlib.import_module(’carla’)

The last two command must be run into the MATLAB command line at the start
of every MATLAB session to have access to CARLA Python API and commands.
Additionally is preferable to run MATLAB application ’as administrator’. In this
way, the necessary connection is established and, making use of a virtual port, the
MATLAB-CARLA communication is made ready.

3.7 CARLA Enviroment in Simulink
This subsection provides the details of integration of the CARLA simulation
environment with MATLAB/Simulink, where the simulation will be run. The
integration is possible using MATLAB System block, where with Python API it’s
possible to connect to Carla world and interact with the simulation, spawning
and controlling CARLA actors. System block provides setup function setupImpl
to connect with the client, change world settings and spawn actors, and a loop
function stepImpl where until end of simulation at each time step is possible through
Python API to use command such Getters and Setters to receive information about
vehicle states and apply command to the ego vehicle. In the beginning part of the
system we declare the external input variables as steering angle, throttle and brake.
Additionally local variables are declared such the car itself as the ego vehicle and
the vehicle state text file is imported to be used in the initialization function to
acquire the and set the spawn position. After the loop function for each variables
or set of data exiting the system block the size of these are declared, also if they’re
complex number, the type of the variable, single or double, and if the output signal
is sampled in time. Finally the commands to be applied when the simulation
finishes, in our case to destroy the ego vehicle.

55

CARLA Co-Simulation

One of the most important feature to pay attention at in the implementation
is the synchronization between Simulink, whose engine can discrete time to have
the correct works of all the elements at each time step, and CARLA server where
the simulation runs. To have synchronization the CARLA world settings must be
changed in the System block setup function through Python world method "settings"
imposing the synchronization variable to true and the delta step size to 0.05, lower
or equal than the sampling time that will be chose in the Simulink simulation. Also
in the system loop the function world.tick() must be run to let the server simulation
proceed between one step and the next of Simulink simulation. This setup is
fundamental to run the co-simulation between Simulink where the controller will
be designed and CARLA, being able to have the correct synchronization during
the simulation.

Listing 3.3: MATLAB environment
1 c l a s s d e f Carla_env_studio_sync < matlab . System
2 % Carla Enviroment
3

4 % Public , tunable p r o p e r t i e s
5 p r o p e r t i e s
6 s t e e r ingang l e_ input =0;
7 th ro t t l e_ input = 0 ;
8 brake_input = 0 ;
9 end

10

11 p r o p e r t i e s (D i s c r e t e S t a t e)
12

13 end
14

15 % Pre−computed cons tant s
16 p r o p e r t i e s (Access = pr i va t e)
17 car ;
18 spawnSet = importdata (" sim_out . txt ") ;
19 world ;
20 end
21

22 methods (Access = protec ted)
23 f unc t i on setupImpl (obj)
24 % Perform one−time c a l c u l a t i o n s , such as computing

cons tant s
25

26 port = int16 (2000) ;
27 coder . e x t r i n s i c (’ py . c a r l a . C l i en t ’) ;
28 c l i e n t = py . c a r l a . C l i en t (’ l o c a l h o s t ’ , port) ;
29 c l i e n t . set_timeout (2 0 . 0) ;
30 obj . world = c l i e n t . get_world () ;
31

32 s e t t i n g s = obj . world . g e t_se t t i ng s ()

56

CARLA Co-Simulation

33 s e t t i n g s . synchronous_mode = true ;
34 s e t t i n g s . f ixed_delta_seconds = 0 . 0 5 ;
35 obj . world . app ly_set t ings (s e t t i n g s)
36

37 % Spawn Veh ic l e
38 b l u ep r i n t _ l i b r a r y = obj . world . ge t_b luepr in t_l ib ra ry () ;
39 c a r _ l i s t = py . l i s t (b l u ep r i n t _ l i b r a ry . f i l t e r (" l eon ")) ;
40 car_bp = c a r _ l i s t {1} ;
41 spawn_point = py . random . cho i c e (obj . world . get_map () .

get_spawn_points ()) ;
42

43 spawnLine = obj . spawnSet . data (1 , :) ;
44 %Convert yaw angle in degree s f o r v e h i c l e spawning
45 i f spawnLine (6)<0
46 spawnLine (6) = (2∗ pi+spawnLine (6)) ∗180/ p i ;
47 e l s e
48 spawnLine (6) = (spawnLine (6)) ∗180/ p i ;
49 end
50 spawn_point . l o c a t i o n . x = spa2 (2) ;
51 spawn_point . l o c a t i o n . y = spa2 (3) ;
52 spawn_point . l o c a t i o n . z = 0 . 6 ; %d e f a u l t s e t t i n g
53 spawn_point . r o t a t i o n . yaw = spawnLine (6) ;
54

55 obj . car = obj . world . spawn_actor (car_bp , spawn_point) ; %
spawn the car

56 obj . car . s e t_autop i l o t (f a l s e)
57 end
58

59 f unc t i on [ze , x_acce l e rat ion , y_acce l e rat ion , gear] =
stepImpl (obj , s t ee r ingang l e_input , throt t l e_input , brake_input)

60 % Perform loop c a l c u l a t i o n s
61

62 obj . world . t i c k () ;
63

64 veh ic l e_trans form = obj . car . get_transform () ;
65 l o c a t i o n = veh ic l e_trans form . l o c a t i o n ;
66 v e l o c i t y = obj . car . g e t_ve loc i ty () ;
67 a c c e l e r a t i o n = obj . car . g e t_acc e l e r a t i on () ;
68 o r i e n t a t i o n = veh ic l e_trans form . r o t a t i o n ;
69

70 x_pos i t ion = l o c a t i o n . x ;
71 y_pos i t ion = l o c a t i o n . y ;
72 yaw_angle = double (deg2rad (o r i e n t a t i o n . yaw)) ;
73 x_ve loc i ty = v e l o c i t y . x ;
74 y_ve loc i ty = v e l o c i t y . y ;
75 w = obj . car . get_angular_ve loc i ty () . z∗ pi /180 ;
76

77 x_acce l e ra t i on = a c c e l e r a t i o n . x ;
78 y_acce l e ra t i on = a c c e l e r a t i o n . y ;

57

CARLA Co-Simulation

79

80 c o n t r o l = obj . car . get_contro l () ;
81 gear = double (c o n t r o l . gear) ;
82 c o n t r o l . s t e e r = rad2deg (s t e e r ingang l e_ input) /70 ;
83 c o n t r o l . t h r o t t l e = thro t t l e_ input ;
84 c o n t r o l . brake = brake_input ;
85 obj . car . apply_contro l (c o n t r o l) ;
86

87 ze = [x_posit ion , y_posit ion , yaw_angle , x_veloc ity ,
y_veloc ity , w] ’ ;

88 end
89

90 f unc t i on [ze , xacc , yacc , gear] = isOutputComplexImpl (~)
91 ze = f a l s e ;
92 xacc = f a l s e ;
93 yacc = f a l s e ;
94 gear = f a l s e ;
95 end
96

97 f unc t i on [ze , xacc , yacc , gear] = getOutputSizeImpl (~)
98 ze = [6 , 1] ;
99 xacc = [1 , 1] ;

100 yacc = [1 , 1] ;
101 gear = [1 , 1] ;
102 end
103

104 f unc t i on [ze , xacc , yacc , gear] = getOutputDataTypeImpl (~)
105 ze = ’ double ’ ;
106 xacc = ’ double ’ ;
107 yacc = ’ double ’ ;
108 gear = ’ double ’ ;
109 end
110

111 f unc t i on [ze , xacc , yacc , gear] = isOutputFixedSizeImpl (~)
112 ze = true ;
113 xacc = true ;
114 yacc = true ;
115 gear = true ;
116 end
117

118 f unc t i on re s e t Imp l (~)
119 % I n i t i a l i z e / r e s e t d i s c r e t e −s t a t e p r o p e r t i e s
120 end
121 end
122

123 methods (Access= pub l i c)
124 f unc t i on d e l e t e (obj)
125 % Delete the car from the Carla world
126 i f ~ isempty (obj . car)

58

CARLA Co-Simulation

127 obj . car . des t roy () ;
128 end
129 end
130 end
131 end

59

Chapter 4

Control System Design

4.1 Project specifications

The purpose of the project is to create a control system based on NMPC controller
for urban automated driving that is able to track a desired path and implement
some complementary functions aimed to decision making integration. The system
will be built in Simulink leveraging on the possibility to connect and interact with
the CARLA environment by means of the MATLAB System block. In order to
compare the NMPC system and the PID based CARLA autopilot performances
the behaviors must be as similar as possible initially, so control system is designed
to impose constant speed of 30 km/h as CARLA autopilot does in the absence
of curves. The controller will also be able, using a function that calculates the
curvature of the path, to slow down near curves and accelerate again once they
are over. This ensures improved trajectory tracking on curves, as well as enhanced
stability and safety in the vehicle’s behavior. The reference to track will be set as
the same that in the defined scenario CARLA autopilot follows in order to compare
the errors and behaviors. Then the control system will be tested also in working
conditions different from the initial specifications to address it’s robustness and
adaptivity.

Its useful to describe, for understanding of this thesis developments, that the
NMPC controller function is a specific component within the control system, in
our case made by a Simulink loops around at a MATLAB function, that performs
the optimization task. It takes the vehicle’s current states and reference points
as inputs, solves the optimization problem by minimizing the cost function, and
outputs the optimal control actions, such as acceleration and steering.

In contrast, the entire control system encompasses a broader set of components
and functionalities. It includes not only the control function but also additional
modules such as state estimation (e.g., filtering sensor data), reference generation

60

Control System Design

(e.g., defining the trajectory to be tracked), actuator interfacing (e.g., converting
control commands into physical actions), and possibly a decision-making layer.
The control system ensures seamless integration and communication between these
components, enabling the vehicle to operate autonomously and respond dynamically
to changes in the environment.

4.2 NMPC controller
One of the crucial part of this project was the choice of NMPC controller parameters.
Selecting parameters is challenging, as it requires balancing control accuracy,
stability, and execution speed. Poorly chosen parameters can lead to instability
or ineffective system performance. A deep understanding of the system dynamics
and the specific application requirements is essential. Additionally an experimental
tuning phase was requested to identify the optimal parameters based on the
application’s specific demands. Below the parameters that best optimized the
controller’s operation and results will be presented.

The NMPC controller takes as input the vehicle’s current states and 50 reference
points for each model output to be tracked. Using these inputs, the controller
performs an optimization via moving block formulation over the prediction horizon
of the cost function at each step to compute the optimal model inputs required
to follow the reference, as described in Chapter 2. In this case, the model inputs
are acceleration and steering, which are adjusted to minimize the tracking error
and achieve the desired behavior while the model output to be tracked are x and y
position.

To chose the sampling time we investigates the typical sampling time in au-
tonomous driving vehicles and control systems, these varies depending on the
specific system being controlled and the application requirements. In High-level
decision-making, path planning, and route navigation usually have a longer sam-
pling time, 100–500 ms, since they don’t require rapid updates. In Motion Planning
and Control (Lateral and Longitudinal) layer, handling trajectory tracking and
control, including steering and speed control, lower sampling times, 20–100 ms, are
often preferred to maintain a smoother response and ensure safety at higher speeds.
In Perception and Sensor Processing object detection, lane detection, and sensor
fusion generally operate at a relatively high frequency, 10–50 ms sampling time, to
capture changes in the environment and maintain situational awareness. At Low-
Level Vehicle Control level, controllers that handle braking, throttle, and steering
actuators operate with very low sampling times, typical 5–20 ms, to ensure fast
response, critical for maintaining stability and safety in real-time. To have a good
trade off between all the typical sample time in automated vehicles components,
considering that we are most interested in decision making and control planning,

61

Control System Design

we chose 50 ms for the controller sampling time.
Next same procedure was followed to chose the prediction horizon, which in

ADS usually varies depending on the application and specific requirements of the
driving scenario. Generally, it balances between providing a sufficient foresight for
safe, smooth path tracking and keeping computational demands manageable. In
urban areas (complex environment) with frequent stops, pedestrian crossings, and
many obstacles, a shorter prediction horizon, 2-5 seconds, is often preferred to keep
computational demands feasible and quickly adapt to changes in the environment.
This horizon provides enough foresight for lane-keeping, obstacle avoidance, and
dealing with frequent traffic signals. In highway driving, the vehicle typically moves
at higher speeds with fewer obstacles and more gradual lane changes. A longer
prediction horizon, 5–10 seconds, allows the controller to plan smoother, more
stable trajectories, essential for comfort and fuel efficiency. For precise maneuvers
like parking or navigating through tight spaces, a short prediction horizon, 1–3
seconds, is often used due to the low speeds and high accuracy required. This short
horizon allows fine-grained control without overloading the computational system.
Taking into account the urban scenario in which our ego vehicle controller operates
and the presence of sudden maneuvers in narrow spaces, we have chosen 3 s as the
prediction horizon.

The optimization law in our case is based on the following cost function:

J(u(t : t+Tp)) =̇
Ú t+Tp

t
(||(ep(τ))||2Q + ||(u(τ))||2R + || d

dt
u(τ)||2Rsd)dτ+ ||(ep(t+Tp))||2P

where ep(τ)=̇r(τ) − ŷ(τ) is the predicted tracking error, r(τ) ∈ Y ⊂ Rny is a
reference to track, Y is a bounded set.

The objective is to minimize, at each time tk, the square norm of the tracking
error ||ep(τ)||2Q = ||r(τ) − ŷ(τ)||2Q over a finite time period. When Q is increased
the tracking over all the reference points improves. The term ||(ep(t + Tp))||2P
emphasizes the significance of the final tracking error. When P is increased the
tracking over the final the reference point improves. The term ||(u(τ))||2R enables
the management of the trade-off between performance and command activity.
When R is increased the command effort and energy consumption of the input
signals decreases. The term || d

dt
u(τ)||2Rsd limits the difference between the input

commands at the each time and those at the next instant. When Rsd is increased
it limits the difference between the input signals at current instant and the one at
previous instant resulting in smother input commands. Furthermore, in the cost
function it is possible to insert a further term relating to any constraints on the
states of the model using a dedicated function if necessary. At the moment this is
not our case but if necessary it will be discussed in subsequent chapters.

