
Master’s Degree Course in Electronic Engineering

Master’s Degree Thesis

Integration of LEN5, a RISC-V
Out-of-Order Microprocessor, Inside
a Low-Power, Heterogeneous System

on Chip

Supervisors
prof. Maurizio Martina
prof. Guido Masera
Co-Supervisors
eng. Michele Caon
eng. Mattia Mirigaldi

Candidate
Ivan Biundo

Academic year 2023-2024

Abstract

Processors supporting Out-of-Order (OoO) execution are widely used today, forming
the basis of modern processors. The ability to reorder instruction execution, makes these
processors, already widely used in consumer and High-Performance Computing, attrac-
tive in the realm of modern Low-Power Heterogeneous Systems, where a vast number of
peripherals such as Coprocessors, Accelerators, GPUs, etc., need to be coordinated with
arbitrary latencies. Being able to execute instructions at the time when operands are
available and not in the order specified by the user, allows masking the latencies of these
peripherals and at the same time increasing Instruction Level Parallelism (ILP), which
benefits performance. In this context, architectures based on modular ISAs, such as RISC-
V, are particularly suitable for application-specific contexts, where it is critical to support
custom instructions to accelerate and increase the efficiency of critical parts of selected
applications.

The work described in this thesis aims at the development of a module capable of
connecting a 64-bit out-of-order RISC-V core, LEN5, to a 32-bit microcontroller platform,
X-HEEP, and the development of the core’s internal modules to support the debug system
present on the platform itself and on similar microcontrollers. The ultimate goal is to have
available a complete system of all the components of a Low Power, general purpose SoC,
as are memories and peripherals, that supports not only the development of the processor,
but also functions as an environment for debugging hardware and software, allowing tests
to be performed on a system consistent with real applications.

The first part of this thesis will illustrate the development of a Bridge, which deals with
the conversion of 64-bit requests from the core to 32-bit requests for the system bus. It will
begin with an introduction to the architectures in question, LEN5 and X-HEEP, introduce
the RISC paradigm, including relevant historical hints, and explain the reasons for its
widespread adoption. It will then proceed to one of the two cornerstones of this thesis,
the description of the development process of the bridge module, analyzing its functional
requirements, motivating its architectural choices, and accurately describing its internal
architecture. It will continue with the testing phase, in which the proper functioning
of the module and the results obtained will be analyzed. It will finally conclude with the
connection of LEN5 within X-HEEP, evaluating the impact and performance of the bridge.

The second part of the thesis will detail the process of developing the components needed
to embed the debugging system within LEN5. It will begin with the development of the
modules needed to support the JTAG protocol, and then focus on the second cornerstone of
this thesis, which is the modifications to the architecture of LEN5 needed for compatibility
with the debugging module present within the X-HEEP platform.

ii

Acknowledgements

Ripensando agli anni del mio percorso universitario, le persone che hanno ricoperto un
ruolo fondamentale e che hanno lasciato il segno nella mia vita, sono molte.

A partire da mia Madre e mio Padre, i miei punti di riferimento, i quali mi hanno
sostenuto e spronato nei momenti difficili. Senza di loro tutto questo non sarebbe stato
possibile.

Mio Fratello, divenuto coinquilino e compagno universitario nelle ultime fasi della mia
carriera, sempre pronto ad ascoltarmi e a sollevarmi il morale.

I miei Nonni, in ogni istante sempre pronti a incoraggiarmi e a spendere una parole
dolce nei miei confronti.

I miei coinquilini Salvo e Andrea, che più che coinquilini definirei fratelli acquisiti, con
cui ho condivisio gioie e dolori fin dall’inizio di questa avventura.

Tutti i miei amici di su, Marta, Fede, Raf, Luca e Lore, su cui posso sempre contare e
che ci sono sempre nel momento del bisogno.

Tutti i miei amici di giù, Pino, Peppe, Andrea, Angelo, Oliver, Dario, Alessio, Daniele,
Matteo e Ciccio, con cui sono cresciuto e con cui ho passato i momenti più divertenti della
mia vita.

A tutti voi voglio dire Grazie, perchè senza di voi, non sarei ciò che sono oggi.
In ambito accademico voglio ringraziare il professor Martina e il professor Masera, per

avermi dato la possibilità di lavorare su questo progetto e accrescere conoscenze fondamen-
tali che rimarranno parte del mio bagaglio per sempre. Inoltre ringrazio i miei Correlatori,
Michele e Mattia, per avermi supportato durante tutto il lavoro.

Ivan

i

Contents

List of Tables iv

List of Figures v

I Development of the Bridge Module 1

1 General Introduction 2
1.1 LEN5 - Out of Order Processor . 2
1.2 X-HEEP - eXtendable Heterogeneous Energy-Efficient Platform 7
1.3 Purpose of Integrating an OoO Processor in a Low-Power Heterogeneous SoC 9

2 LEN5 and X-HEEP Interfaces 10
2.1 OBI Protocol . 10
2.2 Addressing Method and Memory Alignment 14
2.3 Bridge Motivation . 15

3 Bridge Design 17
3.1 Bridge Top . 17
3.2 Instruction Module . 21

3.2.1 Instruction CU . 23
3.2.2 Instruction Buffer and Tag FIFO 27
3.2.3 Instruction Bus MUX and Additional Signals 28

3.3 LOAD Module . 29
3.3.1 Grant Control Unit . 31
3.3.2 Address Splitter . 35
3.3.3 Rvalid Control Unit . 36
3.3.4 Data Buffer and Load FIFO . 43
3.3.5 Byte Selector . 43
3.3.6 Additional Signals . 46

ii

3.4 STORE Module . 47
3.4.1 Data Aligner . 49

4 Experimental Results 52
4.1 Functional Verification . 52

4.1.1 Instruction Module Simulation . 53
4.1.2 LOAD Module Simulation . 55
4.1.3 STORE Module Simulation . 57

4.2 Synthesis . 59
4.2.1 Bridge . 60
4.2.2 Instruction Module . 61
4.2.3 LOAD Module and STORE Module 62
4.2.4 Case Condition Analysis . 62

5 Integration of the LEN5 processor within X-HEEP 64
5.1 LEN5 Instantiation . 65
5.2 X-HEEP Modifications to Ensure Compatibility with LEN5 66
5.3 Simulation and Benchmark . 67

II Development of the Debug System within the LEN5 pro-
cessor 70

6 Debug System Design 71
6.1 JTAG . 71

6.1.1 TAP Controller and Registers . 72
6.2 Adaptation of LEN5 for X-HEEP’s Debug System Support 80

6.2.1 Control Status Registers (CSRs) . 81
6.2.2 Issue Stage Modification . 82
6.2.3 Commit Stage Modification . 85

7 Concluding remarks 90
7.1 Further Improvements . 90

Bibliography 92

Acronyms 94

Glossary 95

iii

List of Tables

2.1 OBI Port List . 11
2.2 RISC-V most important Instruction Set and Extensions 16
3.1 Instruction CU - Signal Generated and Generation Methods 25
3.2 Grant CU - Signal Generated and Generation Methods 34
3.3 Rvalid CU - Signal Generated and Generation Methods - IDLE STATE . . 40
3.4 Rvalid CU - Signal Generated and Generation Methods - WAIT STATES . 41
4.1 Cycle Time and Max Clock Frequency for the Bridge and the three Principal

Modules . 62
4.2 Total Area, Combinational Area and Non-combinational Area for the Bridge

and the three Principal Modules . 62
4.3 Cycle Time, Max Clock Frequency and Area of the Bridge, as a Function of

Case Conditions . 63
5.1 Comparison between X-HEEP Supported CPU Cycle Time 69

iv

List of Figures

2.1 OBI Read Transaction . 13
2.2 OBI Write Transaction . 13
3.1 Bridge TOP . 20
3.2 Bridge Instruction Module . 23
3.3 Normal Instruction Transaction . 26
3.4 Rready fluctuation during Instruction Transaction 27
3.5 Bridge LOAD Module . 31
3.6 State Diagram of the Grant CU for a DOUBLEWORD Request 34
3.7 State Diagram of the Rvalid CU for a DOUBLEWORD Request 40
3.8 LOAD DOUBLEWORD - Normal Execution and Execution with Exception

Present . 42
3.9 Byte Selector - 64 bits Selection . 44
3.10 Byte Selector - 32 bits Selection . 46
3.11 Bridge STORE Module . 49
3.12 Data Aligner - 32 bits Section . 51
4.1 Execution of an Instruction Request and Response 54
4.2 Execution of an Instruction Request and Response with Rready Signal De-

assertion . 54
4.3 Load BYTE and Load HALFWORD Execution 56
4.4 Load WORD and Load DOUBLEWORD Execution 57
4.5 Store BYTE and Store HALFWORD Execution 58
4.6 Store WORD and Store DOUBLEWORD Execution 58
5.1 LEN5 and Bridge Connection to XBAR and System BUS 66
5.2 Output of the Hello World! Application . 68
5.3 Comparison in terms of execution cycles among processors supported by the

X-HEEP platform. The tests performed were: printing a string, sum, mul-
tiplication, and division with relative printing of the result for each operation. 69

6.1 TAP Module . 74
6.2 TAP Controller State Diagram . 77

v

vi

Part I

Development of the Bridge
Module

1

Chapter 1

General Introduction

The first part of this thesis, aims at the realization of a module capable of connecting the
LEN5 processor, to the X-HEEP microcontroller platform. The goal is to be able to take
advantage of an Out-of-Order processor within the aforementioned platform, in order to
optimize its performance by masking any latencies of the peripherals, and at the same time
realize a system capable of being the development and testing platform for the core itself
and any additional modules. It is therefore necessary to provide a brief introduction to the
two architectures on which the work of this thesis will be based, the OoO LEN5 processor
and the X-HEEP microcontroller platform.

