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Abstract

In recent years, drones have found applications in a variety of domains, such
as aerial surveillance and rescue missions to precision agriculture and film-
making. Advancements in drone miniaturization led to nano-drones: very
compact drones with only 10 cm in diameter and a few tens of grams in
weight, which have advantages, such as being highly maneuverable in con-
fined areas and safe to operate around people, but also have limitations,
such as battery lifetime lasting only a few minutes and a microcontroller
unit (MCU) limited to under 100 mW of power, which restricts computa-
tional capacity.

Among possible tasks, over the last years autonomous drone racing (ADR)
has become increasingly popular. In ADR competitions drones must au-
tonomously navigate through gates and avoid obstacles at high speeds, thus
requiring reactive perception and precise control. Because of these require-
ments, ADR competitions have become a proxy to improve autonomous
drones’ navigation capabilities, encouraging advancements in onboard per-
ception and control algorithms. More recently, the research community
started to put a lot of emphasis on fully end-to-end autonomous systems
for ADR, in which a single deep learning system processes the sensor in-
puts and outputs the motor commands. While end-to-end policies became
state-of-the-art for bigger drone systems, they have not been employed on
nano-drones due to their computational constraints.

This thesis focuses on the Crazyflie 2.1, a nano-drone which, equipped
with an ultra-low-power monochrome camera, state-estimation sensors, and
a GAP8 MCU, can execute deep learning tasks onboard. The objective of
the work is to develop a fully end-to-end vision-based deep learning policy
in simulation, targeting the deployment on the Crazyflie 2.1 nano-drone.

The proposed method consists of multiple steps. First, we use a learning-
by-cheating framework, in which a priviledged information policy (teacher
policy) is used to teach a vision-based policy (student policy). Both the
teacher and student policies are implemented as neural networks, enabling
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them to learn complex behaviors through data-driven optimization. While
the teacher policy can be trained directly with reinforcement learning (RL)
due to its simpler state-based input space, the vision-based student policy
has to be trained via imitation learning (IL), using the teacher policy as a
dataset collector. Second, we leverage the dataset created in the previous step
to apply neural architecture search (NAS) techniques in order to reduce the
policy’s computational cost and ensure its deployability. Finally, an RL fine-
tuning through the asymmetric actor-critc framework is employed by using
the pretrained post-NAS actor network and the teacher’s pretrained critic
network. This last step is essential to achieve a highly performing and stable
vision-based student policy. In order to reduce the discrepancy between
the simulator data and the real world data (known as ’reality gap’) and to
ensure deployability in unseen environments, multiple domain generalization
techniques, such as visual domain randomization and pencil-filtering, were
used during the training stages.

As a result, the teacher policy, taken as an upper bound in this work,
it is able to finish successfully the tracks 99% of the time, but it requires
priviledged information which is not obtainable in the real world. Our fi-
nal policy, on the other hand, uses only information obtainable from the
on-board sensors and it’s able to complete successfully an unknown ADR
track up to 70% of the time when in a already seen visual environment.
Thanks to the NAS techniques applied, the final policy results deployable at
30Hz entirely onboard the GAP8 SoC, allowing it to process image frames in
real-time at the native camera frame rate, requiring only 15M MAC, a 12x
reduction w.r.t the pre-NAS model (183M MAC). The final student policy
performances are obtainable thanks to the RL fine-tuning, which maximized
the student network performances, going from a 3% success rate in known vi-
sual environment of the NAS-optimized network to the 70% cited previously.
Thanks to the domain generalization techniques the final student policy is
able to fly in an unknown track with a never-seen-before visual environment
with a success rate of 51%, whereas without these techniques the agent would
not be able to fly in an unknown visual environment.
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Chapter 1

Introduction

Today, drones are employed across various fields such as industrial inspec-
tion, search and rescue operations or surveillance. Mastery in control and
navigation through complex environments is necessary for these kind of tasks
and requires years of training for expert pilots to achieve. Drone racing com-
petitions, in which pilots navigate their drones through a series of gates as
quickly as possible, offer a safe and challenging environment to improve and
compare pilots’ drone maneuverability skills. In these competitions pilots
operate their drones using First Person View (FPV) information, which pro-
vides real-time footage from a camera mounted on the front of the drone,
allowing them to drive the drone via remote radio controllers. Drones able
to autonomously perform these maneuvers, however, greatly enhance the
potential in real-world applications.

Researchers use autonomous drone racing (ADR) competitions to mea-
sure their autonomous drone systems progress. Similarly to the traditional
drone racing competitions, the objective is to navigate autonomously through
a series of gates as quickly as possible using the on-board algorithms. The
autonomous drones’ ability to rapidly navigate complex and unknown envi-
ronments without years of experience and training recommend them as an
attractive alternative to the human pilots, which is why there is increasing
interest in this field as reported in [16] and shown in fig. 1.1. To encourage
the research, projects like the European Research Council’s AgileFlight [12]
and many competitions like the IROS Autonomous Drone Racing Series [29],
and AlphaPilot AI Drone Racing Innovation Challenge where a 1 million
dollar grand prize was awarded to the winning team [4] have been launched
in the last few years.

Because of the high speeds at which the autonomous drones are flying
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1 – Introduction

Figure 1.1: Number of related publications per year, as evidenced by a google-
scholar search for “autonomous drone racing” [16].

in this context, the algorithms proposed by researches must be robust to
sensor noise, efficient and provide optimal decision and control behaviors in
real time [16]. Given these requirements, recent research found fully end-
to-end vision-based deep learning systems to be a good candidate for
their good generalization capabilities, robustness to sensor noise and fast
adjustment to environmental changes [14, 50]. These kind of systems use
one single neural network (often called also policy) which takes sensor inputs
and computes directly motor actions. The sensor inputs often come mainly
from a camera, which is why they are referred to as ’vision-based’. They
are particularly interesting to researchers for their ability to handle both
high-dimensional inputs (such as images) and low-dimensional inputs (such
as robot states) and their ease of implementation and deployment. A key
advantage of these methods is their simplicity in using one single technique
in order to produce motor commands directly from sensor inputs, which re-
sults lower latency and no compounding errors when compared to traditional
approaches. While traditional approaches often consist in multiple different
techniques which rarely make efficient use of specific hardware, the fully end-
to-end deep learning policies consists of only one algorithm which can take
advantage of hardware accelerators, such as GPUs, which speed up the infer-
ence. These characteristics led the fully end-to-end deep learning policies to
become state-of-the-art when it comes to gate-navigation ADR competitions.

Even though state-of-the-art neural networks algorithms require hardware
accelerators in order to run efficiently, this kind of hardware is too energy
demanding to be featured on palm-sized nano-drones, which have a battery
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1 – Introduction

Figure 1.2: The Crazyflie 2.1 equipped with the AI Deck. Source: https:
//www.bitcraze.io/

that allows a time of flight of only a few minutes [2] and a microcontroller
unit (MCU) limited to under 100 mW of power. The nano-drones are in-
teresting from a real world applications point of view as they are able to
navigate in very narrow spaces and they are very safe to humans. The
Bitcraze Crazyflie 2.1, an ultra-low-power nano-drone which weighs 27
grams and has a time of flight of only 7 minutes, tries to overcome this
limitation by allowing the addition of the GAP8 System-on-a-Chip, an
energy-efficient IoT application processor that enables the onboard execution
of neural networks. Even though this addition improves on the limitations
described previously, the constrained memory and the low frequency con-
tinue to be an issue, so the neural network algorithms deployed on such
devices have to be subject to further architecture improvements to ensure
the real-time operability and to fully exploit the hardware at hand.

While the deployment of the end-to-end deep learning policies on resource
constrained nano-drones needs particular attention to their computational
cost due to the lack of on-board GPU-like hardware accelerators, the train-
ing is done off-board and can fully exploit the GPU parallelization capability.
This is particularly beneficial as deep learning systems are known for their
high sample complexity, meaning that a substantial amount of data is
required for effective training and model development. In robotics, collect-
ing large amounts of real-world data is often discouraged, as it is both time
consuming and can lead to damaging the real-world robot. Recently simula-
tors have been used as an efficient way to generate large volumes of data in a
controlled, cost-effective manner. Even if state-of-the-art simulators provide
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1 – Introduction

high quality rendering, there is still a mismatch between the input distri-
bution that the neural network sees in the simulator at training time and
the input distribution in the real world. This mismatch is often referred to
as "reality-gap" and it leads to poor performance of the policy in the real
world scenario w.r.t. the performance in simulation.

While separately all the topics previously discussed are fairly popular re-
search topics, there is, to the best of our knowledge, no line of work that
addresses the task of building end-to-end deep learning policies for vision-
based autonomous racing on ultra-low-power nano-drones. This thesis aim
is to investigate the intersection of these research fields.

The contributions of this thesis are:

• An in depth analysis of the state-of-the-art neural network architectures
used for resource constrained vision-based tasks and/or autonomous
drone racing;

• Analyze state-of-the-art techniques for narrowing the reality gap, for a
direct deployment in unknown environments;

• Propose a novel method of developing fully end-to-end deep learning
vision-based policies for resource limited deployment targets, which in
this case is the Bitcraze Crazyflie 2.1;

Given the multiple constraints that the problem poses, the final policy
cannot be trained in a single step, thus the proposed method consists of four
steps. The first step is to train a priviledged information policy, which uses
ground truth information given by the simulator in order to produce optimal
actions for the drone. This first policy is not deployable on the Crazyflie 2.1
as it uses information not obtainable with the drone’s on-board sensors. How-
ever, given its ability to produce optimal actions thanks to the priviledged
information that it gets as input, it is used in the second step to collect a
dataset in which in which the partial information (here, visual information)
data is associated with the teacher’s optimal outputs. This dataset is then
used to train a vision-based network. Because priviledged information pol-
icy collects the data it is called a teacher policy, while the trained policy is
called the student policy. By leveraging the teacher-student framework, a
vision-based policy which is able to navigate the race track is trained. The
vision-based student policy, however, has a computational cost which is not
low enough to be deployed in real-time on the Crazyflie 2.1, thus, in the third
step, neural architecture search (NAS) techniques are employed in order to
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reduce the student policy’s computational cost and ensure its deployability.
These techniques automatically explore multiple sub-networks, starting from
the student network, and chose the one that better optimizes the computa-
tional cost vs task performance trade-off w.r.t. the computational constraints
that the target deployment system imposes. Finally, in the fourth step, a re-
inforcement learning fine-tuning on the pretrained post-NAS policy is done.
Reinforcement learning optimizes a neural network through the direct ex-
ploration of the simulated environment. This allows the student policy to
get more robust and maximize the performances in deployment. In order
to reduce the discrepancy between the simulator data and the real world
data and to ensure deployability in unseen environments, multiple domain
generalization techniques were used during all the training stages.

The teacher policy is taken as an upper bound in this work and it is able
to finish successfully the tracks 99% of the time, but it requires priviledged
information which is not obtainable in the real world. Our final policy, on the
other hand, uses only information obtainable from the on-board sensors, such
as the camera and the accelerometer, and is able to complete successfully an
unknown ADR track up to 70% of the time when in a already seen visual
environment. Thanks to the NAS techniques applied, the final policy results
deployable at 30Hz entirely onboard the GAP8 SoC, allowing it to process
image frames in real-time at the native camera frame rate, requiring only
15M MAC, a 12x reduction w.r.t the pre-NAS model (183M MAC). The
student policy performances are obtainable thanks to the RL fine-tuning,
which maximized the student network performances, going from a 3% suc-
cess rate in known visual environment of the NAS-optimized network to the
70% cited previously. Special attention has been put also in minimizing the
reality gap, enhancing its generalization to new visual environments capabil-
ities. Thanks to these techniques the final student policy is able to fly in an
unknown track with a never-seen-before visual environment with a success
rate of 51%, whereas without these techniques the agent would not be able
to fly in an unknown visual environment.

In the following chapters will get in more depth about the methodology
and the results. The organization of the thesis is the following: chapter 2 an
overview of the topics and the main algorithms used is presented. Chapter
3 presents an analysis of the state-of-the-art works for each topic of interest
of this thesis, briefly analyzing strengths and weaknesses, and explaining the
difference with the project at hand. Next, chapter 4 describes what is the
method used in order to produce the results, while chapter 5 describes the
experiments and the results obtained. Finally in the last chapter (6) an
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1 – Introduction

overview of the work is given, as well as future directions and works that can
be done starting from this.
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Chapter 2

Background

The following sections are devoted to introduction of the theoretical concepts
that are needed for this work. In section 2.1, we describe the quadcopter sys-
tem, analyzing its dynamics model; then we present the actual quadcopter
platform that we will be working with. In section 2.2, an overview of the
main approaches in autonomous drone racing is provided, with particular
focus on the end-to-end approaches, as it is the main focus of this work.
In the sections after, an introduction to the main techniques used for end-
to-end racing in the context of autonomous drone racing are presented. In
particular in section 2.3 we give a brief introduction to Supervised Learning
(SL), Deep Learning (DL) and the various neural network architectures used
in this work. Section 2.4 provides a theoretical background of Reinforce-
ment Learning (RL) and Deep Reinforcement Learning (DRL), while also
explaining the main concepts and algorithms used. Finally in section 2.5 we
introduce Imitation Learning (IL), describing its advantages and limitations,
along with the algorithms used in this work. The last two sections of this
chapter focus on more practical aspects of the work. Section 2.6 explains
what are the advantages and disadvantages of robot learning in simulation
and explores some of the most used simulators for autonomous drone racing.
Lastly section 2.7 focuses on neural network optimization techniques, as this
work focuses on resource constrained quadcopter platforms, which can only
host lightweight neural networks.
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2 – Background

2.1 Quadcopters

2.1.1 Quadrotor Dynamics
Quadcopters, or quadrotors, are unmanned aerial vehicles (UAVs) that utilize
four rotors to generate lift and control motion. Unlike traditional helicopters,
which typically use a single large rotor and tail rotor for control, quadcopters
rely on differential thrust between four independent motors. This design pro-
vides agility, stability, and simplicity in control. The dynamics of the motors
are inherently nonlinear and coupled, leading to the need for sophisticated
modeling and control techniques.

Flight Dynamics

The motion of a quadcopter is governed by Newton-Euler equations, that
describe how the forces and moments acting on the vehicle affect its transla-
tional and rotational motion. The thrust generated by each rotor contributes
to the overall lift that counters gravity and allows the quadcopter to hover
or ascend. By varying the speeds of individual motors, the quadcopter can
control its roll, pitch, and yaw, enabling it to tilt, rotate, and change direc-
tion [22]. This enables six degrees of freedom (DOF): three are translational
(up/down, forward/backward, left/right) and three rotational (roll, pitch,
yaw).

The configuration of the motors in either an "X" or "+" arrangement allows
for the control of attitude (orientation) and position through the manipula-
tion of the rotor speeds. For instance:

• Roll, the angle which describes the rotation around the front-to-back
axis (longitudinal axis), is controlled by increasing the speed of the two
motors on one side and decreasing the speed on the opposite side.

• Pitch, the angle which describes the rotation around the side-to-side axis
(lateral axis), is similarly controlled by varying the speeds of the front
and rear motors.

• Yaw, the angle which describes the rotation around the vertical axis, is
achieved by adjusting the differential speeds of clockwise and counter-
clockwise rotating motors, exploiting the reaction torque generated by
the rotors.

This dynamic interaction between thrust and torque leads to a highly ma-
neuverable system, but also one that requires real-time feedback and control
to maintain stability during flight.
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2.1 – Quadcopters

Quadcopter as an underactuated system

A quadcopter is classified as an underactuated system, meaning that it has
fewer independent control inputs than the degrees of freedom (DOF) to be
controlled. Specifically, a quadcopter operates with four independent control
inputs (the thrust generated by each of its four rotors) but has six degrees
of freedom: three translational DOF (along the x, y, and z axes) and three
rotational DOF (roll, pitch, and yaw).

The main challenge of underactuation is that not all degrees of freedom
can be controlled directly. In the case of a quadcopter:

• The four control inputs are the thrusts generated by each rotor, which
can control the overall thrust and the rotational motions (roll, pitch,
and yaw).

• The translational motion along the x and y axes, however, cannot be
controlled directly. Instead, they are controlled indirectly through the
tilting of the vehicle, which changes the direction of the total thrust
vector.

Since controlling each rotor individually for every movement would make
the control problem highly complex, it is easier to specify higher level con-
trols, such as desired setpoints for thrust, roll, pitch, and yaw, rather than
specifying the thrust for each motor independently [22]. More in detail, the
four parameters controlled are:

• Thrust: The total upward force to counteract gravity and control ver-
tical movement.

• Roll and Pitch: The angles that determine the tilting of the quad-
copter, which indirectly control the motion in the x and y directions.

• Yaw: The rotation around the vertical axis, controlling the orientation
of the quadcopter.

This abstraction simplifies the control problem by separating the dynamics
into more manageable terms [22]. This separation is more clear in Fig. 2.1
which illustrates the coordinate system of the Crazyflie 2.1.
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Advantages of Using Angle Setpoints

By using desired setpoints for thrust, roll, pitch, and yaw, the control problem
is significantly simplified [22]:

• The flight controller only needs to manage four high-level parameters,
rather than four independent motor thrusts.

• The coupling between rotational and translational dynamics is handled
indirectly, making it easier to maintain stable flight.

• Complex flight maneuvers can be achieved through coordinated changes
in roll, pitch, and yaw, rather than requiring fine adjustments to indi-
vidual motors.

Figure 2.1: Drone coordinate system: the X axis is the ’forward’ direction,
the Y axis the lateral direction and the Z axis the vertical direction. The
rotational angles of the drone coordinate system influence its translational
motion in the following way: the roll angle ϕ influence the motion on the Y
axis, while the pitch angle θ influences the motion on the X axis. Finally the
yaw angle ψ influence the orientation. [3]
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2.1 – Quadcopters

Motor Mixing Algorithm

To be able to use the desired thrust, roll, pitch, and yaw as setpoints, these
values must still be translated into specific thrust commands for each of the
four motors. This process is known as the motor mixing algorithm [6]. The
goal of the motor mixing algorithm is to compute individual motor thrusts
(u1, u2, u3, u4) based on the total thrust and the torques required for roll,
pitch, and yaw.