Additional parameters to be included in the NMPC controller tuning are the
ncp parameter, this indicates the position of the nodes, explained in Chapter 2,

62

Control System Design

within the prediction horizon. The position is expressed in percentage values
of the prediction horizon and indicates the ranges in which the controlled input
command can change and stay constant. In our case the parameter is defined
as par.ncp = [0, 10, 30, 100], this means that three valid input commands will be
generated in the three percentage ranges defined by the parameter to best track the
reference in the prediction horizon, while only the first at the initial time instant
will be given to the system. These values were chosen through careful tuning as
the best choice based on the resulting performances obtained in test simulations,
given the speed of the vehicle and the working scenario defined for the controller
application. It was seen that with 3 nodes, thus two constants commands during
the prediction horizon, no matter of the values chosen the performances of the
system were non satisfactory. Instead with 5 nodes the computational bargain of
the controller function was too high for the system. If the vehicle were to work in
a different scenario it may be necessary to redefine the parameter to optimize the
precision of the controller but it could be done without difficulty.

Another important parameter to define are the upper and lower saturation limits
of the input commands, in our case longitudinal acceleration and steering angle.
For longitudinal acceleration the maximum and minimum values were obtained
in the process of system identification (explained in next sections) analyzing data
collected from manual driving. However, for the steering angle, by accessing the
physics of the vehicle via Python API, it was possible to obtain the maximum and
minimum steering angles of each wheel, equal to ±70 degrees, but considered ±50
degrees to stay away from dynamics boundaries and since in our case the range
that will be used in our scenario will be less than these values. Steering boundaries
values are then transformed into radians values to match dynamics measurements
units.

The final parameters values found, firstly chosen as described before, then
tested via trial and error, that give the best trade off in terms of accuracy and
computational bargain, are:

Parameter Value
Ts 0.05
Tp 3
n 6
R diag([1; 1])
Q diag([1000; 1000])
P diag([1; 1])

Rsd diag([50; 500])
ncp [0, 10, 30, 100]
ub [3.5, 0.8727]
lb [-8, -0.8727]

63

Control System Design

Where n are the states of the vehicle model, diag is a diagonal matrix with diagonal
entries defined in the argument vector, ub are the upper bounds for acceleration
and steering angle, lb are the lower bounds for the same inputs, respectively.

4.3 Vehicle Model
4.3.1 Car Parameters
In order to describe the vehicle dynamics in the correct way and increase the level
of detail of the vehicle model we must have some considerations on the chosen car
and on the parameters that we will need to describe its dynamics. One of the most
important parameter to know is the position of the center of gravity of the car, in
our case a Seat Leon. The position of the car returned by Python API is the center
of the vehicle bounding box in CARLA space, while the dynamic of the vehicle
is built around the center of mass position. Using the following API command,
get_physics_control(), is possible to get and change car parameters and wheels
parameters.

Listing 4.1: CARLA get physics parameters
1 player_phys ic s=s e l f . p l aye r . get_phys ics_contro l ()
2 pr in t (f ’ { p layer_phys ics } ’)

From this we get the position of the center of mass with respect to the center
of the bounding box, that is translated of 0.2 meters towards the front of the
vehicle in x direction. Other important parameters retrieved from this command
are tires lateral stiffness, Cf , Cr = 15000N/rad, and mass of the vehicle that is
m = 1318kg. From wheels location, also retrieved by physics command, it was
possible to determine the front to rear axle distance and furthermore, by knowing
the CoG position, the CoG to front axle distance and the CoG to rear axle distances
was approximated, under the hypothesis that the bounding box center of the car is
in the middle of the front-rear distance. Resulting respectively Lf = 1.16m and
Lr = 1.56m. J , the vehicle inertia about the vertical axis was estimated from the
mass and the dimensions of the car taken from bounding box specific command
resulting about J = 2500kgm2.

4.3.2 Differential Equations
To control the ego-vehicle in the simulation, it is essential for the controller to under-
stand the vehicle’s dynamics. Among various modeling approaches, the Dynamic
Single-Track (DST) mode strikes a balance between simplicity and accuracy for
our controller design context, which means urban driving and low speeds, making
it our choice for simulating vehicle dynamics and control. This model effectively

64

Control System Design

represents a four-wheeled vehicle by simplifying it into a two-wheel model—one
wheel at the front and one at the rear—under the assumption that the left and right
sides of the vehicle exhibit symmetrical behavior. Furthermore, being simplified, the
use of the single track model has a notable computational advantage for real-time
control when the controller must predict and optimize the input commands.

Under the assumption of small steering angles, the fact that longitudinal tire
slip won’t be used because we’ll work with aX longitudinal acceleration. Based on
other theory formulation seen in formulas 2.1 in Chapter 2 the final formulation of
the nonlinear vehicle control model is:

ṗX = vX cos(ψ) − vY sin(ψ)
ṗY = vX sin(ψ) + vY cos(ψ)
ψ̇ = ω

v̇X = vY ω + aX

v̇Y = −vXω + 2
m

(F y
f + F y

r)

ω̇ = 2
J

(LfF
y
f − LrF

y
r)

Where 2 factor was added to compensate the effect of both two wheels for each
axis and F y

f and F y
r are the lateral forces exchanged between the wheels and the

vehicle:
F y

f = −Cfαf cos(δf) F y
r = −Crαr

The tire slip angles αf and αr are defined as:

αf = arctan
3
vY + lfω

vX

4
− δf

αr = arctan
3
vY − lrω

vX

4
The longitudinal acceleration aX and the steering angle δf are the control variables.
The output of the system is (pX , pY). Following the MATLAB function implemen-
tation of the single track model that the NMPC controller will use to predict and
optimize the command inputs .

Listing 4.2: MATLAB single track model function
1 f unc t i on [xdot , y] = dyn_single_track_3dof (t , x , u)
2

3 % Parameters
4 Lf = 1 . 1 6 ; %m
5 Lr = 1 . 5 6 ; %m
6 m = 1318 ; % kg

65

Control System Design

7 J = 2500 ; % kg∗m^2
8 Cf = 1 .5 e4 ; % N/rad
9 Cr = 1 .5 e4 ; % N/rad

10

11 % State v a r i a b l e s
12 X = x (1 , :) ;
13 Y = x (2 , :) ;
14 p s i = x (3 , :) ;
15 vx = x (4 , :) ;
16 vy = x (5 , :) ;
17 w = x (6 , :) ;
18

19 % Input v a r i a b l e s
20 ax = u (1 , :) ;
21 de l t a = u (2 , :) ;
22

23 % S l i p ang l e s
24 be ta f = atan2 (vy+Lf∗w, vx)−de l t a ;
25 betar = atan2 (vy−Lr∗w, vx) ;
26

27 % Late ra l f o r c e s
28 Fyf = −Cf . ∗ be ta f . ∗ cos (de l t a) ;
29 Fyr = −Cr∗ betar ;
30

31 % State equat ions
32 X_dot = vx . ∗ cos (p s i)−vy . ∗ s i n (p s i) ;
33 Y_dot = vx . ∗ s i n (p s i)+vy . ∗ cos (p s i) ;
34 psi_dot = w;
35 vx_dot = vy . ∗w+ax ;
36 vy_dot = −vx . ∗w+2/m∗(Fyf+Fyr) ;
37 w_dot = 2/J ∗(Lf ∗Fyf−Lr∗Fyr) ;
38

39 % State d e r i v a t i v e
40 xdot = [X_dot ; Y_dot ; psi_dot ; vx_dot ; vy_dot ; w_dot] ;
41

42 % Output
43 y = x ([1 2] , :) ;

4.4 MATLAB Controller Implementation
Before being able to run the simulation some steps are required in MATLAB to
define all the functions, constants, controller parameters and initialize the vehicle
states. Here two main scripts in MATLAB where developed to elaborate data
gathered from CARLA and initialize the simulation variables. The first code
developed is to clean the data collected from the simulations in CARLA and
stored in text files. The name of the MATLAB file is trajectory_cleaning. This

66

Control System Design

step is necessary because, due to the high sampling rate in CARLA, there are
many sampled points, in terms of vehicles states, that are too close to each other
and become insignificant data when inserted as reference in the control system.
Furthermore, they would increase the computational effort in the "for" loops in
control system functions, as we will see later, where in the reference matrices there
would be too many points not needed, cause too close each other. In fact the
major contribution of this function is to eliminate from the data written in the
text documents points on the trajectory closer than 1 mm, a distance that for
a trajectory in meters is not significant and that still leaves the trajectory well
detailed. All the data taken at these points, which are also practically the same
in terms of speed and other data, are then deleted while the significant data is
rewritten to new text files, shown in Figure 4.1.

Figure 4.1: Text files before and after trajectory cleaning function

The second implemented MATLAB code is used to initialize all the parameters
needed for the simulation in Simulink as well as to display the results and signals
deriving from the simulation, it is called nmpc_init_and_results. In the first
section of code the text documents containing the cleaned data deriving from the
acquisition in CARLA are loaded, furthermore the tables that will be needed for
dispatching are imported, acceleration map and the vector with the respectively
input command values, that will be discussed in the next sections. The text files
are then broken down to obtain a vector for each collected data (time, positions,
velocities, accelerations, throttle, brake etc..). Finally the reference trajectory is
generated starting from the collected references of the waypoints that also the
autopilot and therefore the PID based controller of CARLA follows. In the second
section all parameters of the model-based predictive controller are initialized,
function containing the model dynamics, function containing state constraints if
present, model states number, sampling time and prediction horizon, matrices
with weights related to the cost function to be optimized, lower and upper limits
of the signals. By means of the function nmpc_design_m then these controller
information is stored in the K structure in the workspace and will be used by
the controller to generate the optimized inputs. In the third section parameters
regarding the Simulink simulation are initialized, among these the sampling time
to be inserted in the various Simulink blocks, parameters used in the Simulink
functions and initialization of the vehicle states by means of collected data. Finally
there is a section to be launched on its own after the simulation on Simulink

67

Control System Design

has been performed in order to print all the data and signals resulting from the
simulation.

4.5 Simulink Control System
In this section the control system architecture will be presented. It is divided into
three big parts from left to right, first perception and path generation, then NMPC
control block, then system manipulation and feedback loop. In figure 4.2 is shown
the Simulink control system design.

Figure 4.2: Simulink control system

All the functions developed thought out this thesis work will be presented next.

4.5.1 Transform Function
First of all, it was essential to understand what kind of data was returned by the
Python API functions called inside the MATLAB system block, which communicates
via client with the simulation world in CARLA, in order to communicate correctly
with the NMPC controller and the whole system. It’s worth to note that CARLA
get() commands return position, location, angles, and velocities in CARLA absolute
frame, while in the vehicle dynamical model velocities in x and y are in the vehicle
car frame. Another point to take into account is the fact that the position returned
by Python API is the center of the vehicle bounding box in CARLA, while the
dynamic of the vehicle is built on the center of mass position. As discussed
before in a previous section the CoG stands 0.2 m forward in the longitudinal
direction towards the front axle. After a delay block of one time step needed to
let the algebraic loop work in Simulink, a function in the feedback junction of the
controller was added to manipulate data exiting from CARLA environment taking

68

Control System Design

into account that velocity frames are different and controller needs CoG vehicle
position to work properly. Implementation is shown below.

Listing 4.3: Simulink transform function
1 f unc t i on y = trans form_funct ion (u)
2

3 p s i = u (3 , :) ;
4 X = u (1 , :) ;
5 Y = u (2 , :) ;
6 xcog = X+0.2∗ cos (p s i) ;
7 ycog = Y+0.2∗ s i n (p s i) ;
8 Vx = u (4 , :) ;
9 Vy = u (5 , :) ;

10 vx = vx . ∗ cos (p s i)+vy . ∗ s i n (p s i) ;
11 vy = vx . ∗ s i n (p s i)−vy . ∗ cos (p s i) ;
12

13 y = [xcog ;
14 ycog ;
15 u (3 , :) ;
16 vx ;
17 vy ;
18 u (6 , :)] ;

Where u are the states data of the ego-vehicle from CARLA.

4.5.2 Localization Function
This function take care of the localization of car position inside the reference
trajectory and also of the computation of the curvature of the trajectory in the
following meters, it uses the vehicle states from the feedback as well as constants
and other signals delayed from the same function at previous instant. Then return
the position index in the trajectory reference of the estimated ego vehicle position
and the value of prediction meters that will be passed to the next functions.

It starts with the computation of the closest point to the vehicle position of
the reference trajectory to understand at which point of the trajectory the car is
located. Then there are some lines of code to face the problem of localization when
the car is intersecting same points of the trajectory as previously traveled or that
would be traveled in future. In this situation there can be a sort of bug in which the
localization of the ego vehicle jumps from one position to another in the trajectory.
In the figure 4.3 you can see an example of a situation in which this problem could
occur. To overcome this the closest point found in the trajectory w.r.t. vehicle’s
position is compared whit the trajectory position index in the previous time instant.
In particular it should not be less than that at the instant before because otherwise
we would be at an earlier point in the trajectory which would not make sense; Also,
the index at the present time cannot exceed the previous one by 40 positions as it

69

Control System Design

Figure 4.3: Localization bug situation

would then have identified as a current location a point in the trajectory that it
will intersect in the future. If one of this two constraints are violated the position
of the vehicle is approximated by the following steps. The distance the vehicle
has traveled since the previous instant is estimated by knowing the velocity at
the previous instant and multiplying it by the sampling time, which is the time
between one acquisition instant and the next. Then with a for loop the distances
of the points on the trajectory are added up from the previous position until the
estimated distance traveled is exceeded, thus finding the estimated position on
the trajectory at the current time. In the second part of the function the average
curvature is calculated in the meters following the estimated position of the vehicle.
In this case since the controller has been designed for urban speeds, therefore from
30km/h base up to 50km/h, the average curvature is calculated in the following 23
m. This parameter for future applications can be modified at will based on the
cruising speed also dynamically during the simulation, for our interests 23 fixed
meters are good enough. In particular a point is taken at every meter of distance
along the desired distance and using the LineCurvature2D function (see Appendix
A) the curvature values at each point taken are calculated and inserted into a vector.
Once the null values in the vector are eliminated they are averaged to obtain the
average curvature. This is then compared to the value obtained at the previous
instant to ensure that there are no changes in curvature that are too sudden, in
this case greater than a value of 0.05 m−1 which in meters of radius of curvature
are equivalent to 20 meters. It is possible to apply these constraints in our case
since the trajectory to follow is well known a priori as well as the scenarios in
which we operate. The average curvature value is then used in an equation created
specifically for our needs in terms of desired speed and behavior that returns the
desired speed value for that stretch of path, where v0 is a constant corresponding
to the desired speed at zero curvature, in our case 23 to obtain 30km/h. This is
one of the key equations that determines the desired speed of the car based on the

70

Control System Design

calculated curvature, in this case average, of the path. This allows the vehicle to
slow down more or less in the case of more or less sharp curves. This equation in
future scenario studies is also fully modifiable based on the case studied in order
to obtain different types of behavior. Finally Np value is computed from desired
velocity ad given to the next function that will calculated the path in the following
Np meters.

