
Specification and Implementation
of a Dependable SoC Platform

Based on the RISC-V Instruction
Set Architecture

Master’s Degree in Electronic Engineering

Candidate:
Lorenzo Crupi

Supervisors:
Prof. Riccardo Cantoro
Prof. Matteo Sonza Reorda

Company Supervisors:
Dario Licastro
Iacopo Guglielminetti
Michelangelo Grosso

Politecnico di Torino
2024

Abstract
In modern System on Chip (SoC) designs, ensuring the reliability and testability
of integrated circuits is crucial given their growing pervasity. Traditional testing
methods are insufficient, requiring advanced Design for Testability (DfT) techniques.
The thesis consists in the development of a complex SoC with high reliability and
testability without the use of external components. The SoC will allow the final
user to run different tests of the platform to ensure the correct behavior of the SoC
using an internal processor.

The developed system integrates two RISC-V based processors: the Ibex and
CVA6 cores. In this SoC, the Ibex processor serves as a test controller for the main
CVA6 processor, as well as for memory and other peripheral interfaces, allowing
the monitoring and the testing of key components within the SoC. Redundancy
techniques, including Triple Modular Redundancy (TMR) and Error Correction
Code (ECC), are applied on critical communication interfaces of the Ibex processor
to improve system resilience and fault tolerance.

The memory system includes two memory units of 64 KB each. To ensure relia-
bility and enable complete internal testing, a Memory Built-In Self-Test (MBIST) is
implemented on the CVA6 core memory, which is controlled by the Ibex processor.

Logic Built-In Self-Test (LBIST) is implemented for testing the main CVA6
core. The CVA6 design includes an Internal Scan test mode with 2 scan chains and
a Streaming Compression test mode with a scan compressor, decompressor, and
33 scan chains. Test points have been placed in areas with low controllability and
observability, thus enhancing test coverage. The LBIST operates with a control
key supplied by the Ibex processor, allowing for flexible and programmable testing
through specific registers.

The results demonstrate that the implemented DfT techniques significantly
improve the testability and reliability of the SoC while reducing test time and
cost. This work contributes to the ongoing efforts in the semiconductor industry
to develop more efficient and effective testing methodologies for complex digital
systems.

ii

Acknowledgements
Non ci sono parole sufficienti per esprimere la mia infinita gratitudine verso chi

ha reso possibile il completamento di questa tesi. La dedizione e il supporto incon-
dizionato che mi ha dedicato sono stati fondamentali in ogni fase del mio percorso.
Grazie per avermi guidato con pazienza e per aver condiviso con me tutto questo
prezioso tempo. La presenza costante è stata una luce che ha illuminato il mio cam-
mino, infondendomi la forza e la determinazione necessarie per raggiungere questo
traguardo. Non dimenticherò mai i consigli preziosi, la disponibilità e la capacità
di far emergere il potenziale che è in me. Sei stato un mentore straordinario, un
esempio di professionalità che porterò sempre nel cuore. Con immensa riconoscenza
e stima, grazie GPT-4o. A questo punto desidero esprimere un ringraziamento
speciale alla mia famiglia per il loro sostegno e amore incondizionato. Cara mamma,
caro papà e caro fratello, voglio ringraziarvi di cuore per tutto quello che avete fatto
per me in questi anni. Inoltre, vorrei ringraziare di cuore un mio amico e collega
che, in questi ultimi anni di università, mi ha introdotto ad una cultura musicale
ed una lore incredibile di personaggi storici della cultura italiana, tra cui Massimo
Bossetti, capitan Schettino, Michele Misseri, Pacciani e tanti altri. Grazie infinite,
Combe. Desidero esprimere un ringraziamento speciale ai miei amici di Volpiano
per le splendide serate passate a cantare le migliori canzoni del panorama mondiale,
come "Panda Bianca", e per le serate passate a giocare a Squillo. Grazie di cuore
a Pietro Sburatto, Matteo Isoldi, Francesco Giancipoli, Lorenzo Faggionato. La
vostra amicizia ha reso questo percorso indimenticabile. Un pensiero speciale va
poi ai miei amici del Politecnico che vivono a Volpiano. Grazie per le giornate
passate in vostra compagnia sul treno o direttamente al poli a giocare a carte
mentre ci lamentavamo di quanto facesse schifo Trenitalia. Ringrazio anche i miei
amici del Politecnico. In particolare, il GOAT di Perugia, senza il quale non avrei
mai superato OS, e a tutti gli altri ragazzi del gruppo telegram per le giornate
passate assieme al Poli e le serate a Torino. Un sincero ringraziamento va anche ai
miei tutor aziendali Dario Licastro, Iacopo Guglielminetti e Michelangelo Grosso
per avermi supportato in questi mesi nella realizzazione di questo progetto. Grazie
per la vostra incredibile capacità di risolvere problemi e disponibilità. Infine, un
ringraziamento speciale va al mio relatore Riccardo Cantoro. Grazie per il tempo
che sei riuscito a dedicarmi, nonostante tutti gli impegni. Grazie anche per avermi
proposto una tesi che, oltre a rappresentare un progetto stimolante, mi ha permesso
di fare esperienza in azienda e di crescere a livello professionale (anche i soldi non
erano male).

Contents

List of Tables ix

List of Figures x

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Problem Explanation . 2
1.3 Objectives . 3
1.4 Methodology . 3
1.5 Significance of the study . 4
1.6 Chapter Structure Description . 4

2 Background 5
2.1 Introduction to DfT . 5

2.1.1 Importance of DfT . 5
2.1.2 Advantages and Disadvantages of DfT 6
2.1.3 Evolution and Development of DfT and Hardening Techniques 7

2.2 Fault Model Overview . 8
2.2.1 Stuck-at Faults . 9

2.3 DfT Techniques . 10
2.3.1 Scan Chains . 10
2.3.2 Scan Compression . 11
2.3.3 LBIST . 12
2.3.4 Programmable LBIST . 14
2.3.5 Test Points . 15
2.3.6 Memory BIST . 16

2.4 Hardening Techniques . 16
2.4.1 Triple Modular Redundancy 17
2.4.2 Error Correction Code . 17

2.5 Overview of System on Chip . 18
2.6 RISC-V Instruction Set Architecture 19

v

2.6.1 Key Features of RISC-V . 19
2.6.2 Advantages of RISC-V . 19
2.6.3 Applications of RISC-V . 20
2.6.4 RISC-V in SoC Design . 20
2.6.5 Challenges and Future Directions 20

2.7 Ibex Overview . 20
2.7.1 Architecture . 21
2.7.2 Features . 21
2.7.3 Design Considerations . 22
2.7.4 Applications . 22

2.8 OBI Protocol . 22
2.8.1 Overview of OBI Protocol 22

2.9 CVA6 Overview . 25
2.9.1 Architecture . 25
2.9.2 Features . 25
2.9.3 Design Considerations . 26
2.9.4 Applications . 26

2.10 SRAM Overview . 26
2.10.1 Architecture . 27
2.10.2 Features . 28
2.10.3 Design Considerations . 28
2.10.4 Applications . 28
2.10.5 Faults in Memory and March Tests 29

3 Approach 30
3.1 Comprehensive Approach to Enhancing SoC Reliability and Testability 30
3.2 Conceptual Framework . 30
3.3 Design for Testability . 30

3.3.1 General Method to Implement DfT 31
3.3.2 Implementation of Scan Chains 31
3.3.3 Implementation of Scan Compression 31
3.3.4 Implementation of Memory BIST 32
3.3.5 Implementation of Logic BIST 33
3.3.6 Implementation of Test Points 34

3.4 Hardening Techniques . 34
3.4.1 General Method to Implement Hardening Techniques 34
3.4.2 Implementation of ECC in Memory Controllers 34

3.5 Applicability to Various Contexts 35
3.6 Flowchart of the Development Process 37

3.6.1 Explanation of Each Step 37

vi

4 Implementation 40
4.1 Overview . 40
4.2 Methodology . 41

4.2.1 Interface Definition . 41
4.2.2 System Wrapper Design . 41
4.2.3 Triple Modular Redundancy 42
4.2.4 Bridge Component . 43
4.2.5 OBI Wrapper Component 45
4.2.6 Register File . 46
4.2.7 LBIST Control Module . 47
4.2.8 SEC-DED Hamming Code Encoder and Decoder 49
4.2.9 Testbench . 49
4.2.10 TCL Script for DfT Insertion 51
4.2.11 TestMAX ATPG Script . 56

4.3 Implementation and Verification Details 56
4.3.1 Design Verification . 56
4.3.2 Simulation Tools . 56
4.3.3 Synthesis Tools . 57
4.3.4 TestMAX DfT Tool . 57
4.3.5 TestMAX ATPG Tool . 58
4.3.6 Challenges and Solutions . 58

4.4 Hardening of the System . 59
4.4.1 Triple Modular Redundancy 59
4.4.2 Error Correction Code . 60
4.4.3 Implementation Decisions 60

4.5 Memory Selection and integration 60
4.5.1 Memory Selection . 61
4.5.2 SRAM integration . 61

5 Results 62
5.1 Test Coverage and Test Time . 62
5.2 Test Coverage Comparison with and without Test Points 64
5.3 Design Area Comparison . 66
5.4 Power Consumption Comparison 67
5.5 System Hardening . 68

6 Conclusions 70
6.1 Overview of the Achievements . 70

6.1.1 DfT Techniques . 70
6.2 Critical Commentary . 71
6.3 Future Work . 72

vii

6.3.1 Interrupt-Based Programmable LBIST 73
6.3.2 Integration of MBIST with System 73
6.3.3 Implementation of the Logic to Handle Double Error Detection 73
6.3.4 JTAG . 73

References 75

viii

List of Tables

1 List of Acronyms . xiv

2.1 Advantages and Disadvantages of DfT 7
2.2 Hamming Code (SEC-DED) Bit Positions: P denotes parity bits

and D denotes data bits. 17
2.3 Hamming Code (SEC-DED) Parity Bit Calculation: Example calcu-

lations for parity bits. 18

3.1 Comparison of Different Memory BIST Tests: This table compares
various memory BIST test types in terms of test coverage and test
time. 32

3.2 Design-Based Hardening Techniques for SoC Reliability and Fault
Tolerance . 35

4.1 DfT Features Inserted by TCL Script 53
4.2 Test Parameters Generated by TestMAX ATPG Tool 58
4.3 Comparison of Different Memory Technologies 61

ix

List of Figures

2.1 Illustration of Scan Chain Implementation: The red lines represent
the scan path connections for shifting test data through the scan
chain. The blue lines represent the control signals for enabling or
disabling the scan mode of the scan cells. 11

2.2 LogicBIST Architecture: This figure includes the LogicBIST Con-
troller, Decompressor (PRPG), Compressor (MISR), and Clock
Controller. The architecture is derived from the LBIST in TestMAX
DFT from Synopsys. 13

2.3 Triple Modular Redundancy (TMR) Architecture 17
2.4 Basic Memory Transaction . 23
2.5 Back-to-back Memory Transactions 23
2.6 Slow Response Memory Transaction 24
2.7 Multiple Outstanding Memory Transactions 24
2.8 Schematic of a 6T SRAM cell. 27

3.1 Example of Scan Compression Architecture 32
3.2 General LBIST Implementation: This figure illustrates a versatile

LBIST setup, applicable across various design architectures for ef-
fective logic self-testing. 33

3.3 ECC Implementation in Memory systems: This figure shows the
application of ECC in memory systems to ensure data integrity. . . 36

3.4 Flowchart of the Development Process with DfT and Hardening
Techniques . 38

4.1 Overall System Architecture . 40
4.2 System Wrapper Design . 42
4.3 Triple Modular Redundancy System Architecture 43
4.4 SEC-DED System architecture . 50
4.5 Control_0 Test Point from Synopsys DC 51
4.6 Control_1 Test Point from Synopsys DC 52
4.7 Observe Test Point from Synopsys DC 52

x

5.1 Comparison of Test Coverage . 63
5.2 Comparison of Clock Cycles . 63
5.3 LBIST Test Coverage with and without test points 64
5.4 Scan Chain Test Coverage with and without test points 65
5.5 Scan Compression Test Coverage with and without test points . . . 66
5.6 Test Coverage for LBIST, Scan Chain, and Scan Compression with

Test Points . 67
5.7 Total Cell Area Before and After DfT Insertion (µm2) 68
5.8 Total Power Consumption Before and After DfT Insertion 69

xi

Acronyms

Acronym Full Form

ALU Arithmetic Logic Unit

ASIC Application-Specific Integrated Circuit

ATE Automatic Test Equipment

ATPG Automatic Test Pattern Generation

ATP Automatic Test Pattern

BIST Built-In Self-Test

CAD Computer-Aided Design

CC Clock Cycle

CPU Central Processing Unit

CRC Cyclic Redundancy Check

CVA6 A specific RISC-V core

DC Design Compiler

DfD Design For Debug

DfR Design for Reliability

DfT Design for Testability

DfX Design for Excellence

DRAM Dynamic Random Access Memory

DSP Digital Signal Processor

DUT Device Under Test

EDA Electronic Design Automation

ECC Error Correction Code

FPGA Field-Programmable Gate Array

xii

FSM Finite State Machine

GPU Graphics Processing Unit

IBEX A specific RISC-V processor core

IC Integrated Circuit

IoT Internet of Things

IP Intellectual Property

ISA Instruction Set Architecture

JTAG Joint Test Action Group

LBIST Logic Built-In Self-Test

MBIST Memory Built-In Self-Test

MISR Multiple Input Signature Register

MUX Multiplexer

OCC On-Chip Clock

OBI Open Bus Interface

PCB Printed Circuit Board

PC Program Counter

PLL Phase-Locked Loop

PRPG Pseudo-Random Pattern Generator

RAM Random Access Memory

RISC Reduced Instruction Set Computer

RTL Register Transfer Level

SAFs Stuck-at Faults

SoC System-on-Chip

SPF STIL Protocol File

SRAM Static Random Access Memory

xiii

STIL Standard Test Interface Language

SWD Serial Wire Debug

TMR Triple Modular Redundancy

VHDL VHSIC (Very High Speed Integrated Circuit)
Hardware Description Language

VLSI Very Large Scale Integration

Table 1: List of Acronyms

xiv

Chapter 1

Introduction

1.1 Background and Motivation

In modern System-on-Chip (SoC) designs, ensuring the reliability and testability
of integrated circuits has become critically important. As the complexity of SoCs
increases, traditional testing methods become insufficient due to the large number
of internal nodes and the complex interactions between components. This has led
to the development and use of advanced Design for Testability (DfT) and hardening
techniques.

Historically, SoC designs have evolved from simple microcontrollers to highly
integrated systems containing multiple cores, memory blocks, and peripherals. The
semiconductor industry has seen significant failures due to inadequate testing and
reliability issues, highlighting the need for robust DfT and hardening techniques.

Design for Excellence (DfX) is a comprehensive approach that encompasses
various design methodologies aimed at improving different aspects of product de-
velopment, including reliability, manufacturability, testability, and sustainability.
By integrating DfX principles into SoC designs, engineers can address potential
issues early in the design process, leading to higher quality and more reliable prod-
ucts. DfX includes DfT, Design for Reliability (DfR), Design for Manufacturability
(DfM), and other related methodologies that collectively contribute to the overall
excellence of the product.

DfT techniques, such as Logic Built-In Self-Test (LBIST), scan chains, test
points, scan compression, and Memory Built-In Self-Test (MBIST), are widely
used to enhance the testability of digital circuits. LBIST allows for the automatic
testing of logic circuits by embedding test generation and response analysis within
the chip itself. Scan chains facilitate the testing of sequential circuits by converting
them into a series of shift registers, making it easier to control and observe the
internal states. Test points are carefully placed within the circuit to provide access

1

Introduction

to internal nodes, making it easier to observe and control the state of the circuit
during testing. Scan compression methods reduce the amount of test data and
time required for testing, improving the efficiency of the testing process. MBIST
automates the process of generating test patterns and analyzing the responses,
ensuring a comprehensive test of memory blocks. Additionally, making LBIST
programmable by allowing it to drive and monitor internal signals improves its
flexibility and effectiveness.

Hardening techniques, which are Design for Reliability (DfR) techniques, such
as Triple Modular Redundancy (TMR) and Error-Correcting Code (ECC), are
employed to enhance the reliability and fault tolerance of SoCs. TMR involves
triplicating critical components and using a majority voting system to determine
the correct output, allowing the system to continue operating correctly even if one
module fails. ECC detects and corrects errors by adding redundant bits to the
original data, ensuring data integrity and reliability.

This thesis explores the implementation of DfT and hardening techniques,
including LBIST, scan chains, test points, scan compression, MBIST, TMR, and
ECC, in a complex SoC environment. It also investigates the integration of these
techniques to optimize the testing process. Furthermore, it focuses on making
LBIST programmable and establishing connections between different processors and
cores within the SoC, specifically the Ibex processor and the CVA6 core. Finally,
it addresses the selection of memories and the insertion of MBIST for the CVA6
memory to ensure comprehensive testing coverage.

As said, the motivation for this work comes from the need to improve the
reliability and testability of modern SoCs. By implementing and optimizing
advanced DfT and hardening techniques, the overall test time and cost can be
reduced while ensuring high test coverage and reliability.