For a quadcopter in an "X" configuration, the relationship between the
control inputs (thrust, roll, pitch, and yaw) and the individual motor thrusts
is typically expressed as:


u1
u2
u3
u4

 =


1 1 1 1
0 l 0 −l
−l 0 l 0
c −c c −c



T
τϕ
τθ
τψ


Where:

• u1, u2, u3, u4 are the individual motor thrusts.

• T is the total thrust.

• τϕ, τθ, τψ are the torques required for roll, pitch, and yaw, respectively.

• l is the distance from the center of the quadcopter to each motor (lever
arm).

• c is a constant related to the direction and magnitude of yaw torque
generated by each rotor (which depends on the motor spin direction).

The motor mixing algorithm works by assigning specific motor thrust val-
ues that balance the total desired thrust and generate the necessary torques
to achieve the desired roll, pitch, and yaw.

Once the thrust, roll, pitch, and yaw setpoints are calculated by the flight
controller, these values are fed into the motor mixing algorithm to deter-
mine the exact motor speeds required to achieve the desired motion. This
approach allows for smooth and coordinated control without needing to di-
rectly calculate individual motor thrusts for each flight maneuver [6].
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2.1.2 Bitcraze Crazyflie 2.1
Released in 2019, the Crazyflie 2.1 [2] is a light (27g) nano-quadcopter of
10 cm diameter with up to 7 minutes of flight using stock batteries. Through
the addition of expansion decks, its hardware can be enhanced in terms of
sensing, positioning, and vision. Its basic hardware components are:

• the Micro Controller Unit STM32F405, which handles the low-level
and high-level controls [44].

• the nRF51822, another MCU designated for radio and power manage-
ment [41].

Two widely used expansion decks are:
• the Flow deck, for visual odometry navigation. It allows the drone to

detect the motion in any direction thanks to:
– the VL53L1x Time of Flight (ToF), a laser-based sensor which

measures the distance from the ground (the altitude) [1].
– the PMW3901 optical flow sensor, which measures the displace-

ment in the x, y direction as long as the altitude is at least 80mm
[18].

• the AI deck, which comes with the Himax HM01B0, an Ultra-Low
Power (ULP) 320x320 grayscale mono-camera with 30 FPS acquisition
rate [47], and the GAP8 System-On-Chip (SoC) [46], which enables
AI-based applications to run onboard thanks to the Parallel Ultra-Low
Power (PULP) paradigm.

Figure 2.2: Crazyflie 2.1 along with a categorization of UAVs by weight.
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2.1.3 PULP Architecture and GAP8 SoC
Being the "brain" of Crazyflie’s AI deck, the GAP8 System-on-a-Chip
(SoC) is an IoT application processor that enables the onboard execution
of neural networks thanks to the Parallel Ultra-Low Power (PULP)
paradigm.

Produced by GreenWaves Technologies, this ultra-low power processor fea-
tures a total of nine identical RISC-V cores. One is called Fabric Con-
troller (FC) and is devoted to being the main core in the Micro Controller
Unit (MCU), controlling all the GAP8 operations. It enables and dispatches
the workload to the Cluster (CL). The remaining eight cores compose the
CL, the parallel general-purpose accelerator, which can be programmed to
compute efficiently highly parallel workloads. The CL receives from the FC
digital signal processing (DSP) workload in order to speed up the execution
by exploiting the cluster parallelism and low-latency L1 shared memory..

Figure 2.3: GAP8 System-on-a-Chip Architecture [33]
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2.2 Autonomous Drone Racing

Autonomous Drone Racing (ADR) systems add nothing new to the classic
pipeline of mobile robotic autonomous systems. They need to perceive the
environment, to plan their actions and finally to calculate the control actions
that better follow the trajectory planned.

Initially these were three different, sequential, model-based algorithm blocks,
but since the rise of neural networks many researchers tried to approximate
these blocks (either separately, to ensure modularity, or altoghether, reducing
the compouding error) with neural-networks architectures.

Following the taxonomy that [16] proposes, in the next sections we give
an overview of the most well known methods, starting by describing more
in detail the classic approach in section 2.2.1. Then, in the following section
2.2.2 we will be looking at different ways to approximate these blocks with
neural networks. More specifically, we will talk about learned perception,
learned perception and planning, learned planning and controls. Lastly in
section 2.2.3 we will dive deeper in the end-to-end approaches.

Figure 2.4: A long exposure photograph of autonomous drone racing com-
petition taken from [21]. In blue the autonomous drone, while in blue Alex
Vanover, the 2019 Drone Racing League world champion
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2.2.1 Classic Approach

Classic autonomous systems are commonly split in three model-based se-
quential blocks: perception, planning and control as shown in Fig 2.5. Each
of these blocks plays a fundamental role in the autonomous systems’ ability
to perform the task at hand. The following subsections aim at giving a more
in depth explanation of each block and an overview of the main techniques
used.

Figure 2.5: A classic pipeline architecture for an autonomous system pro-
grammed using model-based approaches

Perception

The perception block is responsible of estimating the vehicle state and per-
ceiving the environment using onboard sensors, and of processing it in a
useful and interpretable way.

In ADR, visual-inertial odometry (VIO) is commonly used for state esti-
mation due to its low cost and lightweight advantages. VIO combines camera
and inertial measurement unit (IMU) data to estimate the drone’s position,
orientation, and velocity. While IMUs provide fast motion updates, they
suffer from errors like drift and misalignment over time. Cameras, while of-
fering detailed environmental data, operate at a lower rate and are sensitive
to poor lighting, low texture, and motion blur. Despite these limitations, the
combination of IMU and camera data makes VIO the standard method for
state estimation in ADR.
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Planning

The planning block interprets the processed data given by the perception
block and outputs a trajectory to be followed by the agent (the trajectory is
based on the model used for the agent, thus it can be 3d spatial coordinates,
but it can also include angular position, velocity, angular velocity, accelera-
tion and so on).

In ADR, after obtaining a state estimate, the next step in drone naviga-
tion is planning a feasible, time-optimal trajectory that adheres to the drone’s
physical limits and environmental constraints. This process involves predict-
ing the drone’s future states to minimize lap time while avoiding crashes.
Planning is often divided into two tasks: path planning and trajectory plan-
ning. Path planning finds a geometric path from the start to the goal, avoid-
ing obstacles, while trajectory planning refines this path by allocating time
or ensuring a collision-free flight. Some methods rely solely on trajectory
planning, assuming no collisions, while others find collision-free trajectories
directly or focus only on the geometric path for drone control without time
allocation.

Control

The control block is responsible for executing the planned trajectory by ad-
justing the system’s actuators, ensuring that the drone follows the desired
path with precision and stability.

In ADR, control techniques are used to translate the high-level trajectory
into low-level commands that dictate the drone’s motor speeds and orienta-
tions. The controller typically uses the state-estimation feedback from the
perception block to continuously adjust its actions and compensate for dis-
turbances or deviations from the intended trajectory. Classical control meth-
ods, such as Proportional-Integral-Derivative (PID) controllers, are often em-
ployed due to their simplicity and robustness in stabilizing the drone. More
advanced model-based controllers, like Model Predictive Control (MPC), can
also be used to optimize the control commands by predicting future states
and accounting for system constraints. Both approaches ensure the drone’s
smooth flight, keeping it within its operational limits while reacting dynam-
ically to changes in the environment or the system itself.
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2.2.2 Learning-based Approaches

In this section, we explore various learning-based approaches for drone racing,
which replace the planner, controller, and/or perception stack with neural
networks. These methods have gained considerable popularity in recent years
due to their ability to handle both high-dimensional inputs (e.g., images) and
low-dimensional inputs (e.g., states), their strong representational power, and
the ease of implementation on hardware.

A key advantage of learning-based approaches is their lower computational
demand compared to traditional methods, potentially enabling low-latency
re-planning and control. Furthermore, they exhibit greater robustness to sys-
tem latencies and sensor noise, as these factors can be identified on physical
drones and incorporated into the training environments.

In the following paragraphs, we discuss some of the most popular ap-
proaches for learning-based autonomous systems.

Learned Perception

For learned perception modules, the goal of the network is to use images
from an RGB, depth, or event camera to detect landmarks within the envi-
ronment and output useful representations such as waypoints, or the location
of gates on the track. The information gathered from this processing step
is usually fused with other sensors’ data through Extended Kalman Filter
(EKF) or other traditional algorithms. These algorithms allow to reduce the
uncertainty of the data and to produce more reliable estimates of the drone’s
state.

Figure 2.6: Learned control pipeline.
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Learned Controls

Choosing data-driven control methods, such as reinforcement learning or
imitation learning, addresses many of the limitations found in traditional
model-based controllers by learning effective controllers directly from experi-
ence. Difficult and abstract finetuning (such as in PID controllers) or being
limited by the model of the system (such as in MPC controllers) are issues
which don’t affect learning-based controllers. By training neural networks via
reinforcement learning or imitation learning, complex hyperparameter tun-
ing is not needed and, since they are model-free methods, they don’t need
an explicit model implementation.

However, unlike traditional methods, it can be challenging to guarantee
robustness with learning-based controllers. While they may show superior
performance in simulation, their application in the real world is often limited
by the difficulty in analyzing and ensuring the controller’s stability properties.

Figure 2.7: Learned control pipeline.
Learned Perception and Planning

A tightly-coupled, learning-based, perception and planning block has nu-
merous advantages. As a first advantage, a complex, computationally heavy
mapping algorithm is no longer needed, as an explicit map is not strictly
necessary anymore. Furthermore, by leveraging large amounts of data, the
planning becomes robust against noise in perception or dynamics.

Figure 2.8: Learned perception and planning pipeline.
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Learned Planning and Controls

This paradigm of learned planning and control is to produce the control
command directly from state inputs without requiring a high-level trajectory
planner. This paradigm makes use of traditional perception methods of sen-
sor data processing and sensor fusion to extract data representations, which
are then given as input to the planning-control learning-based module.

A first approach to this paradigm is to substitute the full planning-control
module with a learning-based algorithm, such as reinforcement learning or
imitation learning. Major advantages of the reinforcement-learning-based
method are its capability to handle relevant track changes and the scalabil-
ity to tackle large-scale random track layouts while retaining computational
efficiency. The learned policy solves the planning and control problem simul-
taneously, forgoing the need for explicit trajectory planning.

A second approach to this paradigm is to exploit the benefits of model-
based and learning-based approaches using differentiable optimizers which
leverage differentiability through controllers.

Even though this paradigm does solve the problem of having an interme-
diate representation of the path, it still suffers from some of the limitations
of traditional planning methods, such as needing a globally-consistent state
estimation.

Figure 2.9: Learned perception and planning pipeline.
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2.2.3 End-to-End Learned Approaches
End-to-end learning has recently gained popularity for tasks that need quick
perception and decision-making, with autonomous drone racing becoming a
key testing ground for these methods. Human pilots, who control drones
based solely on sensor feedback, can rapidly interpret their surroundings and
react to changes, easily navigating in complex environment. Recreating this
level of control and adaptability in autonomous drones is challenging, but
end-to-end learning aims at archiving such objective. It enables systems
to turn raw sensory data directly into control commands without relying
on traditional, manually designed algorithms: a crucial advantage in drone
racing, where every fraction of a second matters.

In this section, we explore two key approaches that aim to emulate hu-
man navigation through learning-based methods: the modular end-to-end
approach and the fully end-to-end approach [16].

Modular end-to-end learned approach

This first end-to-end paradigm builds upon the core principle of maintaining
distinct but interdependent modules for perception, planning, and control. It
swaps each model-based module of the classic pipeline with its own learning-
based module. The separation of each block approach leads to flexibility
and modularity, allowing for individual modifications to the neural network
within each block that do not structurally affect the whole system.

This methodology allows for independent training of each block to output
’classic pipeline’-like outputs, promoting interpretability. The modularity
also allows for the the incorporation of supplementary information to the
input to the following block, such as (partial) results of computationally
cheap classic algorithms, with ease.

Nevertheless the division in separate modules leads to compounding errors,
which impact negatively the performance when flying at high speeds.

Figure 2.10: Modular end-to-end learned pipeline
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Fully end-to-end learned approach

In the fully end-to-end approach, a single neural network is used to directly
map raw sensory input, such as images from an onboard camera, to control
actions for the drone. This approach bypasses the need for distinct per-
ception, planning, and control modules, leveraging a deep neural network
to autonomously derive navigation strategies based solely on sensory data.
Training a fully end-to-end model involves exposing it to a variety of racing
scenarios and allowing it to learn the optimal control strategies based on
observed inputs and desired outputs.

This method solves the previous’ compounding error problem, while also
relying on a simpler design. Because of the latter, it is easier to allocate more
development time towards complex training methods, potentially archiving
superior adaptability and generalization. Depending on the deployment tools
used, a simpler design also mean reduced latency in the decision making: a
crucial advantage in fast-paced environments like drone racing.

On the other side, fully end-to-end approaches lack the interpretability
that the modular approaches provide, making it difficult to debug and fine
tune. Furthermore it may require a vast amount of diversified data in order to
capture the complexity of different racing scenarios. The absence of distinct
modules means the model must learn every aspect of the racing task simul-
taneously, demanding extensive datasets and potentially increasing training
costs and time.

Figure 2.11: Fully end-to-end learned pipeline
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2.3 Supervised Learning
Supervised Learning is a fundamental ML technique extensively used in au-
tonomous drones for tasks like object detection, classification, and semantic
segmentation. In this context, a model is trained on a labeled dataset where
the input data, such as images or sensor readings, are paired with corre-
sponding labels, like object categories or navigation commands. The goal
is to learn a function f : X → Y that maps inputs X (e.g., drone sensor
data) to outputs Y (e.g., classification labels or control actions), based on a
training set {(xi, yi)}Ni=1, where xi ∈ X and yi ∈ Y .

The learning objective is to find the model parameters θ that minimize
a loss function L(fθ(xi), yi), which quantifies the discrepancy between the
predicted outputs and the actual labels. This can be formulated as:

min
θ

1
N

NØ
i=1

L(fθ(xi), yi).

2.3.1 Deep Learning
Deep Learning is a subset of machine learning techniques that leverages neu-
ral networks with multiple layers to learn hierarchical representations of data.
These deep neural networks can automatically extract features from raw data
and are powerful tools for a wide range of applications. The mathematical
formulation of different types of neural networks highlights their strengths
and limitations compared to other architectures.

(a) A taxonomy of learning algorithms. (b) Subdivisions of deep learning

Figure 2.12: Deep learning taxonomy. [5]
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2.3.2 Neural Network Layers
Feed-forward Neural Networks (FNN)

Feed-forward Neural Networks (FNNs, also known as Artificial Neural Net-
works ANN or Fully-Connected Neural Networks (FC)) are the simplest form
of artificial neural networks. They consist of layers of neurons where the data
flows in one direction, from input to output, without any cycles or loops.

Consider an FNN with L layers. Each layer l consists of nl neurons, and
the input to the network is a vector x ∈ Rd. The output of layer is computed
as:

a(l) = σ(W(l)a(l−1) + b(l)), (2.1)

where:

• a(l) ∈ Rnl is the activation vector of layer l,

• W(l) ∈ Rnl×nl−1 is the weight matrix connecting layer l − 1 to layer l,

• b(l) ∈ Rnl is the bias vector for layer l,

• σ(·) is the activation function (e.g., ReLU, sigmoid, or tanh).

The final output ŷ of the network is obtained from the last layer. The
network is trained by minimizing a loss function L(ŷ,y), where y is the true
label.

Compared to Convolutional Neural Networks (CNNs) and Temporal Con-
volutional Networks (TCNs), FNNs lack the specialized mechanisms to han-
dle spatial and temporal dependencies effectively.

Figure 2.13: Illustration of one feed forward layer. [5]
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Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNNs) are designed to process data with
a grid-like topology, such as images. They use convolutional layers to auto-
matically learn spatial hierarchies of features.

A CNN applies a convolutional filter K ∈ Rh×w to the input I ∈ RH×W

to produce a feature map. For a given position (i, j) in the output feature
map, the convolution operation is defined as:

(I ∗K)(i, j) =
h−1Ø
m=0

w−1Ø
n=0

I(i+m, j + n) ·K(m,n). (2.2)

The output is then passed through an activation function σ(·), such as
ReLU, and typically followed by pooling layers to reduce dimensionality while
capturing dominant features and they may be also followed by batch normal-
ization layers, that learn the new features’ distribution and normalize them
in order to ease the learning of the following layers.

Compared to FNNs, CNNs better capture spatial dependencies due to
their convolutional layers and pooling operations. However, they are less
suited for temporal sequences, where RNNs or TCNs might be preferred.

Figure 2.14: The overall architecture of the CNN includes an input layer,
multiple alternating convolution and max-pooling layers, one fully-connected
layer and one classification layer. [5]
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Temporal Convolutional Networks (TCN)

Temporal Convolutional Networks (TCNs) are designed to handle sequential
data by applying convolutional operations along the temporal dimension.
They leverage dilated convolutions to capture long-range dependencies effi-
ciently.

In a TCN, a dilated convolution operation is defined as:

(X ∗Kd)(t) =
K−1Ø
k=0

X(t− k · d) ·K(k), (2.3)

where X is the input sequence, Kd is the dilated kernel with dilation factor
d, and K is the kernel size. The dilation allows the network to have a wider
receptive field without increasing the number of parameters.

TCNs offer a powerful alternative to RNNs by leveraging convolutions
for sequential data, allowing for parallel processing and better handling of
long-range dependencies.

Figure 2.15: Visual representation of the TCN architecture.
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2.3.3 Domain Generalization
In domain generalization within supervised deep learning, the goal is to train
a model on data from multiple source domains to generalize well to an unseen
target domain. Given source domains Ds = {(xsi , ysi )}Ns

i=1 for s = 1, . . . , S,
each with distribution Ps(x, y), we aim to learn a model that minimizes the
expected risk over an unknown target distribution Pt(x, y). This process is
shown in fig. 2.16.

Domain-invariance can be directly encouraged by ensuring that the dis-
tributions of the extracted features are similar across source domains:

P (gθ(x1)) ≈ P (gθ(x2)) ≈ · · · ≈ P (gθ(xS))

To improve generalization, data augmentation techniques can be ap-
plied to simulate variations that might occur in the target domain. This en-
courages the model to learn features that are robust across a broader range
of inputs, indirectly aiding domain-invariance. By increasing the diversity of
source data, these augmentations expose the model to a wider range of sce-
narios, indirectly preparing it to handle potential shifts in the unseen target
domain.

