
POLITECNICO DI TORINO
Master’s Degree in Data Science and Engineering

Master’s Degree Thesis

Human Pose Estimation aboard
Nano-drones Using Tiny Vision

Transformers

Supervisors

Prof. Daniele JAHIER PAGLIARI

Prof. Alessio BURELLO

Beatrice Alessandra MOTETTI

Candidate

Ovidiu Ioan JITARU

December 2024

Abstract

Nowadays drone usage is increasing due to their technological advancements,
versatility, and broad applicability for a wide range of tasks. Improved capabilities
in the drone sector and tech miniaturization such as the development of smaller
and more powerful embedded systems allow AI to be integrated and efficiently
run aboard them. Standard-size drones can be equipped with powerful Graphics
Processing Units (GPUs) that allow the use of complex neural networks to solve
perception tasks. However, nano-drones, with their extremely small dimensions
and power envelope, have major limitations in terms of supported computational
capabilities. Thus, there is a need to develop more optimized solutions to enable
onboard AI, preserving the real-time response of the perception system while
maximizing the performance of the considered task.

At the moment the state of art (SoA) for computer vision tasks on nano-drones
makes use of lightweight CNN architectures which can be effectively executed by
the MCU-class processor aboard without the need for high-performance GPUs.
However, many recent works in the computer vision field have proved how the
Vision Transformer (ViT) architecture frequently outperforms SoA CNNs in several
tasks. Thus, optimizing the architecture of ViTs by reducing their size and latency
for real-time applications, making them suitable for deployment on nano-drones,
represents an interesting challenge.

The task for which the drone is challenged consists of human pose estimation,
which is a computer vision task aimed at identifying the position and orientation
of a person. In this particular case, the drone’s objective is to position itself in
front of a person and follow them while keeping a constant distance from the subject.

The work of the thesis consists of analyzing and developing through optimization
techniques an efficient ViT model to be deployed on nano-drones that mount a
GAP8 AI deck. Two datasets containing images obtained from two separate labora-
tories are used to train and assess the performance of distinct perception modules.
Multiple approaches are explored, comprising the evaluation of different ViT’s
architecture configurations and the assessment of the benefits of a pre-training
step prior to the fine-tuning of our task. Finally, comparisons of the selected ViT
performances with the MobileNet are considered, a CNN that achieves SoA results
on the considered benchmark, and in the end, structured pruning is applied to
reduce the model’s size, while preserving its original performance.

Comparisons between the ViT and MobileNet networks are assessed considering
the Mean Absolute Error (MAE) between the predicted x̂, ŷ, ẑ, and ϕ̂ coordinates
and the ground-truth ones. We achieve with the ViT network an overall loss over
all 4 predicted axes 12% lower than the MobileNet. Finally, by applying structured
pruning techniques we reach a 30% compression of the model in terms of number
of parameters with an increase of the overall loss to 1.3 with only a 12% decrease
in performances.

ii

Acknowledgements

This thesis marks the culmination of a long academic journey, one filled with both
professional challenges and personal hardships. I extend my gratitude to my super-
visors, Professor Daniele Jahier Pagliari, Alessio Burello, and Beatrice Alessandra
Motetti, for their support and insightful guidance throughout my research journey.
Their profound dedication to academic excellence and meticulous attention to detail
have been instrumental in shaping this dissertation.

To my dear parents, I owe infinite gratitude for their unwavering support and
steadfast presence during even the most difficult moments. Though this path was
often solitary, I never felt alone when looking back, for they were always there for
me. To my brother, whose boundless energy and lightheartedness have brightened
my grayest days and brought countless smiles to my face, thank you for being my
constant source of joy.

To my beloved girlfriend, who entered my life during the most challenging phase
of this journey. Thank you for your unwavering encouragement, for motivating me
to persevere, and for loving me unconditionally.

To my lads, whom I met in the good times and who are still by my side today,
thank you for being there and for our unique and special way of being there for
each other. Zoi, Netta, Lambe and Pimpy, your friendship has been a source of
strength and I hope our bond remains as strong as ever.
To my friends who shared the struggles of endless study sessions, daunting exams,
and moments of anxiety and uncertainty: you Pigeon, Cat, Raccoon, Dani, Ja,
Granny, Princess, Cozzo, Little Seal, and Diddi, thank you for walking this road
with me and making it less lonely.
To my colleagues, who are no longer colleagues but have long since become dear
friends, Luca, Giorgio and Matteo. I am incredibly grateful for your support in
critical moments. Your companionship and encouragement have been invaluable,
and I am truly grateful to have known you.

i

To everyone who shared even the smallest meaningful moments with me during
this journey, thank you for your presence and kindness. Each interaction has added
to this unforgettable experience.

Finally, to the version of myself who embarked on this path long ago, thank you
for persevering despite every challenge and setback. You deserve this accomplish-
ment and so much more. Best of luck in all that lies ahead.

Figure 1: Ringraziamenti.

ii

Table of Contents

List of Tables vi

List of Figures vii

Acronyms ix

1 Introduction 1

2 Background 4
2.1 Human-to-drone pose estimation 4
2.2 Nano-Drones . 5
2.3 Transformers . 8

2.3.1 Transformer Architecture . 8
2.3.2 Vision Transformers . 11

2.4 Network Optimization . 14
2.4.1 Neural Architecture Search 14
2.4.2 Pruning . 16

3 Related works 18
3.1 Human Pose Estimation Models . 18
3.2 Efficient HPE models . 21
3.3 Efficient Vision Transformers . 23

4 Methodology 24
4.1 Visual Pose Estimation benchmarks 24
4.2 Vision Transformer Baselines . 29
4.3 Vision Transformer Optimization 30

5 Results 34
5.1 Training and evaluations . 34
5.2 Comparisons between Mobilenet and ViT 40
5.3 Pruning . 42

iv

6 Conclusions 45

Bibliography 46

v

List of Tables

2.1 UAV’s Taxonomy by size [5] . 5

5.1 MobileNet vs ViT results . 41

vi

List of Figures

1 Ringraziamenti. ii

2.1 Positional encoding for sentences. 9
2.2 Workflow of Q, K, V in the attention mechanism. 10
2.3 Extention of the self-attention into a multi-head attention. 11
2.4 General structure of transformer architecture. [13] 12
2.5 The position embedding applied on the patches allow to understand

the differences between the two and not treat them as the same. . . 12
2.6 ViT general structure [14] . 13

4.1 Schematic representation of the vision task from the drone point of
view . 25

4.2 Effect of the application of multiple augmentation techniques on a
frame of the dataset. 26

4.3 Distribution of the target values in training and validation are very
similar. 27

4.4 Crazyflie 2.1 nano-drone . 28

5.1 The plot illustrates the aggregated losses of the target variables.
The green line represents the training loss, which exhibits significant
overfitting, while the black line represents the validation loss. The
validation loss plateaus, at a far distance from the training loss,
indicating limited generalization. 35

5.2 The plot illustrates the aggregated losses of the target variables. The
cosine similar trend is due to the cosineAnnealinghWarmRestart.
The green line represents the training loss while the black line
represents the validation loss. 36

5.3 Regression performance comparison between the best ViT and Mo-
bileNet for each output coordinate. 39

5.4 Summary comparisons between the selected ViT architecture against
the MobileNet. 42

5.5 Pareto curve of the pruned models. 44

vii

Acronyms

AI
Artificial intelligence

CV
Computer Vision

CNN
Convolutional Neural Networks

DL
Deep Learning

DNN
Deep Neural Network

FNN
Feedforward Neural Network

FPD
Fast Pose Distillation

GPU
Graphical Processing Unit

HCI
Human-Computer Interaction

HW
Hardware

ix

LLM
Large Language Models

MAE
Mean Absolute Error

MCU
Microcontroller Unit

ML
Machine Learning

MLP
Multi Layer Perceptron

MHSA
Multi Head Self-Attention

NAS
Neural Architecture Search

NLP
Natural Processing Language

NN
Neural Network

PAF
Part affinity fields

PULP
Parallel Ultra Low Power

SoA
State of Art

SoC
System on Chip

x

Chapter 1

Introduction

In recent years, the adoption and application of drones, or Unmanned Aerial
Vehicles (UAVs), have expanded dramatically, driven by significant technological
advancements in areas such as electronics, machine learning, and robotics.
Drones are increasingly being used across a wide range of industries, from agri-
culture and infrastructure inspection to public safety, search-and-rescue missions,
and entertainment. The increasing versatility of drones, their ability to carry
out tasks in difficult or hazardous environments, and advancements in their au-
tonomous capabilities, have accelerated their growth in usage. At the heart of this
development, we can find the integration of artificial intelligence (AI) and machine
learning techniques, which enable drones to perform complex tasks such as object de-
tection, navigation, and autonomous decision-making with high precision and speed.

A key enabler of these advances is the miniaturization of powerful embedded
systems, allowing AI algorithms to be run directly on board drones. Standard-size
drones, for example, can be equipped with high-performance hardware, such as
Graphics Processing Units (GPUs), which provide the computational power needed
to run complex neural networks for tasks like computer vision and perception.
However, while these advancements have enhanced the capabilities of standard
drones, nano-drones which are lightweight drones with almost insect-sized forms,
designed for constrained environments, face significant challenges. Due to their
limited size and power supply, nano-drones cannot accommodate the same powerful
hardware as their larger counterparts. This makes the deployment of AI models
on nano-drones much more challenging, as their limited computational resources
cannot support the execution of standard AI algorithms in real-time.

As nano-drones become more prevalent in applications such as surveillance,
indoor navigation, and disaster response, the need for efficient, real-time onboard
intelligence becomes critical. Traditional AI models, particularly those used in

1

Introduction

computer vision tasks, are computationally expensive and memory-size heavy, thus
impractical for direct deployment on resource-constrained platforms like nano-
drones. To address this challenge, researchers and engineers focus on optimized,
lightweight models that can deliver high performance while operating within the
constraints of small devices. One of the key research directions in this field is
the development of deep learning architectures that balance the trade-off between
accuracy and computational efficiency.

Historically, Convolutional Neural Networks (CNNs) have been the dominant
architecture for computer vision tasks. CNNs have proven highly effective at
recognizing and interpreting visual data, from simple object classification to more
complex tasks like human pose estimation. For nano-drones, lightweight versions
of CNNs have been successfully deployed due to their relatively low computational
demands. However, recent advancements in the field of computer vision have
introduced a new model architecture known as the Vision Transformer (ViT),
which has been shown to outperform traditional CNNs on a variety of tasks. The
ViT model, which leverages transformer-based architecture mechanisms for pro-
cessing image data, offers several advantages in terms of accuracy and flexibility.
Despite its potential, the transformer-based model’s high computational complexity
and size such as the ViT, limits its application in real-time, resource-constrained
environments such as nano-drones.

The central objective of this research is to address this gap by optimizing the
Vision Transformer architecture to make it suitable for real-time deployment on
nano-drones. Specifically, the focus is on the task of human pose estimation, a
challenging computer vision problem where the goal is to identify the position and
orientation of a person from visual data like pictures or video. The use case for this
thesis involves a nano-drone that autonomously positions itself in front of a person
and follows them while maintaining a constant distance. This requires the drone to
continuously process visual data and adjust its position in real time, a task that is
computationally intensive and must be accomplished within the limited processing
power of a nano-drone’s onboard hardware.

