

Resilient Task Sequence Planning for Industrial

Mobile Robots

MECHATRONIC ENGINEERING

Software Technologies for Automation

Master’s Degree Thesis
Academic Year 2023-2024

Supervisor:

Prof. DARIO ANTONELLI

Candidate:

HUSSEIN ZEIN ALDEEN

2

Table of Contents

Abstract .. 9

Chapter 1: Introduction ... 11

1.1 Background ... 11

1.2 Problem Statement ... 13

1.3 Thesis Objectives .. 13

1.4 Research Question and Hypothesis .. 14

1.5 Scope of the Study .. 15

1.5.1 Simulated Environment and Constraints .. 15

1.5.2 Focus on Q-Learning and Hyperparameter Tuning 16

1.6 Significance of the Study.. 17

Chapter 2: Related Work ... 18

Chapter 3: Contribution .. 27

Chapter 4: Hypothesis and Expected Impact... 29

4.1 Hypothesis ... 29

4.2 Expected Impact ... 30

Chapter 5: Environmental Setup .. 32

5.1 Markov Decision Processes (MDPs) ... 32

5.1.1 Stochastic Transitions in Markov Decision Processes (MDPs) 32

5.2 Spyder Platform: .. 33

5.3 Setting up the environment and preliminary steps 33

5.4 Python Libraries Used ... 35

5.5 MiR100 .. 36

5.6 Robot Operating System (ROS) .. 37

3

5.7 ROS Architecture ... 38

Chapter 6: Methodology .. 40

6.1 Q-Learning in Reinforcement Learning .. 40

6.1.1 Q-learning: Foundations and Core Concepts .. 40

6.1.2 Steps in Implementing Q-learning .. 41

6.1.3 Advantages and Limitations of Q-learning ... 44

6.1.4 Practical Implementation in the Industrial MDP Environment 44

6.2 SARSA in Reinforcement Learning ... 45

6.2.1 Foundations of SARSA... 46

6.2.2 Steps in Implementing SARSA .. 46

6.2.3 Comparison of SARSA and Q-learning .. 49

6.2.4 Application of SARSA in the Industrial MDP Environment...................... 49

6.2.5 Advantages and Limitations of SARSA ... 51

6.3 Dyna-Q in Reinforcement Learning ... 51

6.3.1 Foundations of Dyna-Q... 51

6.3.2 Steps in Implementing Dyna-Q .. 52

6.3.3 Limitations of Dyna-Q .. 55

6.3.4 Application of Dyna-Q in the Navigation MDP Environment 55

6.4 Sample-Based Planning in Reinforcement Learning 57

6.4.1 Foundations of Sample-Based Planning ... 57

6.4.2 Steps in Implementing Sample-Based Planning ... 58

6.4.3 Advantages and Limitations of Sample-Based Planning 61

6.4.4 Application of Sample-Based Planning in the Industrial MDP Environment

 ... 61

6.5 Hyperparameters ... 63

4

6.6 Exploration and Exploitation in Reinforcement Learning 64

6.6.1 The Exploration-Exploitation Dilemma ... 64

6.6.2 Epsilon-Greedy Strategy: Mechanism and Implementation 65

6.6.3 Exploration Techniques Beyond Epsilon-Greedy 66

6.6.4 Implications of Exploration and Exploitation on Learning Efficiency 67

6.6.5 Experimental Evaluation and Hyperparameter Tuning for Optimal Balance .

 ... 67

6.6.6 Practical Implications and Future Considerations 68

Chapter 7: Implementation.. 69

7.1 Navigation to Free Position Environment .. 69

7.1.1 States and Transitions ... 69

7.1.2 Flexibility in Navigation ... 71

7.2 Task Sequence Environment ... 72

7.2.1 Worst-Case Scenario States and Transitions .. 76

7.2.2 Complete List of States and Actions in Task Sequence Environment 77

Chapter 8: Simulation Results ... 79

8.1 Navigation to Free Position Environment .. 79

8.2 Task Sequence Environment ... 83

8.3 Reasons of Disturbances .. 89

8.3.1 Imbalance Between Rewards and Penalties .. 89

8.3.2 Slow Convergence .. 90

Chapter 9: Conclusion and Future Work .. 91

9.1 Key Findings: .. 91

9.2 Future Work: Integrating Deep Q-Networks (DQN) 92

9.3 Benefits of DQN:... 92

5

9.4 Potential Applications of DQN in Industrial Settings: 93

Bibliography .. 94

6

List of Figures

Figure 1 Branches of Machine Learning [2] ... 11

Figure 2 Agent and Environment [2] .. 12

Figure 3 Robotino and Targets [4] .. 18

Figure 4 The robot has to navigate through the entire environment to reach the marked goal

[6]. ... 19

Figure 5 Target position of simulation experiment [7] ... 20

Figure 6 Path optimization learning process [7] ... 21

Figure 7 Virtual environment with obstacle and found path [8] 22

Figure 8 Episode via steps for Q-learning algorithm [8] .. 23

Figure 9 (a) a BWIBot (b) a simulated BWIBot (c) simulation environment [9]............. 24

Figure 10 Intralogistics auxiliary processes – model 3D [10] .. 25

Figure 11 Intralogistics auxiliary processes – simulation model [10] 25

Figure 12 The virtual environment built on Webots: it consists of a table, a UR3e cobot

(left) with a two-finger gripper, an RGBD camera (right) and the objects to be manipulated

by the robot [11].. 26

Figure 13 Spyder Platform .. 34

Figure 14 MiR100 Mobile Robot [21] .. 36

Figure 15 MiR100 Live Map .. 37

Figure 16 ROS Architecture [23] .. 39

Figure 17 Q-learning Flowchart [25] .. 43

Figure 18 Q-learning Training .. 45

Figure 19 SARSA Flowchart [25] ... 48

Figure 20 SARSA Training .. 50

Figure 21 Dyna-Q Flowchart [25] .. 54

Figure 22 Dyna-Q Training Loop ... 56

Figure 23 Sample-based Planning Flowchart [25].. 60

Figure 24 Generating Samples on python ... 63

Figure 25 Learning Rate and Discount Factor .. 63

7

Figure 26 Epsilon-greedy Strategy ... 65

Figure 27 Epsilon Decay Rate .. 65

Figure 28 Hyperparameters... 68

Figure 29 Hyperparameters Tuning .. 68

Figure 30 MDP Navigation Environment ... 70

Figure 31 Rewards Table and Stochastic Transitions for Navigation Environment 71

Figure 32 Task Environment in The Laboratory .. 72

Figure 33 MDP for Original Task Sequence .. 74

Figure 34 Markov Decision Process for Robot Task Management and Quality Control . 75

Figure 35 Rewards and Stochastic Transitions for Task Sequence Environment 76

Figure 36 MDP Navigation Environment ... 79

Figure 37 Cumulative Reward Over 500 Episodes for Dyna-Q Algorithm 80

Figure 38 Cumulative Reward Over 1000 Episodes for Dyna-Q Algorithm 81

Figure 39 Cumulative Reward Over 50,000 Episodes for Dyna-Q Algorithm 82

Figure 40 Cumulative Reward Over 500 Episodes for Sample-based planning 82

Figure 41 Markov Decision Process for Robot Task Management and Quality Control . 83

Figure 42 Task Sequence Episode vs Cumulative Reward for SARSA Algorithm 84

Figure 43 Task Sequence Episode vs Cumulative Reward for Q-learning Algorithm 85

Figure 44 Episode vs Cumulative Reward for Different Hyperparameters in SARSA 87

Figure 45 Episode vs Cumulative Reward for Different Hyperparameters in Q-learning 88

8

 List of Tables

Table 1 Optimal Policy for Free Navigation MDP ... 80

Table 2 Optimal Policy For Task Sequence MDP .. 86

9

Abstract

Robots play a crucial role in modern industrial environments, where they perform various

tasks such as transporting components, assembling products, and conducting quality

checks. Ensuring these robots operate efficiently in uncertain and dynamic conditions

remains a significant challenge. This thesis explores the use of Q-learning, a type of

reinforcement learning, to develop a robust decision-making framework for robots

operating in such environments. The proposed system models the robot’s tasks using a

Markov Decision Process (MDP), where the robot navigates through multiple states, such

as charging_station, warehouse_kitting, assembly_station, and EOL (End of Line), and

performs actions like moving between locations, assembling parts, and checking product

quality.

A key feature of this project is the incorporation of stochastic transitions, which reflect

real-world uncertainties, such as component mismatches or system failures. This allows

the model to capture unpredictable outcomes, forcing the robot to learn optimal strategies

despite the presence of probabilistic events. The learning process is governed by a Q-table

that is updated iteratively as the robot interacts with its environment, receiving rewards for

positive actions and penalties for undesirable ones. For example, the robot earns rewards

for retrieving parts efficiently, while penalties are imposed for actions like waiting

unnecessarily at idle stations or transporting faulty products.

This research employs an epsilon-greedy policy to balance exploration and exploitation,

ensuring the robot explores various strategies before converging on the optimal policy.

Two sets of hyperparameters are tested: the first set emphasizes long-term rewards by using

a high discount factor (gamma = 0.9), while the second set prioritizes immediate outcomes

with a lower discount factor (gamma = 0.3). The training process is evaluated over multiple

episodes, with cumulative rewards tracked to monitor the system’s learning progress.

The results show that the Q-learning algorithm successfully guides the robot toward an

efficient policy, with the first hyperparameter set delivering superior performance by

10

favoring decisions that maximize rewards over time. The study demonstrates that

reinforcement learning offers a powerful framework for addressing complex decision-

making problems in robotics, especially in environments with uncertain outcomes.

This thesis concludes by suggesting avenues for future work, such as integrating Deep Q-

Networks (DQN) to handle larger and more complex environments, deploying multi-agent

systems to enable collaboration between multiple robots, and testing the model in real-

world industrial settings. These improvements could further enhance the robot’s ability to

adapt and perform efficiently in dynamic environment.

11

Chapter 1: Introduction

1.1 Background

In today’s rapidly evolving industrial landscape, robotics plays a crucial role in enhancing

efficiency, reducing costs, and improving production quality. From warehouses to

assembly lines, robots perform essential tasks such as transporting components, assembling

products, and conducting quality inspections. However, as the complexity of these

environments increases, so does the challenge of ensuring that robots operate smoothly and

make intelligent decisions without constant human intervention. Traditional rule-based

systems often struggle to adapt to unpredictable situations, such as sudden equipment

failures or mismatches in assembly parts. This limitation motivates the search for more

flexible, adaptive solutions, one of which is reinforcement learning (RL) [1].

Figure 1 Branches of Machine Learning [2]

12

Reinforcement learning is a type of machine learning that allows an agent (in this case, a

robot) to learn optimal behavior by interacting with its environment. Unlike supervised

learning, which requires labeled data, reinforcement learning enables the agent to explore

actions, receive feedback in the form of rewards or penalties, and gradually improve its

performance. Q-learning, a widely used RL algorithm, is particularly effective for

environments modeled as Markov Decision Processes (MDPs), where decisions depend

on both the current state and the future rewards associated with different actions [3].

Figure 2 Agent and Environment [2]

The focus of this thesis is to explore how Q-learning can be applied to train a robot to

navigate through a simulated industrial environment and perform essential tasks

efficiently. The robot operates across multiple states such as charging_station,

warehouse_kitting, and EOL (End of Line) and must select appropriate actions to achieve

its objectives. The robot’s actions include moving between locations, retrieving and

assembling components, and conducting quality inspections. Importantly, this environment

introduces stochastic transitions, meaning that some state changes are unpredictable,

reflecting real-world uncertainties such as equipment malfunctions or incorrect part

deliveries.

13

1.2 Problem Statement

Robotic systems often encounter situations where rigid, pre-programmed behavior limits

their ability to respond effectively to dynamic environments. In industrial settings,

conditions can change unpredictably due to sensor errors, component mismatches, or

equipment failures. Current systems that rely on fixed decision rules struggle to adapt to

such challenges. As a result, there is a need for robots that can learn from experience and

develop policies that allow them to make context-appropriate decisions in uncertain

environments.

The problem addressed by this thesis is: How can Q-learning be applied to develop a

robust decision-making policy for a robot operating in a dynamic, stochastic

industrial environment?

This problem is crucial because robots need to operate autonomously while handling

unexpected events efficiently. For example, when a mismatch occurs during assembly, the

robot should decide whether to replace the part immediately or recheck the components.

Similarly, in case of an equipment failure, the robot must determine whether to continue

working or switch to maintenance tasks. Without a flexible, data-driven policy, such

decisions become difficult to manage effectively.

1.3 Thesis Objectives

The main objectives of this research focus on developing and implementing a

reinforcement learning framework for navigating mobile robots in industrial settings. This

involves enabling robots to identify free positions, avoid human-occupied spaces, and

respond to potential worst-case scenarios. The specific objectives are:

14

● Objective 1: Develop a Resilient RL-based Navigation Model

To create an RL model that allows mobile robots to identify and navigate to free

positions while avoiding areas occupied by humans or other obstructions. This

includes simulating environments where the robot learns optimal paths and

behaviors through rewards for successful navigation and penalties for undesirable

actions.

● Objective 2: Integrate Worst-Case Scenario Training

Implement worst-case scenario simulations, including unexpected obstacles,

operational delays, and system malfunctions, to train robots for enhanced

adaptability. These scenarios aim to improve the robot’s ability to respond

effectively to challenging conditions, helping it to recover or adapt to maintain task

efficiency and safety.

● Objective 3: Optimize and Test RL Algorithms in MDP Environments

Explore various RL algorithms, including Q-learning, SARSA, and Dyna-Q, to

identify the most suitable approach for achieving stable, efficient learning within

an MDP framework. The focus will be on optimizing algorithm parameters to

achieve high convergence rates, stability, and cumulative reward maximization.

● Objective 4: Establish a Robust Framework for Continuous Learning and

Adaptation

To build an RL framework that ensures continuous adaptation in dynamic industrial

settings. This objective emphasizes designing a system that allows robots to

continually update and refine their strategies as they encounter new challenges.

1.4 Research Question and Hypothesis

Based on the problem statement, the research question driving this thesis is:

How can Q-learning be used to train a robot to navigate and perform tasks optimally

in a dynamic, stochastic industrial environment?

15

To address this question, the following hypothesis is proposed:

● H1: A Q-learning-based policy will allow the robot to improve its performance

over time, selecting actions that maximize cumulative rewards in both predictable

and unpredictable scenarios.

● H2: A higher discount factor (gamma) will result in better long-term performance,

while a lower discount factor will prioritize short-term outcomes but may reduce

overall efficiency.

1.5 Scope of the Study

This research focuses on the development, simulation, and evaluation of a reinforcement

learning (RL)-based framework within a controlled yet dynamic environment that emulates

an industrial setup. Specifically, it addresses the implementation of a Q-learning-based

policy for a mobile robot performing task sequences across various operational states.

These states include charging_station, warehouse_kitting, assembly_station,

quality_control, and end-of-line (EOL), representing typical stages of an industrial

workflow.

Each state in this environment requires a set of actions that the robot can perform, such as

retrieving parts, moving between designated locations, or conducting quality checks on

assembled products. The robot’s actions are designed to simulate the decision-making

processes required for adaptive task execution. The environment incorporates stochastic

transitions to simulate real-world uncertainties, including unexpected part mismatches,

component delays, equipment malfunctions, and other disruptions. These stochastic

elements introduce variability, making it possible to assess the Q-learning policy’s

resilience and adaptability to real-world operational conditions, even though it is contained

within a simulated environment.

1.5.1 Simulated Environment and Constraints

The industrial environment is entirely simulated, offering a virtual testing ground that

allows for control over various parameters. This setup provides the flexibility to conduct

numerous trials without the costs, logistical challenges, and potential risks associated with

16

physical deployment. By controlling variables in a simulated setting, the study is able to

explore the Q-learning algorithm's behavior across a range of scenarios that would be

costly and complex to replicate in a real-world setup.

While this approach allows for extensive exploration, it has limitations. The absence of

real-world sensory data and mechanical feedback means that certain physical factors (e.g.,

sensor noise, mechanical wear, spatial constraints) are not accounted for. Consequently,

the trained policy’s performance may differ when deployed in a real-world environment.

Future work may bridge this gap by testing the policy on actual robots, incorporating

feedback from physical sensors, and accounting for physical constraints.

1.5.2 Focus on Q-Learning and Hyperparameter Tuning

This research is restricted to Q-learning, an effective yet relatively straightforward RL

algorithm that is suitable for environments modeled as Markov Decision Processes

(MDPs). Q-learning’s suitability lies in its ability to learn an optimal policy through

reward maximization without requiring a model of the environment, making it a practical

choice for the simulated setup. In this study, Q-learning is extensively tested and optimized

through hyperparameter tuning, with particular focus on learning rate, discount factor, and

exploration-exploitation strategies to achieve a policy that maximizes cumulative rewards

in both regular and worst-case scenarios.

The research, however, does not extend to other RL algorithms, such as advanced deep

learning approaches like Deep Q-Networks (DQN), which could potentially enhance

learning efficiency and adaptability in larger or more complex environments. While the

current study provides a solid foundation with Q-learning, future research could involve

benchmarking other RL methods, comparing their performance, and potentially integrating

these methods for hybrid or multi-algorithmic strategies that enhance task adaptability.
Although physical deployment and real-time testing are beyond the current scope, this

research provides a framework that can serve as a stepping stone for real-world

application and further algorithmic development. The insights gained from this study

could be instrumental in adapting the trained policy for an actual industrial robot, where

physical complexities and real-time data processing are necessary. Moreover, this study’s

17

focus on Q-learning-based policy optimization could serve as a reference for future

research aiming to integrate advanced reinforcement learning techniques, such as Deep

Q-Networks (DQN) or Policy Gradient Methods, to enable more efficient learning and

decision-making in highly variable or larger-scale industrial environments. The ultimate

goal of this research is to create a scalable and adaptable RL-based policy for industrial

task automation. By laying the groundwork with a simulated Q-learning framework, this

study sets the stage for future work involving:

● Real-world deployment and validation of the trained policy.

● Integration of physical sensors and actuators for comprehensive feedback and

decision-making.

● Exploration of multi-agent systems where multiple robots collaborate within the

industrial environment.

● Incorporation of more sophisticated algorithms capable of handling higher-

dimensional state spaces, such as deep reinforcement learning techniques.

In summary, this study confines its scope to the development and simulation of a Q-

learning policy within a virtual industrial environment, emphasizing task execution and

adaptability in the presence of stochastic uncertainties. Future work can build on this

foundation to explore more advanced RL algorithms and implement real-world testing,

ultimately advancing the potential for adaptive, resilient robotic systems in dynamic

industrial applications.

1.6 Significance of the Study

The ability to develop adaptive, self-improving robotic systems has significant

implications for industries that rely heavily on automation. A robot capable of learning

from its environment and making optimal decisions can reduce downtime, improve

productivity, and lower operational costs. This study demonstrates how reinforcement

learning can address the limitations of rule-based robotic systems by enabling robots to

adapt to uncertainties. The findings of this research also contribute to the broader field

of robotics and machine learning, offering insights into how Q-learning can be applied

to real-world problems.

18

Chapter 2: Related Work

Various studies have concerned the use of reinforcement learning for robots to move safely

and efficiently. There exist previous works on applications of MDP environment setups for

training robots to navigate through space environments. Some of the exciting research has

illustrated that, especially in the industrial setup, reinforcement learning can effectively

solve dynamic and unpredictable environmental challenges. However, a need for robust

solutions still exists. Research on reinforcement learning-based navigation for mobile

robots has shown RL’s potential for teaching robots to navigate autonomously while

handling uncertainties and obstacles. A significant study on SARSA (λ) and Q-

learning(λ) algorithms, conducted by Altuntaş and İmal, explored how RL algorithms

perform in realistic navigation tasks where robots autonomously avoid obstacles and reach

designated goals. Their study revealed that Q-learning(λ) achieved faster learning rates,

quickly navigating to target locations in simpler environments. However, SARSA (λ)

outperformed Q-learning(λ) in complex scenarios, indicating a more robust

performance due to its on-policy nature, which considers the next action to adjust the Q-

values more optimally. This adaptive quality of SARSA (λ) was particularly valuable in

managing exploration-exploitation challenges, a central issue in RL navigation, by using

eligibility traces to improve learning efficiency and fine-tune actions in real-time [4].

Figure 3 Robotino and Targets [4]

19

Another significant contribution to RL navigation is the Robust Satisficing Markov

Decision Process (RSMDP) framework, which addresses uncertainties within traditional

MDP models. Developed as an improvement over regular MDPs, RSMDPs aim to

balance performance and robustness by introducing a user-defined return target,

avoiding overly conservative or risky policies. This framework is particularly relevant for

industrial setups, where robots frequently encounter unpredictable variables like part

mismatches or sudden failures. The RSMDP framework includes a first-order primal-

dual algorithm for efficient large-scale problem-solving, allowing it to outperform

standard MDP approaches by maximizing returns more consistently under varied

conditions [5].

Moreover, "Safe Reinforcement Learning for Human-Robot Collaboration" paper

highlights the growing integration of robots into human-centric environments, combining

robotic efficiency with human adaptability. Safety is a critical concern, particularly in

dynamic scenarios like autonomous warehouses, where humans and robots share close

physical spaces. Current ISO standards offer safety guidelines by restricting force and

power but fall short in handling dynamic and unstructured environments. Reinforcement

Learning (RL) has emerged as a powerful tool for optimizing robotic behavior in such

settings. However, the simulation-to-reality gap and the potential for unsafe exploration

during training remain significant challenges [6].