Figure 2.16: A visual explanation to domain generalization.
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2.4 Reinforcement Learning (RL)
Reinforcement Learning (RL) is a subfield of machine learning focused on
training agents to make sequences of decisions by interacting with an en-
vironment, with the goal of maximizing a cumulative reward signal. Unlike
supervised learning, where a model learns from a labeled dataset, RL is char-
acterized by an agent learning through trial and error, using feedback from
its own actions and experiences. The following subsections aim at giving a
base understanding of RL following [45] and then going deeper on algorithms
or techniques relative to RL that are useful for this thesis.

2.4.1 RL Theoretical Foundation
Markov Decision Process (MDP)

A fundamental concept in reinforcement learning is the Markov Decision
Process (MDP), which provides a mathematical framework for modeling de-
cision making in environments where outcomes are only partially under the
control of a decision-maker. An MDP is defined by a tuple (S,A, P,R, γ),
where:

• S is a finite set of states, representing all possible situations the agent
can encounter.

• A is a finite set of actions, representing all possible decisions the agent
can make.

• P : S×A×S → [0, 1] is the state transition probability function, where
P (s′|s, a) represents the probability of transitioning from state s to state
s′ after taking action a.

• R : S×A→ R is the reward function, where R(s, a) gives the immediate
reward received after taking action a in state s.

• γ ∈ [0, 1] is the discount factor, which balances the trade-off between
immediate and future rewards, by determining the present value of future
rewards.

The Markov property implies that the future state s′ depends only on the
current state s and action a, and not on the sequence of events that preceded
it. This property simplifies the modeling of decision-making processes and is
crucial for developing efficient algorithms.
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Policy

A policy π : S → A is a strategy used by the agent to determine actions based
on states. It can be deterministic, π(s) = a, or stochastic, π(a|s), where the
probability of selecting action a in state s is given by π(a|s). The policy is
central to the agent’s behavior as it maps the states to actions, dictating the
course of actions for a given environment.

The goal of the agent in an RL setting is to learn a policy π, which is
a mapping from states to actions that maximizes the expected cumulative
reward. The expected cumulative reward, also known as the return, is defined
as:

Gt =
∞Ø
k=0

γkRt+k+1, (2.4)

where Gt is the return at time step t, and γ ∈ [0, 1] is the discount factor.

State-Value Function

The state-value function (or simpler, value function) V (s) represents the
expected cumulative reward that an agent can achieve from a state s under
a given policy π. Formally, it is defined as:

V π(s) = Eπ

C ∞Ø
t=0

γtR(st, at)
-----s0 = s

D
.

The value function provides an estimate of the desirability of states, guiding
the agent towards higher rewards.

Action-Value Function (Q-Function)

The action-value function (or Q-function) Q(s, a), represents the expected
cumulative reward of taking action a in state s and thereafter following a
policy π. It is defined as:

Qπ(s, a) = Eπ

C ∞Ø
t=0

γtR(st, at)
-----s0 = s, a0 = a

D
.

The Q-function is fundamental in RL as it forms the basis of Q-learning, an
important algorithm in the field.
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Relationship between Value Function and Q-Function

The value function V (s) and the Q-function Q(s, a) are closely related con-
cepts in reinforcement learning, both aimed at estimating expected rewards
but from slightly different perspectives. The value function V (s) gives the
expected cumulative reward of starting from state s and following a specific
policy π, aggregating the returns across all actions weighted by the policy’s
probabilities. In contrast, the Q-function Q(s, a) provides a more granu-
lar view by estimating the expected reward starting from state s, taking a
specific action a, and thereafter following policy π.

The two functions are linked by the equation V (s) = q
a∈A π(a|s)Q(s, a),

which shows that the value of a state under a policy can be derived from
the Q-values by averaging over all possible actions according to the policy.
This relationship is fundamental, as it allows an agent to determine optimal
actions by comparing Q-values across actions within each state, a principle
central to many reinforcement learning algorithms.

Bellman Equations

The Bellman equations provide recursive definitions of value functions, cap-
turing the relationship between a state (or state-action pair), immediate
rewards, and the value of subsequent states. These equations form the basis
for many RL algorithms and offer a mechanism to iteratively compute the
optimal value of each state. For any policy π, the Bellman equation for the
state-value function V π(s) is defined as:

V π(s) =
Ø
a∈A

π(a|s)
Ø
s′∈S

P (s′|s, a) [R(s, a) + γV π(s′)] ,

Similarly, the Bellman equation for the action-value function, or Q-function,
Qπ(s, a) is:

Qπ(s, a) = R(s, a) + γ
Ø
s′∈S

P (s′|s, a)
Ø
a′∈A

π(a′|s′)Qπ(s′, a′).

The idea of the Bellman equation is that instead of calculating each value
as the sum of the expected return, which is a long process, we calculate the
value as the sum of immediate reward and the discounted value of the state
that follows. These recursive relationships enable dynamic programming
techniques such as policy iteration and value iteration.
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Optimality and the Bellman Optimality Equations

The Bellman optimality equations define the maximum expected cumulative
reward that can be obtained from any state by following the optimal policy
π∗. For the optimal value function V ∗(s), the Bellman optimality equation
is:

V ∗(s) = max
a∈A

Ø
s′∈S

P (s′|s, a) [R(s, a) + γV ∗(s′)] .

Similarly, for the optimal Q-function Q∗(s, a), it is given by:

Q∗(s, a) = R(s, a) + γ
Ø
s′∈S

P (s′|s, a) max
a′∈A

Q∗(s′, a′).

These equations represent a way to iteratively update the value of each state
or state-action pair by maximizing over all possible actions. Solving the
Bellman optimality equations yields the optimal policy, as an optimal policy
always takes the action with the highest Q-value:

π∗(a|s) = arg max
a

Q∗(s, a)

Policy Iteration and Value Iteration

Policy Iteration is an algorithm for finding the optimal policy by alternat-
ing between policy evaluation and policy improvement. The process can be
summarized as:

1. Policy Evaluation: Given a policy π, compute the value function
V π(s) for each state s by solving the Bellman equation for that pol-
icy, either exactly or approximately.

2. Policy Improvement: Use the computed value function to improve
the policy by choosing the action that maximizes the expected return,
updating π to a better policy.

These steps are repeated until the policy no longer changes, at which point
the policy and value function are optimal.

Value Iteration, on the other hand, combines policy evaluation and im-
provement into a single step. Starting with an initial value function, it iter-
atively applies the Bellman optimality equation, updating the value of each
state directly. This process continues until the value function converges to
the optimal value function V ∗.
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2.4.2 Classic Model-Free Approaches
Classical model-free approaches in reinforcement learning estimate optimal
policies directly from experience, without requiring a model of the environ-
ment’s dynamics, such as transition probabilities. Unlike methods presented
in the previous subsection, which simulate future states (thus called model-
based, as they use a model of the problem in order to simulate future states),
model-free techniques adjust value estimates and policies based solely on ob-
served rewards. Key methods, including Monte Carlo Learning, Temporal
Difference (TD) Learning, and Q-Learning, use different strategies to refine
these estimates through direct interaction with the environment.

Monte Carlo Learning

Monte Carlo Learning is a class of algorithms that estimates value functions
by averaging returns over complete runs, called episodes. In this approach,
value estimates are only updated after observing the full sequence of rewards
from an episode, making it well-suited for environments where episodes nat-
urally end. Given a policy π, the Monte Carlo estimate of the state-value
function V (s) for a state s is obtained by averaging the returns following
each visit to s under that policy. Formally, for a state s, the value estimate
is given by:

V (s) ≈ 1
N(s)

N(s)Ø
i=1

Gi,

where N(s) is the number of times state s has been visited, and Gi is the
return (cumulative reward) following the i-th visit to s. This formulation
provides an unbiased estimate of the expected return since it relies on actual
observed outcomes over entire episodes.

Temporal Difference Learning

Temporal Difference (TD) Learning is a class of algorithms that updates
value estimates based on observed rewards and the difference between sub-
sequent estimates. Unlike Monte Carlo methods, which require full episodes
to update values, TD learning can update values on a step-by-step basis,
making it suitable for online learning.

The TD(0) update rule for the state-value function is:

V (s)← V (s) + α [R(s, a) + γV (s′)− V (s)] ,
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where α is the learning rate and R(s, a) + γV (s′)− V (s) is the temporal dif-
ference error, measuring the difference between predicted and actual returns.

Q-Learning

Q-Learning is a model-free reinforcement learning algorithm that seeks to
learn the optimal action-value function, Q∗(s, a). Unlike Monte Carlo meth-
ods, Q-Learning can update value estimates at each step, making it suitable
for online learning. The update rule for Q-Learning is based on the Bellman
optimality equation and adjusts the Q-value for a given state-action pair
(s, a) as follows:

Q(s, a)← Q(s, a) + α
5
R(s, a) + γmax

a′
Q(s′, a′)−Q(s, a)

6
,

where α is the learning rate, R(s, a) is the immediate reward, and γ is
the discount factor that balances immediate and future rewards. The term
maxa′ Q(s′, a′) represents the estimated maximum future reward achievable
from the next state s′, guiding Q-Learning towards the optimal policy re-
gardless of the agent’s actual behavior policy.

Because Q-Learning directly approximates the optimal Q-values, it can
converge to the optimal policy as long as all state-action pairs are visited
infinitely often and the learning rate decays appropriately. This ability to
find an optimal policy without following it during learning distinguishes Q-
Learning as a flexible algorithm well-suited for dynamic and stochastic envi-
ronments.
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2.4.3 Deep Reinforcement Learning
As we consider environments with high-dimensional or continuous state and
action spaces, such as those encountered in robotics or video games, the lim-
itations of classical RL algorithms become apparent. Traditional methods
like tabular Q-learning and value iteration struggle to handle the vast state-
action spaces due to their reliance on exhaustive search and storage. Deep
Reinforcement Learning (Deep RL) addresses these limitations by leveraging
the power of deep neural networks to approximate value functions, policies,
or both. This allows RL algorithms to scale to complex environments by gen-
eralizing across large or continuous spaces, effectively capturing the essential
features of states and actions. By replacing tables with neural networks,
Deep RL methods can learn directly from high-dimensional sensory inputs,
such as images or raw sensor data, leading to breakthroughs in fields where
traditional RL methods were previously infeasible.

The next sections will delve into Deep RL techniques, starting with value-
based methods, such as Deep Q-Networks (DQN), and then exploring policy-
based methods and advanced algorithms like Proximal Policy Optimization
(PPO), which combine the strengths of both value and policy-based ap-
proaches.

Value-Based Deep RL Methods

Value-based methods in Deep RL focus on learning an approximation of the
optimal action-value function Q∗(s, a). The most notable algorithm in this
category is Deep Q-Networks (DQN), which was the first to successfully apply
deep learning to RL problems.

DQN approximates the Q-value function using a neural network parame-
terized by θ, denoted as Q(s, a; θ). The objective of DQN is to minimize the
following loss function, which is derived from the Bellman equation:

L(θ) = E(s,a,r,s′)∼D

C3
r + γmax

a′
Q(s′, a′; θ−)−Q(s, a; θ)

42D
, (2.5)

where D is a replay buffer storing past experiences, and θ− are the param-
eters of a target network that are periodically updated to stabilize training.

Because value-based methods approximate the action-value functionQ∗(s, a),
their output has to be enumerable. In practice the Q-Network will return
the expected Q-function for each action, given the current state. This makes
value-based methods hardly usable for continuous action spaces.
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Policy-Based Deep RL Methods

Policy-based methods directly parameterize the policy πθ(a|s) using a neural
network and optimize the parameters θ to maximize the expected return.
These methods have several advantages over value-based methods, including
better handling of high-dimensional or continuous action spaces and provid-
ing naturally stochastic policies.

The REINFORCE algorithm is one of the simplest policy gradient meth-
ods. The objective function J(θ) to be maximized is the expected cumulative
reward:

J(θ) = Eπθ

C ∞Ø
t=0

γtRt

D
. (2.6)

The gradient of this objective function, according to the policy gradient
theorem, is:

∇θJ(θ) = Eπθ
[∇θ log πθ(a|s)Qπθ(s, a)] . (2.7)

Actor-Critic Methods

Actor-critic methods combine the advantages of value-based and policy-based
methods. The actor is responsible for selecting actions based on a policy
πθ(a|s), while the critic estimates the value function V π(s) or the action-
value function Qπ(s, a) to guide the actor’s updates. This combination allows
for more stable and efficient learning.

The Advantage Actor-Critic (A2C) algorithm improves the basic actor-
critic framework by using the advantage function Aπ(s, a) = Qπ(s, a)−V π(s)
to reduce the variance of policy updates. The objective for the actor in A2C
is:

LA2C(θ) = E(s,a)∼πθ

è
log πθ(a|s)Â(s, a)

é
, (2.8)

where Â(s, a) is an estimator of the advantage function.
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2.4.4 Proximal Policy Optimization (PPO)
Proximal Policy Optimization (PPO) [40] is an advanced policy gradient
method that improves the stability and efficiency of training in reinforcement
learning. Traditional policy gradient methods like Vanilla Policy Gradient
(VPG) can suffer from instability due to large policy updates, leading to
performance degradation or even divergence. To address this, PPO restricts
how much the policy can change during each update, providing a more stable
learning process.

PPO Objective and Clipped Surrogate Function

The key idea behind PPO is to update the policy in a way that ensures the
new policy does not deviate too much from the old one. This is achieved
using a clipped surrogate objective function:

LCLIP (θ) = Et
è
min

1
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

2é
, (2.9)

where rt(θ) = πθ(at|st)
πθold(at|st) is the probability ratio between the new and old

policies, Ât is the advantage estimate, and ϵ is a hyperparameter that controls
the allowable change in policy.

The clipping mechanism in the objective function limits the size of the
policy update by ensuring that rt(θ) stays within [1− ϵ, 1 + ϵ]. This prevents
overly large updates, leading to more stable training. By taking the minimum
of the clipped and unclipped objective, PPO avoids pushing the policy too
far in one update, even when the advantage is high, which stabilizes learning.

Advantages of PPO

PPO offers key advantages over traditional methods:

• Stability: The clipped objective prevents large, destabilizing policy
changes, making training smoother.

• Simplicity: Unlike more complex methods like TRPO, PPO is straight-
forward to implement and computationally efficient while achieving sim-
ilar performance.

• Sample Efficiency: PPO strikes a good balance between exploration
and controlled policy updates, improving sample efficiency compared to
naive policy gradient methods.
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2.4.5 Asymmetric Actor-Critic (AAC)
Asymmetric actor-critic (AAC) [35] methods are a type of RL architecture
where the actor and critic networks receive different inputs. The actor is
responsible for choosing actions based on observations, while the critic eval-
uates the actions by estimating the value function or the advantage function.
The key idea is that the critic can access privileged information not available
to the actor, such as true state values, which improves learning efficiency.

In environments involving visual tasks, such as visual navigation or object
manipulation, the actor typically operates using high-dimensional sensory
inputs like images. In contrast, the critic can receive privileged, structured
information, such as object positions or velocity, leading to more accurate
evaluation and faster learning.

Asymmetric Structure

In a standard actor-critic architecture, both the actor and the critic typically
share the same observation ot, representing the environment at time t. The
actor outputs a policy πθ(at|ot) that selects actions at, and the critic evaluates
the quality of these actions using a value function V (ot) or a Q-function
Q(ot, at).

However, in an asymmetric setup, the critic receives additional privileged
state information st, which is not available to the actor. This privileged
information allows the critic to compute a more accurate value estimate
Q(st, at), which would not be possible using only the observation ot.

πθ(at|ot) (Actor policy based on observations)

Qw(st, at) (Critic’s value function based on privileged state information)

The key benefit of this asymmetric structure is that the critic can learn a
better approximation of the value function Q(st, at), as it is based on more
precise state information st rather than raw visual inputs. This helps in
reducing the variance in the value estimates, leading to more stable policy
updates for the actor, which operates only on ot. As a result, the actor
can improve its policy faster, despite having access to limited information.
The critic’s ability to exploit privileged data also provides better learning
efficiency, and by reducing variance, the overall training process becomes
more stable, allowing for smoother policy learning in challenging visual tasks.
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2.5 Imitation Learning (IL)
Imitation Learning (IL) is a framework in machine learning where an agent
learns to perform tasks by observing and imitating the behavior of an expert.
This approach is particularly appealing in robotics because it bypasses the
need for manually designing complex reward functions, which can be difficult
and time-consuming. Instead, an agent can learn directly from demonstra-
tions provided by a human expert or another agent. IL is especially useful in
scenarios where defining a reward function is challenging, but demonstrations
are readily available.

Imitation Learning methods can be broadly categorized into two main
approaches: Behavioral Cloning and Inverse Reinforcement Learning [32].
In this section, we focus on the former, which directly learns a policy from
the expert’s actions, and a popular algorithm within that domain, Dataset
Aggregation (DAgger).

2.5.1 Behavioral Cloning (BC)
Behavioral Cloning (BC) is one of the simplest forms of Imitation Learn-
ing. It involves training a policy to mimic the actions of an expert directly
from state-action pairs collected from expert demonstrations. Essentially,
BC treats imitation as a supervised learning problem where the input is the
state of the environment and the output is the action taken by the expert.

Formulation In Behavioral Cloning, the goal is to learn a policy πθ : S →
A that maps states s ∈ S to actions a ∈ A. Given a dataset of expert
demonstrations D = {(si, ai)}Ni=1, where each (si, ai) pair represents a state
and the corresponding action taken by the expert, the learning objective is
to minimize the discrepancy between the actions taken by the learned policy
πθ and those taken by the expert. This can be formulated as a supervised
learning problem:

min
θ

1
N

NØ
i=1
L(πθ(si), ai), (2.10)

where L(πθ(si), ai) is a loss function measuring the difference between the
predicted action by the policy πθ and the expert action ai. Common choices
for the loss function include mean squared error (for continuous actions) or
cross-entropy loss (for discrete actions).
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2.5.2 Distribution Shift Problem
Behavior Cloning is simple to implement and effective when expert demon-
strations are abundant and cover the state space comprehensively. However,
it faces key limitations that reduce its robustness in real-world applications.