1.1 LEN5 - Out of Order Processor

LEN5 is a processor based on RISC-V architecture, single in-order Issue, Out-of-Order
execution, developed during master thesis work, by engineers Marco Andorno [1], Matteo
Perotti [2] and Michele Caon [3].

The development of this processor, which took place in a purely academic setting,
aims at the analysis and development of microprocessor architectures addressed during the
master’s and bachelor’s degree courses, exploiting an open-ended ISA such as RISC-V [10],
also enabling research in the same field.

RISC-V was born at the University of Berkley, California.
Conceived by a group of researchers with a fundamental goal, to develop a completely

open source architecture, without any limitations imposed by private companies [4].
Based on this concept, RISC-V becomes the basis on which, whether professionals or

students, can experiment or build, without having to submit to license fees or such to the
multinational companies in the market. The ISA is maintained by the RISC-V Foundation,
which has also found extensive support from leading companies in the field, ensuring its

2

1 – General Introduction

continued development.
The new approach of RISC-V, Reduced Instruction Set Computer, is beginning to

spread like wildfire over the years. The latter involves simplifying the instructions executed
by the processor, reducing them to only those capable of being processed in one clock cycle;
in addition, all arithmetic instructions are executed with operands on internal registers,
the only instructions that can access memory, which is known to be very slow, are the
LOAD and the STORE. This further speeds up computation for the benefit of the end
user.

The reasoning, contrary to common logic, actually leads to accelerated instruction ex-
ecution with significant energy savings, unfortunately paying with an expansion in the
amount of instructions necessary to execute a task, weighing more on memory.

The emergence of this approach is due to the necessary contrast to CISC [5], Complex
Instruction Set Computer, typically used in x86 architectures, which instead involves the
use of more complex instructions, capable of operating either on registers or directly in
memory, not necessarily executable in one clock cycle but reducing the amount of instruc-
tions necessary for a task.

Why then prefer the RISC paradigm to the CISC paradigm?
The main motivation is its incredible modularity. The presence of a reduced ISA and

the support for custom extensions allows it to be used in a wide range of applications,
from building application-specific processors, through the support of specific instructions
for handling add-on modules, to being included as a core in microcontroller systems, as
stated in [5].

Since LEN5 is an expression of RISC-V, this makes it a de facto entry point for in-depth
study of RISC-V by students interested in the world of digital design or more specifically in
microprocessor architectures, either by continuing its development in all its components or
by using it as the core of more complex and generic systems, X-HEEP being one example,
which this thesis deals with.

The internal structure of the processor is divided into two basic parts, Front-end and
Back-end. The Front-end deals with the management of the Fetch phase of instructions,
and the speculation, by means of a branch predictor of the gshare type. For more details
regarding the processor front-end, refer to [1].

The structure of the processor Front-end, which implements the Fetch Stage, consists
of four main components: the Branch Prediction Unit, the Program Counter Generator,
the Memory Interface, and the Early Jump Unit.

• Branch Prediction Unit, module responsible for predicting the address of the next
instruction, in the case of Branch. Composed in turn of a Branch Predictor called
Gshare and a Branch Target Buffer (BTB). The Gshare is a branch predictor of

3

1 – General Introduction

dynamic type, based on the type of predictor called two-level. This type of predictor
has a shift register called Branch History Table (BHT), containing the outcome of the
last executed branches. It is used as a pointer to a table called the Pattern History
table (PHT) in which are the probabilities of a Branch being Taken, as a function of
the sequence of Branches already executed, present in the BHT. The probabilities are
expressed using 2 bits, so as to improve the prediction results. The Branch Predictor
performs predictions on any address coming from the PC, which is why a Branch
Targer Buffer is used, a cache containing the addresses of all Branches resolved as
taken. This cache has two main functions, to provide the taken branch address
immediately and to ensure that the prediction made by Gshare is taken into account
only if it matches a branch address.

• Program Counter Generator, Program Counter Address Generator, selects the
address of the next instruction to be executed, selecting it in order of priority from:
Exception Handler, Mispredicted Branch, Branch Prediction, Early Jump and Se-
quential Execution.

• Memory Interface, saves within it the predictions made by the BPU waiting for the
requested instruction to arrive, after which it forwards the instruction to the Backend.

• Early Jump Unit, a module that can precompute the jump address of instructions
such as RET, JAL and CALL, providing it to the PC generator. Inside it is a
Return Address Register where the return address is stored, to be supplied to the PC
generator upon execution of a RET.

The second part of the processor, the Back-end, implements the execution pipeline, the
foundation of which is based on Tomasulo’s algorithm, an alternative to the better-known
Scoreboarding. The latter allows the implementation of dynamic scheduling and Out-of-
Order execution.

The fundamental difference between the two approaches lies mainly in the complexity of
Scoreboarding compared to Tomasulo’s algorithm. In fact, this allows dynamic scheduling,
which is the reordering of instructions, avoiding stalls due to data-dependencies, by imple-
menting complex data structures that keep within them information about all phases of
an instruction’s execution. In addition, Scoreboarding handles hazards (WAR and WAW)
between instructions by stalling the processor pipeline, slowing execution. The problem is
overcome by adding additional data structures, such as Reorder Buffer (ROB) and register
renaming tables, further complicating instruction handling. In contrast, Tomasulo’s algo-
rithm drastically simplifies dynamic scheduling without making complex changes to the
structure of the processor. Three data structures are used, the Reservation Station (RS),
the Common Data Bus (CDB) and the Register Status. The Reservation Station, instanti-
ated for each functional unit of the processor, presents within it various information about

4

1 – General Introduction

the instructions to be executed on a given functional unit. Upon completion of the execu-
tion of an instruction, initiated when the functional unit and source registers are available,
the result is saved in the Reservation Station itself, effectively going on to implement a
temporary register from which the result can be retrieved if necessary to other instructions.
This automatically implements register renaming. The second structure necessary is the
Common Data Bus. As can be understood from the name, it is a common bus on which
the results of completed instructions, present within an RS, are made available so that
other instructions present in other RSs can access them. To have the information pair,
result - RS where it is present, and to know when to update the data within the Register
File, avoiding WAW, a third structure called Register Status is introduced. The latter is
a table, with a number of entries equal to the number of registers in the architecture, in
which is saved, for a given register, the index of the corresponding Entry in the RS where
the result of the instruction using that precise register as a destination will be present.
In addition there is a busy bit, to indicate whether the entry in question is used by an
instruction being executed. This allows the system to know which RS contains the data
an instruction needs.

For support of speculation, introduced through the branch predictor present in the
frontend, and the precise exception model, a mechanism for maintaining the instruction
fetch order is necessary. In the case of misprediction, it must be possible, in fact, to
flush erroneously fetched instructions from the pipeline before they are committed, in the
Commit phase, and start again. For this purpose, the structures already implemented in the
backend are enriched with the presence of a ROB, in which instructions in the order of fetch
are saved. Within the RS we find the index of the ROB entry of a given instruction, so that
the ROB becomes the auxiliary register implementing register renaming. Consequently, in
the Register Status the ROB entry is inserted instead of the RS entry.

What has been presented is available in Section 2.3.2 of [3] and Chapter 3 of [9].
We now turn to a general description from the execution pipeline architecture. Refer

to Chapter 3 of [3] for detailed information.
The execution Pipeline consists of 3 basic blocks, Issue Stage, Execution Stage, and

Commit Stage, each of which deals with a specific phase of instruction execution.
The issue stage has within it various modules necessary for the proper execution of the

issue stage of the instruction:

• Issue Queue, a circular FIFO used to allocate instructions sent from the Fetch Stage,
to be then decoded and assigned to the Functional Units of the processor. Having a
depth greater than one, it allows backend stalls due to ROB or RS saturation to be
obviated, allowing the fetch stage to continue fetching instructions.

• Issue Logic, Issue Stage control logic, which in turn consists of the Issue CU and

5

1 – General Introduction

the Issue Decoder. The Issue Decoder is responsible for decoding the incoming in-
struction from the Issue Queue and, depending on the type of the latter, selects the
RS corresponding to the necessary functional unit and reports any critical memory or
execution order issues. It also checks the fetch of the operands of the instruction itself
and notifies the CU of the type of instruction in issue. In the case of unrecognized
instructions, special instructions such as ECALL, DRET, EBREAK, and MRET, or
instructions not supported by the current processor configuration, it generates an
exception that is later entered into the ROB along with the corresponding exception
code. The Issue CU, on the other hand, is responsible for handling the sending of the
instruction to the execution stage and the ROB. Depending on the code provided by
the issue decoder, it checks whether the facilities in question, both or only the ROB,
have an available entry and if so, it handles the pop of the instruction present in the
Issue Queue. It also enables register status update, allowing the insertion of the ROB
entry to which the instruction has been assigned and flagging which target register is
in use. Finally, it flushes the fetch stage in the case of mispredictions reported by the
branch unit and handles any exceptions coming from the Issue Queue. Externally to
the two modules we find access to register status to control where to fetch the source
operands (CDB or ROB) and routing of the instruction to ROB and Execution Unit.

The Execution Stage has within it the various functional units necessary to calculate
instruction results and performing memory accesses. We will not go into a lengthy expla-
nation of the various functional units. Within the unit are:

• ALU, assigned to operations on integers such as shifts, sums, subtractions, and
Boolean logic operations.

• Multiplier, dedicated to the execution of MUL instructions found in the RV64M
extension. At its core, LEN5 supports the instantiation of a serial or pipelined mul-
tiplier, depending on the initial configuration.

• Divisor, dedicated to the execution of DIV instructions, present in the RV64M ex-
tension. A serial divider is present within LEN5.

• Branch Unit, responsible for verifying the condition of a branch instruction. In case
the verification is negative and there has been a misprediction by the Frontend, it
notifies the issue stage of the need to flush the pipeline.