Figure 4 The robot has to navigate through the entire environment to reach the marked goal [6].

20

Safe Reinforcement Learning (Safe RL) addresses these issues by embedding safety

measures into the learning process, either by modifying reward structures or incorporating

external safety mechanisms like shielding. Shielding, in particular, has been effective in

preventing unsafe actions during training and deployment, as seen in applications ranging

from autonomous driving to robotic navigation in warehouses. While techniques like

Linear Temporal Logic (LTL) and probabilistic models have demonstrated success in

ensuring safety, they face challenges in scalability and efficiency trade-offs. This research

builds on these advancements by integrating shielding and RL in a modular framework to

improve safety and efficiency in dynamic, real-world HRC applications [6].

Furthermore, Lee and Jeong's 2021 paper on mobile robot path optimization using

reinforcement learning (RL) in warehouse environments introduces a novel application of

Q-Learning, an RL algorithm, for enhancing the pathfinding capabilities of autonomous

robots. As path planning in dynamic and complex environments like warehouses poses

significant challenges, traditional methods struggle with real-time adaptation to obstacles

and changes. Reinforcement learning offers a solution by enabling robots to learn and

optimize their behavior over time based on rewards. This paper builds on previous RL

applications in robotics, particularly in logistics and warehouse settings, contributing to

ongoing efforts to improve autonomous navigation in unpredictable environments [7].

Figure 5 Target position of simulation experiment [7]

21

Figure 6 Path optimization learning process [7]

The research by Lee and Jeong is part of a broader trend exploring RL’s potential in

warehouse robotics, following works such as those by Yu et al. (2020) and Nguyen et al.

(2021), which also focus on path optimization in dynamic environments. While RL shows

great promise, challenges like large state-action spaces, slow learning times, and the need

for real-time decision-making in complex, multi-agent settings remain. Future research

may focus on deep reinforcement learning or multi-agent systems to further optimize robot

performance in warehouses. Lee and Jeong’s work represents an important step toward

addressing these challenges, illustrating the value of RL in improving robot efficiency and

adaptability in real-world applications [7].

22

Reinforcement learning (RL) has emerged as a transformative approach for addressing path

planning challenges in mobile robots, especially in environments where prior knowledge

of the terrain is minimal or nonexistent. Sichkar's work focuses on two popular RL

algorithms—Q-Learning and its modification, Sarsa—comparing their effectiveness in

global path planning within a virtual obstacle-laden environment. Q-Learning's reliance on

maximizing the reward for each state-action pair enables faster convergence and efficient

path optimization, albeit at the cost of increased risk in uncertain environments. In contrast,

Sarsa prioritizes safer trajectories by modifying the reward update mechanism, resulting in

more conservative path selections but requiring longer learning durations [8].

Figure 7 Virtual environment with obstacle and found path [8]

23

Figure 8 Episode via steps for Q-learning algorithm [8]

The study also highlights techniques to enhance RL performance, including Q-value

approximation methods like discretization, radial basis functions (RBF), and clustering.

These methods address scalability issues, enabling RL algorithms to handle larger and

more complex state spaces. The experimental results demonstrate the trade-offs between

the algorithms: while Q-Learning achieves faster convergence with shorter paths, Sarsa

provides safer navigation, avoiding high-risk regions such as simulated cliffs. This work

contributes valuable insights into optimizing RL-based path planning for various real-

world applications, balancing speed and safety based on operational priorities [8].

Task-Motion Planning (TMP) is essential for integrating high-level task planning with low-

level motion planning in robotic systems. TMP algorithms traditionally focus on creating

efficient task plans in discrete spaces and refining them into executable motion plans in

continuous spaces. Jiang et al. propose an innovative framework, TMP-RL, combining

TMP with reinforcement learning (RL) to enhance adaptability in dynamic and uncertain

environments. TMP-RL employs a dual-loop structure: the inner loop generates feasible

24

task-motion plans using symbolic and motion planning, while the outer loop refines these

plans through RL based on execution feedback. This integration enables robots to adapt to

real-world changes, such as varying human interaction, environmental dynamics, and task

complexities, ensuring robust performance over long-term operations [9].

Figure 9 (a) a BWIBot (b) a simulated BWIBot (c) simulation environment [9].

Compared to state-of-the-art methods like PETLON (pure TMP) and PEORL (task

planning with RL), TMP-RL offers superior adaptability and convergence speed. The use

of RL in the outer loop enhances task plan quality iteratively by leveraging environmental

rewards, reducing reliance on extensive motion planning computations. TMP-RL

demonstrated significant improvements in task efficiency and adaptability in simulated and

real-world tests with a service robot. The framework also supports knowledge transfer

between tasks, allowing robots to generalize learned behaviors to new scenarios. This

research advances the field of robotics by seamlessly integrating planning and learning,

making it a promising solution for adaptable and intelligent robotic systems [9].

Moreover, the integration of Logistics 4.0 and Industry 5.0 technologies has transformed

intralogistics processes, focusing on enhancing automation, efficiency, and collaboration.

Pizoń et al. investigate the role of Autonomous Mobile Robots (AMRs) in optimizing

intralogistics for automotive remanufacturing—a sector vital for sustainable manufacturing

and circular economy practices. Remanufacturing processes involve restoring used

automotive parts to like-new condition, and efficient auxiliary logistics, such as tool and

25

material delivery, are critical to maintaining production flow. The study highlights a gap

in best practices for applying advanced logistics technologies to ancillary processes,

emphasizing the role of AMRs in addressing challenges like labor shortages, dynamic task

requirements, and workplace efficiency [10].

Figure 10 Intralogistics auxiliary processes – model 3D [10]

Figure 11 Intralogistics auxiliary processes – simulation model [10]

The authors adopt lean management principles, including Kaizen and 5S methodologies,

to streamline intralogistics in collaboration with AMR deployment. Kaizen facilitates

continuous improvement through iterative adjustments, while 5S ensures workplace

organization and standardization, creating conditions conducive to seamless robot-human

interaction. Simulation-based evaluations demonstrate the potential of AMRs in reducing

disruptions in material handling. However, the study reveals diminishing returns when

scaling AMR numbers, emphasizing the importance of strategic deployment tailored to

specific operational needs. This work underscores the importance of balancing

technological integration with lean principles to enhance productivity and maintain cost

efficiency in industrial logistics [10].

26

Moreover, collaborative robots (cobots) have been increasingly integrated into industrial

environments due to their adaptability and ability to safely coexist with humans in shared

workspaces. Gomes et al. explore the application of reinforcement learning (RL) for

enhancing cobot performance in pick-and-place tasks. The research addresses the

limitations of traditional programming methods in dynamic environments, emphasizing the

role of RL in enabling cobots to adapt to unforeseen changes. The study utilizes deep Q-

learning integrated with convolutional neural networks (CNNs) for processing color and

depth images, allowing cobots to grasp objects outside their training set effectively [11].

Figure 12 The virtual environment built on Webots: it consists of a table, a UR3e cobot (left) with a two-finger

gripper, an RGBD camera (right) and the objects to be manipulated by the robot [11].

The work builds on existing literature that highlights the potential of deep learning in

robotics, particularly for tasks involving vision-based object manipulation. It compares the

efficacy of pre-trained CNN models, such as MobileNet, DenseNet, ResNext, and

MNASNet, for feature extraction in RL frameworks. Simulation and real-world testing

validate the system, achieving a success rate of 89.9% in grasping unfamiliar objects with

MobileNet. This research aligns with advancements in combining RL and computer vision

to enhance cobot flexibility, offering valuable insights for applications in environments

requiring high adaptability and precision [11].

27

Chapter 3: Contribution

This thesis presents a complete framework for using reinforcement learning (RL) in mobile

robot navigation within industrial settings. The framework focuses on both safety and

efficiency, tackling the challenges of navigating areas where humans and machines share

space. The main contributions of this research are detailed below:

● Creation of a New Reinforcement Learning Model for Safe Navigation:

At the heart of this research is a new reinforcement learning model designed

specifically for mobile robot navigation. This model allows robots to find their way

to accessible areas while avoiding spaces occupied by humans. The innovation

comes from using a Q-learning algorithm that has a special reward system. This

system penalizes the robot for getting too close to people and rewards it for taking

safer routes. By including safety in the reward system, the model improves the

robot's decision-making process, allowing it to prioritize human safety while

navigating effectively. This advancement is important for the robotics field, as it

addresses the crucial issue of operating safely in environments with people.

● Testing Through Worst-Case Scenario Simulations:

To ensure the reliability and adaptability of the proposed navigation framework,

several tough simulations were performed. These tests were carefully designed to

challenge the robot’s abilities in extreme situations, such as unexpected obstacles,

sudden changes in the environment, narrow spaces, and equipment failures. By

simulating these difficult conditions, we identified possible failure points in the

robot’s navigation strategy. The results from these simulations helped refine the Q-

learning algorithms, allowing us to add strong optimization methods. This back-

and-forth process not only improved the robot’s adaptability but also enhanced its

safety features, ensuring it can effectively handle real-world challenges.

28

● Optimization of Advanced Reinforcement Learning Algorithms Using

Python:

The reinforcement learning algorithms were developed using Python, a flexible

programming language ideal for machine learning tasks. These algorithms were

fine-tuned using popular libraries such as NumPy, SciPy, Matplotlib, and Pandas.

These tools helped create complex Q-learning algorithms and other advanced RL

methods. Tuning hyperparameters was crucial in this process, focusing on

important settings like learning rate and how the robot balances exploration and

exploitation. By carefully adjusting these factors, we ensured the algorithms

worked efficiently and could handle the worst-case scenarios the robot might face.

This robustness is vital for the reliable performance of mobile robots in changing

and potentially dangerous environments.

In summary, this thesis significantly contributes to mobile robotics by providing a new

framework that enhances both safety and efficiency in robot navigation in industrial areas.

The combination of advanced reinforcement learning techniques, thorough testing through

simulations, and practical implementation shows a complete approach to addressing real-

world challenges in robot-human interactions.

29

Chapter 4: Hypothesis and Expected Impact

4.1 Hypothesis

This research posits that a Q-learning-based policy for task execution in a simulated

industrial environment will demonstrate measurable improvements in adaptability

and efficiency, particularly in the face of stochastic transitions and unexpected disruptions.

The key hypotheses are as follows:

1. Q-learning can train the robot to navigate an industrial task environment

more efficiently than rule-based systems by learning from rewards and penalties

rather than relying on predefined instructions. The model’s ability to adjust based

on cumulative rewards will allow for a more flexible response to unpredictable

situations, such as part mismatches, equipment failures, or sudden changes in task

priority.

2. Hyperparameter optimization (learning rate, discount factor, exploration-

exploitation balance) will significantly impact the efficiency and stability of the

learning process, with optimized parameters leading to faster convergence and a

more resilient task execution policy. This hypothesis suggests that fine-tuning these

parameters will yield a policy that balances exploration with reliable task execution

in industrial settings.

3. Even in a simulated environment, a Q-learning model will demonstrate the

potential for scalable learning, showing promise for future deployment on

physical robots. This hypothesis is based on the expectation that, by training in a

diverse set of scenarios, the Q-learning policy can generalize well enough to serve

as a foundation for real-world adaptation and further reinforcement learning

methods.

30

4.2 Expected Impact

The anticipated impact of this research extends to several practical and theoretical areas

within robotics, industrial automation, and reinforcement learning. The expected impacts

are as follows:

1. Enhanced Task Adaptability in Industrial Robotics:

The Q-learning-based policy is expected to enable robots to respond effectively to

variations in an industrial environment, such as component availability or

operational delays. This adaptability is crucial for industries where conditions are

unpredictable, and robots need to adjust autonomously. By incorporating RL,

industrial robots can move closer to achieving flexible, real-time decision-making,

increasing overall operational efficiency.

2. Foundation for Real-World Application and Advanced RL Integration:

Although the research is limited to a simulated environment, the developed Q-

learning policy serves as a foundation for future real-world implementation. By

validating Q-learning’s effectiveness in simulation, this study paves the way for

subsequent research that could incorporate advanced RL models, such as Deep Q-

Networks (DQN), Policy Gradient Methods, or multi-agent RL. These

advancements could further increase task efficiency, resilience, and collaborative

capabilities in real-world industrial robotics.

3. Insights into Hyperparameter Tuning for Task Resilience:

Through the optimization of Q-learning parameters, this study provides insights

into how learning rate, discount factor, and exploration-exploitation strategies can

affect a robot's ability to learn robust, adaptable policies in complex environments.

This information is valuable for other researchers or engineers working on RL

applications in similar settings, offering guidelines on hyperparameter tuning to

maximize learning efficiency and task resilience.

4. Potential for Improved Safety in Human-Robot Collaborative Spaces:

By training robots to recognize and avoid human-occupied spaces or prioritize

safety in task execution, this research supports safer human-robot collaboration.

The insights from this study can be used to develop safer task navigation protocols

31

that help robots operate in proximity to humans, with minimized risk of interference

or accidents, making industrial environments more conducive to robot integration.

5. Contribution to Sustainable and Cost-Efficient Industrial Operations:

With robots capable of adjusting to operational changes without constant

reprogramming, industries can reduce downtime and maintenance costs. This

adaptability can result in a more sustainable, cost-efficient industrial ecosystem, as

robots trained via reinforcement learning can execute tasks with fewer

interruptions, better resource management, and improved overall performance.

6. Broadening the Scope of RL Applications in Industry:

This research highlights the applicability of Q-learning in industrial automation and

expands the potential for using reinforcement learning to optimize task execution

in various sectors, such as manufacturing, warehousing, and logistics. By focusing

on RL’s adaptability in task execution, this study could encourage more industrial

sectors to adopt reinforcement learning to handle dynamic, task-intensive

environments.

32

Chapter 5: Environmental Setup

5.1 Markov Decision Processes (MDPs)

The MDP framework is central to defining the robot’s environment in this research, as it

provides a structured, state-based approach to model the robot’s navigation and task

execution. An MDP is characterized by a set of states, actions, and transitions, which

together determine the possible movements and decisions the robot can make while

interacting with the environment. The goal of using an MDP is to provide the robot with a

dynamic learning framework, enabling it to adapt to diverse scenarios, including routine

tasks and unexpected disruptions [3], [12].

5.1.1 Stochastic Transitions in Markov Decision Processes (MDPs)

In the context of Markov Decision Processes (MDPs), stochastic transitions refer to the

probabilistic nature of state changes that occur as a result of taking an action in a given

state. Unlike deterministic transitions, where a specific action in a state leads to a fixed

next state, stochastic transitions allow for multiple potential outcomes, each with an

associated probability.

Formally, the transition dynamics in an MDP are defined by a transition probability

function 𝑃(𝑠′ ∣ 𝑠, 𝑎), which represents the probability of transitioning to state 𝑠′ after taking

action a in state s. These probabilities must satisfy the following condition:

∑ 𝑃(𝑠′ ∣ 𝑠, 𝑎) = 1 ∀𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴

𝑠′∈𝑆

where S is the set of states, and A is the set of actions.

33

Key characteristics of stochastic transitions include:

• Probabilistic Uncertainty: The next state is not fixed but sampled from a

probability distribution defined by 𝑃(𝑠′ ∣ 𝑠, 𝑎).

• Expressiveness: They enable MDPs to capture complex dynamics and

uncertainties, making them more applicable to real-world scenarios.

• Computation and Planning: Algorithms designed for solving MDPs with

stochastic transitions, such as dynamic programming and reinforcement learning,

must account for the expected value of outcomes across all possible transitions.

The use of stochastic transitions enhances the expressiveness of MDPs, allowing them to

capture complex dynamics of uncertain systems. Algorithms designed to solve MDPs with

stochastic transitions, such as dynamic programming and reinforcement learning, compute

optimal policies by considering expected values of outcomes over the entire probability

distribution of next states [3].

5.2 Spyder Platform:

Spyder, or the Scientific Python Development Environment, is an open-source Integrated

Development Environment (IDE) specifically designed for scientific computing and data

analysis in Python. It offers a user-friendly interface with features like code editing,

interactive execution, debugging, and visualization tools. Spyder is widely used by

scientists, engineers, and data analysts due to its seamless integration with popular

scientific libraries like NumPy, SciPy, Matplotlib, and Pandas [13].

5.3 Setting up the environment and preliminary steps

This chapter is designed to offer the essential instructions for setting up the IDE and

installing external libraries required to run various Python scripts. The reference guide for

this process is based on a manual for RL, with the initial section focusing on the setup

needed to begin developing implementations using Python. The first step is to install

Anaconda, which can be done by following the specific installation instructions for your

operating system found at https://docs.anaconda.com/anaconda/install/ [14], [15].

https://docs.anaconda.com/anaconda/install/

34

To proceed, run the 'Anaconda PowerShell Prompt' as an administrator (this program is

included with Anaconda). Then, running the following commands:

- pip install networkx

- pip install matpolit.pyplot

- pip install pandas

The installation of the IDE and libraries is finished, now Spyder can be opened (which,

similarly to Power shell, it is automatically installed together with Anaconda) from which

scripts can be opened and ran.

Figure 13 Spyder Platform

35

5.4 Python Libraries Used
In this study, several Python libraries were utilized to perform data manipulation, analysis,

visualization, and network-related tasks. Below is a brief overview of each library and its

role in the code:

NumPy (import numpy as np): NumPy is a fundamental package for numerical

computing in Python. It provides support for large, multi-dimensional arrays and matrices,

along with a collection of mathematical functions to operate on these arrays. In this project,

NumPy was primarily used for handling numerical data and performing vectorized

operations, which significantly improves the speed and efficiency of computations [16].

Random (import random): The random module implements pseudo-random number

generators for various distributions. It provides functions to generate random numbers,

select random items from a list, and shuffle data. This library was used in the project to

introduce randomness, such as selecting random state or action [17].

Matplotlib (import matplotlib.pyplot as plt): Matplotlib is a plotting library for creating

static, animated, and interactive visualizations in Python. It is widely used for generating

various types of plots, such as line charts, histograms, scatter plots, and more. In this

project, Matplotlib was employed to visualize the data and results of the analysis, offering

clear and informative graphical representations to interpret the findings effectively [18].

Pandas (import pandas as pd): Pandas is a powerful library for data manipulation and

analysis. It provides data structures such as DataFrame and Series that are ideal for

handling and analyzing structured data, such as time series or tabular data. With its rich

functionality, including support for reading and writing data to various formats (CSV,

Excel, etc.), and performing data cleaning, transformation, and aggregation tasks, Pandas

was an essential tool in this project for managing datasets and performing exploratory data

analysis [19].

36

NetworkX (import networkx as nx): NetworkX is a library designed for the creation,

manipulation, and study of the structure and dynamics of complex networks. It provides

tools to work with graphs, which are mathematical structures representing pairwise

relationships between objects. In this study, NetworkX was used to model and analyze

networks, structuring the MDP [20].

5.5 MiR100
The MiR100 is a mobile robot designed to automate the movement of goods and materials

within a company, providing a fast and cost-effective solution. It enhances operational

efficiency by allocating resources to employees, leading to increased productivity and

reduced costs.

Figure 14 MiR100 Mobile Robot [21]

The key features of the MIR100 relevant to this project include:

- Navigation in busy environments: The robot is capable of safely operating in

dynamic, crowded workspaces.

- Path planning and local route adjustments: The robot prioritizes finding the

most efficient route to its destination, while also being able to modify its path when

encountering obstacles.

- Heavy load transportation: It can carry loads weighing up to 100 kg.

37

- Internal mapping: The robot generates a map of its environment by manually

navigating the workspace. During this process, it detects walls, doors, furniture,

and other obstacles, creating a map based on these findings, which can later be

edited through the MIR software.

Figure 15 MiR100 Live Map

5.6 Robot Operating System (ROS)
The Robot Operating System (ROS) is an open-source software framework designed to

support the development of robotic applications. Although it is called an operating system,

it is actually a collection of tools and libraries aimed at aiding robot development. Its key

features include [22]:

- Middleware: ROS acts as a mediator within a robotic system, enabling

communication between different nodes, or code modules. The most commonly

used programming languages for creating these nodes are Python and C++.

- Development Tools: ROS provides various tools that simplify tasks like data

visualization, debugging, and programming. For example, *rqt* offers a graphical

user interface (GUI) for managing and displaying data, while *rviz* is a

visualization tool that allows users to view real-time sensor and node data.

38

- Package Management: ROS organizes and manages software through a package

system. Each package may include nodes, libraries, configuration files, and other

necessary tools for a specific function.

- Hardware Abstraction: ROS offers hardware abstractions, enabling developers to

write code that interacts with different sensors and actuators without dealing with

the specific details of the hardware.

- Community and Ecosystem: As an open-source project, ROS is supported by a

large development and research community that provides additional packages,

tools, and documentation. This ecosystem helps accelerate the adoption of new

technologies and reduces development time.

- Interoperability: ROS enables communication between nodes using various

message and service protocols, allowing different system components to work

together seamlessly.

5.7 ROS Architecture
The architecture of ROS consists of several key elements [22], [23]:

• Nodes: Nodes are individual processes that execute specific functions within ROS.

Each node performs a different task, and they can communicate with each other

through the ROS network. For example, one node might handle a planning

algorithm, another might control an actuator, and another might read sensor data.

A node could, for instance, capture data from a camera, while another processes

that data for object recognition. Nodes interact with each other using

communication mechanisms such as Topics, Services, and Actions.