To achieve this, the research explores various optimization techniques aimed
at reducing the computational demands of the ViT model while maintaining its
accuracy and effectiveness for the task of human pose estimation. The nano-drone
used in this study is equipped with a GAP8 AI deck, a low-power, microcontroller
unit (MCU) designed for energy-efficient AI processing. Given the limited resources
of the GAP8, optimizing the ViT model to run efficiently on this hardware is crucial.

The study employs two datasets obtained from separate laboratories to train and

2

Introduction

evaluate the performance of different neural network architectures. By comparing
various configurations of the ViT model and experimenting with pre-training and
fine-tuning techniques, the research seeks to identify the most effective configuration
for real-time deployment. In addition, the thesis benchmarks the performance of
the optimized ViT model against MobileNet, a lightweight CNN architecture that
has demonstrated state-of-the-art results on similar tasks. The MobileNet model
has been widely adopted in edge computing applications due to its efficiency and
performance, making it an ideal candidate for comparison.

One of the major contributions of this work is the application of structured
pruning techniques to the ViT model. Structured pruning involves removing less
important parameters from the neural network, thereby reducing the model’s size
and computational load without significantly degrading its performance. This
process allows the ViT model to be compressed and optimized for deployment on
nano-drones, where both storage capacity and real-time processing are constrained.

In conclusion, this thesis shows the feasibility of deploying an optimized Vision
Transformer model on resource-constrained nano-drones. The results of this research
show that, with proper optimization, ViT models can serve as a powerful alternative
to CNNs for real-time computer vision tasks on low-resource devices like nano-
drones.

3

Chapter 2

Background

This chapter provides background on Human Pose Estimation (HPE) in section
2.1, Drones and Nano-Drones in Section 2.2, Transformers in Section 2.3, Vision
Transformers 2.3.2, and Network Optimization techniques in Section 2.4.

2.1 Human-to-drone pose estimation
Human Pose Estimation (HPE) is a computer vision task that identifies the key
body joints of a human in images and videos to determine their pose. These key
points typically include critical joints such as the shoulders, elbows, knees, and
ankles, which together form a skeleton-like representation of the human body. HPE
methods use deep learning models to detect, localize, and track these points across
video streams or static images.

This task has various applications across different domains, for example in
Human-Computer Interaction (HCI) [1] for gesture recognition, enabling systems
to interpret human gestures and translate them into commands to aid people with
communication disabilities. In the field of healthcare and sports [2] it is used to
keep track of posture and movement, helping in rehabilitation with unobtrusive
monitoring of patients, in robotics [3] for assisting robots understanding human
movements and helping human-aware robot navigation, and in surveillance [4] of
groups or crowds of people increase the complexity of the task.

Despite its versatility over different fields, HPE faces several technical challenges
that compromise its accuracy and robustness in real-world applications.
For example, body alterations due to different forms of clothing, occlusions when
certain parts of the body are hidden or blocked, either by other objects or people

4

Background

increase the complexity of the task.
Highly dynamic or cluttered environments, where multiple moving objects or people
are present or extreme perspectives, such as those from above or below, pose addi-
tional difficulty in correctly identifying key points. This last challenge is especially
relevant in drone-based HPE, where the camera views are not stationary and are
subject to different orientations and angles. In these situations, the prediction of
the human pose is extremely challenging.

HPE’s core consist of the identification of key points in the human body and
determining their exact spatial positions over an input image or video stream. The
relationships between these key points are then used to infer the human body’s
overall posture, producing a skeletal representation of the individual.
Once key points are identified, the next step is to determine their spatial positions
in 2D or 3D relative to the input image, creating a coherent representation of the
human skeleton to interpret posture or activity. In 2D estimation, each joint is
positioned using (x, y) coordinates, whereas 3D pose estimation adds depth, using
(x, y, z) coordinates to capture the position in three-dimensional space.

2.2 Nano-Drones
Nano-drones are extremely small unmanned aerial vehicles (UAVs) designed for
specialized applications where size, weight, and precision are critical factors. These
drones have an extremely small size ∼ 10cm and lightweight designs, making
them distinct from larger drone categories. Despite their miniature form, these
drones are equipped with various functionalities such as cameras, sensors, and
wireless communication systems that enable them to operate efficiently in a range
of environments. Table 2.1 depicts a detailed taxonomy of UAVs by size, weight,
power, and HW device.

Table 2.1: UAV’s Taxonomy by size [5]

Vehicle class ⊘ :Weight[cm:kg] Power[W] Onboard device
standard-size [6] ∼ 50:≥ 1 ≥ 100 Desktop
micro-size [7] ∼ 25:∼ 0.5 ∼ 50 Embedded
nano-size [8] ∼ 10:∼ 0.01 ∼ 5 MCU
pico-size [9] ∼ 2: ≤ 0.001 ∼ 0.1 ULP

One of the significant advantages of nano-drones is their mobility and ability to
access hazardous environments. Due to their compact size and maneuverability,
they can navigate through tight or cluttered spaces, making them highly effective for
precision tasks such as indoor navigation, search-and-rescue missions in collapsed

5

Background

buildings, while being under highly constrained power budgets [10]. This capability
is particularly valuable in situations where human access would be dangerous or
impossible.
Another notable benefit is the reduced risk of damage to the surroundings or injury
to people. Because of their lightweight construction, nano-drones are less likely to
cause significant harm if they collide with objects or people, making them safer to
deploy in environments where fragile equipment or sensitive infrastructure is present.

Nano-drones are increasingly being utilized in various fields due to their versa-
tility and adaptability. In surveillance [11], they are ideal for monitoring indoor
and confined spaces where larger UAVs cannot operate effectively. Their small size
allows for discreet and non-intrusive observation.
In search and rescue missions [12], nano-drones play a critical role by providing
real-time situational awareness in disaster-stricken areas, such as collapsed buildings
or areas affected by natural disasters. Their ability to navigate through debris
and confined spaces helps rescuers locate survivors and assess structural damage,
improving the overall efficiency and safety of rescue operations.

In many drone applications, AI processing is handled remotely due to the limited
onboard computational power. The typical process involves drones collecting data
such as images or video, transmitting them to a remote server where AI models
process the information, and then sending the actionable insights back to the drone.
This remote AI processing allows for the use of complex algorithms and deep neural
networks (DNNs) that the drone itself cannot execute due to hardware constraints.

This approach, thanks to the use of remote servers allows to run large and
complex models that require significant memory size and computational resources,
which are usually unavailable on drone devices. In this way, drones can leverage
cutting-edge AI models that are updated and managed remotely, allowing for more
frequent software updates without the need for drone hardware upgrades.
On the other side, data transmission to and from the server introduces delays,
which can be problematic in time-sensitive applications like real-time navigation
or obstacle avoidance, and the drone depends on stable communication networks,
which may not always be available, especially in remote or hazardous environments.

Advances in embedded systems and hardware efficiency allow to mount of
high-performance HW, such as GPUs, enabling support for complex deep learning
models. This enables the possibility of running DNNs directly on standard drones.

One of the primary advantages of integrating AI models on board of drones and
nano-drones is the ability to perform onboard computations, eliminating the need

6

Background

for constant data transmission to cloud servers. This not only reduces operational
costs which translates into higher energy efficiency but also enhances data security,
as locally processed data is less vulnerable to interception during transmission.
Furthermore, processing data onboard minimizes the significant power drain associ-
ated with continuous communication with remote servers, and allows the drones to
make real-time decisions with reduced latency.
However, even with improvements, the onboard processors of drones are still limited
compared to remote servers, restricting the complexity of AI models that can be
deployed. Another significant issue consist on the fact that onboard AI consumes
significant battery power, reducing the drone’s operational time.

For what concerns nano-drones, their benefits are accompanied by substantial
challenges.
While nano-drones offer significant advantages in terms of cost efficiency, agility,
and safety, their extremely reduced size means restricted space where to place
high-performance HW.
Energy efficiency is a critical issue for nano-drones because large battery packs
cannot be mounted, which directly limits the flight time and operational lifetime
of the drone, and in particular also the computing power of nano-drones.
For the same reason, they mount MCU-class processors, which limits the complexity
of neural networks that can be implemented on board.

Another significant limitation is the memory capacity of these drones. Given
their compact structure, nano-drones have limited onboard memory, which poses
problems in implementing models that require substantial memory for the increasing
amount of parameters of DNNs. In addition, inference latency, the delay between
input processing and output generation, becomes a critical factor in real-time
applications, as the number of computations, due to the number of parameters,
slows down processing in inference, where the timeliness of responses is critical.
For example, in applications such as object tracking or navigation in dynamic
environments, any delay in inference can hinder performance and compromise the
success of the task.

To address the challenges posed by limited space, computational resources, and
energy constraints in nano-drones, researchers have developed lightweight models
specifically designed for resource-constrained environments.

7

Background

2.3 Transformers
While CNNs have been the cornerstone of CV, in recent years, the introduction
of transformer-based models for Natural Language Processing (NLP) has revo-
lutionized various domains of AI. Transformers architecture allows the model to
capture long-range dependencies in the input data. This is particularly useful for
computer vision, where understanding both local and global contexts is essential
for accurately interpreting visual information.
The success achieved by transformer-based models inspired their applications in
CV tasks in place of CNN architectures with the emerging Vision Transformers.

2.3.1 Transformer Architecture
Transformer neural networks are a class of models initially designed for NLP,
proposed as opposed to the then-dominant sequence transduction models, such as
Recurrent Neural Networks (RNNs) or LSTMs.

Introduced by Vaswani et al. (2017) in their paper Attention is All You Need
[13] the Transformer architecture revolutionized the way models process sequential
data relying on the self-attention mechanism.

The Transformer’s architecture is particularly impactful in NLP tasks like trans-
lation, text generation, and language modeling. Its key innovation lies in the
self-attention mechanism.
The attention is the core of Transformer models, unlike traditional RNN, which
process data sequentially and struggle with long-range dependencies, the attention
mechanism allows the model to focus on different parts of the input simultaneously,
capturing both local and global dependencies more effectively, thus making it both
more efficient and capable of handling larger contexts.

The input sequence of the attention is mapped to a Q query, K key, and V
value vectors by applying three linear transformations to the input data.
The Q elements represent what are the elements of interest for the model in the
input data, the K vectors are used to determine whether the token is relevant
to the query, and V vectors are the actual data from the input that the model
will attend to based on the relevance scores. With this three matrices are then
computed the self-attention.

One problem which arises is that the transformer processes the entire input at
once, unlike other models like RNNs. It treats all elements in the sequence equally,
meaning it does not understand the order of words in a sentence, and without

8

Background

understanding the order, the model would lose important context.
To address this limitation positional encoding is being added to the input sequence
to give the model information about the position of tokens in the input sequence.
Figure 2.1 shows a simplified visualization of the usage of positional encoding, in
the upper example, two phrases contain the same information but lack positional
distinctions, while in the lower example, positional encoding differentiates the
contexts, allowing the model to interpret them as distinct sequences.

Figure 2.1: Positional encoding for sentences.