A primary issue is covariate shift: the policy is trained on states from ex-
pert demonstrations, but small prediction errors during deployment can lead
it to encounter unfamiliar states. This distribution mismatch often results in
degraded performance. Additionally, error accumulation becomes prob-
lematic, as even minor mistakes can compound over time, further pushing
the policy away from the expert’s intended trajectory.

The limited exploration of the expert can also lead to limited general-
ization of Behavior Cloning. As the expert provide demonstrations for the
policy training, it will generally only follow optimal trajectories. Since the
distribution of data provided as training data will only cover optimal or near-
optimal trajectories, the policy will not be able to recover from the states
far from the optimal trajectory, states which will very likely be encountered
because of the error accumulation.

To overcome these issues, methods like Dataset Aggregation (DAgger)
iteratively refine the policy by gathering data from states encountered by
the policy itself, helping it handle diverse and unexpected situations more
effectively.

Figure 2.17: Visual explanation of the covariate shift and error accumulation
problem. [13]
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2.5.3 Dataset Aggregation (DAgger)
Dataset Aggregation (DAgger) [38] is an iterative algorithm designed to ad-
dress the issues of covariate shift and the accumulation of errors. DAgger
improves the robustness of the learned policy by incorporating states visited
by the policy itself into the training process.

Algorithm Overview The DAgger algorithm works as follows:

1. Initialize: Start with an initial policy π1 trained on an initial dataset
of expert demonstrations D1 = {(si, ai)}Ni=1.

2. Iterative Refinement: For each iteration t = 1, 2, . . . , T :

(a) Use the current policy πt to interact with the environment, generat-
ing a set of new trajectories.

(b) For each state encountered during the trajectories, query the expert
policy π∗ to obtain the correct action, creating a new dataset Dt of
state-action pairs.

(c) Aggregate the datasets: D ← D ∪Dt.
(d) Retrain the policy πt+1 on the aggregated dataset D using supervised

learning to minimize the discrepancy between πt+1 and the expert
policy π∗.

3. Output: Return the final policy πT+1.

Advantages of DAgger One of the main advantages of DAgger is its abil-
ity to reduce covariate shift. By collecting additional data from the states
encountered by the learned policy, DAgger minimizes the mismatch between
the training and testing distributions, enabling the policy to perform more
consistently when deployed. This approach also significantly enhances the
policy’s robustness. Through the inclusion of expert corrections during train-
ing, DAgger helps the policy recover from errors and improves its capacity to
generalize effectively to new, unseen states. Furthermore, DAgger’s iterative
framework ensures continuous improvement, allowing the agent to refine its
performance over successive iterations and become more adaptive and robus
in diverse situations.
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2.6 Simulation-based Robot Learning
In the domain of autonomous drone racing, developing and testing control
algorithms in real-world environments can be time-consuming, costly, and
prone to hardware risks. Moreover, real-world data collection presents chal-
lenges related to sample complexity, where a large number of interactions are
required for machine learning algorithms, particularly reinforcement learn-
ing (RL), to converge to an optimal policy. To mitigate these challenges,
simulation-based robot learning has emerged as a powerful tool. By training
autonomous drones in virtual environments, simulators enable faster data
gathering, reduced sample complexity, and parallelized training processes.

Simulators allow developers to expose learning agents to diverse scenarios
that would be difficult or risky to recreate in the real world. This capability
accelerates the learning process and allows extensive exploration of failure
modes, which are especially critical in high-speed environments like drone
racing. Despite the advantages of simulators, one of the major challenges
in this approach is the sim-to-real gap, where models trained in simulation
fail to perform optimally when transferred to real-world environments. This
gap arises from discrepancies in the dynamics, sensor noise, and environment
modeling between simulations and reality.

Various simulators have been employed in robotic learning, each with
unique strengths and weaknesses. In the next subsections, two different sim-
ulators will be presented: WeBots [49] and Nvidia IsaacSim.

Figure 2.18: IsaacLab multiple randomized environments [28]
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2.6.1 WeBots Simulator
Webots [49] is a versatile, open-source robotic simulator widely used in ed-
ucational, research, and development contexts. Built with an emphasis on
usability and cross-platform compatibility, Webots provides a user-friendly
environment for designing, simulating, and testing robotic models, including
autonomous drones. Webots offers high-quality 3D modeling and physics-
based simulation for a variety of robots, making it an accessible tool for
robotics projects where quick iteration and ease of setup are essential.

One of Webots’ core strengths is its extensive library of prebuilt models
and environments, which allow developers to quickly design and test new
control algorithms without building complex simulations from scratch. This
library includes various sensor and actuator models, making Webots a suit-
able choice for prototyping. Although Webots does not offer photorealistic
rendering or advanced physics, it provides reliable physics engines, such as
ODE (Open Dynamics Engine), capable of simulating realistic dynamics for
standard robotic applications, including obstacle avoidance and navigation
tasks. For drone applications, Webots can approximate aerial dynamics and
sensor feedback, which supports the development of control strategies in a
simplified environment before transitioning to more sophisticated simulators
or real-world testing.

While Webots lacks GPU acceleration and the advanced parallelism, its
simplicity and broad compatibility make it a practical choice for initial test-
ing and educational projects. Furthermore, Webots is open source, allowing
developers to customize the simulator to meet specific requirements, an ad-
vantage in research contexts where adaptability is key. However, due to
limited capabilities in rendering and aerodynamic accuracy, Webots is less
suited for high-fidelity applications, such as autonomous drone racing, where
the sim-to-real gap becomes more pronounced. In these cases, more spe-
cialized simulators like Nvidia IsaacSim are better suited for achieving high-
performance outcomes in complex, dynamic environments.

In summary, Webots provides a balance of accessibility and functionality
that makes it a valuable tool in the early stages of robotic learning projects.
It allows developers to iterate on design and control algorithms in a straight-
forward environment, complementing the capabilities of higher-fidelity sim-
ulators in the overall development workflow.
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2.6.2 Nvidia IsaacSim Simulator
Nvidia IsaacSim is a state-of-the-art robotic simulator built on the Nvidia
Omniverse platform, designed to support high-fidelity simulations and seam-
less integration with AI tools. It is especially suited for tasks like autonomous
drone racing, where both the accuracy of the simulation and the efficiency
of training are crucial.

One of the key advantages of IsaacSim over traditional simulators lies in
its ability to reduce the sample complexity in reinforcement learning. By en-
abling highly parallelized simulations, IsaacSim allows drones to be trained in
multiple environments simultaneously, drastically increasing the data collec-
tion rate. This parallelism significantly reduces the time required to gather
sufficient experience for RL models to converge. Additionally, IsaacSim lever-
ages Nvidia’s GPU hardware to accelerate not only the physics simulation
but also the training process, making it highly efficient compared to CPU-
bound simulators.

IsaacSim also addresses several aspects of the sim-to-real gap by providing
high-fidelity physics and sensor models. It employs Nvidia PhysX and FleX
physics engines, which ensure that the simulated dynamics of drones closely
mimic real-world conditions. This includes realistic aerodynamic models and
support for complex environmental factors, such as wind, lighting, and colli-
sions. Moreover, IsaacSim supports photorealistic rendering, enabling better
training of vision-based algorithms, such as those used for object detection
and navigation, which are essential in drone racing.

Compared to traditional simulators like Webots or Gazebo, which often
prioritize ease of use over simulation fidelity, IsaacSim excels in creating
highly realistic virtual environments. It integrates advanced GPU-powered
rendering, which is crucial for simulating perception systems that rely on
high-resolution imagery. This detailed rendering not only enhances the vi-
sual realism but also improves the training of deep learning models in envi-
ronments that closely resemble real-world race tracks.

In summary, while the sim-to-real gap remains a challenge, Nvidia Isaac-
Sim significantly narrows this gap through its high-fidelity simulations, ad-
vanced physics, and photorealistic rendering, providing a more effective plat-
form for developing autonomous drone racing systems compared to tradi-
tional simulators.
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2.7 Neural Architecture Search (NAS)
Neural Architecture Search (NAS) is a technique in machine learning that
automates the process of designing neural network architectures, allowing for
more efficient and optimized models. Traditionally, neural network architec-
tures are manually designed, which is time-consuming and relies heavily on
expert knowledge. NAS alleviates this by using algorithms to automatically
explore a search space of potential architectures, evaluating their performance
on a given task, and iteratively refining the topology of the network to find
the most effective structure.

NAS applied for edge devices, in particular, focuses on creating efficient
neural network architectures that meet the computational and memory con-
straints typical of mobile, IoT, and embedded systems. Edge devices have
limited processing power, memory, and battery life, so NAS is applied here
to optimize for lightweight architectures that deliver high accuracy while
maintaining low latency and power consumption.

In this context, NAS relies on a search strategy that favours the architec-
tures within the search space with a lower complexity, and often incorporates
constraints directly into the search process to balance performance and effi-
ciency. These constraints guide the search strategy to minimize the number
of parameters, reduce computational demands, and ensure models fit within
the hardware capabilities of the edge device.

2.7.1 Differentiable NAS (DNAS)
Differentiable Neural Architecture Search (DNAS), also known as one shot
NAS methods, is a family of NAS approaches that formulate the architecture
search process as a differentiable optimization problem, allowing gradient-
based methods to guide the search.

In DNAS, instead of evaluating each candidate architecture individually,
the algorithm constructs a supernet: a large, over-parameterized network
that includes multiple possible architectures within it. Through this su-
pernet, DNAS assigns learnable weights to various architecture choices (e.g.,
types of layers or connections) and optimizes them simultaneously with model
parameters. To search for accurate and efficient architectures, DNAS tools
enhance the normal training loss function with an additional differentiable
regularization term that encodes the cost of the network. Typical cost met-
rics are the number of parameters and the number of Multiply-Accumulate
operations (MACs) per inference. Mathematically, DNAS tools search for:
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min
W,θ
L(W ; θ) + λR(θ) (2.11)

where L is the task loss function, W is the set of standard trainable
weights (e.g., convolutional filters), θ is the set of additional NAS-specific
trainable parameters that encode the different paths in the supernet, R is
the regularization loss that measures the cost of the network and λ is a
hand-tuned regularization strength, used to balance the two loss terms.

By applying backpropagation across these choices, DNAS identifies high-
performing architectures in a fraction of the time and computational cost
of traditional NAS methods. This approach enables more efficient, scal-
able architecture discovery, making it especially useful for applications re-
quiring rapid iteration or deployment on devices with limited computational
resources.

Figure 2.19: An example of DNAS method (DARTS [25]): (a) Operations
on the edges are initially unknown. (b) Continuous relaxation of the search
space by placing a mixture of candidate operations on each edge. (c) Joint
optimization of the mixing probabilities and the network weights by solving
a bilevel optimization problem. (d) Inducing the final architecture from the
learned mixing probabilities.
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2.7.2 Types of DNAS
Path-based DNAS

Path-based DNAS methods define a DNN (the supernet) whose graph in-
cludes multiple alternative paths corresponding to the possible alternative
operations in the search space. The optimization reduces to selecting one of
these paths. An illustration of this method can be seen in Fig. 2.20. The
main issue with this approach is that the supernet size grows quickly with
the search space, limiting scalability.

Figure 2.20: Path-based DNAS illustration, as implemented in PLiNIO
Python library [19].

Mask-based DNAS

Mask-based DNAS introduces an additional level of efficiency in the architec-
ture search process by using binary masks to selectively activate or deactivate
parts of a supernet (here called seed network) during training. Instead of as-
signing continuous weights to each possible path or operation in the seed
network, Mask-based DNAS applies binary decisions to either "mask in" or
"mask out" certain architectural choices, streamlining the gradient-based op-
timization. This masking mechanism significantly reduces memory and com-
putational overhead because only the active parts of the architecture need
to be evaluated and trained at any time. By focusing on a discrete subset of
options, Mask-based DNAS accelerates the search while retaining the flexi-
bility of differentiable approaches, enabling the development of lightweight,
deployable models optimized for specific hardware constraints.
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2.7.3 DNAS Training Procedure
In Differentiable Neural Architecture Search (DNAS), the process is divided
into three key phases: warmup, search, and fine-tuning.

The first phase, warmup, involves standard training of the full super-
net (in path-based DNAS) or the seed network (in mask-based DNAS). Here,
only the regular weights W are trained, while the architecture parameters θ
are kept fixed at their initial values. This allows all possible paths (for path-
based DNAS) or all channels (for mask-based DNAS) to be fully trained.
For path-based DNAS, this results in all supernet paths being sampled uni-
formly, whereas for mask-based DNAS, all channels in the seed model remain
active. Throughout warmup, gradients are computed only with respect to
the task-specific loss function, L(W ; θ). Importantly, warmup results are
independent of any architectural constraints, making them reusable across
multiple searches targeting different objectives or hardware requirements.

The second phase is the architecture search, where both weights W
and architecture parameters θ are optimized together according to an objec-
tive function (such as that described in eq. 2.11 or eq. ?? with the DUCCIO
regularizer). This phase involves a training loop that runs for at least Esr
epochs and continues until an early-stopping mechanism detects convergence
by monitoring improvements in the task loss and NAS loss sum on the val-
idation split. Once the search converges, the architecture corresponding to
the final values of θ is exported.

In the final phase, fine-tuning, only the extracted model’s weights W
are further trained, again using the task-specific loss L, similar to the warmup
phase.
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Chapter 3

Related Work

3.1 Machine Learning in Autonomous Drone
Racing

:earning-based approaches have shown significant promise in autonomous
drone racing by leveraging data-driven methods that allow drones to navi-
gate and control themselves in complex environments. These methods replace
or augment traditional methods with neural networks, offering flexibility in
high-dimensional data processing, robustness to sensor noise, and fast re-
planning capabilities. In this chapter, a review key works in this field is
presented.

3.1.1 End-to-End Learning
End-to-end learning systems aim to process raw sensory inputs and directly
produce control commands, simulating the process by which human pilots
operate drones using first-person-view cameras.

Modular End-to-End Learning

In modular end-to-end learning approaches the classic perception, planning
and control blocks are all substituted with neural networks.

In [31] and [24], the authors train a perception-planning network and a
control network using IL. The perception-planning network uses RGB images
as input and predicts high-level waypoints (a path). These path predictions,
together with the state estimation of the drone are then used by the controller
networks as inputs to produce the controller outputs. In order to speed up
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the IL training, both these works used multiple teachers. In [24], for instance,
Li et al propose observational imitation learning: a IL variant that supports
online training and automatic selection of optimal behavior by observing
multiple imperfect teachers.

By using a modular approach, these methods allow for independent train-
ing of each block to output ’classic pipeline’-like outputs, promoting inter-
pretability. Yet, the division into independent blocks leads to compounding
errors and latencies, which negatively affect performance when flying at high
speeds [16].

Fully End-to-End Learning

The second family of learning approaches is the fully end-to-end. In these
methods a unique neural network is used to approximate the classic percep-
tion, planning and control blocks, without any supervision on intermediate
results of the network.

In [30], Muller et al implement an end-to-end learning framework where a
CNN was trained through imitation learning to map images from a camera
to control commands, bypassing the need for explicit trajectory planning or
state estimation. In [37], Rojas-Perez et al also analyze the improvement
gained by using a history of images, showing better performance of the net-
work when using a history of images.

Similarly [14] and [50] show the use of a history of images and state esti-
mates. However they do so by separating the visual feature encoder from the
temporal feature encoder. This division allows for more advanced techniques
to be used on the visual-feature encoder, such as latent-space learning. In
[14], for example, they use BYOL [15] in order to learn more robust latent
embeddings for the images through contrastive learning. The latent image
embeddings are then used as a sequence for the temporal feature extractor.

While the previous works all used IL as their core policy search algorithm,
in [51] Xing et al. propose the use of IL only as an intermediate step, which
trains a working, yet not optimal, policy for RL. By using an already trained
(even if not optimal) policy they ensure the convergence of the RL policy
search, whereas without the IL bootstrap wouldn’t be possible. The use
of RL allows the vision-based agent to explore actions different by the one
learned by the teacher, allowing it to go beyond the performance upper limit
imposed by simply cloning the teacher’s behavior.

Even though these methods show state-of-the-art performances, they don’t
show interest in the computational cost of the policies, allowing for costly
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policies which are not deployable on the nano-devices of interest of this work.

3.1.2 Domain Generalization
Domain generalization is essential in autonomous drone racing to bridge the
gap between simulation and real-world environments. This challenge has
motivated a variety of methods to improve model robustness across domains.

Domain randomization, for instance, introduces controlled variability in
simulated environments to enhance model transferability to real-world con-
ditions. In their work [26], Loquercio et al. apply domain randomization,
modifying lighting and gate textures in simulation to create a model that
achieves zero-shot sim-to-real transfer. This enables drones to handle real-
world variations, such as lighting changes and diverse gate appearances, with-
out additional tuning on real data.

Feature-level techniques also play a significant role in domain general-
ization. Pham et al. [34] propose a pencil filter to improve robustness by
emphasizing geometric structures in images, thus helping models generalize
to new environments where visual features differ from those seen in training.

Other works also improve domain generalization and robustness by work-
ing directly on the latent space produced by the neural networks. In [14],
Fu et al. use contrastive learning and data augmentation in order to build
robust feature representations from images, demonstrating resilience against
visual disturbances and unstructured environmental variations that were not
experienced during training.
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3.2 TinyML on Ultra-Low Power SoCs

TinyML at the edge focuses on deploying models directly on devices with
limited computational power, memory, and energy (such as mobile phones,
sensors, IoT devices or, in this case, nano-drones) rather than relying on
centralized cloud processing. Robots, particularly those used in industrial
automation, agriculture, or healthcare, benefit from the low latency of these
models, enabling real-time processing of sensory data like images, audio, and
physical sensor readings. This is crucial in applications such as autonomous
navigation, object recognition, and human-robot interaction, where immedi-
ate response is necessary for safety and efficiency.

