
Politecnico di Torino
Master’s Degree in Mechatronic Engineering

Master’s Degree Thesis

Autonomous Robot Driving using

Sensor Fusion

Supervisors
Prof. Stefano Malan
Prof. Massimo Violante

Candidate
Fabio Marchisio

Intership Tutor
Dott. Leonardo Forese

December 2024





Abstract

In the rapidly evolving landscape of automation, robots and autonomous vehicles
have become essential tools, driving innovation, improving efficiency and reliability,
while integrating and cooperating with humans.

This thesis presents the development of an Autonomous Mobile Robots (AMRs)
system based on the Yahboom ROSMASTER X3, from the assembly phase to code
implementation. The system is powered by a NVIDIA Jetson Nano and actuated
by a STM32-based board. The robot is equipped with a depth camera and a Light
Detection And Ranging (LiDAR) sensor.

The robot primary function is to track a moving target in real time while au-
tonomously avoiding obstacles. The person detection is based on a previous thesis
project on neural networks and real-time object tracking. However, the main focus
of this project is the sensor fusion of the camera and LiDAR in Robot Operating
System (ROS).

Additionally, the thesis explores the architecture of the ROSMASTER X3, the
use of Docker and containers, and the communication protocols implemented. Vari-
ous tests were conducted to assess the system performance in complex environments
and under different conditions, focusing on real-time response, obstacle avoidance
accuracy, and smoothness in movement transitions.

The results indicate that ROS2 architecture and the integration of sensor fu-
sion techniques significantly enhance the robot autonomous capabilities, making
it suitable for dynamic environments. This work contributes to the wider field
of autonomous mobile robotics by demonstrating an effective implementation of
ROS2-based systems for mobile robots.



Table of Contents

List of Figures IV

List of Tables VI

Acronyms VIII

1 Introduction 1
1.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Autonomous Robots . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 State of Art 5
2.1 Robotic Operating System - ROS . . . . . . . . . . . . . . . . . . . 5

2.1.1 ROS architecture . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 ROS1 and ROS2 comparison . . . . . . . . . . . . . . . . . . 9

2.2 LiDAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Single Laser LiDAR . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Time Of Flight method . . . . . . . . . . . . . . . . . . . . . 13

2.3 Docker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Docker Engine . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Machine Learning and Neural Networks . . . . . . . . . . . . . . . . 14

3 Hardware and Architecture 17
3.1 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Jetson NANO . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2 ROS Robot expansion board (STM32) . . . . . . . . . . . . 20
3.1.3 LiDAR RPLIDAR A1 . . . . . . . . . . . . . . . . . . . . . 21
3.1.4 RGB Depth Camera Orbbec . . . . . . . . . . . . . . . . . . 23
3.1.5 Mecanum wheel . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Assembly steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Architecture of the robot . . . . . . . . . . . . . . . . . . . . . . . . 27

II



3.4 Environment and System configuration . . . . . . . . . . . . . . . . 28
3.4.1 VScode and SSH connection . . . . . . . . . . . . . . . . . . 28
3.4.2 Container configuration . . . . . . . . . . . . . . . . . . . . 30

4 Software 33
4.1 Firmware and STM32 . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Rosmaster Library . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Python script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3.1 Adaptation of the Follow Me function . . . . . . . . . . . . . 36
4.4 ROS2 script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4.1 Development stages . . . . . . . . . . . . . . . . . . . . . . . 40
4.4.2 Robot Motion commands . . . . . . . . . . . . . . . . . . . . 40
4.4.3 LaserScan Data . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4.4 LED light status . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4.5 Launch file . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 MQTT comunication . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5.1 System Architecture and Communication Overview . . . . . 49

5 Evaluation and Testing 51
5.1 System Startup Procedure . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Initial Adjustments . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3 Robot behavior and Data analysis . . . . . . . . . . . . . . . . . . . 54
5.4 Trajectory Reconstruction . . . . . . . . . . . . . . . . . . . . . . . 60

6 Conclusions and Future works 67
6.1 Problems and Limits of the system . . . . . . . . . . . . . . . . . . 67
6.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.2.1 ADAS development . . . . . . . . . . . . . . . . . . . . . . . 68
6.3 Final Consideration . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Bibliography 69

A Follow Me() function (object detection module.py) 73

B ros2 autonomous follow.py 79

III



List of Figures

2.1 ROS File-system level . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 ROS Computational Graph level . . . . . . . . . . . . . . . . . . . . 7
2.3 ROS Nodes communication . . . . . . . . . . . . . . . . . . . . . . 8
2.4 ROS1 and ROS2 architecture comparison . . . . . . . . . . . . . . . 9
2.5 RPLIDAR Single Laser Mechanism . . . . . . . . . . . . . . . . . . 11
2.6 Direct shot type triangulation diagram . . . . . . . . . . . . . . . . 12
2.7 Oblique shot type triangulation diagram . . . . . . . . . . . . . . . 12
2.8 Working principle diagram of TOF LiDAR . . . . . . . . . . . . . . 13

3.1 Rosmaster X3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Rosmaster X3 wiring diagram and components . . . . . . . . . . . . 18
3.3 Jetson NANO 4GB . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Yahboom ROS Expansion board V1.0 . . . . . . . . . . . . . . . . . 20
3.5 Slamtech A1 LiDAR . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.6 Rviz LiDAR visualization . . . . . . . . . . . . . . . . . . . . . . . 22
3.7 Orbbec Astra Pro Plus RGB depth camera . . . . . . . . . . . . . . 23
3.8 Astra Pro Plus camera outputs . . . . . . . . . . . . . . . . . . . . 23
3.9 Mecanum Wheel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.10 Single components . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.11 Assembly steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.12 ROSMASTER X3 completly assembled . . . . . . . . . . . . . . . . 26
3.13 VScode development environment configuration . . . . . . . . . . . 29
3.14 Bashrc file configuration . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Pinout Configuration in STM32CubeIDE . . . . . . . . . . . . . . . 34
4.2 LiDAR angles and range . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 LED lights status diagram . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 System overview diagram . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1 Docker container startup . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 ROS2 building command . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3 Low FPS problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

IV



5.4 Oversized bounding box . . . . . . . . . . . . . . . . . . . . . . . . 54
5.5 System initialized . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.6 Follow me activation Procedure . . . . . . . . . . . . . . . . . . . . 55
5.7 Straight trajectory test . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.8 Front distance of the target . . . . . . . . . . . . . . . . . . . . . . 57
5.9 Robot movements command . . . . . . . . . . . . . . . . . . . . . . 58
5.10 Robot moving forward . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.11 Backward command . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.12 Lost Target alert . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.13 Watchdog timeout deactivation . . . . . . . . . . . . . . . . . . . . 60
5.14 Rviz map visualization . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.15 Reconstructed trajectory in XY plane . . . . . . . . . . . . . . . . . 62
5.16 Trajectories comparison . . . . . . . . . . . . . . . . . . . . . . . . 62
5.17 Table near the path . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.18 Angle over time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.19 Linear Velocity over time . . . . . . . . . . . . . . . . . . . . . . . . 64
5.20 Outdoor test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

V



List of Tables

3.1 SlamTech Sillan RPLIDAR A1M8 technical information . . . . . . . 21
3.2 Orbbec Astra Pro Plus Specifications and Parameters . . . . . . . . 24

VI



Listings

3.1 Bash script run docker.sh for managing Docker container . . . . . . 31
4.1 Follow me function initialization . . . . . . . . . . . . . . . . . . . 37
4.2 Follow me function Main Loop . . . . . . . . . . . . . . . . . . . . 37
4.3 Commands Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4 LiDAR obstacles detection . . . . . . . . . . . . . . . . . . . . . . . 44
4.5 autonomous follow launch.py . . . . . . . . . . . . . . . . . . . 46
4.6 MQTT implementation on Vision script . . . . . . . . . . . . . . . 47

VII



Acronyms

LiDAR Light Detection And Ranging

AMR Autonomous Mobile Robot

AGV Autonomous Guided Vehicle

ROS Robot Operating System

LKA Lane Keeping Assist

ACC Adaptive Cruise Control

MQTT Message Queuing Telemetry Transport

QoS Quality of Service

DDS Data Distribution Service

SSD Single Shot multiBox Detector

EOL End Of Life

TOF Time Of Flight

CCD Charge Coupled Device

API Application Programming Interface

SDK Software Development Kit

CUDA Compute Unified Device Architecture

GPU Graphics Processing Unit

CPU Central Processing Unit

RAM Random Access Memory

AI Artificial Intelligence

VIII



eMMC embedded Multi Media Card

LPDDR Low Power Double Data Rate

MCU MicroController Unit

IMU Inertial Measurements Unit

PWM Pulse Width Modulation

Rviz ROS-Visualization

PID Proportional Integral Derivative

SSH Secure Shell

VScode Visual Studio Code

IDE Integrated Development Environment

FPS Frame per Second

IX



Chapter 1

Introduction

The ROSMASTER X3, developed by Shenzhen Yahboom Technology Co., is an
educational robot specifically designed for exploring the ROS environment and
advancing robotics research. This Autonomous Mobile Robot (AMR) allows hands-
on learning, experimentation with autonomous systems, and exploration of the
possibilities of sensor integration and real-time robot control [1].

The initial goal of this project was to autogenerate code for the STM32 micro-
controller from a Matlab and Simulink model, with the final objective of developing
an autonomous robot capable of following a path, implementing Lane Keeping As-
sist (LKA), Adaptive Cruise Control (ACC) and recognizing road signs and traffic
lights, building upon previous thesis projects. However, after assembling the robot
and gaining a deeper understanding of the architecture and connections between
the various boards and sensors, it became evident that this approach was not fea-
sible. As a result, the project direction was adjusted to focus on autonomous
person-following and dynamic obstacle avoidance, while still aiming to align with
the original goal.

1.1 Goals

The goal of this thesis is to develop an autonomous robot capable of following a per-
son in real-time while dynamically avoiding obstacles in different environments. By
means of sensor fusion, including data from Light Detection And Ranging (LiDAR)
and a camera, the robot aims to demonstrate reliable navigation with various move-
ments thanks to the omnidirectional Mecanum wheels.

1



Introduction

1.2 Autonomous Robots

Autonomous robots play a crucial role in modern automation. Two key types of
autonomous robots are Autonomous Guided Vehicles (AGVs) and Autonomous
Mobile Robots (AMRs).

AGVs have been used since the 1950s and are typically found in controlled envi-
ronments like warehouses or assembly lines. They rely on predefined paths marked
by physical guides such as wires or magnets. While reliable for repetitive tasks,
AGVs lack flexibility and are costly to install and maintain due to the necessary
supporting infrastructure.

AMRs, on the other hand, are more advanced, offering greater flexibility. They
use sensors like cameras and LiDAR to understand their environment in real time,
navigating freely without fixed routes. AMRs can adapt to changes in the envi-
ronment, avoiding obstacles and dynamically optimizing their routes. This makes
them ideal for more complex, variable settings [2].

In this project, mapping and path planning are not used due to the lack of com-
putational power, but the principles behind AMRs adaptability and flexibility are
followed. The ROSMASTER X3 robot, similar to an AMR, operates in a dynamic
environment where it must track and follow a person while avoiding obstacles. In-
stead of relying on complex mapping or long-term path planning, it uses sensor
data to react immediately to changes in its surroundings, ensuring safe movement
without predefined paths. This simpler approach mirrors the flexibility of AMRs
while focusing on real-time interaction rather than full environmental autonomy.

1.3 Thesis Outline

This thesis is organized into six main chapters, each addressing a critical aspect of
the project and its development:

Chapter 1 introduces the objectives and context of the project, providing basic
background information on key concepts of autonomous robots.

Chapter 2 reviews the state of the art in the technologies relevant to the project.
It covers the Robot Operating System (ROS) and its evolution from ROS1 to ROS2,
the use of LiDAR sensors for perception, and the role of Docker and containerization
in robotic system development. It also provides basic information about machine
learning and neural networks, though they are not the focus of this project.

Chapter 3 covers the hardware components used in the robot, including the
Jetson Nano, ROS expansion board (STM32), LiDAR A1, RGB depth camera,
and Mecanum wheels. It also describes the architecture of the robot and outlines
the steps taken to assemble the system and configure the software environment.

Chapter 4 focuses on the software developed for the project, including a brief
overview of the firmware for the STM32 board, the ROS2 scripts, and Python

2



1.3 – Thesis Outline

programs used for the robot vision. Additionally, it describes the use of Message
Queuing Telemetry Transport (MQTT) for communication between components.

Chapter 5 explains the testing and evaluation of the robot. It discusses the
system launch files, activation and deactivation processes, and the performance in
terms of movement and obstacle detection, supported by data analysis. LiDAR
measurements and velocity data are used to demonstrate the robot ability to dy-
namically track a person and avoid obstacles.

Chapter 6 concludes the thesis by explaining the results achieved during the
project. It also identifies areas for potential improvements and future research,
highlighting the limitations and problems encountered in this project.

3



4



Chapter 2

State of Art

2.1 Robotic Operating System - ROS

The Robot Operating System is an open-source framework widely used in robotics
research and development. Despite its name, it is not an operating system but
rather a middleware that provides services such as low-level device control, hard-
ware abstraction, inter-process message passing, commonly-used functionalities,
and package management. Additionally, ROS includes tools and libraries for build-
ing and running code across multiple computers.

The key concept behind ROS is its modular architecture, where different func-
tionalities are divided into nodes. These nodes are distributed processes grouped
in packages that can be shared or published. This design ensures code reuse and
allows projects to remain independent from the file system while integrating ROS
basic tools.[3]

ROS framework supports multi-language programming, with Python and C++
(via the relatives rospy and roscpp libraries) being the primary languages. These
libraries enable programmers to interact with ROS topic, services and parameters.
Rospy guarantees fast prototyping, while roscpp can support high performance
tasks. The distributed architecture is another important feature that leads to a
good scalability. In fact, wrappig each process as a node allows developers to
organize larger projects involving multiple nodes through roslaunch.[4][5]

5



State of Art

2.1.1 ROS architecture

ROS is built on three levels

• File-system level: describes code and executable on disk

• Computation Graph level: explains the peer-to-peer communication net-
work between processes

• Community level: contains shared code and developers knowledge, pro-
moted by the open-source philosophy of ROS

File-system level

The ROS resources on disk covered in this level are shown in Figure 2.1. [6]

Figure 2.1: ROS File-system level

• Meta Packages: A group of related packages in the ROS ecosystem.

• Packages: The primary organizational unit for software. A package can in-
clude nodes (runtime processes), libraries, configuration files or any other re-
sources that need to be grouped together. Packages are the smallest items that
can be individually built and released, making them the fundamental unit for
both development and deployment in the ROS ecosystem.

• Packages Manifest: A file containing metadata about a package such as
name, description, version, license information, etc.

• Messages: A description of data structures for messages, defining their layout
stored in the file package/msg/MyMessageType.msg.

6



2.1 – Robotic Operating System - ROS

• Services: Specifications that define the structure of request and response
messages stored in the file package/srv/MyServiceType.srv

Computation Graph Level

The concept in the computational Graph level are represented in Figure 2.2. [5] [6]

Figure 2.2: ROS Computational Graph level

• Nodes: The individual processes responsible for computation, enabling a
modular system. Each node typically handles a specific function, such as
controlling sensors, motors, localization, or visualization. Nodes are created
using ROS libraries, for example Rospy (Python) or Roscpp (C++).

• Master: The central node that enable communication by managing name reg-
istration and lookup, ensuring a node can reach and interact with the others.

• Parameter Server: A centralized storage for data, managed by the Master,
allowing nodes to access shared parameters.

• Messages: Data structures that can contain the standard primitives types
(Boolean, Integer, Floating point, etc) or arrays of these primitives. Used for
nodes communication.

• Services: Mechanism for request-response interactions. Defined by request
and response message structures, services enable one node to provide function-
ality that others can access as a remote function call.

• Topics: Named channels over which messages are transmitted using a pub-
lish/subscribe system, decoupling message producers from consumers. Mul-
tiple nodes can publish and subscribe to the same topic, as shown in Figure

7



State of Art

2.3. ROS topic messages can be transmitted using TCP/IP or UDP. The
default transmission method is TCP/IP (TCPROS), which is a long connec-
tion method; transmission based on UDP (UDPROS), is a low-latency, high-
efficiency transmission method, but it is more prone to lose data.

Figure 2.3: ROS Nodes communication

• Bags: data format for storing and replaying ROS messages, essential for
recording sensor data for algorithm testing and development.

Community Level

The Community level allows software and knowledge exchange through Distribu-
tions (as Linux distributions), Repositories, ROS Wiki(forum), Bug Ticket System
and many other support options. [6]

In the ROS framework, several fundamental components are essential for effec-
tive robotic operation:

• Launch Files: These provide a mechanism to start multiple nodes simulta-
neously, including the Master node, simplifying the initialization of complex
robotic systems.

• RViz: A 3D visualization tool that enables real-time representation of mod-
els in an environment, displaying sensor data and navigation information to
facilitate debugging and development.

• Gazebo: A 3D physics simulation platform that incorporates the same models
as RViz, but with a robust physics engine, allowing for precise simulations that
account for physical properties of the robot and its environment.

• TF Coordinate Transformation: This package helps track multiple coor-
dinate systems over time and manages transformations between them. Since
a robot may have multiple components and poses, this tool is essential for
handling posture and movement.

• Navigation: A 2D navigation package that computes safe speed commands
for robotic navigation, integrating data from various sensors to ensure smooth
movement.