Listing 4.4: Simulink localization function
1 f unc t i on [ref_pos , c ,Np,km,Vx] = Np_gen(re f_tr , ze , v0 , c1 , Vx1 , k1)
2

3 N = s i z e (re f_tr , 1) ;
4 pose = ze (1 : 6) ;
5 Vx = ze (4) ;
6 Tp = 3 ;
7 Ts = 0 . 0 5 ;
8

9 % Point o f the r e f e r e n c e t r a j e c t o r y c l o s e s t to the v e h i c l e .
10 d i s = vecnorm (re f_t r (: , 1 : 2) ’−pose (1 : 2) ∗ ones (1 ,N)) ;
11 [~ , c] = min (d i s) ;
12 ref_pos = re f_t r (c , :) ’ ;
13 i f c>c1+40 | | c<c1 %avoid l o c a l i z a t i o n bug in i n t e r s e c t i o n
14 d i s t_ pr e v i s i on = (Vx1/Tp) ∗Ts ;
15 i f d i s t_prev i s i on <0.2
16 d i s t_ pr e v i s i on = 0 . 2 ;
17 end
18 f o r k = c1 :N
19 gap = 0 ;
20 i f c1==0
21 d = 2 ;
22 e l s e
23 d = c1 ;
24 end
25 f o r j = d : k
26 gap = gap+norm(re f_t r (j , :) ’− r e f_t r (j −1 , :) ’) ;
27 end
28 i f gap>d i s t _p r e v i s i o n
29 c = k ;
30 ref_pos = re f_t r (c , :) ’ ;
31 break
32 end
33 end
34 end
35

36 % Curvature
37 CD = 23 ;
38 index1 = ze ro s (CD, 1) ;
39 index1 (1) = c ;
40

71

Control System Design

41 d i s t = 1 ;
42 f o r i = 1 : l ength (index1)−1 %f i n d po in t s o f 1 m d i s t anc e between each

other and p lace the t r a j e c t o r y index in the vec to r
43 f o r k = c :N
44 gap = 0 ;
45 f o r j = c+1:k
46 gap = gap+norm(re f_t r (j , :) ’− r e f_t r (j −1 , :) ’) ;
47 end
48 i f gap>d i s t
49 index1 (i +1) = k ;
50 d i s t = d i s t+ 1 ;
51 break
52 end
53 end
54 end
55

56 Ve r t i c e s = ze ro s (CD, 2) ; %bu i ld matrix with a l l po in t s found
p r e v i o u s l y

57 f o r i = 1 : l ength (index1)
58 i f index1 (i)==0
59 index1 (i) = N;
60 end
61 Ve r t i c e s (i , :) = re f_t r (index1 (i) , :) ;
62 end
63

64 Lines = [(1 : s i z e (Ver t i ce s , 1)) ’ (2 : s i z e (Ver t i ce s , 1) +1) ’] ; L ines (end , 2)
= 1 ;

65 k = LineCurvature2D (Vert i ce s , Lines ,CD) ;
66 k = k(~ isnan (k)) ; %d e l e t e not a number va lue s
67 km = mean(k) ;
68 i f km<k1 −0.05
69 km = k1 −0.05;
70 e l s e i f km>k1+0.05
71 km = k1 +0.05;
72 end
73

74 v = v0 /(abs (km) ∗10+1) ; %s c e n a r i o dedicated , s e t d e s i r e d v e l o c i t y
based on path curvature

75

76 i f v<10
77 v = 10 ; %s e t minimum v e l o c i t y , s c e n a r i o ded icated
78 end
79

80 Np = v /3.6∗Tp;

72

Control System Design

4.5.3 Path Planning Function
Once the desired velocity and thus the meters on which the prediction will be made
have been defined in previous function, this function has the purpose of selecting
the points that will be passed to the NMPC controller itself for optimization and
the calculation of the optimal inputs to be provided to the vehicle. In our case the
optimization logic works with 50 reference points. Using multiple concatenated for
loops and vectors for the position indices in the reference matrices, the prediction
meters are divided into 50 equidistant points and for each of these, starting from
the current position of the vehicle, a point is taken in the reference trajectory with
the desired distance. In this way the 50 points on the reference trajectory are
obtained, which will be reworked through the MATLAB ’reshape’ function to give
as output from the function a row vector of length 50 times number of references
passed, in this case x and y values of the position points and therefore a row vector
of length 100.

Listing 4.5: Simulink path generation function
1 f unc t i on r e f = path_planning (re f_tr , c , Np)
2

3 N = s i z e (re f_tr , 1) ;
4

5 Ns = 50 ;
6 index = ze ro s (Ns , 1) ;
7 t a rge t_d i s t = l i n s p a c e (2 ,Np, Ns) ;
8

9 f o r i = 1 : l ength (index)
10 f o r k = c :N
11 gap = 0 ;
12 f o r j = c+1:k
13 gap = gap+norm(re f_t r (j , :) ’− r e f_t r (j −1 , :) ’) ;
14 end
15 i f gap>ta rge t_d i s t (i)
16 index (i) = k ;
17 break
18 end
19 end
20 end
21

22 r e f _ i n i t = ze ro s (2 , Ns) ;
23

24 f o r i = 1 : l ength (index)
25 i f index (i)==0
26 index (i) = N;
27 end
28 r e f _ i n i t (: , i) = re f_t r (index (i) , :) ’ ;
29 end
30

73

Control System Design

31 r e f = reshape ((r e f _ i n i t) ,Ns∗2 ,1) ;
32 end

4.5.4 Error function
Error function is crucial to understand controller’s performance. In particular, to
measure the tracking error we refer to the cross track error (CTE). To calculate the
deviation of the current position from the ideal trajectory this function calculates
the point-to-line distance between the current position of the vehicle and the
line passing through the two points closest to it on the reference trajectory. By
knowing the index c of the vehicle position in the reference matrix, calculated in the
localization function, this identifies the first of the two points, to find the second
one the distances between the current position and the point before and after the
first point identified by c index are calculated and the one that is closest to current
location is chosen. Finally as can be seen below using the implemented formulas the
distance between the current position of the vehicle and the line passing through
the two chosen points is calculated.

Listing 4.6: Simulink errors function
1 f unc t i on [e_ct] = e r r o r s (re f_tr , c , ze)
2 N = length (r e f_t r (: , 1)) ;
3

4 % Cross−t rack e r r o r
5 %chos ing the two po in t s nea r e s t to cur rent p o s i t i o n
6 i f c<N
7 e1 = vecnorm (re f_t r (c −1 , :) ’−ze (1 : 2)) ;
8 e2 = vecnorm (re f_t r (c +1 , :) ’−ze (1 : 2)) ;
9 i f e1>e2

10 e = c+1;
11 d = c ;
12 e l s e
13 e = c ;
14 d = c −1;
15 end
16 e l s e
17 d = c −1;
18 e = c ;
19 end
20

21 x = re f_t r (d : e , 1) ’ ;
22 y = re f_t r (d : e , 2) ’ ;
23 m = (y (1)−y (2)) /(x (1)−x (2)) ;
24 q = (x (1) ∗y (2)−x (2) ∗y (1)) /(x (1)−x (2)) ;
25

26 zex = ze (1) ;

74

Control System Design

27 zey = ze (2) ;
28

29 e_ct = abs (zey −(m∗ zex+q)) / sq r t (1+m^2) ; %Point to l i n e d i s t ance

4.6 Identification of the Vehicle Model
To control the vehicle in the Carla simulator, we need to convert the optimal accel-
eration data (ãX) generated by our nonlinear model predictive control algorithm
into throttle and brake commands that the client can apply to the ego vehicle
in simulation. Since aX represents the acceleration (if positive) or deceleration
(if negative) of the vehicle, the challenge is to map this data to the appropriate
controls to apply to Carla vehicle. The commands that can be applied to the
vehicle in CARLA through Python API are throttle, brake and steering angle in
degrees. For steering the optimal command calculated by the controller is applied
directly. Instead calculating the accelerator and brake commands is more complex
and requires studying the longitudinal dynamics of the vehicle. In particular it is
necessary to identify the accelerations corresponding to each accelerator and brake
input command. The values applicable to the accelerator and brake commands
range from 0 to 1 for each of the two, where zero means respectively no accelerator
and no brake while 1 means respectively full throttle and full brake. To identify the
longitudinal dynamics, simulations were launched in manual driving where specific
accelerator and brake commands were imposed, through the study of the acquired
data it was possible to notice how the acceleration values were mainly dependent
on the throttle and brake command and the gear in which the vehicle was rather
than speed. These statements can be considered valid in our scenario as the car has
an automatic transmission that has been seen to always behave in the same way
in gear upshifts and downshifts, changing the gear always at the same speed and
engine rpm consequently. In Figure 4.4 it is possible to find the plot of acceleration
values for the throttle and brake commands specified respectively, and related to
the corresponding gear. We thus calculated the average acceleration values for a
set of discerned throttle and brake commands. Where to calculate the deceleration
obviously we started from higher speeds until arriving at vehicle stopped. Values
are only taken in gear one to four since this permits to cover speeds from 0 km/h
to 125 km/h when the fifth gear is inserted. Resulting average accelerations for
second gear are plotted in figure 4.5, where throttle inputs goes from 0 to 1 and
brake values goes from -1 to 0, considering that throttle and brake are never used
together.

As can be noted for throttle and brake values equal to 0 both negative acceleration
is obtained while no acceleration is obtained with throttle values around 0.5 throttle,
this demonstrates the importance of the system analysis in order to obtain a more

75

Control System Design

Figure 4.4: Study of longitudinal acceleration under specific throttle and brake
input, 0.8 and 0.6 respectively

Figure 4.5: Average acceleration values in second gear

complete dispatching that provides the right inputs to have the accelerations desired
by the controller. Even in vehicles that we drive every day, if we pay attention to
it, due to friction, with little throttle pressed in while moving the car decelerates.
In figure 4.6 you can see all the mapped acceleration values related to the various
commands, where the brake command has changed its sign to negative for ease of
representation.

76

Control System Design

(a) Acceleration values for
first to fourth gear

(b) Plotted acceleration values for each gear and commands

Figure 4.6: Complete acceleration map for first to fourth gear

Once this sort of engine map, that can be seen in Figure 4.6, has been created,
which we will call acceleration map, it must be implemented in the dispatching
function in order to provide the vehicle with the right commands. Certainly in the
case of more complex scenarios or studies the detail of the map or the methods
for identifying the system can vary, in our case the complexity and the level of
definition used for the identification has proven to be optimal for obtaining the
desired vehicle acceleration values.

4.6.1 Dispatching Function
The dispatching function is then needed in order to compute the correct acceleration
and brake values based on the received requested acceleration, the gear in which the
vehicle is, the matrix containing the acceleration map and the vector containing the
corresponding acceleration and brake values. If the car has to start from a standstill
and positive acceleration is requested, a throttle command of 0.75 is given to allow
the vehicle to engage first gear. Subsequently if the requested acceleration or
deceleration values are greater than those obtainable with the maximum command
for the current gear, the accelerator or brake output command is set to maximum.
If we are not in one of the previous cases the function searches for the command
values among which the desired acceleration or deceleration is present and through
linear interpolation between the two commands and their respective acceleration
values the precise input command is calculated. It is necessary to calculate the

77

Control System Design

value and subsequently if it is positive apply throttle with that value and brake at
zero, while if negative set the brake with that value changed in sign and throttle
equal to zero. Throttle and brake are never used together and therefore one of the
two commands is always zero.

Listing 4.7: Simulink dispatching function
1 f unc t i on [T,B, ind] = fcn (ax , gear , acc_map , comm)
2 gear = round (gear) ;
3 T = 0 ;
4 B = 0 ;
5 C = 0 ;
6

7 i f gear==0 && ax >0.1
8 C = 0 . 7 5 ;
9 e l s e i f gear==0 && ax <0.1

10 C = 0 ;
11 e l s e i f ax>acc_map(end , gear)
12 C = comm(end) ;
13 e l s e i f ax<acc_map (1 , gear)
14 C = comm(1) ;
15 e l s e
16 f o r i = 2 :26
17 i f ax>acc_map(i −1, gear) && ax<acc_map(i , gear)
18 C = comm(i −1)+(ax−acc_map(i −1, gear)) ∗(comm(i)−comm(i −1))

/(acc_map(i , gear)−acc_map(i −1, gear)) ;
19 break
20 end
21 end
22 end
23

24 i f C==0
25 B = 0 ;
26 T = 0 ;
27 e l s e i f C>0
28 T = C;
29 e l s e i f C<0
30 B = −C;
31 end

78

Chapter 5

Simulation Results

5.1 Path Tracking in Urban Scenario

This section presents the results of simulations conducted in the CARLA environ-
ment to evaluate the performance of the developed control system. Through a series
of tests in varied driving scenarios, the goal is to assess the system’s responsiveness,
stability, and adaptability under conditions that closely mimic real-world testings.
The scenarios examined will range from the simplest to verify performance in terms
of path tracking and response to commands to more difficult ones such as obstacle
avoidance and overtaking to verify the functioning of the control with decision
making functions in the presence of other vehicles.