• Load-Store Unit, unit used to handle LOAD/STORE requests to the memory con-
nected to the processor. Within the module we find two fundamental components,
the Load Buffer and the Store Buffer, both of which can be likened to Reservation
Stations in which the data for the corresponding instructions are stored, before per-
forming memory accesses. In this version of LEN5, the Virtual Address Adder is not
included; instead, a normal adder is used to calculate the final address from a base

6

1 – General Introduction

address and an offset, making it incompatible with Virtual Memory support.

Last, the Commit Stage is used to manage the instruction commit stages. Inside we
find: the ROB, the Commit Decoder, the Commit Cu and the Forward logic of operands.

• Commit Decoder, is in charge of recognizing the instruction contained in the Head
of the ROB, reporting its type to the Commit CU. In addition, in the case of CSR-
modifying instructions, it specifies which operation they perform.

• Commit CU, used to manage the entire commit phase of an instruction. Depending
on the type of instruction to be committed, specified by the decoder, the CU checks
whether the result is available in the ROB, for instructions that generate one, or
whether a misprediction has occurred, in the case of branch or jump. Depending on
the state evolution, it will take care of:

1. Accept the commit of the instruction present in the ROB head and pop it.
2. Enable the commit register so that it saves the instruction just deleted from the

ROB.
3. Control the CSR update, in case of instructions that require it.
4. Update the register status and register file, making the destination register avail-

able again and writing the result of the instruction to the register file.
5. Signal the Frontend when an exception arrives, for updating the PC with the

address of the corresponding exception handler.
6. Flush the pipeline and/or frontend in the case of misprediction and exception.
7. Release the issue stage in case it is stalled due to execution of instructions that

change the processor state.

• Logic operand forward control, is responsible for providing the issue stage with
the operands necessary for the instruction being issued, if these are available in the
CDB, ROB, or one of the Commit Stage buffers.

Finally, inside the processor are the CSRs, registers used to save the state and configura-
tion of the processor. LEN5 supports the zicsr extension, so it can execute CSR-modifying
instructions when privileges permit.

1.2 X-HEEP - eXtendable Heterogeneous Energy-Efficient
Platform

X-HEEP is a microcontroller platform whose foundation lies in: configurability, to adapt
its structure to different uses; expandability, to ensure that non-native modules can be

7

1 – General Introduction

included, supporting their use; and heterogeneity, presenting within it a multitude of pe-
ripherals that can be used for different purposes. The above expands the platform’s fields
of use, being able to be employed from very low-power applications to complex systems
comprising a variety of add-on modules and external peripherals. The architecture of
X-HEEP is based on the use of a RISC-V core selectable between the cv32e20 and the
cv32e40 family, providing the option of choosing the most suitable for the domain in which
the platform will be used. The cv32e20 is optimized for low power applications, while the
cv32e40s are better suited for high performance applications.

The interconnection between the core, memories, and peripherals is via a system bus,
taking advantage of the OBI protocol. Like the other components of the platform, the
bus has a configurable implementation, allowing for onetoM instantiation, where a single
Master at a time can control the bus, or NtoM instantiation, where simultaneous access
to multiple Slaves is possible. OnetoM instantiation is less wasteful in terms of area
occupancy but is also less performant, necessarily having to wait for the completion of
one transaction on the bus before another can be initiated. On the other hand, NtoM
instantiation turns out to be very performant, being able to take advantage of a larger
number of Master/Slave ports and consequently perform simultaneous transactions, at the
cost of higher area occupancy and higher power consumption.

In the latter bus configuration, it is also possible to select the method of memory
access, whose number and size of banks is user-configurable. In fact, two memory access
methods are available: contiguous or interleaved. The first reduces bandwidth against the
possibility of using power gating to limit power consumption. The second, on the other
hand, provides higher performance, but having to keep all memory banks constantly active
drastically increases consumption.

The platform natively features a variety of peripherals suitable for various application
areas, such as: Timer, Platform Level Interrupt Controller, GPIO, SPI, etc., organized on
different peripheral domains. In fact, X-HEEP supports two types of peripheral domains:
a standard one, in which it is possible to disable or physically remove peripherals, and
an always on one, in which we find peripherals that are fundamental to the operation
and management of the platform itself, such as, for example: a Boot Rom, necessary
for the configuration and choice of firmware execution mode phases; a Power Manager,
responsible for managing the system’s energy use through clock gating, power gating and
similar techniques; a DMA, responsible for memory accesses performed by peripherals.

The strength of the X-HEEP platform is its extensibility, through the use of the XAIF
configurable interface. Through the latter it is in fact possible to connect external modules,
of particular interest are accelerators, whose interfacing requirements are met through the
interface itself.

An overview of the platform build process itself can be found in Chapter 5.

8

1 – General Introduction

What has been introduced can be found in [6], refer to it for more details on the
architecture of the platform and how it works.

1.3 Purpose of Integrating an OoO Processor in a
Low-Power Heterogeneous SoC

The motivations for including LEN5 within X-HEEP are several.
The support for Out-of-Order execution makes LEN5 an attractive processor as a core

of Low-Power Heterogenous SoCs, in which the management and coordination of a large
number of modules and peripherals, presenting arbitrary latencies, is critical. The ability
to reorganize instructions, whose execution depends on the availability of operands and
functional units and no longer on the order arranged by the user, makes it possible to
mask delays due to peripherals and achieve a not inconsiderable speed-up of the entire
platform.

At the same time, it is important to remember that LEN5 is a processor developed
primarily for academic purposes, allowing researchers to study RISC-V-based architectures.
It is therefore of interest for the purposes of developing and maintaining the architecture,
whether one wants to optimize the already existing parts of the processor or to modify
it by adding new modules, to have a complete platform available that can serve as a
development environment. In fact, inclusion in a complete architecture makes it possible
to expand the amount of tests that can be performed on the processor itself, being able
to exploit commonly used scenarios, which differ greatly from the benchmarks normally
performed as tests and which do not allow an exhaustive debugging phase on a complex
processor.

For this reason it was decided to integrate LEN5 inside X-HEEP, making it officially a
supported CPU.

9

Chapter 2

LEN5 and X-HEEP Interfaces

Before explaining the bridge architecture, it is useful to give some background on the
operation of the LEN5 and X-HEEP interfaces, regarding both instruction requests and
LOAD and STORE requests to memories. This will introduce the motivation for the
implementation of the bridge module, which is concerned not only with handling LOAD
and STORE requests, but also with instruction requests and their proper delivery.

2.1 OBI Protocol
The X-HEEP platform is based on an interface exploiting the OBI protocol, open bus
interface, used for point-to-point connections via bus. Based on the request-grant mecha-
nism, which is very similar to ARM’s AMBA AXI protocol, each transaction via the OBI
protocol consists of two parts, a request and a response, sent via the appropriate channels
called Address Channel and Response Channel, as outlined in the protocol specification
[8].

Specific, standardized signals, listed in table 2.1, are required for transaction execution:

10

2 – LEN5 and X-HEEP Interfaces

Name Source Destination Description
Global Signals

clk Clock
Generator Any Reference Clock

for transactions

reset_n Reset Control
Unit Any Bus and system

reset signal, active low.
Address Channel Signals

req Master Slave

Request signal.
Indicates the validity
of the signals present

in the Address Channel.

gnt Slave Master

Grant signal.
Indicates the availability
to accept a transaction.
Transaction accepted

with req=1 and gnt=1.
addr[] Master Slave Address Bus

we Master Slave
Write Enable.
Write if high,
Read if low.

be[] Master Slave
Byte Enable.

Select bytes to
read or write.

wdata[] Master Slave

Data to be written.
Valid only for

writings, not defined
for readings.

Response Channel Signals

rvalid Slave Master

Valid Signal.
Indicates the validity
of the signals present

in the Response Channel.

rready Master Slave

Ready Signal.
Indicates the availability
to accept the Response.

Response accepted if
rvalid=1 and rready=1

rdata Slave Master

Read data.
Valid only for

reads, not defined
for writes.

Table 2.1: OBI Port List

11

2 – LEN5 and X-HEEP Interfaces

The operation of the protocol is given below for both read or write requests, as specified
in section 3.3 of the protocol specification [8].

From now on, the request phase will be referred to as Address Phase and the response
phase as Response Phase.

In the Address Phase, the Master indicates the validity of the signals in the Address
Channel, specified in table 2.1, by the assertion of its request signal (req). The Slave
indicates its readiness to accept signals on the Address Channel by asserting its grant
signal (gnt). Address Phase begins in the clock cycle in which the request signal (req)
is asserted and ends when both the request signal (req) and the grant signal (gnt) are
asserted.

Once the Address Phase is completed, the Slave reports the validity of the signals
on the Response Channel by asserting its rvalid signal. Simultaneously, the Master
communicates its readiness to accept the above signals by asserting its rready signal. The
Response Phase begins in the clock cycle when the rvalid signal is at high value and ends
when both the rvalid and rready signals are at high value.

In the figures 2.1 and 2.2, the two types of possible transactions via OBI protocol are
depicted, READ to perform a read from a register or memory location and WRITE to
write to a register or memory location. Note how in the READ transaction, the Master
sets the signal req to a high value while on the bus addr is present the address needed to
access a register or memory location. In this case the Slave is always ready to accept an
Address Phase, so it keeps the gnt signal at high value constantly.

Consider this as a particular case; in fact, it is not necessarily true that the gnt signal
is kept constantly asserted; rather, there will be cases, such as in bridge and X-HEEP, in
which this signal is kept at a low value and asserted only when a transaction request is
actually received. The implementation of this behavior is due to energy saving and also
limits possible errors in transactions between Master and Slave.

Special attention should be paid to the signals we and bus be. These make possible to
distinguish the type of transaction request, READ or WRITE, according to the state of
the signal we, also the bus be allows to select up to the single byte to be read or written,
depending on how its bits are set. The wdata bus is ignored during READ transactions.