8



2.1 – Robotic Operating System - ROS

These are only a few important tools available with ROS that support re-
searchers, developers and industry in the robot field. [5]

2.1.2 ROS1 and ROS2 comparison

ROS1 was created in 2007 for research support, but being used more and more by
companies, this version had certain limitations. The first distribution of ROS2 was
released in 2017 and the main goals of this version were to reduce criticalities and
limitations of ROS1 and gives more support to companies and their commercial
products.

Principal differences between ROS1 and ROS2:

• Platform: ROS2 is more extensive and supports the three platforms Linux,
MacOS and Windows, while ROS1 is only supporting Linux system.

• ROS API: ROS1 uses independent libraries roscpp (C++) and rospy (Python),
not guaranteeing to have the same features developed on both libraries. ROS2
relies on a base library Rcl implemented in C that contains the core features.
From the rcl library are then built the rclpy and rclcpp for Python and C++.

• Middelware and Data Distribution Service (DDS): ROS1 leveraging
on TCP/IP for the middleware communication does not have great flexibility
and can be slow for real-time scenarios. ROS2 adopts the Data Distribution
Service standard enabling better support for real-time performance and com-
munication policies. In Figure 2.4 the different structure for the two ROS
version points out another important difference; the master node of ROS1 is
not needed anymore in ROS2 due to the distributed architecture that allows
nodes to communicate with each other. This difference ensure a simpler setup
in ROS2 with respect to the previous version.

Figure 2.4: ROS1 and ROS2 architecture comparison

9



State of Art

• Quality of Service (QoS): ROS1 has low control on reliability and offers
only best effort and reliable delivery. ROS2 support a robust QoS framework,
enabling custom message delivery and keeping a message history, as well as
other policies to adapt to different requirements on communication.

• Real-Time: ROS1 lack of real-time support represents a huge limitation. On
the other hand, ROS2 with its real-time capabilities, guaranteed by QoS and
DDS, is suitable for industrial and autonomous system with stringent timing
requirements.

• Security: ROS2 includes built-in security features in the DDS (authentica-
tion, encryption, access control, etc). ROS1 has limited support for security
features making it problematic to use in sensitive applications.

• Parameter Server: ROS1 manage parameters through a centralized server,
while ROS2 distributes parameters directly to nodes, ensuring more scalability
and flexibility

• Node Life-cycle management: ROS1 lacks a node lifecycle, which can
lead to problematic resources management and result in a less robust system.
ROS2 introduces a life-cycle, allowing node to change states (active, inactive,
shutting down, etc) and enabling a better resources control.

• Launch System: ROS1 uses XML-based file for the launch system, meaning
less flexibility and more complexity. Instead, ROS2 launch files are based
on Python for improved readability, modularity and complex configuration
handling.

All these improvements in ROS2 supporting real-time application and given the
fact that ROS1 will reach End Of Life (EOL) in 2025, make ROS2 a good choice
for developing the codes for this autonomous driving project.[7] [8]

2.2 LiDAR

The Light Detection And Ranging (LiDAR) is a distance sensing technology based
on laser beams. The LiDAR can use a single laser or multi-line laser. The single
laser has fast scanning speed, high resolution and high reliability, making it the
mainly used in robotics and ensuring accurate measuring and accuracy.

10



2.2 – LiDAR

2.2.1 Single Laser LiDAR

The single laser LiDARs are divide in two main categories: Triangular ranging and
Time Of Flight (TOF).

Trigonometric ranging method

In the trigonometric ranging a laser beam is used to illuminate with a certain angle
the target. The laser, scattered on the target, is reflected with another angle and
captured by a Charge Coupled Device (CCD) as shown in Figure 2.5. The laser is
focused on the photosensitive CCD sensor by a lens and the movement of the laser
light spot on the sensor corresponds to the movement of the target. Therefore,
the distance of the target can be obtained from the light spot displacement on the
sensor. This displacement is calculated using the geometric triangle theorem, as
the incident and reflected light form a triangle.

Figure 2.5: RPLIDAR Single Laser Mechanism

Starting from the angular relationship between the two light beam, two type can
be derived:

• Direct Shot type When the laser beam is vertically incident on the target
surface, so it results in the aligned with the normal vector of the surface of the
target object as in Figure 2.6

11



State of Art

Figure 2.6: Direct shot type triangulation diagram

• Oblique Shot type In Figure 2.7 it is shown that in the Oblique shot the
laser form an angle (less then 90 degrees) with the normal vector of the target
surface.

Figure 2.7: Oblique shot type triangulation diagram

Both types of the triangulation ranging method allow to achieve high precision
in a non-contact measuring of the distance of the target. However, the resolution
of the direct type is lower with respect to the oblique type. [9]

12



2.2 – LiDAR

2.2.2 Time Of Flight method

TOF technology is an alternative to the triangular ranging method. The distance
of the target is obtained by calculating the time it takes for a light pulse to travel
to an object and back. A modulated laser pulse is emitted towards an object; after
the laser is reflected, it returns to a sensor that calculates the distance by measuring
the time difference between emission and reception (Figure 2.8). This approach is
advantageous for accurately measuring large distances while maintaining stability
and precision, especially in outdoor environments with strong lighting conditions.

Figure 2.8: Working principle diagram of TOF LiDAR

TOF technology is widely used in applications that require high-precision map-
ping and real-time obstacle detection, making it particularly valuable in industrial
robotics and autonomous navigation. The use of short laser pulses also minimizes
interference from external light sources, enhancing the system reliability. However,
the lower cost of triangular ranging LiDAR, combined with its sufficient accuracy,
meets the requirements of most industrial standards and make the Triangular rang-
ing LiDAR a valid alternative. [9]

13



State of Art

2.3 Docker

Docker is a popular containerization platform that packages applications and their
dependencies into lightweight, portable containers. This technology has become es-
sential in fields like robotics, where it enhances scalability, consistency, and resource
efficiency across various environments. [10]

2.3.1 Docker Engine

The Docker Engine is the core of Docker functionality, acting as a client-server
application, responsible for building, running and managing containers. It consists
in a server component known as the Docker daemon (dockerd), an Application
Programming Interface (API), and a client (docker). The Docker daemon creates,
manages, and monitors containers, while the Docker client provides commands to
interact with the daemon, such as creating, stopping, or removing containers. This
architecture allows developers to manage containerized applications efficiently and
ensures that they can be built, tested, and deployed consistently across various
systems. [11]

2.3.2 Containers

Containers are the primary units of Docker, encapsulating applications along with
their dependencies within self-contained environments. Unlike traditional virtual
machines, containers share the host system kernel, making them more lightweight
and efficient in terms of resource usage. This efficiency enables the deployment of
complex systems, such as those used in robotics, without the overhead of an entire
operating system. Docker containers also facilitate version control and reproducibil-
ity, which are key for iterative development and testing in robotic applications. [10]
[12]

In this project it is used a container to run ROS2 since it is compatible with
Ubuntu 20.04 or higher. In fact, the Nvidia Jeston NANO is configured with a
Software Development Kit (SDK) based on Ubuntu 18.04 and can only support
ROS1 by itself.

2.4 Machine Learning and Neural Networks

Machine learning models, particularly those using deep learning, have become in-
strumental in robotic vision for recognizing and tracking objects. A common tech-
nique in this field is object detection, which uses bounding boxes to mark and iden-
tify object locations within an image. Bounding boxes are effective for outlining
objects, aiding robots in spatial awareness by providing a simple, computationally
efficient representation.

14



2.4 – Machine Learning and Neural Networks

This project vision part uses the SSDMobileNet model, which combines a Single
Shot multiBox Detector (SSD) with the lightweight MobileNet architecture. This
model is optimized for mobile and embedded systems, allowing a balance between
speed and accuracy by using depth-wise separable convolutions. The SSD model
processes an image in one pass, making it faster than traditional two-stage detec-
tors. SSDMobileNet is ideal for applications requiring efficient, real-time object
detection on resource-constrained devices, such as robotics platforms [13] [14].

These models are crucial for enabling robotic perception in tasks requiring ob-
ject detection, making them foundational in autonomous systems where real-time
tracking and identification are critical aspect.

In this project, the SSD MobileNet model, used for object detection, runs on
the Jetson Nano with Compute Unified Device Architecture (CUDA) acceleration.
The CUDA Toolkit from Nvidia enables SSD MobileNet to use parallel processing
on the Jetson Nano GPU, which significantly improves inference speed, allowing
the model to detect and classify objects in real time. [15][16]

15



16



Chapter 3

Hardware and Architecture

In this chapter, the hardware components are described, and the architecture of
the robot is explained in detail, covering both the configuration and the assembly
phases. The overall structure and configuration of the ROSMASTER X3 robot is
shown in Figure 3.1.

Figure 3.1: Rosmaster X3

17



Hardware and Architecture

3.1 Components

The main components and wiring diagram are illustrated in Figure 3.2. The faded
components in Figure 3.2 are optional parts that are not essential and they are not
included in the current configuration of the robot. Since the optional screen is not
available in the current configuration, the LiDAR and the camera are connected
directly to the Jetson Nano. The battery, not present in Figure 3.2, is directly
connected to the ROS robot expansion board.

Figure 3.2: Rosmaster X3 wiring diagram and components

18



3.1 – Components

3.1.1 Jetson NANO

Figure 3.3: Jetson NANO 4GB

The robot main board is an Nvidia Jetson NANO 4GB SUB version developer kit
(Figure 3.3). The Jetson nano is a compact entry level Artificial Intelligence (AI)
computing platform, suitable for image processing, object detection and other deep
learning and computer vision applications [17]. The AI computation is supported
by a Graphics Processing Unit (GPU) with NVIDIA Maxwell architecture (128
NVIDIA CUDA cores), a Central Processing Unit (CPU) Quad-core ARM Cortex-
A57 MPCore and 4GB 64-bit of Low Power Double Data Rate (LPDDR)4 Random
Access Memory (RAM). Unlike the original B01 version from Nvidia, this SUB ver-
sion from Yahboom does not have an SD card slot, but it integrates directly an
embedded Multi Media Card (eMMC) storage. Since the storage is only 16GB,
the operating system runs from a bootable USB disk, known as U-Disk, that al-
lows to extend the system storage capacity. The Jetson NANO operates on 5V
power source, making it a good choice for power efficiency. It also offers two power
modes, 5W or 10W, to further optimization between power consumption and com-
putational performance. The 5W mode is ideal for lightweight tasks and helps
conserve energy, while the 10W mode provides enhanced processing power, benefi-
cial for more demanding AI workloads. This flexibility allows the Jetson Nano to
adapt to various application needs, whether prioritizing power savings or maximiz-
ing performance for intensive tasks. The board is also equipped with a heat sink
and a fan ensuring the correct heat dissipation during high workload, maintaining
stable operation even under intensive AI processing tasks. Additionally, it includes
a network card, enabling remote control and access, which is essential for real-time

19



Hardware and Architecture

monitoring, updates, and control of the machine from a distance. The status of
the Jetson is displayed on the OLED display directly connected to it. The basic
information are the CPU, RAM and storage utilization and the IP address of the
network.

3.1.2 ROS Robot expansion board (STM32)

The ROS robot expansion board V1.0 from Yahboom (Figure 3.4) is the robot
drive controller. The board also serves as an STM32-based development plat-
form, equipped with an STM32F103RCT6 MicroController Unit (MCU). Since
the STM32 support only serial communication, the board communicates with the
Jetson NANO via USB port and it uses a CH340 USB-to-serial chip for the conver-
sion (supporting a baud rate of 115200bps). An alternative communication option
available on the board is the reserved CAN bus interface. The expansion board is di-
rectly powered by the 12V battery and provides the 5V power to the Jetson NANO
as well as the 12V for the USB hub expansion board. It also features an on-board
MPU9250 9-axis Inertial Measurements Unit (IMU), which provides data from its
3-axis accelerometer, 3-axis gyroscope, and 3-axis magnetometer. The expansion
board can drive four 12V encoder motors, four Pulse Width Modulation (PWM)
servos and serial bus servos, providing compatibility with various configurations.
Additional peripheral interfaces include an RGB light bar and a buzzer, enhancing
its suitability for interactive robotic applications. The board also features control
buttons (RESET, KEY1, and BOOT0) for system management and configuration
[18].

Figure 3.4: Yahboom ROS Expansion board V1.0

20



3.1 – Components

3.1.3 LiDAR RPLIDAR A1

The RPLIDAR A1 from Slamtech (Figure 3.5) is a single laser LiDAR sensor based
on the triangulation ranging method with an oblique shot type configuration (see
section 2.2.1 in Chapter 2 for details on the triangulation method). This sensor,
connected diretcly to the Jetson NANO, provides the necessary spatial data for
obstacle detection, enabling autonomous navigation. Table 3.1 presents the main
technical characteristics of this component.

Figure 3.5: Slamtech A1 LiDAR

Parameter Value
Measuring range 0.15m-12m
Sampling Frequency 8000Hz
Rotational speed 5.5Hz
Angular Resolution ≤1°
System Voltage 5V

Table 3.1: SlamTech Sillan RPLIDAR A1M8 technical information

21



Hardware and Architecture

Figure 3.6 shows the output from the LiDAR visualized in ROS-Visualization
(Rviz).

Figure 3.6: Rviz LiDAR visualization

22



3.1 – Components

3.1.4 RGB Depth Camera Orbbec

Figure 3.7: Orbbec Astra Pro Plus RGB depth camera

The Astra pro plus developed by Orbbec is a 3D camera based on structured light
technology. This cameras project a pattern of light—often grids or dots—onto a
surface. By analyzing the distortion of this pattern when it reflects off objects, the
camera can calculate the depth and shape of the environment with high precision.
This method is commonly used in 3D scanning and mapping applications because
it provides accurate depth information even in low-light conditions [19].

Table 3.2 shows the specification of the camera. While the camera is capable
of high resolution, it was kept in the default 640x480 configuration to reduce com-
putational load. In this project only the RGB camera is used (Figure3.8a), since
the machine learning model is trained on RGB frames. Consequently, the depth
(Figure 3.8b) and infrared (Figure3.8c) capabilities of the Astra Pro Plus are not
explored.

(a) RGB (b) Depth (c) Infrared

Figure 3.8: Astra Pro Plus camera outputs

23



Hardware and Architecture

Parameter Value
Depth Technology Structured Light
Wavelength 850nm
Depth resolution 640x480@30FPS
RGB resolution 1920x1080@30FPS

1280x720@30FPS
640x480@30FPS

Depth FOV H58.4° V45.5°
RGB FOV H66.1° V40.2°
Depth Range 0.6m-8m
Precision ±3mm @ 1m
Power Consumption <2.4W

Table 3.2: Orbbec Astra Pro Plus Specifications and Parameters

3.1.5 Mecanum wheel

Mecanum wheels are designed for omnidirectional movements through a combina-
tion of rotational and translational motion. Each wheel consists of a central hub
surrounded by rollers set at a 45-degree angle with respect to the hub axis as shown
in Figure 3.9. These rollers allow the wheel to exert force in both the forward and
lateral directions, depending on the direction of rotation.

Typically, four Mecanum wheels are arranged in pairs, with each pair mounted
as mirror images. By controlling the direction and speed of each wheel, the robot
can achieve complex motions such as moving forward, backward, and sideways, as
well as rotating on a pivot point. This configuration provides flexible movement
capabilities, making it ideal for applications that require precision and agility in
tight spaces [20].

Figure 3.9: Mecanum Wheel

24



3.2 – Assembly steps

3.2 Assembly steps

Starting with the components shown in Figure 3.10, the assembly process began
with constructing the bottom frame (Figure 3.11a). Next, the camera, the Jetson
Nano and the front motors were installed (Figure 3.11b). The bottom frame was
then completed by adding the rear motors and the four wheels (Figure 3.11c).
Afterwards, the LiDAR, USB hub expansion board, ROS expansion board and
OLED display were mounted on the upper frame (Figure 3.11d).

The final steps involved installing the 12V battery, attaching the Wi-Fi antenna,
and connecting all necessary cables. Upon completing these steps, the robot was
fully assembled (Figure 3.12).

Figure 3.10: Single components

25



Hardware and Architecture

(a) Bottom frame (b) Jetson Nano and Camera

(c) Motors and Wheels (d) LiDAR and Expansion Board

Figure 3.11: Assembly steps

Figure 3.12: ROSMASTER X3 completly assembled

26



3.3 – Architecture of the robot

3.3 Architecture of the robot

As mentioned in the beginning of this Chapter, the ROSMASTER x3 has two main
boards, the Jetson NANO and the ROS robot expansion board. The expansion
board MCU (STM32) contains the low level firmware provided by the manufacturer
to send direct signal to the motors, led and buzzer. The commands are sent from
the Jetson NANO through ROS thanks to a Python library developed by Yahboom.
This library offers function that send via USB port the commands to the expansion
board. After being converted the commands are transformed in electrical signal to
the motors, while the encoder information are sent from the STM32 to the Jetson
NANO.

The Jetson NANO was configured with the image provided by Yahboom, which
provides a preconfigured environment and useful material. The Docker container
allows to solve the incompatibility between the SDK installed on the U-disk of the
Jetson NANO and ROS2.

This project has been developed on this specific architecture, in particular to
enable efficient communication and processing across multiple components, each
responsible for specific functions in the robot operation. The two primary com-
ponents are a Python-based vision script running on the Jetson Nano and a ROS
node hosted within the container.

• Python Vision Script: The vision processing script runs directly on the
Jetson Nano, leveraging its computational capabilities for image processing
tasks. A machine learning model performs object detection on camera frames
and based on the bounding box data, robot motion commands are sent to the
ROS node within the container.