The results are analyzed to determine how effectively the control algorithms
manage vehicle behavior in urban settings, respond to dynamic obstacles, and
adapt to sudden changes in control factors. Specific scenario performance will be
discussed, offering insights into the strengths of the system and identifying areas for
potential improvement. By demonstrating the system’s functionality and resilience
within CARLA, these simulations provide a critical validation step, supporting the
readiness of the control system for real-world deployment.

In this first scenario, we examined the control system’s ability to accurately follow
a predefined path within the CARLA simulation environment. The Town10HD
map was chosen for this initial scenario as it represents an urban environment
with a significant variety of road features, including both tight and wide curves,
as well as single-lane and two-lane roads. The path reference chosen is the one as
illustrated in Figure 5.1. The path is composed by two medium curves to the left
and two narrow curves to the right. In between there are two straight way.

This scenario focuses on evaluating speed behavior of the ego vehicle and path
tracking performance, specifically by measuring how closely the vehicle adheres to
the intended trajectory. A key performance metric in this assessment is the cross

79

Simulation Results

Figure 5.1: Path reference in CARLA

track error, which represents the lateral deviation of the vehicle from the desired
path. Lower CTE values indicate a more precise adherence to the path, reflecting
the system’s effectiveness in maintaining the desired trajectory.

For this analysis, we compare the performance of two control strategies: the
Nonlinear Model Predictive Control implemented within our system, and CARLA’s
built-in autopilot, which relies on a PID-based control approach. By comparing
the CTE values achieved by each method, we aim to gain insights into the relative
strengths of NMPC in path tracking and assess its advantages over the traditional
PID-based control in CARLA’s autopilot. Nevertheless a further comparison be-
tween developed control system and manual driving will be presented to understand
similar and different aspect of vehicle behavior and performance under either NMPC
system control and human driving.

5.1.1 NMPC vs CARLA Autopilot
In the performance comparison between NMPC system and CARLA PID based
autopilot firstly we want to check if the ego-vehicle velocity performances are
aligned with the design specification. In figure 5.2 is shown the plot with the ego
vehicle velocity along the path and also the velocity on the same path of the vehicle
on autopilot mode in CARLA. As for design implementation the vehicle maintains
a stable speed around 30 km/h on the straight road. Additionally, is well notable
the speed adjustments when approaching and during curves allowing deceleration
until around 15 km/h in curves and the accelerating again up to 30 km/h on
straight. This indicates that NMPC system responds to the design requirements
adjusting the vehicle’s speed in response to changes in path curvature, which is

80

Simulation Results

(a) Ego-vehicle velocity during path tracking
scenario

(b) CARLA Autopilot velocity during path
tracking scenario

Figure 5.2: Comparison between NMPC and CARLA Autopilot velocity

shown in Figure 5.3, optimizing for stability and control. Toward the end of the

Figure 5.3: Path curvature calculated by system localization function

trajectory (around 50 seconds), the vehicle decelerates significantly, approaching
the end of the path. This velocity profile highlights NMPC’s ability to adapt speed
dynamically in response to path characteristics, contributing to smoother and safer
path tracking. It can also be noted, with regards to the speed comparison, that
the CARLA autopilot has a speed profile very similar to that obtained by the
control system, confirming the excellent performance obtained by integrating the
developed system with CARLA.

Moving into the analysis in term of Cross Track Error over time for two control
systems, the Nonlinear Model Predictive Control implemented system and CARLA’s
PID-based autopilot, the results are shown in Figure 5.4. The NMPC control system

81

Simulation Results

(a) NMPC cross track error (b) CARLA Autopilot cross track error

Figure 5.4: Comparison between NMPC and CARLA Autopilot cross track error

exhibits generally low CTE values, with only a few peaks reaching approximately
0.35 meters. The error remains close to zero for most of the trajectory, indicating
precise path tracking. The few peaks suggest slight deviations, occurring in areas
where the path include curves. Overall, NMPC demonstrates good accuracy,
effectively minimizing lateral deviations. CARLA’s PID based autopilot shows a
similar trend but with slightly more pronounced peaks, with some CTE values
exceeding 0.4 meters. While the PID based CARLA controller performs reasonably
well, its error is slightly higher and less consistent than NMPC’s. The increased
fluctuations indicate that the PID based system may have struggled more to adapt
to sudden changes in path direction, showing its limitations in complex tracking
scenarios compared to NMPC. By exploiting commonly used performance metrics
such as the Root Mean Square Error (RMSE), an indicator that measures the root
mean square error between the observed values and the desired values, and the
Max Value Error, which indicates the maximum absolute error committed by the
observed values, we confirm the better results obtained by the NMPC-based system
compared to the CARLA PID-based autopilot, as shown in Table 5.1.

RMSE Value [m] MAX Value Error [m]
NMPC system 0.200 0.361

CARLA autopilot 0.261 0.415

Table 5.1: NMPC system vs CARLA autopilot performance parameters in first
scenario

As shown in Figure 5.5, the steering commands generated by the Autopilot
PID-based controller and applied to the vehicle during autonomous driving in

82

Simulation Results

CARLA are less smooth compared to those generated by the NMPC controller.
The NMPC commands are much more linear and exhibit fewer oscillations. This
happens because the NMPC is able to predict the behavior and the trajectory of the
vehicle by generating command inputs that are less marked and more long-lasting
over time, while the autopilot must correct the inputs at any moment based only
on the direction of the vehicle and the waypoint to be reached, resulting in less
discrete commands. This improved behavior is a significant advantage even in a
real vehicle in terms of actuation. It reduces stress on the steering components,
minimizes wear and tear, and avoids situations where excessively abrupt command
changes might damage the vehicle or lead to suboptimal responses. Here NMPC

(a) NMPC steering commands (b) CARLA Autopilot steering commands

Figure 5.5: Comparison between NMPC and CARLA Autopilot steering com-
mands

shows his strength in predicting vehicle behavior and optimizing path tracking with
robust trajectory generation.

Figure 5.6 presents a comparison between the acceleration outputs requested
by the NMPC controller and the actual accelerations achieved by the vehicle
after applying the corresponding throttle and brake commands calculated in the
dispatching function. This comparison highlights the effectiveness of the system
identification process, where a comprehensive mapping was created to correlate
acceleration values with specific throttle and brake inputs. By using this mapping,
the vehicle can achieve the desired accelerations accurately, closely following the
intended behavior dictated by the NMPC controller. This high fidelity in replicating
the requested accelerations enhances the controller’s overall performance in every
point of the path, in fact a correct dispatching permits to maintain the constant
speed when needed with low acceleration or deceleration applied, while during
strong acceleration and deceleration phases it allows to correctly have the desired
behavior. This is also more crucial during turns when have a different acceleration

83

Simulation Results

from the one calculated by NMPC algorithm could lead to control loosing caused
by the sum of already present lateral forces and moments and wrong acceleration
or deceleration forces.

Figure 5.6: Ego-vehicle acceleration compared to NMPC desired acceleration
during path tracking scenario

The minor delay observed in the vehicle’s response is due solely to the inherent
delay block in the control loop, where the desired accelerations are realized one
sampling period after the initial request. Despite this delay, the response time
is very short with respect to the vehicle’s dynamic changes, ensuring that the
NMPC operates effectively even during rapid acceleration or deceleration events.
This precise and timely response allows the control system to function optimally,
ensuring smooth and stable vehicle behavior.

The yaw rate, expressed in radians per second, measures the angular velocity
around the vehicle’s vertical axis. It is a key indicator of a vehicle’s dynamic
stability, as it reflects how the vehicle behaves during maneuvers such as turn-
ing, braking, or accelerating. In stable conditions, the yaw rate should remain
proportional to the steering input, indicating that the vehicle is following the
intended trajectory. Excessive or fluctuating yaw rates may signal instability, such
as oversteer, understeer, or loss of lateral grip. Yaw rate data for path tracking
scenario are shown in Figure 5.7. Early in the timeline (0–10 seconds), the yaw
rate remains close to zero, indicating minimal angular movement and stable driving
conditions. Between 10 and 30 seconds, the yaw rate dips negatively, reaching a
minimum of around -0.4 rad/s, likely corresponding to controlled leftward maneu-
vers. These fluctuations, although pronounced, remain within a range that does
not suggest any loss of stability. From 40 to 50 seconds, the yaw rate increases
significantly, with peaks approaching 0.7 rad/s. These positive values correspond
to rightward strict turns, the symmetry and smooth nature of the peaks suggest

84

Simulation Results

Figure 5.7: Ego vehicle yaw rate during path tracking scenario

deliberate and controlled vehicle movements. Notably, the yaw rate stabilizes back
near zero after 50 seconds, confirming that the vehicle returned to a steady state.
The absence of extreme oscillations or abrupt discontinuities indicates that the
vehicle maintained stability throughout the test. The recorded yaw rate values,
while reflecting dynamic maneuvering, remain well within a range consistent with
safe and stable handling. This suggests that the vehicle control system effectively
managed all lateral forces without losing traction or control and ensuring optimal
path tracking.

5.1.2 NMPC vs Manual Driving
To further understand the vehicle’s behavior and validate if the target speeds
align with the design specifications, a series of manual driving with steering wheel
and pedals tests were conducted within the CARLA environment. These manual
trials serve as a benchmark, allowing us to observe the range of vehicle speeds
achievable under human control and to examine typical Cross Track Error values
when navigating the designated path without automated control.

By analyzing the CTE generated during manual driving, we can establish a
reference for the lateral deviations that occur in real-time, driver-controlled condi-
tions. This comparison provides a valuable context for evaluating the automated
control systems’ performance and helps identify the baseline level of path accuracy
achievable through manual intervention.

The results in Figure 5.8 indicate that the speeds achieved by the developed
control system are highly consistent with those observed during manual driving,
where speed was limited at 30 km/h maximum for better comparison, and in
particular in cornering scenarios. In curves, the NMPC system results demonstrates
deceleration patterns closely matching those of human drivers, with comparable

85

Simulation Results

(a) Manual driving velocity (b) Manual driving cross track error

Figure 5.8: Manual driving with steering wheel in CARLA results

target speeds reached in these sections.
In terms of Cross Track Error, the autonomous NMPC control system shows a

marked improvement over manual driving. While manual driving produced CTE
values exceeding 0.5 meters and reaching up to 0.9 meters, the autonomous system
significantly reduces this lateral deviation, especially in curves. This improvement
is particularly notable in challenging turns where visual references for manual
guidance are limited, underscoring the system’s ability to maintain a more accurate
path in complex sections of the route. Comparing manual driving to NMPC also
in terms of RMSE and Max value error as we expected performances of the NMPC
system are much better, as demonstrated in Table 5.2.

RMSE Value [m] MAX Value Error [m]
NMPC system 0.200 0.361
Manual Driving 0.565 0.903

Table 5.2: NMPC system vs manual driving performance parameters in first
scenario

5.2 Path tracking with augmented velocity
This section describes the testing of the developed control system under operating
conditions with speeds higher than the design specifications. Specifically, the
system was tested at a cruising speed of 50 km/h. The route used for this test is
the same as in the first scenario, characterized by a mixed track with medium and

86

Simulation Results

tight curves in an urban environment. This type of route allows for evaluating the
controller’s behavior robustness at higher speed on both straight and curved section.
To enable the controller to operate under the new specifications, the following
changes were made into the localization function block in Simulink model at line
74 where is generated the desired speed:

• Modification of the v0 parameter: The constant parameter v0 was adjusted
to a value of 43, ensuring that in the absence of curvature in the path, the
vehicle travels at a speed of 50 km/h.

• Increased curvature weighting: The weighting assigned to curvature was
increased from 10 to 30. This adjustment ensures more pronounced deceleration
in tight turns, enhancing safety and maintaining vehicle control in the most
demanding conditions of the route.

The resulting speed profiles, as shown in Figure 5.9, demonstrate that the
controller can seamlessly adapt to higher speeds by adjusting the system’s con-
stants. As intended the speed decreases near curves, enhancing vehicle safety
and stability. On straight sections, the speed remains consistent with the desired
value. This highlights the system’s effectiveness in maintaining cruising speed
under low curvature conditions and adequately decelerating near tighter curves.
In terms of cross-track error, the errors remain very low, even considering that
the curves are tackled at higher speeds compared to the previous scenario, and
that the curves are among the tightest present on the CARLA map. The error
does not exceed 0.6 meters, confirming the excellent performance of the controller.
This test allows for assessing the robustness and adaptability of the controller

(a) Ego-vehicle velocity (b) Ego-vehicle cross track error

Figure 5.9: Comparison between NMPC and CARLA Autopilot cross track error
in augmented velocity scenario

in more complex operating scenarios, confirming the system’s ability to manage

87

Simulation Results

higher speeds while maintaining stable and safe behavior. While there is space for
improving system performance at 50 km/h, comparing RMSE and Max value errors,
system performances at higher velocity are slightly worse than those obtained at
design speed of 30 km/h as shown in Table 5.3

Working velocity RMSE Value [m] MAX Value Error [m]
30 km/h 0.200 0.361
50 km/h 0.342 0.585

Table 5.3: NMPC system performance parameters comparison between first and
augmented velocity scenario

Figure 5.10: Ego-vehicle acceleration compared to NMPC desired acceleration in
augmented velocity scenario

Figure 5.10 compares the acceleration outputs requested by the NMPC controller
with the actual accelerations achieved by the vehicle, following the throttle and
brake commands generated by the dispatching function. The results are even more
significant at 50 km/h compared to 30 km/h scenario, as not only the first two
gears but also the third gear is used. This further confirms the success of the system
identification process. The spikes in the graph correspond to gear shifts, where the
transmission momentarily enters neutral, causing brief negative accelerations.

In conclusion, the results demonstrate that the control system is capable of

88

Simulation Results

effectively operating at speeds different from the design speed. Specifically, the
system performs well not only at the target speed of 30 km/h but also at higher
speeds, such as 50 km/h, where additional gears are engaged. This adaptability
confirms the robustness and flexibility of the NMPC controller, ensuring it can
maintain the desired performance across a range of operating conditions. The
system’s ability to handle varying speeds adjusting constant variables in the loop
without compromising trajectory tracking or stability highlights its effectiveness
and readiness for real-world applications with diverse driving scenarios.