After applying positional encoding and mapping the input to the three vectors
Q, K, V, the scaled dot-product attention is computed, followed by a softmax
activation to generate weights for the values.
Mathematically the attention can be written as:

Attention(Q, K, V) = softmax
A

QK⊤
√

dk

B
V

where dk correspond to the dimensionality of vectors.

The architecture of the self-attention mechanism is illustrated in Fig. 2.2 In
this setup, Q and K vectors are first multiplied to compute the dot product, which
captures the similarity between tokens. The result is then scaled and passed
through a softmax activation to produce attention weights. An optional mask can
be applied to this dot-product output, setting certain positions to zero or -∞ to
ignore specific values. The resulting attention weights are then multiplied by the V
vector, yielding the final output vector.

9

Background

The softmax function assigns higher weights to words that the model identifies
as more relevant, thus amplifying their values in the output, while lower scores
diminish the influence of less relevant words.

Figure 2.2: Workflow of Q, K, V in the attention mechanism.

In order to focus on different parts of the input the self attention is computed
multiple times in parallel, thus creating the multi-head self-attention (MHSA)
mechanism which is an extension of self-attention. Each attention head focuses on
different parts of the input, capturing different aspects of the relationships between
elements. These attention heads work independently and then combine their results
to provide a richer understanding of the input data.
Fig. 2.3 shows the combination of multiple attentions to create the multi-head
attention.

The complete transformer architecture, in its most general structure, shown in
Fig. 2.4 consists of two main components: an encoder and a decoder.

On the left of the structure there is the encoder, composed of N identical layers,
each containing two key sub-layers: a Multi-Head Self-Attention Mechanism and a
Feedforward Neural Network (FFN).
At the end of the encoder stack, we have a sequence of context-aware representations
of the input that encapsulate both local and long-range dependencies.
On the right of the structure, we find the decoder block, which is similarly composed

10

Background

Figure 2.3: Extention of the self-attention into a multi-head attention.

of N identical layers. However, the decoder has an additional encoder-decoder
attention sub-layer that allows it to focus on relevant parts of the encoder’s output.

The encoder and decoder work together but have distinct responsibilities.
The encoder’s goal is to extract meaningful patterns from the input sequence,
converting raw input into a set of rich, context-aware vectors.
The decoder in contrast, aims at generating the output sequence by iteratively
attending to both the encoded input and the output it has generated so far.

2.3.2 Vision Transformers
Vision Transformers (ViTs) are an adaptation of the Transformer architecture
specifically for CV tasks. They represent a shift from traditional CNNs, which
have long dominated the field of computer vision.
ViTs are based on the core concept of the Transformer architecture, particularly
the self-attention mechanism, but adapted for image data. Rather than processing
sequences of words, ViTs treat images as sequences of smaller image patches, trans-
forming them into embeddings and processing them similarly to how a standard
Transformer processes textual tokens.

With ViTs, the input image is divided into fixed-size patches, typically 16x16
pixels. Each patch is flattened and then linearly embedded into a high-dimensional
vector.
Just like in text-based Transformers, ViT needs to maintain spatial information
about the image, if the image patches are mixed the meaning of the original image

11

Background

Figure 2.4: General structure of transformer architecture. [13]

is lost. Thus positional encodings are added to the patch embeddings to preserve
the 2D spatial structure of the image.

In Fig. 2.5 it is shown how 2 different images, with patch positional-encoding
similar to NLP tasks, will result in 2 different images.

Figure 2.5: The position embedding applied on the patches allow to understand
the differences between the two and not treat them as the same.

12

Background

Figure 2.6 illustrates the new architecture presented in [14] with the new way
of processing images applied to transformers. The last part of the architecture
shows a Multi-layer Perceptron (MLP) as the head of the architecture used for the
purpose of classification.

Figure 2.6: ViT general structure [14]

In the case of ViTs, only the encoder is used because ViTs are primarily used
for image classification tasks, where the goal is to map a given input image to a
single output label. This is a one-to-one mapping problem, where the input is an
image, and the output is a classification label.

One of the key challenges with ViTs is their requirement for large datasets to
achieve optimal performance. Unlike traditional CNNs, which can generalize well
on relatively smaller datasets, Vision Transformers tend to perform poorly when
trained on small datasets.
A common strategy to overcome this problem consists of transfer learning. ViTs
can be pre-trained on large, publicly available datasets and then fine-tuned on
smaller datasets for specific tasks. This allows the model to leverage knowledge
gained from a large dataset. After pre-training, the model is fine-tuned to a smaller,
task-specific dataset, such as drone imagery for human pose estimation. Finally,
fine-tuning helps the model learn domain-specific features without requiring as
much data as would be needed to train from scratch.

Deploying ViTs on nano-drones is a complex challenge due to the high com-
putational, memory, and data requirements of ViTs. ViTs typically have a large
number of parameters thus the size of ViT models can be a significant barrier for

13

Background

deployment on nano-drones.
There are ongoing research into Tiny Transformers, and optimized solutions for
compressed models that may help bridge this gap, enabling the powerful capabilities
of ViTs to be used in resource-constrained environments like nano-drones.

2.4 Network Optimization
Network optimization in deep learning refers to a set of techniques and strategies
aimed at improving the efficiency and performance of deep neural networks, as
deep learning models grow increasingly complex, with millions or even billions of
parameters.

In resource-constrained environments, where there are significant limits on com-
putational power, energy, memory, and storage, network optimization is essential for
achieving faster training, reducing inference time, and deploying models in resource-
constrained environments like mobile devices, embedded systems, or nano-drones.
Techniques like pruning, quantization, and model compression enable models to
run in real-time, consume less energy, and fit within the hardware limitations of
devices like nano-drones.
Reducing computational complexity is a crucial aspect of network optimization,
particularly in resource-constrained environments. The aim is to make deep learning
models more efficient by minimizing their memory requirements through compres-
sion and speeding up inference while maintaining accuracy.

Model compression allows to reduce the size and memory footprint of a model,
making it more suitable for environments with limited storage and memory, such
as nano-drones, mobile devices, or embedded systems.

Another important aspect consists of reducing inference latency which is critical
for real-time applications, such as autonomous navigation, surveillance, or gesture
recognition. The goal is to enable the model to process input data and generate
predictions as quickly as possible, which is often a challenge for deep learning
models due to their computational complexity.

2.4.1 Neural Architecture Search
Neural Architecture Search (NAS) [15] is an advanced technique in deep learning
aimed at automating the process of designing neural network architectures. Tra-
ditionally, neural networks are hand-designed through trial and error, which can

14

Background

be labor-intensive and time-consuming. NAS, however, leverages algorithms to
automatically search for the optimal architecture based on a given objective, such
as maximizing accuracy while minimizing computational cost, memory usage, or
inference time.

In the context of network optimization, NAS plays a crucial role in discovering
efficient models that can perform well in resource-constrained environments, such
as mobile devices, embedded systems, and nano-drones. By optimizing the network
architecture for specific constraints, NAS enables the creation of models that bal-
ance performance with efficiency, without the need for manual design intervention.

NAS comprises three primary components: the search space, the search strategy,
and the evaluation of architectures. These components work together to explore
various network architectures, assess their performance, and identify the most
efficient designs.

The search space in NAS defines all the potential neural network architectures
that can be explored during the search process. It includes various design choices
that can be made for a neural network, such as the number of layers, types of
layers, filter sizes, activation functions, and skip connections.
The richness and flexibility of the search space are critical because they determine
the variety of architectures that NAS can explore. A broader search space allows
for more experimentation, potentially leading to the discovery of novel architectures
that outperform manually designed networks.

The search strategy is the core component of NAS that determines how the
algorithm navigates the search space. Since it is impractical to evaluate every
possible architecture in a vast search space, the search strategy must be efficient in
finding promising candidates while avoiding exhaustive exploration. The search
strategy can rely on differentiable or evolutionary algorithms, or on Reinforcement
Learning.

The last step, once candidate architectures are generated, is to evaluate their
performance. Each architecture must be trained and validated to assess its effec-
tiveness, typically using metrics such as accuracy, loss, or error rate. However, in
the context of network optimization, it is not enough to only focus on accuracy.
The evaluation process must also account for other critical factors like computa-
tional complexity, memory usage, and inference latency, especially when targeting
resource-constrained environments.
Mathematically the NAS optimization technique can be written as [15]

15

Background

î
argmin = L(Â, Dtrain, Dval) s.t.Â ∈ A

where Â corresponds to one potential DNN from the search space A architec-
tures, the Loss(·) is the measure of the performance of Â on the validation dataset
Dval and the training dataset Dtrain.

2.4.2 Pruning
Pruning is another important technique in network optimization that focuses on
reducing the complexity of deep neural networks by systematically removing unnec-
essary parameters such as weights, neurons, or filters, while maintaining a high level
of performance. By eliminating parameters that contribute little to the network’s
overall performance, pruning allows for reduced model size and improved inference
speed. This is especially useful in scenarios where models need to be deployed on
devices with limited hardware resources, like edge devices or drones.

Pruning significantly reduces the memory footprint of deep learning models.
Since many DNNs, particularly transformer-based models used for complex tasks
like image classification or human pose estimation, contain millions of parameters,
their storage and processing require substantial memory. By pruning unimportant
weights, the size of the model is reduced, allowing it to be stored and executed
more efficiently in environments with limited memory, such as embedded systems
or small-scale devices like nano-drones.

One of the critical benefits of pruning is the creation of more energy-efficient
models.
In devices with limited battery life, such as nano-drones or mobile platforms,
reducing energy consumption is a primary concern. This results in longer operational
times for compact battery-powered devices and lower energy costs.

It is particularly important for deploying deep learning models in resource-
constrained environments like embedded systems, and nano-drones, where memory,
computational power, and energy efficiency are limited.

The goal of pruning is to create a smaller, more efficient model with fewer
parameters, while still achieving near-original accuracy. This makes it possible to
deploy deep learning models on hardware with limited resources without sacrificing
much performance. There are several types of pruning techniques, each designed
to optimize different parts of the neural network.

16

Background

There are two main types of pruning that can be applied, unstructured pruning,
and structured pruning, each offering different advantages and trade-offs depending
on the specific deployment environment.
Unstructured pruning [16] involves removing individual weights from the neural
network based on their magnitude or contribution to the final output. Typically,
weights with values close to zero are pruned, creating a sparse network with fewer
active connections between neurons. This form of pruning is highly flexible and
can result in significant reductions in the number of parameters, but the resulting
sparse matrix is often less efficient to process on standard hardware, which prefers
dense matrix operations.

Structured pruning [17] operates at a higher level of abstraction than un-
structured pruning, removing entire components of the network, such as neurons,
channels, or even layers. By eliminating entire filters or neurons, structured pruning
leads to a more hardware-friendly model with a reduced number of computational
operations.

Pruning can also be performed in an HW-aware [18] manner, taking into account
the specific hardware on which the pruned model will be deployed. It is tailored
to optimize the model’s performance on a particular platform, such as a mobile
device, GPU, or edge AI accelerator. The goal is to prune the network in a way
that maximizes efficiency for the target hardware’s architecture, considering factors
such as memory, computation power, and bandwidth.