Finally, note the rvalid signal, asserted by the Slave only when the transaction is
complete and the read data is present on the rdata bus. At the same time, the Master is
always ready to receive data and keeps the rready signal constantly at a high value.

Again, keeping the signal rready constant is a special case. It will be seen, in the case
of LEN5 and the bridge, that this is not always true due to the possible unavailability of
LEN5 to receive incoming instructions.

In the case of a WRITE transaction, the behavior is specular, except for the signal we,
which will be at high value, signaling a WRITE transaction, and for the bus rdata, which

12

2 – LEN5 and X-HEEP Interfaces

will be the ignored one this time.

Figure 2.1: OBI Read Transaction

Figure 2.2: OBI Write Transaction

The LEN5 interface was then modified to support the OBI protocol, both in the instruc-
tion request and in the read and write requests related to LOAD and STORE instructions.

13

2 – LEN5 and X-HEEP Interfaces

In order to speed up the load-store unit, it was necessary to separate the ports related to
LOAD requests from STORE requests, resulting in three ports on the LEN5 interface, also
considering the instruction port.

2.2 Addressing Method and Memory Alignment
The architecture of LEN5, being a newly developed processor, is based on 64-bit addressing.
This implies that every request made, whether for instructions or for LOAD/STORE, is
executed through a 64-bit address.

Also, it is important to keep in mind that for LEN5, a request for Word corresponds to
a request for a 32-bit data from the memories connected to it, consequently a Half Word
corresponds to 16 bits. Having 64-bit registers, LEN5 can also request and process 64-bit
data through Double Word requests.

In contrast, X-HEEP is a 32-bit architecture, 32-bit addressing and 32-bit registers,
with a memory alignment that is also 32 bits. Memory Alignment means that the address
where the data is located within memory, is a multiple of its size in bytes, as defined in
section A.3 of [9]. The minimum unit that a processor can interpret is a single byte. Data
in memory must therefore be aligned to at least one byte, and a processor can access it by
generating addresses that vary by an amount equal to 1. In the case of the architecture
in question, the 32-bit alignment means that the data is arranged occupying 4 consecutive
bytes in memory. This results in the distance between WORDs in memory, in terms of
address, being equal to 4, as 32 bits equals 4 bytes. However, the processor can perform
accesses with any address value, taking specific rules into account:

• Each address value can be used to perform BYTE type accesses (8 bits), addressing
each of the 4 bytes that constitute a Word.

• Addresses with a multiple value of 2 can also be used to perform HALFWORD type
accesses (16 bits), addressing each of the two halfwords that constitute a Word.

• Addresses with a multiple value of 4 can also be used for WORD type accesses (32
bits).

The alignment1 mechanism is therefore fundamental; in fact, memories are commonly
designed to work with groups of bytes. By ensuring, as far as possible, an aligned arrange-
ment of data within a single group, the processor is prevented from accessing memory more
than once for a single data.

Accesses to misaligned data, called Misaligned Access, as opposed to accesses to aligned
data, called Aligned Access, are very time-consuming in terms of access time, as the core

1For more details on the arrangement of data in memory, refer to Appendix A.3 of [9]

14

2 – LEN5 and X-HEEP Interfaces

has to make multiple accesses to memory and then reconstruct the data through shift
operations or similar [9]. For this reason, many processors do not support misaligned
access, and report its occurrence by generating exception.

2.3 Bridge Motivation
Upon analyzing the interfaces, two problems can be observed: the difference in addressing
method and the maximum data size supported. LEN5 is a processor supporting 64-bit
addressing, having been developed for modern systems, while the X-HEEP architecture
supports 32-bit addressing. The difference in addressing is not in itself a problem; since
the linker takes care of providing the correct addresses during firmware compilation, by
which to perform memory access, these will necessarily fall within X-HEEP’s address space
and will therefore be containable in 32 bits. The address generated by LEN5 will present
the useful address on the 32 LSBs of the 64 of which it is composed, thus being able to
connect only the latter to the address bus of X-HEEP. Taking over support for different
Instruction Sets as well, the problem becomes more complicated. In fact, the architecture
of X-HEEP is based on the use of RISC-V cores supporting the Instruction Set called
RV32, while LEN5 uses the RV64 Instruction Set.

Normally present as a component of the specification Istruction Set Architecture (ISA),
the Instruction Set defines the instructions supported by the processor, the size of the
architecture’s registers, and its addressing method, as visible in [12]. The RISC-V Founda-
tion defines two Instruction Sets as minimal, RV32I and RV64I, which as visible from the
name, support an address space of 32 bits or 64 bits and a fixed instruction length of 32
bits. Using only type “I” instruction sets is highly limiting for a processor, consequently
the two versions have been widely extended to support a variety of operation types, defin-
ing what we call standard and non-standard instruction sets. While standard instruction
sets contain common instructions, nonstandard sets may contain instructions that can be
used for very specific applications [12]. Table 2.2 shows the various types of construction
sets and their most common extensions:

15

2 – LEN5 and X-HEEP Interfaces

Name Description

RV32I Basic instruction set with only operations
between integers, 32 bits

RV32E Basic instruction set for embedded
systems with only operations between integers, 32 bits

RV64I Basic instruction set with only operations
between integers, 64 bits

RV64E Basic instruction set for embedded
systems with only operations between integers, 64 bits

RV128I Basic instruction set with only operations
between integers, 128 bits, still under development

Extensions

M Extension with support for Multiplications
and Divisions between integers

A Extension with support for Atomic operations

F Extension with Floating Point
Single Precision Support

D Extension with Floating Point
Double Precision Support

Zicsr Extension with support for instructions
to access CSRs

Table 2.2: RISC-V most important Instruction Set and Extensions

Back to the architectures in question, the difference between the supported instruction
sets causes the size of the internal registers of LEN5 and those of X-HEEP to differ, along
with the size of the buses. In addition to the physical incompatibility of the interfaces,
there arises the problem of data requests that LEN5 is capable of executing but that the
X-HEEP platform cannot satisfy. In fact, having 32-bit buses and registers and not having
implemented a multi-port bus for the inherent data interface, X-HEEP is only able to
provide one 32-bit data at a time, limiting the LOAD and STORE instructions to request
at most one WORD-sized data. LEN5, in contrast, can perform DOUBLEWORD requests,
thus being able to work even with 64-bit data. This problem makes LEN5’s instruction set
unsupportable by X-HEEP and makes it necessary to introduce an intermediate module
between LEN5 and X-HEEP’s bus that can handle the processor’s LOAD and STORE
requests, split the DOUBLEWORD requests into two WORD requests, ensure the correct
address size, and align the data consistently with the type of request made.

16

Chapter 3

Bridge Design

This chapter will proceed to analyze the design of the Bridge module. The layout of the
module will be explained in a general way, after which each component will be described
in detail. In case we refer to a particular component, it will be defined using italic, so that
it stands out from the view.

3.1 Bridge Top

The Bridge consists of 3 main modules: Instruction Module, LOAD Module and STORE
Module, visible in the figure 3.1. For ease of reference, the signals have been divided into
colors. In red those related to LEN5 and in blue those related to the X-HEEP platform.

As the name suggests, they are responsible for handling instruction requests, LOAD
data requests, and STORE data requests, respectively. The Instruction Module has 4
ports: one input and one output port connected to the processor and two others, input
and output respectively, connected to the bus. In contrast, the LOAD Module and the
STORE Module have 6 ports each, divided into: one input-output port pair connected
to the processor and the remaining two input-output pairs, necessary for splitting 64-bit
requests, connected to the bus.

In fact, LEN5 has a different load-store unit interface from that of common processors,
having the port related to LOAD requests separate from that for STORE requests. Due to
the split, the processor is able to execute the two types of requests simultaneously, speeding
up the execution of instructions. The interface upgrade turns out to be an incipit for the
future development of LEN5 as a multiple issue processor.

The bridge accordingly supports the processor interface, ensuring that LOAD and
STORE requests can be executed simultaneously. Note that, both the LOAD Module
and the STORE Module, in turn, have two ports to the X-HEEP bus, for 64-bit request

17

3 – Bridge Design

splitting. This makes the total number of ports related to data requests, to be connected
to the bus, equal to four. For the reasons already introduced in Section 2.3, the single
32-bit port implementation of the X-HEEP bus makes it impossible to execute simulta-
neous requests, limiting the Bridge to executing only one WORD-type request at a time.
This prevents exploiting the speed-up achieved by port splitting, not allowing the LOAD
Module and the STORE Module to send requests simultaneously and at the same time
makes it impossible to simultaneously send split requests generated by a DOUBLEWORD
type request received by either module. The feature remains available, however, should the
bridge be connected to a more advanced bus capable of supporting more than one simul-
taneous request. The connection of the bridge with the bus will then be made through the
use of a 4:1 crossbar, capable of sequencing the requests sent by the two modules, making
it possible to send them to the single bus port. More detailed information on the crossbar
can be found in Section 5.1.

The signals present on the bridge interface are those described in table 2.1, being nec-
essary the compatibility with the OBI protocol. We also find additional signals that we
will divide into global and specific.

The global signals are as follows:

• CLK −→ Clock signal, shared with the processor.

• Rst_n −→ Reset signal, needed by specification to completely reset the bridge during
boot and for any errors.

• Flush −→ Flush signal, needed to flush instructions contained in the bridge and not
yet completed, in case there have been Mispredictions in the execution of a Branch
or other types of problems that force the flushing of instructions in the processor.

On the other hand, as far as specific signals are concerned, we can note the presence in
each port of a signal called TAG. The tagging mechanism used by LEN5 is very similar to
that used within caches, in which each piece of data is associated with a label necessary
for its recognition. Within LEN5, the TAG bus size is generated from the configuration
parameter that defines the depth of the LOAD Buffer or the STORE Buffer, depending on
which is deeper. In the case under analysis, the size of this value is 4 bits. LEN5 uses this
value to store which instruction and LOAD/STORE requests have been made and, once
it receives a response from the bridge, these are discarded.