3.2.1 Nanodrones as Resource Constrained Applica-
tion

DroNet is a compact 8-layer residual CNN tailored for real-time obstacle
avoidance and navigation in urban environments introduced by Loquercio
et al. in [27]. The architecture includes skip connections typical of residual
networks, enhancing stability and enabling generalization across different sce-
narios despite the network’s simplicity. DroNet’s design relies on lightweight
convolutions to reduce memory and compute demands, which allows it to
run efficiently on resource-constrained drones while maintaining high-level
navigation capability. This study shows how combining residual architec-
tures with small, streamlined networks can enable responsive navigation on
minimal hardware.

In [33] Palossi et al. introduce PULP-Frontnet, a neural network opti-
mized for real-time human-drone interaction on nano-UAVs. This network
was specifically designed to operate on the parallel ultra-low-power (PULP)
architecture, a constraint-driven approach that includes reduced convolu-
tional layers and 8-bit quantization. PULP-Frontnet achieves 135 frames
per second (fps) while requiring only 86 mW on the GAP-shield mounted
on top of the Crazyflie 2.1 drone. Notice that this power consumption is
negligible over the power of the full systems, in which the propellers’ power
dominates the overall consumption of the drone. The architecture focuses
on maximizing efficiency, balancing reduced memory and power with accu-
racy. This work underscores how hardware-specific design choices, such as
using lightweight layers and integer quantization, can allow effective DNN
deployment in extreme resource-constrained environments.
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Building upon the DroNet, Lamberti et al. present in [23] a series of Tiny-
PULP-Dronet, an advanced version of Dronet that achieves a 50× reduction
in parameters and a 27× reduction in MACs. The architecture modifications
focus on trading off redundant channels and neurons without impacting es-
sential features, allowing the model to reach 160 fps. This work demonstrates
the potential of pruning and layer optimization in supporting multi-tasking
on ultra-low-power systems.

On the same idea of optimizing successfully deployed networks, Cereda et
al. apply NAS to PULP-Frontnet and MobileNetV2 architectures for visual
pose estimation in order to achieve better performance to computational cost
tradeoffs on the Crazyflie 2.1 nano-drone [10]. The NAS process systemat-
ically explores combinations of convolutional layers, filter sizes, and layer
depths to generate architectures that balance accuracy with low computa-
tional load. Using NAS, the resulting CNNs achieves up to 50 FPS with
a 32% improvement in control accuracy over prior models. This study un-
derscores how NAS can streamline the architecture tuning process for nano-
drones, producing models with optimized convolutional configurations and
reduced latency, essential for resource-limited onboard AI applications.

These works, although successful in deploying deep learning policies on
computationally constrained devices (such as the Bitcraze Crazyflie 2.1), in-
vestigate tasks such as were obstacle avoidance or human-drone interaction.
Differently, this work analyses the potential of deep learning policies for au-
tonomous drone racing, in which more reactive perception and a more precise
control is needed as the drone flies at high speeds.
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Chapter 4

Methods

This chapter is devoted to a comprehensive description of the methodolo-
gies employed to address the task of developing an end-to-end deep learning
policy for autonomous drone racing competitions, aimed at the deployment
on the Bitcraze Crazyflie 2.1, an ultra-low-power nano-drone. In the first
section 4.1, an explanation of the task and its challanges is given. Next,
the section 4.2, a high-level overview of the whole development process. In
the next sections (4.3 and 4.4), there is a more in depth explanation of the
approach steps introduced in section 4.2.

4.1 Task Description and Challenges
This thesis focuses on ADR gate-based navigation competitions. This
category of competitions require the autonomous systems to have precise
control, accuracy, and spatial awareness as drones must accurately detect
and fly through specific gates positioned along the race course at high speeds.

In these competitions the track is often unknown a priori, requiring the
autonomous drone systems to be robust to unknown tracks. Given the re-
quirements of such a competition, recent research found fully end-to-end
deep learning policies to be a good candidate for their good generalization
capabilities, robustness to sensor noise and fast adjustment to environmental
changes [14, 50]. These characteristics led the fully end-to-end deep learning
policies to become state-of-the-art when it comes to gate-navigation ADR
competitions, which is why this thesis focuses on this kind of systems.

However, these deep learning systems often have high computational
cost. Commercial drones, often come with hardware accelerators, such as
GPUs, in order to allow on-board real-time performance. Ultra-low-power
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nano-drones, such as the Bitcraze Crazyflie 2.1, cannot carry these kinds of
accelerators as they are both too heavy w.r.t. their size and too expensive in
terms of energy. The Crazyflie 2.1, however, often comes with the AI deck,
which features the GAP8 (sec. 2.1.3), an IoT application processor that en-
ables the onboard execution of neural networks. Even though the deployment
is out of the scope of this thesis, the deployability of the neural network is a
main objective of this work. This is why a substantial portion of the work is
dedicated on ensuring that the policy network developed satisfies the com-
putational constraints which allow for the on-board real-time deployability
on the Crazyflie 2.1.

A central challenge that the training of the fully end-to-end deep learn-
ing policy faces is their high sample complexity. Deep learning systems
are known for being very data-hungry, requiring a large amount of data in
order to produce good results. In robotics, collecting real-world data is of-
ten discouraged, as it is both time consuming and can lead to damaging the
real-world robot. Recently simulators have been used as a efficient way to
generate large volumes of data in a controlled, cost-effective manner. Even if
state-of-the-art simulators provide high quality rendering, there is still a mis-
match between the input distribution that the network sees in the simulator
at training time and the input distribution in the real world. This mismatch
is often called "reality-gap" and it leads to poor performance of the policy
in the real world scenario w.r.t. the performance in simulation, which is why
particular attention has given also to training techniques that enhance the
domain generalization capabilities of the network, in order to reduce the
reality-gap and have a zero-shot deployment on the Crazyflie 2.1.

To sum up, this thesis focuses autonomous nano-drone navigation in ADR
competitions. The main goal is to develop a fully end-to-end vision-based
deep learning policy that can handle precise control, adapt to unknown
tracks, and operate reliably in different environments. A key part of the
work is ensuring that the policy is efficient enough to run in real time on
the Crazyflie 2.1, a resource-limited nano-drone, which relies on lightweight
processors like the GAP8. The thesis also tackles the reality gap between sim-
ulated training and real-world use by using domain generalization techniques
for better transferability. Finally, it addresses the high data requirements of
deep learning by relying on simulators to generate training data, reducing
the need for time-consuming and potentially risky real-world data collection.
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4.2 Approach Overview

4.2.1 Simulator and Environment
The simulator choice is one of the most important decisions that have to be
made in a robot-learning project, such as this thesis, as it influence what
techniques can and cannot be used. Some simulators, such as WeBots [49],
better described in section 2.6.1, focus on ease of use and flexibility, instead
of performance or high-fidelity, which can be of good use for initial testing
or educational projects. On the other hand, more complex simulators, such
as Nvidia IsaacSim, better described in 2.6.2, yield better speed and higher
quality rendering by taking advantage of GPUs, but at the cost of being less
user-friendly.

While WeBots was used in the early stages of the development of this
thesis, the final project was based on Nvidia IsaacSim because of its native
integration with the software infrastructure used to fully exploit NVIDIA
GPUs, allowing for fast and high-fidelity rendering. Along with that, the
IsaacLab [28] library built upon IsaacSim gives a Gym-like [48] interface,
which allows for the usage of more complex and data-hungry techniques such
as reinforcement learning.

Environment

In ADR competitions focused on gate-based navigation the objective is to
traverse a sequence of N gates, with an arrangement often unknown a pri-
ori, as fast as possible. These competitions are usually held in large, empty
warehouses, in which are present only the competing drones and the gates
that make up the track. Because of the simplicity of this setting, the envi-
ronment is composed only by the drone agent, the floor, the N gates and
the skybox (e.g. the image background). Furthermore, since these are time-
based competitions, there is no need to add competitor agents within the
environment.

Random Track Curriculum

As said previously, in ADR the tracks are rarely known in advance: because
of that, it is important to build an agent that can handle a distribution of
tracks, instead of one single track. For this reason, a track generator has to
be employed. Taking inspiration from [43], the track is defined as:
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T = [G1,G2, . . . ,GN ]

where Gi+1 = f(Gi,∆p,∆R) ∈ R3 × SO(2) is the definition of the gate
Gi+1 as a function parametrized by the previous gate Gi, as well as the
relative position ∆p ∈ R3 and the relative orientation ∆R ∈ SO(2). By
adjusting the range of relative poses and the total number of gates, race
tracks of arbitrary complexity and length can be generated.

In our specific case, the ∆p is defined through polar coordinates on the
2D plane, while the height (defined on the z-axis) was defined independently.
On the other hand ∆R in our case only defines a yaw angle, here called ψ as
the gates are intended to be upright, while the yaw angle is only important
for the curvature of the track. Since the curvature of the track is handled by
∆R, the angular part in ∆p called θ is used just as noise.

In order to allow the creation of unique ADR tracks, both ∆p and ∆R
are sampled from uniform distributions. Furthermore, to give the tracks
structure, instead of using the pure random samples from the uniform distri-
bution, a simple moving average filter and subsequent rescaling is used over
the samples of the same track. In fig. 4.1 an example of a track generated
with the method described is shown.

Figure 4.1: Example of track generated with the method described.
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4.2.2 Policy Development
In order to satisfy all the constraints that the problem at hand imposes,
several steps have to be done in the policy development. The main charac-
teristics that the final policy has to have are:

• On-board sensor based: it has to use images from the on-board camera
as its main input as well as state estimation from the on-board IMU and
accelerometer;

• Accurate navigation: it has to be able to finish the ADR competition
tracks;

• Real-time performance: it has to comply to the computational con-
straints given the resource limited deployment target.

In order to develop a policy that has all the characteristics cited the fol-
lowing steps were done:

Step 1: Teacher Policy via RL

The teacher policy leverages privileged information (such as the exact gate
position and orientation, drone velocity, acceleration, etc.) in order to allow
it to take the optimal actions, which consists of the optimal thrust and angle
setpoints for the quadrotor (sec. 2.1.1). This smaller and simplified input
space allows the teacher policy to be trained with reinforcement learning.

Figure 4.2: Proposed method: leverage the imitation learning supervised
nature to introduce a neural architecture search step, in order to respect the
computational constraints
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The teacher is trained, not only to complete the gate navigation task, but
also to have behaviors that would allow the student network training: such
as always having the next gate in the field of view of the camera and having
similar actions in subsequent timesteps.

The teacher policy is able to perform in real-time (as its network is
very small) and navigate accurately the race track (as it reaches optimal
results), but it is not on board sensor based (as it leverages information
that is not coming from the on-board sensors and that is not obtainable in
a real world scenario).

Step 2: Student Network via IL

The student cannot be trained directly with reinforcement learning, as the
training would be too unstable and it would not converge due to the large,
highly dimensional input space. Because of this the student policy has to be
trained with the learning-by-cheating framework. The learning-by-cheating
(presented in [14]) uses a teacher policy to collect the partial information data
(in this case images and state estimates) and the optimal actions computed by
leveraging the priviledged information. The dataset collected is used for the
partial information student policy training, in which it learns to mimic the
actions that the priviledged-information teacher has used, but by observing
the partial information as input (image and state estimation). By leveraging
such a dataset, the student policy is trained in a supervised manner, often
called imitation learning (sec. 2.5). In order to overcome the distribution shift
problem (sec. 2.5.2) that a simple collect & train approach would introduce,
the DAgger algorithm is used (sec. 2.5.3). This algorithm iteratively expands
the dataset by allowing the student to explore and collecting the teacher’s
actions in the new situations the student is encountering.

The student is trained on a regression task, as the teacher’s outputs are
continuous. The student network architecture receives as input a history
of images and state estimates, along with the current ones, as it has been
shown to increase performances [14, 50]. This allows the network to expand
its observation space, enhancing it with historical information from which it
can extract intrinsic information, such as velocity and acceleration.

This second step outputs a student network that uses on-board sensor
data, however it is not accurate (due to IL’s limitations, sec. 2.5) and it
is not real-time deployable. The goal of this first step is not to have the
optimal student network in terms of navigation ability, but to create a dataset
which is robust enough to train a policy that shows reasonable performance.
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Step 3: Student Network Optimization via NAS

The dataset created as a byproduct by the DAgger algorithm allows for the
optimization of the student network with PIT [36], a NAS algorithm which
reduces the size of the network in a structured way, by removing the chan-
nels/neurons which are less impactful for the outputs, having minimal task
performance drops. This procedure is used to reduce the student network’s
computational cost, in order to ensure its real-time performance. In this con-
text, the student policy trained at the second step is called a seed network,
as it can be seen in fig. 4.2.

The NAS procedure outputs a NAS-optimized student network, which
useson-board sensor data and has real-time performance, but it is still
not accurate. However, since the PIT algorithm objective is to reduce the
task performance drops as much as possible, the performances are similar to
the seed network’s. This means that the optimized policy is able to fly, even
if not optimally.

Step 4: Student Network RL fine-tuning via AAC

The NAS-optimized student network given by the previous step is here used
as an actor in the asymmetric actor-critic (sec. 2.4.5) framework. In the
AAC framework a the actor has access only to partial-information, while the
critic has access to the priviledged information, as it would not be used for
deployment and it only helps with training stability. Since the optimized
policy is pre-trained and able to navigate, in this context is called a boot-
strapped agent. In this step a bootstrapped critic it’s also used, by leveraging
the pre-trained critic of the teacher policy.

The RL fine-tuning objective is to maximize the performances of the agent,
by allowing the bootstrapped agent to explore different actions in the envi-
ronment. It is noteworthy that this step wouldn’t be applicable unless the
actor is bootstrapped, orelse the training would not converge due to the
highly dimensional observation space. In practice, if the agent is still not
able to fly at this step, the exploration would hardly ever come across a high
positive reward signal, thus the RL process would lead to a catastrophic for-
getting. By using a bootstrapped student policy, it is already close enough to
the optimal student policy, so it converges, achieving the best performance
the student policy can achieve.

The resulting RL fine-tuned agent uses on-board sensor data, is ac-
curate and has real-time performance, which are all the characteristics
that our final policy has to have.
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4.3 Priviledged Teacher Agent Training
The teacher policy is trained via reinforcement learning due to its low di-
mensional input space. In the next sections an overview of the setup of the
training of the priviledged teacher agent is presented, going through the ob-
servation and action spaces, the reward function used for the training and
the teacher policy neural network architecture.

4.3.1 Observation and Action Spaces
Inspired by [43], the observation space consists in two main components:
squadt which gives information about the drone state and staskt which gives
information about the race track.

The drone state component squadt consists of the drone’s linear velocity
in the drone’s coordinate system, angular velocity in the drone’s coordinate
system, angles in the world’s coordinate system, the projected gravity in the
drone’s coordinate system and the actions taken at the previous timestep.

squadt = [vDt , ωDt , θWt , gDt , at−1] ∈ R16

The task state component staskt consists of the position of the next N gates
in spherical coordinate’s system pi = [pr, pθ, pϕ]i ∈ R3, i ∈ {1, . . . , N}. As
discussed in [43] the spherical coordinates representation separates the dis-
tance of the gate and its direction in the reference frame origin and provides
a more informative description for gate-navigation task w.r.t. the Carthesian
coordinates. For the immediately next gate to be passed, a drone-centered
reference frame is used, while all other gate observations are recursively ex-
pressed in the frame of the previous gate. Thus the task state component is
composed as follows:

staskt = [p1, p2, . . . , pN ] ∈ R3N

The complete teacher observation is the concatenation of squadt and staskt .
The action space is defined by the desired total thrust (force, N), the

desired roll rate, the desired pitch rate and the desired yaw rate (angular
velocities, rads ). As described in chapter 2.1, this representation of the desired
setpoints is simpler and more understandable than the thrust setpoint for
each motor. Nevertheless the mapping to motor thrusts is a linear one,
through the motor mixing algorithm (sec. 2.1.1). Thus the action space is:

at = [T, τϕ, τθ, τψ] ∈ R4
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4.3.2 Reward Function
Drone racing’s objective in general is finishing a track in the least time pos-
sible. Even though it would make sense to use directly this as a reward
feedback, the reward signal would be incredibly sparse: at the beginning of
the training the agent acts basically as a random agent, thus all track runs
(in this context called episodes) finish up with a crash. The probability of
such an agent of using the correct combination of (random) actions in order
to finish a track fastly approaches zero, making the credit assignment for
each individual action impossible.

A popular approach to circumvent this problem is to use a proxy reward
that closely approximates the true performance objective while providing
feedback to the agent at every time step [26].

Along with objective proxy reward, which make the agent successful in the
task, the reward function has to also promote/discourage certain behavioral
aspects of the agent, such as safety and stability. In our specific case, it has
to incentivize also the perceptive behavior in order to allow a correct data
collection for the vision-based agent.

The complete reward function (inspired by multiple works in ADR via
deep RL, such as [26, 51, 14]) results in a summation of different rewards
(R), each scaled relatively to their importance by their own factor (λ):

R(s) = λpassed_gateRpassed_gate

− λcrashRcrash

+ λprogressRprogress

− λsafetyRsafety

+ λperceptionRperception

+ λblurRblur

− λang_velocityRang_velocity

− λsmoothnessRsmoothness

(4.1)

In the next sections a more in depth presentation of each one of compo-
nents of the reward function is given.

Whenever possible the R components were scaled into a range of (0, 1) or
(−1, 1) in order to ease the choice of the λ parameters.

Based on each term’s meaning and implementation, the rewards are split
between rewards and penalties. The way they are distinguished is by the
sign present in the eq. 4.1: a positive sign reward is encourages the behavior
that produces it, while a negative sign reward is discourages it.
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Passed gate reward

This reward encloses the main objective of our agent: passing the gates that
describe the track. This reward is given as a feedback every time the drone
passes the gate which is next in order to finish the track. Mathematically
it’s described as:

Rpassed_gate = 1passed_gate (4.2)
Where the indicator function 1passed_gate is equal to one only if the agent

has passed the objective gate. In order to better understand this indicator
function, the following concepts have to be introduced:

• posGT : which is the position vector of the drone at time T in the gate’s
(G) coordinate system;

• posGT,n: which is posGT , projected on the gate’s plane vector (in other
words, the absolute value is the distance from the gate’s plane, while
the sign represents which side of the gate’s plane the agent is on);

• posGT,t: which is posGT , projected on the gate’s plane.