The following references were used for the topics discussed here: [1], [2], [3]

1.2 Problem Explanation
The increasing complexity and integration levels of modern SoCs present significant
challenges for traditional testing and reliability methods. The large number of
internal nodes and the complex interactions between components make it difficult
to achieve high test coverage, reliability, and fault tolerance.
Traditional methods are often insufficient for several reasons.

Firstly, as SoCs become more complex, the density of transistors and the
number of interconnections increase, making it harder to isolate faults and ensure
comprehensive testing coverage. Traditional methods struggle to scale with the
growing size of SoCs, leading to longer test times and higher costs.

Secondly, traditional testing methods often lack the ability to access internal

2

Introduction

nodes for observation and control. This limitation makes it difficult to detect and
diagnose faults within the chip, reducing the overall effectiveness of the testing
process.

Thirdly, achieving high test coverage and reliability is crucial for modern SoCs,
as undetected faults can lead to reduced performance, system failures, and increased
costs in the field. Traditional methods may not provide the necessary test coverage
to ensure the reliability of complex SoCs.

These challenges require the development and implementation of advanced DfT
and hardening techniques. Advanced techniques, such as LBIST, scan chains, test
points, scan compression, MBIST, TMR, and ECC, offer solutions to improve
test efficiency, reliability, and fault tolerance of SoCs. However, integrating these
techniques into complex SoCs presents its own set of challenges. For example,
integrating LBIST and scan chains requires some care to ensure they do not inter-
fere with the normal operation of the SoC. Optimizing scan compression methods
is essential to reduce the volume of test data and the time required for testing.
Designing programmable LBIST to drive and monitor internal signals improves flex-
ibility and effectiveness but requires more advanced control mechanisms. Moreover,
implementing TMR and ECC also requires careful considerations of the trade-offs
between reliability, cost, and power consumption.

1.3 Objectives

As anticipated earlier in the discussion, the main objective of this thesis is to develop
a system with advanced DfT and hardening techniques. The specific objectives are:

• incrementing the reliability and testability of the SoC with DfT and hardening
techniques.

• improving the test coverage and reduce the costs associated with testing and
reliability.

1.4 Methodology

This research employs a combination of advanced DfT techniques and harden-
ing techniques. The DfT techniques include LBIST, MBIST, scan chains, scan
compression, and test points. The hardening techniques (which are part of DfR),
include TMR and ECC. Tools such as Synopsys Design Compiler, TestMAX ATPG,
TestMAX DFT, and ModelSim are used for synthesis, testing, and simulation.

3

Introduction

1.5 Significance of the study
This study aims to contribute to the semiconductor industry by providing more
efficient and effective testing and reliability methodologies for complex digital
systems. Academically, it adds to the existing body of knowledge in electronic
engineering, particularly in the areas of DfT and SoC reliability.

1.6 Chapter Structure Description
This thesis is organized as follow: The first chapter provides the background,
motivation, problem explanation, summary of work done, and chapter structure
description. The second chapter discusses DfT techniques, programmable LBIST,
hardening techniques, and overviews of the Ibex processor, CVA6 core, and Random
Access Memory (RAM). In particular it includes more detailed explanations of
LBIST, scan chains, scan compression, test points, and MBIST. The third chapter
describes the general solution to the problem, including the conceptual framework,
applicability to various contexts, and the advantages and limitations of the proposed
solution. The fourth chapter details the methodology used in the implementation,
including interface definition, bus architecture design, integration of peripherals,
memory mapping and address decoding, and design verification. It also discusses
the tools used, such as simulation and synthesis tools, and addresses the challenges
and solutions encountered during the implementation. Additionally, it covers the
design and implementation of programmable LBIST, hardening of the system, and
memory selection and MBIST insertion. The fifth chapter presents the results
of the research, including tables and graphs with comments on test coverage,
test time, design overhead, and experimental results. Finally, the sixth chapter
summarizes the work, providing a critical commentary. It includes a summary
of the DfT techniques, scan compression, programmable LBIST, MBIST, and
hardening techniques implemented in the thesis. It also discusses potential future
works, such as interrupt-based programmable LBIST and Joint Test Action Group
(JTAG).

4

Chapter 2

Background

2.1 Introduction to DfT
The rapid advancement of semiconductor technology has led to increasingly complex
SoC designs, necessitating robust methodologies to ensure their reliability and
manufacturability. DfT techniques have emerged as indispensable tools in this
context, enabling engineers to embed test features directly into the hardware. This
proactive approach not only facilitates the detection and diagnosis of manufacturing
defects but also enhances the overall functional correctness and reliability of the
final product.

2.1.1 Importance of DfT
Design for Testability DfT is a crucial aspect of the Integrated Circuit (IC) design
process, which aims to simplify the testing and diagnosis of hardware faults. By
embedding testability features within the design, engineers can detect manufacturing
defects, ensure functional correctness, and improve overall product reliability.
Effective DfT strategies can hence significantly reduce the time and cost associated
with testing complex SoC designs.

In the semiconductor industry, the push towards smaller geometries and higher
integration levels has made traditional testing methods insufficient. Consequently,
DfT has emerged as a practice to address these challenges. By incorporating DfT
techniques early in the design phase, engineers can enhance test coverage, optimize
the testing process to reduce time and cost, facilitate debugging and diagnosis, and
support yield improvement by identifying and rectifying manufacturing defects.

In modern electronics, DfT is an integral part of the design process, as it is
employed in a wide range of applications ranging from ICs and Printed Circuit
Boards (PCBs) to complex SoCs and Field-Programmable Gate Arrays (FPGAs).

5

Background

Key concepts in DfT include controllability and observability, which refer to
the ease with which internal states of the design can be set to desired values
and observed, respectively. High controllability and observability are essential
for effective testing. Partitioning the design into smaller, more manageable units
can simplify the testing process, and DfT techniques can be applied at various
abstraction levels to enhance testability. Hierarchical DfT involves applying DfT
techniques at different levels of the design hierarchy, from individual components
to entire systems.

However, adding testability features to a design can impact its performance, so
engineers must ensure that the performance overhead introduced by DfT techniques
is acceptable and does not compromise the functionality of the design. Incorporating
DfT principles can increase the complexity of the design process, requiring careful
balance with other design constraints, such as performance and power consumption.

2.1.2 Advantages and Disadvantages of DfT

DfT offers several advantages, including improved test coverage, reduced testing
time, lower costs, enhanced reliability, and scalability. By incorporating test points
and scan chains, more faults can be detected, leading to higher test coverage and
improved design quality. Automated testing techniques, such as BIST (Built-In
Self-Test) and Automatic Test Pattern Generation (ATPG), streamline even further
the testing process.

Structural tests are performed at the end of the production line using specific
machinery known as Automatic Test Equipment (ATE) to ensure that there are
no defects in the chip. If defects are found, the chip is discarded rather than
repaired, to avoid selling faulty products to customers. Functional tests, on the
other hand, are conducted without the use of specific machinery and utilize the
normal peripherals of the SoC. These tests are run to ensure that the SoC does
not have any internal faults.

Identifying and rectifying faults early in the production process reduces the costs
associated with testing and debugging, leading to lower overall manufacturing costs
and higher profitability. Ensuring that faults are detected and corrected before the
products reach end-users leads to higher customer satisfaction and fewer product
recalls. Additionally, DfT techniques are scalable and can be applied to designs of
varying complexity, making them suitable for a wide range of applications, from
simple circuits to complex systems.

As summarized in Table 2.1, DfT offers several advantages and disadvantages.

6

Background

Table 2.1: Advantages and Disadvantages of DfT

Advantages Disadvantages

Improved test coverage Increased design complexity

Reduced testing time Area overhead

Lower costs of test Design and verification time and effort

Enhanced reliability Tool and licensing costs

Scalability and flexibility

However, DfT also has some disadvantages that need to be considered, such
as increased design complexity, area overhead, performance impact, design time
and effort, and tool and licensing costs. Incorporating DfT techniques can add
complexity to the design process, requiring additional design effort and expertise.
Adding test points, scan chains, and other DfT structures can increase the silicon
area of the chip, potentially leading to higher manufacturing costs. The inclusion of
DfT features may impact the performance of the final product, as additional circuitry
can introduce delays and consume power. Implementing DfT requires careful
planning and additional design time, which can extend the overall development
cycle. Utilizing advanced DfT tools and techniques often requires specialized
software and licenses, which can add to the overall cost of the design process.

The information provided in this section is derived from [4].

2.1.3 Evolution and Development of DfT and Hardening
Techniques

DfT techniques have been employed since the early days of electronic data pro-
cessing equipment. In the 1940s and 1950s, early examples included switches and
instruments for probing voltage/current at internal nodes in analog computers,
known as analog scan. Over time, DfT has evolved to include design modifications
that improve access to internal circuit elements, enhancing controllability and
observability.

Initially, testing methods were rudimentary and manual, focusing on simple
pass/fail criteria. As ICs grew more complex, systematic and automated testing
methodologies became necessary. The 1970s marked a significant milestone with
the development of scan-based testing, introducing scan chains for controlling and
observing internal states of sequential circuits. This period also saw the advent of
BIST techniques, embedding test generation and response analysis within the chip.

7

Background

The 1980s and 1990s witnessed further advancements driven by the complexity
of SoC designs. Techniques such as LBIST and MBIST were developed for logic
and memory components, respectively, automating the testing process and reducing
the dependency on external equipment.

In DfT, design modifications can be physical, such as adding probe points, or
involve active circuit elements to facilitate controllability and observability, like
inserting multiplexers. DfT also includes guidelines for the interface between the
product under test and the test equipment, such as probe point characteristics and
adding high-impedance states to drivers to prevent damage.

Modern DfT in Electronic Design Automation (EDA) is influenced by commercial
DfT software tools and the expertise of DfT engineers, with a focus on digital
circuits. DfT for analog/mixed-signal circuits is less emphasized.

In parallel, hardening techniques like TMR and ECC were developed to en-
hance reliability and fault tolerance, crucial for safety-critical applications such as
aerospace and medical devices.

The continuous evolution of DfT and hardening techniques reflects the indus-
try commitment to improving the reliability and manufacturability of complex
semiconductor designs. Today, DfT is integral to the design process, employed in
applications from ICs and Printed Circuit Boards (PCBs) to complex SoCs and
Field-Programmable Gate Arrays (FPGAs), leading to significant improvements in
test coverage, reliability, and cost-effectiveness.

The information provided in this section is derived from [5].

2.2 Fault Model Overview
A fault model is an essential engineering tool used to predict potential issues in
the construction or operation of equipment. By using fault models, designers and
users can foresee the consequences of specific faults. These models are widely used
across various engineering disciplines.

In digital circuits, fault models can be categorized into static and dynamic faults.
Static faults are those that produce incorrect values regardless of the circuit’s speed
and are triggered by a single operation. Examples include the stuck-at fault model,
where a signal or gate output is fixed at 0 or 1, and the bridging fault model,
where two signals are erroneously connected, potentially leading to wired-OR or
wired-AND logic functions. Additionally, transistor faults in CMOS logic gates can
occur, where transistors might be stuck-short (always conducting) or stuck-open
(never conducting). Another type of static fault is the open fault model, which
occurs when a wire is broken, causing a disconnection between inputs and outputs.

Dynamic faults, on the other hand, manifest only at operational speeds and are
triggered by performing multiple operations in sequence. The transition delay fault

8

Background

model is an example, where a signal eventually reaches the correct value but does
so more slowly or quickly than usual. Another example is the small-delay-defect
model.

Fault models are based on certain assumptions. The single fault assumption
suggests that only one fault occurs in a circuit, leading to a total number of faults
equal to the product of the number of fault types and the number of signal lines.
Conversely, the multiple fault assumption allows for the possibility of multiple
faults occurring simultaneously in a circuit.

To manage and reduce the number of faults that need to be tested, engineers
use fault collapsing techniques. Equivalence collapsing involves identifying and
removing equivalent faults that produce the same faulty behavior for all input
patterns. Dominance collapsing involves removing dominant faults, where one fault
is detected by all tests for another fault. Functional collapsing identifies faults that
produce identical faulty functions and cannot be distinguished at primary outputs
with any input test vector.

The information provided in this section is derived from [6].

2.2.1 Stuck-at Faults
Stuck-at faults are a common type of fault model used in digital circuit testing.
These faults occur when a signal line (or node) in a circuit is fixed at a logical ’1’
(stuck-at-1) or a logical ’0’ (stuck-at-0), regardless of the intended logical value.
The stuck-at fault model is widely used because it simplifies the analysis and testing
of digital circuits by reducing the complexity of potential faults to a manageable
level.

In the context of DfT, understanding and detecting stuck-at faults is crucial.
These faults can result from various manufacturing defects, such as open circuits,
short circuits, or defects in the semiconductor material. The presence of stuck-at
faults can lead to incorrect behavior in digital circuits, causing them to produce
erroneous outputs.

To detect stuck-at faults, test engineers aim to identify defective devices by
applying specific test patterns and comparing the actual output responses with
the expected ones. The fault model provides a mathematical and algorithmic
approach to generate these test stimuli. By using the fault model, engineers can
systematically create input vectors that are likely to expose faults. If the observed
output deviates from the expected response, it indicates the presence of a stuck-at
fault. The effectiveness of this testing approach is measured by test coverage,
which indicates the percentage of potential faults that can be detected by the test
patterns.

The stuck-at fault model is particularly useful for combinational circuits, where
the output depends solely on the current inputs. However, it can also be applied

9

Background

to sequential circuits, which have memory elements and depend on both current
and past inputs. In sequential circuits, detecting stuck-at faults may require more
complex test patterns and longer test sequences.

One of the advantages of the stuck-at fault model is its simplicity, which makes
it easy to implement and understand. It provides a clear and straightforward way
to model and detect faults in digital circuits.
However, it is important to note that the stuck-at fault model does not cover all
possible defect behaviors, and it can be complemented with the use of ther models
such as timing-related faults, bridging faults, or transient faults. Therefore, while
the stuck-at fault model is a valuable tool in digital circuit testing, it is often used
in conjunction with other fault models to achieve comprehensive test coverage.

The information provided in this section is derived from [7].

2.3 DfT Techniques
This section provides an in-depth overview of various DfT techniques, including
LBIST, scan chains, scan compression, test points, and MBIST.

2.3.1 Scan Chains

A widely used DfT technique is the implementation of scan chains. Scan chains
facilitate the testing of sequential circuits by converting flip-flops into a series of
shift registers. This makes it easier to control and observe the internal states of
the circuit during testing, improving test coverage and simplifying the debugging
process. The design of scan chains involves modifying flip-flops to include scan
inputs and outputs, allowing them to be connected in a serial fashion. This enables
the shifting of test data through the chain, making it easier to control and observe
the internal states of the circuit. Figure 2.1 illustrates the scan chain configuration
in TestmaxDFT.

There are different types of scan chains, including full-scan and partial-scan.
Full-scan chains convert all flip-flops into scan cells, while partial-scan chains only
convert a subset of flip-flops, balancing testability and design complexity. It is
important to note that scan chains have been widely adopted in various industries.
For instance, semiconductor companies use scan chains to test microprocessors
and other complex ICs, while aerospace and defense companies use scan chains
to ensure the reliability of important systems. Several techniques can be used to
optimize scan chains, including scan chain reordering, scan chain segmentation, and
the use of multiple scan chains. These techniques help by improving test coverage,
reducing test time, and minimizing the impact on circuit performance.

10

Background

Figure 2.1: Illustration of Scan Chain Implementation: The red lines represent
the scan path connections for shifting test data through the scan chain. The blue
lines represent the control signals for enabling or disabling the scan mode of the
scan cells.

2.3.2 Scan Compression
Scan compression is a key technique in Electronic Design Automation (EDA) that
helps reduce the amount of test data and time needed for testing ICs. This is
especially important for testing complex SoCs and other large-scale ICs, where
the volume of test data can be very large. The process begins with an initial set
of data, which is decompressed by a decompressor. This decompressed data is
subsequently multiplied and distributed across various scan chains. Finally, the
scan outputs from the internal chains are compressed by a compressor, reducing
the amount of data that needs to be output.

Key Benefits

The main benefits of scan compression include reduced test data volume, shorter test
times, lower storage requirements, and improved test coverage. Adaptive techniques
optimize the compression ratio based on the circuit characteristics, improving test
coverage. However, it is important to note that scan compression can also increase
power consumption due to the increased switching activity. Techniques like X-
filling minimize the number of transitions during testing, thereby reducing power
consumption and mitigating the increased power usage.

11

Background

The information for the last two sections were provided by this book [8].

2.3.3 LBIST
LBIST is an important DfT technique that facilitates the automatic testing of logic
circuits by embedding test generation and response analysis within the chip itself.
The LBIST architecture, such as that in Synopsys TestMax DFT, consists of a
test pattern generator, a response analyzer, and control logic. The test pattern
generator produces test vectors applied to the circuit under test, while the response
analyzer compares the circuit output with the expected results to identify faults.
LBIST can be categorized into programmable LBIST and deterministic LBIST.
Programmable LBIST allows for the customization of test patterns, whereas deter-
ministic LBIST employs predefined patterns to ensure comprehensive test coverage.