• ROS Node within a Container: The ROS node operates within a Docker
container, providing a modular and isolated environment compatible with
ROS2. In this script the data from the LiDAR are fused with the camera
commands to achieve autonomous following and obstacle avoidance. The ROS
node sends instructions to the STM32 micro-controller using the Python li-
brary tools.

• STM32 Microcontroller: The STM32 translates commands from the ROS
node into motor signals using a Proportional Integral Derivative (PID) algo-
rithm [21]. This technique allows precise and stable motors control, ensuring
smoother movements and quick adjustments as needed.

27



Hardware and Architecture

3.4 Environment and System configuration

The main step for the system configuration are as follow:

• Burn the firmware .hex file into the STM32 using the MCUISP software

• Write the Jetson NANO image into the U-disk

• Install Docker on the Jetson NANO and download (pull) the desired image
with the command:

docker pull yahboomtechnology/ros-foxy:4.2.0

3.4.1 VScode and SSH connection

The development environment has been configured using Visual Studio Code. Re-
mote access to the Jetson NANO is achieved creating an Secure Shell (SSH) con-
nection. The ROSMASTER X3, with its factory image, launches a Wi-Fi network
at each startup, which can be used if no other network is available. For the re-
mote connection, it is essential that the development computer and the robot are
connected to the same network. The IP address can be obtained from the OLED
display connected to the Jetson. In Visual Studio Code (VScode), after download-
ing the extension Remote Development and Remote Explorer by Microsoft, it is
possible to establish the connection with the following command, changing the IP
address as in Figure 3.13a:

ssh jetson@192.168.1.9

After saving the configuration file and connect to the SSH tunnel, it is possible
to check the connection to the Jeston NANO (Figure 3.13b). In the new window
are shown the available containers (Figure 3.13c) and starting the container it is
possible to attach it to the VScode window (Figure 3.13d). This process allows to
modify and develop code inside the container, offering a more complete environ-
ment with respect to the terminal editors. After saving the configuration file and
connecting to the SSH tunnel, it is possible to verify the connection to the Jetson
Nano (Figure 3.13b). In the new window, the available containers are displayed as
in Figure 3.13c. By starting a container, it can then be attached to the VScode
window (Figure 3.13d). This setup allows code modification and development di-
rectly within the container, providing a more complete environment compared to
terminal-based editors.

28



3.4 – Environment and System configuration

(a) New SSH connection

(b) SSH connected

(c) Available Container

(d) Container selection

(e) Container attached

Figure 3.13: VScode development environment configuration

29



Hardware and Architecture

3.4.2 Container configuration

Once the development environment is configured, there are two more configuration
to be done in the container:

• Car type configuration

As shown in Figure 3.14, the .bashrc file must be modified to specify the
type of the robot (X3 in this project) and selecting the appropriate accessories,
including A1 LiDAR and Astra Pro Plus camera.

• Docker container launch file

The Bash script run docker.sh (Listing 3.1) allows to run the same con-
tainer, named ROSMASTER X3 in this project, without the need to manu-
ally start or create a new container each time. If the container exists but is
stopped, the script starts it automatically. The image used for this container
is ros-foxy:4.2.0 from the Yahboom Docker repository, which is based on
the Foxy ROS2 distribution. This script also handles the necessary hardware
configurations by mounting specific directories and ensuring access to the ex-
ternal devices, including camera, LiDAR, ROS expansion board and USB hub
board.

Figure 3.14: Bashrc file configuration

30



3.4 – Environment and System configuration

Listing 3.1: Bash script run docker.sh for managing Docker container

1 #!/ bin / bash
2
3 CONTAINERNAME=”ROSMASTER X3”
4
5 xhost +
6
7 i f [ ”$ ( docker ps −aq −f name=$CONTAINERNAME)” ] ;
8 then
9
10 i f [ ”$ ( docker ps −q −f name=$CONTAINERNAME)” ] ;
11 then
12 echo ”Attaching to the running conta ine r . . . ”
13 docker exec − i t $CONTAINERNAME /bin /bash
14 else
15 echo ” S ta r t i ng the e x i s t i n g conta ine r . . . ”
16 docker s t a r t −a i $CONTAINERNAME
17 f i
18 else
19 echo ”Creat ing and running a new conta ine r . . . ”
20 docker run − i t \
21 −−name $CONTAINERNAME \
22 −−net=host \
23 −−env=”DISPLAY” \
24 −−env=”QT X11 NO MITSHM=1” \
25 −v /tmp/ .X11−unix : / tmp/ .X11−unix \
26 −v /home/ j e t s on /temp :/ root /yahboomcar ros2 ws/temp \
27 −v /home/ j e t s on / rosboard : / root / rosboard \
28 −v /home/ j e t s on /maps : / root /maps \
29 −v /dev/bus/usb /001/009:/ dev/bus/usb /001/009 \
30 −v /dev/bus/usb /001/007:/ dev/bus/usb /001/007 \
31 −−dev i ce=/dev/myser i a l \
32 −−dev i ce=/dev/ r p l i d a r \
33 −−dev i ce=/dev/ input \
34 −−dev i ce=/dev/ astradepth \
35 −−dev i ce=/dev/ ast rauvc \
36 −−dev i ce=/dev/ video0 \
37 −p 9090:9090 \
38 −p 8888:8888 \
39 yahboomtechnology/ ros−foxy : 4 . 2 . 0 / bin /bash

31



32



Chapter 4

Software

In this chapter, the code development is presented; beginning with the initial
firmware test, followed by the Python vision script and concluding with the ROS
node for autonomous driving.

4.1 Firmware and STM32

The firmware was not developed as part of this project, but was used to test individ-
ual components of the robot, such as motors and light bar. The initial component
tests were conducted using STM32CubeIDE. This Integrated Development Envi-
ronment (IDE) allows direct configuration of the STM32 pins (Figure 4.1) and
setting of all the relevant MCU parameters, including the clock. After configuring
the MCU, the STM32CubeIDE generates code that includes the predefined setup,
enabling efficient integration of hardware testing functions. The project is then
compiled, producing the .hex file (hexadecimal data format). The firmware (.hex
file) is then flashed onto the STM32 using the MCUISP tool [22]. During the burn-
ing phase, the MCU must be set to programming mode, that is entered holding the
BOOT0 button and pressing the RESET button of the ROS expansion board.

Uploading the single functions of the firmware on the MCU allows to test the
hardware, isolating each component by activating them with the KEY1 button and
understand the firmware.

33



Software

Figure 4.1: Pinout Configuration in STM32CubeIDE

34



4.2 – Rosmaster Library

4.2 Rosmaster Library

This library defines the Rosmaster class that contains the serial communication
definition and functions that enable to send commands to the STM32. In this
project four function from the Rosmaster class are used:

• set car motion(self, v x, v y, v z)
The set car motion function sets the speeds for the three motion axes: Vx,
Vy, andVz, controlling the robot movement. According to the documentation
from Yahboom, Vx (linear speed in m/s) determines forward or backward
movement, Vy (lateral speed in m/s) sets the side-to-side movement, and Vz
(angular speed in rad/s) controls the turning rate around the robot vertical
axis [23]. During testing, it was observed that theVy andVz axes are inverted
compared to this documentation. Therefore, adjustments were made in the
ROS code accordingly to achieve the correct motion.

• set pid param(self, kp, ki, kd, forever=False)
The set pid param function enables control over motor response and stability
by adjusting the primary PID parameters: proportional (Kp), integral (Ki),
and derivative (Kd). The function fourth parameter determines the persistence
of these settings: if set to false, the PID adjustments are temporary, while
setting it to true writes the parameters to the MCU, making the modification
permanent.

• set colorful lamps(self, led id, red, green, blue)
The set colorful lamps function is designed to control the robot light bar,
allowing for customization of the RGB color for either individual LEDs or the
entire light bar at once.

• get battery voltage(self)
The get battery voltage function provides the battery voltage, enabling the
monitoring of the robot power level.

Each function includes self as the first parameter, which is a reference to the
instance of the Rosmaster class calling the function. This key parameter allows
access to the class attributes and methods in Python.

35



Software

4.3 Python script

This Python script was originally developed in the the Master thesis Deep Learning-
Based Real-Time Multiple-Object Detection on a rover (2021, [24]). This code was
written and configured on a Jetson NANO with a Raspberry PI camera.

The program is based on a graphical menu offering different AI functionali-
ties and the adaption for this project cover only the Follow Me function (Ap-
pendix A). The code is divided in a main script, object detection module.py,
and other auxiliary modules: follow me module.py, safe rover module.py and
centroid tracking module.py.

The Follow Me function in object detection module.py utilizes the camera
and the object detection model (SSD-mobilenet-v2) to detect people, select the
target and send commands to the ROS script. The function begin by initializing
the camera, detection model and control parameters. In the main loop, the program
processes the frames to identify people and it tracks their centroids. The target
to follow is selected when an activation sequence is recognized ([24, pp. 43–45]).
Movement commands are then sent based on the target bounding box position in
the frame. If the target is lost or a switch is detected, additional modules handle
the situation.

The first modification involved integrating of the Astra Pro Plus camera and
adjusting of the parameters to meet the new camera resolution (640x480) across all
scripts. Changing the frame dimensions required redefining the frame parameters
relative to the person position as shown in Listing 4.1. Additionally, the new
configuration enabled higher Frame per Second (FPS), which involved adjusting
the allowable frame count for target disappearance in the safe rover module.py.

In the original logic, the centroid could only be on either the left or right side
of the frame and a stop alert was triggered based on the bottom of the bounding
box to indicate a possible collision. The script needed to be adapted to send more
information for controlling the robot.

4.3.1 Adaptation of the Follow Me function

In this project, the centroid position is categorized into left, front, and right sections
to avoid unnecessary adjustments for very small angles near the center.

The original logic for triggering a stop alert was based on the position of the
bounding box bottom edge. However, due to oscillations in the bounding box, the
stop command could be activated multiple times, as will be further detailed in the
testing chapter. The solution in this project, as shown in Listing 4.2, maintains the
bottom of the bounding box as an input, but introduces two distinct thresholds:
the backward command is only sent if the person is very close, while a stop com-
mand uses a wider range to prevent intermittent movement. Additionally, a delay

36



4.3 – Python script

is utilized to minimize uneven motion and reduce the impact of rapid, repeated
commands.

Listing 4.1: Follow me function initialization

1 def Follow Me ( ) :
2
3 timeStamp = time . time ( )
4 f p s F i l t = 0
5 net = j e t s o n i n f e r e n c e . detectNet ( ’ ssd−mobilenet−v2 ’ , th r e sho ld

=.65)
6 dispW = 640
7 dispH = 480
8 dange r thre sho ld = 465
9 c l o s e t h r e s h o l d = 450
10 s t op du ra t i on th r e sho l d = 0 .7
11 l a s t s t o p t ime = None
12 f l i p = 2
13 font = cv2 .FONT HERSHEY SIMPLEX
14
15 cam=cv2 . VideoCapture (0 )

Listing 4.2: Follow me function Main Loop

1
2 for ( objectID , c en t r o id ) in ob j e c t s . i tems ( ) :
3 # draw both the ID of the o b j e c t and the cen t ro i d o f the

o b j e c t on the output frame
4 text = ”ID {}” . format ( objectID )
5 cv2 . putText ( img , text , ( c en t r o id [ 0 ] − 10 , c en t r o id [ 1 ] −

10) ,
6 cv2 .FONT HERSHEY SIMPLEX, 0 . 5 , (0 , 255 , 0) , 2)
7 cv2 . c i r c l e ( img , ( c en t r o id [ 0 ] , c en t r o id [ 1 ] ) , 4 , (0 , 255 , 0)

, −1)
8
9 i f objectID == ta rg e t :
10 ang le = (np . arctan (abs ( c en t r o id [ 0 ] − (640 / 2) ) /

(480 − c en t r o id [ 1 ] + 0 . 01 ) ) ∗ 180 / math . p i )
11 i f t a r g e t in bounding boxes :
12 , , , bottom = bounding boxes [ t a r g e t ]
13 # I f person i s too c l o s e ( s top area )
14 i f bottom >= c l o s e t h r e s h o l d and bottom <

dange r thre sho ld :
15 send command ( ” stop ” )
16 cv2 . putText ( img , ”STOP” , (200 , 260) , font , 1 ,

(0 , 0 , 255) , 2)
17 l a s t s t o p t ime = time . time ( ) # Record the

time when we stopped
18
19 # I f person i s dangerous ly c l o s e
20 e l i f bottom >= danger thre sho ld :

37



Software

21 send command ( ”backward” )
22 cv2 . putText ( img , ”MOVE BACKWARD! ” , (220 , 260) ,

font , 1 , (0 , 0 , 255) , 2)
23 l a s t s t o p t ime = time . time ( ) # Reset s top

t imer when moving backward
24
25 # I f person i s f a r enough to resume movement
26 else :
27 # Only resume i f s top time has passed s ince

the l a s t s top message
28 i f l a s t s t o p t ime and time . time ( ) −

l a s t s t o p t ime >= stop du ra t i on th r e sho l d
or l a s t s t o p t ime==None :

29 i f c en t r o id [ 0 ] < 640 / 2 − 10 :
30 send command ( ” l e f t ” , int ( ang le ) )
31 cv2 . putText ( img , ”GO LEFT ” + str ( int (

ang le ) ) + ”deg” , (0 , 40) , font , 1 ,
(255 , 255 , 255) , 2)

32 e l i f c en t r o id [ 0 ] > 640 / 2 + 10 :
33 send command ( ” r i gh t ” , int ( ang le ) )
34 cv2 . putText ( img , ”GO RIGHT ” + str ( int

( ang le ) ) + ”deg” , (440 , 40) , font ,
1 , (255 , 255 , 255) , 2)

35 else :
36 send command ( ” forward ” )
37 cv2 . putText ( img , ”GO STRAIGHT” , (200 ,

40) , font , 1 , (255 , 255 , 255) , 2)
38
39 # Reset l a s t s t o p t im e s ince we ’ re moving

again
40 l a s t s t o p t ime = None
41
42 cv2 . l i n e ( img , ( int (640 / 2) , 480) , ( c en t r o id

[ 0 ] , c en t r o id [ 1 ] + 150) , (255 , 255 , 255) ,
2)

38



4.4 – ROS2 script

4.4 ROS2 script

The ros2 autonomous follow.py (Appendix B) contains the main logic and sensor
fusion between camera and LiDAR.
The code is organized as follow:

• Initialization and Setup
The AutonomousFollower class inherits from Node to become a node itself,
enabling it to interact with the ROS2 network. The STM32 communication
is initialized via the Rosmaster library. MQTT is configured for receiving
remote commands such as activate, deactivate, stop, and movement directions,
allowing the robot behavior to be managed remotely. ROS2 Subscriptions:
the script subscribes to the /scan topic to receive LiDAR data for real-time
obstacle detection.

• Control Parameters and Flags
Parameters for speed, control angles and obstacle detection range and thresh-
olds are defined to enable fine-tuning of the ROSMASTER X3 behavior. Flags
and state variables track whether the target is detected, if obstacles are present,
and if the follow-me mode is active.

• Timers
The 0.1-second command timer calls follow person and avoid obstacles func-
tion, ensuring continuous checks for updated LiDAR data and making deci-
sions to follow or avoid obstacles. A battery timer set to trigger every 5 seconds
fetches and publishes the battery voltage using publish battery info, which al-
lows for constant monitoring. For safety reasons, a watchdog timeout timer is
reset with each received command. stop robot due to inactivity is triggered
if no messages are received within the specified threshold (watchdog expired).
This ensures the robot stops for safety if communication is interrupted.

• MQTT Communication
The on message method processes incoming MQTT messages, such as acti-
vation commands and movement directions (e.g., left, right, forward, stop,
emergency stop and backward), translating them into actions for the robot.

• LiDAR-Based Obstacle Detection
The lidar callback function processes LiDAR data to detect obstacles on the
left, right, and front. It categorizes the warnings based on distance and direc-
tion and updates flags accordingly. Dynamic responses are triggered based on
obstacle positions, adjusting the robot trajectory or stopping if an obstacle is
too close.

• Follow and Avoid Logic
The follow person and avoid obstacles function manages the robot movements

39



Software

when the follow-me mode is active. If no obstacles are detected, it follows the
person position; while in the presence of obstacles, the robot adapts its motion:

– Left or Right Obstacle: it moves in opposite direction translating while
still going forward.

– Frontal Obstacle: the robot goes backward.

– Front-Left or Front-right Obstacle: it translates in opposite direction

– Multiple Obstacles: it stops completely.

• Shutdown Routine
When the program is interrupted to exit (KeyboardInterrupt), the robot mo-
tors are stopped, the LEDs deactivated, the data logs file are close and finally
the node is destroyed.

The script logs commands and LiDAR data to CSV files for post-analysis. Addi-
tionally, commands and status information are printed to the terminal for real-time
monitoring.

4.4.1 Development stages

The code development began without incorporating LiDAR data, focusing first
on fine-tuning the movement commands for smoother motion. Once the robot
movements were optimized, LaserScan data were introduced to stop the robot
upon detecting obstacles. After adjusting the detection parameters, the final stage
involved enabling dynamic obstacle avoidance while continuing to follow the target.

4.4.2 Robot Motion commands

Messages from the vision script are processed, and for direction commands, the
direction and angle are extracted. Listing 4.3 illustrates how the forward, left and
backwardcommands are handled. The forward command sets the linear speed to
its maximum value if no obstacles are detected within the front clearance range;
otherwise, the linear speed is adjusted based on the distance to the nearest object
in front as in equation 4.1.

percentage =
self.distance front− self.response dist front

self.response clearance front− self.response dist front
(4.1)

Although the maximum speed of the robot is higher, it has been reduced after
testing to achieve smoother motion

40



4.4 – ROS2 script

The left command adjust differently the speed and turning motion depending
on the angle:

• below 15 degrees: the robot translates and moves forward for small angle
adjustments.