5.3 Obstacle avoidance
Obstacle avoidance is a fundamental capability in autonomous driving systems,
critical for ensuring safety and robustness in dynamic environments. Implementing
an effective obstacle avoidance mechanism is essential to allow the ego vehicle
to navigate seamlessly around static or dynamic obstacles while maintaining a
predefined trajectory. This scenario demonstrates the integration of a trigger
function within the control system to detect obstacles and execute avoidance
maneuvers.

The scenario is run in a narrow rural road in Town05. To create the obstacle
avoidance scenario, a vehicle obstacle, in particular a Volkswagen Transporter T2
van was placed stationary stopped with half the vehicle in the middle of the road
simulating what could be an emergency parking. A supervisory control function was
implemented to continuously monitor the ego vehicle’s and the obstacle position.
When the obstacle was detected within a specific threshold, distance relative to
the ego vehicle, the avoidance maneuver was triggered by setting a trigger variable
to 1. In response, the path generation function dynamically adjusted the reference
path. The control system shifted the reference trajectory laterally by the distance
needed to avoid the obstacle and not invade the opposite lane too much. In fact
the function calculates how much the obstacle is near or overcome the reference
trajectory and shifts the reference taking care of the dimensions of the ego vehicle.
Once the ego vehicle cleared the obstacle and re-entered its original lane with
a predefined safety margin, at least 5 meters ahead of the obstacle, the control
variable was reset to 0, allowing the ego vehicle to resume its original trajectory, as
can be seen in Figure 5.11. While in Figure 5.12 the steering angle imposed by the
controller is shown, at the beginning to the left (negative values indicate turning
the steering to the left) because initially the vehicle is coming from a previous curve
and after about 2.5 seconds again to the left to avoid the vehicle and then to the
right to return to the lane again. The yaw angle and yaw rate are also shown in
the same figure, highlighting the changes in direction of the vehicle and its angular
velocity which, however, remains contained in absolute value below 0.5 radians per

89

Simulation Results

(a) Ego-vehicle and obstacle vehicle posi-
tions

(b) Ego vehicle trajectory in CARLA envi-
ronment

Figure 5.11: Obstacle avoidance maneuver

second, values which highlight the correct stability of the vehicle when cornering.

(a) Ego-vehicle steering commands (b) Ego vehicle yaw angle and yaw rate

Figure 5.12: Obstacle avoidance maneuver steering commands, yaw angle and
yaw rate

This dynamic adaptation of the trajectory, combined with real-time supervisory
control, enabled the ego vehicle to avoid the obstacle smoothly and efficiently,
showcasing the adaptability of the Nonlinear Model Predictive Control system to
real-world scenarios.

In addition, the NMPC controller also offers the possibility of managing obstacle
avoidance scenarios by using the fcon function in which it is possible to express
limits to be imposed on the vehicle states. Similar results to those obtained were

90

Simulation Results

in fact achieved by inserting the aforementioned function inside the controller in
which an ellipse of approximately the size and position of the obstacle to be avoided
was identified.

5.4 Overtaking maneuver
Overtaking is a critical behavior in autonomous driving, essential for ensuring
efficient traffic flow and avoiding delays caused by slower vehicles. Implementing a
robust overtaking mechanism in the control system is vital for achieving seamless
navigation, particularly in dynamic multi-vehicle environments. This scenario
highlights the importance of integrating a control/decision function to initiate and
manage the overtaking process within the control system.

Town05 was chosen due to presence of extra-urban roads with multiple lane
where a overtake maneuver can be executed. Then to create this overtaking
scenario, a second vehicle was spawned approximately 20 meters ahead of the ego
vehicle within the simulation environment, using MATLAB system for scenario
configuration. The second vehicle was set to operate autonomously with CARLA
autopilot at a 30 km/h speed. A supervisory control function was implemented
to monitor the relative positions and speeds of the two vehicles. This function
calculated the distance between them and triggered the overtaking behavior under
specific conditions:

• The distance between the vehicles dropped below 15 meters.

• The leading vehicle’s speed was slower than that of the ego vehicle.

When these conditions were met, a control variable was set to 1, signaling the need
for an overtaking maneuver. Within the path tracking function, if the variable is
set to 1, the reference path is adjusted by 3.5 meters to the left, corresponding
to the next lane center offset, to enable the ego vehicle to shift lanes and initiate
the overtaking maneuver. After overtaking, once the ego vehicle was at least 15
meters ahead of the previously leading vehicle, the trigger variable was reset to 0.
At this point, the ego vehicle returned to its original predefined path, completing
the overtaking process, as shown in Figure 5.13.

As seen in Figure 5.14, the ego vehicle maintains a speed of approximately
50 km/h throughout the scenario. The overtaking maneuver occurs on a curve,
where the ego vehicle naturally decelerates in response to the curvature of the
path. Despite the reduced speed in the curve, the ego vehicle remains faster than
the leading vehicle, allowing it to successfully complete the overtaking. Once the
maneuver is completed and the curve ends, the ego vehicle accelerates back to its
cruising speed of around 50 km/h. In terms of Cross Track Error, the results align
well with expectations for a lane-change maneuver. Remarkably, even at speeds

91

Simulation Results

(a) Vehicles path (b) Ego vehicle trajectory in CARLA envi-
ronment

Figure 5.13: Overtaking maneuver

slightly higher than the design specifications, and despite the curve’s geometry,
the CTE remains very limited during the pre-overtaking phase, staying below 0.3
meters. While during the overtake it tracks correctly the center of the left lane at
3.5 m. This demonstrates the control system’s ability to maintain precise lateral
positioning lasting over time, even under challenging conditions such as higher
speeds and road curvature.

(a) Overtake vehicles velocity (b) Ego-vehicle overtake cross track error

Figure 5.14: Overtaking maneuver vehicles velocity and ego-vehicle CTE

This dynamic adjustment of the reference path, combined with the supervisory
control function, ensures a smooth and controlled overtaking operation, demon-
strating the system’s adaptability to real-world driving scenarios and the capability
of NMPC to perform well in a complex system.

92

Chapter 6

Conclusion

6.1 Thesis Results

This thesis focuses on the development of a control system based on an NMPC
controller implemented in MATLAB/Simulink and co-simulated with the CARLA
simulator. A variety of supporting functions were developed, including localization,
path planning, and a dispatching function, all underpinned by a comprehensive sys-
tem identification effort to enhance performance. Code to support variable velocity
control based on path curvature was also developed. Significant improvements were
made to the CARLA-MATLAB interface, particularly through the synchronization
between Simulink and CARLA’s world environment, ensuring seamless integration
and real-time operation. The primary objective of this work was to demonstrate
how an NMPC controller, integrated into an autonomous driving system, can
improve path tracking, enhance vehicle stability, optimize the handling of input
commands, and operate effectively across diverse scenarios. This was achieved
through the implementation of additional decision-making functions, highlighting
the potential of NMPC as a robust and flexible solution for advanced vehicle control
systems.

During test simulation the developed control system demonstrates excellent
performance across multiple aspects, confirming its robustness and versatility for
autonomous driving applications. The system handles variable speeds effectively, it
excels in speed management relative to curvature dynamically adjusting vehicle
velocity based on road geometry to maintain stability and safety. In particular,
the path tracking performance is outstanding, ensuring precise adherence to the
generated trajectory and showcasing a better behavior comparable to that of
Carla’s built-in Autopilot. The vehicle also exhibits excellent stability during
maneuvers, maintaining control and smooth behavior even under challenging
conditions. Additionally, the input signals to the system are tunable by adjusting the

93

Conclusion

cost function weights and their smoothness outperformed the CARLA’s autopilot,
allowing flexible adaptation of the vehicle’s dynamics to suit specific behaviors.

While the exact implementation of Carla’s PID-based Autopilot remains un-
clear —whether it uses adaptive strategies, fixed logic or other approaches— it is
undoubtedly tailored specifically to the known vehicle model, giving it an inherent
advantage. In contrast, the proposed NMPC-based approach achieves better results
despite operating with generalizable logic and simplified car model, demonstrating
its effectiveness.

The modular structure of the system allows for future expansion and integration
of additional features. Its tunable design with easily adjustable parameters and
functions, offers the flexibility to modify the vehicle’s behavior as desired. Fur-
thermore, decision-making mechanisms can be seamlessly incorporated without
requiring significant changes to the existing structure. This was demonstrating
by the adaptability of the system to realistic scenario as obstacle avoidance and
overtaking maneuver where the integration between the control logic and the NMPC
controller handled the situations with good performances.

The system has been implemented and tested in real-time within the Carla
simulation environment, achieving excellent results in terms of responsiveness and
stability. Overall, the proposed control system proves to be a robust and effective
solution for path tracking and trajectory generation with significant potential for
future developments and enhancements in autonomous driving technologies.

6.2 Limitations of the Work

While the proposed control system has demonstrated excellent performance in
various scenarios, several limitations should be acknowledged. The speed imposed
by the controller, as it aims to reach the furthest point given within Tp, depends
on the length of the prediction horizon and by the Np variable that determine
the most distant reference point given to the NMPC controller. This dependency
to the prediction horizon could limit the system’s adaptability to different path
characteristics or driving conditions, speed should be a variable chosen depending on
the situation and tracked by the controller. Additionally some of the implemented
functions in Simulink blocks were specifically designed for this application. While
effective, their ad hoc nature may reduce generalization and require rework or
adjustments when applied to other systems or environments. Additionally, the
system’s performance relies heavily on specific parameter tuning, such as weights in
the NMPC cost function, which were tailored to the particular scenario and vehicle
model used in this study. This may necessitate significant effort for adaptation in
other contexts.

94

Conclusion

Furthermore the exact vehicle model was not fully known, requiring approxi-
mations and empirical methods for system identification. While these methods
achieved good results, they may not perfectly capture all aspects of the vehicle’s
dynamics, particularly in edge cases. Moreover, the vehicle’s lateral dynamics
were not thoroughly investigated in this work, which could impact the system’s
performance in scenarios where lateral stability and control are critical, such as
sharp turns or high-speed maneuvers. Addressing these limitations in future work
could further enhance the system’s robustness, adaptability, and applicability to a
broader range of vehicles and driving scenarios.

6.3 Future work
The work presented in this thesis lays a strong foundation for further advancements
in autonomous vehicle control systems. Several potential directions for future
development can significantly enhance the system’s capabilities and versatility.
Additional functionalities and driver assistance features, such as adaptive cruise
control, could also be developed. These features would further extend the applicabil-
ity of the system and improve its usability in real-world scenarios. The integration
of cameras and additional sensors could provide richer environmental data, enabling
the incorporation of computer vision techniques to assist with decision-making
processes. This would allow the system to better handle dynamic environments
and improve its overall situational awareness.

Regarding the control approach a key area for improvement could be the
separation of lateral and longitudinal control, where independent controllers could
be implemented. For instance, an NMPC could handle lateral control, while either
another NMPC or an alternative approach could manage longitudinal dynamics.
This separation would allow for more specialized tuning and better performance
in diverse driving scenarios. The implementation of event-triggered NMPC could
optimize computational efficiency by updating the control strategy only when
significant changes in the environment or vehicle state occur. This would reduce
computational load while maintaining high performance or other optimized solver
for NMPC OCP can be developed. Similarly, introducing online adaptive parameter
tuning could dynamically adjust the controller’s parameters, such as weights in the
cost function, initial velocity v0, curvature weights, or other tuning variables, to
improve robustness and provide greater flexibility to adapt the control strategy
on-the-fly to different driving conditions.

Rewriting the entire control system in Python script would streamline the
implementation process without needing co simulation between MATLAB and
CARLA, enabling better integration and computational speed within CARLA
environment. Additionally, directly extracting reference points, as waypoints

95

Conclusion

already present in the simulator, from Carla would enable the system to utilize
real-time data for better trajectory planning and execution.

By exploring these avenues, the system could evolve into a more robust, adaptive,
and feature-rich control framework, paving the way for advanced autonomous
driving applications and contributing to the field’s ongoing development.

96

Appendix A

Additional Functions

This script defines a function to compute the curvature of a line represented in a
two-dimensional space used in the control system inside the localization function.

Listing A.1: Curvature function
1 f unc t i on k=LineCurvature2D (Vert i c e s , Lines ,CD)
2 % This func t i on c a l c u l a t e s the curvature o f a 2D l i n e . I t f i r s t f i t s
3 % polygons to the po in t s . Then c a l c u l a t e s the a n a l y t i c a l curvature

from
4 % the polygons ;
5 %
6 % k = LineCurvature2D (Vert i ce s , L ines)
7 %
8 % inputs ,
9 % Ve r t i c e s : A M x 2 l i s t o f l i n e po in t s .

10 % (opt i ona l)
11 % Lines : A N x 2 l i s t o f l i n e p i e ce s , by i n d i c e s o f the v e r t i c e s
12 % (i f not s e t assume Lines =[1 2 ; 2 3 ; . . . ; M−1 M])
13 %
14 % outputs ,
15 % k : M x 1 Curvature va lue s
16 %
17 %
18 %
19 % Example , C i r c l e
20 % r=s o r t (rand (15 ,1)) ∗2∗ pi ;
21 % Ve r t i c e s =[s i n (r) cos (r)] ∗ 1 0 ;
22 % Lines =[(1 : s i z e (Ver t i c e s , 1)) ’ (2 : s i z e (Ver t i c e s , 1) +1) ’] ; L ines (end

, 2) =1;
23 % k=LineCurvature2D (Vert i ce s , L ines) ;
24 %
25 % f i g u r e , hold on ;
26 % N=LineNormals2D (Vert i c e s , L ines) ;
27 % k=k ∗100 ;

97

Additional Functions

28 % plo t ([Ve r t i c e s (: , 1) Ve r t i c e s (: , 1)+k . ∗N(: , 1)] ’ , [Ve r t i c e s (: , 2)
Ve r t i c e s (: , 2)+k . ∗N(: , 2)] ’ , ’ g ’) ;

29 % plo t ([Ve r t i c e s (Lines (: , 1) , 1) Ve r t i c e s (Lines (: , 2) , 1)] ’ , [Ve r t i c e s (
Lines (: , 1) , 2) V e r t i c e s (Lines (: , 2) , 2)] ’ , ’ b ’) ;

30 % plo t (s i n (0 : 0 . 0 1 : 2 ∗ pi) ∗10 , cos (0 : 0 . 0 1 : 2 ∗ pi) ∗10 , ’ r . ’) ;
31 % ax i s equal ;
32 %
33 % Example , Hand
34 % load (’ t e s tdata ’) ;
35 % k=LineCurvature2D (Vert i ce s , L ines) ;
36 %
37 % f i g u r e , hold on ;
38 % N=LineNormals2D (Vert i c e s , L ines) ;
39 % k=k ∗100 ;
40 % plo t ([Ve r t i c e s (: , 1) Ve r t i c e s (: , 1)+k . ∗N(: , 1)] ’ , [Ve r t i c e s (: , 2)

Ve r t i c e s (: , 2)+k . ∗N(: , 2)] ’ , ’ g ’) ;
41 % plo t ([Ve r t i c e s (Lines (: , 1) , 1) Ve r t i c e s (Lines (: , 2) , 1)] ’ , [Ve r t i c e s (

Lines (: , 1) , 2) V e r t i c e s (Lines (: , 2) , 2)] ’ , ’ b ’) ;
42 % plo t (Ve r t i c e s (: , 1) , Ve r t i c e s (: , 2) , ’ r . ’) ;
43 % ax i s equal ;
44 %
45 % Function i s wr i t t en by D. Kroon Un ive r s i ty o f Twente (August 2011)
46

47 % I f no l i n e −i nd i c e s , assume a x (1) connected with x (2) , x (3) with x
(4) . . .