● Topics: Topics are communication channels that allow nodes to exchange

messages by publishing and subscribing to them. The key characteristics of Topics

include:

○ Publish-Subscribe Model: A node can either send (publish) or receive

(subscribe) messages to or from a topic. Multiple nodes can publish or

subscribe to messages within the same topic.

○ Anonymous Communication: Nodes communicating via a topic do not

need to know the identity of the sender or receiver, which decouples them

and increases the scalability of the network.

39

○ Message Type: Each topic is defined by a specific message type, so any

message published to a topic must conform to that message type.

○ Asynchronous Communication: Messages published to or subscribed

from a topic can be sent and received at different times and frequencies,

allowing the nodes to operate independently of each other.

• Services: Services are used when a remote procedure call (RPC) interaction is

required, meaning a request/reply communication pattern. A service consists of two

message types: one for the request and one for the reply. A ROS node provides a

service, where a client can make a request by sending a message, and the node will

respond with the corresponding reply.

Figure 16 ROS Architecture [23]

40

Chapter 6: Methodology

6.1 Q-Learning in Reinforcement Learning

Q-learning is one of the most widely used model-free reinforcement learning (RL)

algorithms. It enables an agent to learn optimal actions in an environment by maximizing

cumulative rewards without needing a predefined model of the environment. This

adaptability makes Q-learning highly applicable in dynamic, complex environments, such

as industrial setups, where conditions and tasks can vary widely. Q-learning is particularly

suitable for environments modeled as Markov Decision Processes (MDPs), where

outcomes depend on both the agent's actions and inherent uncertainties in the environment

[3].

6.1.1 Q-learning: Foundations and Core Concepts

Q-learning relies on an action-value function, or Q-function, which estimates the

expected cumulative reward (known as the “Q-value”) for taking a particular action in a

specific state. The agent uses this Q-function to learn which actions yield the highest

rewards over time, converging to an optimal policy by updating Q-values as it explores the

environment. The algorithm is designed to handle environments with stochastic transitions

and rewards, making it robust in settings where outcomes are partly random [24].

The Q-learning update rule is expressed as follows:

41

where:

● Q(s,a) is the Q-value for state s and action a,

● Alpha α is the learning rate, determining how much new information overrides

previous knowledge,

● r is the reward received after taking action a,

● γ is the discount factor, representing the importance of future rewards,

This update rule adjusts Q-values iteratively, allowing the agent to improve its

understanding of the best actions to take in each state by balancing immediate rewards

and future rewards.

6.1.2 Steps in Implementing Q-learning

The Q-learning algorithm proceeds through the following steps:

1. Initialization:

○ The Q-table is initialized with zeros or random values for each state-action

pair. Each row represents a state, and each column represents an action, with

values indicating the expected reward.

○ Parameters like the learning rate α, discount factor γ, and exploration

parameter ϵ are set, often with fine-tuning through experimentation.

2. Action Selection:

○ Using an epsilon-greedy strategy, the agent either explores (with

probability ϵ) by selecting a random action or exploits (with probability

1−ϵ) by choosing the action with the highest Q-value in its current state.

This strategy helps balance exploration and exploitation in Q-learning.

3. Execution and Reward Collection:

○ The agent takes the chosen action and observes the resulting next state s′

and the immediate reward r for the action. These observed outcomes

directly influence the Q-value updates.

42

4. Q-value Update:

○ The Q-value for the state-action pair (s,a) is updated based on the received

reward and the maximum estimated Q-value for the next state s′, following

the Q-learning update rule. This update is essential for learning the expected

reward of each action over time.

5. Repeat Until Convergence:

○ These steps are repeated for each episode, where the agent continues to

explore different state-action pairs, gradually improving its Q-table until Q-

values converge. Convergence occurs when Q-values stabilize, indicating

that the agent has learned an optimal policy.

43

Figure 17 Q-learning Flowchart [25]

44

6.1.3 Advantages and Limitations of Q-learning

Q-learning offers notable benefits in its simplicity, adaptability, and ability to learn without

a model of the environment. This makes it suitable for applications in dynamic industrial

settings where unpredictability is common. Some key advantages of Q-learning include:

● Model-Free Nature: Q-learning does not require a predefined model of the

environment, which makes it adaptable to unknown environments where transitions

are not fully predictable.

● Convergence Guarantees: With appropriate learning parameters and enough

episodes, Q-learning can converge to an optimal policy in discrete action spaces,

maximizing cumulative rewards.

● Scalability to Various Tasks: Q-learning is flexible enough to handle a range of

tasks by adjusting its hyperparameters, making it useful for robots performing

different functions like navigation, assembly, or quality control.

However, Q-learning has limitations, particularly in environments with high-dimensional

state-action spaces. As the number of states or actions increases, the Q-table size grows,

leading to scalability issues. Additionally, Q-learning can struggle in environments where

actions must be selected based on continuous variables, as the discrete Q-table is less

effective without adjustments or alternative RL techniques.

6.1.4 Practical Implementation in the Industrial MDP Environment

In this research, Q-learning is applied to train a robot in an industrial environment

simulated as an MDP. The robot learns optimal actions for navigating and performing tasks

across several states, including charging stations, warehouse kitting, assembly, quality

control, and the final warehouse. Q-learning’s flexibility in MDPs enables the robot to:

● Learn effective transitions between states such as moving from an assembly station

to quality control, or between charging and work states, optimizing task sequences.

● Respond to stochastic events like part mismatches, battery threshold management,

or sudden failures, by adjusting its actions based on the rewards or penalties

received.

45

● Converge to an optimal policy for task completion, minimizing operational delays

and enhancing task adaptability.

The Q-learning approach in this setting is particularly advantageous because it enables the

robot to adjust to the dynamic nature of industrial tasks, even without having pre-

programmed solutions for every possible scenario. By training through exploration and

exploitation, the robot becomes adept at navigating complex workflows while handling

unexpected challenges effectively.

Figure 18 Q-learning Training

6.2 SARSA in Reinforcement Learning

SARSA is an on-policy reinforcement learning (RL) algorithm that determines optimal

actions in an environment modeled as a Markov Decision Process (MDP). Unlike Q-

learning, which is an off-policy algorithm, SARSA learns from the actions taken by the

agent based on its current policy. This “on-policy” approach allows SARSA to

continuously refine actions using information derived from the agent's own behavior,

making it particularly suitable for environments that require stable, gradual learning over

time, such as dynamic or uncertain industrial settings [3].

46

6.2.1 Foundations of SARSA

The name SARSA stands for State-Action-Reward-State-Action, referring to the

sequence of events the algorithm uses to update the action-value function (Q-values). In

each episode, the agent observes its current state and takes an action, receiving a reward

and transitioning to a new state, where it takes the next action according to its policy.

SARSA then updates the Q-value based on this sequence, ensuring that the agent learns

values tied to the policy it follows, rather than an idealized optimal policy [24].

The SARSA update rule is:

where:

● Q(s,a) is the Q-value for state s and action a.

● α is the learning rate controlling the weight of new information in updates.

● r is the reward obtained after taking action a.

● γ is the discount factor, prioritizing immediate vs. future rewards.

● Q(s′,a′) is the Q-value of the next state-action pair as per the agent’s current policy.

The critical difference from Q-learning is that SARSA uses the next action a′ derived from

the agent’s policy, making it an on-policy algorithm.

6.2.2 Steps in Implementing SARSA

The SARSA algorithm progresses through the following steps:

1. Initialization:

○ The Q-table is initialized with zeros or random values. Each Q-value

represents the estimated cumulative reward for a state-action pair.

○ Learning parameters such as α, γ, and ϵ (for exploration in epsilon-greedy

policies) are set based on experimental tuning.

47

2. Choosing an Action:

○ The agent selects an action a from the current state sss using an epsilon-

greedy strategy to balance exploration and exploitation.

○ Unlike Q-learning, SARSA’s updates are directly influenced by the action

the agent plans to take, tying learning closely to the agent's current policy.

3. Executing the Action and Observing the Outcome:

○ The agent performs the selected action a and transitions to the next state s′,

where it receives a reward r from the environment. This reward informs the

agent about the immediate impact of its action on achieving desired

outcomes.

4. Next Action Selection and Q-value Update:

○ The agent selects the next action a′ in the new state s′ using the same policy

(e.g., epsilon-greedy). The Q-value for (s,a) is updated based on the reward

r and the Q-value of (s′,a′) as per the SARSA update rule.

○ By using Q(s′,a′) in the update, SARSA refines the action-value table

according to the agent’s current action policy rather than an idealized one.

5. Repeating Until Convergence:

○ The agent continues this process across episodes, progressively refining its

policy by updating Q-values with each state-action transition. Convergence

occurs when the Q-values stabilize, signaling that the agent has learned an

optimal policy under the current parameters.

48

Figure 19 SARSA Flowchart [25]

49

6.2.3 Comparison of SARSA and Q-learning

While SARSA and Q-learning share similarities in updating action-value pairs, there are

distinct differences in their approach and suitability for various environments:

● On-policy vs. Off-policy: SARSA’s on-policy nature allows it to learn based on

the agent’s current behavior, which means it can adapt more conservatively,

potentially resulting in smoother learning. This is advantageous in unstable

environments where consistency is essential.

● Stability in Dynamic Environments: SARSA’s on-policy updates mean that it

adheres more closely to its current exploration-exploitation balance, which often

makes it more stable in dynamic or high-risk environments. Q-learning, by contrast,

learns an optimal policy assuming ideal actions, which may lead to erratic behavior

if environmental conditions change unexpectedly.

● Efficiency in Convergence: Q-learning often converges faster due to its off-policy

nature, which enables it to explore optimal actions aggressively. However, SARSA

may provide more consistent performance in environments with fluctuating

conditions or where exploratory actions must be more cautiously evaluated.

6.2.4 Application of SARSA in the Industrial MDP Environment

In this research, SARSA is applied within an industrial MDP environment, where the robot

needs to manage various tasks, such as navigation between charging stations, quality

control, assembly, and handling unexpected conditions. SARSA’s on-policy learning

approach offers specific advantages in this setup:

● Adaptability in Task Sequences: SARSA is particularly suitable for navigating

through tasks that might change unpredictably. For instance, if a quality control

issue arises mid-sequence, SARSA’s policy-based updates help the robot adapt

without compromising consistency.

● Effective Resource Management: SARSA can handle resource-sensitive states,

such as battery management, more stably by updating Q-values in line with actions

50

taken. This allows the robot to factor in constraints like battery levels or

maintenance needs without over-exploration.

● Stability in Worst-Case Scenarios: SARSA’s conservative updates make it

effective in worst-case scenarios, such as component mismatches or urgent tasks.

The algorithm’s stable convergence allows the robot to prioritize safer, policy-

aligned actions, reducing the risk of failure in high-stakes environments.

The on-policy nature of SARSA helps the robot maintain a stable, adaptive policy that can

handle the variability typical of industrial applications. By training within this structured

MDP, the robot learns efficient actions for both routine and challenging tasks, improving

operational resilience.

Figure 20 SARSA Training

51

6.2.5 Advantages and Limitations of SARSA

SARSA offers several advantages in environments where stability and policy consistency

are important, such as in real-time or industrial settings. Some of its key advantages

include:

● On-policy Learning: SARSA’s on-policy updates provide a smoother learning

process, ideal for environments with variability, where adhering to the current

policy reduces erratic actions.

● Stability and Robustness: SARSA adapts well to dynamic or uncertain

environments, making it useful in industrial setups where tasks or conditions can

change. This stability is particularly valuable in handling unexpected events.

However, SARSA also has limitations:

● Slower Convergence: SARSA may converge more slowly than Q-learning, as it

requires adherence to the agent’s own policy rather than an optimal policy based

on maximum Q-values. In time-sensitive applications, this slower convergence

could be a constraint.

● Reduced Exploration: Because SARSA relies on the agent’s current policy for

updates, it can limit exploration in favor of policy consistency, potentially

overlooking optimal actions in favor of stability.

6.3 Dyna-Q in Reinforcement Learning

Dyna-Q is a hybrid reinforcement learning (RL) algorithm developed by Richard Sutton

that combines elements of model-based and model-free learning. By integrating planning,

Dyna-Q improves upon traditional Q-learning by enabling the agent to update its policy

based on both real experiences and simulated experiences generated from an internal model

of the environment. This approach allows Dyna-Q to accelerate learning, making it

particularly useful in dynamic, complex environments where efficiency and adaptability

are essential [3].

6.3.1 Foundations of Dyna-Q

52

Dyna-Q’s framework revolves around three main components: direct RL, model

learning, and planning. The agent performs actions, updates its Q-values based on real

experiences (as in traditional Q-learning), and simultaneously builds a model of the

environment, storing state-action transitions and rewards. It then uses this model to

simulate additional experiences and performs “planning updates” on the Q-table,

reinforcing learning through both real and simulated interactions [26].

Dyna-Q’s Q-value update rule is similar to that of Q-learning:

where:

● Q(s,a) represents the Q-value for state s and action a,

● α is the learning rate controlling the influence of new updates,

● r is the reward received after taking action a,

● gamma γ is the discount factor, balancing immediate and future rewards,

● is the maximum estimated Q-value for the next state s′, assuming

the agent acts optimally.

However, Dyna-Q differentiates itself by using simulated experiences generated from its

learned model. This model allows the agent to explore state-action pairs more efficiently,

leading to faster convergence and a more robust learning process.

6.3.2 Steps in Implementing Dyna-Q

The Dyna-Q algorithm integrates both real experience updates and simulated planning

updates in the following steps:

53

1. Initialize the Q-table and Model:

○ The Q-table is initialized with zeros or random values for all state-action

pairs.

○ A model of the environment, often implemented as a dictionary or table, is

initialized to store transition information based on the agent’s interactions.

2. Real Experience Update:

○ The agent selects an action using an epsilon-greedy strategy, balancing

exploration and exploitation.

○ After performing the action and observing the resulting next state and

reward, the agent updates the Q-value for the state-action pair using the Q-

learning update rule.

○ The transition is then stored in the model, updating its understanding of the

environment.

3. Simulated Planning Updates:

○ Using the stored model, the agent generates simulated experiences by

randomly sampling previously encountered state-action pairs.

○ For each simulated experience, the agent retrieves the next state and reward

from the model and performs additional Q-value updates on the sampled

state-action pairs.

○ This process is repeated several times (determined by a n_planning_steps)

for each real experience, enhancing the agent’s learning without requiring

additional real interactions.

4. Repeat Until Convergence:

○ The agent continues alternating between real experience updates and

planning updates across episodes until Q-values stabilize. This hybrid

approach accelerates learning, as the agent reinforces its policy using both

real and simulated experiences.

54

Figure 21 Dyna-Q Flowchart [25]

55

6.3.3 Limitations of Dyna-Q

However, Dyna-Q has limitations:

● Dependence on an Accurate Model: Dyna-Q relies on an accurate internal model

for generating simulated experiences. Inaccuracies in this model can lead to

suboptimal policy updates, as the agent may reinforce incorrect actions.

● Complexity and Computational Overhead: The need for planning updates

introduces computational overhead, making Dyna-Q more resource-intensive than

purely model-free approaches like Q-learning. In real-time applications, this added

complexity can be challenging.

6.3.4 Application of Dyna-Q in the Navigation MDP Environment

One potential reason Dyna-Q may be an inappropriate choice for this navigation MDP

environment is if the environment is highly dynamic or has non-stationary elements

meaning that its rules, obstacles, or reward structures change over time. Dyna-Q relies

heavily on building and updating an internal model of the environment, which is used for

planning. This model assumes that the environment is stationary (i.e., its dynamics don’t

change). In a navigation environment with changing conditions, Dyna-Q's internal model

can quickly become outdated or inaccurate, causing the agent to make suboptimal decisions

based on an incorrect understanding of the environment.

56

Figure 22 Dyna-Q Training Loop

Imagine a navigation task where the layout of the location of the goal changes periodically.

For instance, obstacles might move, or certain regions may switch from being high-penalty

to low-penalty zones over time. In such an environment, an agent using Dyna-Q would

struggle to keep its internal model up-to-date, as the Dyna-Q algorithm is not designed to

continuously adapt to non-stationary dynamics. Instead, it would keep relying on simulated

experiences generated from an outdated model, leading the agent to repeatedly make

mistakes or avoid certain areas that it wrongly assumes are problematic.

This could explain the results seen in figure 39, where the cumulative reward stabilizes

close to zero rather than reaching positive values. Each time the environment changes, the

agent’s policy becomes less effective, and Dyna-Q's model-based planning might actually

reinforce suboptimal behaviors. The agent might end up revisiting safe but non-optimal

57

routes, failing to learn an effective navigation strategy that adapts to the environment's

changes.

In dynamic environments, model-free methods (such as Q-learning or SARSA) or adaptive

model-based approaches are often more suitable. These methods either don't rely on a

model or continuously update their model in response to changes. For a task where

adaptability is essential, such approaches might allow the agent to respond better to

changes in the environment, leading to more consistent positive rewards over time.

6.4 Sample-Based Planning in Reinforcement Learning

Sample-Based Planning is a technique in reinforcement learning where an agent leverages

a learned model of the environment to simulate experiences and optimize its policy without

interacting with the actual environment. Unlike traditional planning methods that compute

outcomes deterministically, sample-based planning uses random samples from a model

to approximate potential future states and rewards. This approach is especially beneficial

in scenarios where interactions with the real environment are costly, time-consuming, or

impractical, making it suitable for dynamic, complex environments such as those

encountered in industrial automation [3].

6.4.1 Foundations of Sample-Based Planning

Sample-based planning sits between pure model-free and model-based RL methods. In

model-free methods, the agent relies entirely on real experiences to update its policy, while

in model-based methods, the agent has a complete model of the environment and uses this

model for planning. Sample-based planning combines elements of both approaches by

allowing the agent to generate simulated experiences based on a partial model of the

environment, which helps accelerate learning and reduce dependence on real-time

interactions [26].

58

The process involves three key elements:

● Sampling: Using the learned model to generate state-action pairs that represent

potential outcomes based on the agent's current policy.

● Planning Updates: Updating action-value estimates (Q-values) based on the

simulated outcomes, reinforcing the agent’s understanding of optimal actions.

● Efficient Exploration: Simulating various scenarios allows the agent to explore a

broader range of possible actions, refining its policy more efficiently.

This technique has proven particularly effective for environments with large state spaces,

as it allows the agent to approximate an optimal policy without exhaustively exploring

every possible action in the real world.

6.4.2 Steps in Implementing Sample-Based Planning

The steps for implementing sample-based planning in RL are as follows:

1. Initialize Q-values and Model:

○ The agent initializes Q-values for each state-action pair, often with zeros or

random values.

○ A model of the environment, often a table or dictionary, is also initialized.

This model stores information about state-action transitions and rewards

based on the agent’s interactions.

2. Real Experience Collection:

○ As the agent interacts with the environment, it records the observed

transitions, such as the current state, chosen action, resulting next state, and

received reward. These experiences are stored in the model and used to

approximate the environment’s dynamics.

3. Sample-Based Planning Updates:

○ The agent randomly selects previously encountered state-action pairs from

the model. For each sampled pair, the agent retrieves the transition details

(next state and reward) and performs Q-value updates on these pairs.

59

○ The Q-learning update rule or other similar value-based update rules can

be used to adjust Q-values based on simulated experiences, refining the

agent’s understanding of optimal actions without additional real

interactions.

4. Reinforcement Through Repeated Planning:

○ This process of generating samples and updating Q-values is repeated

multiple times for each real experience. By simulating additional scenarios,

the agent effectively “revisits” previous actions and reinforces learning

without requiring new, costly interactions.

5. Repeat Until Convergence:

○ The process is repeated for multiple episodes, with the agent iterating

between real experiences and sample-based planning. This hybrid approach

accelerates convergence to an optimal policy, as the agent benefits from

both real-world experience and simulated planning.

60

Figure 23 Sample-based Planning Flowchart [25]

61

6.4.3 Advantages and Limitations of Sample-Based Planning

Sample-based planning offers significant advantages, particularly in environments where

the cost of real interactions is high or the state-action space is large:

● Efficient Learning: By generating simulated experiences, the agent can reinforce

its policy without needing additional real interactions, making it ideal for situations

where learning time or cost is a constraint.

● Improved Exploration: Sampling from a model enables the agent to explore

various potential states and actions without direct risk, allowing for more thorough

exploration of the environment.

● Adaptability: Sample-based planning allows the agent to respond to changes in the

environment by simulating new scenarios, which is helpful for environments with

unpredictable conditions.

However, sample-based planning also has limitations:

● Dependence on Model Accuracy: The effectiveness of sample-based planning

depends heavily on the accuracy of the learned model. Errors in the model can lead

to inaccurate Q-value updates and may result in suboptimal policy learning.

● Increased Computational Complexity: Generating multiple simulated

experiences for each real interaction increases computational demands. In

environments with large state spaces, this can be a limitation, as the planning

updates require more processing power.

6.4.4 Application of Sample-Based Planning in the Industrial MDP Environment

In this research, sample-based planning is used within an industrial MDP environment to

train a robot that performs complex, sequential tasks with occasional disruptions. Sample-

based planning allows the robot to develop an efficient policy without requiring exhaustive

real-world trials for each possible state-action pair.

62

Some specific benefits in this industrial MDP environment include:

● Task Sequencing: The robot can use sample-based planning to simulate various

task sequences, such as moving from charging stations to assembly stations, quality

control, and end-of-line inspection. By generating samples for these transitions, the

robot efficiently learns optimal paths and sequences without repeating each task in

real time.

● Resilience to Disruptions: With sample-based planning, the robot can simulate

worst-case scenarios (e.g., battery depletion, urgent tasks) and update its policy

based on these samples. This prepares the robot to handle unexpected events

without requiring actual failures in the real environment.