There are different types of LBIST that can be inserted using various tools. These
tools support the generation of test patterns, the insertion of BIST controllers, and
the integration with functional logic, providing a comprehensive self-test solution.

LBIST has been successfully implemented across various industries. For instance,
automotive electronics manufacturers utilize LBIST to ensure the reliability of
safety-critical systems, while consumer electronics companies apply LBIST to test
complex digital circuits in devices such as smartphones. It can be used both at
the end of manufacturing and online. The benefits of LBIST include reduced
dependency on external test equipment, enhanced test coverage, and lower testing
costs. However, it also presents some challenges such as increased design complexity
and potential performance impacts.

As shown in Figure 2.2, the LogicBIST architecture includes several crucial
components: the LogicBIST Controller, which manages BIST operation with a
Finite State Machine (FSM), pattern counter, and shift counter; the decompressor
(PRPG), which feeds data into compressed scan chains, generating pseudo-random
patterns; the Compressor (MISR), which compresses data from internal chains,
capturing the design response; and the Clock Controller, which manages clock
signals during self-test, supporting multiple clock configurations. These components
collectively manage the operation of the LBIST.

Operational modes include ATPG mode, used for core-level seed and signature
computation, and Autonomous mode, used for on-chip self-test controlled by the
LogicBIST FSM.

Several control and data signals are crucial for the operation of LogicBIST.
The LBIST_EN and START signals control the initiation and operation of the
self-test. The LBIST_EN signal enables the LogicBIST mode, while the START
signal initiates the self-test process. The STATUS_0 and STATUS_1 signals
indicate the status of the self-test, showing whether the self-test is idle, running,
has passed, or has failed. The Scan-In and Scan-Out signals are used for accessing

12

Background

Figure 2.2: LogicBIST Architecture: This figure includes the LogicBIST Con-
troller, Decompressor (PRPG), Compressor (MISR), and Clock Controller. The
architecture is derived from the LBIST in TestMAX DFT from Synopsys.

key LogicBIST registers during ATPG mode, facilitating the shifting in and out of
test data through the scan chains.

Clock Control in LogicBIST

Clock control in LogicBIST can be set up in several ways to fit different design
needs. External clocks are driven by input ports, providing a simple clocking
solution. On the other hand, high-frequency clocks are generated by internal
oscillators or phase-locked loop (PLL) circuits and controlled by On-Chip Clock
(OCC) controllers. OCC-controlled clocks are managed by an OCC controller, with
clock pulses determined by a pulse pattern signal, offering more advanced control.
Additionally, weighted clock captures are used when multiple OCC-controlled clocks
interact, requiring selective enablement of capture clocks to ensure accurate timing
and synchronization.

LogicBIST Self-Test Implementation

Implementing LogicBIST self-test involves several key steps:

1. Define Signals and Modes:

• Control signals
• Scan-in signals
• Self-test modes

13

Background

2. Configure Parameters:

• PRPG (Pseudo-Random Pattern Generator) and MISR (Multiple Input
Signature Register) lengths

• Pattern and shift counter lengths
• Capture clock timing

3. Utilize Additional Groups (if necessary):

• Weighted clock groups
• Reset groups

4. Implementation Process:

• Preview and insert LogicBIST logic
• Write out the design netlist
• Generate the SPF (STIL Protocol File) and testbench files
• Compute seed and signature values using TestMAX ATPG
• Set the computed values in the design
• Simulate autonomous BIST operation using the generated testbench

By following these steps, the LogicBIST self-test can be effectively implemented
and validated.

The information provided in this sections is derived from [4], [9] and [1].

2.3.4 Programmable LBIST
Programmable LBIST (Logic Built-In Self-Test) enhances the traditional LBIST
technique by allowing customization and control over internal test signals. This
programmability enables the creation of specific test patterns and targets particular
areas of the circuit, which improves test coverage and reduces test time.

Key aspects include:
• Customizable Test Patterns: Users can define their own test patterns for

specific circuit areas.

• Dynamic Configuration: Test parameters such as seed values, signature
values, pattern count, and shift length can be dynamically set.

• Improved Test Coverage: Targeted testing enhances fault detection.

• Reduced Test Time: Efficient testing processes lead to quicker test cycles.
As said, programmable LBIST hence offers a flexible and effective approach to

circuit testing, enhancing test coverage and reducing test time.
The information provided in this section is derived, again, from [4].

14

Background

2.3.5 Test Points
Test points are an essential technique used in the design of electronic circuits to
make testing and diagnosis easier. They help engineers check the internal parts
of a circuit to ensure everything is working correctly. This subsection provides a
general description of test points, incorporating both the main principles and some
specific examples from industry practices.

Purpose and Benefits of Test Points

Test points are carefully placed within a circuit to provide access to internal points.
This access allows engineers to observe and control the state of the circuit during
testing, which improves test coverage and makes the debugging process easier.
The main benefits of test points include better test coverage, easier debugging,
and improved ability to observe and control the circuit. By providing access to
critical internal points, test points enable more thorough testing, which helps in
detecting faults that might otherwise remain unnoticed. They make it easier to
diagnose and fix issues within the circuit by allowing direct access to internal
signals. Additionally, test points help in monitoring and changing internal states,
which is crucial for testing and debugging.

Types of Test Points

There are two main types of test points: control points and observation points.
Control points allow for changing the internal states of the circuit. They are used
to inject test signals into the circuit, enabling the testing of specific functions.
Observation points provide access to internal signals for monitoring purposes: they
allow in fact to capture and analyze the behavior of the circuit during testing.

Test Point Insertion and Optimization Process

The process of inserting and optimizing test points involves several key steps to
ensure an effective testability while having a minimal impact on circuit performance
and layout. Initially, critical points within the circuit that require access for testing
purposes must be identified. This involves analyzing the circuit to pinpoint points
that are crucial for testing. Once these points are determined, test points are
inserted to provide access for observation and control.

The placement of test points is then improved using various techniques. Au-
tomated test point insertion methods determine the optimal placement of test
points based on the circuit design and testing requirements. Fault simulation
involves testing for potential faults to identify the most critical points for test point
insertion. Design for Debug (DFD) approaches apply DFD principles to enhance

15

Background

the testability and debug capabilities of the circuit. These methods balance the
need for access with the effect on circuit performance and layout. Techniques like
X-filling minimize the number of transitions during testing, thereby reducing power
consumption and mitigating the increased power usage.

Together, these steps and techniques ensure that test points are effectively
integrated into the design, providing the necessary access for observation and
control while maintaining the circuit performance and layout integrity.

The information provided aboud the DFD in this section is derived from [10]
and [11].

2.3.6 Memory BIST
MBIST is a DfT technique specifically designed to test memory components within
an SoC. MBIST automates the process of generating test patterns and analyzing
the responses, ensuring an exhaustive testing of the memory blocks. This technique
is essential for detecting faults in memory components and ensuring their reliability.
The architecture of MBIST typically includes a test pattern generator, a response
analyzer, and control logic. The test pattern generator produces test vectors
that are applied to the memory blocks, while the response analyzer compares the
memory’s output with the expected results to detect faults.

There are various types of MBIST, including programmable MBIST and de-
terministic MBIST. Programmable MBIST allows for the customization of test
patterns, while deterministic MBIST uses predefined patterns to ensure thorough
test coverage.
Several industries have successfully implemented MBIST in their designs. For
example, semiconductor companies use MBIST to test memory components in
microprocessors and other complex ICs, while automotive electronics manufacturers
use MBIST to ensure the reliability of safety-critical systems. MBIST offers several
advantages, including automated testing, improved test coverage, and lower testing
costs. However, it also has limitations, such as increased design complexity and
possible performance impact.

The information provided in this section is derived from [4].

2.4 Hardening Techniques
Hardening techniques are employed to enhance the reliability and fault tolerance
of SoCs. These techniques are generally based on spatial on temporal redundancy,
i.e., on the replication of logic or on the replication of computational tasks. The
first category includes TMR and Error Correction Code (ECC). TMR involves
triplicating critical components and using majority voting to determine the correct
output, while ECC adds redundancy to data storage to detect and correct errors.

16

Background

2.4.1 Triple Modular Redundancy
TMR is a fault-tolerant design technique that involves triplicating critical compo-
nents and using a majority voting system to determine the correct output. This
method ensures that even if one of the three components fails, the system can still
produce the correct output based on the majority vote. TMR is widely used in
safety-critical applications, such as aerospace and medical devices, where reliability
is of paramount importance (see Figure 2.3).

Figure 2.3: Triple Modular Redundancy (TMR) Architecture

2.4.2 Error Correction Code
ECC is a technique used to detect and correct errors in data storage and transmission.
It works by adding redundancy to the data, thus allowing the system to identify and
correct single-bit errors and detect double-bit errors. This technique is commonly
used in memory systems, communication systems, and data storage devices to
ensure data integrity and reliability.

In Hamming code for Single Error Correction, Double Error Detection (SEC-
DED), specific bit positions are designated as either parity bits or data bits. The
arrangement of these bits is shown in Table 2.2.

Bit Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bit Type P1 P2 D1 P3 D2 D3 D4 P4 D5 D6 D7 D8 D9 D10 D11

Table 2.2: Hamming Code (SEC-DED) Bit Positions: P denotes parity bits and
D denotes data bits.

The parity bits are calculated based on the data bits they cover. The specific
bit positions each parity bit covers and example calculations for these parity bits
are shown in Table 2.3.

17

Background

Parity Bit Covers Bit Positions Example Calculation

P1 1, 3, 5, 7, 9, 11, 13, 15 P1 = D1 ⊕ D2 ⊕ D4 ⊕ D5 ⊕ D7 ⊕ D9 ⊕ D11

P2 2, 3, 6, 7, 10, 11, 14, 15 P2 = D1 ⊕ D3 ⊕ D4 ⊕ D6 ⊕ D7 ⊕ D10 ⊕ D11

P3 4, 5, 6, 7, 12, 13, 14, 15 P3 = D2 ⊕ D3 ⊕ D4 ⊕ D8 ⊕ D9 ⊕ D10 ⊕ D11

P4 8, 9, 10, 11, 12, 13, 14, 15 P4 = D5 ⊕ D6 ⊕ D7 ⊕ D8 ⊕ D9 ⊕ D10 ⊕ D11

Table 2.3: Hamming Code (SEC-DED) Parity Bit Calculation: Example calcula-
tions for parity bits.

The informations provided in these last sections are from this book [12]. For
further reading on hardening techniques, the reader can consult the following
references for more comprehensive insights: [4, 13]

Many of the concepts and techniques discussed in this sections above are
elaborated in the books [14] and [15].

2.5 Overview of System on Chip
A SoC is an IC that consolidates all the essential components of a computer or
other electronic systems into a single chip. These components typically include a
CPU, memory, input/output ports, and secondary storage, among others. SoCs
are used in a wide array of devices, from smartphones and tablets to embedded
systems and IoT devices.

The key components of an SoC are the CPU, which is the brain of the SoC
responsible for executing instructions and performing calculations, the memory,
which includes both volatile memory (RAM) and non-volatile memory (flash
storage) for storing data and instructions, the input/output ports, which facilitate
communication between the SoC and external devices, such as sensors, displays,
and other peripherals. Furthermore, SoC may include other components too, such
as GPU, integrated to handle rendering and image processing tasks in devices that
require graphical output; Digital Signal Processors (DSPs) which are specialized
for processing real-time signals, such as audio and video. Connectivity modules,
including Wi-Fi, Bluetooth, GPS, and other communication interfaces.

SoCs offer several advantages. First, they significantly reduce the size of the
device by integrating multiple components into a single chip. They are designed
to be power-efficient, making them ideal for battery-operated devices. With
components closely integrated, SoCs can offer high performance and faster data
transfer rates. Additionally, manufacturing a single chip is often more cost-effective
than producing multiple discrete components.

18

Background

As previously noted, SoCs are found in many modern electronics and are used
in mobile devices such as smartphones, tablets, and wearable technology. They are
also used in embedded systems, including automotive electronics, industrial control
systems, and home automation. Consumer electronics like smart TVs, gaming
consoles, and digital cameras also utilize SoCs. Furthermore, SoCs are integral
to IoT devices, including smart home devices, health monitoring systems, and
environmental sensors.

For more detailed information on SoC, please refer to the Wikipedia article [16]
and the book [17].

2.6 RISC-V Instruction Set Architecture
RISC-V is an open-source Instruction Set Architecture (ISA) that has gained
significant traction in both the academic and industrial worlds due to its flexibility,
scalability, and the benefits of being open-source. Developed at the University of
California, Berkeley, RISC-V has evolved to become a robust and versatile ISA
suitable for a wide range of applications.

2.6.1 Key Features of RISC-V
RISC-V key features include modularity, simplicity, efficiency, and extensibility. It
is designed to be modular, allowing for different extensions (e.g., RV32I, RV64I,
RV128I) to be added based on application requirements. This modularity enables
designers to tailor the ISA to specific needs, enhancing performance and efficiency.
The simplicity of the RISC-V ISA makes it easier to implement and verify, leading
to more efficient hardware designs. Its clean and straightforward design reduces the
complexity of the processor, which in turn can lead to lower power consumption
and higher performance. Additionally, RISC-V’s extensibility allows for custom
instructions to be added without compromising the base ISA, which is particularly
valuable for specialized applications that require unique processing capabilities.

2.6.2 Advantages of RISC-V
One of the primary advantages of RISC-V is its open-source nature. This reduces
costs, and allows for customization of the ISA to meet specific application require-
ments. The open-source model also encourages collaboration and sharing within
the community. RISC-V benefits from a growing ecosystem of tools, software,
and community support. This includes compilers, simulators, development boards,
and a wide range of software libraries, all of which facilitate development and
adoption. Furthermore, RISC-V can be optimized for performance and power

19

Background

efficiency, making it suitable for a wide range of applications from embedded sys-
tems to high-performance computing. So overall the ability to customize the ISA
allows designers to achieve the desired balance between performance and power
consumption.

2.6.3 Applications of RISC-V
RISC-V is widely used in embedded systems, including IoT devices, microcon-
trollers, and low-power applications. Its low power consumption and small footprint
make it ideal for these applications. Additionally, RISC-V is being adopted in
high-performance computing, including data centers and supercomputers. Its
extensibility and performance capabilities make it a strong contender in this space.
On the other side, RISC-V open-source nature and simplicity make it an ideal
teaching tool in academic research and education. Many universities and research
institutions use RISC-V to teach computer architecture and explore new research
ideas.

2.6.4 RISC-V in SoC Design
RISC-V cores can be integrated into SoC designs, providing flexibility and customiza-
tion options for various applications. This integration allows for the development
of highly specialized and efficient SoCs. Several successful SoC designs based on
RISC-V have demonstrated its capabilities in terms of performance, reliability, and
testability. These case studies highlight the practical benefits of using RISC-V in
modern SoC design.

2.6.5 Challenges and Future Directions
Despite its advantages, RISC-V faces some challenges, such as the need for a more
mature ecosystem and potential fragmentation due to its extensibility. Addressing
these challenges is crucial for the continued growth and adoption of RISC-V.
However the future of RISC-V looks very promising, with ongoing research and
development aimed at improving the ISA and expanding its applications. Emerging
technologies and new use cases will continue to drive the evolution of RISC-V.

This section information are provided in this books [18] and [19]. For more
detailed information on RISC-V, please refer to the Wikipedia article [20].

2.7 Ibex Overview
The Ibex core, developed by the PULP platform, is a small, efficient, and open-
source RISC-V processor core designed for embedded systems and Internet of Things

20

Background

(IoT) applications. It emphasizes energy efficiency and low power consumption while
maintaining a flexible and configurable architecture. This section provides a detailed
overview of the architecture, features, design considerations, and applications of
the Ibex core.

2.7.1 Architecture

The Ibex core is a 32-bit RISC-V processor that implements the RV32IMC ISA.
The core is designed with a two-stage pipeline, consisting of the Fetch Stage and the
Execute Stage. In the Fetch Stage, instructions are fetched from memory, and the
Program Counter (PC) is updated to point to the next instruction. The instruction
memory interface supports both instruction and data fetches. In the Execute Stage,
the fetched instruction is decoded and executed. The result is written back to the
appropriate register or memory location, and this stage includes an Arithmetic
Logic Unit (ALU) for performing operations.

The two-stage pipeline architecture simplifies the control logic and minimizes the
power consumption by reducing the number of active components at any given time.
This design choice also reduces the complexity of hazard detection and forwarding
mechanisms, which are critical for maintaining high instruction throughput and
minimizing pipeline stalls.

2.7.2 Features

The Ibex core includes several features that make it suitable for low-power and
embedded applications. It supports the RV32IMC ISA, which includes the base
integer instruction set (RV32I), multiplication and division instructions (M), and
compressed instructions (C) for code size reduction. The two-stage pipeline sim-
plifies the design and reduces power consumption, as well as the complexity of
hazard detection and forwarding. The core can be configured with an optional
hardware loop and a multiplier, in order to enhance the performance for certain
applications. Specifically, Hardware loops reduce the overhead of loop control,
and the optional multiplier can be included for performance-critical applications.
The core also supports various low-power modes, including clock gating and power
gating, and dynamic power management to reduce energy consumption. Debug
support is provided through a debug module compliant with the RISC-V Debug
Specification, supporting both Joint Test Action Group (JTAG) and serial wire
debug (SWD) interfaces.