One of the primary challenges of pruning is the trade-off between accuracy and
compression. Aggressive pruning can lead to significant reductions in model size
and computation but may result in degraded accuracy if important weights or
structures are removed. Striking the right balance between model compression and
maintaining accuracy is critical to the success of pruning, especially in applications
where precision is paramount, such as in human pose estimation for drones or
medical imaging.

17

Chapter 3

Related works

This chapter provides SoA approaches and techniques explored in recent years
for HPE 3.1, then we will present efficient models for this task deployable to
constraint-resources devices 3.2 and finally explore pruning techniques applied to
ViT 3.3.

3.1 Human Pose Estimation Models
The problem of recognizing human pose has been studied extensively in recent
literature. Early breakthroughs laid the foundation for modern deep learning ap-
proaches, transitioning from traditional methods to powerful neural network-based
solutions.

Introduced by Google in 2014, DeepPose [19] is a DNN-based approach for
human pose estimation by formulating it as a regression problem towards body
joints. The method employs a cascade of DNN regressors that significantly improve
the precision of pose estimation. This approach leverages advances in deep learning
and offers SoA performance across several benchmarks.
Rather than depending on part-based models, which are constrained in terms
of expressiveness, the DNN method leverages the entire image to predict joint
positions, eliminating the necessity for predefined feature detectors or graphical
models.
The model captures contextual information about the entire pose by using the full
image rather than focusing on individual body parts in isolation, this approach
avoids complex handcrafted features and part-based models, making it a more
straightforward and scalable solution for pose estimation.

18

Related works

Another interesting work that follows a different approach for 2D HPE is [20]
where the authors propose a bottom-up approach for real-time multi-person 2D
pose estimation using Part Affinity Fields (PAFs), a non-parametric representation,
that allows learning the association between detected body parts and individuals,
enabling pose estimation to scale efficiently, irrespective of the number of people in
the image. The method demonstrates state-of-the-art accuracy while maintaining
a satisfactory real-time response latency.
The proposed architecture is designed to learn both body part detection and the
relationships between body parts simultaneously, creating a dual-task framework
that enhances the overall accuracy of pose estimation. By optimizing these tasks
together, the model achieves more precise results. A key innovation in this ap-
proach is its novel representation, which encodes not only the location but also the
orientation of limbs. The model operates through multiple stages, progressively
refining its detection and association of body parts at each step. This iterative
process improves accuracy with every pass.
The approach’s strengths include scalability, as it efficiently handles crowded scenes
by decoupling runtime from the number of people. It offers real-time performance
with constant inference time, making it ideal for live applications. Additionally,
its use of Part Affinity Fields (PAFs) ensures robustness, enabling accurate pose
estimation despite occlusions, scale variations, and complex interactions

In [21] the first single-network approach for whole-body 2D pose estimation
is presented, it can estimate key points for the body, face, hands, and feet from
in-the-wild images of multiple people. This new method is a significant improve-
ment over the original OpenPose, which required multiple networks and suffered
from runtime issues proportional to the number of people detected. The proposed
system operates in real-time and improves accuracy, especially for low-resolution
and occluded keypoints, making it a more efficient and accurate system for various
applications.
In this research the proposed method combines the detection of body, face, hands,
and feet key points into a single network, eliminating the need for multiple separate
detectors for different single key points. This makes the system much faster and
more scalable for multi-person scenarios.
The single-network model greatly reduces the inference time, especially in scenes
with multiple people, providing nearly constant runtime regardless of the number of
individuals. Furthermore, the network shows significant improvements in detecting
key points in challenging conditions, such as occlusions, motion blur, and small
objects.

All these three research address the HPE task in a 2D fashion, and thanks to
DNNs, OpenPose, and the PAF-based approach aim for real-time performances.

19

Related works

DensePose [22] represents a novel approach to human pose estimation by estab-
lishing dense correspondences between an RGB image and a 3D surface model of
the human body.
The proposed architecture combines fully convolutional networks with region-based
Mask-RCNN architectures, improving accuracy in detecting and mapping dense
human poses. This system is optimized to work in real-time, operating at around
20-26 frames per second for lower-resolution images, making it suitable for applica-
tions such as video processing, augmented reality, and interactive graphics.
This model achieve to handle real-world complexities like occlusion, clothing, and
scale variation, outperforming prior work that focused on key points detection.

HoloPose [23] integrates multi-task learning, training the model to predict both
2D and 3D key points and integrating DensePose-style mapping with additional 3D
pose and shape estimation capabilities. It refines the model through an iterative
optimization process that aligns top-down 3D model predictions with bottom-up
CNN-based pose estimates. This allows for both high spatial accuracy and global
consistency, operating at over 10 frames per second, even in real-world settings
with occlusion and clutter.
Unlike previous monolithic approaches that apply CNNs over an entire object’s
bounding box, HoloPose uses part-based modeling. This model extracts features
around specific joints, ensuring more localized information and improved robustness
to articulation, occlusion, and global translations.
By using a part-based feature extraction approach, HoloPose handles occlusions and
complex poses more effectively than monolithic models. This results in improved
accuracy in real-world images with multiple people or complex interactions, and can
process images at more than 10 frames per second, making it suitable for interactive
applications or video analysis in dynamic environments, achieving state-of-the-art
performance on various benchmarks.

In [24] propose HRNet, an innovative method for human pose estimation, focus-
ing on maintaining high-resolution representations throughout the network, rather
than recovering resolution from lower levels as seen in other approaches.

Unlike traditional methods that rely on downsampling and later upsampling to
recover high-resolution representations, HRNet maintains high-resolution features
throughout the network. The architecture, by connecting multiple subnetworks
of different resolutions in parallel, facilitates repeated multi-scale fusion. Each
high-to-low resolution subnetwork continuously exchanges information with others,
enriching high-resolution representations with multi-scale information.

20

Related works

The ability to retain high-resolution information throughout the process leads
to more spatially accurate predictions, making HRNet one of the top performers in
human pose estimation.

3.2 Efficient HPE models
All the models discussed in the previous section introduce novel architectures
and paradigms for achieving high accuracy and real-time HPE. However, these
models typically require substantial computational power and energy, making
them impractical for deployment on resource-constrained devices. To address this
limitation, recent advancements have focused on developing efficient HPE models
that maintain strong performance while reducing resource demands. This section
will present models specifically optimized for deployment on edge devices and
nano-drones, highlighting approaches that enable real-time HPE in limited-resource
environments.

An innovative platform developed to enable high-performance computing at
ultra-low power levels consists of the Parallel Ultra Low Power (PULP) system
family, ideal for energy-constrained devices such as nano-UAVs, IoT nodes, and
edge computing applications. PULP systems like the GAP8 System-on-Chip (SoC)
integrate tightly coupled cores and memory hierarchies, allowing for efficient data
movement and computation.

There have been already several works like MobileNet [25], FrontNet [5] and
Dronet [26] addressing unique challenges in human-drone pose estimation and
interaction, autonomous navigation, and network optimization, demonstrating the
versatility and power of PULP-based architectures in energy-constrained environ-
ments.
MobileNet is an efficient neural network model designed specifically for mobile
and embedded applications. Its lightweight architecture uses depthwise separable
convolutions, significantly reducing computational cost without sacrificing accuracy.
FrontNet is designed for robust front-view perception, addressing challenges in
tasks like human pose estimation and obstacle detection from a forward-facing
perspective. Tailored for edge devices, FrontNet’s architecture is streamlined to
handle the high-speed, real-time demands of drone-based applications.
DroNet targets autonomous navigation in urban environments, focusing on predict-
ing safe paths for drones using a convolutional neural network trained to handle
urban traffic patterns. It employs end-to-end learning to make navigation decisions
based on visual input, enabling drones to interpret and respond to urban dynamics
in real time.

21

Related works

In their work with the use of GAP8 hardware demonstrates the potential for
deploying complex AI tasks on ultra-low-power devices, opening doors for small-
scale, intelligent drones.
All papers focuses on enabling real-time inference on nano-UAVs, emphasizing the
need for fast, onboard visual processing for navigation and human interaction. The
CNN models are optimized to handle visual data in real-time, meeting frame rate
requirements for smooth and responsive operation during flight.
To fit within the limited computational resources of nano-UAVs, all three papers
employ aggressive model compression techniques, such as quantization and pruning,
reducing both memory footprint and computational load, and each paper show-
cases how different compression methods can maintain high levels of accuracy and
inference speed, a necessity for small-scale robotics.

Another work that tackles the challenge of efficient HPE is Fast Human Pose
Estimation [27], that proposes a Fast Pose Distillation (FPD) approach, a novel
training strategy that leverages knowledge distillation specifically for human pose
estimation. In this approach, a large teacher model is used to train a smaller
student network, which distills knowledge through a mimicry loss function that
aligns the outputs of the student model with the teacher’s predictions.

The authors design a compact variant of the Hourglass [28] network by reducing
the depth and width of layers. This architecture achieves efficient inference with
minimal loss in accuracy. Their proposed FPD model achieves near SoA accuracy
on different datasets with only a fraction of the computational cost of the Hourglass
model.

Adaptive [29] approaches are explored as well where authors propose an adap-
tive deep learning framework that combines two SoA CNNs with novel adaptation
strategies to optimize HPE on nano-drones. By switching between CNNs based
on the assessed complexity of visual input, this adaptive system maintains high
accuracy while reducing computational latency and power consumption.

In [30], the authors explore HPE for nano-drones equipped with GAP8 SoC and
limited sensory resources. By integrating depth and camera images using a CNN
trained in a simulated environment, they achieve robust real-world performance.
The proposed model improves pose estimation accuracy significantly over camera-
only baselines, making it suitable for challenging real-world conditions where reliable
3D positional data is essential.

22

Related works

3.3 Efficient Vision Transformers
The efficient models presented in the previous section primarily utilized CNN-based
architectures and were specifically optimized for deployment on low-resource hard-
ware, such as the GAP8 SoC. Considering the success of these CNN approaches on
hardware like GAP8, the next section will explore research on efficient ViTs, aimed
at extending the capabilities of Transformer-based architectures to resource-limited
devices.

In [31], the authors propose an approach to prune Vision Transformers, ad-
dressing the high computational and storage demands of ViTs, which limit their
deployment on mobile and embedded devices. The authors propose a pruning
method that enforces sparsity on the dimension-wise components of each layer
within the transformer. By learning importance scores for each dimension, the
model identifies and prunes less significant dimensions, achieving a high compres-
sion ratio with minimal accuracy loss.

This pruning method reduces computational demands, enabling ViTs to run on
mobile and embedded devices where computational resources are limited, and the
strategy is designed to identify and preserve essential dimensions, maintaining high
accuracy while achieving significant compression.

In [30], the authors addresses the high computational costs of ViTs by introduc-
ing a patch slimming technique that prunes redundant patches at each layer of the
transformer, starting from the final layer and moving backward. The approach
calculates each patch’s impact on the model’s final output, allowing the removal of
patches that contribute minimally.

The algorithm calculates an importance score for each patch by assessing its
contribution to the model’s final feature representation. Patches with lower scores
are identified as redundant and pruned. After pruning, the model’s architecture
forms a pyramid-like structure, where fewer patches are preserved in deeper layers.
This structure aligns with the increased redundancy found in deeper transformer
layers, where the attention mechanism aggregates features across patches.