• from 15 degrees to 28 degree: the robot turns on its vertical axis at reduced
speed

• over 28 degrees: the robot turns on its vertical axis at higher speed

The right command follow the same logic, but with negative values for speed. In
the backward command, flags are used to check if an obstacle is close in front, re-
ducing the impact of incorrect backward and stop commands from the vision script.
This approach helps prevent unintended stops, allowing the robot to keep moving
smoothly. After executing the backward command, a brief delay is introduced be-
fore resuming normal operations. The stop command follows the same logic, with
a similar delay to ensure the robot can only move again after a designated pause.

Listing 4.3: Commands Logic

1 e l i f command == ” forward ” and s e l f . f o l l ow me ac t i v e :
2 i f not s e l f . o b s t a c l e d e t e c t e d and not s e l f .

emergency stopped :
3 l og t ime = datet ime . now( ) . s t r f t ime ( ”%M:%S.% f ” )

[ : −3 ]
4 i f s e l f . o b s t a c l e c l e a r a n c e f r o n t :
5 ””” Fu l l forward speed i f no o b s t a c l e in f r on t

”””
6 s e l f . car . s e t ca r mot i on ( s e l f . l i n e a r sp e ed , 0 ,

0)
7 print ( ”Moving forward f a s t ” )
8 s e l f . command writer . writerow ( [ log t ime , ”

forward ” , 0 , s e l f . l i n e a r sp e ed , 0 , 0 ] )
9
10 else :
11 ””” Propor t iona l forward speed wrt to f r on t

o b s t a c l e / person ”””
12 percentage = ( s e l f . d i s t a n c e f r o n t − s e l f .

r e s p o n s e d i s t f r o n t ) / ( s e l f .
r e s p on s e c l e a r a n c e f r o n t − s e l f .
r e s p o n s e d i s t f r o n t )

13 s e l f . car . s e t ca r mot i on ( s e l f . l i n e a r s p e e d ∗
percentage , 0 , 0)

14 print ( f ”Moving forward p r opo r t i o na l l y with
speed :{ s e l f . l i n e a r s p e e d ∗ percentage }” )

15 s e l f . command writer . writerow ( [ log t ime , ”
forward ” , 0 , s e l f . l i n e a r s p e e d ∗percentage ,
0 , 0 ] )

16

41



Software

17 e l i f command == ” l e f t ” and s e l f . f o l l ow me ac t i v e :
18 l og t ime = datet ime . now( ) . s t r f t ime ( ”%M:%S.% f ” ) [ : −3 ]
19 i f ( angle<=15) :
20 ””” Trans la t ing when ang le be low 15 degrees ”””
21 ad j u s t e d l i n e a r s p e e d = s e l f . l i n e a r s p e e d ∗ 0 .7
22 i f not s e l f . o b s t a c l e d e t e c t e d and not s e l f .

emergency stopped :
23 s e l f . car . s e t ca r mot i on ( ad j u s t ed l i n e a r sp e ed

, 0 , s e l f . l a t e r a l s p e e d )
24 print ( f ” Trans la t ing l e f t with l a t e r a l speed : {

s e l f . l a t e r a l s p e e d } , l i n e a r speed : {
ad j u s t e d l i n e a r s p e e d }” )

25 s e l f . command writer . writerow ( [ log t ime , ” l e f t ”
, angle , ad j u s t ed l i n e a r sp e ed , s e l f .
l a t e r a l s p e e d , 0 ] )

26 e l i f ( angle>15 and angle<=28) :
27 ”””Turning s low when ang le be low 28 degrees ”””
28 ad ju s t ed angu la r speed = s e l f . angu lar speed ∗0 .05
29 ad j u s t e d l i n e a r s p e e d = s e l f . l i n e a r s p e e d ∗ 0 .6
30 i f not s e l f . o b s t a c l e d e t e c t e d and not s e l f .

emergency stopped :
31 s e l f . car . se t p id param (0 . 1 , 3 , 3 , 0)
32 s e l f . car . s e t ca r mot i on ( ad j u s t ed l i n e a r sp e ed ,

ad jus t ed angu la r speed , 0)
33 print ( f ”Turning l e f t with angular speed : {

ad ju s t ed angu la r speed } , l i n e a r speed : {
ad j u s t e d l i n e a r s p e e d }” )

34 s e l f . command writer . writerow ( [ log t ime , ” l e f t ”
, angle , ad j u s t ed l i n e a r sp e ed ,
ad ju s t ed angu la r speed ] )

35 else :
36 ”””Turning f a s t e r when ang le over 28 degrees ”””
37 ad ju s t ed angu la r speed = s e l f . angu lar speed ∗0 .08
38 ad j u s t e d l i n e a r s p e e d = s e l f . l i n e a r s p e e d ∗ 0 .5
39 i f not s e l f . o b s t a c l e d e t e c t e d and not s e l f .

emergency stopped :
40 s e l f . car . se t p id param (0 . 1 , 3 , 3 , 0) # PID

parameter adjustment
41 s e l f . car . s e t ca r mot i on ( ad j u s t ed l i n e a r sp e ed ,

ad jus t ed angu la r speed , 0)
42 print ( f ”Turning f a s t l e f t with angular speed :

{ ad ju s t ed angu la r speed } , l i n e a r speed : {
ad j u s t e d l i n e a r s p e e d }” )

43 s e l f . command writer . writerow ( [ log t ime , ” l e f t ”
, angle , ad j u s t ed l i n e a r sp e ed ,
ad ju s t ed angu la r speed ] )

44
45 e l i f command == ”backward” :
46 l og t ime = datet ime . now( ) . s t r f t ime ( ”%M:%S.% f ” ) [ : −3 ]
47 i f s e l f . f o l l ow me ac t i v e :

42



4.4 – ROS2 script

48 i f not s e l f . o b s t a c l e a v o i d a l l and s e l f .
f r o n t s t o p a r e a :

49 ad j u s t e d l i n e a r s p e e d = s e l f . l i n e a r s p e e d ∗
0 .2

50 s e l f . car . s e t ca r mot i on (− ad ju s t ed l i n e a r sp e ed
, 0 , 0)

51 print ( ”Robot moving backwards” )
52 s e l f . s e t l e d c o l o r (255 , 0 , 0) # Red LED fo r

moving backwards
53 s e l f . command writer . writerow ( [ log t ime , ”

backwards” , 0 , −ad ju s t ed l i n e a r sp e ed , 0 ,
0 ] )

54 s l e e p ( 0 . 6 )
55 else :
56 # Ignore the s top command i f the bounding box

i s f a u l t y but t h e r e ’ s no o b s t a c l e in f r on t
57 print ( ”Backward command ignored due to c l e a r

LiDAR data in f r on t . ” )

4.4.3 LaserScan Data

The LiDAR callback function processes the data from each scan received from
the LaserScan subscriber. For each scan, points below the threshold distance are
counted for the front, left, and right regions based on the angles illustrated in Figure
4.2:

• 0°-60°: backward area

• 60°-160°: lateral area

• 160°-180°: front area

The angles are mirrored, resulting in the following coverage within the 360° range:
40° for front obstacles, 100° for each lateral area (left and right), and 120° for
the not scannable backward area. This backward section is not scanned due to
the ROSMASTER X3 construction and the position of the WiFi antenna, which
obstructs effective backward scanning by the LiDAR. If the number of points in any
direction exceeds the threshold, the corresponding flag is activated as illustrated in
Listing 4.4, adjusting the robot response accordingly.

43



Software

Figure 4.2: LiDAR angles and range

Listing 4.4: LiDAR obstacles detection

1 for i in range ( len ( ranges ) ) :
2 l og t ime = datet ime . now( ) . s t r f t ime ( ”%M:%S.% f ” ) [ : −3 ]
3 ang le = ( scan data . angle min + scan data .

ang l e inc rement ∗ i ) ∗ RAD2DEG
4 i f 160 > ang le > 180 − s e l f . l a s e r a n g l e :
5 i f ranges [ i ] < s e l f . r e s p o n s e d i s t l a t :
6 s e l f . r i ght warn ing += 1
7
8 i f −160 < ang le < s e l f . l a s e r a n g l e − 180 :
9 i f ranges [ i ] < s e l f . r e s p o n s e d i s t l a t :
10 s e l f . l e f t wa rn i n g += 1
11
12 i f abs ( ang le ) > 160 :
13 s e l f . d i s t a n c e f r o n t = ranges [ i ]
14 s e l f . l i d a r w r i t e r ( [ l og t ime , s e l f . d i s t a n c e f r o n t ] )
15 i f ranges [ i ] <= s e l f . r e s p o n s e d i s t f r o n t :
16 s e l f . f r ont warn ing += 1
17 i f ranges [ i ] < s e l f . r e s p on s e c l e a r a n c e f r o n t :
18 s e l f . o b s t a c l e c l e a r a n c e f r o n t = False
19 i f ranges [ i ] >= s e l f . r e s p on s e c l e a r a n c e f r o n t :
20 s e l f . o b s t a c l e c l e a r a n c e f r o n t = True
21 i f ranges [ i ] < s e l f . r e s p on s e c l e a r an c e f r on t −0.5 :
22 s e l f . f r o n t s t o p a r e a = True
23 i f ranges [ i ] >= s e l f . r e s p on s e c l e a r an c e f r on t

−0.5 :
24 s e l f . f r o n t s t o p a r e a = False

44



4.4 – ROS2 script

4.4.4 LED light status

The LED light bar is used to show the robot status as shown in Figure 4.3:

• Blue light: The robot is initialized and ready for follow-me mode activation.

• Green light: Follow me activated with no obstacle or errors detected.

• Red light: Obstacles are detected or errors occur due to target loss or a high
probability of target switching.

Figure 4.3: LED lights status diagram

4.4.5 Launch file

A launch file is a specialized script in ROS that enables the startup of multiple
nodes, simplifying the process of running complex programs. The file autonomous
follow launch.py, Listing 4.5, is used to launch two main components of this
project:

• sllidar launch.py

• ros2 autonomous follow.py

The sllidar launch.py script launches the LiDAR node to obtain sensor data,
while the second script, ros2 autonomous follow.py, launches the node responsi-
ble for the autonomous following logic and sensor fusion.

45



Software

Listing 4.5: autonomous follow launch.py

1 import os
2 from ament index python . packages import g e t pa ckag e sha r e d i r e c t o r y
3 from launch import LaunchDescr ipt ion
4 from launch . a c t i on s import Inc ludeLaunchDescr ipt ion
5 from launch . l a un ch d e s c r i p t i o n s ou r c e s import

PythonLaunchDescriptionSource
6 from l aunch ro s . a c t i on s import Node
7
8 def g en e r a t e l aun ch d e s c r i p t i o n ( ) :
9 # Path to the s l l i d a r launch f i l e
10 s l l i d a r l a u n c h f i l e = ’ / root /yahboomcar ros2 ws/ so f tware /

l i b r a r y ws / s r c / s l l i d a r r o s 2 / launch/ s l l i d a r l a u n c h . py ’
11
12 # Inc lude the Lidar launch f i l e us ing the co r r e c t path
13 l i d a r node = Inc ludeLaunchDescr ipt ion (
14 PythonLaunchDescriptionSource ( s l l i d a r l a u n c h f i l e )
15 )
16
17 # Launch o f ros2 autonomous fo l l ow e x e cu t a b l e
18 fo l l ow node = Node (
19 package=’ pkg autonomous ’ , # Package name
20 executab l e=’ ros2 autonomous fo l low ’ , # Executab l e
21 name=’ autonomous fo l low ’ , # Node name
22 output=’ s c r e en ’ ,
23 parameters=[
24 {”mqtt broker ” : ” l o c a l h o s t ” } ,
25 {”mqtt port ” : 1883}
26 ]
27 )
28
29 # LaunchDescript ion t ha t i n c l u d e s the l i d a r node and the

autonomous f o l l ow node
30 return LaunchDescr ipt ion ( [ l i da r node , f o l l ow node ] )

46



4.5 – MQTT comunication

4.5 MQTT comunication

Message Queuing Telemetry Transport (MQTT) is a lightweight communication
protocol based on the TCP/IP framework.

It provides a simple network communication mechanism, allowing commands
to be sent to the container running ROS2. Listing 4.6 shows the parameters and
commands. Since communication occurs on the same machine (the Jetson Nano),
broker ip is set to localhost. The topic for message transmission is defined and
must be consistent across both scripts. Finally, the MQTT client is initialized, and
the connection is established. The messages defined for this project are: activate,
deactivate, stop, emergency stop and direction, which includes direction information
based on the target position.

Listing 4.6: MQTT implementation on Vision script

1 import paho . mqtt . c l i e n t as mqtt
2
3 # MQTT broker d e t a i l s
4 b roke r i p = ” l o c a l h o s t ”
5 broke r por t = 1883 # Defau l t MQTT por t
6
7 # MQTT top i c
8 top i c = ” robot / con t r o l ”
9
10 def on connect ( c l i e n t , userdata , f l a g s , rc ) :
11 i f rc == 0 :
12 print ( ”Connected to MQTT Broker ! ” )
13 else :
14 print ( f ” Fa i l ed to connect , r e turn code { rc }” )
15
16 # I n i t i a l i z e the MQTT c l i e n t
17 c l i e n t = mqtt . C l i en t ( )
18
19 # Set up the connect ion c a l l b a c k
20 c l i e n t . on connect = on connect
21
22 # Connect to the broker
23 c l i e n t . connect ( broker ip , broker port , 60)
24
25 # Sta r t the loop
26 c l i e n t . l o o p s t a r t ( )
27
28
29 def send command ( d i r e c t i on , ang le=None ) :
30 command = {”command” : d i r e c t i o n }
31 i f ang le i s not None :
32 command [ ” ang le ” ] = angle
33 c l i e n t . pub l i sh ( ” robot / con t r o l ” , j son . dumps(command) )
34

47



Software

35 def s end a c t i v a t e ( ) :
36 command = {”command” : ” a c t i v a t e ”}
37 c l i e n t . pub l i sh ( ” robot / con t r o l ” , j son . dumps(command) )
38
39 def s end deac t i va t e ( ) :
40 command = {”command” : ” deac t i va t e ”}
41 c l i e n t . pub l i sh ( ” robot / con t r o l ” , j son . dumps(command) )
42
43 def send emergency stop ( ) :
44 command = {”command” : ” emergency stop ”}
45 c l i e n t . pub l i sh ( ” robot / con t r o l ” , j son . dumps(command) )
46
47 def send stop ( ) :
48 command = {”command” : ” stop ”}
49 c l i e n t . pub l i sh ( ” robot / con t r o l ” , j son . dumps(command) )

48



4.5 – MQTT comunication

4.5.1 System Architecture and Communication Overview

Following the explanation of individual software components, this section provides
an integrated overview of the overall system architecture, as previously detailed in
Chapter 3.3. This summary aims to clarify the communication flow between the
vision processing, decision-making, and hardware control layers of the system.

Figure 4.4 illustrates the interaction of these components within the established
framework:

• Vision Script (blue block) identifies and tracks the target in real-time, sending
directional commands.

• ROS2 Node (green block) receives and processes these commands, integrat-
ing sensor data for obstacle avoidance and translating them into executable
actions.

• STM32 Firmware (gray block) carries out the motion commands on the robot,
controlling motor signals and LED lights.

Figure 4.4: System overview diagram

49



50



Chapter 5

Evaluation and Testing

After developing the code, it is required to build the ROS package to ensure that
all elements within the package are properly compiled, dependencies are effectively
handled and the resulting executable is prepared to run. The package developed
for this project, pkg autonomous, contains the two main files: ros2 autonomous

follow.py and the autonomous follow launch.py.

Figure 5.1: Docker container startup

Once the container is run by executing run docker.sh (Figure 5.1), it is nec-
essary to navigate to the ROS2 workspace to initiate the building process. The
following ROS2 command, shown in Figure 5.2, allows building only the selected
package:

colcon build --packages-select pkg autonomous

51



Evaluation and Testing

After the build process, the command below must be executed to update the
environment variables, ensuring the newly built packages are included:

source ~/yahboomcar ros ws/yahboomcar ws/install/setup.bash

This step is crucial for tools like ros2 launch and ros2 run to locate and
execute the packages and their associated files.

Figure 5.2: ROS2 building command

5.1 System Startup Procedure

The startup procedure is composed of the following steps:

• Start the container by launching the run docker.sh script.

• Activate the ROS2 nodes within the container terminal using the command:

ros2 launch pkg_autonomous autonomous_follow_launch.py

• Execute the Vision script from a different terminal using the command:

python3 object_detection_module.py

• Select the correct mode in the menu of the Vision Script:

Dynamic Modes → Follow Me

52



5.2 – Initial Adjustments

5.2 Initial Adjustments

During the initial testing of the Vision script after its adaptation, a significant
performance issue was encountered. The frame rate was excessively low, approxi-
mately 3 FPS, even in the Jetson NANO 10 W power mode (Figure 5.3). This low
frame rate made the system incapable of reliably detecting and tracking a person.
To address this problem, the Jetson NANO clock settings were modified to unlock
its full performance capabilities, reaching a frame rate around 16 FPS under no
additional computational load.