● Improved Resource Management: Sample-based planning allows the robot to

simulate different levels of resource availability, such as battery levels or

component availability, and learn strategies to manage these constraints effectively.

For example, the robot can learn when to prioritize charging or restocking actions

based on simulated outcomes.

The use of sample-based planning in this industrial MDP environment enables the robot to

learn more flexibly and responsively, as it can refine its policy based on simulated trials

rather than relying solely on real interactions.

63

Figure 24 Generating Samples on python

6.5 Hyperparameters

The performance and efficiency of Q-learning depend heavily on three primary

hyperparameters: learning rate α, discount factor γ, and exploration rate ϵ.

● Learning Rate (α): The learning rate controls how much the agent’s new

experiences influence its Q-values. A high learning rate prioritizes recent

experiences, while a low rate makes learning more conservative, averaging over

multiple episodes. Optimal tuning of alpha (α) is critical; high values may lead to

oscillations, while too low values slow down learning.

Figure 25 Learning Rate and Discount Factor

64

● Discount Factor (γ): The discount factor determines the importance of future

rewards. With γ closer to 1, the agent values long-term rewards, ideal for complex

tasks where cumulative rewards are more valuable. Lower γ values prioritize

immediate rewards, which may be suitable for simpler tasks but can lead to short-

sighted decision-making in complex environments.

● Exploration Rate (ε): The exploration rate in epsilon-greedy strategies enables the

agent to explore alternative actions. As learning progresses, decaying epsilon (ϵ)

helps the agent shift towards exploiting its knowledge, gradually focusing on the

actions it has identified as optimal.

These parameters play a crucial role in learning stability and convergence, as improperly

tuned values can cause either under-exploration or slow adaptation. Experimenting with

and adjusting these parameters can lead to an optimal learning setup for different

environments.

6.6 Exploration and Exploitation in Reinforcement Learning

In reinforcement learning, exploration and exploitation are crucial components that

influence the agent’s decision-making process. Exploration involves the agent trying new

actions to gather information about the environment, while exploitation focuses on

selecting actions that maximize the agent's reward based on its current knowledge. Striking

the right balance between these two aspects is essential for learning an optimal policy,

where the agent not only learns effective actions but also adapts to dynamic environments

and maximizes long-term rewards [27].

6.6.1 The Exploration-Exploitation Dilemma

The exploration-exploitation dilemma in reinforcement learning is the decision the agent

must continually make between exploring new actions to improve its understanding of the

environment and exploiting known actions that yield high rewards. This balance is critical,

as excessive exploration can lead to inefficient, prolonged learning, whereas too much

exploitation might prevent the agent from discovering better policies and adapting to new

or dynamic conditions [27].

65

Figure 26 Epsilon-greedy Strategy

In this study, the epsilon-greedy strategy is employed to address this dilemma, allowing

the agent to explore actions with a probability defined by the epsilon (ε) parameter while

exploiting the best-known actions with a complementary probability (1 - ε) [27].

6.6.2 Epsilon-Greedy Strategy: Mechanism and Implementation

The epsilon-greedy strategy is a common approach used in Q-learning and other RL

algorithms to control the balance between exploration and exploitation. This method allows

the agent to explore a set percentage of the time while defaulting to exploitation for the

remaining interactions. The probability ε gradually decays over time, meaning the agent

explores less as it gains more experience and becomes more confident in its policy:

Figure 27 Epsilon Decay Rate

● Initial Exploration (High Epsilon): At the start, ε is typically set to a high value

(e.g., 1.0 or 0.9), encouraging exploration. In this phase, the agent chooses random

actions to gather information about the rewards associated with various state-action

pairs. This phase is essential for creating a comprehensive map of the environment,

allowing the agent to develop a base understanding without being overly biased

toward initial actions.

● Gradual Reduction of Epsilon (Decay): As the agent gains more experience, ε

decays, reducing the likelihood of random exploration and favoring exploitation.

The decay rate is crucial and can follow either a linear decay, where ε decreases at

66

a constant rate, or an exponential decay, where ε reduces faster initially and slows

down as it approaches a minimum threshold.

● Final Stage (Low Epsilon): Toward the end of the learning process, ε reaches a

small constant value (e.g., 0.01), which allows the agent to continue exploring

minimally to handle any dynamic changes in the environment while primarily

exploiting the learned policy. This final stage ensures that the agent maintains

adaptability without frequent deviations from optimal actions.

The decay rate of epsilon affects the agent’s ability to converge to an optimal policy. A

slower decay may lead to more thorough exploration but can slow convergence, whereas a

rapid decay can help achieve faster learning at the potential cost of suboptimal exploration.

6.6.3 Exploration Techniques Beyond Epsilon-Greedy

While the epsilon-greedy approach is effective, it has limitations in complex environments

or where long-term exploration is beneficial. Some alternative techniques to balance

exploration and exploitation are as follows [27]:

● Boltzmann Exploration: Also known as softmax action selection, this approach

uses a temperature parameter to assign probabilities to each action based on its Q-

value, allowing actions with higher Q-values to be chosen more frequently. This

strategy is more refined than epsilon-greedy because it considers the Q-values when

making exploratory decisions, favoring actions that are likely better but still

occasionally exploring other options.

● Upper Confidence Bound (UCB): UCB is a strategy commonly used in multi-

armed bandit problems and RL, which factors in the confidence interval for each

action’s reward. Actions with higher uncertainty are chosen more often, especially

early in the learning process, allowing the agent to focus on gathering more

information where it is most beneficial.

● Decay Schedules: Beyond linear and exponential decay, adaptive schedules adjust

ε based on the performance of the agent, where epsilon decays faster if the agent

consistently finds high-reward actions or more slowly if uncertainty in rewards

persists.

67

6.6.4 Implications of Exploration and Exploitation on Learning Efficiency

Balancing exploration and exploitation directly impact the agent's ability to learn

efficiently and converge toward an optimal policy. In environments where dynamic

elements, such as unpredictable obstacles, are present, the agent must learn to adjust its

exploration patterns to account for these variations without losing efficiency.

In this research, an epsilon decay strategy is used to allow the agent to explore more in

the initial learning stages and then shift gradually towards exploitation as it becomes more

confident in its learned policy. By implementing this approach, the robot navigates through

a complex environment, balancing short-term exploratory needs with the long-term

objective of maximizing cumulative rewards.

● Positive Impact of Exploration: Adequate exploration helps prevent the agent

from prematurely converging to suboptimal actions. It allows the robot to discover

effective pathways, unexpected rewards, or better decision sequences that it might

otherwise miss if focused solely on exploitation from the outset.

● Risk of Over-Exploitation: Excessive exploitation, especially in dynamic

environments, can cause the robot to fail in adapting to new scenarios. This can

lead to issues such as getting "stuck" in familiar routes or ignoring better paths due

to lack of exploration, ultimately impacting the robot’s adaptability and efficiency.

6.6.5 Experimental Evaluation and Hyperparameter Tuning for Optimal Balance

In this study, the performance of the epsilon-greedy exploration strategy is evaluated across

various epsilon decay rates and initial epsilon values to identify an optimal configuration.

Hyperparameters such as initial epsilon value, decay rate, and minimum epsilon

threshold are tuned to ensure that the agent can learn effectively without excessive

exploration:

68

Figure 28 Hyperparameters

● Empirical Results: The cumulative reward over episodes is analyzed to assess how

the epsilon-greedy strategy affects the learning process. By experimenting with

different decay schedules, the methodology identifies the configurations that yield

the highest rewards while minimizing unnecessary exploratory actions in the later

stages.

● Hyperparameter Tuning: Through iterative adjustments, the study finds that

moderate initial epsilon values with exponential decay offer a balanced approach,

allowing for quick adaptation in early learning stages while supporting stable

exploitation in later phases.

Figure 29 Hyperparameters Tuning

6.6.6 Practical Implications and Future Considerations

Effective exploration-exploitation strategies are particularly beneficial in environments

where the agent faces varied tasks and uncertainties, such as in industrial setups. The

insights gained from this study's epsilon-greedy implementation demonstrate that a well-

tuned exploration policy can support resilient, autonomous learning in dynamic scenarios.

For future research, exploring combinations of epsilon-greedy with advanced exploration

techniques, such as UCB or Boltzmann, could further enhance the robot’s adaptability and

robustness in more complex environments.

69

Chapter 7: Implementation

The study defines two key MDP environments for this purpose:

1. Navigation to Free Position Environment

2. Task Sequence Environment

Each environment is detailed with specific states and transitions that allow the robot to

perform various actions, learning through rewards and penalties how to achieve optimal

task completion. The next sections break down each environment, explaining the core

components of the MDP and the challenges the robot encounters.

7.1 Navigation to Free Position Environment

This environment serves as the basis for training the robot to navigate between free and

occupied spaces. The MDP-Based Navigation Model for Mobile Robots (see figure 30

for visualization) illustrates the possible states and transitions, showing how the robot

identifies and moves to available positions while avoiding areas occupied by humans.

7.1.1 States and Transitions

● S0 (Initial Position): The robot begins here, starting each navigation process.

● SA, SB, SC (Free Positions): These are the target positions where the robot can

safely move. Each state represents an open space that is unoccupied and accessible.

● HA, HB, HC (Occupied Positions): These states indicate areas currently occupied

by humans. The robot must avoid these positions to prioritize safety and avoid

interruptions.

● P (Task State): This state represents the robot actively performing a task, which

might be located near one of the free positions.

Transitions between these states are determined by the robot’s actions, which include:

● Action (F): The robot moves to a free position. For example, starting from S0, it

can move to SA, SB, or SC.

70

● Action (O): The robot attempts to move to an occupied position, but this action is

typically discouraged by assigning penalties to reduce the likelihood of the robot

attempting it again.

From any free position (SA, SB, SC), the robot can transition to state P to perform a task.

Once completed, it may return to the initial position (S0) to begin a new navigation

sequence. Additionally, transitions can occur between occupied and free positions,

representing the robot's adaptive capabilities in handling different spatial configurations.

Figure 30 MDP Navigation Environment

71

Figure 31 Rewards Table and Stochastic Transitions for Navigation Environment

7.1.2 Flexibility in Navigation

The flexible transitions in this MDP allow the robot to make autonomous decisions about

moving, interacting, and performing tasks across the environment. By using rewards for

successful navigation and penalties for attempting to move to occupied spaces, the model

helps the robot learn optimal navigation paths, improving efficiency and adaptability.

72

7.2 Task Sequence Environment

Figure 32 Task Environment in The Laboratory

The Task Sequence Environment simulates a complex task progression in an industrial

setting, where the robot moves through various stages, including charging, assembly,

quality control, and end-of-line inspection. The Environment layout consists of six stations,

each with specific tasks for the mobile robot:

1. Charging Station: This is the starting and ending point of the production line, where

the mobile robot waits for its tasks. If the robot is not at the Charging Station when

instructed to begin, it will automatically navigate there before starting the first task.

If the robot’s battery drops below a set threshold during operation, it will halt its

current task, move to the Charging Station, and wait until the battery reaches an

appropriate level before continuing its work.

73

2. Initial Warehouse: At this station, the mobile robot retrieves skateboard parts and

places them onto its shelf. The process is divided into two tasks: first, the robot

picks the skateboard from a designated spot in the warehouse; then, it moves to the

location where the skateboard wheels are stored and picks them up. Once all

components are collected and placed on the shelf, the robot transports them to the

next station.

3. Assembly Station: This is the first station where the robot interacts with a human

worker. The robot delivers the parts to the worker, who will then begin assembling

the skateboard. Before starting the assembly, the worker will give the robot tools to

be transported to the assigned station. While the worker completes the assembly,

the robot returns to wait for the finished skateboard, which it will then transport to

the next station.

4. End of Line Measurement Point (EOL) Station: At this station, the mobile robot

performs two tasks. The first task is to drop off the tools that the operator had

previously provided. Then, the robot returns with the assembled skateboard. This

marks the first collaboration between the human and the robot. Using the tools

delivered earlier, the human inspects the skateboard for any obvious errors. During

this process, the mobile robot assists by holding the skateboard for the operator.

Once the inspection is completed, if the skateboard passes the check, both the

operator and the robot continue with their respective tasks at their assigned stations.

However, if the inspection identifies issues, the worker informs the robot, which

will then return to the Assembly Station for adjustments.

5. Quality Control Station: This station marks the second and final collaboration

between the human and the robot. The mobile robot repeats the same task as before,

holding the assembled skateboard for the operator, who now performs a more

thorough quality check. If the skateboard passes this inspection, the operator moves

back to the Assembly Station, and the robot proceeds to the next station. If any

issues are found during quality control, the operator halts the production line to

address the problems or discard the defective product.

74

6. Final Warehouse Station: The final station in the production line is where the

mobile robot deposits the completed skateboard. Afterward, the robot returns to the

Charging Station to recharge and prepare for the next cycle. While the robot is

returning to the charging point, the operator proceeds to the Final Warehouse to

pack the product.

This environment builds on the MDP structure by incorporating possible worst-case

scenarios, adding complexity and enhancing the robot’s ability to respond to unexpected

challenges.

Figure 33 MDP for Original Task Sequence

By adding the possible worst-cases that could engage and affect the operation. The MDP

transformed to be the below form.

75

Figure 34 Markov Decision Process for Robot Task Management and Quality Control

76

Figure 35 Rewards and Stochastic Transitions for Task Sequence Environment

Figure 33 illustrates the task sequence, showing the standard workflow the robot follows.

By adding new states and transitions for worst-case scenarios, the model evolves into a

robust framework for training the robot in a realistic environment as shown in figure 34.

7.2.1 Worst-Case Scenario States and Transitions

The extended MDP model incorporates states that represent potential failures or

interruptions in the workflow, training the robot to adapt by recognizing and handling each

unique situation. Key worst-case scenario states include:

● System Failure: A “system_failure” state indicates a critical malfunction requiring

the robot to stop operations and move to a maintenance state. This state simulates

system downtimes and helps train the robot to handle unexpected breakdowns.

● Urgent Tasks: The “urgent” state prioritizes specific tasks requiring immediate

attention. For example, if an urgent task arises while the robot is en route to another

state, it must adapt and address the high-priority task first.

● Quality Control Failure: The states “failed_quality_control” and

“move_to_measure_again” indicate that the robot has failed quality control checks.

77

The robot must then repeat or remeasure certain parameters before proceeding,

introducing a realistic quality assurance process.

● Battery Thresholds: The states “under_threshold” and “above_threshold”

represent battery levels. If battery levels are low, the robot must move to the

charging station, simulating resource management and ensuring the robot does not

run out of power mid-task.

● Mismatch: The “mismatch” state reflects component errors. If the robot encounters

an incorrect or mismatched component, it must correct this by moving back to

replace it, ensuring the accuracy of assembled products.

● Idle State: An “idle” state occurs if the robot is inactive, indicating inefficiencies

in task management. Training the robot to minimize idle time enhances

productivity.

● Restocking: The “restocking” state represents a scenario where resources or

components need replenishing. Failures in restocking can delay tasks, so the robot

must learn to handle this effectively.

Placement of Updated MDP Visualization: Consider including an updated MDP

visualization here to show how the model handles these added complexities in worst-case

scenarios.

7.2.2 Complete List of States and Actions in Task Sequence Environment

The expanded task environment incorporates all possible states and actions to simulate a

realistic industrial setting. Below is a detailed breakdown of key states and actions:

States:

● under_threshold: Battery/resource levels are below a threshold.

● ChargingStation: The robot has reached a charging station.

● maintenance: Indicates the robot is undergoing maintenance.

● warehouse_kitting: The robot is gathering components in the warehouse.

● urgent: An urgent task requires immediate attention.

● assemble_station_t: Robot is at an assembly station, taking tools to EOL.

78

● assemble_station_p: Robot is transporting an assembled product to EOL.

● EOL_t: Robot places the toolbox at EOL.

● EOL_corrected: Robot has corrected a product.

● EOL: General end-of-line inspection state.

● final_warehouse: Robot has reached the final warehouse.

● failed_quality_control: The product has failed quality control.

● system_failure: A critical system failure has occurred.

● above_threshold: Battery/resource levels are above a threshold.

● restocking: Robot is restocking components in the warehouse.

● IDLE: Robot is not performing any task.

● warehouse_mismatch: A mismatch occurred in the warehouse.

● mismatch: General mismatch or error in component handling.

● successed_quality_control: Robot successfully passed quality control.

Actions:

● move_for_charging: Move to Charging Station.

● return_to_work: Resume work after charging/maintenance.

● check_the_battery: Check current battery level.

● move_to_grab_the_component_parts: Go to warehouse for parts.

● Taking components to assemble: Bring parts to assembly station.

● mandatory_quality_control: Perform required quality control.

● measure_to_move: Perform specific measurements.

● Take the product to the shelf: Place the finished product on the shelf.

● moving_the_tool_box: Move the toolbox.

● returning_to_the_initial_position: Return to starting point.

● moving_to_replace: Replace mismatched components.

● Move_to_check_quality: Perform quality inspection.

● move_for_maintenance: Go to maintenance for repair.

This complete list of states and actions ensures the robot can perform every task required,

from gathering resources and assembly to handling maintenance and quality control.

79

Chapter 8: Simulation Results

8.1 Navigation to Free Position Environment

Figure 36 MDP Navigation Environment

The optimal actions were provided by Dyna-Q, and Sample-based planning with Q-learning.

Through this process, the action-value function is updated, and through these simulated

experiences, it plans to maximize the cumulative reward to achieve the best possible policy that is

shown in table 1.

80

Table 1 Optimal Policy for Free Navigation MDP

In reinforcement learning, cumulative reward over episodes provides one of the most valuable

indicators for gauging learning efficiency and effectiveness in an algorithm. The performance of

the Dyna-Q algorithm over three different of episodes (500, 1000 and 50000) is compared to

understand how the learning process evolves with growing numbers of training episodes.

Figure 37 shows that there is fluctuation at the plateau. This is entirely expected since we are

currently in the initial exploration phase within the environment, and the method has not collected

enough experiences to settle down. Rewards might show some general tendency to go up, but the

volatility means it is far from close to optimal.

Figure 37 Cumulative Reward Over 500 Episodes for Dyna-Q Algorithm

81

In figure 38, the cumulative reward graph didn’t show any changes with 1,000 episodes

compared to the 500 episodes scenario. Fluctuations are there, but the trend is slightly

consistent; that is, the Dyna-Q algorithm has started to exploit its knowledge of the

environment better.

Figure 38 Cumulative Reward Over 1000 Episodes for Dyna-Q Algorithm

Finally, in figure 39, with 50,000 episodes, the cumulative graph would be the most stable

and highest compared to all scenarios. Such an enormous number of episodes assures that

the Dyna-Q algorithm gets enough opportunity to finetune its policy for maximum

exploitation of the rewards in the environment. The graph has minimal fluctuations, with

cumulative rewards approaching a plateau, which indicates that the policy is converging to

be close to the optimal policy. Moreover, In the cumulative reward plot for 50000 episodes,

after training, rewards in the last episode are still negative. This indicates that the Dyna-Q

algorithm has failed to converge to positive rewards which means that the agent didn’t

finished exploring states with negative rewards. Thus, the agent keeps getting punished

rather than obtaining positive accumulated rewards.

82

Figure 39 Cumulative Reward Over 50,000 Episodes for Dyna-Q Algorithm

The graph below depicts agent performance on a sample-based reinforcement learning

algorithm over 500 episodes using Q-learning algorithm. Examination of this graph gives

some sense of the learning dynamics, effectiveness, and stability of the algorithm.

Figure 40 Cumulative Reward Over 500 Episodes for Sample-based planning

83

Initially, the cumulative reward has a very high variance, also with negative values. This

is consistent with an agent of high exploratory character interacting with the environment.

The high variance in rewards suggests the agent may be acting to sample a variety of

actions to gain information about the dynamics and reward structure. As the number of

episodes increases, a marked upward trend can be seen from the graph, indicating that the

agent is now learning an effective policy. The fluctuations in cumulative reward are

gradually decreasing, even though they are still present. It is a phase with a mixture of

exploration and exploitation; the agent is now refining its policy based on all the

experiences gathered. The fact that the graph generally slopes positively demonstrates

agent performance improvement because cumulative rewards are monotonously

increasing. The cumulative reward graph gets steadier, and fluctuations decrease in the

later episodes. It reaches a return value of approximately 80, which hints that the agent has

converged to some relatively optimal policy. The return values mainly exploit the learned

policy, as judged by the reduced reward variance, indicating it is making consistent

decisions to achieve high returns.

8.2 Task Sequence Environment

Figure 41 Markov Decision Process for Robot Task Management and Quality Control

84

Simulations of how well the policy works, using Sample-based planning with SARSA and

Q-learning algorithms, are shown through the results in their respective graphs.

Figure 42 Task Sequence Episode vs Cumulative Reward for SARSA Algorithm

Figure 42 presents the results for the cumulative reward over 500 episodes while running

the SARSA algorithm. In the early episodes, the cumulative reward changes considerably;

thus, it is recognizable that there is an exploration of actions and their outcomes. Further

on in the episodes, it keeps growing, which means that the policy is improving. From

episode 200 onwards, the rewards stabilize, which means the agent picks up significant

reward-returning actions. As can be seen, the cumulative reward saturates beyond 500

episodes, thus proving that the policy has converged and can efficiently navigate through

an MDP.