Patch slimming significantly reduces the number of computations required for
ViTs, making them more viable for resource-constrained environments, such as
mobile and IoT devices.

23

Chapter 4

Methodology

This chapter outlines the methodology employed in this study, in Section 4.1 an
analysis of the performance of the ViT architecture on the Visual Pose Estimation
task is presented. In Section 4.2 an overview of the architectural modifications
proposed to improve the performance-cost trade-off is reported. In Section 4.3 a
description of the structured pruning techniques adopted to optimize the size of
the model is provided.

4.1 Visual Pose Estimation benchmarks
As outlined in Section 2.1, the HPE task in this study involves predicting the 3D
positional coordinates (x, y, z) and the rotational angle ϕ of the subject with respect
to the drone’s camera. This task is framed as a multi-output regression problem,
aiming to estimate both the relative 3D spatial pose and rotational orientation of
a human target with respect to the drone position in its environment.
The drone’s objective is to locate and recognize a subject by detecting their face,
then position itself directly in front of the target’s face, dynamically maintaining
this alignment as the person moves.

Figure 4.1 depicts a schematic representation of the task.
The figure provides a visualization of the drone’s perception and prediction process
during the human pose estimation task. On the right, the grayscale image represents
the frame captured by the camera mounted on the drone. On the left, the drone’s
perceived perspective is illustrated, with the blue triangular region indicating the
area of interest within the drone’s field of view.
The green point represents the ground-truth coordinates of the target in space,
while the blue point corresponds to the predicted coordinates generated by the
model based on the captured image. The arrows illustrate the angular relationships:

24

Methodology

the arrow for the green point depicts the true angle relative to the drone, while
the arrow for the blue point represents the predicted angle based on the model’s
output. This visualization highlights the spatial reasoning applied by the drone to
map its environment and predict human pose coordinates.

Figure 4.1: Schematic representation of the vision task from the drone point of
view

Dataset

The dataset used in this work consists of images extracted from short videos
recorded in two laboratories, Manno and Viganello.
All the image frames have been captured by a grayscale camera mounted aboard
the nano-drone. Unlike standard RGB cameras that capture images using three
color channels (Red, Green, and Blue), grayscale cameras use a single intensity
channel, recording variations in light intensity without color information. This
single-channel format captures essential visual details but omits the color data
present in RGB images.

Although the videos were recorded in two different laboratories, the number
of frames available as images was limited. To address this, data augmentation
was employed—a technique that expands the size and diversity of a dataset by
applying various transformations to the existing data. This approach enhances
model generalization and performance by making the model more adaptable and
robust, reducing the risk of overfitting, and improving performance on unseen data,
which is particularly beneficial when data is limited.

25

Methodology

The specific data augmentation techniques applied included cropping, noise in-
jection, blurring, vignetting, and exposure adjustments. These transformations
increased the variety within the dataset, allowing the model to train on a broader
range of visual scenarios.

Figure 4.2 illustrates the application of different augmentation techniques to
a frame sampled from the dataset. This process effectively expands the dataset,
offering the model a broader diversity of training examples to improve learning and
generalization.

Figure 4.2: Effect of the application of multiple augmentation techniques on a
frame of the dataset.

In machine learning, the dataset is first divided into training and test sets, with
the test set kept completely separate to ensure unbiased evaluation of the model’s
performance on unseen data. The training set is then further split into training
and validation subsets to facilitate monitoring and optimization during the training
process.
Typically, 25% of the training data is randomly sampled to create the validation

26

Methodology

set. This validation set plays a crucial role in assessing the model’s generalization
ability during training and in tuning hyperparameters to prevent overfitting. The
remaining 75% of the training data is used to train the model, enabling it to learn
underlying patterns and relationships by optimizing its parameters. This structured
allocation ensures that the model is exposed to sufficient data for learning while
the validation set provides continuous feedback.
The independent test set is reserved to evaluate the model’s final performance
on unseen data. This 75/25 structure, along with a distinct test set, ensures
effective learning, real-time validation, and an unbiased final assessment of model
performance.

To ensure consistency across the dataset, the target values the model aims to
predict were carefully inspected within the training, validation, and test sets. This
review confirmed that target values are coherent and evenly distributed across
these subsets, providing the model with consistent data for both training and
evaluation. Figure 4.3 illustrates this data consistency, highlighting uniformity
across all dataset portions.

Figure 4.3: Distribution of the target values in training and validation are very
similar.

Platform

To fully understand the resource constraints inherent to this study, the key charac-
teristics of the target platform under investigation will be briefly outlined. Figure
4.4 provides an illustration of the nano-drone used in this research.
Its characteristics and specifications are the following as detailed in its datasheet 1.

1Datasheet link

27

https://www.bitcraze.io/documentation/hardware/crazyflie_2_1/crazyflie_2_1-datasheet.pdf

Methodology

1. Onboard MCUs

(a) STM32F405 main application MCU (Cortex-M4, 168MHz, 192kb SRAM,
1Mb flash)

(b) nRF51822 radio and power management MCU (Cortex-M0, 32Mhz, 16kb
SRAM, 128kb flash

(c) On-board LiPo charger with 100mA, 500mA and 980mA modes available
(d) 8KB

2. Phisical specifications

(a) Takeoff weight: 27g
(b) Size (WxHxD): 92x92x29mm (motor-to-motor and including motor mount

feet)

3. Flight specifications

(a) Flight time with stock battery: 7 minutes
(b) Charging time with stock battery: 40 minutes
(c) Max recommended payload weight: 15 g

Figure 4.4: Crazyflie 2.1 nano-drone

28

Methodology

4.2 Vision Transformer Baselines
In this work, transfer learning [32] was utilized to improve model performance
despite limited data and computational resources. This technique involves adapting
a model pre-trained on a large dataset for a related task by fine-tuning it for a
new, specific task. By leveraging the knowledge learned by the pre-trained model,
transfer learning enables better results with fewer training examples and shorter
training time.
Before stepping into the fine-tuning phase, the pre-trained Vision Transformer
model used was retrieved with the timm library, which loads model weights from
the Hugging Face hub.

To establish baselines, adjustments were made to ensure compatibility between
the pre-trained models and our dataset. The pre-trained models were originally
trained on color images with three channels (R, G, B), while our dataset consists
of grayscale images with only one channel. This difference in channel count made
the data incompatible with the pre-trained model’s architecture. To resolve this, a
preprocessing step was applied, replicating the single grayscale channel across all
three RGB channels, thereby aligning the data with the model’s input structure.

The original ViT architecture was designed for classification tasks, incorporating
an MLP head with two fully connected layers and a GeLU activation function.
However, our task involves regression predicting four values, the subject’s three
spatial coordinates (x, y, z) and its angle relative to the drone (phi). To adapt the
model for this purpose, the MLP head was replaced with a single fully connected
layer containing four output nodes corresponding to these coordinates and angle.
No activation function was applied, allowing the model to produce continuous
values suitable for regression.

To assess the effectiveness of training without transfer learning, we also trained
a model from scratch on the available dataset, without using pre-trained weights
or channel replication as required for pre-trained models. Training this model
independently allows us to evaluate the impact of transfer learning on performance
and determine if our dataset alone provides enough data for effective learning.

This approach establishes a baseline comparison between the two models, one
that uses transfer learning with adapted input channels and the other trained solely
on our dataset. Comparing their performances enables us to assess the impact of
pre-training and identify any limitations in training effectiveness when relying exclu-
sively on our data. This evaluation ultimately helps determine whether the dataset
is large and diverse enough to support robust learning without external data sources.

29

Methodology

The selection of the ViT model was based on a search through pre-trained models
available in the timm library, which loads model weights from the Hugging Face hub.
Among the smallest ViT models, the parameter counts range from 5.7 million to 12
million, highlighting the stark contrast between transformer-based and CNN-based
models. ViT models carry a substantial parameter load, while MobileNet, by
comparison, has only 47k parameters. This difference underscores the significant
computational resources typically required by ViT architectures compared to CNNs.

The final choice of pre-trained model weights focused on the smallest available
model 2. The model is specifically designed to process images at a resolution of
224x224 and, after further training and fine-tuning on our dataset, has a total of
5,499,076 parameters which represents an increase in parameters of almost 11,600%.

4.3 Vision Transformer Optimization
To compress and optimize the ViT model structured pruning has been applied.
As discussed earlier in 2.3.2, key components of ViTs are MHSA, FFN, and layer
normalization. Structured pruning aims to remove either entire modules or sub-
structures to improve efficiency. Furthermore, structured pruning can provide
direct acceleration by reducing computations.
For example, pruning attention heads reduces the dimensionality of the key, value,
and query projections. This decreases the overall scaled dot product attention costs.

Here structured pruning is implemented through a training scheme with learnable
binary masks. The core component of this approach involves applying learnable
masks to transformer self-attention layers called Block Movement Pruning for
MHSA.

Block Movement Pruning for MHSA involves masking less important compo-
nents in the self-attention mechanism based on computed importance scores. This
approach ensures that only the most significant portions of each query, key, and
value matrix are maintained, thereby enhancing efficiency without heavily impact-
ing performance.

Each attention head i is assigned an importance score Si
H , and each column j

in the query and key projections, as well as each column z in the value projections,

2vit_tiny_patch16_224.augreg_in21k_ft_in1k: initially trained on ImageNet-21k and later
fine-tuned on ImageNet-1k with additional augmentation strategies

30

Methodology

has scores Sj
QK and Sz

V respectively. Using a threshold τ , binary masks M i
H , M j

QK ,
and M z

V are created as:

M i
H = 1(Si

H ≥ τ), M j
QK = 1(Sj

QK ≥ τ), M z
V = 1(Sz

V ≥ τ),

where 1 denotes the indicator function, setting the mask to 1 if the score is
above the threshold and 0 otherwise.

Once the masks are applied, the attention head i is computed as [17]:

Headi(X) = M i
H · Softmax

1
XW i

Q ⊙ MQK

2
(XW i

K ⊙ MQK)Tñq
j M j

QK

 ·
1
XW i

V ⊙ MV

2
,

where ⊙ indicates element-wise multiplication and W i
Q, W i

K , W i
V are the query,

key, and value weight matrices for head i. Only the unmasked elements contribute
to the attention score, thus reducing the computation while retaining essential
components.

Along with pruning for MHSA, pruning for normalization layers was also em-
ployed.

Block Movement Pruning for Layer Normalization (LN) prunes dimensions within
each token representation, making LN more efficient in terms of computation and
memory.
LN normalizes token representations across channels independently per token, for
input X ∈ RL×d with L tokens of dimension d, LN normalizes each token Xi as:

LN(X)i = γ · Xi − µi

σi

+ β,

where µi and σi are the mean and standard deviation of token i, calculated over
its d dimensions, and γ, β ∈ Rd are learnable parameters.

To each dimension c in X is assigned a score Sc, and a mask M c is applied as:

M c = 1(Sc ≥ τ),

where τ is a threshold. This mask zeroes out dimension c if its score is below the
threshold, and the mean and standard deviation are recalculated excluding the

31

Methodology

pruned dimensions [17]:

µi =
q

c M cXi,cq
c M c

, σi =
óq

c M c(Xi,c − µi)2q
c M c

.