Figure 5.3: Low FPS problem

In the early evaluation of the ROSMASTER X3 movement, an issue was iden-
tified with the robot turning motion around its vertical axis. Beyond the inverted
axis problem discussed in Chapter 4.2, the motor response was excessively aggres-
sive, causing the robot to spin uncontrollably and lose track of its target. Initial
attempts to resolve the issue included lowering the PID parameters and angular
speed; however, these changes did not provide any improvements in the robot per-
formance.

The problem was resolved by upgrading the Rosmaster Library from version
3.3.6 to version 3.3.9, which resulted in a more effective PID control. After the
upgrade, adjusting the proportional Kp parameter of the PID algorithm to a value
of 0.1 resulted in smoother motor responses, ensuring accurate turning motion of
the robot.

The bounding box inaccuracy is shown in Figure 5.4. The bottom edge of
the bounding box determines the stop and backward commands logic. When the
bounding box is lower than the actual position of the person and enters the stop
range, it results in unintended stops while following the target. As introduce in
Chapter 4.4.2, LiDAR data is utilized to verify if the target (treated as an obstacle)
is truly close to the front of the robot.

53



Evaluation and Testing

Figure 5.4: Oversized bounding box

Initial tests were conducted over short distances to fine-tune parameters for
smoother movements and more balanced LiDAR-based obstacle detection. Vision
script parameters were adjusted to ensure the robot maintained a distance of ap-
proximately 1 meter from the target. The maximum allowed number of disappear-
ance frames was set to 30, corresponding to 2 seconds based on the Jetson NANO
performance of 12–14 FPS under full load.

5.3 Robot behavior and Data analysis

After the system initialization, Figure 5.5, the robot is ready for operation.

54



5.3 – Robot behavior and Data analysis

Figure 5.5: System initialized

The Follow Me function activation process involves the target widening and
closing the arms for three times, as illustrated in Figure 5.6. This method leverages
on the bounding box width to activate the robot, allowing it to start following the
target.

(a) Activation movements (b) Activation counter

Figure 5.6: Follow me activation Procedure

Figure 5.7 shows the trajectory, angles and speeds during the straight path test,
consisting in a two meters path with very small angle corrections.

55



Evaluation and Testing

(a) Trajectory

(b) Angle over time

(c) Linear velocity over time

Figure 5.7: Straight trajectory test

56



5.3 – Robot behavior and Data analysis

The log data from the LiDAR provides insights into the robot behavior. Fig-
ure 5.8a shows the raw data, which is affected by high noise levels. This noise is
primarily caused by the LiDAR position, being 20 cm above the floor, resulting in
the detection of only the target legs. Since the LiDAR is based on single-line tech-
nology, its data do not include only the target distance but also the environment,
even after selecting only the front area. To enhance the data quality, improbable
distances greater than 3 meters are excluded, and a low-pass filter is applied to
the signal. As presented in Figure 5.8b, a Butterworth filter is used to isolate the
slower-changing trend in the data, which is more relevant for analysis. The filtered
signal shows that the robot moves froward to reduce the distance from the target
and it stops moving when the target is 0.6-0.7 meters away.

(a) Trajectory

(b) Filtered front distance

Figure 5.8: Front distance of the target

The ROS2 node outputs all information about movements and obstacle detection
to the terminal. The ROSMASTER X3 follows the target based on commands from
the vision script (Figure 5.9a). In Figure 5.9b the forward command is shown, while
Figure 5.9c shows the translating motion to the left.

57



Evaluation and Testing

(a) Forward command (Vision)

(b) Forward motion (Terminal)

(c) Translating motion (Terminal)

Figure 5.9: Robot movements command

When an obstacle is detected, the vision script continues sending commands
related to the target (Figure 5.10a), while the ROS node handles the obstacle
avoidance with the proper commands (Figure 5.10b).

The backward commands shown in Figure 5.11a is sent by the Vision script.
However, if the ROS node determine, through the LiDAR, that in front of the
robot there are no obstacles, the command is ignored, as shown in Figure 5.11. In
such cases, the ROSMASTER X3 continues moving and following the target.

58



5.3 – Robot behavior and Data analysis

(a) Left command (Vision)

(b) Obstacle avoidance command

Figure 5.10: Robot moving forward

(a) Backward command send by Vision
script

(b) Backward command ignored

Figure 5.11: Backward command

59



Evaluation and Testing

If the target is lost, as shown in Figure 5.12, the robot waits for the maximum
allowed number of disappearance frame before deactivating the Follow Me function.
In the event of an error in the vision script, the watchdog mechanism in the ROS
node deactivates the ROSMASTER X3 if it is not reset and no commands are
received (Figure 5.13).

Figure 5.12: Lost Target alert

Figure 5.13: Watchdog timeout deactivation

5.4 Trajectory Reconstruction

This section analyzes a comprehensive test where the robot follows a longer path
while avoiding obstacles. The map shown in Figure 5.14 was constructed separately,
not dynamically during testing. The mapping algorithm used for reconstruct the
environment is based on the gmapping package from ROS [25]. The robot was
controlled manually via keyboard at a slow speed to ensure the creation of an
accurate map of the testing area.

60



5.4 – Trajectory Reconstruction

Figure 5.14: Rviz map visualization

Using the logged commands, it was possible to reconstruct the robot trajectory
as shown in Figure 5.15. The trajectory was calculated point by point using the X
and Y displacements. The calculation considers the three different motions of the
robot: linear motion, translation and turning.

Equations 5.1 and 5.2 calculate the displacements using the real angle (calcu-
lated with Equation 5.3) to determine the robot orientation during turns. Due to
variations in PID parameters and the real response of the motors being different
from the requested values, a correction factor K was applied. This multiplicative
factor take also into account the wheel slip on low friction surfaces. This factor was
determined empirically based on the actual path performed.

x = x+ linear speed[i] ∗ cos(real angle) ∗ dt (5.1)

y = y + linear speed[i] ∗ sin(real angle) ∗ dt (5.2)

real angle = real angle+ angular speed[i] ∗K ∗ dt (5.3)

61



Evaluation and Testing

Figure 5.15: Reconstructed trajectory in XY plane

(a) Performed trajectory (b) Reconstructed trajectory

Figure 5.16: Trajectories comparison

62



5.4 – Trajectory Reconstruction

Figure 5.16a shows the performed path drawn on the map, while Figure 5.16b
display the reconstructed path of the ROSMASTER X3. During the left turn,
the robot navigates around a table (Figure 5.17), which is visible in the map and
represented by clusters of dots corresponding to the legs of the table and chairs.

Figure 5.17: Table near the path

The analysis of the plots in Figure 5.18, confirms the trajectory shown in Figure
5.15. Negative angles correspond to right turns, while positive angles represent left
turns. As seen in Figure 5.18, the robot performs a right turn, followed by a left
turn, and another right turn. From the plots in Figure 5.18 and 5.19, it can be
observed that the robot stops during turns, as both velocity and angle drop to zero
around 10 and 15 seconds. At approximately 50 seconds, the target stops moving,
prompting the robot to stop and reverse to maintain a safe distance from the target.
The analysis of these plots and the reconstructed trajectory quantifies the robot
behavior during the test, demonstrating its ability to follow a target and navigate
in a complex environment.

63



Evaluation and Testing

Figure 5.18: Angle over time

Figure 5.19: Linear Velocity over time

64



5.4 – Trajectory Reconstruction

Figure 5.20 shows the uneven pavement on which the robot was tested in an-
other evaluation. Despite the vibration, the ROSMASTER X3 followed the target
without significant issues. The only limitation observed was the increased wheels
friction, which affected the robot behavior during translating, reducing the trans-
lating speed.

Figure 5.20: Outdoor test

65



66



Chapter 6

Conclusions and Future works

This project provided a deeper understanding of the ROSMASTER X3 architecture
and configuration, laying the groundwork for future developments. While the pri-
mary objectives were achieved, the work is not complete. This chapter discusses the
key challenges and limitations encountered during the project, along with potential
directions for future advancements.

6.1 Problems and Limits of the system

The development of the functionalities was constrained by the computational lim-
itations of the Jetson NANO. These limitations primarily affected the frame rate
which needed to exceed the 12 FPS to ensure better tracking and object detection
performance. However, during testing, on multiple occasions, the Jetson NANO
issued CPU throttling alerts caused by the high computational load.

Real-time mapping of the environment was excluded due to the speed constrain
imposed by the mapping algorithm. Slow speeds were required to build an accurate
map, which was incompatible with the robot ability to follow a person effectively.

Another significant issue was the robot performance under low light or direct
light conditions. In such scenarios, the vision script model often failed to detect
people correctly in certain frames, causing the bounding box to disappear. This
failure particularly impacted the activation and deactivation phases of the Follow
Me mode, as the counter would reset, requiring the target keep moving their arms
for more than three times. However, during the actual following phase, temporary
loss of the bounding box did not affect the robot behavior.

67



Conclusions and Future works

6.2 Future works

Enhancing the robot computational power could unlock new possibilities for devel-
opment. Upgrading the main board from the Jetson NANO to a more powerful
platform, such as the Jetson AGX ORIN, would address current limitations and
enable significant improvements.

The two major areas of potential improvement are:

• New activation method
A new activation method based on hand detection could resolve the light-
related challenges. Implementing separate machine learning models for acti-
vation and tracking would allow for more accurate detection during activation,
improving reliability.

• Trajectory planning
Incorporating real-time mapping would improve the robot movement logic. By
determining the optimal trajectory, the robot could improve obstacle avoid-
ance and predict the target path in case of temporary disappearance over an
extended number of frames.

6.2.1 ADAS development

Another potential development path involves a more automotive focused approach.
This includes implementing a lane-keeping algorithm and integrating a machine
learning model for road sign and traffic light detection. Such advancements would
realign the project with its original goals through a different perspective. While
this future work might not necessitate upgrading the Jetson NANO, it may require
structural modifications to the robot, such as orienting the camera downward to
better detect road lines.

6.3 Final Consideration

In conclusion, this project represented a significant integration challenge, requiring
the assembly of the robot from individual parts and the adaptation of the existing
code to function within a complete robotic system. The process required an in-
depth exploration of the system architecture to ensure seamless communication
between components. Adapting the vision script, originally developed without
access to the assembled hardware needed extensive testing and refinement. Despite
these challenges, the project successfully achieved its primary objective: developing
an autonomous robot that tracks and follows a person while dynamically avoiding
obstacles using camera and LiDAR sensor fusion. This achievement demonstrates
the potential for further advancements and highlights the importance of a robust
system architecture in autonomous robotics.

68



Bibliography

[1] (2015) Company profile. Shenzhen Yahboom Technology Co. Ltd. Last
accessed: Oct. 18, 2024. [Online]. Available: http://www.yahboom.net/
aboutus

[2] X. Zhao and T. Chidambareswaran, “Autonomous mobile robots in manufac-
turing operations,” in 2023 IEEE 19th International Conference on Automa-
tion Science and Engineering (CASE), 2023, pp. 1–7.

[3] (2018) What is ros? Open Robotics. Last accessed: July 14, 2024. [Online].
Available: https://wiki.ros.org/ROS/Introduction

[4] (2018) Ros introduction. Open Robotics. Last accessed: July 20, 2024.
[Online]. Available: https://wiki.ros.org/ROS/Introduction

[5] (2024) Ros introduction. Shenzhen Yahboom Technology Co.
Ltd. Last accessed: Oct 24, 2024. [Online]. Available:
https://github.com/YahboomTechnology/ROSMASTERX3/blob/main/
03.X3-ROS1-Tutorials/08.ROS%20basic%20course/1.ROS%20introduction/1.
ROS%20introduction.pdf

[6] (2022) Ros concepts. Open Robotics. Last accessed: Oct 24, 2024. [Online].
Available: https://wiki.ros.org/ROS/Concepts

[7] (2024) Ros 2 introduction. Shenzhen Yahboom Technology Co.
Ltd. Last accessed: Oct 26, 2024. [Online]. Available:
https://github.com/YahboomTechnology/ROSMASTERX3/blob/main/
04.X3-ROS2-Tutorials/08.%20ROS2%20Basic%20Tutorial/1.Introduction%
20to%20ROS2/1.%20Introduction%20to%20ROS2.pdf

[8] (2024) Ros 2 design. Open Robotics. Last accessed: Oct 22, 2024. [Online].
Available: https://design.ros2.org/

[9] (2024) Lidar basics. Shenzhen Yahboom Technology Co. Ltd. Last accessed:
Oct 20, 2024. [Online]. Available: https://github.com/YahboomTechnology/
ROSMASTERX3/blob/main/03.X3-ROS1-Tutorials/12.Lidar%20course/1.
Lidar%20basics-Silan/1.Lidar%20basics.pdf

[10] D. Merkel, “Docker: lightweight linux containers for consistent development
and deployment,” Linux Journal, 2014.

[11] (2024) Docker engine overview. Docker Inc. Last accessed: Oct 28, 2024.
[Online]. Available: https://docs.docker.com/engine

69

http://www.yahboom.net/aboutus
http://www.yahboom.net/aboutus
https://wiki.ros.org/ROS/Introduction
https://wiki.ros.org/ROS/Introduction
https://github.com/YahboomTechnology/ROSMASTERX3/blob/main/03.X3-ROS1-Tutorials/08.ROS%20basic%20course/1.ROS%20introduction/1.ROS%20introduction.pdf
https://github.com/YahboomTechnology/ROSMASTERX3/blob/main/03.X3-ROS1-Tutorials/08.ROS%20basic%20course/1.ROS%20introduction/1.ROS%20introduction.pdf
https://github.com/YahboomTechnology/ROSMASTERX3/blob/main/03.X3-ROS1-Tutorials/08.ROS%20basic%20course/1.ROS%20introduction/1.ROS%20introduction.pdf
https://wiki.ros.org/ROS/Concepts
https://github.com/YahboomTechnology/ROSMASTERX3/blob/main/04.X3-ROS2-Tutorials/08.%20ROS2%20Basic%20Tutorial/1.Introduction%20to%20ROS2/1.%20Introduction%20to%20ROS2.pdf
https://github.com/YahboomTechnology/ROSMASTERX3/blob/main/04.X3-ROS2-Tutorials/08.%20ROS2%20Basic%20Tutorial/1.Introduction%20to%20ROS2/1.%20Introduction%20to%20ROS2.pdf
https://github.com/YahboomTechnology/ROSMASTERX3/blob/main/04.X3-ROS2-Tutorials/08.%20ROS2%20Basic%20Tutorial/1.Introduction%20to%20ROS2/1.%20Introduction%20to%20ROS2.pdf
https://design.ros2.org/
https://github.com/YahboomTechnology/ROSMASTERX3/blob/main/03.X3-ROS1-Tutorials/12.Lidar%20course/1.Lidar%20basics-Silan/1.Lidar%20basics.pdf
https://github.com/YahboomTechnology/ROSMASTERX3/blob/main/03.X3-ROS1-Tutorials/12.Lidar%20course/1.Lidar%20basics-Silan/1.Lidar%20basics.pdf
https://github.com/YahboomTechnology/ROSMASTERX3/blob/main/03.X3-ROS1-Tutorials/12.Lidar%20course/1.Lidar%20basics-Silan/1.Lidar%20basics.pdf
https://docs.docker.com/engine


Bibliography

[12] S. Singh and N. Singh, “Containers & docker: Emerging roles & future of cloud
technology,” in 2016 2nd International Conference on Applied and Theoretical
Computing and Communication Technology (iCATccT), 2016, pp. 804–807.

[13] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. Berg,
“Ssd: Single shot multibox detector,” in ”Computer Vision – ECCV 2016”,
vol. 9905, 10 2016, pp. 21–37.

[14] L. Forese, “Deep learning-based real-time multiple-object detection on a
rover.” Master’s thesis, Politecnico di Torino, 2021. [Online]. Available:
https://webthesis.biblio.polito.it/18104/

[15] (2024) About cuda. NVIDIA Corporation. Last accessed: Oct 28, 2024.
[Online]. Available: https://developer.nvidia.com/about-cuda

[16] F. Oh. (2012) What is cuda? NVIDIA Corporation. Last accessed: Oct 28,
2024. [Online]. Available: https://blogs.nvidia.com/blog/what-is-cuda-2/

[17] Jetson nano. NVIDIA Corporation. Last accessed: Nov 2, 2024. [Online].
Available: https://developer.nvidia.com/embedded/jetson-nano

[18] (2024) Expansion board introduction. Shenzhen Yahboom Technol-
ogy Co. Ltd. Last accessed: Nov 4, 2024. [Online]. Available:
https://github.com/YahboomTechnology/ROSMASTERX3/blob/main/03.
X3-ROS1-Tutorials/04.Hardware%20course/1.%20About%20expansion%
20board/1.About%20expansion%20board.pdf

[19] J. Wang, C. Zhang, W. Zhu, Z. Zhang, Z. Xiong, and P. A. Chou, “3d scene
reconstruction by multiple structured-light based commodity depth cameras,”
in 2012 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2012.