85

Figure 43 Task Sequence Episode vs Cumulative Reward for Q-learning Algorithm

Figure 43 illustrates the result of the run of the Q-learning algorithm for 500 episodes. As

in the SARSA results, the early episodes have large fluctuations due to the exploration

phase. However, Q-learning tends to have a better rate of reward improvement than

SARSA. The graph rises steadily in cumulative rewards. This means more aggressive

exploitation of the learned values. The cumulative rewards will start stabilizing around

episode 150 and, at episode 500, will have plateaued, hence successful learning and policy

optimization. Both algorithms achieved the same optimal policy which is shown in the

table below.

86

Table 2 Optimal Policy For Task Sequence MDP

In the mentioned MDP, the robot is trained across a variety of states and transitions to gain

resilience against worst-case scenarios. In case of system failure, the robot is trained to

move for maintenance and then check on the battery to quickly resume operations after

attending to critical failures. The robot takes mandatory measures on urgent states to

efficiently deal with highpriority tasks to avoid disruptions to the standard workflow. In

case of failed quality control, the robot measures for reassessment and correction of issues

to make sure that quality products move forward in the process. The robot manages its

battery levels by moving to charge when under the threshold and returning to work when

above the threshold, thus preventing resource shortages that might hinder the

performability of tasks. It corrects the mismatches by replacing the incorrect components

and taking the right ones to assembly, thus maintaining the assembly’s integrity. While in

idle states, the robot measures to stay productive, keeping itself ready for the following

process, hence minimizing downtime and efficiency. At restocking, the robot avoids wait

and waste of time by doing some obligated tasks that ensure continuous productivity. The

policy ensures that the robot will be able to:

87

• Quickly address system failures and perform necessary maintenance.

• Effectively handle urgent tasks and quality control failures.

• Keep optimal levels of the batteries to avoid running short of resources

• Correct the mismatches and maintain the integrity of the warehouse.

• Minimize idle periods, maintaining a productive level.

• Ensure that end-of-line inspection products meet the standards before finalization.

• Prevent wasting time during restocking.

Moreover, an analysis is done to see how different settings of hyperparameters affect the

learning process and the resulting policy performance. First, the change is done on learning

rate. The first graph for SARSA and the second graph for Q-learning both enhanced with

Sample-based planning.

Figure 44 Episode vs Cumulative Reward for Different Hyperparameters in SARSA

The blue line represents the performance with a learning rate (α) of 0.1, discount factor (γ)

of 0.9, an initial exploration rate (ϵ) of 1.0, a decay rate of 0.99, and a minimum ϵ of 0.01.

The one in orange corresponds to a higher learning rate (α) of 0.5 with the same γ, ϵ, the

88

decay rate, and a minimum ϵ. At the start of both lines, a large amount of fluctuation can

be seen due to exploration; however, the blue line expands more rapidly away from 0. From

episodes 50 through 200, the blue line remains steadily uphill, indicating good learning

occurring because of a lower learning rate, while the orange line is much more volatile.

Later in episodes, it levels off at a higher cumulative reward characteristic of a more

optimal policy with less fluctuation. In contrast, the orange line remains more volatile and

reaches lower cumulative rewards overall. These results suggest that a lower learning rate

(α = 0.1) gives more stable learning and higher rewards, which suggests that

hyperparameter tuning is very important in achieving optimal performance in

reinforcement learning tasks.

Figure 45 Episode vs Cumulative Reward for Different Hyperparameters in Q-learning

In the early learning phase, episodes 0 through 100, the blue line produces significant

fluctuations in cumulative rewards; it means the agent is exploring and learning

incrementally. On the other hand, the orange line also produces bumps but bounces back

to a positive gradient quickly, which may suggest that the agent with a higher learning rate

(α = 0.5) learns quicker. One can see that α = 0.5 learns quicker. In the phase of learning

89

progression from episodes 100 to 300, the blue line increases steadily with reduced

fluctuations, which means that this is a pretty consistent improvement, and there is a

balance between exploitation and exploration. Meanwhile, the orange line shows how the

updating of the Q-values with significant steps brings faster increases in returns but is again

accompanied by instabilities reliably reflected in the continuing fluctuations. In the

stabilization phase, which includes episodes 300-500, it converges to an equilibrium with

a cumulative reward of 40, indicating that it has converged to some somewhat effective

policy with minor refinements. In contrast, the orange line stabilizes at a higher order of

reward—to the order of 50-60—with minor fluctuations, which means that the higher

learning rate allows the agent to achieve better policies more quickly for a high and stable

reward. The comparison of SARSA and Q-learning with sample-based planning under the

same hyperparameter settings reveals that Q-learning with sample-based enhancements

generally outperforms SARSA in terms of cumulative reward and learning efficiency. The

higher performance and faster convergence of Q-learning make it a powerful tool for

training the robot in this MDP. Although higher learning rates speed up learning, it is

known to have possible issues with stability, mainly for SARSA. Q-learning with sample-

based planning demonstrates higher robustness, performance for more significant learning

rates, higher cumulative rewards, and faster convergence. Thus, tuning the learning rate

should be appropriate to get maximum efficiency and stability for the reinforcement

learning algorithms.

8.3 Reasons of Disturbances

8.3.1 Imbalance Between Rewards and Penalties

An important disturbance encountered during the simulation was the imbalance between

rewards and penalties within the environment. In environments where the penalties

significantly outweigh the rewards, or vice versa, the learning dynamics can become

skewed, leading to suboptimal policies or even learning failure. The imbalance between

rewards and penalties can disrupt the agent’s ability to strike an effective balance between

exploration and exploitation. If the agent is overly penalized for exploratory behavior, it

may avoid trying new actions that could lead to better long-term rewards. On the other

90

hand, an excessive focus on rewards can lead the agent to become too exploitative,

preventing it from effectively learning from the full range of experiences.

8.3.2 Slow Convergence

Another challenge was the slow convergence of the Q-learning algorithm. Early episodes

showed little improvement in performance, and the reward graph often stagnated or

fluctuated without showing clear signs of learning. This was particularly evident in

environments with large state spaces, where the agent had to explore many states and

actions before it could begin to discern optimal policies.

After several unsuccessful attempts with different parameters, adjustment for the learning

rate (α) and the discount factor (γ) to facilitate faster learning. Additionally, the exploration

rate (ϵ) is gradually decayed to ensure that the agent balanced exploration with exploitation

more effectively, which contributed to improving the convergence rate. But at the end, they

aren’t the most optimal parameters tuned, that’s why there is still and will remain

disturbance at the beginning till the convergence.

91

Chapter 9: Conclusion and Future Work

This research aimed to develop a reinforcement learning (RL) framework capable of

enabling robots to operate autonomously and adaptively in industrial environments. By

leveraging Q-learning, SARSA, Dyna-Q, and sample-based planning within a structured

Markov Decision Process (MDP) environment, the study sought to enhance the robot's

resilience and efficiency across tasks such as navigation, assembly, quality control, and

maintenance. Each RL method contributed distinct advantages that, collectively,

empowered the robot to handle complex workflows and unforeseen disruptions with

greater adaptability.

9.1 Key Findings:

1. Q-learning provided a straightforward yet effective approach for training the

robot to maximize cumulative rewards through trial and error, emphasizing

exploration and exploitation. Its off-policy nature allowed rapid convergence to

an optimal policy, although it showed limitations in highly dynamic

environments.

2. SARSA’s on-policy approach yielded more stable learning, ideal for dynamic

industrial settings where the robot needs to prioritize safety and consistent policy

adherence. SARSA’s conservative updates made it effective for tasks requiring

stable, reliable actions over rapid policy shifts.

3. Dyna-Q’s integration of real and simulated experiences accelerated learning

by enabling planning updates, which proved particularly advantageous in

environments where task sequences were complex, and real interactions were

costly. The hybrid nature of Dyna-Q allowed the robot to reinforce learning from

a mix of real and simulated experiences, enhancing adaptability and learning

efficiency.

92

4. Sample-based planning allowed the robot to simulate potential outcomes and

explore a broader range of actions without excessive real-world interactions. This

approach reduced learning time and resource usage, especially beneficial in

resource-intensive tasks like quality control and restocking.

The study demonstrated that these methods, when implemented in a structured MDP

framework, could train robots to manage industrial tasks with improved efficiency and

adaptability. By systematically refining Q-values through a combination of real and

simulated interactions, the robot achieved a resilient policy that maximized productivity

and minimized response time to unexpected events.

9.2 Future Work: Integrating Deep Q-Networks (DQN)

While this research highlighted the potential of traditional RL algorithms, future

advancements can be realized by incorporating Deep Q-Networks (DQN) to address some

of the limitations encountered with large state-action spaces. DQN, a neural network-based

extension of Q-learning, approximates the Q-value function in high-dimensional or

continuous environments, providing a robust solution for scenarios where traditional Q-

tables are impractical.

9.3 Benefits of DQN:

● Scalability to Complex Environments: DQN enables the agent to generalize

across similar states, a critical advantage for complex industrial applications

where the robot must perform diverse tasks under varying conditions.

● Improved Learning Efficiency through Experience Replay: DQN utilizes

experience replay to store past experiences in a buffer, allowing the agent to learn

from a wider variety of interactions without redundancy. This could enhance

stability and learning efficiency in dynamic environments.

93

● Handling Continuous State Spaces: For industrial tasks requiring precise

control and adaptation (e.g., quality inspection with fine-grained actions), DQN’s

ability to approximate the Q-value function without discretization allows for more

granular and effective decision-making.

Future work could explore combining DQN with prioritized experience replay to further

enhance sample efficiency, where experiences with larger temporal-difference errors are

prioritized for learning. This improvement would allow the robot to focus more on critical

transitions, optimizing its learning and response times in complex tasks.

9.4 Potential Applications of DQN in Industrial Settings:

1. Multi-Task Learning: Using DQN, the robot could handle multiple tasks across

different industrial areas (e.g., transitioning seamlessly from assembly to quality

control) with improved policy generalization.

2. Adaptive Resource Management: DQN could help the robot dynamically

manage resource constraints (e.g., battery levels, component availability) by

learning more precise policies that optimize resource usage without sacrificing

performance.

3. Real-World Testing and Deployment: By training with DQN in simulated

environments that mimic real-world conditions, future studies could move closer

to deploying the trained policies on actual robots, bridging the gap between

simulation and deployment.

In conclusion, this research successfully demonstrated that a structured MDP framework,

combined with RL methods like Q-learning, SARSA, Dyna-Q, and sample-based planning,

enables robots to adapt to dynamic industrial settings. Integrating advanced methods such

as DQN will further empower robots to learn complex tasks efficiently, setting the stage

for highly adaptable and scalable industrial robotics in the future.

94

Bibliography

[1] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement Learning in Robotics: A

Survey”.
[2] D. Silver, “Lecture 1: Introduction to Reinforcement Learning”.
[3] R. S. Sutton and A. Barto, Reinforcement learning: an introduction, Second edition.

in Adaptive computation and machine learning. Cambridge, Massachusetts London,
England: The MIT Press, 2020.

[4] N. Altuntaş, E. İMal, N. Emanet, and C. N. Öztürk, “Reinforcement learning-based
mobile robot navigation,” Turk J Elec Eng & Comp Sci, vol. 24, pp. 1747–1767, 2016,
doi: 10.3906/elk-1311-129.

[5] H. Ruan, S. Zhou, Z. Chen, and C. P. Ho, “Robust Satisficing MDPs”.
[6] L. Vordemann, “Safe reinforcement learning for human-robot collaboration :

Shielding of a robotic local planner in an autonomous warehouse scenario,” master,

KTH, School of Electrical Engineering and Computer Science (EECS) / KTH, School
of Electrical Engineering and Computer Science (EECS), 2022.

[7] H. Lee and J. Jeong, “Mobile Robot Path Optimization Technique Based on
Reinforcement Learning Algorithm in Warehouse Environment,” Applied Sciences,
vol. 11, no. 3, p. 1209, Jan. 2021, doi: 10.3390/app11031209.

[8] V. N. Sichkar, “Reinforcement Learning Algorithms in Global Path Planning for

Mobile Robot,” in 2019 International Conference on Industrial Engineering,
Applications and Manufacturing (ICIEAM), Sochi, Russia: IEEE, Mar. 2019, pp. 1–

5. doi: 10.1109/ICIEAM.2019.8742915.
[9] Y. Jiang, F. Yang, S. Zhang, and P. Stone, “Task-Motion Planning with

Reinforcement Learning for Adaptable Mobile Service Robots,” in 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Macau, China:
IEEE, Nov. 2019, pp. 7529–7534. doi: 10.1109/IROS40897.2019.8967680.

[10] J. Pizoń, Ł. Wójcik, A. Gola, Ł. Kański, and I. Nielsen, “Autonomous Mobile Robots

in Automotive Remanufacturing: A Case Study for Intra-Logistics Support,” Adv. Sci.
Technol. Res. J., vol. 18, no. 1, pp. 213–230, Feb. 2024, doi:
10.12913/22998624/177398.

[11] N. M. Gomes, F. N. Martins, J. Lima, and H. Wörtche, “Reinforcement Learning for

Collaborative Robots Pick-and-Place Applications: A Case Study,” Automation, vol.
3, no. 1, pp. 223–241, Mar. 2022, doi: 10.3390/automation3010011.

[12] D. Silver, “Lecture 2: Markov Decision Processes,” Markov Processes.
[13] S. W. Contributors, “Spyder | The Python IDE that scientists and data analysts

deserve,” Spyder IDE. Accessed: Nov. 10, 2024. [Online]. Available:

https://www.spyder-ide.org
[14] “Welcome to Python.org,” Python.org. Accessed: Nov. 10, 2024. [Online]. Available:

https://www.python.org/
[15] “Anaconda | The Operating System for AI.” Accessed: Nov. 10, 2024. [Online].

Available: https://www.anaconda.com/

95

[16] S. Van Der Walt, S. C. Colbert, and G. Varoquaux, “The NumPy Array: A Structure

for Efficient Numerical Computation,” Comput. Sci. Eng., vol. 13, no. 2, pp. 22–30,
Mar. 2011, doi: 10.1109/MCSE.2011.37.

[17] “random — Generate pseudo-random numbers,” Python documentation. Accessed:

Nov. 16, 2024. [Online]. Available: https://docs.python.org/3/library/random.html
[18] J. D. Hunter, “Matplotlib: A 2D Graphics Environment,” Comput. Sci. Eng., vol. 9,

no. 3, pp. 90–95, 2007, doi: 10.1109/MCSE.2007.55.
[19] W. McKinney, “Data Structures for Statistical Computing in Python,” presented at

the Python in Science Conference, Austin, Texas, 2010, pp. 56–61. doi:
10.25080/Majora-92bf1922-00a.

[20] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring Network Structure,

Dynamics, and Function using NetworkX,” presented at the Python in Science

Conference, Pasadena, California, Jun. 2008, pp. 11–15. doi: 10.25080/TCWV9851.
[21] “Robot mobili per intralogistica,” IEN ITALIA - Scopri i nostri prodotti e servizi

industriali. Accessed: Nov. 16, 2024. [Online]. Available: https://www.ien-
italia.eu/articolo/robot-mobili-per-intralogistica/

[22] “ROS: Home.” Accessed: Nov. 10, 2024. [Online]. Available: https://www.ros.org/
[23] “ROS Architecture and Concepts,” Packt. Accessed: Nov. 10, 2024. [Online].

Available: https://www.packtpub.com/en-us/learning/how-to-tutorials/ros-
architecture-and-concepts

[24] D. Silver, “Lecture 5: Model-Free Control”.
[25] “flowchart.js.” Accessed: Nov. 10, 2024. [Online]. Available:

https://flowchart.js.org/
[26] D. Silver, “Lecture 8: Integrating Learning and Planning”.
[27] D. Silver, “Lecture 9: Exploration and Exploitation”.

96

Appendix:

MDP Navigation Code:

 import networkx as nx

import matplotlib.pyplot as plt

Create a directed graph

G = nx.DiGraph()

Add nodes (states) to the graph

states = ['S0', 'SA', 'SB', 'SC', 'HA', 'HB', 'HC', 'P']

actions = ['Perform', 'O', 'F']

G.add_nodes_from(states)

Define transitions and corresponding actions

transitions = {

 ('S0', 'SA'): 'F',

 ('S0', 'HA'): 'O',

 ('S0', 'SB'): 'F',

 ('S0', 'HB'): 'O',

 ('S0', 'SC'): 'F',

 ('S0', 'HC'): 'O',

 ('HA', 'SB'): 'F',

 ('HA', 'SC'): 'F',

 ('HB', 'SA'): 'F',

 ('HB', 'SC'): 'F',

 ('HC', 'SA'): 'F',

 ('HC', 'SB'): 'F',

 ('HA', 'HB'): 'O',

 ('HA', 'HC'): 'O',

 ('HB', 'HA'): 'O',

 ('HB', 'HC'): 'O',

 ('HC', 'HA'): 'O',

 ('HC', 'HB'): 'O',

 ('SA', 'P'): '', #Perform

 ('SB', 'P'): '', #Perform

 ('SC', 'P'): '', #Perform

 ('P', 'SA'): '', #F

 ('P', 'SB'): '', #F

 ('P', 'SC'): '', #F

 ('P', 'HA'): 'O',

 ('P', 'HB'): 'O',

 ('P', 'HC'): 'O',

}

Add edges with labels (actions)

for (u, v), action in transitions.items():

 G.add_edge(u, v, label=action)

Set a layout for our nodes

layout = {

 'S0': (-2, 1),

 'SA': (-1, -1),

97

 'SB': (2, 2.5),

 'SC': (2, 0),

 'HA': (-1, 3),

 'HB': (1, 3),

 'HC': (2, 1.5),

 'P': (1, -1)

}

Drawing parameters

node_size = 2000

font_size = 12

plt.figure(figsize=(12, 8))

Draw the graph with the specific node positions we've set

nx.draw(G, pos=layout, node_size=node_size, node_color='lightblue',

edge_color='black',

 width=2, linewidths=1, font_size=font_size,

with_labels=True, arrowsize=20)

Draw edge labels

edge_labels = nx.get_edge_attributes(G, 'label')

nx.draw_networkx_edge_labels(G, pos=layout,

edge_labels=edge_labels, font_color='red')

Display the graph

plt.title('Markov Decision Process Visualization', size=20)

plt.axis('off') # Turn off the axis

plt.show()

98

MDP Experiment Code:
import networkx as nx

import matplotlib.pyplot as plt

Create a directed graph

G = nx.DiGraph()

#EOL: end of line inspection

Add nodes (states) to the graph

states = ['charging_station', 'warehouse_kitting',

'assemble_station_t', 'assemble_station_p', 'EOL_t', 'EOL_p'

 , 'EOL', 'quality_control', 'final_warehouse']

actions = ['move_to_grap_the_component_parts',

'taking_components_to_assemble', 'moving_the_tool_box',

'move_to_grap_the_assembled_part', 'moving _the_assembled_product'

 , 'move_to_measure', 'move_to_check_the_quality',

'taking_the_product_to_the_shelf',

'returning_to_the_initial_position']

G.add_nodes_from(states)

Define transitions and corresponding actions

transitions = {

 ('charging_station', 'warehouse_kitting'):

'move_to_grap_the_component_parts',

 ('warehouse_kitting', 'assemble_station_t'):

'taking_components_to_assemble',

 ('assemble_station_t', 'EOL_t'): 'moving_the_tool_box',

 ('EOL_t', 'assemble_station_p'):

'move_to_grap_the_assembled_product',

 ('assemble_station_p', 'EOL_p'): 'moving

_the_assembled_product',

 ('EOL_p', 'EOL'): 'move_to_measure',

 ('EOL', 'quality_control'): 'move_to_check_the_quality',

 ('quality_control', 'final_warehouse'):

'taking_the_product_to_the_shelf',

 ('final_warehouse', 'charging_station'):

'returning_to_the_initial_position',

}

Add edges with labels (actions)

for (u, v), action in transitions.items():

 G.add_edge(u, v, label=action)

Set a layout for our nodes

layout = {

 'charging_station': (-2, 1),

 'warehouse_kitting': (-1, 1),

 'assemble_station_t': (0, 1),

 'assemble_station_p': (0, 0),

 'EOL_t': (1,1),

 'EOL_p': (0,-3),

 'EOL': (1,-3),

 'quality_control': (2, -2),

 'final_warehouse': (2, 3),

99

}

Drawing parameters

node_size = 9000

font_size = 10

plt.figure(figsize=(25, 12))

Draw the graph with the specific node positions we've set

nx.draw(G, pos=layout, node_size=node_size, node_color='lightblue',

edge_color='black',

 width=2, linewidths=1, font_size=font_size,

with_labels=True, arrowsize=20)

Draw edge labels

edge_labels = nx.get_edge_attributes(G, 'label')

nx.draw_networkx_edge_labels(G, pos=layout,

edge_labels=edge_labels, font_color='red')

Display the graph

plt.title('Markov Decision Process Visualization', size=20)

plt.axis('off') # Turn off the axis

plt.show()

100

MDP Experiment with Adversaries+R Code:
import networkx as nx

import matplotlib.pyplot as plt

Create a directed graph

G = nx.DiGraph()

#EOL: end of line inspection

Add nodes (states) to the graph

states = ['charging_station', 'warehouse_kitting',

'assemble_station_t', 'assemble_station_p'

 , 'EOL_t' , 'EOL', 'successed_quality_control',

'final_warehouse', 'warehouse_mismatch' , 'idle', 'restocking'

 , 'failed_quality_control', 'mismatch', 'EOL_corrected',

'urgent', 'system_failure'