The bridge receives the tags of the requests made by LEN5, whether Instructions or
LOAD/STORE, and handles their proper resend to LEN5 when the requests have been
fulfilled. The mechanism will be analyzed in the sections devoted to the Instructions and
LOAD/STORE modules.

18

3 – Bridge Design

Last, there are signals called exceptions in all modules. As defined by RISC-V speci-
fications, LEN5 supports the exception mechanism for instructions and data. There are
various reasons why an exception may be generated, such as problems with the fetch of the
instruction, problems arising from the decoding of the instruction, unrecognized instruc-
tions or read/write errors of data in memory. In the case under analysis, the exceptions
that can be delivered to the processor are from an instruction read error in memory or
a read/write errors of data in memory, which clearly affects whether the instruction can
be executed. The X-HEEP bus does not yet support the exception mechanism, but the
bridge architecture is fully compatible with them. In fact, it is able to receive them, store
them and process them according to the requests received by LEN5. We will discuss the
exception handling mechanism in more detail in the sections devoted to the LOAD and
STORE modules.

19

3 – Bridge Design

Figure 3.1: Bridge TOP
20

3 – Bridge Design

3.2 Instruction Module

Let us now introduce one of the three basic modules of the bridge, the Instruction Module,
visible in its structure in figure 3.2. In this schematic we have shown the signals in different
colors for ease of reading. We find in red the signals related to LEN5, in blue the signals
related to the bus, in violet the internal signals, and in green the signals from the memories.

Responsible for handling instruction requests in both the Address Phase and Response
Phase of the OBI protocol, it is itself composed of three main components: a Control
Unit (CU), a Register (Buffer), and a FIFO queue, plus various multiplexers to handle the
instruction bus.

The question may arise as to why handle instruction requests, since these do not present
the previously described data requests problem. Indeed, IS RV64 provides a fixed instruc-
tion size of 32 bits, so no handling of double requests or data alignment would apparently
be needed.

A second problem arises, however, related to the way LEN5 handles instructions in-
ternally and the operation of its instruction interface. Before executing an instruction
request, LEN5 saves the contents of the PC within a register called the Request Register.
The mechanism in question is necessary because instructions of the Branch and Jump type
compute destination addresses, with which to modify the PC in a nonsequential manner,
from the address corresponding to their location in memory, which coincides with the PC
at the time they are in the fetch phase.

During the instruction request, the PC, along with the data generated by the Branch
Prediction Unit, are pushed into a FIFO queue called the Prediction Buffer, holding it
constant until the requested instruction arrives.

Once the requested instruction is received, it is stored in a second register called Answer
Register along with the contents of the Prediction Buffer, so that the PC and the instruction
can be propagated into the pipeline, together. As explained in section 2.1, the LEN5
interface takes advantage of the OBI protocol, which provides in the Response Phase a
signal called rready, refer to the 2.1 table for operation. Unlike what was seen in the
example and appropriately specified again in section 2.1, the rready signal is not kept
fixed at the high value, signaling the constant acceptance of the input instruction; rather,
its value depends on the state of the processor. Indeed, there may be cases when LEN5 is
not available to receive the instruction and signals this by deasserting the rready. The X-
HEEP bus, by contrast, does not support the rready signal, assuming that the processor
is always ready to receive the incoming instruction.

The non-symmetry of the two interfaces causes the occurrence of instruction loss if a
request is made but LEN5 is not available to receive the instruction at the time X-HEEP
delivers it. This problem is particularly dangerous because in LEN5 there is no mechanism

21

3 – Bridge Design

for retrieving the lost instruction, simply because the processor cannot detect that it has
been lost.

Going into detail, LEN5 switches the rready signal to 0 when the backend of the pro-
cessor is currently unable to process an instruction in the Answer Register of the frontend.
The instruction is then held within the Answer Register, along with the PC in the Pre-
diction Buffer, waiting for the rready from the backend. At the same time, however, the
Fetch Stage continues to execute requests for instructions, which, since they cannot be
saved in the Answer Register, are lost, and places the corresponding PCs in the Request
Register, subsequently passing them to the Prediction Buffer. The moment the backend
asserts its rready, allowing instructions to be accepted again, the Answer Register samples
the instruction present at its entry and the PC present in the Prediction Buffer. Since,
however, the previous PCs have never been popped, the instruction - PC pair is incorrect,
this causes the LEN5 pipe to desynchronize, not allowing it to function properly.

It was therefore necessary to implement the Instruction Module to handle this even-
tuality. In the event that LEN5 becomes unavailable upon receiving an instruction, the
module saves the instruction within a buffer, keeping it available to LEN5 until it is again
able to accept it. It also stalls requests to the bus and grants to LEN5, so as to prevent fur-
ther requests until the rready signal returns to a high value. Its components are described
below.

22

3 – Bridge Design

Figure 3.2: Bridge Instruction Module

3.2.1 Instruction CU

The first component that will be analyzed is the Control Unit, the component responsible
for generating the control signals. In the case under analysis, the CU has an internal
FSM, for the sequential generation of part of the control signals, and an independent
combinational logic part for the generation of the remaining part of the control signals.
A brief introduction is necessary before discussing the actual implementation. An FSM
is theoretically composed of a combinational logic that deals with the generation of the
future state, a combinational logic that deals with the generation of the control signals,
and a register needed to save the value of the state.

FSMs can be implemented using two different methods, making what are called Moore’s
or Mealy’s FSMs. The fundamental difference between the two types of FSMs is whether

23

3 – Bridge Design

or not the combinational logic of the control signals, is dependent on the inputs to the
FSM itself. Notoriously, it is preferable to always use Moore’s paradigm, as this is safer;
in fact, since there is no direct connection between the logic of the control signals and the
inputs, it is impossible to create combinatorial loops or critical paths that pass through the
FSM. That said, it is important to point out that Moore’s FSMs are slower in generating
signals than Mealy’s, necessarily having to perform the state transition first.

The Bridge structure should in no way slow down the processor more than necessary,
which is why it was preferred to implement a Mealy’s FSM, with combinatorial generation
of control signals. Because of this, the control signals are already available before the FSM
performs the state transition, saving a clock cycle.

The Control Unit works in 2 possible states: IDLE and BUFFER. For simplicity we will
divide the description into two parts, one related to the next state logic and one related to
the generation of control signals.

During normal execution, the FSM is in the IDLE state, in which incoming instructions
are directly sent to LEN5 from the incoming instruction bus. In the case that LEN5 were
to deassert its len5_rready signal, indicating that it is not ready to receive instructions,
and at the same time a valid instruction arrives, signaled by the incoming bus_rvalid

signal from the bus, the FSM would switch its state to that of BUFFER, where it would
remain until LEN5 again signals its readiness to receive instructions, asserting the signal
len5_rready and returning the FSM to the IDLE state. In addition to the reset signal,
the flush signal is also capable of returning the FSM to the IDLE state if there have been
flushes of the LEN5 pipe due to misprediction.

The generation of the bus_req and len5_gnt signals takes place outside the logic of
control signals, so they do not depend on the state in which the FSM is, plus they are
generated in a purely combinatorial manner to speed up requests to the bus, as explained
earlier. The bus_req signal to the bus is generated by the logical AND between the
len5_req signal input from LEN5 and the len5_rready signal, also input. Similarly, the
len5_gnt signal to LEN5 is also generated by the logical AND of the corresponding input
from the bus and the len5_rready signal. This solution is necessary to block any requests
that would be made even when LEN5 is not ready to receive them.

Within the control signal logic, the signals len5_rvalid, buff_en, and buff_sel are
generated. The signal len5_rvalid is used to signal the availability of a valid instruction
on the bus, while the remaining two are needed: to enable the saving of the instruction
in the buffer, in case LEN5 sets its len5_rready to a low value, and to select as module
output, on input to the instruction bus of LEN5, the value present in the instruction buffer.
In the IDLE state, instructions are sent directly to LEN5, so the signal len5_rvalid
for LEN5 is directly connected to the signal bus_rvalid input from X-HEEP, and the
instruction bus of LEN5 is directly connected to that of X-HEEP, buff_sel=0. However,

24

3 – Bridge Design

the buffer must be able to store within it the value of the instruction in the bus at the
exact moment when LEN5 is no longer available to receive instructions. For this reason,
the signal of buff_en=∼len5_rready, so that it can be asserted immediately when LEN5
deasserts the len5_rready, allowing the buffer to be enabled without waiting for the FSM
state transition. In the BUFFER state, the instruction has already been saved within the
instruction buffer and must be retained until the FSM transitions back to the IDLE state.
The instruction buffer is then disabled, buff_en=0, simultaneously signaling to LEN5 that
a valid instruction is present in the buffer by setting len5_rvalid=1 and no longer having
it controlled by the incoming bus_rvalid from the bus, which returns to 0 after only one
clock cycle. The instruction bus of LEN5 is connected to the output of the instruction
buffer by setting buff_sel=1, so LEN5 will be able to sample the valid instruction as
soon as it is available to do so. Table 3.1 shows the signals generated combinatorially and
by the FSM along with their method of generation.

Signal Value
bus_req len5_req & len5_rready
len5_gnt bus_gnt & len5_rready

State IDLE
len5_rvalid bus_rvalid

buff_sel 0
buff_en ∼len5_rready

State BUFFER
len5_rvalid 1

buff_sel 1
buff_en 0

Table 3.1: Instruction CU - Signal Generated and Generation Methods

In the figures 3.3 and 3.4 can be seen correspondingly: a normal request of an instruction
and an instruction request that has a fluctuation of the rready signal during the reception
of the INSTR0 instruction. As can be seen. the signal buff_en is asserted to save the
instruction in the buffer, after which there is switching of the state of the FSM and the
signal buff_sel is set to 1, enabling the buffer output to LEN5. When LEN5 is available
again, at cycle 6, the FSM returns to the IDLE state, deasserting the buff_sel. At the
same time a second request for the INSTR1 instruction has been received, note how the
request is blocked (len5_req maintained asserted) until the len5_rready signal is again
asserted and the request is propagated to the bus (bus_req asserted).