After masking, the normalized output for each token becomes:

Pruned LN(X)i =
3

Xi − µi

σi

· γ + β
4

⊙ M,

where only the active (unmasked) dimensions contribute to the normalization,
achieving a more compact and efficient LN layer.

In the structured pruning approach employs mask sharing to ensure consistent
pruning across residual-connected components, enabling efficient and structurally
coherent pruning. The default strategy, referred to as full sharing, applies a single
pruning mask across key components of the model, including the patch embedding
layer, positional embeddings, attention outputs, FFN outputs.
Full sharing ensures that once a dimension is pruned in one component, it is
consistently removed across all subsequent layers, aligning with the architecture’s
residual connections. This strategy achieves significant parameter reduction and
computational savings while maintaining structural consistency. However, it re-
duces pruning granularity, as pruning a dimension impacts all layers sharing the
mask. Despite this limitation, full sharing is the default approach due to its
balance between efficiency and simplicity, making it ideal for resource-constrained
environments like nano-drones.

Moreover the optimization process seeks to balance model pruning with task
performance, formulated as a combined objective that minimizes two types of
losses: the task-specific loss, denoted Ltask, and a regularization term, Lcost, which
induces sparsity by encouraging the model to prune less important components.
The objective function can be expressed as [17]:

min
W,S

Ltask(W ; S) + λLcost(S),

where W represents the model’s weights, S is a set of binary masks applied to
specific structures, and λ is a hyperparameter that plays a critical role in balancing
the two loss components. Each component has a distinct purpose: Ltask measures
the model’s accuracy on the primary task, while Lcost guides the pruning process
to improve efficiency.

The hyperparameter λ serves as a weighting factor for the sparsity-inducing regu-
larization term Lcost(S). This weight fundamentally influences how the optimization

32

Methodology

balances task accuracy against model sparsity, acting as a control mechanism for
the pruning process.

When λ is set to a high value, the regularization term Lcost(S) gains more
influence relative to Ltask, shifting the optimization’s focus toward achieving greater
sparsity. In this case, the model aggressively prunes components with lower impor-
tance scores, even if it may slightly impact task accuracy. The high emphasis on
regularization leads to a more compact model with reduced computational demands,
making it suitable for deployment in environments with very limited resources.
However, if λ is set too high, the model may end up pruning critical components,
leading to a drop in accuracy and potentially compromising its effectiveness on the
primary task.

On the other hand, a small λ value diminishes the weight of Lcost(S) in the op-
timization process, resulting in a model that prioritizes task accuracy over sparsity.
In this configuration, fewer parameters are pruned, and the model retains more
of its original structure, leading to minimal impact on accuracy. This choice is
often preferable when maintaining high task performance is crucial and there is
flexibility regarding the computational resources available. In scenarios where task
accuracy is of utmost importance, a lower λ helps ensure that pruning does not
sacrifice any vital elements of the model’s structure.

Finding the optimal λ value is essential to balance accuracy with efficiency. In
practice, this value is typically selected through hyperparameter tuning, where
various values of λ are tested, and the model’s performance on validation data
is evaluated. In this way, it is possible to obtain a Pareto front of architectures,
each representing a Pareto-optimal model in terms of size vs accuracy on the
task. By effectively adjusting λ, the optimization process can yield a model that
retains the components necessary for high accuracy while significantly reducing the
computational and memory footprint through selective pruning.

33

Chapter 5

Results

This chapter presents the results of our experiments, focusing on the performance
of the Vision Transformer model in comparison to MobileNet.
We begin by evaluating the ViT models trained on our dataset, assessing their
accuracy and generalization ability in section 5.1. Next, these results are directly
compared to MobileNet’s performance in section 5.2, highlighting differences in
learning efficiency and model robustness under identical conditions.
Finally, section 5.3 examines the impact of compression optimization techniques
applied to the ViT models. This comparative analysis offers insights into the
trade-offs between model complexity, efficiency, and predictive performance.

5.1 Training and evaluations
During the training phase, multiple optimizers and learning rate schedulers were
evaluated to determine the optimal configuration. The optimizers tested included
SGD [33], Adam [34], and AdamW [35], while the learning rate schedulers considered
were ReduceLROnPlateau, CosineAnnealing, and CosineAnnealingWarmRestarts
[36]. The final configuration selected Adam as the optimizer for its high performance
and CosineAnnealingWarmRestarts as the learning rate scheduler. CosineAnneal-
ingWarmRestarts combines cosine annealing with warm restarts, promoting faster
convergence and enhanced performance in deep neural network training.

Early stopping was also implemented to ensure efficient training. This technique
halts the training process if there is no improvement in the validation loss for a
specified number of epochs. In this case, early stopping was configured with a
patience of 10 epochs.

34

Results

Initially, the dataset collected in Manno was used for exploration and analysis.
While the MobileNet model performed well on this dataset, the ViT model showed
significant overfitting. This was evident from the high loss values observed on the
training set and the low loss values on the validation set; however, the behavior
was inconsistent, with a substantial gap between the training and validation losses.
Further confirmation of overfitting was provided by the model’s poor performance
on the test set. Figure 5.1 illustrates the overfitting trend in the loss curves observed
on the Manno dataset.

Figure 5.1: The plot illustrates the aggregated losses of the target variables. The
green line represents the training loss, which exhibits significant overfitting, while
the black line represents the validation loss. The validation loss plateaus, at a far
distance from the training loss, indicating limited generalization.

To address the overfitting issue, several strategies were explored. Initial efforts
involved experimenting with mixed combinations of training and validation data
from the two datasets (Manno and Viganello).
To further expand the training data, the datasets were merged into a single, bal-
anced dataset, however, these adjustments did not result in significant improvement.

Since the validation set was originally created through random sampling from
the training set, and given that each dataset comprised frames extracted from video
recordings, it was suspected that the random selection of frames might allow for
easier interpolation, potentially contributing to overfitting on the training set.

35

Results

To address this, the dataset was reorganized with a new structure for the training
and validation sets. In the final approach, the first contiguous 75% of the dataset
was allocated for training, while the remaining contiguous 25% was used for vali-
dation. This contiguous segmentation minimized frame overlap between the sets,
aiming to reduce overfitting. Additionally, the test set was restructured by merging
test data from both datasets, resulting in a new, combined test set.

This new combination of dataset structure and scheduler resulted in a marked
improvement, as evidenced by the alignment in the training and validation loss
curves, indicating more stable model learning. Figure 5.2 illustrates the updated
loss curves, where both the training and validation losses follow a consistent de-
creasing trend. This marks a significant improvement compared to previous results,
where the validation loss plateaued while the training loss continued to decrease,
indicating overfitting.
With the new configuration, the training loss increased to 0.187, up from 0.01,
reflecting a more balanced learning process. At the same time, the validation
loss showed a substantial 35% improvement, decreasing from 0.58 to 0.3771. This
improvement in validation loss highlights better generalization, suggesting that
the updated setup effectively mitigated overfitting while maintaining strong perfor-
mance.

Figure 5.2: The plot illustrates the aggregated losses of the target variables. The
cosine similar trend is due to the cosineAnnealinghWarmRestart. The green line
represents the training loss while the black line represents the validation loss.

36

Results

The ViT model architecture follows a structured sequence, beginning with a
patch embedding layer, followed by a series of MHSA blocks, and concluding with
a head layer specifically adapted for regression. By stacking multiple MHSA blocks,
the model is able to learn progressively complex and hierarchical representations,
with each block building upon the outputs of the previous one to refine its un-
derstanding of image structure. However, increasing the depth of these blocks
also increases the model’s complexity and parameter count, which can lead to
overcomplexity and potential overfitting, especially on smaller datasets.
To address this issue, we experimented with reducing the number of MHSA blocks
from the original 12, decrementing by two at each stage. This exploration helped
identify an optimal model depth that minimized validation error while keeping
complexity manageable. Through this process, we determined that a configuration
with 4 MHSA blocks achieved the best balance between performance and efficiency.
The parameter count was reduced by 65%, decreasing from 5,499,076 parameters
in the model with 12 blocks to 1,940,164 in the model with 4 blocks. While the
validation loss increased from 0.1673 to 0.4748, the test loss showed a significant
improvement of 16%, decreasing from 1.3189 to 1.1059 when the original dataset
was considered. This highlights the ability of the 4-block configuration to generalize
better despite a modest increase in validation loss, making it an efficient choice for
resource-constrained environments.

This exploration was further enhanced by applying data normalization, scaling
pixel values of the images to a range between 0 and 1, to assess whether the ViT
model would benefit from this preprocessing step.
Based on previous experience and experimentation, normalization had shown nei-
ther positive nor negative effects on the MobileNet model, with its performance
remaining consistent across different training scenarios.
In contrast, normalization produced mixed results for the ViT model. When using
the new dataset structure compared to the original, the training and validation loss
curves showed partial degradation, with losses generally around 1.34, compared
to values below 0.5 in the original dataset. Despite this increase in loss during
training and validation, the test results indicated improved generalization, with
losses ranging between 1.12 and 1.19, whereas the original dataset yielded higher
test losses, peaking at 1.32. This suggests that normalization, combined with the
new dataset structure, enhances the model’s ability to generalize to unseen data.
This finding implies that, although normalization may not directly improve ViT’s
training or validation performance, it enhances the model’s robustness on unseen
data, offering a promising approach for achieving better overall generalization.

The best-performing ViT model was then compared to the MobileNet model,
with both models trained on the same updated dataset version and with the

37

Results

application of data normalization to ensure consistent training conditions. This
normalization, which scaled input values to a standard range, enabled a fair com-
parison that highlighted differences attributable solely to model architecture.
Results from these comparisons indicate that MobileNet’s performance remains
stable regardless of data normalization. In contrast, the ViT model struggles to
learn meaningful features without normalization, while its performance improves sig-
nificantly when normalization is applied, even exceeding the performance achieved
by MobileNet. Figure 5.3 illustrates that, in the absence of data normalization,
MobileNet exhibits significantly lower losses compared to the various ViT config-
urations. However, when normalization is applied, the ViT models outperform
MobileNet in nearly all configurations, demonstrating their superior ability to
leverage normalized data for improved performance.

For each dataset configuration, a trivial model is created to serve as a baseline,
capable of predicting only the mean value for each input. The mean values were
calculated based on the test set of the two configurations, one derived from the
original dataset and the other from the new dataset configuration. This baseline
helps in assessing the models’ ability to capture meaningful features beyond simple
averages. Comparing each model to this baseline allows us to evaluate the extent
to which they are learning relevant patterns in the data rather than merely approx-
imating the mean.

Figure 5.3 presents the results of this analysis, illustrating the performance
trends of the two models across different experimental setups. The bar plot com-
pares the validation loss and test loss for the MobileNet (MNet) model and Vision
Transformer (ViT) models with varying depths. In the notation ViT-N, N refers to
the number of MHSA blocks in the architecture, providing a detailed comparison of
performance across different configurations. In the upper row, the graphs display
results obtained using the original dataset with random sampling for training and
validation, while the lower row shows results with the restructured dataset, using a
contiguous 75/25 split for training and validation, respectively. The left-hand side
of the figure represents results without normalization, whereas the right-hand side
shows results after data normalization within the [0,1] range.