 , 'maintenance', 'under_threshold', 'above_threshold']

actions = ['move_to_grap_the_component_parts',

'taking_components_to_assemble', 'moving_the_tool_box',

 'move_to_grap_the_assembled_product',

'moving_the_assembled_product_to_measure',

 'move_to_check_the_quality_s',

'move_to_check_the_quality_f', 'taking_the_product_to_the_shelf',

'returning_to_the_initial_position',

 'taking_the_wrong_component', 'returning_to_warehouse',

'wait', 'move', 'move_to_measure_again'

 , 'moving_to_measure', 'moving_to_replace',

'mandatory_measurement', 'mandatory_quality_control'

 , 'move_to_warehouse', 'unexpected_failure',

'continue_working', 'move_for_maintenance'

 , 'check_the_battery', 'return_to_work',

'move_for_charging']

G.add_nodes_from(states)

Define transitions and corresponding actions

transitions = {

 ('charging_station', 'warehouse_kitting'):

'move_to_grap_the_component_parts',

 ('warehouse_kitting', 'assemble_station_t'):

'taking_components_to_assemble',

 ('assemble_station_t', 'EOL_t'): 'moving_the_tool_box',

 ('EOL_t', 'assemble_station_p'):

'move_to_grap_the_assembled_product',

 ('assemble_station_p', 'EOL'):

'moving_the_assembled_product_to_measure',

 ('final_warehouse', 'charging_station'):

'returning_to_the_initial_position',

 ('mismatch', 'warehouse_mismatch'): 'moving_to_replace',

 ('warehouse_mismatch', 'assemble_station_p'):

'taking_components_to_assemble',

 ('assemble_station_p', 'idle'): '', #move

 ('idle', 'assemble_station_p'): '', #wait

 ('EOL', 'failed_quality_control'): 'move_to_check_the_quality',

 ('EOL', 'successed_quality_control'):

'move_to_check_the_quality',

101

 ('idle', 'EOL'): 'moving_to_measure',

 ('warehouse_kitting', 'restocking'): '', #move

 ('restocking', 'warehouse_kitting'): '', #wait

 ('restocking', 'EOL'): 'moving_to_measure',

 ('successed_quality_control', 'final_warehouse'):

'taking_the_product_to_the_shelf',

 ('failed_quality_control', 'final_warehouse'):

'taking_the_product_to_the_shelf',

 ('mismatch', 'EOL'): 'moving_to_measure',

 ('assemble_station_p', 'mismatch'): 'move',

 ('mismatch', 'EOL'): 'moving_to_measure',

 ('failed_quality_control', 'EOL_corrected'):

'move_to_measure_again',

 ('EOL_corrected', 'final_warehouse'):

'taking_the_product_to_the_shelf',

 ('charging_station', 'urgent'): 'move',

 #('warehouse_kitting', 'urgent'): 'urgent_move',

 #('assemble_station_t', 'urgent'): 'urgent_move',

 ('urgent', 'EOL'): 'mandatory_measurement',

 ('urgent', 'failed_quality_control'):

'mandatory_quality_control',

 ('urgent', 'successed_quality_control'):

'mandatory_quality_control',

 ('urgent', 'warehouse_kitting'): 'move_to_warehouse',

 ('EOL', 'system_failure'): '', #unexpected_failure

 ('system_failure', 'maintenance'): 'move_for_maintenance',

 ('system_failure', 'EOL'): '', #continue_working

 ('maintenance', 'under_threshold'): 'check_the_battery',

 ('maintenance', 'above_threshold'): 'check_the_battery',

 ('under_threshold', 'urgent'): 'return_to_work',

 ('under_threshold', 'charging_station'): 'move_for_charging',

 ('above_threshold', 'urgent'): 'return_to_work',

 ('above_threshold', 'charging_station'): 'move_for_charging',

}

Add edges with labels (actions)

for (u, v), action in transitions.items():

 G.add_edge(u, v, label=action)

Set a layout for our nodes

layout = {

 'charging_station': (-3.5, 1.5),

 'warehouse_kitting': (-1.5, 1),

 'assemble_station_t': (0.2, 1.7),

 'assemble_station_p': (-1, -3.5),

 'idle': (-0.2, -4),

 'component_mismatch': (-2, -0.5),

 'mismatch': (-1.9, -2.2),

 'warehouse_mismatch': (-3, -3.5),

 'EOL_t': (1.3,3.5),

 'EOL': (1,-3),

 'quality_control': (2, -2),

 'failed_quality_control': (3, 1),

 'final_warehouse': (2, 3),

 'restocking': (-0.8, -1),

 'EOL_corrected': (1.5, -0.7),

 'urgent': (-2.5, -1),

102

 'successed_quality_control': (3, -3),

 'system_failure': (0.8, -0.7),

 'maintenance': (-1.2, 3),

 'under_threshold': (-5, 2),

 'above_threshold': (-5, -2),

}

Drawing parameters

node_size = 10000

font_size = 10

plt.figure(figsize=(25, 12))

Draw the graph with the specific node positions we've set

nx.draw(G, pos=layout, node_size=node_size, node_color='lightblue',

edge_color='black',

 width=2, linewidths=1, font_size=font_size,

with_labels=True, arrowsize=20)

Draw edge labels

edge_labels = nx.get_edge_attributes(G, 'label')

nx.draw_networkx_edge_labels(G, pos=layout,

edge_labels=edge_labels, font_color='red')

Display the graph

plt.title('Markov Decision Process Visualization', size=20)

plt.axis('off') # Turn off the axis

plt.show()

103

Dyna-Q Code:
import numpy as np

import random

import matplotlib.pyplot as plt

import pandas as pd

states and actions

states = ['S0', 'SA', 'SB', 'SC', 'HA', 'HB', 'HC', 'P']

actions = ['Perform', 'O', 'F']

state_indices = {state: idx for idx, state in enumerate(states)}

action_indices = {action: idx for idx, action in

enumerate(actions)}

Initialize rewards based on description

rewards = np.zeros((len(states), len(actions)))

rewards[state_indices['S0'], action_indices['F']] = 1

rewards[state_indices['SA'], action_indices['Perform']] = 1

rewards[state_indices['SB'], action_indices['Perform']] = 1

rewards[state_indices['SC'], action_indices['Perform']] = 1

rewards[state_indices['P'], action_indices['F']] = 1

rewards[state_indices['HA'], action_indices['F']] = 1

rewards[state_indices['HB'], action_indices['F']] = 1

rewards[state_indices['HC'], action_indices['F']] = 1

rewards[state_indices['S0'], action_indices['O']] = -5

rewards[state_indices['P'], action_indices['O']] = -5

rewards[state_indices['HA'], action_indices['O']] = -5

rewards[state_indices['HB'], action_indices['O']] = -5

rewards[state_indices['HC'], action_indices['O']] = -5

Stochastic transitions

transitions_stochastic = {

 'S0': {'F': [('SA', 0.33), ('SB', 0.33), ('SC', 0.34)],

 'O': [('HA', 0.33), ('HB', 0.33), ('HC', 0.34)]},

 'HA': {'F': [('SB', 0.5), ('SC', 0.5)], 'O': [('HB', 0.5),

('HC', 0.5)]},

 'HB': {'F': [('SA', 0.5), ('SC', 0.5)], 'O': [('HA', 0.5),

('HC', 0.5)]},

 'HC': {'F': [('SA', 0.5), ('SB', 0.5)], 'O': [('HA', 0.5),

('HB', 0.5)]},

 'SA': {'Perform': [('P', 1.0)]}, 'SB': {'Perform': [('P',

1.0)]}, 'SC': {'Perform': [('P', 1.0)]},

 'P': {'F': [('SA', 0.33), ('SB', 0.33), ('SC', 0.34)], 'O':

[('HA', 0.33), ('HB', 0.33), ('HC', 0.34)]},

 }

Function to simulate state transition

def simulate_transition(current_state, action,

transitions_stochastic):

 if action in transitions_stochastic[current_state]:

 possible_transitions =

transitions_stochastic[current_state][action]

 next_states, probabilities = zip(*possible_transitions)

 next_state = random.choices(next_states,

weights=probabilities)[0]

 return next_state

104

 return current_state # Return current state if no action is

possible

Dyna-Q parameters

alpha = 0.1 # Learning rate

gamma = 0.95 # Discount factor

epsilon_start = 1.0 # Initial exploration rate

epsilon_end = 0.1 # Final exploration rate

episodes = 500 # Number of episodes for training

epsilon_decay = (epsilon_start - epsilon_end) / episodes # Linear

decay over episodes

n_planning_steps = 5 # Number of planning steps per real step

Initialize Q-values and model

Q = np.zeros((len(states), len(actions)))

model = {}

Function to choose action using epsilon-greedy policy

def choose_action(state, epsilon):

 if np.random.rand() < epsilon:

 return np.random.choice(actions)

 else:

 return actions[np.argmax(Q[state_indices[state]])]

List to store cumulative rewards for each episode

cumulative_rewards = []

Training loop

epsilon = epsilon_start

for episode in range(episodes):

 state = 'S0'

 cumulative_reward = 0

 while state != 'P': # Continue until terminal state is reached

 action = choose_action(state, epsilon)

 next_state = simulate_transition(state, action,

transitions_stochastic)

 reward = rewards[state_indices[state],

action_indices[action]]

 cumulative_reward += reward

 # Update Q-values

 best_next_action = np.argmax(Q[state_indices[next_state]])

 Q[state_indices[state], action_indices[action]] += alpha *

(reward + gamma *

 Q[state_indices[next_state], best_next_action] -

Q[state_indices[state], action_indices[action]])

 # Update model

 if state not in model:

 model[state] = {}

 model[state][action] = (next_state, reward)

 # Planning steps

 for _ in range(n_planning_steps):

 if model:

 sampled_state = random.choice(list(model.keys()))

105

 sampled_action =

random.choice(list(model[sampled_state].keys()))

 sampled_next_state, sampled_reward =

model[sampled_state][sampled_action]

 best_sampled_next_action =

np.argmax(Q[state_indices[sampled_next_state]])

 Q[state_indices[sampled_state],

action_indices[sampled_action]] += alpha * (sampled_reward + gamma

*

Q[state_indices[sampled_next_state],

 best_sampled_next_action] -

Q[state_indices[sampled_state], action_indices[sampled_action]])

 state = next_state

 cumulative_rewards.append(cumulative_reward)

 # Decay epsilon

 if epsilon > epsilon_end:

 epsilon -= epsilon_decay

Extract the optimal policy

optimal_policy = {state:

actions[np.argmax(Q[state_indices[state]])] for state in states}

Print the optimal policy

print("Optimal Policy:")

for state, action in optimal_policy.items():

 if state != 'P':

 print(f"State {state}: Best Action {action}")

Print the Q-table

print("\nQ-table:")

Q_df = pd.DataFrame(Q, index=states, columns=actions)

print(Q_df)

Plot the cumulative reward over episodes

plt.plot(cumulative_rewards)

plt.xlabel('Episodes')

plt.ylabel('Cumulative Reward')

plt.title('Cumulative Reward over Episodes')

plt.show()

106

SBP with Q-learning Code for Navigation MDP:
import numpy as np

import random

import matplotlib.pyplot as plt

import pandas as pd

states and actions

states = ['S0', 'SA', 'SB', 'SC', 'HA', 'HB', 'HC', 'P']

actions = ['Perform', 'O', 'F']

state_indices = {state: idx for idx, state in enumerate(states)}

action_indices = {action: idx for idx, action in

enumerate(actions)}

Initialize rewards based on description

rewards = np.zeros((len(states), len(actions)))

rewards[state_indices['S0'], action_indices['F']] = 1

rewards[state_indices['SA'], action_indices['Perform']] = 1

rewards[state_indices['SB'], action_indices['Perform']] = 1

rewards[state_indices['SC'], action_indices['Perform']] = 1

rewards[state_indices['P'], action_indices['F']] = 1

rewards[state_indices['HA'], action_indices['F']] = 1

rewards[state_indices['HB'], action_indices['F']] = 1

rewards[state_indices['HC'], action_indices['F']] = 1

rewards[state_indices['S0'], action_indices['O']] = -5

rewards[state_indices['P'], action_indices['O']] = -5

rewards[state_indices['HA'], action_indices['O']] = -5

rewards[state_indices['HB'], action_indices['O']] = -5

rewards[state_indices['HC'], action_indices['O']] = -5

Stochastic transitions

transitions_stochastic = {

 'S0': {'F': [('SA', 0.33), ('SB', 0.33), ('SC', 0.34)],

 'O': [('HA', 0.33), ('HB', 0.33), ('HC', 0.34)]},

 'HA': {'F': [('SB', 0.5), ('SC', 0.5)], 'O': [('HB', 0.5),

('HC', 0.5)]},

 'HB': {'F': [('SA', 0.5), ('SC', 0.5)], 'O': [('HA', 0.5),

('HC', 0.5)]},

 'HC': {'F': [('SA', 0.5), ('SB', 0.5)], 'O': [('HA', 0.5),

('HB', 0.5)]},

 'SA': {'Perform': [('P', 1.0)]}, 'SB': {'Perform': [('P',

1.0)]}, 'SC': {'Perform': [('P', 1.0)]},

 'P': {'F': [('SA', 0.33), ('SB', 0.33), ('SC', 0.34)], 'O':

[('HA', 0.33), ('HB', 0.33), ('HC', 0.34)]},

 }

Function to simulate state transition

def simulate_transition(current_state, action,

transitions_stochastic):

 if action in transitions_stochastic[current_state]:

 possible_transitions =

transitions_stochastic[current_state][action]

 next_states, probabilities = zip(*possible_transitions)

 next_state = random.choices(next_states,

weights=probabilities)[0]

 return next_state

107

 return current_state # Return current state if no action is

possible

num_samples_per_state = 10

def generate_samples(states, transitions_stochastic,

num_samples_per_state):

 samples = []

 for state in states:

 for _ in range(num_samples_per_state):

 if state not in transitions_stochastic:

 continue

 action =

random.choice(list(transitions_stochastic[state].keys()))

 next_state = simulate_transition(state, action,

transitions_stochastic)

 samples.append((state, action, next_state))

 return samples

Generate a set of samples from the MDP

sampled_transitions = generate_samples(states,

transitions_stochastic, num_samples_per_state)

Print some samples to verify

print("Sampled Transitions:")

for sample in sampled_transitions[:]:

 print(sample)

Initialize Q-values

Q = np.zeros((len(states), len(actions)))

Hyperparameters for Q-learning

alpha = 0.2 # Learning rate

gamma = 0.1 # Discount factor

initial_epsilon = 1.0 # Start with 100% exploration

decay_rate = 0.99 # Decay rate per episode

min_epsilon = 0.01 # Minimum value of epsilon

def update_q_value(prev_state, action, reward, next_state, Q,

alpha, gamma):

 prev_state_idx = state_indices[prev_state]

 action_idx = action_indices[action]

 next_state_idx = state_indices[next_state]

 # Get the maximum Q-value for the next state

 max_future_q = np.max(Q[next_state_idx])

 # Update the Q-value for the previous state and action

 Q[prev_state_idx, action_idx] += alpha * (reward + gamma *

max_future_q - Q[prev_state_idx, action_idx])

def epsilon_greedy_policy(state, epsilon, Q):

 # With probability epsilon, select a random action

 if random.random() < epsilon:

 return random.choice(actions)

108

 # With probability 1 - epsilon, select the action with the

maximum Q-value

 state_idx = state_indices[state]

 return actions[np.argmax(Q[state_idx])]

def train_q_learning(Q, sampled_transitions, alpha, gamma, epsilon,

decay_rate, min_epsilon, epochs):

 cumulative_rewards = []

 for epoch in range(epochs):

 total_reward = 0

 np.random.shuffle(sampled_transitions) # Shuffle samples

each epoch for better learning

 for (prev_state, action, next_state) in

sampled_transitions:

 # Select an action using epsilon-greedy policy

 action = epsilon_greedy_policy(prev_state, epsilon, Q)

 reward = rewards[state_indices[prev_state],

action_indices[action]]

 total_reward += reward

 update_q_value(prev_state, action, reward, next_state,

Q, alpha, gamma)

 cumulative_rewards.append(total_reward)

 # Exponentially decay epsilon

 epsilon = max(min_epsilon, epsilon * decay_rate)

 return cumulative_rewards, epsilon

epochs = 500

Train and get the rewards history

rewards_history, final_epsilon = train_q_learning(Q,

sampled_transitions, alpha, gamma, initial_epsilon, decay_rate,

min_epsilon, epochs)

def derive_policy(Q, states, actions):

 policy = {}

 for idx, state in enumerate(states):

 best_action_idx = np.argmax(Q[idx])

 policy[state] = actions[best_action_idx]

 return policy

Derive the optimal policy

optimal_policy = derive_policy(Q, states, actions)

print("Optimal Policy:", optimal_policy)

def plot_rewards(rewards_history):

 plt.figure(figsize=(10, 5))

 plt.plot(rewards_history, label='Cumulative Reward per

Episode')

 plt.xlabel('Episode')

 plt.ylabel('Cumulative Reward')

 plt.title('Episode vs Cumulative Reward')

 plt.legend()

 plt.grid(True)

109

 plt.show()

Plot the cumulative rewards

plot_rewards(rewards_history)

Convert Q-table to a pandas DataFrame for better visualization

def print_q_table(Q, states, actions):

 df = pd.DataFrame(Q, index=states, columns=actions)

 return df

q_table_df = print_q_table(Q, states, actions)

Adjust display settings to show all rows and columns if needed

pd.set_option('display.max_rows', None)

pd.set_option('display.max_columns', None)

pd.set_option('display.width', 1000)

pd.set_option('display.colheader_justify', 'center')

pd.set_option('display.precision', 3)

print(q_table_df)

110

SBP with Q-learning Code for Task Sequence MDP:

import numpy as np

import random

import matplotlib.pyplot as plt

import pandas as pd

states and actions

states = ['charging_station', 'warehouse_kitting',

'assemble_station_t', 'assemble_station_p'

 , 'EOL_t' , 'EOL', 'successed_quality_control',

'final_warehouse', 'warehouse_mismatch' , 'idle', 'restocking'

 , 'failed_quality_control', 'mismatch', 'EOL_corrected',

'urgent', 'system_failure'

 , 'maintenance', 'under_threshold', 'above_threshold']

actions = ['move_to_grap_the_component_parts',

'taking_components_to_assemble', 'moving_the_tool_box',

 'move_to_grap_the_assembled_product',

'moving_the_assembled_product_to_measure',

 'move_to_check_the_quality',

'taking_the_product_to_the_shelf',

'returning_to_the_initial_position',

 'taking_the_wrong_component', 'returning_to_warehouse',

'wait', 'move', 'move_to_measure_again'

 , 'moving_to_measure', 'moving_to_replace',

'mandatory_measurement'

 , 'mandatory_quality_control', 'move_to_warehouse',

'unexpected_failure', 'continue_working'

 , 'move_for_maintenance', 'check_the_battery',

'return_to_work', 'move_for_charging']

state_indices = {state: idx for idx, state in enumerate(states)}

action_indices = {action: idx for idx, action in

enumerate(actions)}

Initialize rewards based on description

rewards = np.zeros((len(states), len(actions)))

rewards[state_indices['charging_station'],

action_indices['move_to_grap_the_component_parts']] = 1

rewards[state_indices['charging_station'], action_indices['move']]

= 0

rewards[state_indices['urgent'],

action_indices['move_to_warehouse']] = -20

rewards[state_indices['urgent'],

action_indices['mandatory_quality_control']] = 1

rewards[state_indices['urgent'],

action_indices['mandatory_measurement']] = 1

rewards[state_indices['warehouse_kitting'], action_indices['move']]

= 0

rewards[state_indices['restocking'], action_indices['wait']] = -20

rewards[state_indices['restocking'],

action_indices['moving_to_measure']] = 1

rewards[state_indices['warehouse_kitting'],

action_indices['taking_components_to_assemble']] = 1

rewards[state_indices['assemble_station_t'],

action_indices['moving_the_tool_box']] = 1

111

rewards[state_indices['EOL_t'],

action_indices['move_to_grap_the_assembled_product']] = 1

rewards[state_indices['assemble_station_p'],

action_indices['move']] = 0

rewards[state_indices['mismatch'],

action_indices['moving_to_measure']] = -20

rewards[state_indices['mismatch'],

action_indices['moving_to_replace']] = 1

rewards[state_indices['warehouse_mismatch'],

action_indices['taking_components_to_assemble']] = 1

rewards[state_indices['assemble_station_p'],

action_indices['moving_the_assembled_product_to_measure']] = 1

rewards[state_indices['idle'], action_indices['wait']] = -20

rewards[state_indices['idle'], action_indices['moving_to_measure']]

= 1

rewards[state_indices['assemble_station_p'],

action_indices['move']] = 1

rewards[state_indices['EOL'],

action_indices['move_to_check_the_quality']] = 1

rewards[state_indices['successed_quality_control'],

action_indices['taking_the_product_to_the_shelf']] = 1

rewards[state_indices['failed_quality_control'],

action_indices['move_to_measure_again']] = 1

rewards[state_indices['failed_quality_control'],

action_indices['taking_the_product_to_the_shelf']] = -20

rewards[state_indices['EOL_corrected'],

action_indices['taking_the_product_to_the_shelf']] = 1

rewards[state_indices['final_warehouse'],

action_indices['returning_to_the_initial_position']] = 1

rewards[state_indices['EOL'], action_indices['unexpected_failure']]