48 i f (nargin <2)
49 Lines = [(1 : (s i z e (Ver t i ce s , 1) −1)) ’ (2 : s i z e (Ver t i c e s , 1)) ’] ;
50 end
51

52 % Get l e f t and r i g h t ne ighbor o f each po in t s
53 Na=ze ro s (s i z e (Ver t i ce s , 1) , 1) ; Nb=ze ro s (s i z e (Ver t i c e s , 1) ,1) ;
54 Na(Lines (: , 1))=Lines (: , 2) ; Nb(Lines (: , 2))=Lines (: , 1) ;
55

56 % Check f o r end o f l i n e points , without a l e f t or r i g h t ne ighbor
57 checkNa=Na==0; checkNb=Nb==0;
58 Naa=Na ; Nbb=Nb;
59 Naa(checkNa)=f i n d (checkNa) ; Nbb(checkNb)=f i n d (checkNb) ;
60

61 % I f no l e f t ne ighbor use two r i g h t neighbors , and the same f o r r i g h t
. . .

62 Na(checkNa)=Nbb(Nbb(checkNa)) ; Nb(checkNb)=Naa(Naa(checkNb)) ;
63

64 % Correct f o r sampel ing d i f f e r e n c e s
65 Ta=−s q r t (sum ((Vert i c e s −Ve r t i c e s (Na , :)) . ^2 , 2)) ;
66 Tb=sq r t (sum ((Vert i ce s −Ve r t i c e s (Nb , :)) . ^2 , 2)) ;
67

68 % I f no l e f t ne ighbor use two r i g h t neighbors , and the same f o r r i g h t
. . .

69 Ta(checkNa)=−Ta(checkNa) ; Tb(checkNb)=−Tb(checkNb) ;

98

Additional Functions

70

71 % Fit a polygons to the v e r t i c e s
72 % x=a (3) ∗ t ^2 + a (2) ∗ t + a (1)
73 % y=b (3) ∗ t ^2 + b (2) ∗ t + b (1)
74 % we know the x , y o f every v e r t i c e and s e t t=0 f o r the v e r t i c e s , and
75 % t=Ta f o r l e f t v e r t i c e s , and t=Tb f o r r i g h t v e r t i c e s ,
76 x = [Ve r t i c e s (Na , 1) V e r t i c e s (: , 1) V e r t i c e s (Nb, 1)] ;
77 y = [Ve r t i c e s (Na , 2) V e r t i c e s (: , 2) V e r t i c e s (Nb, 2)] ;
78 M = [ones (s i z e (Tb)) −Ta Ta.^2 ones (s i z e (Tb)) z e ro s (s i z e (Tb)) z e ro s (

s i z e (Tb)) ones (s i z e (Tb)) −Tb Tb . ^ 2] ;
79 invM=i nv e r s e 3 (M,CD) ;
80 a=ze ro s (CD, 3) ;
81 b=ze ro s (CD, 3) ;
82 a (: , 1)=invM (: , 1 , 1) . ∗ x (: , 1)+invM (: , 2 , 1) . ∗ x (: , 2)+invM (: , 3 , 1) . ∗ x (: , 3) ;
83 a (: , 2)=invM (: , 1 , 2) . ∗ x (: , 1)+invM (: , 2 , 2) . ∗ x (: , 2)+invM (: , 3 , 2) . ∗ x (: , 3) ;
84 a (: , 3)=invM (: , 1 , 3) . ∗ x (: , 1)+invM (: , 2 , 3) . ∗ x (: , 2)+invM (: , 3 , 3) . ∗ x (: , 3) ;
85 b (: , 1)=invM (: , 1 , 1) . ∗ y (: , 1)+invM (: , 2 , 1) . ∗ y (: , 2)+invM (: , 3 , 1) . ∗ y (: , 3) ;
86 b (: , 2)=invM (: , 1 , 2) . ∗ y (: , 1)+invM (: , 2 , 2) . ∗ y (: , 2)+invM (: , 3 , 2) . ∗ y (: , 3) ;
87 b (: , 3)=invM (: , 1 , 3) . ∗ y (: , 1)+invM (: , 2 , 3) . ∗ y (: , 2)+invM (: , 3 , 3) . ∗ y (: , 3) ;
88

89 % Calcu la te the curvature from the f i t t e d polygon
90 k = 2∗(a (: , 2) . ∗ b (: , 3)−a (: , 3) . ∗ b (: , 2)) . / ((a (: , 2) .^2+b (: , 2) . ^2)

.^ (3/2)) ;
91 end

99

Bibliography

[1] Istvan Barabas, Adrian Todoruţ, N Cordoş, and Andreia Molea. «Current
challenges in autonomous driving». In: IOP conference series: materials
science and engineering. Vol. 252. 1. IOP Publishing. 2017, p. 012096 (cit. on
p. 1).

[2] Claudine Badue et al. «Self-driving cars: A survey». In: Expert systems with
applications 165 (2021), p. 113816 (cit. on p. 1).

[3] Lee Gomes. «Hidden obstacles for Google’s self-driving cars: Impressive
progress hides major limitations of Google’s quest for automated driving».
In: Massachusetts Institute of Technology. As of March 3 (2014), p. 2016
(cit. on p. 2).

[4] Betina Carol Zanchin, Rodrigo Adamshuk, Max Mauro Santos, and Kathya
Silvia Collazos. «On the instrumentation and classification of autonomous
cars». In: 2017 IEEE international conference on systems, man, and cyber-
netics (SMC). IEEE. 2017, pp. 2631–2636 (cit. on p. 3).

[5] Ekim Yurtsever, Jacob Lambert, Alexander Carballo, and Kazuya Takeda. «A
survey of autonomous driving: Common practices and emerging technologies».
In: IEEE access 8 (2020), pp. 58443–58469 (cit. on p. 4).

[6] Rowan Thomas McAllister, Yarin Gal, Alex Kendall, Mark Van Der Wilk,
Amar Shah, Roberto Cipolla, and Adrian Weller. «Concrete problems for
autonomous vehicle safety: Advantages of Bayesian deep learning». In: In-
ternational Joint Conferences on Artificial Intelligence, Inc. 2017 (cit. on
p. 5).

[7] JP Laumond. Robot Motion Planning and Control. 1998 (cit. on p. 5).
[8] Ramesh Jain, Rangachar Kasturi, Brian G Schunck, et al. Machine vision.

Vol. 5. McGraw-hill New York, 1995 (cit. on p. 5).
[9] Rajesh Rajamani. Vehicle dynamics and control. Springer Science & Business

Media, 2011 (cit. on pp. 5, 37).

100

BIBLIOGRAPHY

[10] Sterling J Anderson, Sisir B Karumanchi, and Karl Iagnemma. «Constraint-
based planning and control for safe, semi-autonomous operation of vehicles».
In: 2012 IEEE intelligent vehicles symposium. IEEE. 2012, pp. 383–388
(cit. on p. 5).

[11] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. «Deeptest: Au-
tomated testing of deep-neural-network-driven autonomous cars». In: Pro-
ceedings of the 40th international conference on software engineering. 2018,
pp. 303–314 (cit. on p. 5).

[12] Mariusz Bojarski. «End to end learning for self-driving cars». In: arXiv
preprint arXiv:1604.07316 (2016) (cit. on p. 6).

[13] Huazhe Xu, Yang Gao, Fisher Yu, and Trevor Darrell. «End-to-end learning
of driving models from large-scale video datasets». In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2017, pp. 2174–
2182 (cit. on p. 6).

[14] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. «Deepdriv-
ing: Learning affordance for direct perception in autonomous driving». In:
Proceedings of the IEEE international conference on computer vision. 2015,
pp. 2722–2730 (cit. on p. 6).

[15] Volodymyr Mnih et al. «Human-level control through deep reinforcement
learning». In: nature 518.7540 (2015), pp. 529–533 (cit. on p. 6).

[16] Ahmad EL Sallab, Mohammed Abdou, Etienne Perot, and Senthil Yogamani.
«Deep reinforcement learning framework for autonomous driving». In: arXiv
preprint arXiv:1704.02532 (2017) (cit. on p. 6).

[17] Alex Kendall, Jeffrey Hawke, David Janz, Przemyslaw Mazur, Daniele
Reda, John-Mark Allen, Vinh-Dieu Lam, Alex Bewley, and Amar Shah.
«Learning to drive in a day». In: 2019 international conference on robotics
and automation (ICRA). IEEE. 2019, pp. 8248–8254 (cit. on p. 6).

[18] Dario Floreano, Peter Dürr, and Claudio Mattiussi. «Neuroevolution: from
architectures to learning». In: Evolutionary intelligence 1 (2008), pp. 47–62
(cit. on p. 6).

[19] Dean A Pomerleau. «Alvinn: An autonomous land vehicle in a neural
network». In: Advances in neural information processing systems 1 (1988)
(cit. on p. 7).

[20] Shumeet Baluja. «Evolution of an artificial neural network based autonomous
land vehicle controller». In: IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics) 26.3 (1996), pp. 450–463 (cit. on p. 7).

101

BIBLIOGRAPHY

[21] Jan Koutník, Giuseppe Cuccu, Jürgen Schmidhuber, and Faustino Gomez.
«Evolving large-scale neural networks for vision-based reinforcement learn-
ing». In: Proceedings of the 15th annual conference on Genetic and evolu-
tionary computation. 2013, pp. 1061–1068 (cit. on p. 7).

[22] Lu Chi and Yadong Mu. «Deep steering: Learning end-to-end driving model
from spatial and temporal visual cues». In: arXiv preprint arXiv:1708.03798
(2017) (cit. on p. 7).

[23] Khadige Abboud, Hassan Aboubakr Omar, and Weihua Zhuang. «Interwork-
ing of DSRC and cellular network technologies for V2X communications:
A survey». In: IEEE transactions on vehicular technology 65.12 (2016),
pp. 9457–9470 (cit. on p. 7).

[24] Jian Wang, Yameng Shao, Yuming Ge, and Rundong Yu. «A survey of
vehicle to everything (V2X) testing». In: Sensors 19.2 (2019), p. 334 (cit. on
p. 7).

[25] Mario Gerla, Eun-Kyu Lee, Giovanni Pau, and Uichin Lee. «Internet of
vehicles: From intelligent grid to autonomous cars and vehicular clouds».
In: 2014 IEEE world forum on internet of things (WF-IoT). IEEE. 2014,
pp. 241–246 (cit. on p. 8).

[26] Marica Amadeo, Claudia Campolo, and Antonella Molinaro. «Information-
centric networking for connected vehicles: a survey and future perspectives».
In: IEEE Communications Magazine 54.2 (2016), pp. 98–104 (cit. on p. 8).

[27] Eun-Kyu Lee, Mario Gerla, Giovanni Pau, Uichin Lee, and Jae-Han Lim.
«Internet of Vehicles: From intelligent grid to autonomous cars and vehicular
fogs». In: International Journal of Distributed Sensor Networks 12.9 (2016),
p. 1550147716665500 (cit. on p. 8).

[28] Swarun Kumar, Lixin Shi, Nabeel Ahmed, Stephanie Gil, Dina Katabi, and
Daniela Rus. «Carspeak: a content-centric network for autonomous driving».
In: ACM SIGCOMM Computer Communication Review 42.4 (2012), pp. 259–
270 (cit. on p. 8).

[29] Ekim Yurtsever, Suguru Yamazaki, Chiyomi Miyajima, Kazuya Takeda,
Masataka Mori, Kentarou Hitomi, and Masumi Egawa. «Integrating driving
behavior and traffic context through signal symbolization for data reduction
and risky lane change detection». In: IEEE Transactions on Intelligent
Vehicles 3.3 (2018), pp. 242–253 (cit. on p. 8).

[30] Mario Gerla. «Vehicular cloud computing». In: 2012 The 11th annual mediter-
ranean ad hoc networking workshop (Med-Hoc-Net). IEEE. 2012, pp. 152–155
(cit. on p. 8).

102

BIBLIOGRAPHY

[31] Md Whaiduzzaman, Mehdi Sookhak, Abdullah Gani, and Rajkumar Buyya.
«A survey on vehicular cloud computing». In: Journal of Network and
Computer applications 40 (2014), pp. 325–344 (cit. on p. 8).

[32] Ikram Ud Din, Byung-Seo Kim, Suhaidi Hassan, Mohsen Guizani, Mo-
hammed Atiquzzaman, and Joel JPC Rodrigues. «Information-centric network-
based vehicular communications: Overview and research opportunities». In:
Sensors 18.11 (2018), p. 3957 (cit. on p. 8).

[33] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. «Airsim:
High-fidelity visual and physical simulation for autonomous vehicles». In:
Field and Service Robotics: Results of the 11th International Conference.
Springer. 2018, pp. 621–635 (cit. on p. 9).