[20] (2024) Kinematic analysis of meacanum wheel. Shenzhen Yahboom Technology
Co. Ltd. Last accessed: Oct 24, 2024. [Online]. Available: https://github.com/
YahboomTechnology/ROSMASTERX3/blob/main/04.X3-ROS2-Tutorials/
04.Hardware%20course/14.%20Robot%20kinematics%20analysis%20theory/
14.Kinematic%20Analysis%20of%20Mecanum%20Wheel.pdf

[21] (2024) Pid algorithm theory. Shenzhen Yahboom Technology
Co. Ltd. Last accessed: Nov 4, 2024. [Online]. Available:
https://github.com/YahboomTechnology/ROSMASTERX3/blob/main/
04.X3-ROS2-Tutorials/09.Robot%20control%20course/1%E3%80%81PID%
20algorithm%20theory/1%E3%80%81PID%20algorithm%20theory/1%E3%
80%81PID%20algorithm%20theory.pdf

[22] Eagle Comm.ltd, “MCUISP - MCU in system programmer,” 2017,
Version 0.993 [Microcontroller programming tool]. [Online]. Available: http:
//www.mcuisp.com/English%20mcuisp%20web/ruanjianxiazai-english.htm

[23] (2024) Control robot movement. Shenzhen Yahboom Technology
Co. Ltd. Last accessed: Nov 08, 2024. [Online]. Available:
https://github.com/YahboomTechnology/ROSMASTERX3/blob/main/04.
X3-ROS2-Tutorials/05.ROSMASTER%20Basic%20course/8.%20Control%

70

https://webthesis.biblio.polito.it/18104/
https://developer.nvidia.com/about-cuda
https://blogs.nvidia.com/blog/what-is-cuda-2/
https://developer.nvidia.com/embedded/jetson-nano
https://github.com/YahboomTechnology/ROSMASTERX3/blob/main/03.X3-ROS1-Tutorials/04.Hardware%20course/1.%20About%20expansion%20board/1.About%20expansion%20board.pdf
https://github.com/YahboomTechnology/ROSMASTERX3/blob/main/03.X3-ROS1-Tutorials/04.Hardware%20course/1.%20About%20expansion%20board/1.About%20expansion%20board.pdf
https://github.com/YahboomTechnology/ROSMASTERX3/blob/main/03.X3-ROS1-Tutorials/04.Hardware%20course/1.%20About%20expansion%20board/1.About%20expansion%20board.pdf
https://github.com/YahboomTechnology/ROSMASTERX3/blob/main/04.X3-ROS2-Tutorials/04.Hardware%20course/14.%20Robot%20kinematics%20analysis%20theory/14.Kinematic%20Analysis%20of%20Mecanum%20Wheel.pdf
https://github.com/YahboomTechnology/ROSMASTERX3/blob/main/04.X3-ROS2-Tutorials/04.Hardware%20course/14.%20Robot%20kinematics%20analysis%20theory/14.Kinematic%20Analysis%20of%20Mecanum%20Wheel.pdf
https://github.com/YahboomTechnology/ROSMASTERX3/blob/main/04.X3-ROS2-Tutorials/04.Hardware%20course/14.%20Robot%20kinematics%20analysis%20theory/14.Kinematic%20Analysis%20of%20Mecanum%20Wheel.pdf
https://github.com/YahboomTechnology/ROSMASTERX3/blob/main/04.X3-ROS2-Tutorials/04.Hardware%20course/14.%20Robot%20kinematics%20analysis%20theory/14.Kinematic%20Analysis%20of%20Mecanum%20Wheel.pdf
https://github.com/YahboomTechnology/ROSMASTERX3/blob/main/04.X3-ROS2-Tutorials/09.Robot%20control%20course/1%E3%80%81PID%20algorithm%20theory/1%E3%80%81PID%20algorithm%20theory/1%E3%80%81PID%20algorithm%20theory.pdf
https://github.com/YahboomTechnology/ROSMASTERX3/blob/main/04.X3-ROS2-Tutorials/09.Robot%20control%20course/1%E3%80%81PID%20algorithm%20theory/1%E3%80%81PID%20algorithm%20theory/1%E3%80%81PID%20algorithm%20theory.pdf
https://github.com/YahboomTechnology/ROSMASTERX3/blob/main/04.X3-ROS2-Tutorials/09.Robot%20control%20course/1%E3%80%81PID%20algorithm%20theory/1%E3%80%81PID%20algorithm%20theory/1%E3%80%81PID%20algorithm%20theory.pdf
https://github.com/YahboomTechnology/ROSMASTERX3/blob/main/04.X3-ROS2-Tutorials/09.Robot%20control%20course/1%E3%80%81PID%20algorithm%20theory/1%E3%80%81PID%20algorithm%20theory/1%E3%80%81PID%20algorithm%20theory.pdf
http://www.mcuisp.com/English%20mcuisp%20web/ruanjianxiazai-english.htm
http://www.mcuisp.com/English%20mcuisp%20web/ruanjianxiazai-english.htm
https://github.com/YahboomTechnology/ROSMASTERX3/blob/main/04.X3-ROS2-Tutorials/05.ROSMASTER%20Basic%20course/8.%20Control%20robot%20movement/8.%20Control%20robot%20movement.pdf
https://github.com/YahboomTechnology/ROSMASTERX3/blob/main/04.X3-ROS2-Tutorials/05.ROSMASTER%20Basic%20course/8.%20Control%20robot%20movement/8.%20Control%20robot%20movement.pdf
https://github.com/YahboomTechnology/ROSMASTERX3/blob/main/04.X3-ROS2-Tutorials/05.ROSMASTER%20Basic%20course/8.%20Control%20robot%20movement/8.%20Control%20robot%20movement.pdf


Bibliography

20robot%20movement/8.%20Control%20robot%20movement.pdf
[24] A. Calio’, “Deep learning-based real-time detection and object tracking on

an autonomous rover with gpu based embedded device,” Master’s thesis,
Politecnico di Torino, 2021. [Online]. Available: https://webthesis.biblio.
polito.it/18081/

[25] (2024) Gmapping mapping algorithm. Shenzhen Yahboom Technology
Co. Ltd. [Online]. Available: https://github.com/YahboomTechnology/
ROSMASTERX3/blob/main/04.X3-ROS2-Tutorials/10.Lidar%20course/6%
E3%80%81gmapping%20mapping%20algorithm/6%E3%80%81gmapping%
20mapping%20algorithm.pdf

71

https://github.com/YahboomTechnology/ROSMASTERX3/blob/main/04.X3-ROS2-Tutorials/05.ROSMASTER%20Basic%20course/8.%20Control%20robot%20movement/8.%20Control%20robot%20movement.pdf
https://github.com/YahboomTechnology/ROSMASTERX3/blob/main/04.X3-ROS2-Tutorials/05.ROSMASTER%20Basic%20course/8.%20Control%20robot%20movement/8.%20Control%20robot%20movement.pdf
https://webthesis.biblio.polito.it/18081/
https://webthesis.biblio.polito.it/18081/
https://github.com/YahboomTechnology/ROSMASTERX3/blob/main/04.X3-ROS2-Tutorials/10.Lidar%20course/6%E3%80%81gmapping%20mapping%20algorithm/6%E3%80%81gmapping%20mapping%20algorithm.pdf
https://github.com/YahboomTechnology/ROSMASTERX3/blob/main/04.X3-ROS2-Tutorials/10.Lidar%20course/6%E3%80%81gmapping%20mapping%20algorithm/6%E3%80%81gmapping%20mapping%20algorithm.pdf
https://github.com/YahboomTechnology/ROSMASTERX3/blob/main/04.X3-ROS2-Tutorials/10.Lidar%20course/6%E3%80%81gmapping%20mapping%20algorithm/6%E3%80%81gmapping%20mapping%20algorithm.pdf
https://github.com/YahboomTechnology/ROSMASTERX3/blob/main/04.X3-ROS2-Tutorials/10.Lidar%20course/6%E3%80%81gmapping%20mapping%20algorithm/6%E3%80%81gmapping%20mapping%20algorithm.pdf


72



Appendix A

Follow Me() function

(object detection module.py)

73



Follow Me() function (object detection module.py)

1 def Follow Me ( ) :
2
3 timeStamp = time . time ( )
4 f p s F i l t = 0
5 net = j e t s o n i n f e r e n c e . detectNet ( ’ ssd−mobilenet−v2 ’ , th r e sho ld

=.65)
6 dispW = 640
7 dispH = 480
8 dange r thre sho ld = 465
9 c l o s e t h r e s h o l d = 450
10 s t op du ra t i on th r e sho l d = 0 .7
11 l a s t s t o p t ime = None
12 f l i p = 2
13 font = cv2 .FONT HERSHEY SIMPLEX
14 cam=cv2 . VideoCapture (0 )
15
16 ct = Centro ids ( )
17 s f = SafeRover ( )
18 fm = FollowMe ( )
19 t a r g e t = −1
20 e r ro r mes sage = −1
21 counter message = 0
22 bounding boxes = {}
23
24 while True :
25 , img = cam . read ( )
26 he ight=img . shape [ 0 ]
27 width=img . shape [ 1 ]
28 frame=cv2 . cvtColor ( img , cv2 .COLORBGR2RGBA) . astype (np . f l o a t 3 2 )
29 frame=j e t s o n u t i l s . cudaFromNumpy( frame )
30
31 d e t e c t i on s=net . Detect ( frame , width , he ight )
32 match ing detec t i ons= [ ]
33 r e c t s = [ ]
34 a l l o b j e c t s= [ ]
35
36 for de tec t in de t e c t i on s :
37
38 ID=detec t . ClassID
39 con f idence=truncate ( f loat ( de t e c t . Conf idence ) ,2 )
40 top=int ( de t e c t . Top)
41 l e f t=int ( de t e c t . Le f t )
42 bottom=int ( de t e c t . Bottom)
43 r i gh t=int ( de t e c t . Right )
44 item=net . GetClassDesc ( ID)
45 box=( l e f t , top , r i ght , bottom )
46
47 i f item == ’ person ’ :
48 match ing detec t i ons . append ( de t e c t )
49 box person=( l e f t , top , r i ght , bottom )

74



Follow Me() function (object detection module.py)

50 r e c t s . append ( box person )
51 cv2 . putText ( img , item+” ”+str ( con f idence ) , ( l e f t , top+20)

, font , . 7 5 , ( 0 , 0 , 2 5 5 ) ,2 )
52 cv2 . r e c t ang l e ( img , ( l e f t , top ) , ( r i ght , bottom ) , ( 0 , 0 , 255 )

,1 )
53
54 a l l o b j e c t s . append ( box )
55 ob j e c t s = ct . c e n t r o i d s r e c a l c u l a t o r ( r e c t s )
56
57 for ( objectID , c en t r o id ) , bbox in zip ( ob j e c t s . i tems ( ) , r e c t s ) :
58 bounding boxes [ objectID ] = bbox # Map CentroidID to i t s

bounding box
59
60 i f ( fm . coun t s l e ep == fm . max sleep ) :
61
62 # Waiting f o r a t a r g e t
63 i f ( t a r g e t == −1) :
64 t a r g e t = fm . f o l l ow update ( ob j ec t s , r e c t s )
65
66 # Target s e l e c t e d
67 else :
68 # Contro l f o r an even tua l l o s t o f t a r g e t
69 i f ( s f . ch e ck ta r g e t ( ob j ec t s , t a r g e t ) == 3) :
70 send stop ( )
71 t a r g e t = −1
72 print ( ”Target Lost : ”+str ( t a r g e t ) )
73 e r ro r mes sage = 1
74
75 else :
76 # Contro l i f an o b j e c t i s too c l o s e
77 ret command=s f . c h e c k c o l l i s i o n ( a l l o b j e c t s )
78 i f ret command == 1 :
79 cv2 . putText ( img , ”− Stop : p r obab i l i t y o f

c o l l i s i o n −” , ( int (120) , int (480/2) ) , font
, . 7 5 , ( 1 00 , 1 00 , 2 55 ) ,4 )

80
81 # Contro l f o r an even tua l sw i t ch ing
82 ret command = s f . check swi tch ( ob j ec t s , target , r e c t s

)
83 i f ( ret command == 2) :
84 cv2 . putText ( img , ”− Probab i l i t y o f an ob j e c t

switch in the next frames −” , ( int (50) , int
(480/2) ) , font , . 7 5 , ( 2 55 , 2 55 , 2 55 ) ,4 )

85 i f ( ret command == 4) :
86 print ( ”Abort Miss ion ” )
87 send stop ( )
88 t a r g e t=−1
89 e r ro r mes sage = 2
90
91 ta r g e t = fm . unfo l low update ( ob j ec t s , r e c t s , t a r g e t )

75



Follow Me() function (object detection module.py)

92 else :
93 fm . coun t s l e ep += 1
94
95 for ( objectID , c en t r o id ) in ob j e c t s . i tems ( ) :
96 # draw both the ID of the o b j e c t and the cen t ro i d o f the

o b j e c t on the output frame
97 text = ”ID {}” . format ( objectID )
98 cv2 . putText ( img , text , ( c en t r o id [ 0 ] − 10 , c en t r o id [ 1 ] −

10) ,
99 cv2 .FONT HERSHEY SIMPLEX, 0 . 5 , (0 , 255 , 0) , 2)

100 cv2 . c i r c l e ( img , ( c en t r o id [ 0 ] , c en t r o id [ 1 ] ) , 4 , (0 , 255 , 0)
, −1)

101
102 i f objectID == ta rg e t :
103 ang le = (np . arctan (abs ( c en t r o id [ 0 ] − (640 / 2) ) /

(480 − c en t r o id [ 1 ] + 0 . 01 ) ) ∗ 180 / math . p i )
104 i f t a r g e t in bounding boxes :
105 , , , bottom = bounding boxes [ t a r g e t ]
106 # I f person i s too c l o s e ( s top area )
107 i f bottom >= c l o s e t h r e s h o l d and bottom <

dange r thre sho ld :
108 send command ( ” stop ” )
109 cv2 . putText ( img , ”STOP” , (200 , 260) , font , 1 ,

(0 , 0 , 255) , 2)
110 l a s t s t o p t ime = time . time ( ) # Record the

time when we stopped
111
112 # I f person i s dangerous ly c l o s e
113 e l i f bottom >= danger thre sho ld :
114 send command ( ”backward” )
115 cv2 . putText ( img , ”MOVE BACKWARD! ” , (220 , 260) ,

font , 1 , (0 , 0 , 255) , 2)
116 l a s t s t o p t ime = time . time ( ) # Reset s top

t imer when moving backward
117
118 # I f person i s f a r enough to resume movement
119 else :
120 # Only resume i f s top time has passed s ince

the l a s t s top message
121 i f l a s t s t o p t ime and time . time ( ) −

l a s t s t o p t ime >= stop du ra t i on th r e sho l d
or l a s t s t o p t ime==None :

122 i f c en t r o id [ 0 ] < 640 / 2 − 10 :
123 send command ( ” l e f t ” , int ( ang le ) )
124 cv2 . putText ( img , ”GO LEFT ” + str ( int (

ang le ) ) + ”deg” , (0 , 40) , font , 1 ,
(255 , 255 , 255) , 2)

125 e l i f c en t r o id [ 0 ] > 640 / 2 + 10 :
126 send command ( ” r i gh t ” , int ( ang le ) )

76



Follow Me() function (object detection module.py)

127 cv2 . putText ( img , ”GO RIGHT ” + str ( int
( ang le ) ) + ”deg” , (440 , 40) , font ,
1 , (255 , 255 , 255) , 2)

128 else :
129 send command ( ” forward ” )
130 cv2 . putText ( img , ”GO STRAIGHT” , (200 ,

40) , font , 1 , (255 , 255 , 255) , 2)
131
132 # Reset l a s t s t o p t im e s ince we ’ re moving

again
133 l a s t s t o p t ime = None
134
135 cv2 . l i n e ( img , ( int (640 / 2) , 480) , ( c en t r o id

[ 0 ] , c en t r o id [ 1 ] + 150) , (255 , 255 , 255) ,
2)

136 #d i s p l a y an eventuaL error message f o r N frames
137 i f ( e r ro r mes sage != −1) :
138 i f ( e r ro r mes sage == 1) :
139 cv2 . putText ( img , ”− Target Lost : Abort Miss ion −” , (

int (350) , int (480/2) ) , font , . 7 5 , ( 1 00 , 1 00 , 2 55 ) ,5 )
140 counter message += 1
141 i f ( counter message == 24) :
142 e r ro r mes sage = −1
143 counter message = 0
144 i f ( e r ro r mes sage == 2) :
145 cv2 . putText ( img , ”− Switching Avoidance : Abort

Miss ion −” , ( int (350) , int (480/2) ) , font
, . 7 5 , ( 1 00 , 1 00 , 2 55 ) ,5 )

146 counter message += 1
147 i f ( counter message == 24) :
148 e r ro r mes sage = −1
149 counter message = 0
150
151 dt=time . time ( )−timeStamp
152 timeStamp=time . time ( )
153 fp s=1/dt
154 f p s F i l t =.9∗ f p s F i l t + .1∗ f p s
155
156 cv2 . putText ( img , str (round( f p sF i l t , 1 ) )+’ fp s ’ , ( 480 ,400) , font

, 1 , ( 0 , 0 , 2 5 5 ) ,2 )
157 cv2 . imshow( ’detCam ’ , img )
158 i f cv2 . waitKey (1 ) == ord ( ’ q ’ ) :
159 break
160 cam . r e l e a s e ( )
161 # Deac t i va t e the robo t when q u i t t i n g
162 s end deac t i va t e ( )
163 cv2 . destroyAllWindows ( )
164 c l i e n t . l o op s top ( )
165 c l i e n t . d i s connec t ( )