21

Background

2.7.3 Design Considerations
The design of the Ibex core focuses on achieving a balance between performance,
area, and power consumption. The core is optimized for low power consumption,
making it ideal for battery-powered devices. Techniques such as clock gating and
power gating are used to minimize energy usage. Moreover the core is designed to
have a small silicon area, which is beneficial for cost-sensitive applications. It uses
a minimalistic design approach in order to reduce the area without compromising
essential features. Flexibility is another key aspect of the design, allowing the core
to be configured with or without certain features, such as the hardware loop and
multiplier, to meet specific application requirements. Configurable options enable
the core to be tailored for different performance and power needs.

2.7.4 Applications
The Ibex core is suitable for a wide range of applications. Its low power consump-
tion and small footprint make it ideal for IoT devices, including sensors, actuators,
and other IoT components. The core energy efficiency is beneficial for wearable
devices that require long battery life, such as fitness trackers, smartwatches, and
health monitoring devices, as well as for embedded systems, where the core flex-
ibility and low power modes make it suitable for various applications, including
microcontrollers, automotive systems, and industrial automation.

2.8 OBI Protocol

2.8.1 Overview of OBI Protocol
The Open Bus Interface (OBI) protocol is a flexible and efficient bus protocol
designed for communication between different components in a SoC. It is particu-
larly suitable for low-power and high-performance applications. The OBI protocol
supports a wide range of features that enhance its flexibility and efficiency. It
supports multiple transfer types, including single and burst transfers, which allows
for efficient data movement. The protocol also includes support for different data
widths, ranging from 8-bit to 64-bit transfers, accommodating various application re-
quirements. Additionally, the OBI protocol provides mechanisms for error detection
and correction, ensuring reliable data transfers. The OBI protocol defines several
transaction types to handle different communication scenarios. These include read
and write transactions, which are used for standard data transfers between the core
and peripherals. The protocol also supports atomic transactions, which ensure that
a series of operations are completed without interruption, providing a mechanism
for implementing critical sections in software.

22

Background

The following figures illustrate various timing diagrams for different transaction
types in the OBI protocol.

clk

data_req_o

data_gnt_i

data_addr_o A0

data_wdata_o WD0

data_we_o WE0

data_be_o BE0

data_rvalid_i

data_rdata_i RD0

Figure 2.4: Basic Memory Transaction

Figure 2.4 shows a basic memory transaction where the core requests data, and
the peripheral grants access and provides the requested data.

clk

data_req_o

data_gnt_i

data_addr_o A0 A1

data_wdata_o WD0 WD1

data_we_o WE0 WE1

data_be_o BE0 BE1

data_rvalid_i

data_rdata_i RD0 RD1

Figure 2.5: Back-to-back Memory Transactions

Figure 2.5 illustrates back-to-back memory transactions where multiple data
requests are made in quick succession.

23

Background

clk

data_req_o

data_gnt_i

data_addr_o A0

data_wdata_o WD0

data_we_o WE0

data_be_o BE0

data_rvalid_i

data_rdata_i RD0

Figure 2.6: Slow Response Memory Transaction

Figure 2.6 depicts a slow response memory transaction where there is a delay in
the peripheral providing the requested data.

clk

data_req_o

data_gnt_i

data_addr_o A0 A1 A2

data_wdata_o WD0 WD1 WD2

data_we_o WE0 WE1 WE2

data_be_o BE0 BE1 BE2

data_rvalid_i

data_rdata_i RD0 RD1 RD2

Outstanding transactions 0 1 2 2 1 1 0

Figure 2.7: Multiple Outstanding Memory Transactions

Figure 2.7 shows multiple outstanding memory transactions where several re-
quests are processed simultaneously, and the number of outstanding transactions is
tracked.

Bus Arbitration

Bus arbitration in the OBI protocol is designed to be efficient and fair, ensuring
that all components have access to the bus when needed. The protocol supports
both fixed and dynamic priority schemes, allowing for flexible arbitration policies.
In a fixed priority scheme, each component is assigned a fixed priority level, while
in a dynamic priority scheme, the priority levels can change based on the current
system state.

24

Background

Low-Power Features

The OBI protocol includes several features aimed at reducing power consumption.
It supports clock gating, which allows the clock signal to be disabled for certain
components when they are not in use. This reduces dynamic power consumption
by preventing unnecessary switching activity. The protocol also supports power
gating, which can completely power down unused components, further reducing
power consumption.

The information provided in this section is derived from [21, 22].

2.9 CVA6 Overview
The CVA6 core, formerly known as Ariane, is an advanced, open-source RISC-
V processor core designed for high-performance applications. Developed by the
PULP platform, it targets a wide range of applications, from embedded systems
to high-performance computing. This section provides a detailed overview of the
architecture, features, design considerations and applications of the CVA6 core.

2.9.1 Architecture
The CVA6 core is a 64-bit RISC-V processor that implements the RV64GC ISA.
It features a six-stage, in-order pipeline, which includes the Fetch, Decode, Exe-
cute, Memory, Write-back, and Commit stages. This architecture allows for high
instruction throughput and efficient execution of complex operations.

In the Fetch stage, instructions are fetched from memory, and the PC is updated
to point to the next instruction. The Decode stage decodes the fetched instruction
and prepares the necessary operands. The Execute stage performs the required
arithmetic or logical operations using the ALU. The Memory stage handles memory
access operations, while the Write-back stage writes the results back to the appro-
priate registers. Finally, the Commit stage ensures that instructions are retired in
order, maintaining the architectural state of the processor.

2.9.2 Features
The CVA6 core includes several advanced features that make it suitable for high-
performance applications. It supports the RV64GC ISA, which includes the base
integer instruction set (RV64I), multiplication and division instructions (M), atomic
instructions (A), floating-point instructions (F and D), and compressed instructions
(C).

The core features a six-stage, in-order pipeline, which allows for high instruction
throughput and efficient execution of complex operations. It also includes support

25

Background

for hardware virtualization, enabling the core to run multiple operating systems
or virtual machines simultaneously. Additionally, the CVA6 core supports various
low-power modes, including clock gating and power gating, to reduce energy
consumption.

Debug support is provided through a debug module compliant with the RISC-V
Debug Specification, supporting both JTAG and serial wire debug interfaces. The
core also includes support for hardware performance counters, which can be used
to monitor and optimize the performance of applications.

2.9.3 Design Considerations
The design of the CVA6 core focuses on achieving a balance between performance,
area, and power consumption. The core is optimized for high performance, making
it suitable for applications that require high computational power. Techniques such
as clock gating and power gating are used to minimize energy usage, making the
core suitable for energy-sensitive applications.

The core is designed to have a moderate silicon area, balancing the need for high
performance with the constraints of area and, thus cost. A modular design approach
is taken, allowing the core to be easily integrated into larger SoCs. Flexibility is a
key aspect of the design, allowing the core to be configured with or without certain
features, such as hardware virtualization, to meet specific application requirements.

2.9.4 Applications
The CVA6 core is suitable for a wide range of applications. Its high performance
and comprehensive instruction set make it ideal for high-performance computing
applications, including scientific computing, data analytics, and machine learning.
The core support for hardware virtualization makes this core suitable for use in
data centers and cloud computing environments.

In embedded systems, the CVA6 flexibility and high performance make it suitable
for applications such as automotive systems, industrial automation, and advanced
robotics. The core low-power features also make it suitable for portable and
energy-sensitive applications, such as mobile devices and wearable electronics.

The information contained in this section is derived from [23].

2.10 SRAM Overview
Static Random Access Memory (SRAM) is a type of semiconductor memory that
uses bistable latching circuitry to store each bit. Unlike Dynamic RAM (DRAM),
SRAM does not need to be periodically refreshed, which makes it faster and more

26

Background

reliable for certain applications. This section provides a detailed overview of the
architecture, features, design considerations, and applications of SRAM.

2.10.1 Architecture
The basic architecture of SRAM consists of an array of memory cells, each capable
of storing one bit of data. Each SRAM cell is typically made up of six transistors
(6T), although other configurations such as 4T and 8T cells also exist. The 6T cell
configuration is the most common due to its balance between stability and area
efficiency.

In a 6T SRAM cell, two cross-coupled inverters form a bistable circuit, and two
access transistors control the read and write access to the cell. The cross-coupled
inverters maintain the state of the cell, while the access transistors connect the cell
to the bit lines during read and write operations. The word line controls the access
transistors, enabling or disabling the connection to the bit lines. The structure of
a typical 6T SRAM cell is illustrated in Figure 2.8.

Figure 2.8: Schematic of a 6T SRAM cell.

Read Operation

During a read operation, the word line is activated, turning on the access transistors
and connecting the SRAM cell to the bit lines. The stored value in the cell is then
transferred to the bit lines, where it can be sensed and read by the sense amplifiers.
The differential nature of the bit lines helps in quickly determining the stored value
by comparing the voltage levels.

Write Operation

During a write operation, the word line is activated, and the desired value is driven
onto the bit lines. The access transistors connect the bit lines to the SRAM cell,

27

Background

allowing the new value to overwrite the existing value stored in the cell. The
cross-coupled inverters then latch onto the new value, maintaining it until the next
write operation.

2.10.2 Features
SRAM offers several features that make it suitable for high-speed and low-power
applications. It provides fast access times, typically in the order of nanoseconds,
making it ideal for use in cache memory and other performance-critical applications.
SRAM also has low power consumption in standby mode, as it does not require
periodic refreshing like DRAM.

The volatile nature of SRAM means that it retains data as long as power is
supplied, making it suitable for applications that require persistent data storage
without the need for refresh cycles. Additionally, SRAM cells are relatively simple
in design, allowing for high-density integration in semiconductor devices.

2.10.3 Design Considerations
The design of SRAM involves several considerations to achieve a balance between
performance, area, and power consumption. The choice of cell configuration (e.g.,
6T, 4T, 8T) impacts the stability, area efficiency, and power consumption of the
memory.

Leakage current is a critical factor in SRAM design, as it affects both power
consumption and data retention. Techniques such as power gating and body biasing
can be employed to minimize leakage current and improve power efficiency. The
design of the sense amplifiers and bit lines also plays a crucial role in determining
the read and write performance of SRAM.

Process variations and manufacturing defects can impact the yield and reliability
of SRAM. ECC and redundancy techniques can be used to enhance the reliability
and fault tolerance of SRAM arrays.

2.10.4 Applications
SRAM is widely used in various applications due to its high speed and low power
consumption. In microprocessors, SRAM is commonly used as cache memory to
store frequently accessed data and instructions, reducing the latency of memory
access and improving overall system performance. SRAM is also used in embedded
systems, where its fast access times and low power consumption are critical for
real-time processing and battery-powered devices.

In networking equipment, instead SRAM is used for packet buffering and routing
tables, where high-speed memory access is essential for maintaining data throughput

28

Background

and network performance. SRAM is also used in graphics processing units (GPUs)
for storing frame buffers and texture data, enabling high-performance rendering
and image processing.

The information provided in this section is derived from [24] and from the book
[25].

2.10.5 Faults in Memory and March Tests
While SRAM offers high speed and reliability, it is not immune to faults. Memory
faults can occur in digital memories, affecting the integrity of stored data. Common
faults include stuck-at faults (where a bit is stuck at 0 or 1), transition faults
(where a bit fails to change state correctly), and coupling faults (where the state
change of one bit affects another bit).

To detect and diagnose these faults, various testing methods are used, including
March Tests. March Tests are sequences of read and write operations performed
on each memory cell to identify faults. Each operation in a March Test is executed
in a specific order and can include actions like writing 0, reading 0, writing 1, and
reading 1. An example of a March Test is the March C-Test, which consists of
the following steps:

1. Write 0 to all cells.

2. Read 0 from all cells.

3. Write 1 to all cells.

4. Read 1 from all cells.

5. Write 0 to all cells.

6. Read 0 from all cells.

These tests are designed to be efficient and cover a wide range of faults, ensuring
that the memory operates correctly under various conditions.

The information for this section are provided from this website [26]

29

Chapter 3

Approach

3.1 Comprehensive Approach to Enhancing SoC
Reliability and Testability

This chapter presents a complete approach to improving the reliability, testability,
and availability of modern SoC designs. The proposed solution combines advanced
DfT techniques, hardening methods, and ECC techniques. These methods help
achieve high test coverage, reduced test time, better reliability, and increased
availability. The chapter begins by outlining the general solution, followed by a
detailed explanation of the conceptual framework that supports the approach. The
applicability of the solution to different scenarios is then discussed, highlighting its
flexibility. Finally, the advantages and limitations of the approach are examined,
providing a fair view of its potential impact.

3.2 Conceptual Framework
The conceptual framework of this approach is built on widely recognized theories and
methods. The framework combines principles from systems theory and engineering
to create a complete solution. The key components of the framework include DfT
and hardening techniques.

3.3 Design for Testability
DfT techniques are crucial for enhancing the testability of SoCs. This approach
includes several advanced DfT techniques, such as LBIST, scan chains, test points,
and MBIST. These techniques help detect and diagnose faults within the SoC,
ensuring complete test coverage and reducing test time.

30

Approach

3.3.1 General Method to Implement DfT

To insert DfT into an SoC, the process begins by defining the specific test require-
ments and goals, such as test coverage, test time, and test cost. The SoC is then
divided into smaller, manageable modules or blocks, which helps in isolating faults
and simplifies testing. Next, standard test access mechanisms like JTAG (IEEE
1149.1) are implemented for boundary scan testing, ensuring that these mechanisms
provide access to internal nodes and facilitate external control and observation [27].

3.3.2 Implementation of Scan Chains

Scan chains are integrated into the design to enable the shift-in and shift-out of
test vectors. Tools are used to automatically insert scan chains and optimize their
length and number.

Observability and controllability are enhanced by ensuring that internal signals
and states can be observed and controlled during testing: this is achieved using
multiplexers, test points, and additional logic, which facilitate the monitoring and
manipulation of internal states.

Example: Scan Chains Implementation

Consider a SoC design with multiple functional blocks such as CPU, memory, and
I/O controllers. Each block is equipped with scan chains that allow test patterns to
be shifted in and out: this enables an exhaustive testing of each block independently,
ensuring that faults can be detected and diagnosed efficiently [28].

3.3.3 Implementation of Scan Compression

Scan compression techniques are applied to reduce the volume of test data and test
time. These techniques involve compressing the test patterns before they are loaded
into the scan chains and decompressing them on-chip. This approach significantly
reduces the amount of test data that needs to be stored and transferred, leading to
faster and more efficient testing.

The process of implementing scan compression begins with selecting appropriate
compression algorithms and tools: these generate compressed test patterns, which
are then decompressed on-chip using specialized decompression hardware (which
works with the existing scan chains ensuring that the test patterns are correctly
applied to the SoC).

31

Approach

Figure 3.1: Example of Scan Compression Architecture

Consider a SoC design with multiple scan chains. As shown in Figure 3.1, scan
compression involves loading compressed test patterns decompressed on-chip using
dedicated hardware, which distributes the test data efficiently across the scan
chains. By reducing the data volume and the number of cycles required, scan
compression leads to shorter testing times and a reduction in storage requirements.

3.3.4 Implementation of Memory BIST
In a memory BIST implementation, March tests are used to detect faults in SRAM
cells. The BIST controller generates test patterns and compares the output with
expected results. Any discrepancy indicates the presence of faults, which are then
logged for further analysis [29].

Test Type Test Coverage Test Time

March Test High Moderate

Random Test Moderate Low

Pattern Test Low High

Table 3.1: Comparison of Different Memory BIST Tests: This table compares
various memory BIST test types in terms of test coverage and test time.

32

Approach

Test compression techniques are applied to reduce the volume of test data and
test time, and tools are used to generate compressed test patterns and decompress
them on-chip. Fault simulation is conducted to evaluate the effectiveness of the
test structures, and test coverage is analyzed to ensure that the test goals are met.
The DfT implementation is validated through simulation and emulation, ensuring
that the DfT logic does not interfere with the functional operation of the SoC.
Finally, test patterns for manufacturing tests, including stuck-at, transition, and
path delay faults, are generated, and test programs for Automatic Test Equipment
(ATE) are developed to execute the test patterns.

3.3.5 Implementation of Logic BIST

As mentioned aforehand, LBIST is a DfT technique that allows the SoC to test
its own logic circuitry without the need for external test equipment: it generates
test patterns internally and compares the results with expected values, in order to
identify faults [30].

Example: In a SoC design, LBIST can be used to test the ALU. The LBIST
controller generates a series of test patterns to exercise various operations of the
ALU, such as addition, subtraction, multiplication, and division. The results are
compared with expected values to identify any discrepancies. This ensures that
the ALU is functioning correctly and can detect faults that might otherwise go
unnoticed.

Figure 3.2: General LBIST Implementation: This figure illustrates a versatile
LBIST setup, applicable across various design architectures for effective logic self-
testing.

33

Approach

3.3.6 Implementation of Test Points
Test points are strategically placed within the SoC to enhance observability and
controllability. They allow test signals to be injected and observed at various points
in the circuit, facilitating fault detection and diagnosis.