25

3 – Bridge Design

Figure 3.3: Normal Instruction Transaction

26

3 – Bridge Design

Figure 3.4: Rready fluctuation during Instruction Transaction

3.2.2 Instruction Buffer and Tag FIFO

The structure of the Instruction Buffer is that of a 33-bit register, divided into 32 bits for
the instruction and 1 bit for the exception, if any, enabled by a buff_en signal. Also in the
register is the possibility of flushing via the flush signal, in case LEN5 had flushed its pipe
for misprediction. In the IDLE state, if LEN5 should be unavailable, len5_rready=0, the
instruction would be saved within the register, along with the exception signal. The bit
for the exception is necessary since, in the event that an exception was received for the
instruction saved in the buffer, it must be delivered to LEN5 along with the instruction that
generated it, in order to be propagated in the pipeline. X-HEEP’s bus does not support
any kind of exception for instructions, so the Exception Code on LEN5’s interface was
forced to E_I_ACCESS_FAULT. However, the bridge is compatible with the exception
mechanism for future development.

The FIFO tag allows the instruction TAGs generated by LEN5 to be saved within it
and to be supplied again when the corresponding instruction is supplied on the output, so
that the processor can terminate the transaction by recognizing the TAG. The structure
used is identical to those inside the processor. It consists of a circular buffer, with the

27

3 – Bridge Design

addition of a bit for each data item useful for validating the corresponding data item,
and two counters in modulo N needed for counting the data within the queue and for
generating the two signals head_cnt and tail_cnt. On the clock signal front, if the push
signal is present, the queue saves the data at the position indicated by tail_cnt. On the
other hand, if the signal pop is present, the queue deletes the data present at the position
head_cnt. In the case of an instruction transaction, the queue must save the TAG at the
time the transaction is accepted, end of Address Phase, and provide it to LEN5 at the
time the instruction is available, end of Response Phase. To do this, the signal push is
generated by the logical AND between the signal bus_req and the signal len5_gnt_o,
when in fact both signals are available, the transaction has definitely been accepted and
the Address Phase, concluded. The pop signal, on the other hand, is connected to the
logical AND between the len5_rvalid_o signal and the len5_rready_i signal, which
respectively signal the readiness of the instruction and the readiness of LEN5 to accept it,
thus indicating the conclusion of the Response Phase.

Since it is a circular buffer, to avoid errors due to push operations when the queue is
full or pop operations with an empty queue, there is also a system to control the filling or
emptying of the queue by means of the signals empty and full, generated combinatorially
from the counters. If the two counters were to have the same value but the data_valid bit
corresponding to the position of head_cnt was 0, the queue would be empty and no pop

operations would be allowed. Similarly with the two counters of identical value and the
bit data_valid corresponding to the position of head_cnt was 1, the queue would be full
and no push operations would be allowed. The structure also supports the possibility of
flush, like any other presented, by counter reset and forced emptying of the FIFO queue.

LEN5 does not take advantage of TAG generation for instructions, and the FIFO is
unused at present. However, it is introduced for an eventual evolution of LEN5 in multiple
issues, where it will be necessary to include TAG support for instructions as well.

3.2.3 Instruction Bus MUX and Additional Signals

Finally, the Instruction Module has two MUX, which are necessary for routing to the LEN5
bus of instructions and exceptions, in the two states of the FSM. Both controlled by the
buff_sel signal, in the IDLE state of the FSM, they directly connect the instruction bus
and exception signal, incoming from X-HEEP with those of LEN5. In the BUFFER state,
on the other hand, they connect the contents of the Instruction Buffer with LEN5.

Finally we find: the signal len5_we, responsible for the selection of READ or WRITE
requests, connected directly to the output to X-HEEP, not used in the case of instruction
requests, these being read-only, it is retained for protocol compatibility; the bus len5_be,
necessary for the selection of the type of request, WORD, HALF-WORD or BYTE, fixed

28

3 – Bridge Design

at the value 4’hf in the case of instructions, these being necessarily WORDs; the bus
len5_addr, containing the address of instructions, of which only the 32 LSB are connected
directly to the bus of X-HEEP.

3.3 LOAD Module

The second main module of the Bridge is the LOAD Module, visible in the figure 3.5, used
to handle LOAD-type requests to the X-HEEP bus. In the schematic, the signals have
been divided by function, via color. In red the signals coming from or destined to LEN5,
in blue the signals coming from or destined to the X-HEEP bus, in green the internally
used data signals, and in violet the control signals.

As already introduced in section 2.3, the bus size of X-HEEP is only 32 bits, thus pre-
venting LEN5 from executing DOUBLEWORD requests directly. It is therefore necessary
for the LOAD Module to distinguish between the two possible types of data requests, 32
or 64 bits, coming from LEN5 and, taking advantage of the two available ports, to send a
single 32-bit data request in the case of LOAD WORD, HALFWORD and BYTE or two
simultaneous 32-bit data requests in the case of LOAD DOUBLEWORD.

As introduced earlier, the microcontroller bus does not allow more than one request to
be executed at a time, so implementing a single port, executing two requests sequentially,
would have sufficed. It was decided to integrate two ports and the possibility of simulta-
neous requests anyway, in the event that the bridge was connected to a more advanced
multiport bus. The requests will later be sequenced by the crossbar, introduced in section
3.1.

Since the type of bus to which the architecture is connected cannot be known, it cannot
be determined whether the 64-bit data will arrive at the same instant or at different times,
so the module is able to save the first 32-bit input data, within a buffer, waiting for the
arrival of the second part of the data, and then supplying the complete data to the LEN5
bus. A double buffer implementation could have been used at the input, so that both input
data would be saved in each case, simplifying the CU. A single-buffer implementation was
preferred, to speed up the delivery of the data to LEN5.

The operations performed by the module are as follows:

1. If a request is received from LEN5 regarding a LOAD instruction, the module dis-
tinguishes the type of request according to the bus byte enable. Requests can be for
64-bit data, thus DOUBLEWORD, otherwise for 32-bit data, thus WORD, HALF-
WORD or BYTE.

2. Generates request signals on one or both ports, depending on the type of request
received, to be sent along with the address to the X-HEEP bus.

29

3 – Bridge Design

3. Waits for grant signals on one or both ports, depending on the request made in the
previous step, and generates the grant signal for LEN5. Keep in mind that since we
have separated the 64-bit data requests into two 32-bit data requests, the acceptance
of the 64-bit data request is signaled to LEN5, through the assertion of grant, only
when both 32-bit data requests are accepted by the bus.

4. Saves within the FIFO queue the signals required to complete the Response Phase.
5. Waits for the availability of the data on the X-HEEP bus and the rvalid signal,

again on one or both ports, depending on the type of request.
6. Saves the first half of the input data into the buffer and waits for the second half, or

sends the data directly to the alignment module, the behavior depending on the type
of request.

7. Aligns the input data, loads it onto the LEN5 bus, and generates the rvalid signal
for LEN5. As in the case of accepting the 64-bit data request, in the case of resolving
the same request, the rvalid signal for LEN5 is asserted only when both 32-bit data
are received.

30

3 – Bridge Design

Figure 3.5: Bridge LOAD Module

The module consists of: two Control Units, an Address Splitter, a Data Buffer, a FIFO
Queue, and a Byte Selector. The following is a detailed analysis of the components.

3.3.1 Grant Control Unit

The first Control Unit instantiated in the LOAD Module is called the Grant Control Unit.
Necessary for handling the Address Phase of the OBI protocol, it is in charge of generating
the bus_req signals to the X-HEEP bus and the len5_gnt signal to LEN5, as well as
controlling the push of the information needed for the Response Phase of the OBI protocol,
within the FIFO queue.

Again as with the Instruction CU, the approach used for implementation is Mealy’s.
In fact, memory accesses are one of the major causes of processor pipe stalls due to long

31

3 – Bridge Design

delays caused by memories. A Moore-type implementation would have introduced too
many delays due to state-passing waits, so it was preferred to generate control signals
combinatorially, speeding up the execution of LOADs.

Unlike the instruction interface of LEN5, which may not be ready to receive instructions,
in the case of the LOAD interface, LEN5 is always ready to receive a data, which is why
the signal len5_rready, although supported by protocol request, is not used within the
CU.

In addition to the Clock and Reset signals, whose operation is obvious, there is a flush

signal that works as a synchronous reset for the CU. In the case of the LOAD Module
this signal is not used, unlike that in the Instruction Module, in fact no flush of the data
interface has to be done even in the case of branch misprediction, since LOADs have to be
executed in any case, the processor will later take care of flushing the pipeline in the case
of misprediction.

The FSM within the Control Unit has 3 states: ISSUE, WAIT_GNT0 and WAIT_GNT1.
Again we will divide the analysis of the FSM into two parts, future state logic and control
signal logic.

The future states logic works starting from the ISSUE state, here the FSM checks if
there is a request from LEN5, through the assertion of the signal len5_req. If the request
is received, it checks its type via the value of the 8 bits of the len5_be bus, this in fact
has specific values depending on the size of the requested data. There is no need to use all
the combinations of the 8 bits of the bus len5_be to identify a subpart of the 64 bits, the
bridge is able to do this from the address provided, this allows to simplify the generator of
the byte enable inside LEN5. Of the four combinations of values generated by LEN5, only
one has the first four bits at value 1. This corresponds to the DOUBLEWORD request.

• 8’b11111111 → DOUBLEWORD request, 64-bit data.
• 8’b00001111 → WORD request, 32-bit data.
• 8’b00000011 → HALFWORD request, 16-bit data.
• 8’b00000001 → BYTE request, 8-bit data.