77



78



Appendix B

ros2 autonomous follow.py

79



ros2 autonomous follow.py

1 #!/ usr / b in /env python3
2
3 import math
4 import numpy as np
5 import paho . mqtt . c l i e n t as mqtt
6 import j s on
7 import csv
8 from datet ime import datet ime
9 from time import s l e ep , time
10
11
12 # ROS2 l i b r a r i e s
13 import r c lpy
14 from r c lpy . node import Node
15 from sensor msgs . msg import LaserScan
16
17 from Rosmaster Lib import Rosmaster
18
19 # Constants
20 RAD2DEG = 180 / math . p i
21
22 class AutonomousFollower (Node ) :
23 def i n i t ( s e l f , name) :
24 super ( ) . i n i t (name)
25
26 # I n i t i a l i z e STM32 communication
27 s e l f . car = Rosmaster ( )
28 s e l f . car . s e t c a r t y p e (1 )
29 s e l f . car . c r e a t e r e c e i v e t h r e a d i n g ( )
30
31 # I n i t i a l i z e MQTT communication
32 s e l f . mq t t c l i e n t = mqtt . C l i en t ( )
33 s e l f . mq t t c l i e n t . on connect = s e l f . on connect
34 s e l f . mq t t c l i e n t . on message = s e l f . on message
35 s e l f . mq t t c l i e n t . connect ( ” l o c a l h o s t ” , 1883 , 60)
36 s e l f . mq t t c l i e n t . l o o p s t a r t ( )
37
38 # Parameters
39 s e l f . l i n e a r s p e e d = 0 .6
40 s e l f . angu la r speed = 0 .5
41 s e l f . l a t e r a l s p e e d = 0 .4
42 s e l f . d i s t a n c e f r o n t= 2 .0 # ac tua l d i s t ance f r on t to the

neare s t o b j e c t / person
43 s e l f . r e s p o n s e d i s t l a t = 0 .3 # Obstac l e d e t e c t i on d i s t ance
44 s e l f . r e s p o n s e d i s t f r o n t = 0 .5 # Obstac l e d e t e c t i on d i s t ance
45 s e l f . r e s p on s e c l e a r a n c e f r o n t = 1 .8 # Clear from ob s t a c l e

d i s t ance f o r speed con t r o l
46 s e l f . l a s e r a n g l e = 120 .0 # Angle f o r l a s e r range scanning
47
48 # Flags and s t a t e s

80



ros2 autonomous follow.py

49 s e l f . p e r son de t e c t ed = False
50 s e l f . o b s t a c l e d e t e c t e d = False
51 s e l f . o b s t a c l e c l e a r a n c e f r o n t = True
52 s e l f . f r o n t s t o p a r e a = False
53 s e l f . ready = False
54 s e l f . f o l l ow me ac t i v e = False
55 s e l f . e r r o r = False
56 s e l f . emergency stopped = False
57
58 s e l f . o b s t a c l e a v o i d f r o n t = False
59 s e l f . o b s t a c l e a v o i d l e f t = Fal se
60 s e l f . o b s t a c l e a v o i d r i g h t = False
61 s e l f . o b s t a c l e a v o i d a l l = Fal se
62
63 # I n i t i a l i z e LED to b l u e
64 s e l f . s e t l e d c o l o r (0 , 0 , 255)
65
66 # Lidar data v a r i a b l e s
67 s e l f . r i ght warn ing = 0
68 s e l f . l e f t wa rn i n g = 0
69 s e l f . f r ont warn ing = 0
70
71 # Watchdog−r e l a t e d a t t r i b u t e s
72 s e l f . watchdog timeout = 3 .0 # Timeout in seconds
73 s e l f . watchdog timer = None # Placeho lder f o r the watchdog

t imer
74
75 # Sta r t the watchdog t imer when the node i s i n i t i a l i z e d
76 s e l f . r e set watchdog ( )
77
78 # Subsc r i b e r
79 s e l f . s u b l a s e r = s e l f . c r e a t e s ub s c r i p t i o n ( LaserScan , ’ / scan ’ ,

s e l f . l i d a r c a l l b a c k , 10)
80 #Pub l i s h e r
81 s e l f . p ub l i s h b a t t e r y i n f o ( )
82
83 # Timer f o r b a t t e r y v o l t a g e p u b l i s h i n g
84 s e l f . ba t t e ry t imer = s e l f . c r e a t e t ime r ( 5 . 0 , s e l f .

p ub l i s h b a t t e r y i n f o )
85
86 # Timer f o r r e gu l a r data pu b l i s h i n g
87 s e l f . t imer = s e l f . c r e a t e t ime r ( 0 . 1 , s e l f .

f o l l ow pe r s on and avo i d ob s t a c l e s )
88
89 print ( f ”Autonomous Follow me ROS2 node v2” )
90
91 # Fi l e l o g g i n g se tup
92 s e l f . command log f i l e = open( ’ command log . csv ’ , ’w ’ , newl ine=’

’ )
93 s e l f . l i d a r l o g f i l e = open( ’ l i d a r l o g . csv ’ , ’w ’ , newl ine=’ ’ )

81



ros2 autonomous follow.py

94
95 # CSV wr i t e r s
96 s e l f . command writer = csv . wr i t e r ( s e l f . command log f i l e )
97 s e l f . command writer . writerow ( [ ’Time ’ , ’ D i r e c t i on ’ , ’ Angle ’ , ’

L inear Speed ’ , ’ La t e ra l Speed ’ , ’ Angular Speed ’ ] )
98 s e l f . l i d a r w r i t e r = csv . wr i t e r ( s e l f . l i d a r l o g f i l e )
99 s e l f . l i d a r w r i t e r . writerow ( [ ’Time ’ , ’ Distance to Nearest

Object ’ ] )
100
101
102
103 def s e t l e d c o l o r ( s e l f , r , g , b ) :
104 ””” Se t s the RGB LED co l o r on the robo t . ”””
105 s e l f . car . s e t c o l o r f u l l amp s (0xFF , r , g , b ) # 0xFF means a l l

LEDs
106
107 def on connect ( s e l f , c l i e n t , userdata , f l a g s , rc ) :
108 ”””MQTT connect ion c a l l b a c k . ”””
109 print ( f ”Connected to MQTT with r e s u l t code { rc }” )
110 s e l f . ready = True
111 s e l f . s e t l e d c o l o r (0 , 0 , 255) # Blue LED when ready
112 c l i e n t . sub s c r i b e ( ” robot / con t r o l ” )
113 print ( ” Subscr ibed to MQTT top i c ’ robot / con t r o l ’ ” )
114
115 def pub l i s h b a t t e r y i n f o ( s e l f ) :
116 ””” Fetches and pu b l i s h e s the b a t t e r y v o l t a g e . ”””
117 try :
118 ba t t e r y vo l t a g e = s e l f . car . g e t b a t t e r y v o l t a g e ( )
119 print ( f ”Battery Voltage : { ba t t e r y vo l t a g e : . 1 f }V” )
120 except Exception as e :
121 print ( f ”Cannot get bat te ry i n f o : {e}” )
122
123 def reset watchdog ( s e l f ) :
124 ”””Resets the watchdog t imer to s top the robo t i f no message

i s r e c e i v ed . ”””
125 i f s e l f . watchdog timer i s not None :
126 s e l f . watchdog timer . cance l ( ) # Cancel any e x i s t i n g

watchdog t imer
127
128 # Create a new watchdog t imer t ha t s t op s the robo t a f t e r

t imeout dura t ion
129 s e l f . watchdog timer = s e l f . c r e a t e t ime r ( s e l f . watchdog timeout ,

s e l f . s t o p r o b o t du e t o i n a c t i v i t y )
130 #pr in t (”Watchdog t imer r e s e t . ” )
131
132 def log command ( s e l f , d i r e c t i on , angle , l i n e a r sp e ed ,

l a t e r a l s p e e d , angu lar speed ) :
133 l og t ime = datet ime . now( ) . s t r f t ime ( ”%M:%S.% f ” ) [ : −3 ]
134 s e l f . command writer . writerow ( [ log t ime , d i r e c t i on , angle ,

l i n e a r sp e ed , l a t e r a l s p e e d , angu lar speed ] )

82



ros2 autonomous follow.py

135
136 def l o g l i d a r d a t a ( s e l f , d i s t anc e ) :
137 l og t ime = datet ime . now( ) . s t r f t ime ( ”%M:%S.% f ” ) [ : −3 ]
138 s e l f . l i d a r w r i t e r . writerow ( [ log t ime , d i s t ance ] )
139
140 def s t o p r o b o t du e t o i n a c t i v i t y ( s e l f ) :
141 ””” Stops the robo t due to i n a c t i v i t y (no messages r e c e i v ed ) .

”””
142 i f s e l f . f o l l ow me ac t i v e :
143 s e l f . s e t l e d c o l o r (255 , 0 , 0) # Red LED fo r i n a c t i v i t y
144 print ( ”No message r e c e i v ed with in the timeout . Robot

stopped . ” )
145 s e l f . f o l l ow me ac t i v e = False
146 s e l f . car . s e t ca r mot i on (0 , 0 , 0) # Stop the robo t
147 l og t ime = datet ime . now( ) . s t r f t ime ( ”%M:%S.% f ” ) [ : −3 ]
148 s e l f . command writer . writerow ( [ log t ime , ”−−− Deact ivat ion

i n a c t i v i t y −−−” , ’− ’ , ’− ’ , ’− ’ , ’− ’ ] )
149 s e l f . l i d a r w r i t e r . writerow ( [ log t ime , ”−−− Deact ivat ion

i n a c t i v i t y −−−” , ’− ’ , ’− ’ , ’− ’ , ’− ’ ] )
150
151
152
153 def on message ( s e l f , c l i e n t , userdata , msg) :
154 ”””MQTT message c a l l b a c k f o r f o l l ow−me ac t i v a t i o n . ”””
155 print ( f ”Received MQTT message : {msg . payload . decode ( ’ ut f −8 ’)}” )
156 try :
157 # Decode the pay load in to a s t r i n g and then parse the JSON

data
158 message s t r = msg . payload . decode ( ’ ut f−8 ’ )
159 message = j son . l oads ( mes sage s t r ) # Convert the JSON

s t r i n g to a d i c t i ona r y
160 s e l f . r e set watchdog ( )
161 # Extrac t the command and ang le from the message
162 command = message . get ( ”command” , ”” ) # Get the command or

d e f a u l t to an empty s t r i n g
163 ang le = message . get ( ” ang le ” , 0) # Get the ang le or

d e f a u l t to 0
164
165 i f command == ” ac t i v a t e ” :
166 s e l f . f o l l ow me ac t i v e = True
167 s e l f . emergency stopped = False
168 s e l f . s e t l e d c o l o r (0 , 255 , 0) # Green LED when fo l l ow

−me i s a c t i v a t e d
169 print ( ”Follow−me ac t i va t ed ” )
170 l og t ime = datet ime . now( ) . s t r f t ime ( ”%M:%S.% f ” ) [ : −3 ]
171 s e l f . command writer . writerow ( [ log t ime , ”−−−

Act ivat ion Star t −−−” , ’− ’ , ’− ’ , ’− ’ , ’− ’ ] )
172 s e l f . l i d a r w r i t e r . writerow ( [ log t ime , ”−−− Act ivat ion

Star t −−−” , ’− ’ , ’− ’ , ’− ’ , ’− ’ ] )
173

83



ros2 autonomous follow.py

174
175 e l i f command == ” deac t i va t e ” :
176 s e l f . f o l l ow me ac t i v e = False
177 s e l f . car . s e t ca r mot i on (0 , 0 , 0) #Stop the robo t
178 s e l f . s e t l e d c o l o r (0 , 0 , 255) # Blue LED when

dea c t i v a t e d
179 print ( ”Follow−me deac t iva ted ” )
180 l og t ime = datet ime . now( ) . s t r f t ime ( ”%M:%S.% f ” ) [ : −3 ]
181 s e l f . command writer . writerow ( [ log t ime , ”−−−

Deact ivat ion Standard −−−” , ’− ’ , ’− ’ , ’− ’ , ’− ’ ] )
182 s e l f . l i d a r w r i t e r . writerow ( [ log t ime , ”−−−

Deact ivat ion Standard−−−” , ’− ’ , ’− ’ , ’− ’ , ’− ’ ] )
183
184
185 e l i f command == ”emergency stop ” :
186 s e l f . handle emergency stop ( )
187
188 e l i f command == ” forward ” and s e l f . f o l l ow me ac t i v e :
189 i f not s e l f . o b s t a c l e d e t e c t e d and not s e l f .

emergency stopped :
190 l og t ime = datet ime . now( ) . s t r f t ime ( ”%M:%S.% f ” )

[ : −3 ]
191 i f s e l f . o b s t a c l e c l e a r a n c e f r o n t :
192 ””” Fu l l forward speed i f no o b s t a c l e in f r on t

”””
193 s e l f . car . s e t ca r mot i on ( s e l f . l i n e a r sp e ed , 0 ,

0)
194 print ( ”Moving forward f a s t ” )
195 s e l f . command writer . writerow ( [ log t ime , ”

forward ” , 0 , s e l f . l i n e a r sp e ed , 0 , 0 ] )
196
197 else :
198 ””” Propor t iona l forward speed wrt to f r on t

o b s t a c l e / person ”””
199 percentage = ( s e l f . d i s t a n c e f r o n t − s e l f .

r e s p o n s e d i s t f r o n t ) / ( s e l f .
r e s p on s e c l e a r a n c e f r o n t − s e l f .
r e s p o n s e d i s t f r o n t )

200 s e l f . car . s e t ca r mot i on ( s e l f . l i n e a r s p e e d ∗
percentage , 0 , 0)

201 print ( f ”Moving forward p r opo r t i o na l l y with
speed :{ s e l f . l i n e a r s p e e d ∗ percentage }” )

202 s e l f . command writer . writerow ( [ log t ime , ”
forward ” , 0 , s e l f . l i n e a r s p e e d ∗percentage ,
0 , 0 ] )

203
204
205
206 e l i f command == ” l e f t ” and s e l f . f o l l ow me ac t i v e :
207 l og t ime = datet ime . now( ) . s t r f t ime ( ”%M:%S.% f ” ) [ : −3 ]

84



ros2 autonomous follow.py

208 i f ( angle<=15) :
209 ””” Trans la t ing when ang le be low 15 degrees ”””
210 ad j u s t e d l i n e a r s p e e d = s e l f . l i n e a r s p e e d ∗ 0 .7
211 i f not s e l f . o b s t a c l e d e t e c t e d and not s e l f .

emergency stopped :
212 s e l f . car . s e t ca r mot i on ( ad j u s t ed l i n e a r sp e ed

, 0 , s e l f . l a t e r a l s p e e d )
213 print ( f ” Trans la t ing l e f t with l a t e r a l speed : {

s e l f . l a t e r a l s p e e d } , l i n e a r speed : {
ad j u s t e d l i n e a r s p e e d }” )

214 s e l f . command writer . writerow ( [ log t ime , ” l e f t ”
, angle , ad j u s t ed l i n e a r sp e ed , s e l f .
l a t e r a l s p e e d , 0 ] )

215 e l i f ( angle>15 and angle<=28) :
216 ”””Turning s low when ang le be low 28 degrees ”””
217 ad ju s t ed angu la r speed = s e l f . angu lar speed ∗0 .05
218 ad j u s t e d l i n e a r s p e e d = s e l f . l i n e a r s p e e d ∗ 0 .6
219 i f not s e l f . o b s t a c l e d e t e c t e d and not s e l f .

emergency stopped :
220 s e l f . car . se t p id param (0 . 1 , 3 , 3 , 0)
221 s e l f . car . s e t ca r mot i on ( ad j u s t ed l i n e a r sp e ed ,

ad jus t ed angu la r speed , 0)
222 print ( f ”Turning l e f t with angular speed : {

ad ju s t ed angu la r speed } , l i n e a r speed : {
ad j u s t e d l i n e a r s p e e d }” )

223 s e l f . command writer . writerow ( [ log t ime , ” l e f t ”
, angle , ad j u s t ed l i n e a r sp e ed ,
ad ju s t ed angu la r speed ] )

224 else :
225 ”””Turning f a s t e r when ang le over 28 degrees ”””
226 ad ju s t ed angu la r speed = s e l f . angu lar speed ∗0 .08
227 ad j u s t e d l i n e a r s p e e d = s e l f . l i n e a r s p e e d ∗ 0 .5
228 i f not s e l f . o b s t a c l e d e t e c t e d and not s e l f .

emergency stopped :
229 s e l f . car . se t p id param (0 . 1 , 3 , 3 , 0) # PID

parameter adjustment
230 s e l f . car . s e t ca r mot i on ( ad j u s t ed l i n e a r sp e ed ,

ad jus t ed angu la r speed , 0)
231 print ( f ”Turning f a s t l e f t with angular speed :

{ ad ju s t ed angu la r speed } , l i n e a r speed : {
ad j u s t e d l i n e a r s p e e d }” )

232 s e l f . command writer . writerow ( [ log t ime , ” l e f t ”
, angle , ad j u s t ed l i n e a r sp e ed ,
ad ju s t ed angu la r speed ] )

233
234 e l i f command == ” r i gh t ” and s e l f . f o l l ow me ac t i v e :
235 l og t ime = datet ime . now( ) . s t r f t ime ( ”%M:%S.% f ” ) [ : −3 ]
236 i f ( angle<=15) :
237 ””” Trans la t ing when ang le be low 15 degrees ”””
238 ad j u s t e d l i n e a r s p e e d = s e l f . l i n e a r s p e e d ∗ 0 .7

85



ros2 autonomous follow.py

239 i f not s e l f . o b s t a c l e d e t e c t e d and not s e l f .
emergency stopped :

240 s e l f . car . s e t ca r mot i on ( ad j u s t ed l i n e a r sp e ed
, 0 , − s e l f . l a t e r a l s p e e d )

241 print ( f ” Trans la t ing r i g h t with l a t e r a l speed :
{ s e l f . l a t e r a l s p e e d } , l i n e a r speed : {
ad j u s t e d l i n e a r s p e e d }” )