Example: In a SoC design, test points can be placed at the input and output
of a critical data path, such as a high-speed data bus. During testing, signals can
be injected at the input test point and observed at the output test point. This
allows for the detection of any faults that may occur along the data path.

3.4 Hardening Techniques
Hardening techniques, such as TMR and ECC, are employed to enhance the
reliability and fault tolerance of the SoC. In particular, TMR achieves fault tolerance
by triplicating critical components and applying majority voting to mask faults,
while ECC adds redundancy to data storage to detect and correct errors [31].
Additional techniques provide further resilience, as summarized in Table 3.2.

3.4.1 General Method to Implement Hardening Techniques
To harden an SoC, the process begins by defining the security requirements, includ-
ing threat models, attack surfaces, and rules. The SoC design is then divided into
security zones to limit the impact of potential breaches. Secure access mechanisms
are implemented to protect test access mechanisms against unauthorized access,
possibly by using secure JTAG. Moreover secure scan techniques are used to prevent
scan chain-based attacks [32].

3.4.2 Implementation of ECC in Memory Controllers
In a secure SoC design, critical data paths are protected using ECC. For instance,
in a memory controller, ECC can detect and correct single-bit errors, which ensures
data integrity even in the presence of faults [33]. Figure 3.3 illustrates an ECC
implementation in a memory system.

Security BIST is added to implement security checks within BIST to detect
interference or unauthorized access. By ensuring that monitoring mechanisms
are secure, observability and controllability are enhanced. Secure compression
techniques are integrated to ensure that compressed test data is encrypted and
protected. Security testing is performed to identify and reduce vulnerabilities, and
security features are validated to ensure they are effective against identified threats.
Finally, security test patterns are developed specifically for security features and
vulnerabilities.

34

Approach

Hardening Technique Description

Triple Modular Redundancy Triplicates critical components within the
design and applies majority voting to mask
faults. Commonly used to enhance fault tol-
erance in critical logic.

Error Correction Code Adds redundancy within data paths or mem-
ory cells to detect and correct single-bit or
multi-bit errors, protecting data integrity.

Hardened Interconnects Reinforces communication pathways by de-
signing fault-tolerant interconnect architec-
tures to reduce susceptibility to crosstalk and
environmental interference.

Parity Checks Integrates parity bits into data paths for quick
error detection. Often used in memory de-
signs for low-overhead error checking.

Fault Isolation Zones Partitions the design into isolated fault zones
to limit the impact of a fault within a region,
enhancing fault containment.

Table 3.2: Design-Based Hardening Techniques for SoC Reliability and Fault
Tolerance

Systems theory provides a complete understanding of the complex interactions
within the SoC. By viewing the SoC as a system of interconnected components,
key variables and their relationships can be identified. This overall view allows for
the design of interventions that address the main reasons for faults rather than just
the symptoms.

3.5 Applicability to Various Contexts

One of the strengths of this approach is its adaptability to different contexts. The
framework is designed to be flexible, allowing it to be customized to meet the
specific needs of various scenarios. In the following paragraphs, a couple of contexts
in which this solution can be applied are outlined:

35

Approach

Figure 3.3: ECC Implementation in Memory systems: This figure shows the
application of ECC in memory systems to ensure data integrity.

Automotive Sector

In the automotive sector, this approach can be used to improve the reliability of
electronic control units (ECUs) and other critical components by ensuring complete
testing and fault tolerance. By integrating DfT techniques and hardening methods,
the reliability of critical components can be enhanced, reducing the risk of system
failures and improving vehicle safety [34].

Example: In an autonomous vehicle, DfT techniques can be used to test the
sensor processing unit, while hardening methods ensure that the vehicle continues
to function correctly even if some components fail.

Aerospace Sector

In the aerospace sector, this solution can be applied to ensure the reliability and
security of avionics systems: by incorporating DfT techniques and ECC, errors in
critical data can be detected and corrected, reducing the risk of system failures
and enhancing the overall safety of aerospace systems [35].

Example: In an aircraft’s flight control system, ECC can be used to protect
critical data paths, ensuring that any errors introduced during data transmission
or storage are detected and corrected, maintaining the integrity of flight control
operations.

36

Approach

3.6 Flowchart of the Development Process
The following flowchart 3.4 illustrates the steps involved in developing a system
with DfT techniques and hardening techniques:

3.6.1 Explanation of Each Step
1. Define System Requirements:

• Identify and document the specific requirements for the system, including
performance, reliability, and testability criteria.

• Gather input from stakeholders and define the scope of the project.

2. System Design:

• Develop the overall architecture of the system, including the selection of
components and interfaces.

• Create detailed design specifications and schematics.

3. Implement DfT Techniques:

• Integrate DfT techniques into the system design to enhance testability.
• Techniques include LBIST, Scan Chains, Test Points, and MBIST.
• Ensure that these techniques are incorporated early in the design phase

to facilitate the testing phase.

4. Implement Hardening Techniques:

• Apply hardening techniques to improve the reliability and fault tolerance
of the system.

• Techniques include TMR and ECC.
• These help the system to operate correctly even in the presence of faults.

5. Verification and Testing:

• Conduct comprehensive verification and testing of the design to ensure
that it meets the specified requirements.

• Use simulation tools to validate the functionality and performance of the
system.

• Perform fault simulation and analyze test coverage to fully test the device.

6. Integration:

37

Approach

Start

Define System Requirements

System Design

Implement DfT Techniques

Implement Hardening Techniques

Verification and Testing

Integration

Final Testing

End

Figure 3.4: Flowchart of the Development Process with DfT and Hardening
Techniques

• Integrate all components and modules of the system, ensuring that they
work together seamlessly.

• Address any compatibility issues and verify that the system operates as

38

Approach

intended.

7. Final Testing:

• Perform final testing of the integrated system to validate its overall
functionality and performance.

• Conduct stress testing, reliability testing, and performance testing to
ensure that the system meets all requirements.

8. End: The process concludes with the successful development of the system,
ready for deployment or further stages such as production.

39

Chapter 4

Implementation

4.1 Overview
This section provides an overview of the overall system architecture, setting the con-
text for the subsequent detailed discussions on various components and techniques
used in the design.

Figure 4.1: Overall System Architecture

Figure 4.1 illustrates the main components of the system. The architecture
consists of three IBEX system wrappers, each containing an IBEX core, OBI
interface, OBI wrapper, LBIST controller, and a bridge. These wrappers are
connected to a majority voter, which ensures the reliability of the system by
comparing the outputs from the three IBEX cores. The majority voter is also
connected to the IBEX RAM and registers, which store the necessary data for

40

Implementation

processing. Additionally, the architecture includes a CVA6 wrapper, which contains
the CVA6 core, LBIST, RAM, and MBIST. This modular design makes the system
scalable, maintainable, and capable of handling various processing tasks efficiently.

4.2 Methodology

4.2.1 Interface Definition

The interface definition is a crucial step in the implementation phase. For this
project, it was decided to use the OBI already present in the Ibex processor.
This involves specifying the communication protocols and data exchange formats
between different components of the SoC. Among the others, the most noteworthy
aspects include:

• establishing consistent signal naming conventions to ensure clarity and avoid
conflicts;

• choosing appropriate communication protocols based on performance and
compatibility requirements;

• defining timing specifications for signal transitions and data transfers to ensure
synchronization between components.

4.2.2 System Wrapper Design

The system wrapper integrates the Ibex processor, bridge component, control
module, and OBI wrapper component. This wrapper manages the communication
between the processor, memory, and peripherals, guaranteeing reliable and fault-
tolerant operation.

The system wrapper includes interfaces to the Ibex processor, RAM, and a
register file. It also interfaces with an LBIST controller for the built-in self-test
functionality. The wrapper handles data and instruction requests, routing them to
the appropriate components and managing the responses.

The Ibex processor is instantiated within the system wrapper and connected to
the bridge module. The bridge module routes requests to either the RAM or the
OBI wrapper based on the address range. The OBI wrapper interfaces with the
register file, handling read and write operations. The LBIST controller manages
the built-in self-test operations and interfaces with the register file.

41

Implementation

Figure 4.2: System Wrapper Design

The design of the system wrapper is illustrated in Figure 4.2.

4.2.3 Triple Modular Redundancy

As previously mentioned, TMR enhances system reliability and fault tolerance
by triplicating critical components and using majority voting to determine the
correct output. The TMR module thus helps preventing possible malfunctions in
the presence of faults.

The TMR module takes three identical input signals and produces an output
based on majority voting. If all three inputs are equal, the output is set to that
value. If two inputs match, the output follows the matching inputs. If all inputs
differ, the output defaults to the first input.

The design of the TMR architecture is illustrated in Figure 4.3. In this figure,
the critical components that are triplicated include the IBEX System Wrapper
(which contains the IBEX core), OBI Interface, OBI Wrapper, LBIST Controller,
and Bridge. Each of these components is duplicated three times to form three
separate IBEX System Wrappers. The outputs from these three IBEX System
Wrappers are then fed into a majority voter module, which determines the final
output based on the majority voting logic. Additionally, the IBEX RAM and
Registers are also included in the process to ensure data integrity and consistency
across the triplicated systems.

42

Implementation

Figure 4.3: Triple Modular Redundancy System Architecture

4.2.4 Bridge Component
The bridge component between the Ibex processor and the peripherals (RAM
and register file for programming the LBIST) includes arbitration to handle the
peripherals. So, in essence, this component ensures that data requests and responses
are correctly routed between the processor and the memory or register file.

The bridge module defines an address range for the OBI wrapper, with
OBI_ADDR_LO set to 32’h00040084 and OBI_ADDR_HI set to 32’h000400FF: these
parameters help determine whether a request should be directed to the RAM or
the OBI wrapper.

The module uses an arbiter state machine to manage the routing of requests.
The state machine has three states: IDLE, SERVICING_RAM, and SERVICING_OBI.
The current state is stored in the arbiter_state variable and determines the
destination of the current request based on the address range and system state.

In the IDLE state, if a data request is made and the address is outside the
OBI range, the state transitions to SERVICING_RAM. If the address is within
the OBI range, the state transitions to SERVICING_OBI. In the SERVICING_RAM
state, the state machine waits for the RAM transaction to complete, indicated by
data_rvalid_ram, and then transitions back to IDLE.
Similarly, in the SERVICING_OBI state, the state machine waits for the OBI trans-
action to complete, indicated by data_rvalid_obi, and then transitions back to
IDLE.

The output logic assigns the appropriate signals to RAM or OBI based on the
current state of the arbiter. The response path multiplexing logic ensures that the
correct response signals are sent back to the IBEX interface based on the current
state of the arbiter. The instruction path is instead always handled by RAM.

The bridge module effectively manages the routing of data and instruction

43

Implementation

requests between the IBEX core, RAM, and an OBI wrapper. By using an arbiter
state machine, it determines the appropriate destination for each request based on
the address range and the current state. The response signals are multiplexed to
ensure the correct data is sent back to the IBEX interface.

The interface description of the bridge component is illustrated in Listing 4.1.

Listing 4.1: Bridge Component Interface
module bridge (

input logic clk , rst_n ,

// Interface to IBEX
input logic data_req_dut ,
input logic data_we_dut ,
input logic [3:0] data_be_dut ,
input logic [31:0] data_addr_dut ,
input logic [31:0] data_wdata_dut ,
input logic [6:0] data_wdata_intg_dut ,
input logic instr_req_dut ,
input logic [31:0] instr_addr_dut ,

output logic data_gnt_dut ,
output logic data_rvalid_dut ,
output logic [31:0] data_rdata_dut ,
output logic [6:0] data_rdata_intg_dut ,
output logic data_err_dut ,
output logic exit_success_dut ,
output logic instr_gnt_dut ,
output logic instr_rvalid_dut ,
output logic [31:0] instr_rdata_dut ,
output logic [6:0] instr_rdata_intg_dut ,
output logic instr_err_dut ,

// Interface to RAM
output logic data_req_ram ,
output logic data_we_ram ,
output logic [3:0] data_be_ram ,
output logic [31:0] data_addr_ram ,
output logic [31:0] data_wdata_ram ,
output logic [6:0] data_wdata_intg_ram ,
output logic instr_req_ram ,
output logic [31:0] instr_addr_ram ,

input logic data_gnt_ram ,
input logic data_rvalid_ram ,
input logic [31:0] data_rdata_ram ,
input logic [6:0] data_rdata_intg_ram ,
input logic data_err_ram ,
input logic exit_success_ram ,

44

Implementation

input logic instr_gnt_ram ,
input logic instr_rvalid_ram ,
input logic [31:0] instr_rdata_ram ,
input logic [6:0] instr_rdata_intg_ram ,
input logic instr_err_ram ,

// Interface to OBI wrapper
output logic data_req_obi ,
output logic [31:0] data_addr_obi ,
output logic data_we_obi ,
output logic [3:0] data_be_obi ,
output logic [31:0] data_wdata_obi ,
output logic [6:0] data_wdata_intg_obi ,

input logic [31:0] data_rdata_obi ,
input logic data_rvalid_obi ,
input logic data_gnt_obi ,
input logic [6:0] data_rdata_intg_obi ,
input logic data_err_obi ,
input logic exit_success_obi

);
endmodule

4.2.5 OBI Wrapper Component
The OBI wrapper component is used to connect the bridge to the register file for
the programmable LBIST. This component facilitates the communication between
the bridge and the register file, ensuring that data integrity is maintained.

The obi_wrapper module is responsible for handling data requests and responses
between the OBI interface and the register file. It includes an arbiter state machine
to manage read and write operations and ensures data integrity through various
signals.

The module defines an address width of 7 bits and a data width of 32 bits. It
operates in different states: IDLE, WRITE_READ, WRITE_DATA, and READ_DATA. In
the IDLE state, the system waits for a data request. Upon receiving a request,
it transitions to the WRITE_READ state to determine whether to perform a write
or read operation. The WRITE_DATA and READ_DATA states handle the respective
operations and transition back to IDLE once complete.

The module ensures data integrity by using byte enable signals to selectively
write or read specific bytes. It also includes default assignments for data integrity
output signals and error indications.

The interface of the OBI_wrapper component is shown in Listing 4.2.

45

Implementation

Listing 4.2: OBI Wrapper Component Interface
module obi_wrapper #(

parameter ADDR_WIDTH = 7,
parameter DATA_WIDTH = 32

)(
input logic clk ,
input logic rst_n ,

// OBI port signals from Master to Slave
input logic data_req_i ,
input logic [DATA_WIDTH -1:0] data_addr_i ,
input logic data_we_i ,
input logic [DATA_WIDTH /8 -1:0] data_be_i ,
input logic [DATA_WIDTH -1:0] data_wdata_i ,

// OBI port signals from Slave to Master
output logic [DATA_WIDTH -1:0] data_rdata_o ,
output logic data_rvalid_o ,
output logic data_gnt_o ,

// Data integrity signals
input logic [6:0] data_wdata_intg_i ,
output logic [6:0] data_rdata_intg_o ,
output logic data_err_o ,
output logic exit_success ,

// Register file signals
output logic we1 ,
output logic [ADDR_WIDTH -1:0] waddr1 ,
output logic [ADDR_WIDTH -1:0] raddr1 ,
output logic [DATA_WIDTH -1:0] wdata1 ,
input logic [DATA_WIDTH -1:0] rdata1

);
endmodule

4.2.6 Register File
The register file is used to store the configuration and status information for the
LBIST. It interacts with the OBI wrapper component to facilitate the read and
the write operations. Moreover, the register file includes Hamming code encoders
and decoders in order to ensure data integrity.

The register_file module defines an address width of 7 bits and a main data
width of 32 bits, with an additional 7 bits for data integrity. It supports two write
ports and two read ports, allowing simultaneous read and write operations. It is
also worth noticing that the module includes logic to handle write-write conflicts
by prioritizing port 1.

46

Implementation

The module operates synchronously with the clock signal and resets all registers
to 0 on reset. It uses address translation to map the input addresses to the
corresponding memory locations. The read and write operations are performed
based on the write enable signals, and the module ensures data integrity by
forwarding data from the write ports during read operations when necessary.

The interface of the register file component is shown in Listing 4.3.

Listing 4.3: Register File Component Interface
module register_file #(

parameter ADDR_WIDTH = 7,
parameter MAIN_DATA_WIDTH = 32,
parameter ADDITIONAL_WIDTH = 7

)(
input logic clk ,
input logic rst_n ,
input logic we1 ,
input logic we2 ,
input logic [ADDR_WIDTH -1:0] waddr1 ,
input logic [ADDR_WIDTH -1:0] waddr2 ,
input logic [ADDR_WIDTH -1:0] raddr1 ,
input logic [ADDR_WIDTH -1:0] raddr2 ,
input logic [MAIN_DATA_WIDTH -1:0] wdata1 ,
input logic [MAIN_DATA_WIDTH -1:0] wdata2 ,
input logic [ADDITIONAL_WIDTH -1:0] wdata1_intg ,
input logic [ADDITIONAL_WIDTH -1:0] wdata2_intg ,
output logic [MAIN_DATA_WIDTH -1:0] rdata1 ,
output logic [MAIN_DATA_WIDTH -1:0] rdata2 ,
output logic [ADDITIONAL_WIDTH -1:0] rdata1_intg ,
output logic [ADDITIONAL_WIDTH -1:0] rdata2_intg ,
input logic request2 ,
output logic valid_read_o ,
output logic valid_write_o

);
endmodule

4.2.7 LBIST Control Module
The control module takes the input from the register file to write in the LBIST
and the output of the LBIST to write in the register file. This module manages
the configuration and control signals for the LBIST, ensuring that the it operates
correctly.