= 0

rewards[state_indices['system_failure'],

action_indices['continue_working']] = -20

rewards[state_indices['system_failure'],

action_indices['move_for_maintenance']] = 1

rewards[state_indices['maintenance'],

action_indices['check_the_battery']] = 1

rewards[state_indices['under_threshold'],

action_indices['return_to_work']] = -20

rewards[state_indices['above_threshold'],

action_indices['move_for_charging']] = -20

rewards[state_indices['under_threshold'],

action_indices['move_for_charging']] = 1

rewards[state_indices['above_threshold'],

action_indices['return_to_work']] = 1

Stochastic transitions

transitions_stochastic = {

 'charging_station': {'move_to_grap_the_component_parts':

[('warehouse_kitting', 1.0)]

 , 'move':[('urgent', 1.0)]},

 'urgent': {'move_to_warehouse': [('warehouse_kitting', 1.0)],

'mandatory_quality_control': [('failed_quality_control', 0.1),

('successed_quality_control', 0.9)]

 , 'mandatory_measurement': [('EOL', 1.0)]},

 'warehouse_kitting': {'move': [('restocking', 1.0)],

'taking_components_to_assemble': [('assemble_station_t', 1.0)]},

112

 'restocking': {'wait': [('warehouse_kitting', 1.0)],

'moving_to_measure': [('EOL', 1.0)]},

 'assemble_station_t': {'moving_the_tool_box': [('EOL_t',

1.0)]},

 'EOL_t': {'move_to_grap_the_assembled_product':

[('assemble_station_p', 1.0)]},

 'assemble_station_p': {'move': [('mismatch', 0.5), ('idle',

0.5)], 'moving_the_assembled_product_to_measure': [('EOL', 1.0)]},

 'mismatch': {'moving_to_replace': [('warehouse_mismatch',

1.0)], 'moving_to_measure': [('EOL', 1.0)]},

 'warehouse_mismatch': {'taking_components_to_assemble':

[('assemble_station_p', 1.0)]},

 'idle': {'wait': [('assemble_station_p', 1.0)],

'moving_to_measure': [('EOL', 1.0)]},

 'EOL': {'move_to_check_the_quality':

[('failed_quality_control', 0.1), ('successed_quality_control',

0.9)], 'unexpected_failure': [('system_failure', 1.0)]},

 'failed_quality_control': {'taking_the_product_to_the_shelf':

[('final_warehouse', 1.0)], 'move_to_measure_again':

[('EOL_corrected', 1.0)]},

 'EOL_corrected': {'taking_the_product_to_the_shelf':

[('final_warehouse', 1.0)]},

 'final_warehouse': {'returning_to_the_initial_position':

[('charging_station', 1.0)]},

 'successed_quality_control':

{'taking_the_product_to_the_shelf': [('final_warehouse', 1.0)]},

 'system_failure': {'continue_working': [('EOL', 1.0)],

'move_for_maintenance': [('maintenance', 1.0)]},

 'maintenance': {'check_the_battery': [('under_threshold', 0.5),

('above_threshold', 0.5)]},

 'under_threshold': {'return_to_work': [('urgent', 1.0)],

'move_for_charging': [('charging_station', 1.0)]},

 'above_threshold': {'return_to_work': [('urgent', 1.0)],

'move_for_charging': [('charging_station', 1.0)]}

 }

Function to simulate state transition

def simulate_transition(current_state, action,

transitions_stochastic):

 if action in transitions_stochastic[current_state]:

 possible_transitions =

transitions_stochastic[current_state][action]

 next_states, probabilities = zip(*possible_transitions)

 next_state = random.choices(next_states,

weights=probabilities)[0]

 return next_state

 return current_state # Return current state if no action is

possible

num_samples_per_state = 3

def generate_samples(states, transitions_stochastic,

num_samples_per_state):

 samples = []

 for state in states:

 for _ in range(num_samples_per_state):

113

 if state not in transitions_stochastic:

 continue

 action =

random.choice(list(transitions_stochastic[state].keys()))

 next_state = simulate_transition(state, action,

transitions_stochastic)

 samples.append((state, action, next_state))

 return samples

Generate a set of samples from the MDP

sampled_transitions = generate_samples(states,

transitions_stochastic, num_samples_per_state)

Print some samples to verify

print("Sampled Transitions:")

for sample in sampled_transitions[:]:

 print(sample)

Initialize Q-values

Q = np.zeros((len(states), len(actions)))

Hyperparameters for Q-learning

alpha = 0.1 # Learning rate

gamma = 0.9 # Discount factor

initial_epsilon = 1.0 # Start with 100% exploration

decay_rate = 0.99 # Decay rate per episode

min_epsilon = 0.01 # Minimum value of epsilon

def update_q_value(prev_state, action, reward, next_state, Q,

alpha, gamma):

 prev_state_idx = state_indices[prev_state]

 action_idx = action_indices[action]

 next_state_idx = state_indices[next_state]

 # Get the maximum Q-value for the next state

 max_future_q = np.max(Q[next_state_idx])

 # Update the Q-value for the previous state and action

 Q[prev_state_idx, action_idx] += alpha * (reward + gamma *

max_future_q - Q[prev_state_idx, action_idx])

def epsilon_greedy_policy(state, epsilon, Q):

 # With probability epsilon, select a random action

 if random.random() < epsilon:

 return random.choice(actions)

 # With probability 1 - epsilon, select the action with the

maximum Q-value

 state_idx = state_indices[state]

 return actions[np.argmax(Q[state_idx])]

def train_q_learning(Q, sampled_transitions, alpha, gamma, epsilon,

decay_rate, min_epsilon, epochs):

 cumulative_rewards = []

 for epoch in range(epochs):

 total_reward = 0

114

 np.random.shuffle(sampled_transitions) # Shuffle samples

each epoch for better learning

 for (prev_state, action, next_state) in

sampled_transitions:

 # Select an action using epsilon-greedy policy

 action = epsilon_greedy_policy(prev_state, epsilon, Q)

 reward = rewards[state_indices[prev_state],

action_indices[action]]

 total_reward += reward

 update_q_value(prev_state, action, reward, next_state,

Q, alpha, gamma)

 cumulative_rewards.append(total_reward)

 # Exponentially decay epsilon

 epsilon = max(min_epsilon, epsilon * decay_rate)

 return cumulative_rewards, epsilon

epochs = 500

Train and get the rewards history

rewards_history, final_epsilon = train_q_learning(Q,

sampled_transitions, alpha, gamma, initial_epsilon, decay_rate,

min_epsilon, epochs)

def derive_policy(Q, states, actions):

 policy = {}

 for idx, state in enumerate(states):

 best_action_idx = np.argmax(Q[idx])

 policy[state] = actions[best_action_idx]

 return policy

Derive the optimal policy

optimal_policy = derive_policy(Q, states, actions)

print("Optimal Policy:")

for state, action in optimal_policy.items():

 print(f"State: {state}, Best Action: {action}")

def plot_rewards(rewards_history):

 plt.figure(figsize=(10, 5))

 plt.plot(rewards_history, label='Cumulative Reward per

Episode')

 plt.xlabel('Episode')

 plt.ylabel('Cumulative Reward')

 plt.title('Episode vs Cumulative Reward')

 plt.legend()

 plt.grid(True)

 plt.show()

Plot the cumulative rewards

plot_rewards(rewards_history)

Convert Q-table to a pandas DataFrame for better visualization

def print_q_table(Q, states, actions):

 df = pd.DataFrame(Q, index=states, columns=actions)

 return df

115

q_table_df = print_q_table(Q, states, actions)

Adjust display settings to show all rows and columns if needed

pd.set_option('display.max_rows', None)

pd.set_option('display.max_columns', None)

pd.set_option('display.width', 1000)

pd.set_option('display.colheader_justify', 'center')

pd.set_option('display.precision', 3)

print(q_table_df)

116

SARSA for Task Sequence MDP:

import numpy as np

import random

import matplotlib.pyplot as plt

import pandas as pd

states and actions

states = ['charging_station', 'warehouse_kitting',

'assemble_station_t', 'assemble_station_p'

 , 'EOL_t' , 'EOL', 'successed_quality_control',

'final_warehouse', 'warehouse_mismatch' , 'idle', 'restocking'

 , 'failed_quality_control', 'mismatch', 'EOL_corrected',

'urgent', 'system_failure'

 , 'maintenance', 'under_threshold', 'above_threshold']

actions = ['move_to_grap_the_component_parts',

'taking_components_to_assemble', 'moving_the_tool_box',

 'move_to_grap_the_assembled_product',

'moving_the_assembled_product_to_measure',

 'move_to_check_the_quality',

'taking_the_product_to_the_shelf',

'returning_to_the_initial_position',

 'taking_the_wrong_component', 'returning_to_warehouse',

'wait', 'move', 'move_to_measure_again'

 , 'moving_to_measure', 'moving_to_replace',

'mandatory_measurement'

 , 'mandatory_quality_control', 'move_to_warehouse',

'unexpected_failure', 'continue_working'

 , 'move_for_maintenance', 'check_the_battery',

'return_to_work', 'move_for_charging']

state_indices = {state: idx for idx, state in enumerate(states)}

action_indices = {action: idx for idx, action in

enumerate(actions)}

Initialize rewards based on description

rewards = np.zeros((len(states), len(actions)))

rewards[state_indices['charging_station'],

action_indices['move_to_grap_the_component_parts']] = 1

rewards[state_indices['charging_station'], action_indices['move']]

= 0

rewards[state_indices['urgent'],

action_indices['move_to_warehouse']] = -20

rewards[state_indices['urgent'],

action_indices['mandatory_quality_control']] = 1

rewards[state_indices['urgent'],

action_indices['mandatory_measurement']] = 1

rewards[state_indices['warehouse_kitting'], action_indices['move']]

= 0

rewards[state_indices['restocking'], action_indices['wait']] = -20

rewards[state_indices['restocking'],

action_indices['moving_to_measure']] = 1

rewards[state_indices['warehouse_kitting'],

action_indices['taking_components_to_assemble']] = 1

rewards[state_indices['assemble_station_t'],

action_indices['moving_the_tool_box']] = 1

117

rewards[state_indices['EOL_t'],

action_indices['move_to_grap_the_assembled_product']] = 1

rewards[state_indices['assemble_station_p'],

action_indices['move']] = 0

rewards[state_indices['mismatch'],

action_indices['moving_to_measure']] = -20

rewards[state_indices['mismatch'],

action_indices['moving_to_replace']] = 1

rewards[state_indices['warehouse_mismatch'],

action_indices['taking_components_to_assemble']] = 1

rewards[state_indices['assemble_station_p'],

action_indices['moving_the_assembled_product_to_measure']] = 1

rewards[state_indices['idle'], action_indices['wait']] = -20

rewards[state_indices['idle'], action_indices['moving_to_measure']]

= 1

rewards[state_indices['assemble_station_p'],

action_indices['move']] = 1

rewards[state_indices['EOL'],

action_indices['move_to_check_the_quality']] = 1

rewards[state_indices['successed_quality_control'],

action_indices['taking_the_product_to_the_shelf']] = 1

rewards[state_indices['failed_quality_control'],

action_indices['move_to_measure_again']] = 1

rewards[state_indices['failed_quality_control'],

action_indices['taking_the_product_to_the_shelf']] = -20

rewards[state_indices['EOL_corrected'],

action_indices['taking_the_product_to_the_shelf']] = 1

rewards[state_indices['final_warehouse'],

action_indices['returning_to_the_initial_position']] = 1

rewards[state_indices['EOL'], action_indices['unexpected_failure']]

= 0

rewards[state_indices['system_failure'],

action_indices['continue_working']] = -20

rewards[state_indices['system_failure'],

action_indices['move_for_maintenance']] = 1

rewards[state_indices['maintenance'],

action_indices['check_the_battery']] = 1

rewards[state_indices['under_threshold'],

action_indices['return_to_work']] = -20

rewards[state_indices['above_threshold'],

action_indices['move_for_charging']] = -20

rewards[state_indices['under_threshold'],

action_indices['move_for_charging']] = 1

rewards[state_indices['above_threshold'],

action_indices['return_to_work']] = 1

Stochastic transitions

transitions_stochastic = {

 'charging_station': {'move_to_grap_the_component_parts':

[('warehouse_kitting', 1.0)]

 , 'move':[('urgent', 1.0)]},

 'urgent': {'move_to_warehouse': [('warehouse_kitting', 1.0)],

'mandatory_quality_control': [('failed_quality_control', 0.1),

('successed_quality_control', 0.9)]

 , 'mandatory_measurement': [('EOL', 1.0)]},

 'warehouse_kitting': {'move': [('restocking', 1.0)],

'taking_components_to_assemble': [('assemble_station_t', 1.0)]},

118

 'restocking': {'wait': [('warehouse_kitting', 1.0)],

'moving_to_measure': [('EOL', 1.0)]},

 'assemble_station_t': {'moving_the_tool_box': [('EOL_t',

1.0)]},

 'EOL_t': {'move_to_grap_the_assembled_product':

[('assemble_station_p', 1.0)]},

 'assemble_station_p': {'move': [('mismatch', 0.5), ('idle',

0.5)], 'moving_the_assembled_product_to_measure': [('EOL', 1.0)]},

 'mismatch': {'moving_to_replace': [('warehouse_mismatch',

1.0)], 'moving_to_measure': [('EOL', 1.0)]},

 'warehouse_mismatch': {'taking_components_to_assemble':

[('assemble_station_p', 1.0)]},

 'idle': {'wait': [('assemble_station_p', 1.0)],

'moving_to_measure': [('EOL', 1.0)]},

 'EOL': {'move_to_check_the_quality':

[('failed_quality_control', 0.1), ('successed_quality_control',

0.9)], 'unexpected_failure': [('system_failure', 1.0)]},

 'failed_quality_control': {'taking_the_product_to_the_shelf':

[('final_warehouse', 1.0)], 'move_to_measure_again':

[('EOL_corrected', 1.0)]},

 'EOL_corrected': {'taking_the_product_to_the_shelf':

[('final_warehouse', 1.0)]},

 'final_warehouse': {'returning_to_the_initial_position':

[('charging_station', 1.0)]},

 'successed_quality_control':

{'taking_the_product_to_the_shelf': [('final_warehouse', 1.0)]},

 'system_failure': {'continue_working': [('EOL', 1.0)],

'move_for_maintenance': [('maintenance', 1.0)]},

 'maintenance': {'check_the_battery': [('under_threshold', 0.5),

('above_threshold', 0.5)]},

 'under_threshold': {'return_to_work': [('urgent', 1.0)],

'move_for_charging': [('charging_station', 1.0)]},

 'above_threshold': {'return_to_work': [('urgent', 1.0)],

'move_for_charging': [('charging_station', 1.0)]}

 }

Function to simulate state transition

def simulate_transition(current_state, action,

transitions_stochastic):

 if action in transitions_stochastic[current_state]:

 possible_transitions =

transitions_stochastic[current_state][action]

 next_states, probabilities = zip(*possible_transitions)

 next_state = random.choices(next_states,

weights=probabilities)[0]

 return next_state

 return current_state # Return current state if no action is

possible

num_samples_per_state = 3

def generate_samples(states, transitions_stochastic,

num_samples_per_state):

 samples = []

 for state in states:

 for _ in range(num_samples_per_state):

119

 if state not in transitions_stochastic:

 continue

 action =

random.choice(list(transitions_stochastic[state].keys()))

 next_state = simulate_transition(state, action,

transitions_stochastic)

 samples.append((state, action, next_state))

 return samples

Generate a set of samples from the MDP

sampled_transitions = generate_samples(states,

transitions_stochastic, num_samples_per_state)

Print some samples to verify

print("Sampled Transitions:")

for sample in sampled_transitions[:]:

 print(sample)

Initialize Q-values

Q = np.zeros((len(states), len(actions)))

Hyperparameters for SARSA

alpha = 0.1 # Learning rate

gamma = 0.9 # Discount factor

initial_epsilon = 1.0 # Start with 100% exploration

decay_rate = 0.99 # Decay rate per episode

min_epsilon = 0.01 # Minimum value of epsilon

def update_q_value_sarsa(prev_state, action, reward, next_state,

next_action, Q, alpha, gamma):

 prev_state_idx = state_indices[prev_state]

 action_idx = action_indices[action]

 next_state_idx = state_indices[next_state]

 next_action_idx = action_indices[next_action]

 # Get the Q-value for the next state and action

 future_q = Q[next_state_idx, next_action_idx]

 # Update the Q-value for the previous state and action

 Q[prev_state_idx, action_idx] += alpha * (reward + gamma *

future_q - Q[prev_state_idx, action_idx])

def epsilon_greedy_policy(state, epsilon, Q):

 # With probability epsilon, select a random action

 if random.random() < epsilon:

 return random.choice(actions)

 # With probability 1 - epsilon, select the action with the

maximum Q-value

 state_idx = state_indices[state]

 return actions[np.argmax(Q[state_idx])]

def train_sarsa(Q, sampled_transitions, alpha, gamma, epsilon,

decay_rate, min_epsilon, epochs):

 cumulative_rewards = []

 for epoch in range(epochs):

120

 total_reward = 0

 np.random.shuffle(sampled_transitions) # Shuffle samples

each epoch for better learning

 for (prev_state, action, next_state) in

sampled_transitions:

 # Select an action using epsilon-greedy policy

 action = epsilon_greedy_policy(prev_state, epsilon, Q)

 reward = rewards[state_indices[prev_state],

action_indices[action]]

 total_reward += reward

 next_action = epsilon_greedy_policy(next_state,

epsilon, Q)

 update_q_value_sarsa(prev_state, action, reward,

next_state, next_action, Q, alpha, gamma)

 cumulative_rewards.append(total_reward)

 # Exponentially decay epsilon

 epsilon = max(min_epsilon, epsilon * decay_rate)

 return cumulative_rewards, epsilon

epochs = 500

Train and get the rewards history

rewards_history, final_epsilon = train_sarsa(Q,

sampled_transitions, alpha, gamma, initial_epsilon, decay_rate,

min_epsilon, epochs)

def derive_policy(Q, states, actions):

 policy = {}

 for idx, state in enumerate(states):

 best_action_idx = np.argmax(Q[idx])

 policy[state] = actions[best_action_idx]

 return policy

Derive the optimal policy

optimal_policy = derive_policy(Q, states, actions)

print("Optimal Policy:")

for state, action in optimal_policy.items():

 print(f"State: {state}, Best Action: {action}")

def plot_rewards(rewards_history):

 plt.figure(figsize=(10, 5))

 plt.plot(rewards_history, label='Cumulative Reward per

Episode')

 plt.xlabel('Episode')

 plt.ylabel('Cumulative Reward')

 plt.title('Episode vs Cumulative Reward')

 plt.legend()

 plt.grid(True)

 plt.show()

Plot the cumulative rewards

plot_rewards(rewards_history)

Convert Q-table to a pandas DataFrame for better visualization

121

def print_q_table(Q, states, actions):

 df = pd.DataFrame(Q, index=states, columns=actions)

 return df

q_table_df = print_q_table(Q, states, actions)

Adjust display settings to show all rows and columns if needed

pd.set_option('display.max_rows', None)

pd.set_option('display.max_columns', None)

pd.set_option('display.width', 1000)

pd.set_option('display.colheader_justify', 'center')

pd.set_option('display.precision', 3)

print(q_table_df)

122

SARSA for Task Sequence MDP + Hyperparameter Tuning

Comparison:
import numpy as np
import random
import matplotlib.pyplot as plt

States and actions
states = ['charging_station', 'warehouse_kitting', 'assemble_station_t',
'assemble_station_p', 'EOL_t', 'EOL',
 'successed_quality_control', 'final_warehouse',
'warehouse_mismatch', 'idle', 'restocking',
 'failed_quality_control', 'mismatch', 'EOL_corrected', 'urgent',
'system_failure', 'maintenance',
 'under_threshold', 'above_threshold']
actions = ['move_to_grap_the_component_parts',
'taking_components_to_assemble', 'moving_the_tool_box',
 'move_to_grap_the_assembled_product',
'moving_the_assembled_product_to_measure', 'move_to_check_the_quality',
 'taking_the_product_to_the_shelf',
'returning_to_the_initial_position', 'taking_the_wrong_component',
 'returning_to_warehouse', 'wait', 'move',
'move_to_measure_again', 'moving_to_measure', 'moving_to_replace',
 'mandatory_measurement', 'mandatory_quality_control',
'move_to_warehouse', 'unexpected_failure',
 'continue_working', 'move_for_maintenance',
'check_the_battery', 'return_to_work', 'move_for_charging']
state_indices = {state: idx for idx, state in enumerate(states)}
action_indices = {action: idx for idx, action in enumerate(actions)}

Initialize rewards based on description
rewards = np.zeros((len(states), len(actions)))
rewards[state_indices['charging_station'],
action_indices['move_to_grap_the_component_parts']] = 1
rewards[state_indices['charging_station'], action_indices['move']] = 0
rewards[state_indices['urgent'], action_indices['move_to_warehouse']] = -
20
rewards[state_indices['urgent'],
action_indices['mandatory_quality_control']] = 1
rewards[state_indices['urgent'], action_indices['mandatory_measurement']]
= 1
rewards[state_indices['warehouse_kitting'], action_indices['move']] = 0
rewards[state_indices['restocking'], action_indices['wait']] = -20
rewards[state_indices['restocking'], action_indices['moving_to_measure']]
= 1
rewards[state_indices['warehouse_kitting'],
action_indices['taking_components_to_assemble']] = 1
rewards[state_indices['assemble_station_t'],
action_indices['moving_the_tool_box']] = 1