Given the previous definition, we can provide a more detailed explanation
of the previous indicator function. More specifically we can define:

1passed_plane = ((posGT,n · posGT−1,n) < 0)

Which indicates if the drone has traversed the gate plane. This alone is not
enough to indicate the pass of a gate though, thus we need another function:

1inside_gate = (||posGT,t||inf < 0.5)

Which indicates if the drone is ’inside’ the gate. The infinity norm was used
as the gates used are squared, while 0.5 is half of the length of its side.

By using the previous two functions we can define the indicator function
for our reward as:

1passed_gate = 1passed_plane · 1inside_gate (4.3)
Even though this should be enough to ensure the agent finds a good policy,

the sparsity of this reward may become an issue, as the agent may not be ex-
ploring enough to ever find this reward. Because of this issue denser rewards
were introduced, such as the ’Progress reward’ which will be described later.
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4.3 – Priviledged Teacher Agent Training

Crash penalty

Crashing in drone racing is generally not encouraged: while some very small
contacts with the gate can be tolerated in order to optimize the trajectory,
in the majority of the cases even small contacts can introduce such a big
deviation from the trajectory that the drone stability is compromised and it
cannot recover. Because of this, a penalty for crashing was introduced using
the in-simulation force sensors:

Rcrashed = 1crashed = (
Ø
||Fext||2 > 0) (4.4)

Of course the external forces Fext do not take into consideration propeller
forces, but only forces applied by external objects. In this case air drag is
not considered.

Progress reward

The progress reward serves multiple objectives: the first one is to give a
denser reward towards the main aim which is to pass the gates, while the
second one is to limit the maximum velocity magnitude the drone reaches, in
order to account for simulator’s representation limitations. Because of this
the progress reward is split in two parts:

Rprogress = clip(Rtowards_gate +Rmax_vel; min = −1; max = 1) (4.5)

In order to better understand these two components we have to introduce
the following:

• vDT : is the velocity vector of the drone at time T in the drone’s coordinate
system;

• gate_posDT : is the gate position vector at time T in the drone’s coordi-
nate system;

• v̄: is the target velocity, a hyperparameter which defines the maximum
speed at which we want the drone to fly

The Rtowards_gate is described as:

Rtowards_gate = clip(1
v̄
⟨vDT ,

gate_posDT
||gate_posDT ||2

⟩; min = −1; max = 1)
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where the velocity vector in the drone’s coordinate system is dot-multiplied
with the unit vector representing the gate’s position, also expressed in the
drone’s coordinate system. Dividing by the target velocity ensures that when
the drone reaches the projected velocity equal to the target velocity the
reward is equal to one, while the clip ensures that projected velocities bigger
than the target velocity are not further incentivised.

The Rtowards_gate alone does not ensure that the agent will not go beyond
the target velocity, thus Rmax_vel component was introduced as:

Rmax_vel =

2e− (||vD
T ||2−v̄)2

0.2 − 1, if ||vDT ||2 ≥ v̄

0, otherwise

Which is a half-gaussian, centered in v̄ (here 2.5) having a small standard
deviation (here 0.2) and rescaled in the range (−1, 1). By using this function
we let the agent exceed the target velocity without much penalty, but for
a very short range, whereas if we used a simpler way to define it, such as
giving reward equal to -1 everytime it exceeds it, the agent would not want
to approach the target velocity too closely, as it would risk to get a negative
reward.

Figure 4.3: The progress reward in 2D, assuming the gate is in direction (0,1)
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4.3 – Priviledged Teacher Agent Training

Safety penalty

In order to introduce a denser penalty w.r.t. the crash penalty, the safety
penalty is introduced, taking inspiration from [43]. It penalizes the agent
for being in positions which are dangerous, while incentivising it to progress
through the center of the gate. The safety reward Rsafety is defined as:

Rsafety = f2 ·
A

1− exp
A
−0.5 · d2

n

v

BB
(4.6)

where f = max
è
1−

1
dp

dmax

2
, 0.0

é
and v = max

è
(1− f) ·

1
wg

6

2
, 0.05

é
.

Here, dp and dn denote the distance of the quadrotor to the gate normal
and the distance to the gate plane, respectively. The distance to the gate
normal is normalized by the side length of the rectangular gate wg, while dmax
specifies a threshold on the distance to the gate center in order to activate
the safety reward. A visual representation can be seen in fig. 4.4.

Figure 4.4: Safety reward illustration, in which the gate’s position is in (0,0)
and the gate plane is positioned on the x-axis.
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Perception reward

Since the final objective of the teacher is to collect data for the student
training, particular care has to be put into its perception capabilities. Taking
inspiration from [14], a perception reward is employed in order to keep the
next gate always in vision. Mathematically it is described as:

Rperception = e−8·θ3

where θ is the angle created between the drone’s reference frame X-axis
and the vector which links the drone and the center of the gate in the world’s
reference frame. Since the camera’s FOV is 90 degrees, θ should be less than
45 degrees. In fig. 4.5 a visual representation of the perception reward
in function of θ is given. It is notable how the reward starts increasing
significantly only after the 45 degrees.

Figure 4.5: Perception reward illustration.

Motion Blur reward

Along with the perception reward, another reward concerning the perception
capabilities of the drone is introduced in order to reduce the motion blur.
This is done by penalizing the agent if big variations in θ (introduced in the
perception reward) are made. Mathematically:

Rblur = e−10·|θ(t)−θ(t−1)|
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4.3 – Priviledged Teacher Agent Training

Angular velocity penalty

In order to keep the drone stable, a reward that tries to minimize its angular
velocity ω is introduced. It is defined as:

Rang_velocity = ||ω||2
This penalty is mainly focused on drone stability, however it intrinsically

helps also to reduce motion blur. The main difference between this penalty
and the motion blur penalty is that, while the angular velocity penalty penal-
izes all angular velocities indiscriminately, the motion blur penalty penalizes
only the angular velocities that change the position of the position of the gate
in the drone’s body reference frame. It does so by penalizing the changes
in the angle created between the drone’s reference frame X-axis (which rep-
resents the camera direction) and the vector which links the drone and the
center of the gate in the world’s reference frame. This means that the mo-
tion blur reward doesn’t penalize the agent as long as the gate remains in
the same place in the image frame (not creating motion blur).

Smoothness penalty

Since the objective of the teacher agent is to gather data for the student
agent, data quality is very important. Because of this, a reward that ensures
smooth action trajectories is employed. By minimizing the difference between
actions takes in sequent timesteps, a trajectory without noise is promoted.
The ’smoothness reward’ is defined as:

Rsmoothness = ||a(t)− a(t− 1)||

79



4 – Methods

4.3.3 Teacher Neural Network Architecture
The observation space presented in sec. 4.3.1 is simple enough to be processed
with a small feed forward neural network (sec. 2.3.2). The feed forward neural
network is composed of multiple hidden neural network, in particular five
hidden layers have been used, with dimensions [256, 512, 512, 512, 256], which
is also represented in fig. 4.6. Between each hidden layer a tanh activations
is used. A tanh activation is used on the outputs aswell, which rescales in
the range (−1, 1) and is then rescaled before applied in the simulation. The
output at = [T, τϕ, τθ, τψ] is rescaled in the following way:

Trescaled = (F/W ) · w · 1 + T

2
τϕ,rescaled = s · τϕ
τθ,rescaled = s · τθ
τψ,rescaled = s · τψ

(4.7)

where F/W = 1.9 is the thrust-to-weight ratio of the Crazyflie 2.1 [11],
w = 0,264 N is the weight of the Crazyflie 2.1 and s = 0.001 is a moment
scale factor used to rescale the angular velocity setpoint outputs in the same
range as the thrust output (found empirically). This last scaling factor is
important as it helps the smoothness penalty to give equal importance to
the smoothness of each action.

Figure 4.6: Teacher network illustration, with the correct input, hidden and
output layer sizes.
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4.4 Vision-based Student Agent
The student policy is the main focus of the thesis: it has to be vision-based,
has to have good navigation skills and it has to be within the computational
constraints that the GAP8 SoC imposes. In this section a more in depth anal-
ysis of the student policy will be done: in sec. 4.4.1, the observation space
of the student agent will be introduced, from sec. 4.4.2 to 4.4.4, an in depth
explanation about the student architecture is done, going over architectural
choices, hyperparameters, computational constraints, as well as literature re-
view of tinyCNNs. Following, the sec. 4.4.5, explains the training procedure
for the seed network, the sec. 4.4.6, explains the techniques used in order to
achieve the domain generalization needed for the student to be able to fly in
unknown environments, sec. 4.4.7, explains the NAS optimizations used in
order to comply with the computational constraints and finally, in sec. 4.4.8,
an overview of the asymmetric actor critic RL fine-tuning is given.

4.4.1 Partial-Information Observation Space
Differently from the teacher policy, the student policy cannot observe the full
state of the agent, which was previously called priviledged-information. The
student policy will only have partial information provided by the on-board
sensors as its observations.

As explained previously (sec. 2.1.2) the AI-Deck provides the CrazyFlie
2.1 the Himax HM01B0, an ULP 320x320 grayscale mono-camera. The image
is provided as a matrix of 320x320 with values in the range [0,1]. Mathemat-
ically it can be expressed as:

i ∈ [0,1]320×320

Along with the image provided by the Himax camera, the integrated IMU
sensor and the Flow-Deck sensors can provide state-estimation vector. This
vector is composed by the 3d linear velocity, 3d linear acceleration, 3d angular
velocity and 3d angular acceleration:

sest = [v, a,ω,α] ∈ R12

Thus the observation space of the student policy will be the Cartesian
product of the image space and the state-estimation space:

o = [i, sest] ∈ [0,1]320×320 ×R12 (4.8)
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4.4.2 Student Neural Network Architecture
Taking inspiration from [14], the student neural network architecture is com-
posed of three key components: a visual feature extractor, a temporal feature
extractor and a regressor.

When using a single camera, the environment becomes a partially observ-
able environment. To this end, a history of observations is used as input,
expanding the definition 4.8 to:

oinput = [o1, . . . ,oT ] (4.9)
The visual feature extractor is a CNN (sec. 2.3.2) which is commonly

used when dealing with image inputs. This part of the network is used to
reduce the dimensionality of the images to a single embedding vector. The
CNN acts in the same manner on all images, extracting the same kind of
information.

In order to lower the computational costs of the following blocks, a further
projector is attached. Given the vector representation of the image, the
projector produces a lower dimensionality vector representation with a fully-
connected layer (sec. 2.3.2). This vector is then concatenated with the state
estimation vector.

A TCN (sec. 2.3.2) is then used as a temporal feature extractor in
order to process the history of visual features. Because of the causal way
of processing data the TCN employs, only the last step of the resulting
sequence of vectors is used and fed into a regressor, which in our case is an
feed-forward neural network, which produces the network outputs.

An illustration of the architecture is shown in fig. 4.7 and more details
about the architectural choices are given in sec. 4.4.4.

Figure 4.7: The student network architecture used.
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4.4.3 Student Architecture Computational Constraints
In order to know how computationally cheap the student policy has to be,
knowledge about the used SoC performance capabilities is needed. Theo-
retically predicting the performance of a SoC in terms of latency is near
impossible and empirical analysis have to be done. Fortunately an extensive
study of the GAP8 performances can be found in [33], where multiple CNN
architectures have been deployed and had their latency and power consump-
tion compared. In this thesis the power consumption is not considered, as
it’s focus is maximum performance. Instead, one of the hard constraints is
to match the camera’s acquisition rate in order to fully exploit all the infor-
mation received. To do so, the maximum number fused multiply-accumulate
operation (i.e., one multiplication followed by and addition into an accumu-
lator register, MACs) that our student policy can have can be calculated
easily using the data reported in [33]. Let:

• S = the seconds for inference, equivalently it can be expressed as FPS = 1
S ,

the number of inferences per second;
• O = the number of multiply-accumulate operations that the NN needs;
• F = the clock rate at which the GAP8 is working;
• N = the number of operations per cycle that the GAP8 is doing.

and their relationship as:

S = O · 1
N
· 1
F

(4.10)

By using this relationship and the data from [33] (reported in tab. 4.1) it
can be found that the avg. MACs per cycle that the GAP8 can achieve at at
peak performance (maximum clock frequancy, 175 MHz) is ~3 MACs. Given
this information, the number of MACs that the student policy can have in
order to match the camera acquisition rate (= 30 FPS) can be computed
from eq. 4.10 and it is 17.5 MMACs.

Model [33] Ops (O) Clock rate (F) Inference rate (FPS) Ops per cycle (N)
160x32 14,1 MMACs 175 MHz 48 FPS 3.867
160x16 4,3 MMACs 175 MHz 110 FPS 2.702
80x32 4,0 MMACs 175 MHz 134 FPS 3.062

Table 4.1: Computation of the operations per clock (N) given the neural
network and GAP8 configurations reported in [33], using equation 4.10.
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Inference Execution Scheme

In sec. 4.4.2 the student architecture idea has been shown. While repre-
sentative of the data processing during the training phase, it presents sub-
optimalities when talking about the deployment phase. In particular, the
continuous reprocessing by the visual feature extractor of the history images
lead to wasted computations.

Instead, the deployment strategy would save the vectors representing the
limited history needed for the network and use them during inference, while
only processing the new image and state estimation. With this scheme, each
camera image is processed only once by the visual feature extractor. This
is possible as the CNN would always output the same output vector. An
illustration of the deployment strategy is shown in fig. 4.8.

When referring to the student’s computational cost in MACs from now
on, it will be pointing to this configuration in particular.

Figure 4.8: An illustration of the student network architecture in a deploy-
ment scenario.
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4.4.4 Seed Architecture Analysis
Computationally Constrained CNNs Literature Review

Since the student policy is vision-based, the visual feature extractor is the
most important part of the architecture. Because of this reason, extensive
research went into the choice of this part of the architecture by doing a
comparison of the most well known CNN architectures built for edge devices
as well as the most well known architectures used for nano-drone tasks.

The objective of the analysis is to decide which tiny CNNs respect the
constraints defined in sec. 4.4.3 and which one is the best for the task at hand.
By using eq. 4.10 an estimated inference rate on the GAP8 architecture can
be found. Another influential aspect was the presence of skip connection
as their presence would consume more memory than needed. Even though
deployment tools such as DORY [8] allow for efficient use of the memory
and load times, the extra memory occupied by the skip connection inference
method leads to more memory access, which can reduce inference speed. The
analysis is summarized in tab. 4.2.

What the analysis reveals is that in general off-the-shelf pretrained tiny
architectures such as variants of MobileNet ([39, 17]) or the nano variants
of YOLO architectures [20] are usually way too computationally expensive
for this work’s purposes, pointing to the CNN architectures built specifically
to be deployed on the Bitcraze Crazyflie 2.1 drone, such as DroNet [27] or
FrontNet [33] as more promising alternatives.

Furthermore, optimized architectures (either with a hand-made optimiza-
tion or NAS-optimized) can be reduced in size and computational cost, while
maintaining good performances on the tasks proposed. In [23] a hand-made
architecture optimization was made on top of the DroNet, building several
configurations called Tiny-DroNets. The results show that even with a 8x
reduction in model size and eliminating the skip-connections, the resulting
model is competitive with the initial DroNet. On the other hand, in [10],
a NAS-optimization was done on both the FrontNet and MobileNetV2. In
this work, the author shows how the FrontNet architecture (a CNN based on
the DroNet architecture) optimized with NAS can still achieve competitive
performance w.r.t. the seed network while having half the MACs (7 MMACs
vs 14.1 MMACs of the seed model).

Following this analysis, the Frontnet architecture [33] was employed as the
visual feature extractor for the architecture described in sec. 4.4.2. Its proven
real-time performance on the GAP8 and lack of skip-connections point to it
as a promising architectural choice.
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Architecture Hyperparameter Choices

Given the network family chosen for the student policy, introduced in sec. 4.4.2,
some of their parameters have to be analyzed, as they influence the student
policy’s performance and computational cost. Particularly, the visual feature
extractor choice, the projector output size and the history size are hyperpa-
rameters that influence both the performance and the computational cost
and cannot be chosen without an in depth analysis.

For what concerns the visual feature extractor a FrontNet architecture
was selected. In [33], Palossi et al. proposed three different variations of
the FrontNet: 160x32, 160x16, 80x32 (which differ by input size, 160 or 80,
and by the number of channels extracted by the first convolutional layer, 32
or 16). Even though each of these have valuable trade-offs, no one can be
chosen a priori as the clear best for the task that this thesis faces.

The projector module employed for the dimensionality reduction of the
image latent space can have different output space dimensionality. For this
analysis, four different values were used: 64, 128, 256 and 512.

The temporal features extractor (in this case, a TCN, sec. 2.3.2) has to
make full use of the history provided. Since its receptive field increases with
the depth, its depth is depending on the history size used. For simplicity
a kernel size of k = 2 was used and each layer has a dilation double of the
previous’ layer, this way the number of layers grows logarithmically w.r.t.
the history size. For simplicity the dimensionality of the inner layers of the
TCN was kept the same, leaving its optimization to the NAS procedure. For
this analysis, different history sizes were used: 1, 4, 8, 16 and 32, meaning
respectively 0 (effectively no TCN is employed), 2, 3, 4 and 5 TCN layers.

It is noteworthy that, at this point of the work, the threshold found in
sec. 4.4.3 is not to be enforced, yet it is used just as reference. The present
analysis searches for the policy that maximizes the performance and shows
evident diminishing returns if increased in computational cost.

The analysis was made by training the different architecture configurations
on a dataset collected only by the teacher policy via behavior cloning (sec.
2.5.1). The hyperparameter search space is represented in tab. 4.3.

Module Hyperparameter Choices
Visual Feature Extractor CNN architecture [FrontNet (160x32, 160x16, 80x32)]

Projector Output dimensionality [64, 128, 256, 512]
Temporal Feature Extractor History size [0, 4, 8, 16, 32]

Table 4.3: Module Hyperparameters and Choices
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4.4.5 Seed Network Training through IL

After training a teacher policy and defining the architectural choices and the
hyperparameters of the student policy, a first training via imitation learning
is done. Because of the distribution-shift problem (sec. 2.5.2), the student
agents trained via behavior cloning in the hyperparameter analysis phase are
not able to fly in closed-loop. The DAgger algorithm (sec. 2.5.3) is employed
for the student’s training in order to alleviate this problem by iteratively, col-
lecting new data in unseen situations for the student agent, letting it explore
the environment while the teacher policy indicates the optimal actions.