[34] Ekim Yurtsever, Jacob Lambert, Alexander Carballo, and Kazuya Takeda. «A
survey of autonomous driving: Common practices and emerging technologies».
In: IEEE access 8 (2020), pp. 58443–58469 (cit. on p. 9).

[35] Ludovic Pintard, Jean-Charles Fabre, Karama Kanoun, Michel Leeman,
and Matthieu Roy. «Fault injection in the automotive standard ISO 26262:
An initial approach». In: European Workshop on Dependable Computing.
Springer. 2013, pp. 126–133 (cit. on p. 10).

[36] Xi Zhang and Chris Mi. Vehicle power management: modeling, control and
optimization. Springer Science & Business Media, 2011 (cit. on p. 10).

[37] Punit Tulpule, Ayyoub Rezaeian, Aditya Karumanchi, and Shawn Midlam-
Mohler. «Model based design (MBD) and hardware in the loop (HIL) vali-
dation: curriculum development». In: 2017 American Control Conference
(ACC). IEEE. 2017, pp. 5361–5366 (cit. on p. 11).

[38] Hans-Peter Schöner. «Challenges and approaches for testing of highly auto-
mated vehicles». In: Energy Consumption and Autonomous Driving: Pro-
ceedings of the 3rd CESA Automotive Electronics Congress, Paris, 2014.
Springer. 2016, pp. 101–109 (cit. on p. 11).

[39] Hans-Peter Schöner. «Simulation in development and testing of autonomous
vehicles». In: 18. Internationales Stuttgarter Symposium: Automobil-und
Motorentechnik. Springer. 2018, pp. 1083–1095 (cit. on p. 12).

[40] Prabhjot Kaur, Samira Taghavi, Zhaofeng Tian, and Weisong Shi. «A survey
on simulators for testing self-driving cars». In: 2021 Fourth International
Conference on Connected and Autonomous Driving (MetroCAD). IEEE.
2021, pp. 62–70 (cit. on p. 12).

[41] Antonín Šmíd. «Comparison of unity and unreal engine». In: Czech Technical
University in Prague (2017), pp. 41–61 (cit. on p. 12).

103

BIBLIOGRAPHY

[42] Jessica Van Brummelen, Marie O’brien, Dominique Gruyer, and Homayoun
Najjaran. «Autonomous vehicle perception: The technology of today and
tomorrow». In: Transportation research part C: emerging technologies 89
(2018), pp. 384–406 (cit. on p. 12).

[43] Jelena Kocić, Nenad Jovičić, and Vujo Drndarević. «Sensors and sensor
fusion in autonomous vehicles». In: 2018 26th Telecommunications Forum
(TELFOR). IEEE. 2018, pp. 420–425 (cit. on p. 12).

[44] Yong K Hwang and Narendra Ahuja. «Gross motion planning—a survey». In:
ACM Computing Surveys (CSUR) 24.3 (1992), pp. 219–291 (cit. on p. 13).

[45] David González, Joshué Pérez, Vicente Milanés, and Fawzi Nashashibi. «A
review of motion planning techniques for automated vehicles». In: IEEE
Transactions on intelligent transportation systems 17.4 (2015), pp. 1135–1145
(cit. on p. 13).

[46] Rui Fan, Jianhao Jiao, Haoyang Ye, Yang Yu, Ioannis Pitas, and Ming Liu.
«Key ingredients of self-driving cars». In: arXiv preprint arXiv:1906.02939
(2019) (cit. on p. 13).

[47] John-Jairo Martinez and Carlos Canudas-de-Wit. «A safe longitudinal con-
trol for adaptive cruise control and stop-and-go scenarios». In: IEEE Trans-
actions on control systems technology 15.2 (2007), pp. 246–258 (cit. on
p. 13).

[48] Shengbo Li, Keqiang Li, Rajesh Rajamani, and Jianqiang Wang. «Model
predictive multi-objective vehicular adaptive cruise control». In: IEEE Trans-
actions on control systems technology 19.3 (2010), pp. 556–566 (cit. on p. 13).

[49] Fanta Camara et al. «Pedestrian models for autonomous driving part ii:
high-level models of human behavior». In: IEEE Transactions on Intelligent
Transportation Systems 22.9 (2020), pp. 5453–5472 (cit. on p. 13).

[50] Joshua Fadaie. «The state of modeling, simulation, and data utilization
within industry: An autonomous vehicles perspective». In: arXiv preprint
arXiv:1910.06075 (2019) (cit. on p. 13).

[51] Sergio Lafuente-Arroyo, Pedro Gil-Jimenez, R Maldonado-Bascon, Francisco
López-Ferreras, and Saturnino Maldonado-Bascón. «Traffic sign shape classi-
fication evaluation I: SVM using distance to borders». In: IEEE Proceedings.
Intelligent Vehicles Symposium, 2005. IEEE. 2005, pp. 557–562 (cit. on
p. 13).

[52] Yuyan Liu, Miles Tight, Quanxin Sun, and Ruiyu Kang. «A systematic
review: Road infrastructure requirement for Connected and Autonomous
Vehicles (CAVs)». In: Journal of Physics: Conference Series. Vol. 1187. 4.
IOP Publishing. 2019, p. 042073 (cit. on p. 13).

104

BIBLIOGRAPHY

[53] Shinpei Kato et al. «Autoware on board: Enabling autonomous vehicles with
embedded systems». In: 2018 ACM/IEEE 9th International Conference on
Cyber-Physical Systems (ICCPS). IEEE. 2018, pp. 287–296 (cit. on p. 14).

[54] Haoyang Fan et al. «Baidu apollo em motion planner». In: arXiv preprint
arXiv:1807.08048 (2018) (cit. on p. 14).

[55] Ivo Miguel Menezes Silva, Hélder David Malheiro Silva, Fabricio Botelho,
and Cristiano Gonçalves Pendão. «Realistic 3D simulators for automotive: a
review of main applications and features». In: (2024) (cit. on p. 15).

[56] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and
Vladlen Koltun. «CARLA: An open urban driving simulator». In: Conference
on robot learning. PMLR. 2017, pp. 1–16 (cit. on p. 15).

[57] Andrew Sanders. An introduction to Unreal engine 4. AK Peters/CRC Press,
2016 (cit. on p. 15).

[58] Michael Behrisch, Laura Bieker, Jakob Erdmann, and Daniel Krajzewicz.
«SUMO–simulation of urban mobility: an overview». In: Proceedings of
SIMUL 2011, The Third International Conference on Advances in System
Simulation. ThinkMind. 2011 (cit. on p. 16).

[59] Andreas Junghanns et al. «The functional mock-up interface 3.0-new features
enabling new applications». In: Modelica conferences. 2021, pp. 17–26 (cit. on
p. 17).

[60] Guodong Rong et al. «Lgsvl simulator: A high fidelity simulator for au-
tonomous driving». In: 2020 IEEE 23rd International conference on intelli-
gent transportation systems (ITSC). IEEE. 2020, pp. 1–6 (cit. on p. 18).

[61] Matthias Müller, Vincent Casser, Jean Lahoud, Neil Smith, and Bernard
Ghanem. «Sim4cv: A photo-realistic simulator for computer vision applica-
tions». In: International Journal of Computer Vision 126 (2018), pp. 902–919
(cit. on p. 19).

[62] Francesco Micheli, Mattia Bersani, Stefano Arrigoni, Francesco Braghin, and
Federico Cheli. «NMPC trajectory planner for urban autonomous driving».
In: Vehicle system dynamics 61.5 (2023), pp. 1387–1409 (cit. on p. 22).

[63] Jean Pierre Allamaa, Petr Listov, Herman Van der Auweraer, Colin Jones,
and Tong Duy Son. «Real-time nonlinear mpc strategy with full vehicle
validation for autonomous driving». In: 2022 American Control Conference
(ACC). IEEE. 2022, pp. 1982–1987 (cit. on p. 22).

[64] Wael Farag. «Real-time NMPC path tracker for autonomous vehicles». In:
Asian Journal of Control 23.4 (2021), pp. 1952–1965 (cit. on p. 22).

105

BIBLIOGRAPHY

[65] Niels van Duijkeren, Tamas Keviczky, Peter Nilsson, and Leo Laine. «Real-
time NMPC for semi-automated highway driving of long heavy vehicle
combinations». In: IFAC-PapersOnLine 48.23 (2015), pp. 39–46 (cit. on
p. 22).

[66] Wael Farag. «Complex track maneuvering using real-time MPC control for
autonomous driving». In: International Journal of Computing and Digital
Systems 9.5 (2020), pp. 909–920 (cit. on p. 22).

[67] Maryam Nezami, Dimitrios S Karachalios, Georg Schildbach, and Hossam
S Abbas. «On the design of nonlinear MPC and LPVMPC for obstacle
avoidance in autonomous driving». In: 2023 9th International Conference
on Control, Decision and Information Technologies (CoDIT). IEEE. 2023,
pp. 1–6 (cit. on p. 22).

[68] Mostafa Emam and Matthias Gerdts. «Deterministic Operating Strategy
for Multi-objective NMPC for Safe Autonomous Driving in Urban Traffic.»
In: VEHITS. 2022, pp. 152–161 (cit. on p. 22).

[69] Karl Berntorp, Rien Quirynen, Tomoki Uno, and Stefano Di Cairano. «Tra-
jectory tracking for autonomous vehicles on varying road surfaces by friction-
adaptive nonlinear model predictive control». In: Vehicle System Dynamics
58.5 (2020), pp. 705–725 (cit. on pp. 22, 29, 30).

[70] Stefano Arrigoni, Francesco Braghin, and Federico Cheli. «MPC trajectory
planner for autonomous driving solved by genetic algorithm technique». In:
Vehicle system dynamics 60.12 (2022), pp. 4118–4143 (cit. on p. 22).

[71] Mattia Boggio, Carlo Novara, and Michele Taragna. «Trajectory planning
and control for autonomous vehicles: a “fast” data-aided NMPC approach».
In: European Journal of Control 74 (2023), p. 100857 (cit. on p. 22).

[72] Mattia Boggio, Carlo Novara, and Michele Taragna. «Nonlinear model predic-
tive control: An optimal search domain reduction». In: IFAC-PapersOnLine
56.2 (2023), pp. 6253–6258 (cit. on pp. 22, 43, 44).

[73] Trieu Minh Vu, Reza Moezzi, Jindrich Cyrus, and Jaroslav Hlava. «Model
predictive control for autonomous driving vehicles». In: Electronics 10.21
(2021), p. 2593 (cit. on p. 22).

[74] Muhammad Awais Abbas, Ruth Milman, and J Mikael Eklund. «Obstacle
avoidance in real time with nonlinear model predictive control of autonomous
vehicles». In: Canadian journal of electrical and computer engineering 40.1
(2017), pp. 12–22 (cit. on p. 22).

106

BIBLIOGRAPHY

[75] Li Zhai, Chengping Wang, Yuhan Hou, and Chang Liu. «MPC-based inte-
grated control of trajectory tracking and handling stability for intelligent
driving vehicle driven by four hub motor». In: IEEE transactions on vehicular
technology 71.3 (2022), pp. 2668–2680 (cit. on p. 22).

[76] Mooryong Choi and Seibum B Choi. «MPC for vehicle lateral stability via
differential braking and active front steering considering practical aspects».
In: Proceedings of the Institution of Mechanical Engineers, Part D: Journal
of Automobile Engineering 230.4 (2016), pp. 459–469 (cit. on p. 22).

[77] Mooryong Choi and Seibum B Choi. «Model predictive control for vehicle
yaw stability with practical concerns». In: IEEE transactions on vehicular
technology 63.8 (2014), pp. 3539–3548 (cit. on p. 22).

[78] John M Guirguis, Sherif Hammad, and Shady A Maged. «Path tracking
control based on an adaptive MPC to changing vehicle dynamics». In:
International Journal of Mechanical Engineering and Robotics Research 11.7
(2022), pp. 535–541 (cit. on p. 22).

[79] Haidong Wu, Zhenli Si, and Zihan Li. «Trajectory tracking control for
four-wheel independent drive intelligent vehicle based on model predictive
control». In: IEEE Access 8 (2020), pp. 73071–73081 (cit. on p. 22).

[80] Hengyang Wang, Biao Liu, Xianyao Ping, and Quan An. «Path tracking
control for autonomous vehicles based on an improved MPC». In: IEEE
access 7 (2019), pp. 161064–161073 (cit. on p. 22).

[81] Ying Xu, Wentao Tang, Biyun Chen, Li Qiu, and Rong Yang. «A model
predictive control with preview-follower theory algorithm for trajectory
tracking control in autonomous vehicles». In: Symmetry 13.3 (2021), p. 381
(cit. on p. 22).

[82] Chulho Choi and Yeonsik Kang. «Simultaneous braking and steering control
method based on nonlinear model predictive control for emergency driving
support». In: International Journal of Control, Automation and Systems
15.1 (2017), pp. 345–353 (cit. on p. 23).

[83] Mert Batmaz. «Development of Complex Scenarios and Control Algorithms
for Autonomous Driving Functions (ADFs) in a Driving Simulator». PhD
thesis. Politecnico di Torino, 2024 (cit. on p. 23).

[84] Daniel R Morais and A Pedro Aguiar. «Model Predictive Control for Self
Driving Cars: A Case Study Using the Simulator CARLA within a ROS
Framework». In: 2022 IEEE International Conference on Autonomous Robot
Systems and Competitions (ICARSC). IEEE. 2022, pp. 124–129 (cit. on
p. 23).

107

BIBLIOGRAPHY

[85] Zhaodong Zhou, Christopher Rother, and Jun Chen. «Event-triggered model
predictive control for autonomous vehicle path tracking: Validation using
CARLA simulator». In: IEEE Transactions on Intelligent Vehicles 8.6 (2023),
pp. 3547–3555 (cit. on p. 23).

[86] Siddharth H Nair, Vijay Govindarajan, Theresa Lin, Chris Meissen, H Eric
Tseng, and Francesco Borrelli. «Stochastic mpc with multi-modal predictions
for traffic intersections». In: 2022 IEEE 25th International Conference on
Intelligent Transportation Systems (ITSC). IEEE. 2022, pp. 635–640 (cit. on
p. 23).