123

rewards[state_indices['EOL_t'],
action_indices['move_to_grap_the_assembled_product']] = 1
rewards[state_indices['assemble_station_p'], action_indices['move']] = 0
rewards[state_indices['mismatch'], action_indices['moving_to_measure']] =
-20
rewards[state_indices['mismatch'], action_indices['moving_to_replace']] =
1
rewards[state_indices['warehouse_mismatch'],
action_indices['taking_components_to_assemble']] = 1
rewards[state_indices['assemble_station_p'],
action_indices['moving_the_assembled_product_to_measure']] = 1
rewards[state_indices['idle'], action_indices['wait']] = -20
rewards[state_indices['idle'], action_indices['moving_to_measure']] = 1
rewards[state_indices['assemble_station_p'], action_indices['move']] = 1
rewards[state_indices['EOL'], action_indices['move_to_check_the_quality']]
= 1
rewards[state_indices['successed_quality_control'],
action_indices['taking_the_product_to_the_shelf']] = 1
rewards[state_indices['failed_quality_control'],
action_indices['move_to_measure_again']] = 1
rewards[state_indices['failed_quality_control'],
action_indices['taking_the_product_to_the_shelf']] = -20
rewards[state_indices['EOL_corrected'],
action_indices['taking_the_product_to_the_shelf']] = 1
rewards[state_indices['final_warehouse'],
action_indices['returning_to_the_initial_position']] = 1
rewards[state_indices['EOL'], action_indices['unexpected_failure']] = 0
rewards[state_indices['system_failure'],
action_indices['continue_working']] = -20
rewards[state_indices['system_failure'],
action_indices['move_for_maintenance']] = 1
rewards[state_indices['maintenance'], action_indices['check_the_battery']]
= 1
rewards[state_indices['under_threshold'],
action_indices['return_to_work']] = -20
rewards[state_indices['above_threshold'],
action_indices['move_for_charging']] = -20
rewards[state_indices['under_threshold'],
action_indices['move_for_charging']] = 1
rewards[state_indices['above_threshold'],
action_indices['return_to_work']] = 1

Stochastic transitions
transitions_stochastic = {
 'charging_station': {'move_to_grap_the_component_parts':
[('warehouse_kitting', 1.0)], 'move': [('urgent', 1.0)]},
 'urgent': {'move_to_warehouse': [('warehouse_kitting', 1.0)],
'mandatory_quality_control': [('failed_quality_control', 0.1),
('successed_quality_control', 0.9)],
 'mandatory_measurement': [('EOL', 1.0)]},

124

 'warehouse_kitting': {'move': [('restocking', 1.0)],
'taking_components_to_assemble': [('assemble_station_t', 1.0)]},
 'restocking': {'wait': [('warehouse_kitting', 1.0)],
'moving_to_measure': [('EOL', 1.0)]},
 'assemble_station_t': {'moving_the_tool_box': [('EOL_t', 1.0)]},
 'EOL_t': {'move_to_grap_the_assembled_product':
[('assemble_station_p', 1.0)]},
 'assemble_station_p': {'move': [('mismatch', 0.5), ('idle', 0.5)],
'moving_the_assembled_product_to_measure': [('EOL', 1.0)]},
 'mismatch': {'moving_to_replace': [('warehouse_mismatch', 1.0)],
'moving_to_measure': [('EOL', 1.0)]},
 'warehouse_mismatch': {'taking_components_to_assemble':
[('assemble_station_p', 1.0)]},
 'idle': {'wait': [('assemble_station_p', 1.0)], 'moving_to_measure':
[('EOL', 1.0)]},
 'EOL': {'move_to_check_the_quality': [('failed_quality_control', 0.1),
('successed_quality_control', 0.9)], 'unexpected_failure':
[('system_failure', 1.0)]},
 'failed_quality_control': {'taking_the_product_to_the_shelf':
[('final_warehouse', 1.0)], 'move_to_measure_again': [('EOL_corrected',
1.0)]},
 'EOL_corrected': {'taking_the_product_to_the_shelf':
[('final_warehouse', 1.0)]},
 'final_warehouse': {'returning_to_the_initial_position':
[('charging_station', 1.0)]},
 'successed_quality_control': {'taking_the_product_to_the_shelf':
[('final_warehouse', 1.0)]},
 'system_failure': {'continue_working': [('EOL', 1.0)],
'move_for_maintenance': [('maintenance', 1.0)]},
 'maintenance': {'check_the_battery': [('under_threshold', 0.5),
('above_threshold', 0.5)]},
 'under_threshold': {'return_to_work': [('urgent', 1.0)],
'move_for_charging': [('charging_station', 1.0)]},
 'above_threshold': {'return_to_work': [('urgent', 1.0)],
'move_for_charging': [('charging_station', 1.0)]}
}

Function to simulate state transition
def simulate_transition(current_state, action, transitions_stochastic):
 if action in transitions_stochastic[current_state]:
 possible_transitions =
transitions_stochastic[current_state][action]
 next_states, probabilities = zip(*possible_transitions)
 next_state = random.choices(next_states, weights=probabilities)[0]
 return next_state
 return current_state # Return current state if no action is possible

num_samples_per_state = 3

def generate_samples(states, transitions_stochastic,
num_samples_per_state):

125

 samples = []

 for state in states:
 for _ in range(num_samples_per_state):
 if state not in transitions_stochastic:
 continue
 action =
random.choice(list(transitions_stochastic[state].keys()))
 next_state = simulate_transition(state, action,
transitions_stochastic)
 samples.append((state, action, next_state))

 return samples

Generate a set of samples from the MDP
sampled_transitions = generate_samples(states, transitions_stochastic,
num_samples_per_state)

Print some samples to verify
print("Sampled Transitions:")
for sample in sampled_transitions[:]:
 print(sample)

Hyperparameters for SARSA
alpha_1, gamma_1, initial_epsilon_1, decay_rate_1, min_epsilon_1 = 0.1,
0.9, 1.0, 0.99, 0.01
alpha_2, gamma_2, initial_epsilon_2, decay_rate_2, min_epsilon_2 = 0.5,
0.9, 1.0, 0.99, 0.01

epochs = 500

def update_q_value_sarsa(prev_state, action, reward, next_state,
next_action, Q, alpha, gamma):
 prev_state_idx = state_indices[prev_state]
 action_idx = action_indices[action]
 next_state_idx = state_indices[next_state]
 next_action_idx = action_indices[next_action]

 # Get the Q-value for the next state and action
 future_q = Q[next_state_idx, next_action_idx]

 # Update the Q-value for the previous state and action
 Q[prev_state_idx, action_idx] += alpha * (reward + gamma * future_q -
Q[prev_state_idx, action_idx])

def epsilon_greedy_policy(state, epsilon, Q):
 # With probability epsilon, select a random action
 if random.random() < epsilon:
 return random.choice(actions)
 # With probability 1 - epsilon, select the action with the maximum Q-
value

126

 state_idx = state_indices[state]
 return actions[np.argmax(Q[state_idx])]

def train_sarsa(Q, sampled_transitions, alpha, gamma, epsilon, decay_rate,
min_epsilon, epochs):
 cumulative_rewards = []

 for epoch in range(epochs):
 total_reward = 0
 np.random.shuffle(sampled_transitions) # Shuffle samples each
epoch for better learning

 for (prev_state, action, next_state) in sampled_transitions:
 # Select an action using epsilon-greedy policy
 action = epsilon_greedy_policy(prev_state, epsilon, Q)
 reward = rewards[state_indices[prev_state],
action_indices[action]]
 total_reward += reward
 next_action = epsilon_greedy_policy(next_state, epsilon, Q)
 update_q_value_sarsa(prev_state, action, reward, next_state,
next_action, Q, alpha, gamma)
 cumulative_rewards.append(total_reward)

 # Exponentially decay epsilon
 epsilon = max(min_epsilon, epsilon * decay_rate)

 return cumulative_rewards, epsilon

def derive_policy(Q, states, actions):
 policy = {}
 for idx, state in enumerate(states):
 best_action_idx = np.argmax(Q[idx])
 policy[state] = actions[best_action_idx]
 return policy

Train with the first set of hyperparameters
Q_1 = np.zeros((len(states), len(actions)))
rewards_history_1, final_epsilon_1 = train_sarsa(Q_1, sampled_transitions,
alpha_1, gamma_1, initial_epsilon_1, decay_rate_1, min_epsilon_1, epochs)
optimal_policy_1 = derive_policy(Q_1, states, actions)

Train with the second set of hyperparameters
Q_2 = np.zeros((len(states), len(actions)))
rewards_history_2, final_epsilon_2 = train_sarsa(Q_2, sampled_transitions,
alpha_2, gamma_2, initial_epsilon_2, decay_rate_2, min_epsilon_2, epochs)
optimal_policy_2 = derive_policy(Q_2, states, actions)

Plot the cumulative rewards for comparison
plt.figure(figsize=(12, 8))

127

plt.plot(rewards_history_1, label=f'alpha={alpha_1}, gamma={gamma_1},
epsilon={initial_epsilon_1}, decay={decay_rate_1},
min_epsilon={min_epsilon_1}')
plt.plot(rewards_history_2, label=f'alpha={alpha_2}, gamma={gamma_2},
epsilon={initial_epsilon_2}, decay={decay_rate_2},
min_epsilon={min_epsilon_2}')
plt.xlabel('Episode')
plt.ylabel('Cumulative Reward')
plt.title('Episode vs Cumulative Reward for Different Hyperparameters')
plt.legend()
plt.grid(True)
plt.show()

Print the optimal policy for both sets of hyperparameters
print("Optimal Policy for first set of hyperparameters:")
for state, action in optimal_policy_1.items():
 print(f"State: {state}, Best Action: {action}")

print("\nOptimal Policy for second set of hyperparameters:")
for state, action in optimal_policy_2.items():
 print(f"State: {state}, Best Action: {action}")

128

SQL for Task Sequence MDP + Hyperparameter Tuning

Comparison:
import numpy as np
import random
import matplotlib.pyplot as plt

States and actions
states = ['charging_station', 'warehouse_kitting', 'assemble_station_t',
'assemble_station_p', 'EOL_t', 'EOL',
 'successed_quality_control', 'final_warehouse',
'warehouse_mismatch', 'idle', 'restocking',
 'failed_quality_control', 'mismatch', 'EOL_corrected', 'urgent',
'system_failure', 'maintenance',
 'under_threshold', 'above_threshold']
actions = ['move_to_grap_the_component_parts',
'taking_components_to_assemble', 'moving_the_tool_box',
 'move_to_grap_the_assembled_product',
'moving_the_assembled_product_to_measure', 'move_to_check_the_quality',
 'taking_the_product_to_the_shelf',
'returning_to_the_initial_position', 'taking_the_wrong_component',
 'returning_to_warehouse', 'wait', 'move',
'move_to_measure_again', 'moving_to_measure', 'moving_to_replace',
 'mandatory_measurement', 'mandatory_quality_control',
'move_to_warehouse', 'unexpected_failure',
 'continue_working', 'move_for_maintenance',
'check_the_battery', 'return_to_work', 'move_for_charging']
state_indices = {state: idx for idx, state in enumerate(states)}
action_indices = {action: idx for idx, action in enumerate(actions)}

Initialize rewards based on description
rewards = np.zeros((len(states), len(actions)))
rewards[state_indices['charging_station'],
action_indices['move_to_grap_the_component_parts']] = 1
rewards[state_indices['charging_station'], action_indices['move']] = 0
rewards[state_indices['urgent'], action_indices['move_to_warehouse']] = -
20
rewards[state_indices['urgent'],
action_indices['mandatory_quality_control']] = 1
rewards[state_indices['urgent'], action_indices['mandatory_measurement']]
= 1
rewards[state_indices['warehouse_kitting'], action_indices['move']] = 0
rewards[state_indices['restocking'], action_indices['wait']] = -20
rewards[state_indices['restocking'], action_indices['moving_to_measure']]
= 1
rewards[state_indices['warehouse_kitting'],
action_indices['taking_components_to_assemble']] = 1
rewards[state_indices['assemble_station_t'],
action_indices['moving_the_tool_box']] = 1

129

rewards[state_indices['EOL_t'],
action_indices['move_to_grap_the_assembled_product']] = 1
rewards[state_indices['assemble_station_p'], action_indices['move']] = 0
rewards[state_indices['mismatch'], action_indices['moving_to_measure']] =
-20
rewards[state_indices['mismatch'], action_indices['moving_to_replace']] =
1
rewards[state_indices['warehouse_mismatch'],
action_indices['taking_components_to_assemble']] = 1
rewards[state_indices['assemble_station_p'],
action_indices['moving_the_assembled_product_to_measure']] = 1
rewards[state_indices['idle'], action_indices['wait']] = -20
rewards[state_indices['idle'], action_indices['moving_to_measure']] = 1
rewards[state_indices['assemble_station_p'], action_indices['move']] = 1
rewards[state_indices['EOL'], action_indices['move_to_check_the_quality']]
= 1
rewards[state_indices['successed_quality_control'],
action_indices['taking_the_product_to_the_shelf']] = 1
rewards[state_indices['failed_quality_control'],
action_indices['move_to_measure_again']] = 1
rewards[state_indices['failed_quality_control'],
action_indices['taking_the_product_to_the_shelf']] = -20
rewards[state_indices['EOL_corrected'],
action_indices['taking_the_product_to_the_shelf']] = 1
rewards[state_indices['final_warehouse'],
action_indices['returning_to_the_initial_position']] = 1
rewards[state_indices['EOL'], action_indices['unexpected_failure']] = 0
rewards[state_indices['system_failure'],
action_indices['continue_working']] = -20
rewards[state_indices['system_failure'],
action_indices['move_for_maintenance']] = 1
rewards[state_indices['maintenance'], action_indices['check_the_battery']]
= 1
rewards[state_indices['under_threshold'],
action_indices['return_to_work']] = -20
rewards[state_indices['above_threshold'],
action_indices['move_for_charging']] = -20
rewards[state_indices['under_threshold'],
action_indices['move_for_charging']] = 1
rewards[state_indices['above_threshold'],
action_indices['return_to_work']] = 1

Stochastic transitions
transitions_stochastic = {
 'charging_station': {'move_to_grap_the_component_parts':
[('warehouse_kitting', 1.0)], 'move': [('urgent', 1.0)]},
 'urgent': {'move_to_warehouse': [('warehouse_kitting', 1.0)],
'mandatory_quality_control': [('failed_quality_control', 0.1),
('successed_quality_control', 0.9)],
 'mandatory_measurement': [('EOL', 1.0)]},

130

 'warehouse_kitting': {'move': [('restocking', 1.0)],
'taking_components_to_assemble': [('assemble_station_t', 1.0)]},
 'restocking': {'wait': [('warehouse_kitting', 1.0)],
'moving_to_measure': [('EOL', 1.0)]},
 'assemble_station_t': {'moving_the_tool_box': [('EOL_t', 1.0)]},
 'EOL_t': {'move_to_grap_the_assembled_product':
[('assemble_station_p', 1.0)]},
 'assemble_station_p': {'move': [('mismatch', 0.5), ('idle', 0.5)],
'moving_the_assembled_product_to_measure': [('EOL', 1.0)]},
 'mismatch': {'moving_to_replace': [('warehouse_mismatch', 1.0)],
'moving_to_measure': [('EOL', 1.0)]},
 'warehouse_mismatch': {'taking_components_to_assemble':
[('assemble_station_p', 1.0)]},
 'idle': {'wait': [('assemble_station_p', 1.0)], 'moving_to_measure':
[('EOL', 1.0)]},
 'EOL': {'move_to_check_the_quality': [('failed_quality_control', 0.1),
('successed_quality_control', 0.9)], 'unexpected_failure':
[('system_failure', 1.0)]},
 'failed_quality_control': {'taking_the_product_to_the_shelf':
[('final_warehouse', 1.0)], 'move_to_measure_again': [('EOL_corrected',
1.0)]},
 'EOL_corrected': {'taking_the_product_to_the_shelf':
[('final_warehouse', 1.0)]},
 'final_warehouse': {'returning_to_the_initial_position':
[('charging_station', 1.0)]},
 'successed_quality_control': {'taking_the_product_to_the_shelf':
[('final_warehouse', 1.0)]},
 'system_failure': {'continue_working': [('EOL', 1.0)],
'move_for_maintenance': [('maintenance', 1.0)]},
 'maintenance': {'check_the_battery': [('under_threshold', 0.5),
('above_threshold', 0.5)]},
 'under_threshold': {'return_to_work': [('urgent', 1.0)],
'move_for_charging': [('charging_station', 1.0)]},
 'above_threshold': {'return_to_work': [('urgent', 1.0)],
'move_for_charging': [('charging_station', 1.0)]}
}

Function to simulate state transition
def simulate_transition(current_state, action, transitions_stochastic):
 if action in transitions_stochastic[current_state]:
 possible_transitions =
transitions_stochastic[current_state][action]
 next_states, probabilities = zip(*possible_transitions)
 next_state = random.choices(next_states, weights=probabilities)[0]
 return next_state
 return current_state # Return current state if no action is possible

num_samples_per_state = 3

def generate_samples(states, transitions_stochastic,
num_samples_per_state):

131

 samples = []

 for state in states:
 for _ in range(num_samples_per_state):
 if state not in transitions_stochastic:
 continue
 action =
random.choice(list(transitions_stochastic[state].keys()))
 next_state = simulate_transition(state, action,
transitions_stochastic)
 samples.append((state, action, next_state))

 return samples

Generate a set of samples from the MDP
sampled_transitions = generate_samples(states, transitions_stochastic,
num_samples_per_state)

Print some samples to verify
print("Sampled Transitions:")
for sample in sampled_transitions[:]:
 print(sample)

Hyperparameters
alpha_1, gamma_1, initial_epsilon_1, decay_rate_1, min_epsilon_1 = 0.1,
0.9, 1.0, 0.99, 0.01
alpha_2, gamma_2, initial_epsilon_2, decay_rate_2, min_epsilon_2 = 0.5,
0.9, 1.0, 0.99, 0.01

epochs = 500

def update_q_value(prev_state, action, reward, next_state, Q, alpha,
gamma):
 prev_state_idx = state_indices[prev_state]
 action_idx = action_indices[action]
 next_state_idx = state_indices[next_state]

 # Get the maximum Q-value for the next state
 max_future_q = np.max(Q[next_state_idx])

 # Update the Q-value for the previous state and action
 Q[prev_state_idx, action_idx] += alpha * (reward + gamma *
max_future_q - Q[prev_state_idx, action_idx])

def epsilon_greedy_policy(state, epsilon, Q):
 # With probability epsilon, select a random action
 if random.random() < epsilon:
 return random.choice(actions)
 # With probability 1 - epsilon, select the action with the maximum Q-
value
 state_idx = state_indices[state]

132

 return actions[np.argmax(Q[state_idx])]

def train_q_learning(Q, sampled_transitions, alpha, gamma, epsilon,
decay_rate, min_epsilon, epochs):
 cumulative_rewards = []

 for epoch in range(epochs):
 total_reward = 0
 np.random.shuffle(sampled_transitions) # Shuffle samples each
epoch for better learning

 for (prev_state, action, next_state) in sampled_transitions:
 # Select an action using epsilon-greedy policy
 action = epsilon_greedy_policy(prev_state, epsilon, Q)
 reward = rewards[state_indices[prev_state],
action_indices[action]]
 total_reward += reward
 update_q_value(prev_state, action, reward, next_state, Q,
alpha, gamma)
 cumulative_rewards.append(total_reward)

 # Exponentially decay epsilon
 epsilon = max(min_epsilon, epsilon * decay_rate)

 return cumulative_rewards, epsilon

def derive_policy(Q, states, actions):
 policy = {}
 for idx, state in enumerate(states):
 best_action_idx = np.argmax(Q[idx])
 policy[state] = actions[best_action_idx]
 return policy

Train with the first set of hyperparameters
Q_1 = np.zeros((len(states), len(actions)))
rewards_history_1, final_epsilon_1 = train_q_learning(Q_1,
sampled_transitions, alpha_1, gamma_1, initial_epsilon_1, decay_rate_1,
min_epsilon_1, epochs)
optimal_policy_1 = derive_policy(Q_1, states, actions)

Train with the second set of hyperparameters
Q_2 = np.zeros((len(states), len(actions)))
rewards_history_2, final_epsilon_2 = train_q_learning(Q_2,
sampled_transitions, alpha_2, gamma_2, initial_epsilon_2, decay_rate_2,
min_epsilon_2, epochs)
optimal_policy_2 = derive_policy(Q_2, states, actions)

Plot the cumulative rewards for comparison
plt.figure(figsize=(12, 8))

133

plt.plot(rewards_history_1, label=f'alpha={alpha_1}, gamma={gamma_1},
epsilon={initial_epsilon_1}, decay={decay_rate_1},
min_epsilon={min_epsilon_1}')
plt.plot(rewards_history_2, label=f'alpha={alpha_2}, gamma={gamma_2},
epsilon={initial_epsilon_2}, decay={decay_rate_2},
min_epsilon={min_epsilon_2}')
plt.xlabel('Episode')
plt.ylabel('Cumulative Reward')
plt.title('Episode vs Cumulative Reward for Different Hyperparameters')
plt.legend()
plt.grid(True)
plt.show()

Print the optimal policy for both sets of hyperparameters
print("Optimal Policy for first set of hyperparameters:")
for state, action in optimal_policy_1.items():
 print(f"State: {state}, Best Action: {action}")

print("\nOptimal Policy for second set of hyperparameters:")
for state, action in optimal_policy_2.items():
 print(f"State: {state}, Best Action: {action}")