This training phase has a dual objective: the first is to collect a dataset
for the NAS procedure, for which is very important to have exhaustive ex-
ploration as the optimized network needs to keep only the most important
information, but it is safe to say that a simplified dataset, in which only
teacher data is collected will not represent all the nuances of the task. The
second objective is to create a dataset which allows for the training of a stu-
dent policy, which is able to navigate the race track (even if not optimally)
in order to allow the RL fine-tuning step to converge. In [51] is shown how
RL fine-tuning on a behavior cloning trained student policy is not able to
learn the task and the RL exploration leads to catastrophic forgetting, thus
this step is crucial for the success of the next steps.

4.4.6 Domain Generalization

In order to ensure the deployment to unseen environments two different do-
main generalization techniques were applied during the IL training: visual
environment randomization and pencil filtering.

Visual Environment Domain Randomization

Data randomization helps reduce overfitting by training neural networks on
varied images that keep the same high-level task-related features, enabling
them to focus on key elements for the task and ignore superfluous informa-
tion. In this case, by training on visually diverse environments, the model
learns to ignore unimportant details like background changes and concentrate
on elements that affect navigation. For this purpose, 30 different backgrounds
with varied settings (such as indoor, outdoor, night, day etc.), were used in
training. Nvidia IsaacSim’s high-fidelity rendering allowed these backgrounds
to reflect realistic lighting conditions, making the training data more robust.
Some examples of 360 view of these backgrounds are shown in fig. 4.9.
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Figure 4.9: Some of the visual environments the student agent sees during
training as 360 views.
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Pencil Filter

The pencil filter is valuable for autonomous drone racing as it enhances the
visibility of key structural features, like gate edges, while reducing the in-
fluence of varying lighting conditions and motion blur that often occur in
high-speed flight. By converting images to grayscale and emphasizing out-
lines, the pencil filter helps the perception model focus on shapes rather than
colors, making it more robust to environmental changes. This approach im-
proves the model’s ability to detect gates accurately in both bright and dim
settings and allows for a smoother transfer of training from simulation to real-
world conditions. The pencil filter helps bridge the gap between simulated
training environments and real-world racing, enabling consistent, robust per-
formance across different visual settings [34]. A visual comparison between
simulation and reality can be seen in fig. 4.10, while in fig. 4.11 and 4.12 dif-
ferent scenarios are presented in three different image representations: RGB,
Grayscale and Pencil-Filter.

Figure 4.10: Visual explanation of the pencil filter idea presented in [34]:
closing the visual sim-to-real gap by narrowing the discrepancy between dif-
ferent brightness images and blurred images.
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Figure 4.11: Different images. The first row is the RBG image, the second
row is the respective grayscale image, the third row is the respective pencil-
filtered image.

Figure 4.12: The same image (the first column is the original), with different
random augmentations. The first row is the RBG image, the second row is
the respective grayscale image, the third row is the respective pencil-filtered
image.
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4.4.7 Student Neural Architecture Optimization
Until this step, the computational threshold found in sec. 4.4.3 have been
taken just as reference for the architecture analysis. In order to be deployed
on the Bitcraze Crazyflie 2.1 and achieve real-time performance a further
neural network architecture optimization is needed. Here a NAS optimiza-
tion is employed, in particular the PIT algorithm [36] was used in order to
prune the network. The way that PIT works is by creating a second set of
parameters θ, which are in the range (0,1). PIT creates one parameter in θi
for each channel/neuron Wi in the in network to be optimized, and the θi
parameters are used to hold or discard Wi. The θ parameters, in practice, be-
have like masks which create sub-networks starting from the neural network
to be optimized (seed network), in the following way:

WΘ = W ⊙H(θ)

where θ is the vector of trainable mask parameters, ⊙ is the Hadamard
product (also known as element-wise product), and H is a Heaviside step
function used to binarize θ. Both θ and W are optimized during training by
minimizing the following loss function:

min
WΘ,θ
L(WΘ; θ) + λR(θ) (4.11)

where:

• L(WΘ; θ) is the task loss, in this case the MSE loss between the net-
work’s outputs and the teacher policy output, on the aggregated dataset
gathered in the previous step;

• λR(θ) is the NAS loss, which represent the cost of the network, weighted
by the parameter λ. In this case the cost of the network is represented
by the number of MACs it does;

By employing a loss which consists both of the task loss and the NAS loss,
PIT optimizes the neural network in order to achieve the trade-off between
task performance and computational cost.

Given the explicit computational constraints found in sec. 4.4.3, the DUC-
CIO regularizer [9] is employed to ensure that the computational target is
reached. The DUCCIO regularizer changes the R(θ) term of eq. 4.11 of the
optimization loss to:

min
W,θ
L(W ; θ) +

JØ
j=0

λj max(0,Rj(θ)− Tj) (4.12)
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which allows for multiple costs to be used and ensures that all of them
are within the target (Tj) by subtracting it from the cost and enforcing only
positive values (which means that the cost optimization stops when it reaches
the target). In this case only one cost is used: the number of fused multiply
and accumulate operations (MACs), which has as a target 17.5M MACs as
found in sec.|4.4.3. Moreover, the DUCCIO regularizer employs a regularizer
weight λj annealing, which ensures that the target Tj is achieved.

The PIT algorithm is applied to the entire network trained with IL (which
in this context is called seed network) in the previous step. Following the
training procedure presented in sec. 2.7.3 there is a three step procedure
that has to be followed in order to achieve optimal results from the NAS op-
timization: the warm-up phase, the search phase and the fine-tuning phase.
The warm-up phase, is not needed as the seed network is already pretrained
by the IL procedure. The search phase optimizes both W and θ with the loss
in eq. 4.12. During this phase the optimization algorithm explores the search
space of θ which creates all the sub-networks derivable by the seed network.
Given the optimal θ∗, the sub-network WΘ∗ is extracted from the seed net-
work, effectively discarding all the channels/neurons for which θi < 0.5.
Finally the fine-tuning phase is performed. This last step is essential as it
focuses only on the regression task performance by optimizing only the task
loss L(WΘ∗), allowing for the maximum performance to be achieved by the
extracted network.

4.4.8 Asymmetric Actor-Critic RL Fine-tuning

The RL fine-tuning is a key step in order to ensure the best performance
achieved on the NAS optimized architecture obtained in the previous step.
As explained in [51], the DAgger algorithm does alleviate the distribution-
shift problem, but it doesn’t fully solve it, as the agent may still find itself in
situations which have not been covered during the training via the teacher
exploration. The RL fine-tuning, on the other hand, cannot converge when
training an agent which is fully untrained (not bootstrapped) due to the higly
dimensional input space that the navigation from images task has.

In order to better guide the RL fine-tuning training to the convergence,
the asymmetric actor-critic (sec. 2.4.5) is employed. This framework is
based on the classic actor-critic (sec. 2.4.3 framework, which uses the critic
value estimates in order to better guide the policy updates by optimizing the
loss:
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L(θ) = E(o,a)∼πθ

è
log πθ(a|o)Â(o, a)

é
, where Â(o, a) = Q̂π(o, a)−max

a
Q̂π(o, a)

(4.13)

where L(θ) = E(o,a)∼πθ
[log πθ(a|o)] is the log-likelihood, then weighted by

Â which is the estimated advantage function. Â is the difference between
Q̂π(o, a) (the cumulative reward , given by observing o and taking the action
a, under the policy π) and maxa Q̂π(o, a) (the estimated cumulative sum of
rewards, given by observing o and takin the best action under the policy π,
also known as value function V π(o)). Weighting the log-likelihood by the
advantage function, leads the policy to maximize the probability of seeing
again actions that maximize the cumulative sum of rewards. The guidance
that Â gives to the optimization function, however, is limited by the accu-
racy of its estimations, which are given by the critic (value network). Since
the critic suffers from the same convergence issues as the actor, the asym-
metric actor-critic framework uses a state-based input critic which computes
estimate values using priviledged state inputs Q̂π(s) instead of partial ob-
servations, such as images. By employing this kind of value network, better
estimates are computed, which leads to a more stable training procedure by
optimizing:

L(θ) = E(o,a)∼πθ

è
log πθ(a|o)Â(s, a)

é
, where Â(s, a) = Q̂π(s, a)−max

a
Q̂π(s, a)

(4.14)
In this case, the NAS-optimized network is used as a bootstrapped (pre-

trained) actor and the teacher’s value network. However, a straightforward
plug-and-play approach may not yield optimal results as the critic function
requires interactions to adapt the pre-trained actor, necessitating a “warm-
up” process. Once the critic warm-up is done, the training of the asymmetric
agent is the same as the teacher’s: using the same reward function and the
same environment specifics.

In order not to occur into catastrophic forgetting w.r.t. the domain gen-
eralization capabilities acquired in the previous training steps, environment
is set to change every 100 steps during training. This way the RL agent has
to learn to navigate from images regardless of the visual environment.
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Chapter 5

Experiments and Results

This chapter is devoted to reporting and presenting the results obtained. In
sec. 5.1, a brief explanation of the experimental setup is given, including
package information, simulator version, etc.. In sec. 5.2, an introduction
to the assessment methodology is reported, including how the results are
gathered w.r.t. closed-loop policy performance. In the next sections (5.3 and
5.4), the main results of the method are shown, both for the teacher and for
the various student versions. Finally sec. 5.5, gives a summary of the results
and a discussion of possible developments.

5.1 Experimental Setup
During the whole work, the Python programming language was used in the
version 3.12.4. The libraries used are listed in tab. 5.1 along with their
versions. The simulator used was IsaacSim 4.1.0, while IsaacLab, the python
wrapper that enables robot learning modules to work (such as SKRL [42]),
is version 1.2.0.
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Package Version
gymnasium 0.28.1
numpy 1.26.0
omni-isaac-lab 0.19.4
omni-isaac-lab-assets 0.1.3
omni-isaac-lab-tasks 0.7.10
pandas 2.2.2
plinio 0.0.1
pytorch-tcn 1.1.0
scipy 1.10.1
skrl 1.2.0
torch 2.2.2+cu118
torchaudio 2.2.2+cu118
torchinfo 1.8.0
torchvision 0.17.2+cu118
torchviz 0.0.2

Table 5.1: Python package versions.
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5.2 Policy Performance Assessment Method
Since the proposed method yields multiple policies, which differ by their
training method and compliance with the constraints imposed by the prob-
lem, a way to assess the performance of each version of the policy in an equal
manner is needed.

The method chosen is evaluating the closed-loop performance of the poli-
cies on 100 different randomly generated tracks. To ensure equal difficulty a
starting seed equal to 319029 is set. Because of the IsaacSim graphical ren-
dering, which employs monte-carlo techniques in order to simulate realistic
lighting, the seed sequentiality is not guaranteed between a track genera-
tion and another. This led to the seeds to be enforced at each new track
generation, incrementing them linearly from 319029 to 319129.

For vision-based policies different tests were done:
• Static visual environment test: the first test was done in only one

visual environment encountered during the training;
• Random visual environment test: the second test was done changing

the visual environment by picking randomly among the ones seen during
training (the same track will always have the same visual environment);

• Unknown visual environment test: the last test was done in a never-
seen-before visual environment.

Closed-loop Metrics

The task related closed-loop metrics are used to assess the quality of a policy.
The metrics used are:

• Average episode reward: shows the average cumulative reward on a
track run (episode). It gives more continuous information, but it includes
behavioral terms which produce noise in the measurement of objective
accomplishment.

• Average track completion: shows the average number of gates passed
over the total on the track. It gives less information about the agent be-
havior, but maintains the task-relevant information, with a detail which
remains high.

• Episode success rate: shows the percentage of track runs (episodes)
in which the agent successfully finishes the track. This last metric gives
no information about the policy behavior and has less detail, yet it is
important to show how reliable is the policy.
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5.3 Priviledged Teacher Agent Results

5.3.1 Teacher training through RL

The objective of this experiment is to build an optimal teacher policy which
uses priviledged information in order to navigate successfully the track. This
policy, although unusable in a real scenario due to the lack of perfect infor-
mation, is used to gather data in terms of optimal actions to use as ground
truth in training the student network.

The teacher policy training was done entirely using RL. This was achiev-
able because of a low-dimensionality of the input. By using a number of
future gate observations N = 3 the input space was s = R25 (sec. 4.3.1).

The algorithm used for the RL training was PPO (sec. 2.4.4), implemented
by the SKRL library [42]. Thanks to IsaacSim’s ability to leverate GPU
computation power, a high parallelization of the environments, more precisely
4096 parallel environments were used. A total of 500’000 rollouts (steps) per
environment were used during the entire training procedure. Each policy
update consisted of 250 rollouts per environment, thus each policy update
consisted of 250 ·4096 ≈ 1M data points. On each update, the whole dataset
was divided in 4 batches and learned for 5 epochs. The learning rate was
scheduled with a PPO-specific scheduler, which uses the KL divergence of
the policy to adjust the learning rate (KLAdaptiveLR, see [42]). Finally, the
scaling λ hyperparameters introduced in sec. 4.3.2 of the reward function
used are reported in tab. 5.2.

Reward Component Scale
Passed Gate 20
Contact 10
Progress 0.3
Perception 0.15
Safety 1.0
Motion Blur 0.01
Action Smoothness 0.03
Angular Velocity 0.001

Table 5.2: Reward Scales for Different Components
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Training Results

As shown in fig. 5.1 and 5.2, which shows the training progression of teacher
policy during the first 100’000 rollouts, it converges to a stable constant
way before around the 40’000 rollouts mark, which is only 8% of the entire
training budget. By inspecting also fig. 5.3, which displays the progression
of the crash penalty during the training, it is obvious that the policy learned
how to finish episodes without crashing in the majority of the episodes at the
40’000 rollouts mark. However, the reason for the large number of training
rollouts is to be found in behavioral rewards, which have smaller scale, thus
lower importance in the overall training procedure. One evident example
of such rewards is the smoothness reward, which penalizes the difference
between consecutive timesteps’ actions. This last reward’s progression over
the entire training (500’000 rollouts) is shown in fig. 5.4. Here is clear how
this reward finds a constant stable value only around the 400’000 rollout
mark.

Closed-loop Results

In order to have a baseline to compare the vision-based policies with, the
policy performance assessment (described in sec. 5.2) was done also for the
teacher policy. The results are shown in tab. 5.3. Here only one analysis was
done, as changing the visual environment would not make any difference to
the teacher policy since it doesn’t use visual information.

It is clear, from these results, how the teacher policy can be considered
as the upper-bound for our next experiments, as it shows excellent results,
reaching 99% of successful episodes, by using ground-truth priviledged infor-
mation, which are not obtainable in reality.

Policy Environment Average episode reward [-] Average track completion [%] Episode success rate [%]
Teacher — 535± 50 99% 99%

Table 5.3: Closed-loop performance of the teacher policy.
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Figure 5.1: Teacher policy’s episodic total reward progression during the first
100k rollouts of the training.

Figure 5.2: Teacher policy’s episod length progression during the first 100k
rollouts of the training.
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Figure 5.3: Teacher policy’s crash reward progression during the first 100k
rollouts of the training.

Figure 5.4: Teacher policy’s smoothness reward progression during the entire
training (500’000 rollouts).
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5.4 Vision-based Student Agent

5.4.1 Seed Architecture Exploration

With the next set of experiments, a first analysis of the student architecture is
done. Given the family of networks presented in sec. 4.4.2, the objective is to
find the best network in terms of performance vs computational cost trade-
off. The networks are chosen by changing their hyperparameters, chosing
from the combinations presented in sec. 4.4.4, for a total of 60 runs. Note
that, for this set of experiments, the computational threshold introduced in
sec. 4.4.4 is not used as a hard constraint, but only as a reference, thus the
network chosen at this point will be the one which shows evident diminishing
returns in terms of performance if the computational cost is increased.

In order to train the various networks a dataset was created by using the
teacher policy. The training dataset had 100’000 datapoints, of which half
was created by using the optimal teacher, while the other half was created
by adding small noise to the teacher’s actions in simulation. The second half
was introduced in order to have a more representative dataset by including
also non-optimal trajectories. The dataset gathering was done in 30 different
visual environments, in order to apply visual domain randomization on the
network’s training.

The training of the networks was done giving the history of images (or
the simple image if the history was equal to one) and the history of state
estimations as input and the teacher’s actions as output. The images were
preprocessed with the pencil-filter in order to improve the generalization ca-
pabilities of the network. Since the actions can range on different effective
spans, the outputs learned by the network were normalized. This was done
in order to ensure that all the outputs had the same influence over the loss.
As the output of the teacher is continuous, thus we used the Mean Squared
Error (MSE) loss between the network outputs and the teacher actions in
order to model the problem as a regression. In order to evaluate the perfor-
mance of the network the R2 score between the network’s outputs and the
teacher actions. The R2 score shows how well a regression model explains
the variability in the data, ranging from 0 (no fit) to 1 (perfect fit).

The training was done over a maximum of 30 epochs, with a early-stopping
policy that would stop the training if more than a total of 4 epochs (non
necessarily consecutive) did not improve the validation results during the
training and the last epoch also did not improve the validation results. With
this training procedure the training would stop only if the performance is
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not improving, while tolerating some variance in the performance during
the first epochs. An exponential learning rate scheduler was also employed,
reducing the learning rate of a factor of 0.1x every 3 epochs and starting with
a learning rate of 0.01. Finally a batch size of 128 was used, where each data
point is a history of images and state estimates.

Results

The results analyse the choice of the history size, the projector size and the
feature extractor size. It is done by presenting the results both by showing
the complete performance vs cost graphs in which the pareto-front is visible
(fig. 5.5, 5.6 and 5.7) and the tables in which the result are grouped by and
averaged by the different hyperparameters (tab. 5.4, 5.5 and 5.6).

• History size: in this case tab. 5.4 clearly shows that more history yields
better results, however the number of MACs grows way faster than the
R2 score. Particularly, the growth from history size 16 to history size
32 almost doubles the number of MACs needed, while only improving
the performance by 0.08 of R2 score on average. This leads to the
conclusion that going beyond history size 32 would not have a significant
improvement in performance w.r.t. the increase in computational cost.