If the request is of the DOUBLEWORD type, the FSM remains in the ISSUE state
in the event that both requests sent to the bus are accepted simultaneously, signaled by
assertion of both bus_gnt signals. Otherwise, if only one of the two requests is accepted,
the FSM switches to one of the two WAIT_GNT states, waiting for the remaining second
request to be accepted. In the case of a WORD, HALFWORD or BYTE type request, the
FSM will always remain in the ISSUE state.

The states of WAIT_GNT0 and WAIT_GNT1 are identical, differing only in the
bus_gnt signal that the FSM controls. Respectively, the FSM controls the bus_gnt0

32

3 – Bridge Design

signal in the former case or the bus_gnt1 signal in the latter case, returning to the ISSUE
state when the signal is asserted.

As introduced earlier, the control signal logic combinatorially generates the signals
needed for transactions so that they are available in the same clock cycle in which LEN5
executes a request.

Starting from the state of ISSUE, the logic distinguishes the two types of requests from
the value of the first 4 bits of the bus len5_be, as happens in the logic of future states. For
64-bit data requests, the FSM forwards the len5_req signal, input from LEN5, to both
module ports, making two requests to the X-HEEP bus. In this way, the requests occur
immediately and there is no need to change state. At the same time, the FSM waits for
the assertion of one or both of the bus_gnt, signaling the acceptance of the requests. The
len5_gnt signal is generated by the logical AND of the two bus_gnt, so that it would
be asserted immediately if both requests were accepted. As we have already pointed out,
this is an impossible occurrence in the case of the X-HEEP bus, since it is single-port.
The last signal is the push for the FIFO queue, generated from the AND between the
signal len5_req and the OR between the two bus_gnt. In fact, the queue must save
within it various data needed by the Rvalid CU and the alignment module, before the bus
asserts the rvalid for the first satisfied request, so that these are already available for
Rvalid CU operation. This is done by exploiting the first received between the two input
bus_gnt (OR operation), while ensuring that there has been a request from LEN5, (AND
operation between len5_req and the result of the previous OR operation). In the case of
32-bit requests, by design choice, only port 1 of the module is used. The FSM forwards
the len5_req signal, sent by LEN5, to the bus_req1 and generates the len5_gnt signal
from the bus_gnt1. The push for the FIFO queue is generated by the AND of len5_req
and bus_gnt1 alone.

The states of WAIT_GNT0 and WAIT_GNT1 are achievable only if the type of the
detected request is DOUBLEWORD. In the WAIT_GNT0 state, the bus_req0 is kept
asserted, waiting for the bus to assert the bus_gnt0 signal, which will be used to generate
the len5_gnt signal. All this is necessary because LEN5 keeps the len5_req signal
asserted for only one clock cycle. Similarly, the WAIT_GNT1 state works in the same
way, with mirrored signals. Figure 3.6 shows the diagram of CU states, in the case of
a DOUBLEWORD type transaction. The case of WORD, HALFWORD and BYTE is
omitted, since the CU always remains in the ISSUE state. The table 3.2 shows the signals
generated by the CU and the method of generation.

33

3 – Bridge Design

Figure 3.6: State Diagram of the Grant CU for a DOUBLEWORD Request

Signal Value
State ISSUE - LOAD DOUBLEWORD

bus_req0 len5_req
bus_req1 len5_req
len5_gnt bus_gnt0 & bus_gnt1
push_fifo len5_req & (bus_gnt0 | bus_gnt1)
State ISSUE - LOAD WORD, HALFWORD or BYTE
bus_req0 0
bus_req1 len5_req
len5_gnt bus_gnt1
push_fifo len5_req & bus_gnt1

State WAIT_GNT0
bus_req0 1
bus_req1 0
len5_gnt bus_gnt0
push_fifo 0

State WAIT_GNT1
bus_req0 0
bus_req1 1
len5_gnt bus_gnt1
push_fifo 0

Table 3.2: Grant CU - Signal Generated and Generation Methods

34

3 – Bridge Design

3.3.2 Address Splitter

The Address Splitter module is responsible for generating addresses for LOAD requests
to the X-HEEP bus, from the address provided by LEN5. It presents as input the 64-bit
address bus, len5_addr, and the byte enable, len5_be. Instead, as output it presents
two 32-bit address buses, bus_addr0 and bus_addr1. It should be noted that, by design
choice, 64-bit requests are divided as follows: port 0 responsible for the 32 LSBs, port 1 of
the 32 MSB of the requested data.

Its operation is divided into two cases, also determined by the type of request made to
the bus. The module is able to distinguish between the two types of requests, 32 bits or
64 bits, based on the value of the len5_be.

As for 32-bit requests, WORD, HALFWORD and BYTE, these do not require special
handling; the module simply generates on both outputs the 32-bit address, consisting of
the 32 LSBs of the len5_addr bus. It is important to remember that, as specified in
section 3.3.1, regardless of the presence of the address on both output ports, the Grant CU
will only generate the request on port 1.

Related to 64-bit requests, we have already introduced in section 2.2, the concept of
Misaligned Access. The bridge is designed to be able to support aligned and misaligned
accesses. In fact, there is a possibility that data may not necessarily be arranged on
the same row, in order to optimize memory occupancy, think for example of embedded
systems where ram banks are small and space cannot be wasted. That said, depending on
the arrangement of the data, the processor may perform an Aligned access, which implies
generating an address that is a multiple of the number of Bytes of which the data is
composed. Considering a 64-bit, 8-byte array, the multiple addresses would be all those
whose last 3 LSBs are 0, e.g., 0, 8, 16, etc. There could also be the case where the data
is not on the 64 bits of one row, but, for example, on the last 32 bits of one row and the
first 32 bits of the next. This would force the processor to perform a Misaligned access,
generating an address that is not a multiple of the number of bytes of the data, e.g., 4, 12,
etc., and to access memory multiple times to retrieve the data.

The module can distinguish between Aligned and Misaligned requests, based on the
value of the third bit of the address provided by LEN5. If this is equal to 0, the address
will necessarily be a multiple value of 8, so there will be aligned access. Otherwise, the
access will be misaligned.

The above remains an incipit for future developments of the bridge, possibly making it
compatible with 64-bit aligned ram connected via 32-bit multiport bus. The ram inside
X-HEEP is in fact 32-bit aligned with read/write accesses to entire WORDs while the
system bus has a single port dedicated to 32-bit data requests. Therefore, the bridge will
always duplicate memory access requests in the case of LOAD/STORE DOUBLEWORD,

35

3 – Bridge Design

regardless of whether these are aligned or misaligned, since it is not possible to recover the
data in a single access.

The generation of addresses on the two ports is done in two different ways. For aligned
accesses, it is sufficient to connect to port 0 the last 32 LSBs of the address given by
LEN5, while in port 1 the same portion of bits is connected but with the third one forced
to 1. This will automatically result in an addition of 4 on the address given by LEN5.
For Misaligned accesses, the 32 LSBs are connected to port 0, as in the previous case.
Unfortunately, for the outgoing address from port 1, a value of 4 must be physically added
to the address provided by LEN5 by instantiating an adder.

3.3.3 Rvalid Control Unit

The second Control Unit present within the module is named Rvalid Control Unit. It is
used to manage the Response Phase of the OBI protocol, through: the generation of the
len5_rvalid signal, the control of the Data Buffer through the reg_en and req_ctr_mux

signals, for saving the input data in case the transactions were not executed at the same
time, and the control of the muxes on the data bus, via the signals exit0_ctr_mux and
exit1_ctr_mux, which are needed to align the partial input data, in case of 64-bit transac-
tions. It is also responsible for generating the len5_except_raised signal, to be supplied
to the processor in case homonymous signals are asserted from the bus.

Like all CUs within the Bridge, this one also features a Mealy approach with the aim
of accelerating the delivery of data to the processor and not stalling the pipe for too long,
while simultaneously reducing the number of states required.

We will leave out the obvious operation of the clock and reset signals; as for the
flush signal, its operation was explained in Section 3.3.1.

The control unit has a 5-state FSM:

1. IDLE
2. WAIT_RVALID0
3. WAIT_RVALID1
4. WAIT_RVALID0_ERR
5. WAIT_RVALID1_ERR

We begin the analysis of the FSM from the future state generation logic. The initial
state of the FSM is IDLE, here the two types of requests made in the previous step are
distinguished from the first four bits of the len5_be bus. Note that at this time, the
len5_be bus is no longer available, as the processor has already made another instruction
request. The byte enable that the Rvalid CU uses is provided by the FIFO, which is
controlled by the Grant CU.

36

3 – Bridge Design

Once the type of request is identified, in the event of a DOUBLEWORD, the FSM checks
the signals bus_rvalid0 and bus_rvalid1. If both are asserted, indicating that both
requests have been satisfied and both data are present on the input bus, the FSM remains
in the IDLE state. Otherwise, if only one of the two requests has been validated, the FSM
checks for the presence of the exception signal associated with the received bus_rvalid

signal. If no exception is present, the FSM switches to the WAIT_RVALID state opposite
to that of the asserted bus_rvalid signal; if, on the other hand, the exception is present,
it switches to the mirrored WAIT_RVALID_ERR state. Finally, if no bus_rvalid is
asserted, the FSM remains in the IDLE state.

In the other eventuality that the request is for WORD, HALFWORD, and BYTE, the
FSM will always remain in the IDLE state.

The WAIT_RVALID0 and WAIT_RVALID1 states allow the FSM to wait for the
bus_rvalid signal that has not yet been received. In the WAIT_RVALID0 state, the
FSM checks the assertion of the bus_rvalid0 and, when this happens, returns to the
IDLE state. Similarly, in the state of WAIT_RVALID1, the FSM checks the bus_rvalid1
signal and upon its assertion, returns to the IDLE state.