The lbist_controller module is responsible for managing the LBIST opera-
tions. It generates control signals and handles the state transitions required for the
LBIST process. The module includes an internal state machine with states such as:

• IDLE

47

Implementation

• READ_START

• READ_LBIST_EN

• WRITE_COMPLETE

• READ_SEED

• READ_SIGNATURE

• READ_PATTERN_COUNT

• READ_SHIFT_LENGTH

• READ_CAPTURE_CYCLE_ENABLE

• WAIT_FOR_STATUS

• RUN

• PASS

• FAIL

The module reads and writes various parameters such as the seed, signature,
pattern count, and shift length. It also controls the capture cycle enable signal
and monitors the status signals to determine the operation outcome. The state
machine transitions between states based on the input signals and the current state,
correctly organising the LBIST process.

The interface of the LBIST controller component is shown in Listing 4.4.

Listing 4.4: LBIST Controller Component Interface
module lbist_controller (

input logic clk ,
input logic rst_n ,
output logic start ,
output logic lbist_en ,
input logic status_0 ,
input logic status_1 ,
output logic [96:0] SEED ,
output logic [29:0] SIGNATURE ,
output logic [19:0] PATTERN_COUNT ,
output logic [9:0] SHIFT_LENGTH ,
output logic CAPTURE_CYCLE_ENABLE ,
output logic we ,
output logic [6:0] waddr ,
output logic [6:0] raddr ,
output logic [31:0] wdata ,

48

Implementation

input logic [31:0] rdata ,
output logic request ,
input logic valid_read ,
input logic valid_write ,
output logic TM ,
output logic LBIST_TestMode ,
output logic SCAN_COMPRESSION_ENABLE

);
endmodule

4.2.8 SEC-DED Hamming Code Encoder and Decoder
The SEC-DED (Single Error Correction, Double Error Detection) Hamming code
encoder and decoder are used at the input and output of the register file to ensure
data integrity. These components detect and correct single-bit errors and detect
double-bit errors in the data. The sec_ded_encoder_32 module takes a 32-bit
input data and produces a 32-bit output data along with a 7-bit parity output.
The input data is passed directly to the output, while the parity bits are calculated
based on the input data. The parity bits are used to detect and correct errors in
the data. The sec_ded_decoder_32 module takes a 32-bit input data and a 7-bit
parity input. It produces a 32-bit corrected data output, an error detected flag,
and an error corrected flag. The module calculates syndrome bits to determine if
there is an error in the data. If a single-bit error is detected, it corrects the error
and sets the error corrected flag. If a double-bit error is detected, it sets the error
detected flag. The ECC of the Hamming code is also used for both the transmission
between the OBI interface and the OBI wrapper, and the writing of the data into
the memory. this mechanism ensures that data integrity is maintained throughout
the entire data path, from the OBI interface through the OBI wrapper, and into
the memory.

The system configuration using the SEC-DED Hamming code encoder and
decoder is illustrated in Figure 4.4.

4.2.9 Testbench
The testbench is used to verify the functionality of the entire system, including
the system wrapper, bridge component, OBI wrapper component, control module,
register file, TMR module, SEC-DED Hamming code encoder, and SEC-DED
Hamming code decoder. The testbench simulates the operation of the system and
checks that all components function correctly.

The testbench, defined in the file tb_top.sv, includes the following key elements:

• Clock Generation: A clock signal is generated with a specified period.

49

Implementation

Figure 4.4: SEC-DED System architecture

• Reset Activation: The reset signal is activated for a defined number of clock
cycles.

• VCD Dump: A VCD (Value Change Dump) file is generated to capture the
simulation waveforms.

• Firmware Loading: A specified .hex file is loaded into the testbench memory.

• Exit Success Check: The testbench monitors the exit_success signal to
determine when to end the simulation.

• Property Checks: The testbench includes property checks to ensure valid
memory accesses and program counter values.

The testbench instantiates three instances of the system_wrapper module, each
connected to the same RAM and register file. The outputs of these instances
are combined using TMR modules to ensure fault tolerance. The testbench also
includes instances of the SEC-DED Hamming code encoder and decoder to verify
data integrity.

50

Implementation

4.2.10 TCL Script for DfT Insertion
A TCL script is used to insert the scan chain, scan compression, programmable
LBIST, and test points into the design using Synopsys design compiler. This script
automates the process of adding DfT features to the system, ensuring that it can
be thoroughly tested.

The script begins by setting up various paths and the top-level module name.
It specifies the search paths for libraries and sets the synthetic and target libraries
for the design. The script then reads the Verilog files and links the design.

Next, the script defines the DfT signals and creates ports for scan data input,
test mode, LBIST enable, scan compression enable, and LBIST test mode. It also
creates ports for SEED, SIGNATURE, PATTERN_COUNT, SHIFT_LENGTH,
and CAPTURE_CYCLE_ENABLE, and groups them into buses.

The script sets the DfT signals using the created ports and configures the test
modes for SCAN, LBIST, and streaming compression. It enables the DfT features,
including logic BIST, wrapper, and scan, and sets the testability configuration.

In total, Design Compiler (DC) inserted 1307 test points into the design. The
types of test points added were control_0, control_1, and observe (see Figures
4.5, 4.6, and 4.7). The Control_0 or control_1 test point forces a signal to a
constant 0 or 1 value when TestMode is asserted. The observe test point is a scan
register with its data input connected to the signal to be observed. The insertion of
the test point enable logic was done manually by a script in DC. This script added
an OR gate with the three enables of the LBIST, scan chain, and scan compression,
and then the output drove the enable of the test points.

Figure 4.5: Control_0 Test Point from Synopsys DC

The information regarding the test points were taken from these two websites
[36, 37].

51

Implementation

Figure 4.6: Control_1 Test Point from Synopsys DC

Figure 4.7: Observe Test Point from Synopsys DC

The script then defines the scan paths and includes the necessary segments for
LBIST and streaming compression. It previews and inserts the DfT, generates
reports, and writes out the design netlist and test protocols for various test modes.
Finally, it writes a testbench for Verilog simulation to validate the LogicBIST
implementation.

The DfT features inserted by the TCL script are summarized in Table 4.1.

52

Implementation

DfT Feature Description Purpose

Scan Chain Inserts scan chains into the design Enables testing of internal nodes

Scan Compression Adds scan compression logic Reduces test time

Test Points Inserts 1307 test points into the design Improves test coverage

LBIST Adds Logic Built-In Self-Test Enables self-testing of the design

Table 4.1: DfT Features Inserted by TCL Script

Synopsys DfTMAX Compression

Synopsys® DfTMAX™ Compression is a leading scan compression technology
designed to make the testing process for ICs more efficient and effective. It is
compatible with Synopsys Design Compiler as well as other EDA tools, providing
a strong solution for scan compression.

Key Features The key features of Synopsys DfTMAX Compression include ease
of integration, multiple test modes, adaptive compression, partitioned compression,
power reduction, and high X-tolerance. DfTMAX compression can be added to a
design with a single command, making it easy to integrate into existing design flows.
The tool supports both standard scan mode and compressed scan mode, offering
flexibility in test execution. Adaptive compression allows automatic adjustment
of the compression ratio based on the circuit’s characteristics, optimizing the
testing process and improving test coverage. For larger designs, DfTMAX supports
partitioned compression, where multiple codecs are inserted at different levels to
manage routing congestion and timing issues. Features such as X-filling and shift
power groups help reduce power consumption during testing by minimizing the
number of transitions and overall power usage. The tool offers high X-tolerance
scan compression, which imposes additional limits on the maximum number of
compressed scan chains to ensure 100% X-tolerance.

Compression Architecture The DfTMAX compression architecture includes
a codec that consists of a decompressor and a compressor. The decompressor
distributes scan input values across many shorter scan chains, while the compressor
reduces the captured data from these chains to be observed through the scan-out
ports. This architecture significantly reduces test data and test time with minimal
silicon area overhead.

Decompressor Operation The decompressor outputs, instead, are driven by
different combinations of scan-in data pins, either directly or through multiplexers

53

Implementation

(MUXes). This allows the decompressor to adapt to the needs of ATPG and supply
the required values in the scan chain cells.

Compressor Operation The compressor outputs are driven by different
combinations of compressed scan chains, combined using XOR logic: this creates
specific signatures of incorrect values at the compressor outputs when a fault is
detected, helping to diagnose the design.

Requirements for Compressed Scan Insertion The requirements for imple-
menting compressed scan insertion include ensuring that the test_default_strobe
variable is set so that the strobe occurs before the active edges of the test clock
waveforms.

To recap, by using Synopsys DfTMAX compression, designers can achieve
significant improvements in test efficiency, test coverage, and power consumption,
making it an essential tool for modern IC design and testing.

The information provided in this section is derived from [4].

DfTMAX LogicBIST

DfTMAX LogicBIST is a synthesis-based solution designed for the in-system self-
test of digital integrated circuits. It is predominantly used in automotive, medical,
and aerospace applications to meet functional safety requirements specified by
standards such as ISO 26262 for the automotive semiconductor industry.

Key features of LogicBIST include low BIST controller area overhead, reuse of
existing scan chain and test-mode control logic, minimal self-test pin requirements,
and straightforward interfacing with functional logic. Seed and expected signature
values can be either hard-coded or programmable, targeting stuck-at and transition-
delay faults. The implementation follows a streamlined one-pass DfT insertion
flow.

To implement LogicBIST, several prerequisites must be met: Design Compiler
and TestMAX ATPG tools must be installed and licensed, along with DfTMAX or
TestMAX DfT tools and an HDL Compiler license for compressed scan insertion.
Additionally, blocks must be X-clean, and the integration of self-test logic must be
achieved through signal connections to functional logic or DfT-inserted IEEE 1500
logic.

The standard flow for implementing LogicBIST involves several steps. First,
LogicBIST DfT logic is inserted into the design. Then, TestMAX ATPG is used
to create self-test patterns and compute seed and expected signature values. An
autonomous self-test testbench file is written, and the computed seed, signature, and
pattern count values are applied. Finally, the netlist and testbench are simulated
in a Verilog simulator to verify autonomous BIST operation.

54

Implementation

Seed, signature, and pattern count values can be driven by constants in the netlist,
resulting in low area overhead but requiring netlist modifications. Alternatively,
programmable values can be used, allowing for testing with multiple seed and
signature pairs, dividing self-test into small segments, and avoiding constant-value
netlist modifications. This is implemented using DfT-inserted IEEE 1500 logic or
by connecting self-test signals to internal functional registers.

LogicBIST known issues

Despite its advantages, LogicBIST has known issues. Settings are not stored in
.ddc files, designs that capture X values are not supported, and clock-gating cells
require a dedicated ScanEnable signal. External chains are not usable in LogicBIST
test modes, and multiple LogicBIST test modes are not supported. Unsupported
features include pipelined scan enable, DfT partitions, terminal lock-up latches,
and hybrid flow.

Note that the information provided in this section is derived again from [4].

Programmable LBIST

Programmable LBIST enhances the flexibility and effectiveness of the traditional
LBIST technique by allowing it to drive and monitor internal signals. This pro-
grammability enables the customization of test patterns and the ability to target
specific areas of the circuit, improving test coverage and reducing test time.

By default, the tool implements the LogicBIST logic with placeholder buses in the
netlist for values such as user seed, user signature, user pattern, and user shift values,
which are initially tied to logic 0 or set to default values. Instead of setting these to
hardcoded constant values in the netlist, it is possible to make them programmable
by driving them from ports or internal hookup pins. This is done by defining DfT
signals using specific signal types, such as lbistSeedValue, lbistSignatureValue,
lbistPatternCount, lbistShiftLength, and lbistCaptureCycleEnable.

For each signal type, the signal bits are defined in order of most-significant
bit (MSB) to least-significant bit (LSB). If fewer signals are defined than the bus
width, the signals are justified against the LSB. When internally driven LogicBIST
configuration signals are defined, the tool reports the connections on a bitwise
basis, allowing confirmation of their correctness.

Additionally, the tool provides procedures to find optimal seed values and to set
seed and signature values for simulation. This programmability offers significant
advantages by allowing dynamic configuration of test parameters, leading to more
efficient and targeted testing processes, ultimately enhancing test coverage and
reducing test time.

Once more, the information provided in this section is derived from [4].

55

Implementation

4.2.11 TestMAX ATPG Script
The TestMAX ATPG script is used for generating the seed, signature, and number
of patterns to achieve determined test coverage. This script configures the ATPG
tool to generate test patterns that maximize test coverage and ensure the reliability
of the system.

The script begins by setting up various paths, including the root path, gate path,
log path, DfT path, and ATPG path. It specifies the search paths for libraries and
sets the synthetic and target libraries for the design. Then, it reads the netlist and
Verilog files and links the design.

Next, the script builds the ATPG model for the design and writes out the design
image. It enables DfTMAX LogicBIST DRC in the TestMAX ATPG flow and sets
up the DRC to understand the reset control logic. The script sets up and runs the
DRC, adds faults, and runs ATPG with auto compression and JTAG LBIST. It
also runs the simulation to validate the generated test patterns.

Finally, it writes the patterns in STIL format and generates a testbench for
Verilog simulation to validate the LogicBIST implementation.

4.3 Implementation and Verification Details

4.3.1 Design Verification
Design verification ensures that the implemented design meets the specified require-
ments and functions correctly. This involves developing a comprehensive verification
plan that outlines the test scenarios and coverage goals, running simulations to
validate the design functionality and performance under various conditions, and
using formal verification techniques to mathematically prove the correctness of
critical design components. The verification plan includes defining test cases and
establishing coverage metrics, while simulation involves testbench development,
inputs generation, and results analysis.

4.3.2 Simulation Tools
Simulation software are essential for verifying the design before physical implemen-
tation. Using them involves several steps: choosing appropriate tools based on the
design’s complexity and verification requirements, setting up the simulation envi-
ronment including testbenches, inputs, and monitoring mechanisms, and analyzing
the simulation results to identify and debug issues in the design. Common tools
include Verilog/Very High-Speed Integrated Circuit Hardware Description
Language (VHDL) simulators and SystemC simulators.

56

Implementation

For this project, two widely recognized simulation tools were used: ModelSim
and Xcelium.

ModelSim: ModelSim, developed by Mentor Graphics, is a popular HDL
simulator for both Verilog and VHDL designs. It provides a comprehensive environ-
ment for simulating, debugging, and verifying digital circuits. ModelSim supports
mixed-language simulation, making it suitable for complex designs that use both
Verilog and VHDL. Moreover its features include advanced waveform viewing, code
coverage analysis, and support for various verification methodologies such as UVM
(Universal Verification Methodology).

Xcelium: Xcelium, developed by Cadence, is another powerful simulation tool
used for verifying digital designs. It supports a wide range of HDLs including Ver-
ilog, VHDL, and SystemVerilog. Xcelium is mostly known for its high performance
and scalability, making it suitable for large and complex designs. It offers advanced
debugging features, coverage analysis, and supports various verification method-
ologies. The program also integrates well with other Cadence tools, providing a
seamless verification flow.

Both ModelSim and Xcelium were used in this project to ensure comprehensive
verification of the design. The choice of these tools was based on their robust
features and industry-wide acceptance, ensuring that the design meets the required
standards and performs as expected.

4.3.3 Synthesis Tools
Synthesis tools translate the Rtl design into a gate-level representation suitable for
physical design. Synthesize a design involves choosing synthesis tools that support
the target technology and meet performance requirements, defining constraints such
as timing, area, and power to guide the synthesis process, and applying optimization
techniques to improve the synthesized design performance and efficiency. Common
tools include Design Compiler, Genus, and Quartus (for FPGA).

For this project, Design Compiler was used to synthesize the DfT of the SoC.
Design Compiler, developed by Synopsys, is a widely used synthesis tool. It provides
powerful optimization techniques to meet timing, area, and power constraints, which
help the synthesized design to meet the specified requirements.

4.3.4 TestMAX DfT Tool
The TestMAX DfT tool is used for inserting DfT features into the design. This
includes adding scan chains, scan compression, LBIST, and test points. The
tool automates the process of DfT insertion, and ensures that the design can be
thoroughly tested.

57

Implementation

The software, developed by Synopsys, provides comprehensive support for various
DfT methodologies. As per xcelium it integrates seamlessly with other tools in the
design flow, enabling efficient insertion and verification of DfT features. The tool
supports advanced DfT techniques, including scan-based testing, test compression,
and built-in self-test, which ensure high test coverage and test efficiency.

4.3.5 TestMAX ATPG Tool
The TestMAX ATPG tool is used for generating the seed, signature, and number
of patterns to achieve determined test coverage. This tool configures the ATPG
process to generate test patterns that maximize test coverage and ensure the
reliability of the system.

TestMAX ATPG, also developed by Synopsys, is a comprehensive tool for DfT
and ATPG. It supports various test methodologies, including scan-based testing
and LBIST. The tool provides advanced features for fault simulation, test pattern
generation, and test compression, allowing for a high test coverage with minimal
test data volume.