• Projector size: it is clear from both tab. 5.5 and fig. 5.6 how the
jump from projector size 64 to projector size 128 is high in terms of
performance but very low in terms of computational cost, whereas the
jump from projector size 256 to projector size 512 is not that impactful
on the performance, but shows an increase in the number of MACs which
is more than double. This leads to the conclusion that getting a bigger
projector size would not improve performances w.r.t. the increase in
computational cost.

• Visual feature extractor: in this case, since there is no actual conti-
nuity between the various choices, the table does not help in analyzing
this choice. On the other hand, by inspecting fig. 5.7 it is clear how the
frontnet 80x32 is the one that is more frequently present on the pareto
front, whereas the frontnet 160x32 never manages to be present in the
pareto front. The frontnet 160x16, on the other hand, has similar perfor-
mance and cost to the frontnet 80x32, but is less present on the pareto
front, which leads to the conclusion that the 80x32 configuration is the
most well suited for the task.
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With the considerations made above, the choice for the seed architecture
for the student policy would be the one that yields the best performance, so in
this case the configuration would be: (history size = 32; projector size = 512;
visual feature encoder = frontnet (80x32)), which has a performance of 0.95
R2 score and a computational cost of 1.83 · 108 deployment MACs.

History size Avg. R2 score Avg. Deployment MACs
1 0.878 1.29 · 107

4 0.883 1.81 · 107

8 0.909 2.68 · 107

16 0.913 4.25 · 107

32 0.921 8.19 · 107

Table 5.4: Seed architecture exploration results: average results grouped by
history size

Figure 5.5: The seed architecture hyperparameter analysis pareto-front, col-
ored by history size
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Projector size Avg. R2 score Avg. Deployment MACs
64 0.844 1.36 · 107

128 0.904 1.71 · 107

256 0.923 3.06 · 107

512 0.928 8.44 · 107

Table 5.5: Seed architecture exploration results: average results grouped by
projector size

Figure 5.6: The seed architecture hyperparameter analysis pareto-front, col-
ored by projector output size
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Feature extractor Avg. R2 score Avg. Deployment MACs
FrontNet (160x32) 0.897 4.79 · 107

FrontNet (160x16) 0.900 3.11 · 107

FrontNet (80x32) 0.904 3.03 · 107

Table 5.6: Seed architecture exploration results: average results grouped by
visual feature encoder

Figure 5.7: The seed architecture hyperparameter analysis pareto-front, col-
ored by visual feature encoder
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5.4.2 Seed Network Training thorugh IL
This set of experiments aim at training a student policy through the DAgger
algorithm (sec. 2.5.3). As explained in sec. 4.2.2, this student policy does
not have to be optimal: its main purpose is to generate a comprehensive
dataset for the NAS step. The dataset needs to be comprehensive enough
to generate a policy which will not lead to catastrophic forgetting in the
RL fine-tuning step due to exploration. This aspect can be evaluated by
analyzing the student policy closed-loop performance, as a policy trained on
a dataset which is not robust enough, would not be able to fly.

The computational budget given to this experiment was of 15 DAgger it-
erations. Each iteration is composed of data gathering and retraining. Each
data gathering collected 50’000 data points, with a policy which randomly
chose between the last iteration’s student policy and the teacher policy. Dur-
ing the DAgger process the probability of choosing the teacher decreases
exponentially as 0.5iter. The training part of each iteration is done on the
aggregated dataset, in the same manner described in the previous experi-
ment. Each training starts from the policy trained at the previous step and
the starting learning rate is is linearly decreased from 0.01 to 0.001 in the
first 8 epochs and then kept constant for the rest of the DAgger algorithm.
The previous experiment training is to be considered as the first DAgger
iteration.

Results

In fig. 5.8, 5.9 and 5.10 the progress of the seed network training on the
closed-loop evaluation is shown. As expected, the closed-loop evaluation of
the first iteration shows that the agent produces 3.19 ± 10.15 as a reward.
When compared with the teacher policy closed-loop evaluation from tab. 5.3,
it becomes obvious that the student agent cannot follow to the optimal tra-
jectory shown by the teacher policy during the data collection yet, as it
deviates too much from it and doesn’t know how to recover. Only after the
5th iteration the agent shows signs of improvement. When looking at the
last iteration, however both the open-loop and the closed-loop results show
promising results. The open loop performance of the last iteration can be
analysed in tab. 5.7, where the regression R2 score on all four the commands
on the test set are shown. Given the average R2 score of 0.948 (where a value
of 1.0 means that the network perfectly replicates the teacher’s actions), it
is clear that the open-loop performance are very good. The last iteration
closed-loop evaluation, which is presented in tab. 5.8, shows that the student
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policy it reaches a 9% successful run rate in a known visual environment and
on average it reaches 40% of the track before colliding either with a gate
or with the floor. In fig. 5.11 a comparison between the teacher commands
and the seed network commands is shown in a successful episode where the
drone is fully controlled by the student policy. It can be seen that the error
between the teacher’s actions and the student’s actions is small and, when-
ever the error increases, the student is able to recover. Given the closed-loop
results it can be claimed that the student policy has learned to navigate the
race tracks, meaning that the dataset is robust enough to train policies which
will not lead to catastrophic forgetting during the RL fine-tuning step.

Moreover, these results show how the IL methods, differently from RL
methods, are sample efficient, allowing the student policy to learn to navigate
the race tracks, despite the highly dimensional input space. On the other
hand the policy is still not optimal, due to the distribution-shift (sec. 2.5.2),
as it doesn’t allow for an extensive exploration from the agent, which is
allowed by the RL methods. With this considerations we can justify the
need for a RL fine-tuning step.

Command setpoint R2 score
Thrust command setpoint 0.958
Roll command setpoint 0.930
Pitch command setpoint 0.964
Yaw command setpoint 0.940
Average 0.948

Table 5.7: Open loop performance of the seed network policy on the test set.

Policy Environment Average episode reward [-] Average track completion [%] Episode success rate [%]
Seed Static 177± 134 40% 9%

Randomized 180± 125 40% 9%
Unknown 145± 110 33% 3%

Table 5.8: Closed-loop performance of the seed network policy.
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Figure 5.8: Avg. episodic reward progress for DAgger policies.

Figure 5.9: Avg. percentage of episodic reward progress for DAgger policies.
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Figure 5.10: Avg. successful episodes for DAgger policies.
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Figure 5.11: Action command comparison between teacher commands and
student commands in an example run, where only student’s commands were
applied. Actions are rescaled in the range (-1,1) for better comparison.
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5.4.3 Student Network Architecture Optimization
The NAS optimization is crucial for ensuring that the student policy has the
desired number of operations. The next set of experiments and results aim
at reducing the computational cost of the student policy trained through IL
(which in this context will call seed network).

As explained in sec. 2.7.3, the DNAS training is composed by three dif-
ferent steps: warm-up, search, and fine-tuning. The first phase, in which
the full seed network has to be trained, is already done by the previous ex-
periment. The second phase, in which the architecture is optimized, is done
with the PIT algorithm [36], employing the DUCCIO regularizer [9]. The
training budget for this step was 15 epochs, without any early stopping strat-
egy. The PIT-introduced architecture parameters θ had a separate ADAM
optimizer with a constant learning-rate of 0.001. After the search step the
chosen network would be the one with the lowest loss among the ones that
are compliant with the computational constraints found in sec. 4.4.3. Fi-
nally, after the best architecture is chosen, the fine-tuning step consists of a
training of the network in which the sole objective is to minimize the task
loss. This final step follows the training procedure introduced in the previous
experiments.

Results

The search step is presented in fig. 5.12 and fig. 5.13, in which there is
presented the loss progression during the training and the progress of the
resulting network MACs. The decrease of network’s MACs is stable during
training, achieving in the 14th epoch the desired number of MACs w.r.t. the
constraints imposed. It is intresting to see how the task loss only starts to
increase after the 8th epoch, meaning that the lowest number of MACs for
which the performance does not suffer is about 40M MACs.

As a result of the search step, the chosen optimized student policy has a
computational cost of only 15.3M MACs, which is a 12x improvement over
the 183M MACs of the seed network. In tab. 5.9 it is shown a comparison
between the seed architecture MACs and the NAS-optimized architecture
MACs with a component-level detail and it is evident that the temporal
feature extractor optimization had the biggest impact on the computational
cost optimization.

The fine-tuning step shows that the NAS optimization dropped the open-
loop performance only by 0.01 avg. R2 Score, as shown in tab. 5.10. Also the
closed-loop evaluation (tab. 5.11) shows that the optimized network is still
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able to navigate a race track, keeping a 3% success rate in the randomized
visual environment.

Given the results, it is safe to say that the optimized policy can achieve
real-time performance on the Bitcraze Crazyflie 2.1. However, similarly to
the seed architecture, its closed-loop results show that the NAS-optimized
policy still suffers from the distribution-shift problem, presenting a success
rate which is lower by 6% w.r.t. the seed architecure, further encouraging
the need for a RL fine-tuning step.

Command setpoint Seed network MACs Optimized network MACs % of the seed network
Visual Feature Extractor (Frontnet (80x32)) 6’497’216 6’428’414 99%
Projector (FeedForward Network) 590’336 590’336 100%
Temporal Feature Extractor (TCN) 175’906’800 8’276’046 4%
Regressor (Feed-Forward Network) 69’565 69’565 100%
Total 183’063’917 15’364’361 8%

Table 5.9: Seed architecture MACs vs NAS architecture MACs in detail by
module.

Command setpoint Seed network R2 score Optimized network R2 score
Thrust command setpoint 0.958 0.949
Roll command setpoint 0.930 0.911
Pitch command setpoint 0.964 0.956
Yaw command setpoint 0.940 0.926
Average 0.948 0.935

Table 5.10: Open loop performance of the NAS policy compared with the
Seed policy open loop performance.

Policy Environment Average episode reward [-] Average track completion [%] Episode success rate [%]
NAS Static 182± 115 35% 3%

Randomized 197± 132 37% 3%
Unknown 127± 70 24% 0%

Table 5.11: Closed-loop performance of the NAS policy.
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Figure 5.12: NAS Loss progression during training.

Figure 5.13: NAS Cost progression during training.
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5.4.4 Asymmetric Actor-Critic RL Fine-tuning
As shown in the last two experiments with the closed-loop results, both the
seed student network and the optimized student network are able to navigate
the race tracks, but non in an optimal manner. This last set of experiments
is the key to optimize the student policy in order to achieve the best results
possible.

Here the results of previous experiments are used: for the actor we use
the network resulted of the NAS experiment, which we want to optimize,
while for the critic we use the same critic used for the teacher. Before the
start of the RL fine-tuning a first fine-tuning of the critic was done, in order
to adapt to the new actor and ensure that the value estimates are more
precise in the states that the NAS-optimized architecture will encounter. In
order to do so, the actor loss was forced to zero for 100’000 rollouts, so
it could not update its weights, while the critic could update its weights.
Since both the data and the model is more complex, due to computational
constraints a lower number of parallel environments was used: 30. Because
of this reduction, a higher number of rollouts per update was needed. In
this case 2000 rollouts per update were used, thus a total of 60k datapoints
per update. At each update, the dataset was divided in 400 mini-batches,
for an effective batch-size of 150, which is very similar to the batch size
used for the IL training (128). The network is trained for 3 epochs on each
update. In order to maintain the visual randomization, the background of
the environment changed every 100 rollouts. The rest of the experimental
setup is the same as presented in the teacher’s training experimental setup,
including rewards, learning rate, etc.. The critic fine-tuning was considered a
preliminary step and was kept separated from the actual policy optimization,
though both follow the same training structure.

Results

The fig. 5.14 and fig. 5.15 shows progress during the RL fine-tuning training.
It can be observed that the RL fine-tuning training steadily increases the
episodic total reward in time and catastrophic forgetting doesn’t occur. The
episodic total reward converges at a reward of 410 during training. Given
that the same reward function was used for both the RL fine-tuning and the
teacher training, the difference in reward between these two policies can be
explained by the different observation space, as the teacher uses priviledged
informations, which are not usable in the real world.

The the closed-loop evaluation (tab. 5.12), shows that 70% of the runs
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in the randomized visual environment are successful. More interestingly, the
policy reaches a 51% success rate in the unknown environment which that the
policy is robust enough to generalize also to unknown environments, thanks
to the domain generalization techniques applied. Even though the drop for
this metric is significant (−19%) w.r.t. the known visual environments, the
average percentage of run completion is more encouraging, showing that it
manages to complete 70% of the track on average w.r.t. 76% of the track in
a random, known environment.

The results obtained confirm the fact that the RL fine-tuning is needed in
order to maximize the performances of the policy, as the DAgger algorithm
doesn’t fully solve the distribution shift problem, increasing the success rate
from 3% of the NAS-optimized policy to 70%, in visually known environ-
ments.

Policy Environment Average episode reward [-] Average track completion [%] Episode success rate [%]
RL Finetuning Static 413± 208 75% 66%

Randomized 417± 208 76% 70%
Unknown 385± 199 70% 51%

Table 5.12: Closed-loop performance summary of RL fine-tuning policy.
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5.4 – Vision-based Student Agent

Figure 5.14: RL fine-tuning episodic total reward progress during the train-
ing.

Figure 5.15: RL fine-tuning episode length progress during the training.
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5.5 Comparison of Pipeline Steps
The previous experiments led to a policy which can navigate through an un-
known track (and eventually an unknown visual environment) with a success
rate of 70% (and 51%, respectively). Each step of the procedure played an
essential role in the development of the final policy, both in terms of per-
formance and in terms of computational cost. While the teacher policy was
deployable on the Crazyflie 2.1 and had optimal performances, reaching a
success rate of 99%, it used priviledged information, which is unusable in a
real world scenario. It was used to train an vision policy through imitation
learning. The vision-based policy resulted from the imitation learning train-
ing was able to navigate the race track and could complete 9% of the runs in
already seen environments, but it has too costly in terms of computations.
This policy was then used as a seed network for NAS optimizations, which
pruned the network in order to make it deployable on the Crazyflie 2.1 by
respecting the computational constraints. The NAS-optimized policy had a
12x reduction in the number of operations, which led also in a drop in perfor-
mances, only having 3% of successful runs. Though this performances were
good enough to ensure that a RL-based fine-tuning through the asymmetric
actor-critic framework would not lead to catastrophic forgetting. The aim
of this fine-tuning was to maximize the performances of the policy, achiev-
ing a success rate of of 70% in known environments. Moreover the domain
generalization techniques used during the training of this policy (namely the
visual domain randomization and the pencil-filter), led to a robust agent,
which can navigate also in unknown environments achieving 51% of success
rate. The summary of these results are presented in tab. 5.13.

Policy Environment Average episode reward [-] Average track completion [%] Episode success rate [%]
Teacher — 535± 50 99% 99%
Seed Static 177± 134 40% 9%

Randomized 180± 125 40% 9%
Unknown 145± 110 33% 3%

NAS Static 182± 115 35% 3%
Randomized 197± 132 37% 3%

Unknown 127± 70 24% 0%
RL Finetuning Static 413± 208 75% 66%

Randomized 417± 208 76% 70%
Unknown 385± 199 70% 51%

Table 5.13: Closed-loop performance summary of the policies trained.
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Chapter 6

Conclusions and Future
Works

In this thesis, a novel approach for training fully end-to-end deep learning
policies for ultra-low-power nano-drones aimed at gate-based autonomous
drone racing was proposed. The proposed method consists in multiple steps.
First a learning-by-cheating framework is used, in which a priviledged infor-
mation teacher policy is used to teach a vision-based student policy. Second,
the dataset created in the previous step is used to apply neural architecture
search techniques in order to reduce the policy’s computational cost and en-
sure its deployability. Finally, an RL fine-tuning through the asymmetric
actor-critc framework is employed by using the pretrained post-NAS actor
network and the teacher’s pretrained critic network, in order to maximize
the student network’s performances.

The teacher optimal policy taken as an upper bound in this work is able
to finish successfully the tracks 99% of the time, but it requires priviledged
information which is not obtainable in the real world. Our method, on the
other hand, yields a policy which uses only information obtainable from the
on-board sensors, such as the camera and the accelerometer, and is able to
complete successfully an unknown ADR track up to 70% of the time when
in a already seen visual environment. Thanks to the NAS techniques ap-
plied, the final policy results deployable at 30Hz entirely onboard the GAP8
SoC, allowing it to process image frames in real-time at the native camera
frame rate, requiring only 15M MAC, a 12x reduction w.r.t the pre-NAS
seed model (183M MAC). The student policy performances are obtainable
thanks to the asymmetric actor-critic RL fine-tuning, which maximized the
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student network performances, going from a 3% success rate in known vi-
sual environment of the NAS-optimized network to the 70% cited previously.
Special attention has been put also in minimizing the reality gap, enhancing
its domain generalization capabilities by employing techniques such as visual
domain randomization and pencil-filtering. Thanks to these techniques the
final student policy is able to fly in an unknown track with an unknown visual
environment with a success rate of 51%, whereas without these techniques
the agent would not be able to fly in an unknown visual environment.

In building the student policy architecture, various aspects of the neu-
ral network employed have been analysed in depth. Starting from a neural
network family, which has already been proven to have state-of-the-art per-
formances for this task, its performance vs computational cost tradeoffs have
studied w.r.t. its hyperparameters choices. Here it has been shown that
starting from a network configuration which focuses on performance, which
is successively optimized via NAS techniques can still result deployable.

In conclusion this thesis proposes a novel method of developing fully end-
to-end deep learning vision-based policies for resource limited deployment
targets, showing its effectiveness in developing an on-board sensors-based,
accurate and real-time deployable policy. In the scope of autonomous nano-
drone racing, this thesis presents the first work which interests both au-
tonomous drone racing and resource limited nano-drones. As a first work
tackling end-to-end autonomous nano-drone racing, more work can be done
on top of this thesis. Thanks to the capability of our policy to generalize in
unseen environments, this work can be used as a baseline for new pipelines
or as a pre-trained model for other end-to-end deep learning based control
pipelines, in order to investigate different aspects of autonomous nano-drone
racing, such as power consumption in ADR scenarios or physical dynamics
randomization robustness. Future works include the deployment of the final
policy on the Crazyflie 2.1 and, given the drone small size, robustness to
physical disturbances such as aerodynamic effects or wind.
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