Our experiments revealed notable differences in model performance depending
on the dataset structure and the application of normalization. In the original
dataset with random sampling (top-left graph), there was a clear tendency toward
overfitting, particularly in the ViT architecture.

When the dataset was not normalized, the validation loss remained low for
MobileNet and exceptionally low for ViT. However, the test loss was significantly

38

Results

Figure 5.3: Regression performance comparison between the best ViT and
MobileNet for each output coordinate.

higher, indicating poor generalization. For instance, in the ViT model with 12
MHSA blocks, the validation loss was 0.7978, while the test loss increased to 2.0758,
representing a 160% performance degradation. For ViT models with reduced depths
of 10, 8, 6, and 4 blocks, the corresponding performance deteriorations were 169%,
138%, 109%, and 78%, respectively.
When the dataset was normalized, the results demonstrated similar trends, though
with slightly improved generalization. For the ViT model with 12 MHSA blocks,
the validation loss was 0.1673, but the test loss rose to 1.3189, again indicating
a 688% degradation. For models with 10, 8, 6, and 4 blocks, the performance
degradations were 589%, 425%, 288%, and 132%, respectively.

These observations highlight that, despite normalization improving validation
performance, the significant disparity between validation and test losses across all
depths suggests limited generalization to unseen data.
The large discrepancy between validation and test performance suggests that the
models were learning noise, patterns, and interpolations specific to the training

39

Results

data rather than capturing generalizable features applicable to new samples.
However, with the restructured dataset using a contiguous 75/25 train-validation
split (bottom row), the models demonstrated improved generalization, though this
adjustment alone did not significantly improve the test performance of the models.

The most significant improvement was observed when data normalization was
applied, showed in the bottom-right bar plot. Normalizing the data to the [0,1]
range led to a substantial enhancement in the performance of the ViT architecture,
allowing it to generalize far more effectively. The ViT models trained on normalized
data with the updated dataset structure outperformed the MobileNet model, partic-
ularly in test performance. For MobileNet, the validation loss was 1.4617, while the
test loss decreased slightly to 1.2752, indicating stable but modest generalization.
In contrast, the ViT model with 12 MHSA blocks achieved a validation loss of
1.3736 and an even lower test loss of 1.1959, reflecting a 13% improvement in
performance. Similarly, for ViT models with reduced depths of 10, 8, 6, and 4
blocks, the corresponding performance improvements were 12.6%, 13%, 13%, and
14%, respectively.
Notably, the ViT models consistently achieved test losses that were lower than
their validation losses, a strong indicator of robust generalization. These results
demonstrate that normalization not only reduced overfitting but also enabled the
ViT models to extract more meaningful patterns from the data, particularly when
compared to the MobileNet model. Notably, the best-performing ViT model, ViT-4,
outperformed MobileNet by 11.8%, further underscoring its superiority in terms of
generalization and performance. This highlights the significant advantage of ViT
architectures in effectively leveraging preprocessing techniques such as normaliza-
tion to enhance both accuracy and generalization, even in shallower configurations.

In the end, the trivial model closely matched the performance of both models
when trained on non-normalized datasets, indicating that, without proper pre-
processing, the models struggled to learn meaningful features. However, once
normalization was applied, the trivial model’s performance fell significantly below
that of the ViT and MobileNet models, underscoring the importance of dataset
structure and preprocessing for effective learning in our HPE task.

5.2 Comparisons between Mobilenet and ViT
Both models were trained on the same dataset to ensure consistent experimental
conditions. The primary metric for evaluating model performance was the Mean
Absolute Error (MAE) for each of the four coordinate variables (X , Y , Z, ϕ), as

40

Results

well as the aggregated MAE across all target variables.
To provide a detailed view of model performance, Table 5.1 presents the regression
results for each of the four output variables (X , Y , Z, ϕ), comparing the best-
performing ViT model (configured with a depth of 4 blocks) against the MobileNet
model.

Table 5.1: MobileNet vs ViT results

Network loss MAE
X Y Z Φ SUM

MNet Validation 0.4352 0.3019 0.2146 0.5093 1.4617
ViT Validation 0.3867 0.262 0.1648 0.503 1.3151
ViT improvements
with respect to MNet +14.8% +13.21% +23.2% +1.23% +10%
MNet Test 0.3269 0.1993 0.2647 0.4653 1.2752
ViT Test 0.3088 0.1677 0.1861 0.4588 1.1214
ViT improvements
with respect to MNet +5.53% +15.85% +29.69% +1.4% +12%

The results show that the ViT model outperformed MobileNet across all four
output variables, achieving approximately a 10% improvement in validation MAE
and a 12% improvement in test MAE. The performance gap was particularly notable
in the test set, highlighting the ViT’s superior generalization ability compared to
MobileNet.

Results of our experiments, shown in Figure 5.4, indicate that the ViT models
consistently outperformed MobileNet in terms of MAE across all four output vari-
ables. Data normalization proved to be a critical factor, significantly enhancing
model performance by reducing overfitting and improving generalization. Due to
its multi-head attention mechanism, the ViT model was able to learn more complex
representations, achieving a 10-12% improvement over MobileNet, establishing
it as the more suitable model for our task and preparing it for the next step,
i.e. pruning. Additionally, the trivial model provided insights into the models’
capacities, confirming that, without proper preprocessing, both models struggled
to capture meaningful features.

41

Results

Figure 5.4: Summary comparisons between the selected ViT architecture against
the MobileNet.

5.3 Pruning
Ultimately, the ViT model which demonstrated superior performance compared
to MobileNet is selected for a pruning process to optimize its complexity and
computational requirements while preserving or even enhancing its performance.
This stage of the work focuses on identifying the most effective pruning strategies
to achieve an optimal balance between model accuracy and efficiency, a balance
that is essential for deployment in resource-constrained environments.

This portion of the research was conducted using the PLiNIO library [37], which
provides a comprehensive suite of pre-built components designed for the develop-
ment and evaluation of various pruning strategies. In this study, we focused on
structured pruning. Our pruning approach employed a training algorithm that
incorporates binary, learnable masks. Specifically, this algorithm introduces a
binary mask importance score, S, into the standard weight matrix of prunable
weights, W , enabling the model to identify which weights can be pruned [17].

In this study, a threshold value of 0.5 was applied during the structured pruning
process. Importance scores were assigned to each mask, and components with
scores greater than or equal to 0.5 were retained, as they were deemed essential
to the model’s performance. Conversely, components with scores below 0.5 were
pruned by updating their masks to zero, effectively reducing the active parameters
and simplifying the model architecture.

42

Results

This threshold-based approach enables selective pruning of less important weights,
resulting in a more efficient model with fewer parameters while preserving its
learning capacity and performance. By pruning weights based on their relative
importance, this method optimizes the model’s structure, potentially enhancing its
speed and reducing memory usage without significantly affecting accuracy.

To effectively optimize the two distinct loss functions involved in the pruning
process, task loss and weight loss, two separate optimizers were utilized. These two
optimizers worked on different masks, enabling each loss to independently guide
the optimization of its respective objective. The final model optimization combined
these two losses into an aggregated loss function, allowing precise control over both
model accuracy and the degree of pruning.

A key factor in balancing these two losses is the hyparameter λ, which modu-
lates the relative importance of the weight loss during training. The λ parameter
effectively scales the weight loss to bring its magnitude in line with the task loss,
preventing one loss from overpowering the optimization process. This scaling is
essential, as the value of λ directly impacts the level of regularization applied to
the weights, thereby influencing the extent of pruning. By adjusting λ, we can
control the trade-off between model sparsity and task performance: larger values
lead to more aggressive pruning, while smaller values retain a greater number of
model parameters.

The pruning procedure was applied to the best-performing model identified
in prior experiments, with adjustments to both the learning rate for the pruning
optimizer and the regularization strength λ. The learning rate was set to 1e-5,
while λ was varied across a range from 1e-3 to 1e-9 to explore different pruning
intensities
Figure 5.5 presents the Pareto curve containing the pruned models, illustrating
how variations in the λ parameter impact the trade-off between model size and
performance.
This curve visually represents the balance between task loss and model complexity
quantified in terms of number of parameters. By modifying λ, we observe the
model’s behavior under different regularization strengths—higher λ values result
in more aggressive pruning with reduced task loss, while lower values retain more
parameters at the expense of reduced sparsity. Adjusting λ in this way generates
neural networks with varied architectures and performance levels, depending on
the desired trade-off during optimization.

For example, with a regularization strength of λ = 1e-3, the pruning process was
highly aggressive, resulting in an approximately 99% reduction in the number of

43

Results

parameters. However, this level of pruning led to a considerable decrease in model
performance, with an aggregated MAE of 3.7, as it removed weights essential for
the model’s ability to generalize effectively. Conversely, when λ was set to 1e-9,
the pruning process was much more conservative, preserving a greater number of
parameters around 800K and retaining more of the model’s original performance
with an aggregated MAE of 1.72.

From the Pareto analysis, shown in Figure 5.5, several optimal configurations
were identified, offering the optimal balance between accuracy and number of
parameters, with λ = 1e-6 providing the most favorable trade-off between model
sparsity and accuracy. In this range, we achieved a parameter reduction of ap-
proximately 30% with respect to the original model, while incurring only a modest
performance loss of around 14%. This finding demonstrates that, for our task,
a substantial degree of pruning can be applied without significantly impacting
model performance, presenting an efficient solution for reducing computational and
memory overheads.

Figure 5.5: Pareto curve of the pruned models.

44

Chapter 6

Conclusions

This thesis successfully demonstrates the feasibility of optimizing Vision Transformer
(ViT) models for real-time human pose estimation aboard resource-constrained
nano-drones. By focusing on structured pruning techniques and leveraging ad-
vanced optimization strategies, the study addresses the challenges posed by the
limited computational and energy capacities of nano-drones.

The research highlights the importance of tailoring ViT architectures to fit the
constraints of nano-drones, such as a Crazyflie 2.1 equipped with a GAP8 AI deck
for onboard computation. The application of structured pruning, particularly in
Multi-Head Self-Attention (MHSA) and Layer Normalization (LN) components,
achieves significant reductions in computational complexity while maintaining
competitive accuracy. The results showcase a 30% reduction in the number of
model parameters, with only a minimal decrease in predictive performance.
The comparative analysis between ViT and MobileNet emphasizes the potential
of ViTs as a superior alternative for tasks requiring precision and adaptability.
Despite MobileNet’s efficiency, the optimized ViT model outperforms it in terms
of accuracy, demonstrating the transformative impact of structured pruning and
tailored optimization for edge computing.

The study’s contributions extend beyond immediate applications, providing
a robust framework for deploying deep learning models in resource-constrained
environments. This work paves the way for further research into Tiny Transformers
and lightweight model adaptations for other critical drone applications, such as
navigation and environmental monitoring.
In conclusion, this thesis achieves its primary objective of making ViTs viable for
deployment on nano-drones, advancing the state of the art in computer vision and
deep learning for embedded systems.