[87] Alexander L Gratzer, Maximilian M Broger, Alexander Schirrer, and Ste-
fan Jakubek. «Two-Layer MPC Architecture for Efficient Mixed-Integer-
Informed Obstacle Avoidance in Real-Time». In: IEEE Transactions on
Intelligent Transportation Systems (2024) (cit. on p. 23).

[88] Farhad Partovi Ebrahimpour and Hasan Ferdowsi. «Multi-Constraint pre-
dictive control system with auxiliary emergency controllers for autonomous
vehicles». In: 2021 IEEE Intelligent Vehicles Symposium (IV). IEEE. 2021,
pp. 274–279 (cit. on p. 24).

[89] HT Madan, P Ramya, M Rakshitha, et al. «Trajectory Tracking and Lane-
Keeping Assistance for Autonomous Systems Using Pid and MPC Con-
trollers». In: 2023 International Conference on Smart Systems for applica-
tions in Electrical Sciences (ICSSES). IEEE. 2023, pp. 1–7 (cit. on p. 24).

[90] Minsung Kim, Donggil Lee, Joonwoo Ahn, Minsoo Kim, and Jaeheung Park.
«Model predictive control method for autonomous vehicles using time-varying
and non-uniformly spaced horizon». In: IEEE Access 9 (2021), pp. 86475–
86487 (cit. on p. 24).

[91] Karl Berntorp, Björn Olofsson, Kristoffer Lundahl, and Lars Nielsen. «Models
and methodology for optimal trajectory generation in safety-critical road–
vehicle manoeuvres». In: Vehicle System Dynamics 52.10 (2014), pp. 1304–
1332 (cit. on p. 28).

[92] Rien Quirynen, Karl Berntorp, and Stefano Di Cairano. «Embedded opti-
mization algorithms for steering in autonomous vehicles based on nonlinear
model predictive control». In: 2018 Annual American Control Conference
(ACC). IEEE. 2018, pp. 3251–3256 (cit. on p. 28).

[93] Stefano Di Cairano and Ilya V Kolmanovsky. «Real-time optimization and
model predictive control for aerospace and automotive applications». In:
2018 annual American control conference (ACC). IEEE. 2018, pp. 2392–2409
(cit. on p. 29).

108

BIBLIOGRAPHY

[94] Jeong hwan Jeon, Raghvendra V Cowlagi, Steven C Peters, Sertac Karaman,
Emilio Frazzoli, Panagiotis Tsiotras, and Karl Iagnemma. «Optimal motion
planning with the half-car dynamical model for autonomous high-speed
driving». In: 2013 American control conference. IEEE. 2013, pp. 188–193
(cit. on p. 29).

[95] Sherif Nekkah et al. «The autonomous racing software stack of the KIT19d».
In: arXiv preprint arXiv:2010.02828 (2020) (cit. on p. 31).

[96] Eugenio Tramacere, Sara Luciani, Stefano Feraco, Angelo Bonfitto, and
Nicola Amati. «Processor-in-the-loop architecture design and experimental
validation for an autonomous racing vehicle». In: Applied Sciences 11.16
(2021), p. 7225 (cit. on p. 32).

[97] Massimo Guiggiani et al. «The science of vehicle dynamics». In: Pisa, Italy:
Springer Netherlands 15 (2014) (cit. on p. 32).

[98] Danilo Caporale, Alessandro Settimi, Federico Massa, Francesco Amerotti,
Andrea Corti, Adriano Fagiolini, Massimo Guiggiani, Antonio Bicchi, and
Lucia Pallottino. «Towards the design of robotic drivers for full-scale self-
driving racing cars». In: 2019 International Conference on Robotics and
Automation (ICRA). IEEE. 2019, pp. 5643–5649 (cit. on p. 32).

[99] Fabian Christ, Alexander Wischnewski, Alexander Heilmeier, and Boris
Lohmann. «Time-optimal trajectory planning for a race car considering
variable tyre-road friction coefficients». In: Vehicle system dynamics 59.4
(2021), pp. 588–612 (cit. on p. 32).

[100] Robin Verschueren, Mario Zanon, Rien Quirynen, and Moritz Diehl. «Time-
optimal race car driving using an online exact hessian based nonlinear
MPC algorithm». In: 2016 European control conference (ECC). IEEE. 2016,
pp. 141–147 (cit. on p. 32).

[101] Tantan Zhang, Yueshuo Sun, Yazhou Wang, Bai Li, Yonglin Tian, and Fei-
Yue Wang. «A survey of vehicle dynamics modeling methods for autonomous
racing: Theoretical models, physical/virtual platforms, and perspectives».
In: IEEE Transactions on Intelligent Vehicles (2024) (cit. on p. 32).

[102] Ademir AC Júnior, Sanjay Misra, and Michel S Soares. «A systematic map-
ping study on software architectures description based on ISO/IEC/IEEE
42010: 2011». In: Computational Science and Its Applications–ICCSA 2019:
19th International Conference, Saint Petersburg, Russia, July 1–4, 2019,
Proceedings, Part V 19. Springer. 2019, pp. 17–30 (cit. on p. 33).

[103] Sagar Behere and Martin Törngren. «A functional architecture for au-
tonomous driving». In: Proceedings of the first international workshop on
automotive software architecture. 2015, pp. 3–10 (cit. on p. 33).

109

BIBLIOGRAPHY

[104] Omveer Sharma, Nirod C Sahoo, and Niladri B Puhan. «Recent advances
in motion and behavior planning techniques for software architecture of
autonomous vehicles: A state-of-the-art survey». In: Engineering applications
of artificial intelligence 101 (2021), p. 104211 (cit. on p. 34).

[105] Max Schwenzer, Muzaffer Ay, Thomas Bergs, and Dirk Abel. «Review on
model predictive control: An engineering perspective». In: The International
Journal of Advanced Manufacturing Technology 117.5 (2021), pp. 1327–1349
(cit. on pp. 35, 38).

[106] James B Rawlings. «Tutorial overview of model predictive control». In: IEEE
control systems magazine 20.3 (2000), pp. 38–52 (cit. on pp. 35, 38).

[107] Gunnar Hillerström and Kirthi Walgama. «Repetitive control theory and
applications-a survey». In: IFAC Proceedings Volumes 29.1 (1996), pp. 1446–
1451 (cit. on p. 35).

[108] Em Poh Ping, Khisbullah Hudha, and Hishamuddin Jamaluddin. «Hardware-
in-the-loop simulation of automatic steering control for lanekeeping manoeu-
vre: outer-loop and inner-loop control design». In: International journal of
vehicle safety 5.1 (2010), pp. 35–59 (cit. on p. 36).

[109] Ehab I Al Khatib, Wasim MF Al-Masri, Shayok Mukhopadhyay, Mohammad
A Jaradat, and Mamoun Abdel-Hafez. «A comparison of adaptive trajectory
tracking controllers for wheeled mobile robots». In: 2015 10th international
symposium on mechatronics and its applications (ISMA). IEEE. 2015, pp. 1–
6 (cit. on p. 36).

[110] Alan SI Zinober. «Deterministic control of uncertain systems». In: Proceed-
ings. ICCON IEEE International Conference on Control and Applications.
IEEE. 1989, pp. 645–650 (cit. on p. 36).

[111] Jinkun Liu. Sliding mode control using MATLAB. Academic Press, 2017
(cit. on p. 36).

[112] Jessy W Grizzle, Christine Chevallereau, Aaron D Ames, and Ryan W Sinnet.
«3D bipedal robotic walking: models, feedback control, and open problems».
In: IFAC Proceedings Volumes 43.14 (2010), pp. 505–532 (cit. on p. 36).

[113] Jong-Min Yang and Jong-Hwan Kim. «Sliding mode control for trajectory
tracking of nonholonomic wheeled mobile robots». In: IEEE Transactions
on robotics and automation 15.3 (1999), pp. 578–587 (cit. on p. 36).

[114] Tomás Carricajo Martin, Marcos E Orchard, and Paul Vallejos Sánchez.
«Design and simulation of control strategies for trajectory tracking in an
autonomous ground vehicle». In: IFAC Proceedings Volumes 46.24 (2013),
pp. 118–123 (cit. on p. 36).

110

BIBLIOGRAPHY

[115] Himajit Aithal and S Janardhanan. «Trajectory tracking of two wheeled
mobile robot using higher order sliding mode control». In: 2013 Interna-
tional Conference on Control, Computing, Communication and Materials
(ICCCCM). IEEE. 2013, pp. 1–4 (cit. on p. 36).

[116] Ashish Tewari. «MODER CONTROL DESIGN». In: (2002) (cit. on p. 37).
[117] Noor Hafizah Amer, Hairi Zamzuri, Khisbullah Hudha, and Zulkiffli Ab-

dul Kadir. «Modelling and control strategies in path tracking control for
autonomous ground vehicles: A review of state of the art and challenges».
In: Journal of intelligent & robotic systems 86 (2017), pp. 225–254 (cit. on
p. 37).

[118] Kwang S Lee, In-Shik Chin, Hyuk J Lee, and Jay H Lee. «Model predictive
control technique combined with iterative learning for batch processes». In:
AIChE Journal 45.10 (1999), pp. 2175–2187 (cit. on p. 38).

[119] Alan SI Zinober and David H Owens. Nonlinear and adaptive control: NCN4
2001. Vol. 281. Springer Science & Business Media, 2002 (cit. on p. 38).

[120] Carlos E Garcia and Manfred Morari. «Internal model control. A unifying
review and some new results». In: Industrial & Engineering Chemistry
Process Design and Development 21.2 (1982), pp. 308–323 (cit. on p. 38).

[121] Jacques Richalet. «Industrial applications of model based predictive control».
In: Automatica 29.5 (1993), pp. 1251–1274 (cit. on p. 38).

[122] Liuping Wang et al. Model predictive control system design and implementa-
tion using MATLAB. Vol. 3. Springer, 2009 (cit. on p. 38).

[123] Giuseppe Franze, Massimiliano Mattei, Luciano Ollio, and Valerio Scor-
damaglia. «A robust constrained model predictive control scheme for norm-
bounded uncertain systems with partial state measurements». In: Interna-
tional Journal of Robust and Nonlinear Control 29.17 (2019), pp. 6105–6125
(cit. on p. 39).

[124] David Q Mayne, James B Rawlings, Christopher V Rao, and Pierre OM
Scokaert. «Constrained model predictive control: Stability and optimality».
In: Automatica 36.6 (2000), pp. 789–814 (cit. on p. 39).

[125] S Joe Qin and Thomas A Badgwell. «An overview of nonlinear model
predictive control applications». In: Nonlinear model predictive control (2000),
pp. 369–392 (cit. on p. 39).

[126] Jacques Richalet, André Rault, JL Testud, and J Papon. «Model predictive
heuristic control». In: Automatica (journal of IFAC) 14.5 (1978), pp. 413–428
(cit. on p. 39).

111

BIBLIOGRAPHY

[127] Carlos E Garcia, David M Prett, and Manfred Morari. «Model predictive con-
trol: Theory and practice—A survey». In: Automatica 25.3 (1989), pp. 335–
348 (cit. on p. 39).

[128] Frank Allgöwer and Alex Zheng. Nonlinear model predictive control. Vol. 26.
Birkhäuser, 2012 (cit. on p. 39).

[129] David Q Mayne, Saša V Raković, Rolf Findeisen, and Frank Allgöwer.
«Robust output feedback model predictive control of constrained linear
systems». In: Automatica 42.7 (2006), pp. 1217–1222 (cit. on p. 39).

[130] Moritz Diehl, Hans Georg Bock, Holger Diedam, and P-B Wieber. «Fast
direct multiple shooting algorithms for optimal robot control». In: Fast
motions in biomechanics and robotics: optimization and feedback control
(2006), pp. 65–93 (cit. on p. 39).

[131] Mattia Boggio, Luigi Colangelo, Mario Virdis, Michele Pagone, and Carlo
Novara. «Earth gravity in-orbit sensing: MPC formation control based on a
novel constellation model». In: Remote Sensing 14.12 (2022), p. 2815 (cit. on
p. 39).

[132] KS Holkar and LM Waghmare. «Discrete model predictive control for dc
drive using orthonormal basis function». In: (2010) (cit. on p. 40).

[133] Swati Mohanty. «Artificial neural network based system identification and
model predictive control of a flotation column». In: Journal of Process
Control 19.6 (2009), pp. 991–999 (cit. on p. 40).

[134] KS Holkar and Laxman M Waghmare. «An overview of model predictive
control». In: International Journal of control and automation 3.4 (2010),
pp. 47–63 (cit. on pp. 40, 44).

[135] Rolf Findeisen and Frank Allgöwer. «An introduction to nonlinear model
predictive control». In: 21st Benelux meeting on systems and control. Vol. 11.
Veldhoven. 2002, pp. 119–141 (cit. on p. 44).

112

	List of Figures
	Acronyms
	Introduction
	Autonomous Driving
	AV System Architectures
	Simulation's Crucial Role in ADS Testing
	Simulator's Technical Requirements
	Simulators' State of Art
	CARLA
	LGSVL
	Sim4CV

	Goal of the Thesis
	State of Art
	Outline and Contributions

	Vehicle Models and Control Systems
	Dynamical Vehicles Models
	Dynamic Single Track Model
	Tire Models

	Control System Architecture for ADS
	Trajectory Planning and Control Algorithms
	NMPC

	CARLA Co-Simulation
	CARLA Features and Architecture
	CARLA Traffic Manager
	Anaconda Interface
	Data Gathering Autonomous Mode
	Manual Control Data Gathering
	MATLAB Interface
	CARLA Enviroment in Simulink

	Control System Design
	Project specifications
	NMPC controller
	Vehicle Model
	Car Parameters
	Differential Equations

	MATLAB Controller Implementation
	Simulink Control System
	Transform Function
	Localization Function
	Path Planning Function
	Error function

	Identification of the Vehicle Model
	Dispatching Function

	Simulation Results
	Path Tracking in Urban Scenario
	NMPC vs CARLA Autopilot
	NMPC vs Manual Driving

	Path tracking with augmented velocity
	Obstacle avoidance
	Overtaking maneuver

	Conclusion
	Thesis Results
	Limitations of the Work
	Future work

	Additional Functions
	Bibliography