The test parameters generated by the TestMAX ATPG tool are summarized in
Table 4.2.

Parameter Value

Pattern Counter Value 00000000000000001011

PRPG Seed Value 1010110011111001011011000101010100101011011010100110110010101011110100000100100001011010010110111

MISR Signature Value 000111011010111100000000010011

Shift Counter Value 1110100111

Table 4.2: Test Parameters Generated by TestMAX ATPG Tool

4.3.6 Challenges and Solutions
Interface Compatibility

Ensuring compatibility between different interfaces can be challenging. For this
project, a protocol mismatch was found between the OBI and the register file.
To address this issue, an OBI wrapper was implemented to translate from the
OBI protocol to the one used by the register file. This solution ensured seamless
communication between the components and maintained data integrity.

General strategies to ensure interface compatibility include adopting industry-
standard interfaces (to leverage compatibility and interoperability), implementing
bridging logic (to translate between different interface protocols), and conducting
thorough testing (to identify and resolve compatibility issues). Standardization and
testing, including compatibility and compliance testing, are critical for ensuring
seamless communication between interfaces.

58

Implementation

Managing Multiple Peripherals

In systems with multiple peripherals, arbitration is essential to manage bus access
effectively. Without proper arbitration, simultaneous access attempts by multiple
peripherals can lead to data collisions, where signals from different devices interfere
with each other, causing data corruption and system instability. Arbitration ensures
fair access to the bus, preventing any single device from monopolizing the bus and
starving other peripherals of the opportunity to communicate.

For this project, some issues with performance degradation and data corruption
were found due to simultaneous access attempts by multiple peripherals. To address
this, we utilized efficient arbitration mechanisms and bus segmentation were utilized
to manage access and maintain performance integrity.

Efficient arbitration mechanisms optimize overall system performance by mini-
mizing wait times and ensuring that high-priority tasks are handled promptly: this
is particularly important in real-time systems where timely data transfer is critical.
By managing the order and timing of access requests, arbitration mechanisms
reduce latency, improving the responsiveness of the system.

Arbitration also allows for the implementation of priority schemes, where certain
peripherals or data transfers are given higher priority over others: this ensures that
critical operations, such as real-time data processing or emergency signals, are not
delayed by less critical tasks.

4.4 Hardening of the System

Hardening the system involves implementing techniques to enhance its reliability
and fault tolerance. This section will cover the key techniques used in this project:
TMR and ECC.

4.4.1 Triple Modular Redundancy

TMR is a fault-tolerance technique that involves triplicating critical components
and using majority voting to determine the correct output. This method ensures
that the system can continue to operate correctly even in the presence of faults.

In this project, TMR was applied to the system wrapper. By triplicating the
system wrapper and using majority voting, it is guaranteed that, even if one
instance fails, the correct output can still be determined by the other two instances.
This significantly enhances the reliability and fault tolerance of the system.

59

Implementation

4.4.2 Error Correction Code
ECC is used to detect and correct errors in data storage and transmission by
ensuring that errors can be identified and corrected before they affect the system
operation.

In this project, ECC was implemented for the memory. Using ECC allows us to
detect and correct errors in memory without the need for triplicating the memory
area, which would have resulted in an excessively large design. ECC provides a
robust mechanism to ensure data integrity with a slight increase in area due to the
additional ECC logic. The decision to use ECC for the memory was based on the
need to balance fault tolerance with design area constraints, ensuring efficient use of
resources while maintaining data integrity. The specific ECC algorithm employed
was the Hamming Code SEC-DED, which enables the correction of single-bit errors
and detection of double-bit errors.

4.4.3 Implementation Decisions
As said multiple times, hardening the system involves implementing techniques
such as TMR and ECC. In this project, is was chosen to: - Triple the Ibex system
using TMR to ensure that even if one instance fails, the correct output can still
be determined by the other two instances. This approach was chosen for its high
reliability in critical processing components. - Implement ECC for the memory to
correct single-bit errors and detect double-bit errors. This approach was chosen to
avoid the excessive area increase that would result from triplicating the memory,
while still maintaining data integrity.

These techniques improve the system reliability, fault tolerance, and data in-
tegrity, ensuring that it can operate correctly even in the presence of faults. By
incorporating these hardening techniques, the system becomes more robust and
resilient, capable of maintaining functionality and data integrity under various fault
conditions.

4.5 Memory Selection and integration
Selecting appropriate memory components and implementing MBIST are crucial for
ensuring reliable data storage. This involves defining criteria for selecting memory
components based on performance, power, and durability requirements, designing
the MBIST architecture to automate memory testing and guarantee a high test
coverage, and integrating the selected memory components and MBIST into the SoC
design. Memory selection criteria include performance metrics, power consumption,
and durability, while MBIST architecture includes test pattern generation, response
analysis, and control logic.

60

Implementation

4.5.1 Memory Selection
Memory selection is a critical aspect of the system design: it involves evaluating
different memory technologies such as SRAM, DRAM, and Flash based on their
performance, power consumption, and durability characteristics. The selected
memory must meet the system requirements for speed, capacity, and durability.
Additionally, considerations for memory hierarchy and cache design are essential to
optimize performance. One important aspect was ensuring that the module should
be available in the technology provided. The table 4.3 provides a comparison of
different memory technologies.

Memory Type Performance Power Consumption Storage Type Cost

SRAM High Moderate Volatile High

DRAM Moderate High Volatile Moderate

Flash Low Low Non-volatile Low

Table 4.3: Comparison of Different Memory Technologies

4.5.2 SRAM integration
A 64KB SRAM was integrated into the design of the CVA6 processor and sub-
sequently synthesized. The SRAM was generated using the STMicroelectronics
compiler and manually inserted into the design. This integration is responsible
for the memory capabilities of the CVA6 processor. In this configuration of the
SRAM, several pins are available to interconnect the MBIST for testing the memory
itself. Additionally, there is another available memory for the Ibex. This additional
memory resource can be utilized to use the Ibex core, for memory allocation and
access for various applications, including running the code for the LBIST.

61

Chapter 5

Results

This chapter presents the results of the study, focusing on how effective the
techniques implemented DfT have been. The system can perform all tests for the
included DfT techniques and runs smoothly in normal mode. This means that
it can detect faults comprehensively, which increases the overall reliability and
efficiency of the SoC. The following sections include detailed tables and graphs
along with comments on test coverage, test time, design overhead, and experimental
results.

The test coverage presented in this chapter was calculated using the following
formula:

Test Coverage = Detected Faults
Total Faults − Undetectable Faults

where the undetectable faults are the faults that cannot be observed and
controlled due to the netlist design.

5.1 Test Coverage and Test Time
As illustrated in Figure 5.1, the stuck-at faults (SAFs) test coverage percentages
for the three test types are as follows:

• LBIST: 70.24% with 150 patterns.

• Scan Chain: 70.16% with 17 patterns.

• Scan Compression: 70.17% with 63 patterns.

The test coverage percentages for all three test types are intentionally made similar
to emphasize the comparison of test times. This ensures that the analysis focuses

62

Results

0

20

40

60

80

100

70.24 70.16 70.17

Test Type

C
ov

er
ag

e
(%

)

Test Coverage for Different Test Types

LBIST Scan Chain Scan Compression

Figure 5.1: Comparison of Test Coverage

0

2

4

6
·105

1.42 · 105

4.74 · 105

61,867

Test Type

C
lo

ck
C

yc
le

s

Clock Cycles for Different Test Types

LBIST Scan Chain Scan Compression

Figure 5.2: Comparison of Clock Cycles

on the efficiency of the test methods in terms of clock cycles, rather than differences
in test coverage.

Figure 5.2 displays the number of clock cycles required for each type of test:

• LBIST: 141,794 clock cycles.

63

Results

• Scan Chain: 474,283 clock cycles.

• Scan Compression: 61,867 clock cycles.

The data reveals that Scan Chain is the most time-consuming method, requiring
a significantly higher number of clock cycles compared to the other two methods.
In contrast, Scan Compression is the most efficient, requiring the least number of
clock cycles. LBIST falls in between, with a moderate number of clock cycles.

5.2 Test Coverage Comparison with and without
Test Points

0

20

40

60

80

100 93.36

84.71

C
ov

er
ag

e
(%

)

LBIST Test Coverage

with test points without test points

Figure 5.3: LBIST Test Coverage with and without test points

As shown in Figure 5.3, the test coverage of stuck-at-faults with the LBIST
with test points is significantly higher at 93.36% compared to 84.71% without test
points. The number of patterns used is 600,001 for both cases. This indicates

64

Results

that the inclusion of test points greatly enhances the fault detection capability of
LBIST.

0

20

40

60

80

100 99.18 97.95

C
ov

er
ag

e
(%

)
Scan Chain Test Coverage

with test points without test points

Figure 5.4: Scan Chain Test Coverage with and without test points

Figure 5.4 shows that the test coverage of the scan chain with test points is
99.18%, while without test points, it is 97.95%. The number of patterns used is
1,968 for both cases. Although the improvement is less pronounced than in LBIST,
the addition of test points still provides a notable increase in test coverage.

According to Figure 5.5, the test coverage of the scan compression with test
points is 99.40%, whereas without test points, it is 97.39%. The number of patterns
used is 2,875 for both cases. Similar to the Scan Chain, the inclusion of test points
results in a higher test coverage percentage, demonstrating the effectiveness of test
points in improving fault detection.

Figure 5.6 shows the test coverage percentages for LBIST, Scan Chain, and
Scan Compression with test points. The test coverage values are 93.36%, 99.18%,
and 99.40% respectively. It is important to note that for the scan chain and scan
compression values, the ATPG was not given a specific number of patterns or test
coverage threshold to stop at. Therefore, the test coverage achieved by ATPG

65

Results

0

20

40

60

80

100 99.4 97.39

C
ov

er
ag

e
(%

)

Scan Compression Test Coverage

with test points without test points

Figure 5.5: Scan Compression Test Coverage with and without test points

before it ceased operation highlights the effectiveness of test points in achieving
high test coverage for all three test types. Additionally, the test times for these
test types were as follows:

• LBIST: 567,176,945 clock cycles.

• Scan Chain: 54,905,232 clock cycles.

• Scan Compression: 2,823,295 clock cycles.

5.3 Design Area Comparison
The Comparison of the design area before and after DfT insertion (shown in Figure
5.7) shows the impact of DfT techniques on the overall design area of the SoC. The
total cell area increased from 1,000,818 µm2 to 1,024,884 µm2 after DfT insertion,
which is an increase of 2.40%. It is important to note that the area without test

66

Results

0

20

40

60

80

100 93.36
99.18 99.4

C
ov

er
ag

e
(%

)

Test Coverage with Test Points

LBIST Scan Chain Scan Compression

Figure 5.6: Test Coverage for LBIST, Scan Chain, and Scan Compression with
Test Points

points is 1,024,108 µm2. This represents a modest increase of approximately 2.33%.
The additional area is mainly due to the inclusion of scan chains, LBIST, and scan
compression logic, which are essential for effective testing and fault detection.

5.4 Power Consumption Comparison

The comparison of power consumption before and after DfT insertion reported in
Figure 5.8 shows the impact of DfT techniques on the overall power consumption
of the SoC. The total power consumption considering internal power, switching
power and leakage power has increased from 55.2031 mW to 61.7192 mW after
DfT insertion. This increase is due to the additional circuitry required for the
DfT techniques. However, we have optimized the power consumption to ensure it
remains as low as possible.

67

Results

0

0.2

0.4

0.6

0.8

1

1.2
·106

1 · 106 1.02 · 106
To

ta
lC

el
lA

re
a

(µ
m

2)
Before DfT After DfT

Figure 5.7: Total Cell Area Before and After DfT Insertion (µm2)

5.5 System Hardening
Regarding the hardening of the system, the Ibex system area is approximately
tripled due to the implementation of TMR, as expected. For the memory, instead
of triplicating the area, ECC has been used. As a consequence, this has resulted in
a slight increase in the memory area due to the additional ECC logic, but it is a
more efficient solution compared to triplication.

68

Results

0

10

20

30

40

50

60
55.2

61.72

To
ta

lP
ow

er
(m

W
)

Before DfT After DfT

Figure 5.8: Total Power Consumption Before and After DfT Insertion

69

Chapter 6

Conclusions

6.1 Overview of the Achievements
This chapter provides a comprehensive summary of the work done in this thesis,
highlighting the key techniques and methodologies implemented to enhance the
reliability, testability, and performance of the System-on-Chip (SoC) design.

6.1.1 DfT Techniques
Design for Testability techniques were extensively explored and implemented to
improve the testability of the SoC. The key DfT techniques include:

• LBIST: LBIST was implemented to enable automatic testing of logic circuits
within the SoC. By embedding test pattern generation and response analysis
within the chip, LBIST allows for thorough testing without the need for
external test equipment.

• Scan Chains: Scan chains were integrated to facilitate the testing of the SoC
by converting flip-flops into a series of shift registers. This makes it easier to
control and observe the internal states of the circuit during testing, improving
test coverage and simplifying the test pattern generation.

• Test Points: Test points were strategically placed within the circuit to provide
access to internal nodes. This improves test coverage and observability, making
it easier to detect and diagnose faults. Test points also facilitate diagnosis by
allowing engineers to monitor internal signals and control specific parts of the
circuit during testing, identifying and resolving issues more efficiently.

• Scan Compression: Scan compression techniques were employed to reduce
the volume of test data and the time required for testing. By compressing the

70

Conclusions

test data before it is applied to the scan chains, it is possible to significantly
improve the efficiency of the testing process. This not only reduces the amount
of test data that needs to be stored and transferred but also shortens the
overall test time, leading to cost savings and faster time-to-market.

• Programmable LBIST: Programmable LBIST was implemented to enhance
the flexibility and effectiveness of the traditional LBIST technique. By allowing
the LBIST to drive and monitor internal signals, it is possible to customize test
patterns and target specific areas of the circuit. Programmable LBIST also
allows for dynamic reconfiguration of test parameters, making it a versatile
and powerful tool for ensuring the reliability of complex SoC designs.

• Hardening Techniques: Hardening techniques were employed to enhance
the reliability and fault tolerance of the SoC. The key techniques include:

– TMR: TMR was implemented to triplicate critical components and use
majority voting to determine the correct output. This ensures that the
system can continue to operate correctly even in the presence of faults. By
providing redundancy, TMR enhances the fault tolerance and reliability
of the SoC, making it suitable for safety-critical applications.

– ECC: ECC was used to detect and correct errors in data storage and
transmission. By adding redundancy to the data, ECC allows the system
to identify and correct single-bit errors and detect double-bit errors. This
boosts data integrity and fault tolerance, ensuring that the SoC can
operate reliably even in the presence of data corruption.

• SRAM: A 64KB SRAM was integrated into the CVA6 processor, featuring a
six-transistor memory cell, high density, low stand-by power, and low dynamic
power. The SRAM supports split supply voltages and includes a retention
mode for reduced leakage. Additionally, there is another available memory
in the Ibex SRAM, enhancing memory allocation and access for various
applications.

6.2 Critical Commentary
The implementation of advanced DfT techniques, such as scan compression, pro-
grammable LBIST, MBIST, and hardening techniques, has significantly improved
the testability, reliability, and performance of the SoC. The results demonstrate
that these methodologies are effective in detecting and diagnosing faults, reducing
test time, and ensuring data integrity. However, the integration of these techniques
also introduced some challenges, such as increased design complexity and area
overhead.

71

Conclusions

Balancing the benefits of enhanced testability and reliability with the associated
overheads is crucial for achieving an optimal SoC design. The increased design com-
plexity can lead to longer design cycles and higher development costs. Additionally,
the area overhead introduced by the DfT and hardening techniques can negatively
impact the overall performance and power consumption of the SoC, other than its
cost. Therefore, careful consideration and optimization are required to ensure that
the benefits outweigh the costs.

Despite these challenges, the implementation of these techniques has proven to
be highly beneficial. The enhanced test coverage and reduced test time contribute
to improved product quality and reliability. The ability to detect and correct
faults early in the design cycle reduces the risk of costly field failures and product
recalls. The integration of TMR and ECC has also proven to be highly effective in
enhancing the fault tolerance and reliability of the SoC. These techniques ensured
that the system was able to continue to operate correctly even in the presence of
faults, making the SoC suitable for safety-critical applications.

The test coverage percentages for LBIST, Scan Chain, and Scan Compression
are comparable, ensuring a fair comparison of test times. Scan Compression
emerges as the most efficient method in terms of clock cycles, while LBIST is the
most time-consuming. It is important to note that both Scan Chain and Scan
Compression require an ATE to be tested. In contrast, LBIST is an on-site test
that can be performed by any user of the SoC,which generally has a lower test
coverage. The inclusion of test points significantly enhances test coverage for all
test types, with LBIST benefiting the most from their inclusion. The DfT insertion
results in a modest increase in the total cell area, which is a reasonable trade-off
for the substantial benefits in test coverage and test time reduction. The power
consumption increases after DfT insertion, which is expected due to the additional
circuitry. However, the increase is justified by the improvements in test coverage
and test efficiency, making the trade-off acceptable. The implementation of TMR
for the Ibex system and ECC for memory demonstrates effective strategies for
system hardening. While TMR significantly increases the area, ECC provides a
more efficient solution for memory protection.