45

Bibliography

[1] Soren Lenman, Lars Bretzner, and Bjorn Thuresson. «Computer vision based
hand gesture interfaces for human-computer interaction». In: Royal Institute
of Technology, Sweden (2002) (cit. on p. 4).

[2] Bappaditya Debnath, Mary O’brien, Motonori Yamaguchi, and Ardhendu
Behera. «A review of computer vision-based approaches for physical rehabil-
itation and assessment». In: Multimedia Systems 28.1 (2022), pp. 209–239
(cit. on p. 4).

[3] Mikael Svenstrup, Soren Tranberg, Hans Jorgen Andersen, and Thomas Bak.
«Pose estimation and adaptive robot behaviour for human-robot interaction».
In: 2009 IEEE International Conference on Robotics and Automation. IEEE.
2009, pp. 3571–3576 (cit. on p. 4).

[4] Thomas Golda, Tobias Kalb, Arne Schumann, and Jürgen Beyerer. «Human
pose estimation for real-world crowded scenarios». In: 2019 16th IEEE inter-
national conference on advanced video and signal based surveillance (AVSS).
IEEE. 2019, pp. 1–8 (cit. on p. 4).

[5] Daniele Palossi, Nicky Zimmerman, Alessio Burrello, Francesco Conti, Hanna
Müller, Luca Maria Gambardella, Luca Benini, Alessandro Giusti, and Jérôme
Guzzi. «Fully Onboard AI-powered Human-Drone Pose Estimation on Ultra-
low Power Autonomous FlyingNano-UAVs». In: (2021). arXiv: 2103.10873
[cs.RO]. url: https://arxiv.org/abs/2103.10873 (cit. on pp. 5, 21).

[6] Nikolai Smolyanskiy, Alexey Kamenev, Jeffrey Smith, and Stan Birchfield.
«Toward low-flying autonomous MAV trail navigation using deep neural
networks for environmental awareness». In: 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE. 2017, pp. 4241–
4247 (cit. on p. 5).

[7] Inkyu Sa, Zetao Chen, Marija Popović, Raghav Khanna, Frank Liebisch, Juan
Nieto, and Roland Siegwart. «weednet: Dense semantic weed classification
using multispectral images and mav for smart farming». In: IEEE robotics
and automation letters 3.1 (2017), pp. 588–595 (cit. on p. 5).

46

https://arxiv.org/abs/2103.10873
https://arxiv.org/abs/2103.10873
https://arxiv.org/abs/2103.10873

BIBLIOGRAPHY

[8] Daniele Palossi, Antonio Loquercio, Francesco Conti, Eric Flamand, Davide
Scaramuzza, and Luca Benini. «A 64-mw dnn-based visual navigation engine
for autonomous nano-drones». In: IEEE Internet of Things Journal 6.5 (2019),
pp. 8357–8371 (cit. on p. 5).

[9] Robert J Wood, Benjamin Finio, Michael Karpelson, Kevin Ma, Nestor O
Pérez-Arancibia, Pratheev S Sreetharan, Hiro Tanaka, and John P Whitney.
«Progress on “pico” air vehicles». In: Robotics Research: The 15th International
Symposium ISRR. Springer. 2017, pp. 3–19 (cit. on p. 5).

[10] Beatrice Alessandra Motetti, Luca Crupi, Mustafa Omer Mohammed Elamin
Elshaigi, Matteo Risso, Daniele Jahier Pagliari, Daniele Palossi, and Alessio
Burrello. «Adaptive Deep Learning for Efficient Visual Pose Estimation
Aboard Ultra-Low-Power Nano-Drones». In: 2024 Design, Automation & Test
in Europe Conference & Exhibition (DATE). 2024, pp. 1–6. doi: 10.23919/
DATE58400.2024.10546577 (cit. on p. 6).

[11] Iman Ostovar. «Nano-Drones: Enabling Indoor Collision Avoidance With a
Miniaturized Multi-Zone Time of Flight Sensor». PhD thesis. Politecnico di
Torino, 2022 (cit. on p. 6).

[12] S Karam, F Nex, O Karlsson, J Rydell, E Bilock, M Tulldahl, M Holmberg,
and N Kerle. «Micro and macro quadcopter drones for indoor mapping to
support disaster management». In: ISPRS Annals of the Photogrammetry,
Remote Sensing and Spatial Information Sciences 1 (2022), pp. 203–210 (cit.
on p. 6).

[13] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You
Need. 2023. arXiv: 1706.03762 [cs.CL]. url: https://arxiv.org/abs/
1706.03762 (cit. on pp. 8, 12).

[14] Alexey Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers
for Image Recognition at Scale. 2021. arXiv: 2010.11929 [cs.CV]. url:
https://arxiv.org/abs/2010.11929 (cit. on p. 13).

[15] Yuqiao Liu, Yanan Sun, Bing Xue, Mengjie Zhang, Gary G Yen, and Kay
Chen Tan. «A survey on evolutionary neural architecture search». In: IEEE
transactions on neural networks and learning systems 34.2 (2021), pp. 550–570
(cit. on pp. 14, 15).

[16] Zhu Liao, Victor Quétu, Van-Tam Nguyen, and Enzo Tartaglione. «Can
Unstructured Pruning Reduce the Depth in Deep Neural Networks?» In:
Proceedings of the IEEE/CVF International Conference on Computer Vision.
2023, pp. 1402–1406 (cit. on p. 17).

47

https://doi.org/10.23919/DATE58400.2024.10546577
https://doi.org/10.23919/DATE58400.2024.10546577
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929

BIBLIOGRAPHY

[17] Leonardo Tredese. «Structured Pruning of Vision Transformers at Training
Time». Master’s thesis. Politecnico di Torino, 2023 (cit. on pp. 17, 31, 32,
42).

[18] Hengyi Li and Lin Meng. «Hardware-aware approach to deep neural network
optimization». In: Neurocomputing 559 (2023), p. 126808 (cit. on p. 17).

[19] Alexander Toshev and Christian Szegedy. «Deeppose: Human pose estimation
via deep neural networks». In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2014, pp. 1653–1660 (cit. on p. 18).

[20] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. «Realtime multi-
person 2d pose estimation using part affinity fields». In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2017, pp. 7291–
7299 (cit. on p. 19).

[21] Ginés Hidalgo Martınez. «Openpose: Whole-body pose estimation». PhD
thesis. Carnegie Mellon University Pittsburgh, PA, USA, 2019 (cit. on p. 19).

[22] Rıza Alp Güler, Natalia Neverova, and Iasonas Kokkinos. «Densepose: Dense
human pose estimation in the wild». In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2018, pp. 7297–7306 (cit. on
p. 20).

[23] Riza Alp Guler and Iasonas Kokkinos. «Holopose: Holistic 3d human re-
construction in-the-wild». In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 2019, pp. 10884–10894 (cit. on p. 20).

[24] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. «Deep high-resolution
representation learning for human pose estimation». In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 2019,
pp. 5693–5703 (cit. on p. 20).

[25] Elia Cereda, Luca Crupi, Matteo Risso, Alessio Burrello, Luca Benini, Alessan-
dro Giusti, D Jahier Pagliari, and Daniele Palossi. «Deep neural network
architecture search for accurate visual pose estimation aboard nano-uavs». In:
2023 IEEE International Conference on Robotics and Automation (ICRA).
IEEE. 2023, pp. 6065–6071 (cit. on p. 21).

[26] Lorenzo Lamberti, Vlad Niculescu, Michał Barcis, Lorenzo Bellone, Enrico
Natalizio, Luca Benini, and Daniele Palossi. Tiny-PULP-Dronets: Squeez-
ing Neural Networks for Faster and Lighter Inference on Multi-Tasking Au-
tonomous Nano-Drones. 2024. arXiv: 2407.02405 [cs.RO]. url: https:
//arxiv.org/abs/2407.02405 (cit. on p. 21).

[27] Feng Zhang, Xiatian Zhu, and Mao Ye. «Fast human pose estimation». In:
Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 2019, pp. 3517–3526 (cit. on p. 22).

48

https://arxiv.org/abs/2407.02405
https://arxiv.org/abs/2407.02405
https://arxiv.org/abs/2407.02405

BIBLIOGRAPHY

[28] Iaroslav Melekhov, Juha Ylioinas, Juho Kannala, and Esa Rahtu. «Image-
based localization using hourglass networks». In: Proceedings of the IEEE
international conference on computer vision workshops. 2017, pp. 879–886
(cit. on p. 22).

[29] Beatrice Alessandra Motetti, Luca Crupi, Mustafa Omer Mohammed Elamin
Elshaigi, Matteo Risso, Daniele Jahier Pagliari, Daniele Palossi, and Alessio
Burrello. «Adaptive deep learning for efficient visual pose estimation aboard
ultra-low-power nano-drones». In: 2024 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE. 2024, pp. 1–6 (cit. on p. 22).

[30] Yehui Tang, Kai Han, Yunhe Wang, Chang Xu, Jianyuan Guo, Chao Xu,
and Dacheng Tao. «Patch slimming for efficient vision transformers». In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2022, pp. 12165–12174 (cit. on pp. 22, 23).

[31] Mingjian Zhu, Yehui Tang, and Kai Han. «Vision transformer pruning». In:
arXiv preprint arXiv:2104.08500 (2021) (cit. on p. 23).

[32] Asmaul Hosna, Ethel Merry, Jigmey Gyalmo, Zulfikar Alom, Zeyar Aung,
and Mohammad Abdul Azim. «Transfer learning: a friendly introduction».
In: Journal of Big Data 9.1 (2022), p. 102 (cit. on p. 29).

[33] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. «On the
importance of initialization and momentum in deep learning». In: Interna-
tional conference on machine learning. PMLR. 2013, pp. 1139–1147 (cit. on
p. 34).

[34] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Opti-
mization. 2017. arXiv: 1412.6980 [cs.LG]. url: https://arxiv.org/abs/
1412.6980 (cit. on p. 34).

[35] Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization.
2019. arXiv: 1711.05101 [cs.LG]. url: https://arxiv.org/abs/1711.
05101 (cit. on p. 34).

[36] Ilya Loshchilov and Frank Hutter. «Sgdr: Stochastic gradient descent with
warm restarts». In: arXiv preprint arXiv:1608.03983 (2016) (cit. on p. 34).

[37] Daniele Jahier Pagliari, Matteo Risso, Beatrice Alessandra Motetti, and
Alessio Burrello. PLiNIO: A User-Friendly Library of Gradient-based Methods
for Complexity-aware DNN Optimization. 2023. arXiv: 2307.09488 [cs.LG].
url: https://arxiv.org/abs/2307.09488 (cit. on p. 42).

49

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/2307.09488
https://arxiv.org/abs/2307.09488

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Background
	Human-to-drone pose estimation
	Nano-Drones
	Transformers
	Transformer Architecture
	Vision Transformers

	Network Optimization
	Neural Architecture Search
	Pruning

	Related works
	Human Pose Estimation Models
	Efficient HPE models
	Efficient Vision Transformers

	Methodology
	Visual Pose Estimation benchmarks
	Vision Transformer Baselines
	Vision Transformer Optimization

	Results
	Training and evaluations
	Comparisons between Mobilenet and ViT
	Pruning

	Conclusions
	Bibliography