242 s e l f . command writer . writerow ( [ log t ime , ” r i g h t
” , −angle , ad j u s t ed l i n e a r sp e ed , − s e l f .
l a t e r a l s p e e d , 0 ] )

243 e l i f ( angle>15 and angle<=28) :
244 ”””Turning s low when ang le be low 28 degrees ”””
245 ad ju s t ed angu la r speed = s e l f . angu lar speed ∗0 .05
246 ad j u s t e d l i n e a r s p e e d = s e l f . l i n e a r s p e e d ∗ 0 .6
247 i f not s e l f . o b s t a c l e d e t e c t e d and not s e l f .

emergency stopped :
248 s e l f . car . se t p id param (0 . 1 , 3 , 3 , 0)
249 s e l f . car . s e t ca r mot i on ( ad j u s t ed l i n e a r sp e ed ,

−ad jus t ed angu la r speed , 0)
250 print ( f ”Turning r i gh t with angular speed : {

ad ju s t ed angu la r speed } , l i n e a r speed : {
ad j u s t e d l i n e a r s p e e d }” )

251 s e l f . command writer . writerow ( [ log t ime , ” r i g h t
” , −angle , ad j u s t ed l i n e a r sp e ed , −
ad ju s t ed angu la r speed ] )

252
253 else :
254 ”””Turning f a s t e r when ang le over 28 degrees ”””
255 ad ju s t ed angu la r speed = s e l f . angu lar speed ∗0 .08
256 ad j u s t e d l i n e a r s p e e d = s e l f . l i n e a r s p e e d ∗ 0 .5
257 i f not s e l f . o b s t a c l e d e t e c t e d and not s e l f .

emergency stopped :
258 s e l f . car . se t p id param (0 . 1 , 3 , 3 , 0) # PID

parameter adjustment
259 s e l f . car . s e t ca r mot i on ( ad j u s t ed l i n e a r sp e ed ,

−ad jus t ed angu la r speed , 0)
260 print ( f ”Turning f a s t r i g h t with angular speed :

{ ad ju s t ed angu la r speed } , l i n e a r speed : {
ad j u s t e d l i n e a r s p e e d }” )

261 s e l f . command writer . writerow ( [ log t ime , ” r i g h t
” , −angle , ad j u s t ed l i n e a r sp e ed , −
ad ju s t ed angu la r speed ] )

262
263 e l i f command == ” stop ” :
264 l og t ime = datet ime . now( ) . s t r f t ime ( ”%M:%S.% f ” ) [ : −3 ]
265 i f s e l f . f o l l ow me ac t i v e :
266 i f s e l f . f r o n t s t o p a r e a : # Avoid s topp ing f o r

e r ro r s in the bounding box
267 s e l f . car . s e t ca r mot i on (0 , 0 , 0) # Stop

motors

86



ros2 autonomous follow.py

268 print ( ”Robot stopped” )
269 s e l f . s e t l e d c o l o r (255 , 0 , 0) # Red LED fo r

s top
270 s e l f . command writer . writerow ( [ log t ime , ” stop ”

, 0 , 0 , 0 , 0 ] )
271 s l e e p ( 0 . 5 )
272 else :
273 # Ignore the s top command i f the bounding box

i s f a u l t y but t h e r e ’ s no o b s t a c l e in f r on t
274 print ( ”Stop command ignored due to c l e a r LiDAR

data in f r on t . ” )
275
276
277 e l i f command == ”backward” :
278 l og t ime = datet ime . now( ) . s t r f t ime ( ”%M:%S.% f ” ) [ : −3 ]
279 i f s e l f . f o l l ow me ac t i v e :
280 i f not s e l f . o b s t a c l e a v o i d a l l and s e l f .

f r o n t s t o p a r e a :
281 ad j u s t e d l i n e a r s p e e d = s e l f . l i n e a r s p e e d ∗

0 .2
282 s e l f . car . s e t ca r mot i on (− ad ju s t ed l i n e a r sp e ed

, 0 , 0)
283 print ( ”Robot moving backwards” )
284 s e l f . s e t l e d c o l o r (255 , 0 , 0) # Red LED fo r

moving backwards
285 s e l f . command writer . writerow ( [ log t ime , ”

backwards” , 0 , −ad ju s t ed l i n e a r sp e ed , 0 ,
0 ] )

286 s l e e p ( 0 . 6 )
287 else :
288 # Ignore the s top command i f the bounding box

i s f a u l t y but t h e r e ’ s no o b s t a c l e in f r on t
289 print ( ”Backward command ignored due to c l e a r

LiDAR data in f r on t . ” )
290
291 except j s on . JSONDecodeError as e :
292 print ( f ” Fa i l ed to decode MQTT message : {e}” )
293 except KeyError as e :
294 print ( f ”Key e r r o r : {e}” )
295 except Exception as e :
296 print ( f ”Unexpected e r r o r : {e}” )
297
298 def handle emergency stop ( s e l f ) :
299 ”””Handles an emergency s top by s topp ing the robo t ”””
300 s e l f . f o l l ow me ac t i v e = False
301 s e l f . emergency stopped = True
302 s e l f . car . s e t ca r mot i on (0 , 0 , 0)
303 s e l f . s e t l e d c o l o r (255 , 0 , 0) # Red LED fo r emergency s top
304 print ( ”Emergency stop r e c e i v ed . Robot stopped and f o l l ow

func t i on deac t iva ted . ” )

87



ros2 autonomous follow.py

305
306 def l i d a r c a l l b a c k ( s e l f , s can data ) :
307 ””” Processes LiDAR data f o r o b s t a c l e d e t e c t i on . ”””
308 ranges = np . array ( scan data . ranges )
309 s e l f . r i ght warn ing = 0
310 s e l f . l e f t wa rn i n g = 0
311 s e l f . f r ont warn ing = 0
312
313
314 for i in range ( len ( ranges ) ) :
315 l og t ime = datet ime . now( ) . s t r f t ime ( ”%M:%S.% f ” ) [ : −3 ]
316 ang le = ( scan data . angle min + scan data .

ang l e inc rement ∗ i ) ∗ RAD2DEG
317 i f 160 > ang le > 180 − s e l f . l a s e r a n g l e :
318 i f ranges [ i ] < s e l f . r e s p o n s e d i s t l a t :
319 s e l f . r i ght warn ing += 1
320
321 i f −160 < ang le < s e l f . l a s e r a n g l e − 180 :
322 i f ranges [ i ] < s e l f . r e s p o n s e d i s t l a t :
323 s e l f . l e f t wa rn i n g += 1
324
325 i f abs ( ang le ) > 160 :
326 s e l f . d i s t a n c e f r o n t = ranges [ i ]
327 s e l f . l i d a r w r i t e r ( [ l og t ime , s e l f . d i s t a n c e f r o n t ] )
328 i f ranges [ i ] <= s e l f . r e s p o n s e d i s t f r o n t :
329 s e l f . f r ont warn ing += 1
330 i f ranges [ i ] < s e l f . r e s p on s e c l e a r a n c e f r o n t :
331 s e l f . o b s t a c l e c l e a r a n c e f r o n t = False
332 i f ranges [ i ] >= s e l f . r e s p on s e c l e a r a n c e f r o n t :
333 s e l f . o b s t a c l e c l e a r a n c e f r o n t = True
334 i f ranges [ i ] < s e l f . r e s p on s e c l e a r an c e f r on t −0.5 :
335 s e l f . f r o n t s t o p a r e a = True
336 i f ranges [ i ] >= s e l f . r e s p on s e c l e a r an c e f r on t

−0.5 :
337 s e l f . f r o n t s t o p a r e a = False
338
339
340
341 #ob s t a c l e l e f t
342 i f s e l f . l e f t wa rn i n g > 10 :
343 s e l f . o b s t a c l e d e t e c t e d = True
344 s e l f . o b s t a c l e a v o i d l e f t = True
345 print ( f ” Lidar data : Front : { s e l f . f r ont warn ing } , Le f t : {

s e l f . l e f t wa rn i n g } , Right : { s e l f . r i gh t warn ing }” )
346
347 #ob s t a c l e r i g h t
348 e l i f s e l f . r i gh t warn ing > 10 :
349 s e l f . o b s t a c l e d e t e c t e d = True
350 s e l f . o b s t a c l e a v o i d r i g h t = True

88



ros2 autonomous follow.py

351 print ( f ” Lidar data : Front : { s e l f . f r ont warn ing } , Le f t : {
s e l f . l e f t wa rn i n g } , Right : { s e l f . r i gh t warn ing }” )

352
353 #ob s t a c l e f r on t
354 e l i f s e l f . f r ont warn ing > 10 :
355 s e l f . o b s t a c l e d e t e c t e d = True
356 s e l f . o b s t a c l e a v o i d f r o n t = True
357 print ( f ” Lidar data : Front : { s e l f . f r ont warn ing } , Le f t : {

s e l f . l e f t wa rn i n g } , Right : { s e l f . r i gh t warn ing }” )
358
359
360 #ob s t a c l e in a l l d i r e c t i o n s
361 e l i f s e l f . f r ont warn ing > 10 and s e l f . l e f t wa rn i n g > 10 and

s e l f . r i gh t warn ing > 10 :
362 s e l f . o b s t a c l e d e t e c t e d = True
363 s e l f . o b s t a c l e a v o i d a l l = True
364 print ( f ” Lidar data : Front : { s e l f . f r ont warn ing } , Le f t : {

s e l f . l e f t wa rn i n g } , Right : { s e l f . r i gh t warn ing }” )
365
366
367 else :
368
369 i f s e l f . f o l l ow me ac t i v e :
370 s e l f . s e t l e d c o l o r (0 , 255 , 0) # green LED fo r

o b s t a c l e c l e a r ed and f o l l ow me a c t i v e
371 else :
372 s e l f . s e t l e d c o l o r (0 , 0 , 255) # b lu LED fo r o b s t a c l e

c l e a r ed and f o l l ow me not a c t i v e
373
374 s e l f . o b s t a c l e d e t e c t e d = False
375 s e l f . o b s t a c l e a v o i d f r o n t = False
376 s e l f . o b s t a c l e a v o i d l e f t = Fal se
377 s e l f . o b s t a c l e a v o i d r i g h t = False
378 s e l f . o b s t a c l e a v o i d a l l = Fal se
379
380 def f o l l ow pe r s on and avo i d ob s t a c l e s ( s e l f ) :
381 ”””Logic f o r f o l l ow i n g the person and avo id ing o b s t a c l e s . ”””
382
383 # Wait i f the system i s not ready
384 i f not s e l f . ready :
385 print ( ”Waiting f o r MQTT connect ion . . . ” )
386 return
387
388 # I f f o l l ow−me i s a c t i v e and the re are no ob s t a c l e s , f o l l ow

the person
389 i f s e l f . f o l l ow me ac t i v e and not s e l f . o b s t a c l e d e t e c t e d :
390 s e l f . s e t l e d c o l o r (0 , 255 , 0) # Green LED when fo l l ow−me

i s a c t i v e and no o b s t a c l e s
391 print ( ”No ob s t a c l e s . Fol lowing person . ” )
392 return

89



ros2 autonomous follow.py

393
394 # I f f o l l ow−me i s not a c t i v e but no o b s t a c l e s de tec t ed , ensure

robo t s t op s
395 i f not s e l f . f o l l ow me ac t i v e and not s e l f . o b s t a c l e d e t e c t e d :
396 s e l f . s e t l e d c o l o r (0 , 0 , 255) # Blue LED fo r f o l l ow−me

not a c t i v e and no o b s t a c l e s
397 s e l f . car . s e t ca r mot i on (0 , 0 , 0) # Ensure the robo t f u l l y

s t op s i f i n a c t i v e
398 return
399
400 # Stop i f f o l l ow−me mode i s not a c t i v a t e d
401 i f not s e l f . f o l l ow me ac t i v e :
402 print ( ”Follow−me i s not ac t i va t ed . ” )
403 s e l f . car . s e t ca r mot i on (0 , 0 , 0) # Ensure the robo t f u l l y

s t op s i f not a c t i v e
404 s e l f . s e t l e d c o l o r (0 , 0 , 255) # Blue LED fo r f o l l ow−me

not a c t i v e
405 return
406
407 i f s e l f . f o l l ow me ac t i v e and s e l f . o b s t a c l e d e t e c t e d :
408 s e l f . s e t l e d c o l o r (255 , 0 , 0) # Red LED fo r o b s t a c l e

d e t e c t e d
409 i f s e l f . o b s t a c l e a v o i d a l l :
410 ”””Obs tac l e in a l l d i r e c t i o n s ”””
411 print ( ”Obstac le detec ted . Robot i s stopped . ” )
412 s e l f . car . s e t ca r mot i on (0 , 0 , 0) # Ensure the robo t

f u l l y s t op s on o b s t a c l e d e t e c t i on
413
414 e l i f s e l f . o b s t a c l e a v o i d r i g h t and s e l f .

o b s t a c l e a v o i d l e f t :
415 ””” Obs tac l e s on both s i d e s ”””
416 s e l f . car . s e t ca r mot i on ( s e l f . l i n e a r s p e e d ∗ 0 . 5 , 0 , 0)

# Obstac l e both l e f t and r i g h t s l ow l y move
forward

417 print ( ”Obstac l e s detec ted on both s i d e s . Moving s low ly
forward . ” )

418
419 e l i f s e l f . o b s t a c l e a v o i d l e f t and s e l f .

o b s t a c l e a v o i d f r o n t :
420 ”””Obs tac l e on the l e f t and f r on t ”””
421 s e l f . car . s e t ca r mot i on (0 , 0 , − s e l f . angu lar speed ∗

1 . 2 ) # I f o b s t a c l e a l s o in f ront , r o t a t e to the
r i g h t

422 print ( ”Obstac le detec ted on the l e f t . Robot moving
r i g h t . ” )

423
424 e l i f s e l f . o b s t a c l e a v o i d r i g h t and s e l f .

o b s t a c l e a v o i d f r o n t :
425 ”””Obs tac l e on the r i g h t and f r on t ”””

90



ros2 autonomous follow.py

426 s e l f . car . s e t ca r mot i on (0 , 0 , s e l f . angu lar speed ∗
1 . 2 ) # I f o b s t a c l e a l s o in f ront , r o t a t e to the
l e f t

427 print ( ”Obstac le detec ted on the r i g h t . Robot moving
l e f t . ” )

428
429 e l i f s e l f . o b s t a c l e a v o i d l e f t :
430 ”””Obs tac l e on the l e f t ”””
431 s e l f . car . s e t ca r mot i on ( s e l f . l i n e a r s p e e d ∗ 0 . 5 , 0 , −

s e l f . angu lar speed ∗ 1 . 2 ) # Move forward−r i g h t
432 print ( ”Obstac le detec ted on the l e f t . Robot moving

forward r i gh t . ” )
433
434 e l i f s e l f . o b s t a c l e a v o i d r i g h t :
435 ”””Obs tac l e on the r i g h t ”””
436 s e l f . car . s e t ca r mot i on ( s e l f . l i n e a r s p e e d ∗ 0 . 5 , 0 ,

s e l f . angu lar speed ∗ 1 . 2 ) # Move forward− l e f t
437 print ( ”Obstac le detec ted on the r i g h t . Robot moving

forward l e f t . ” )
438
439 e l i f s e l f . o b s t a c l e a v o i d f r o n t :
440 ”””Obs tac l e in f r on t ”””
441 s e l f . car . s e t ca r mot i on (− s e l f . l i n e a r s p e e d ∗ 0 . 3 , 0 ,

0) # Move backwards
442 print ( ”Obstac le detec ted in f r on t . Robot moving

backwards . ” )
443
444 return
445
446
447 def main ( args=None ) :
448 r c lpy . i n i t ( args=args )
449 node = AutonomousFollower ( ” autonomous fo l lower ” )
450 try :
451 r c lpy . sp in ( node )
452 except KeyboardInterrupt :
453 node . car . s e t ca r mot i on (0 , 0 , 0) # Stop the robo t motors
454 node . s e t l e d c o l o r (0 , 0 , 0) # Turn o f f LEDs on shutdown
455 node . command log f i l e . c l o s e ( )
456 node . l i d a r l o g f i l e . c l o s e ( )
457 node . dest roy node ( )
458 f ina l ly :
459 r c lpy . shutdown ( )
460
461 i f name == ’ ma in ’ :
462 main ( )

91


	List of Figures
	List of Tables
	Acronyms
	Introduction
	Goals
	Autonomous Robots
	Thesis Outline

	State of Art
	Robotic Operating System - ROS
	ROS architecture
	ROS1 and ROS2 comparison

	LiDAR
	Single Laser LiDAR
	Time Of Flight method

	Docker
	Docker Engine
	Containers

	Machine Learning and Neural Networks

	Hardware and Architecture
	Components
	Jetson NANO
	ROS Robot expansion board (STM32)
	LiDAR RPLIDAR A1
	RGB Depth Camera Orbbec
	Mecanum wheel

	Assembly steps
	Architecture of the robot
	Environment and System configuration
	VScode and SSH connection
	Container configuration


	Software
	Firmware and STM32
	Rosmaster Library
	Python script
	Adaptation of the Follow Me function

	ROS2 script
	Development stages
	Robot Motion commands
	LaserScan Data
	LED light status
	Launch file

	MQTT comunication
	System Architecture and Communication Overview


	Evaluation and Testing
	System Startup Procedure
	Initial Adjustments
	Robot behavior and Data analysis
	Trajectory Reconstruction

	Conclusions and Future works
	Problems and Limits of the system
	Future works
	ADAS development

	Final Consideration

	Bibliography
	Follow_Me() function (object_detection_module.py)
	ros2_autonomous_follow.py