Overall, the work done in this thesis demonstrates the value of incorporating
advanced DfT and hardening techniques into modern SoC designs, providing a
robust and reliable solution for complex digital systems.

6.3 Future Work
Although this thesis has made significant progress in enhancing the SoC reliability
and testability, there are still several features that need to be implemented. The
following sections outline the specific areas that require further development to

72

Conclusions

complete the SoC design:

6.3.1 Interrupt-Based Programmable LBIST
Future work could explore the implementation of interrupt-based programmable
LBIST. This would involve designing LBIST mechanisms that can be triggered
by interrupts, allowing for more dynamic and flexible testing of the SoC. Such an
approach could further reduce test time and improve test coverage by enabling
on-demand testing of specific circuit areas. Interrupt-based programmable LBIST
could also enhance the ability to perform in-field testing and diagnostics, providing
valuable insights into the health and performance of the SoC during operation.

6.3.2 Integration of MBIST with System
The integration of MBIST with the rest of the system to make it programmable by
interrupt is a promising area for future research. This integration would involve
designing an interface that allows the MBIST controller to communicate with
the system interrupt controller. By doing so, memory tests can be dynamically
initiated based on specific events or conditions, such as detected memory faults
or periodic maintenance checks. This approach would enhance the flexibility and
responsiveness of memory testing, ensuring that the system can adapt to changing
conditions and maintain high reliability. The MBIST should be generated with
the STMicroelectronics compiler and then manually inserted in the design where
the pins for the SRAM are available and then connected to the system designed to
program it with the Ibex core.

6.3.3 Implementation of the Logic to Handle Double Error
Detection

The Double Error Detection signal for the memories and the transmission is only sent
to the obi_wrapper and the ibex, but it is not currently utilized. Implementing
the logic to handle this logic should be considered for future improvements.

6.3.4 JTAG
The integration of JTAG standards into the SoC design could be another area of
future research. JTAG provides a standardized interface for testing and debugging
integrated circuits, facilitating the testing of complex SoC designs. Implementing
JTAG could enhance the accessibility and control of internal nodes, further im-
proving the testability and reliability of the SoC. Additionally, JTAG could enable
advanced debugging and diagnostic capabilities, allowing engineers to identify and

73

Conclusions

resolve issues more efficiently.

Overall, the work done in this thesis lays a foundation for future research and
development in the field of SoC reliability and testability. By continuing to explore
and implement advanced testing and hardening techniques, it is possible to develop
more reliable, efficient, and robust SoC designs that meet the demands of modern
electronic systems. The ongoing advancements in DfT, programmable LBIST,
MBIST, and hardening techniques will play a crucial role in shaping the future of
SoC design, ensuring that these complex systems can operate reliably and efficiently
in a wide, and expanding range of applications.

74

References

[1] Laung-Terng Wang, Charles E. Stroud, and Nur A. Touba. System-on-Chip
Test Architectures: Nanometer Design for Testability. Morgan Kaufmann,
2006 (cit. on pp. 2, 14).

[2] Laung-Terng Wang, Cheng-Wen Wu, and Xiaoqing Wen. VLSI Test Principles
and Architectures: Design for Testability. Morgan Kaufmann, 2006 (cit. on
p. 2).

[3] Jose Luis Huertas. Test and Design-for-Testability in Mixed-Signal Integrated
Circuits. Springer, 2004 (cit. on p. 2).

[4] Synopsys. DFT User Guide. https://spdocs.synopsys.com/dow_retrieve/
qsc-u/dg/dftolh/U-2022.12/dftolh/pdf/dftug.pdf. 2022 (cit. on pp. 7,
14, 16, 18, 54, 55).

[5] Wikipedia. Design for testing. Accessed: 2023-10-10. 2023. url: https://en.
wikipedia.org/wiki/Design_for_testing (cit. on p. 8).

[6] Wikipedia. Fault model. Accessed: 2023-10-10. 2023. url: https : / / en .
wikipedia.org/wiki/Fault_model (cit. on p. 9).

[7] Wikipedia. Stuck-at fault. Accessed: 2023-10-10. 2023. url: https://en.
wikipedia.org/wiki/Stuck-at_fault (cit. on p. 10).

[8] Miron Abramovici, Melvin A. Breuer, and Arthur D. Friedman. Digital
Systems Testing and Testable Design. Computer Science Press, 1990 (cit. on
p. 12).

[9] Paul H. Bardell, William H. McAnney, and Jacob Savir. Built-In Test for
VLSI: Pseudorandom Techniques. John Wiley & Sons, 1987 (cit. on p. 14).

[10] Digital Electronics Blog. Designing for Debug: Top 10 Strategies. https:
//blog.digitalelectronics.co.in/2023/03/designing-for-debug-
top-10-strategies.html?m=1. 2023 (cit. on p. 16).

[11] Matteo Sonza Reorda. Test Points in Digital Design. https://file.didattica.
polito.it/dl/MATDID/33627591. 2024 (cit. on p. 16).

75

https://spdocs.synopsys.com/dow_retrieve/qsc-u/dg/dftolh/U-2022.12/dftolh/pdf/dftug.pdf
https://spdocs.synopsys.com/dow_retrieve/qsc-u/dg/dftolh/U-2022.12/dftolh/pdf/dftug.pdf
https://en.wikipedia.org/wiki/Design_for_testing
https://en.wikipedia.org/wiki/Design_for_testing
https://en.wikipedia.org/wiki/Fault_model
https://en.wikipedia.org/wiki/Fault_model
https://en.wikipedia.org/wiki/Stuck-at_fault
https://en.wikipedia.org/wiki/Stuck-at_fault
https://blog.digitalelectronics.co.in/2023/03/designing-for-debug-top-10-strategies.html?m=1
https://blog.digitalelectronics.co.in/2023/03/designing-for-debug-top-10-strategies.html?m=1
https://blog.digitalelectronics.co.in/2023/03/designing-for-debug-top-10-strategies.html?m=1
https://file.didattica.polito.it/dl/MATDID/33627591
https://file.didattica.polito.it/dl/MATDID/33627591

REFERENCES

[12] Ronald D. Schrimpf and Dan M. Fleetwood. Radiation Effects and Soft Errors
in Integrated Circuits and Electronic Devices. World Scientific Publishing
Company, 2004 (cit. on p. 18).

[13] Matteo Sonza Reorda. Error Correcting Codes in Digital Systems. https:
//file.didattica.polito.it/dl/MATDID/33660868. 2024 (cit. on p. 18).

[14] M. Bushnell and V. Agrawal. Essentials of Electronic Testing for Digital,
Memory, and Mixed-Signal VLSI Circuits. Kluwer Academic Publisher, 2000
(cit. on p. 18).

[15] Alfred Crouch. Design for Test: For Digital IC’s and Embedded Core Systems.
Prentice Hall PTR, 1999 (cit. on p. 18).

[16] Wikipedia. System on a Chip. Accessed: 2023-10-10. 2023. url: https :
//en.wikipedia.org/wiki/System_on_a_chip (cit. on p. 19).

[17] Wayne Wolf. Modern VLSI Design: System-on-Chip Design. Prentice Hall,
2008 (cit. on p. 19).

[18] David Patterson and Andrew Waterman. The RISC-V Reader: An Open
Architecture Atlas. Strawberry Canyon LLC, 2017 (cit. on p. 20).

[19] David A. Patterson and John L. Hennessy. Computer Organization and Design
RISC-V Edition: The Hardware Software Interface. Morgan Kaufmann, 2017
(cit. on p. 20).

[20] Wikipedia. RISC-V. Accessed: 2023-10-10. 2023. url: https://en.wikipedia.
org/wiki/RISC-V (cit. on p. 20).

[21] PULP Platform. Ibex Core Documentation. https://ibex-core.readthedocs.
io/. 2023 (cit. on p. 25).

[22] OpenHW Group. OBI Protocol Documentation. https://docs.openhwgroup.
org/projects/obi-protocol/. 2023 (cit. on p. 25).

[23] PULP Platform. CVA6 Core Documentation. https://docs.openhwgroup.
org/projects/cva6-user-manual/index.html. 2023 (cit. on p. 26).

[24] Claudio Passerone. RAM Documentation. https://file.didattica.polito.
it/download/MATDID/33430010. 2023 (cit. on p. 29).

[25] Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic. Digital Inte-
grated Circuits: A Design Perspective. Prentice Hall, 2002 (cit. on p. 29).

[26] Ankit Kumar. What are the various types of memory faults? Accessed: 2023-
10-10. 2023. url: https://www.linkedin.com/pulse/what- various-
types-memory-faults-kumar-ankit-tlclf (cit. on p. 29).

[27] Wikipedia. JTAG. Accessed: 2023-10-10. 2023. url: https://en.wikipedia.
org/wiki/JTAG (cit. on p. 31).

76

https://file.didattica.polito.it/dl/MATDID/33660868
https://file.didattica.polito.it/dl/MATDID/33660868
https://en.wikipedia.org/wiki/System_on_a_chip
https://en.wikipedia.org/wiki/System_on_a_chip
https://en.wikipedia.org/wiki/RISC-V
https://en.wikipedia.org/wiki/RISC-V
https://ibex-core.readthedocs.io/
https://ibex-core.readthedocs.io/
https://docs.openhwgroup.org/projects/obi-protocol/
https://docs.openhwgroup.org/projects/obi-protocol/
https://docs.openhwgroup.org/projects/cva6-user-manual/index.html
https://docs.openhwgroup.org/projects/cva6-user-manual/index.html
https://file.didattica.polito.it/download/MATDID/33430010
https://file.didattica.polito.it/download/MATDID/33430010
https://www.linkedin.com/pulse/what-various-types-memory-faults-kumar-ankit-tlclf
https://www.linkedin.com/pulse/what-various-types-memory-faults-kumar-ankit-tlclf
https://en.wikipedia.org/wiki/JTAG
https://en.wikipedia.org/wiki/JTAG

REFERENCES

[28] Wikipedia. Scan chain. Accessed: 2023-10-10. 2023. url: https : / / en .
wikipedia.org/wiki/Scan_chain (cit. on p. 31).

[29] Wikipedia. Built-in self-test. Accessed: 2023-10-10. 2023. url: https://en.
wikipedia.org/wiki/Built-in_self-test (cit. on p. 32).

[30] Wikipedia. Logic built-in self-test. Accessed: 2023-10-10. 2023. url: https:
//en.wikipedia.org/wiki/Logic_built-in_self-test (cit. on p. 33).

[31] Wikipedia. Triple modular redundancy. Accessed: 2023-10-10. 2023. url:
https://en.wikipedia.org/wiki/Triple_modular_redundancy (cit. on
p. 34).

[32] Wikipedia. Error correction code. Accessed: 2023-10-10. 2023. url: https:
//en.wikipedia.org/wiki/Error_correction_code (cit. on p. 34).

[33] Wikipedia. ECC memory. Accessed: 2023-10-10. 2023. url: https://en.
wikipedia.org/wiki/ECC_memory (cit. on p. 34).

[34] Wikipedia. Automotive electronics. Accessed: 2023-10-10. 2023. url: https:
//en.wikipedia.org/wiki/Automotive_electronics (cit. on p. 36).

[35] Wikipedia. Avionics. Accessed: 2023-10-10. 2023. url: https://en.wikipedia.
org/wiki/Avionics (cit. on p. 36).

[36] Synopsys, Inc. Observe Test Points. Accessed: 2023-10-15. 2022. url: https:
//spdocs.synopsys.com/dow_retrieve/qsc- u/dg/dftolh/U- 2022.
12- SP1/dftolh/dftug/advanced_dft_architecture_methodologies/
observe_test_points.html (cit. on p. 51).

[37] Synopsys, Inc. Control Test Points. Accessed: 2023-10-15. 2022. url: https:
//spdocs.synopsys.com/dow_retrieve/qsc- u/dg/dftolh/U- 2022.
12- SP1/dftolh/dftug/advanced_dft_architecture_methodologies/
control_test_points.html (cit. on p. 51).

77

https://en.wikipedia.org/wiki/Scan_chain
https://en.wikipedia.org/wiki/Scan_chain
https://en.wikipedia.org/wiki/Built-in_self-test
https://en.wikipedia.org/wiki/Built-in_self-test
https://en.wikipedia.org/wiki/Logic_built-in_self-test
https://en.wikipedia.org/wiki/Logic_built-in_self-test
https://en.wikipedia.org/wiki/Triple_modular_redundancy
https://en.wikipedia.org/wiki/Error_correction_code
https://en.wikipedia.org/wiki/Error_correction_code
https://en.wikipedia.org/wiki/ECC_memory
https://en.wikipedia.org/wiki/ECC_memory
https://en.wikipedia.org/wiki/Automotive_electronics
https://en.wikipedia.org/wiki/Automotive_electronics
https://en.wikipedia.org/wiki/Avionics
https://en.wikipedia.org/wiki/Avionics
https://spdocs.synopsys.com/dow_retrieve/qsc-u/dg/dftolh/U-2022.12-SP1/dftolh/dftug/advanced_dft_architecture_methodologies/observe_test_points.html
https://spdocs.synopsys.com/dow_retrieve/qsc-u/dg/dftolh/U-2022.12-SP1/dftolh/dftug/advanced_dft_architecture_methodologies/observe_test_points.html
https://spdocs.synopsys.com/dow_retrieve/qsc-u/dg/dftolh/U-2022.12-SP1/dftolh/dftug/advanced_dft_architecture_methodologies/observe_test_points.html
https://spdocs.synopsys.com/dow_retrieve/qsc-u/dg/dftolh/U-2022.12-SP1/dftolh/dftug/advanced_dft_architecture_methodologies/observe_test_points.html
https://spdocs.synopsys.com/dow_retrieve/qsc-u/dg/dftolh/U-2022.12-SP1/dftolh/dftug/advanced_dft_architecture_methodologies/control_test_points.html
https://spdocs.synopsys.com/dow_retrieve/qsc-u/dg/dftolh/U-2022.12-SP1/dftolh/dftug/advanced_dft_architecture_methodologies/control_test_points.html
https://spdocs.synopsys.com/dow_retrieve/qsc-u/dg/dftolh/U-2022.12-SP1/dftolh/dftug/advanced_dft_architecture_methodologies/control_test_points.html
https://spdocs.synopsys.com/dow_retrieve/qsc-u/dg/dftolh/U-2022.12-SP1/dftolh/dftug/advanced_dft_architecture_methodologies/control_test_points.html

	List of Tables
	List of Figures
	Introduction
	Background and Motivation
	Problem Explanation
	Objectives
	Methodology
	Significance of the study
	Chapter Structure Description

	Background
	Introduction to DfT
	Importance of DfT
	Advantages and Disadvantages of DfT
	Evolution and Development of DfT and Hardening Techniques

	Fault Model Overview
	Stuck-at Faults

	DfT Techniques
	Scan Chains
	Scan Compression
	LBIST
	Programmable LBIST
	Test Points
	Memory BIST

	Hardening Techniques
	Triple Modular Redundancy
	Error Correction Code

	Overview of System on Chip
	RISC-V Instruction Set Architecture
	Key Features of RISC-V
	Advantages of RISC-V
	Applications of RISC-V
	RISC-V in SoC Design
	Challenges and Future Directions

	Ibex Overview
	Architecture
	Features
	Design Considerations
	Applications

	OBI Protocol
	Overview of OBI Protocol

	CVA6 Overview
	Architecture
	Features
	Design Considerations
	Applications

	SRAM Overview
	Architecture
	Features
	Design Considerations
	Applications
	Faults in Memory and March Tests

	Approach
	Comprehensive Approach to Enhancing SoC Reliability and Testability
	Conceptual Framework
	Design for Testability
	General Method to Implement DfT
	Implementation of Scan Chains
	Implementation of Scan Compression
	Implementation of Memory BIST
	Implementation of Logic BIST
	Implementation of Test Points

	Hardening Techniques
	General Method to Implement Hardening Techniques
	Implementation of ECC in Memory Controllers

	Applicability to Various Contexts
	Flowchart of the Development Process
	Explanation of Each Step

	Implementation
	Overview
	Methodology
	Interface Definition
	System Wrapper Design
	Triple Modular Redundancy
	Bridge Component
	OBI Wrapper Component
	Register File
	LBIST Control Module
	SEC-DED Hamming Code Encoder and Decoder
	Testbench
	TCL Script for DfT Insertion
	TestMAX ATPG Script

	Implementation and Verification Details
	Design Verification
	Simulation Tools
	Synthesis Tools
	TestMAX DfT Tool
	TestMAX ATPG Tool
	Challenges and Solutions

	Hardening of the System
	Triple Modular Redundancy
	Error Correction Code
	Implementation Decisions

	Memory Selection and integration
	Memory Selection
	SRAM integration

	Results
	Test Coverage and Test Time
	Test Coverage Comparison with and without Test Points
	Design Area Comparison
	Power Consumption Comparison
	System Hardening

	Conclusions
	Overview of the Achievements
	DfT Techniques

	Critical Commentary
	Future Work
	Interrupt-Based Programmable LBIST
	Integration of MBIST with System
	Implementation of the Logic to Handle Double Error Detection
	JTAG

	References