Concerning the last two states, WAIT_RVALID0_ERR and WAIT_RVALID1_ERR,
the logic of the future states has no difference from the WAIT_RVALID0 and WAIT_RVALID1
states. They turn out to be necessary to internally encode the exception received in the
IDLE state when only one of the two requests has been satisfied. This avoids the imple-
mentation of registers and additional checks to sample the incoming exception signal.

Let proceed now to the analysis of the control signal generation logic. Starting from the
IDLE state, the FSM selects the type of request according to the bus len5_be, provided
to it by the FIFO. With a DOUBLEWORD request, the signal len5_rvalid is generated
from the AND of the two signals bus_rvalid0 and bus_rvalid1, in case the requests
were fulfilled at the same time. The signal reg_en, which is necessary for enabling the Data
Register, is generated by the XOR of the two signals bus_rvalid. In fact, the register
must be enabled at the time the data is present on the bus and only in case one of the
two parts of the data arrives before the next. The bus where the data is present is then
connected to the register itself by means of a mux, controlled by the signal reg_ctr_mux,
generated from the signal bus_rvalid1. If the data on port 0 were to arrive first, the
bus_rvalid1 would not be asserted, connecting the port 0 bus to the register input;
conversely, the port 1 bus would be connected. Now follows the generation of the two
control signals for the alignment module, exit0_ctr_mux and exit1_ctr_mux. The first
of the two controls the multiplexer on whose inputs are the partial data pairs, bus_data1
+ Data Buffer or Data Buffer + bus_data0, in the default IDLE state of 0 because the
FSM has not yet identified which of the two data pairs arrived first. The second signal
controls the output of the alignment module, connecting either the previously selected pair

37

3 – Bridge Design

or the pair bus_data1 + bus_data0. As mentioned in the section on future state logic,
the FSM uses the IDLE state even if both requests are satisfied at the same time, so the
signal is kept at 1, directly connecting the data buses to the input data bus at LEN5. The
last signal is len5_exception_raised, generated by the OR between the two signals
bus_exception_raised0 and bus_exception_raised1. The presence of any one of
the two exception, indicating the wrong data read, must in fact be forwarded to LEN5
regardless of which one is asserted.

For requests other than the DOUBLEWORD type, as specified above, only port 1
is used. The signal len5_rvalid is directly connected to the input signal bus_rvalid1.
There is no need to use the Data Buffer, which will then be disabled by deasserting reg_en,
also it does not matter which of the two inputs is connected to the Buffer, as it is dis-
abled. The signal reg_ctr_mux is then also deasserted. The signals exit0_ctr_mux and
exit1_ctr_mux are not used in this case for data alignment, the input address being used
directly. They are therefore set to 0 by default. Finally, the signal len5_except_raised
is directly connected to the signal bus_except_raised1.

Continuing with the pair of states WAIT_RVALID0 and WAIT_RVALID1, it is im-
portant to remember that the FSM can proceed in these states only if the requests
have not been fulfilled at the same time and a exception has not been received. That
said, in the WAIT_RVALID0 state, the FSM generates the signal len5_rvalid from
the input bus_rvalid0. The partial data, made available in the IDLE state, has al-
ready been saved in the Data Buffer and must be preserved by disabling its update,
deasserting the signal reg_en. The signal reg_ctr_mux is set to 0 by default, as it is
no longer relevant which input bus is connected to the register, since it is disabled. The
alignment module is driven, bringing to the output the pair Data Buffer + bus_data0,
exit0_ctr_mux=0 and exit1_ctr_mux=0, being arrived first the partial data on port 1,
which is now in the Data Buffer. The signal len5_except_raised is directly connected
to bus_except_raised0, there having been no exception in the previous state. Simi-
larly, the WAIT_RVALID1 state provides the same behavior. It differs only in the signal
connections: len5_rvalid, now connected with bus_rvalid1, len5_except_raised

connected directly to bus_except_raised1, and exit0_ctr_mux=1, which connects to
the output of the alignment module, the pair bus_data1 + Data Buffer.

The states required to encode an exception received during the IDLE state,
WAIT_RVALID0_ERR and WAIT_RVALID1_ERR, are identical to the states of
WAIT_RVALID0 and WAIT_RVALID1 described above. They have only one difference,
the signal len5_except_raised is asserted directly, signaling to the processor the presence
of an exception, regardless of what will happen during the reception phase of the second
part of the requested data.

38

3 – Bridge Design

The diagram in figure 3.7 shows the progress of CU states, in the case of a DOUBLE-
WORD transaction. The WORD, HALFWORD, and BYTE cases are deliberately omitted
since the Control Unit constantly remains in the IDLE state.

The tables 3.3 and 3.4 show the various signals generated by the CU and the methods
of generation.

Figure 3.8 depicts two LOAD DOUBLEWORD transactions, during a standard exe-
cution and with the occurrence of an exception. In the first section, the signals and the
data buses as well as address buses are shown during the execution of all steps of the
OBI protocol, for a LOAD without exception. Several behaviors described in the previous
sections can be seen. First, the signal len5_req, asserted by LEN5 for only one clock
cycle, is forwarded to both ports at the same time it is detected. The first grant asserted
by the bus is the bus_gnt1, note in fact how the request on port 1 is deasserted after only
one cycle while the same request on port 0 is held by the bridge until the bus_gnt0 is
received. Only then the bridge asserts the len5_gnt. LEN5 guarantees the correctness of
the incoming address and byte enable only until the grant is asserted, so these signals last
exactly two cycles; however, it is not a given that, after the grant is asserted, they become
invalid. Also important is the signal push_fifo, asserted the moment the first request
is accepted, with bus_gnt1 asserted. In the second phase of the protocol, it is crucial to
pay attention to the rvalid signals; consequently to the acceptance of the first request on
port 1, the bus responds with a partial data asserting the bus_rvalid1. Since the second
rvalid is not present at the same time, the Rvalid CU asserts the reg_en and connects
the input bus, via the reg_ctr_mux, to the Data Buffer register, saving the data inside,
as visible in the bus_data1_i and data_buffer buses. In the clock cycle following the
reception of bus_rvalid1, bus_rvalid0 is also asserted. The Rvalid CU, at this time in
the state of WAIT_RVALID0, drives the Byte Selector via the signals exit0_ctr_mux=0
and exit1_ctr_mux=0, bringing the sorted data to the output bus in the correct manner.

Instead, the second section of the image shows a LOAD transaction with, however,
the assertion of the exception related to the first partial data. The pattern of Address
Phase and Response Phase is essentially identical to the transaction illustrated above. It is
important to note one major difference, however, at the time of the assertion of the signal
bus_exception_raised0 in conjunction with the arrival of the signal bus_rvalid0,
this is first forworded directly to LEN5, thereafter the Rvalid CU switches its state to
WAIT_RVALID1_ERR keeping the len5_exception_raised asserted even in the cycle
following the one in which the exception was received, ensuring that LEN5 receives it along
with len5_rvalid.

39

3 – Bridge Design

Figure 3.7: State Diagram of the Rvalid CU for a DOUBLEWORD Request

Signal Value
State IDLE - LOAD DOUBLEWORD

len5_rvalid bus_rvalid0 & bus_rvalid1
reg_en bus_rvalid0 ⊕ bus_rvalid1

reg_ctr_mux bus_rvalid1
exit0_ctr_mux 0
exit1_ctr_mux 1

len5_except_raised bus_except_raised0 | bus_except_raised1
State IDLE - LOAD WORD, HALFWORD or BYTE

len5_rvalid bus_rvalid1
reg_en 0

reg_ctr_mux 0
exit0_ctr_mux 0
exit1_ctr_mux 0

len5_except_raised bus_except_raised1

Table 3.3: Rvalid CU - Signal Generated and Generation Methods - IDLE STATE

40

3 – Bridge Design

Signal Value
State WAIT_RVALID0

len5_rvalid bus_rvalid0
reg_en 0

reg_ctr_mux 0
exit0_ctr_mux 0
exit1_ctr_mux 0

len5_except_raised bus_except_raised0
State WAIT_RVALID1

len5_rvalid bus_rvalid1
reg_en 0

reg_ctr_mux 0
exit0_ctr_mux 1
exit1_ctr_mux 0

len5_except_raised bus_except_raised1
State WAIT_RVALID0_ERR
len5_rvalid bus_rvalid0

reg_en 0
reg_ctr_mux 0

exit0_ctr_mux 0
exit1_ctr_mux 0

len5_except_raised 1
State WAIT_RVALID1_ERR
len5_rvalid bus_rvalid1

reg_en 0
reg_ctr_mux 0

exit0_ctr_mux 1
exit1_ctr_mux 0

len5_except_raised 1

Table 3.4: Rvalid CU - Signal Generated and Generation Methods - WAIT STATES

41

3 – Bridge Design

Fi
gu

re
3.

8:
LO

A
D

D
O

U
BL

EW
O

R
D

-N
or

m
al

Ex
ec

ut
io

n
an

d
Ex

ec
ut

io
n

w
ith

Ex
ce

pt
io

n
Pr

es
en

t

42

3 – Bridge Design

3.3.4 Data Buffer and Load FIFO

The register needed to save the partial input data, in case of unfulfilled requests at the
same time, is called Data Buffer. The implementation is that of a normal 32-bit register, so
we will not dwell on in-depth explanations. In addition to the clock and reset signal, it
has a flush signal, acting as a synchronous reset, and an enable signal, reg_en, controlled
by the Rvalid CU, presented in section 3.3.3. As input, it receives a partial data from one
of the two input buses to the LOAD Module, bus_data0 or bus_data1, which of the two
buses is controlled by the Rvalid CU, depending on which of the partial data is provided
first. Finally, the output is provided to the alignment module.

The second data structure in the module is a FIFO queue. At the end of the Ad-
dress Phase of the OBI protocol, once the len5_gnt signal is received, LEN5 no longer
guarantees to maintain fixed signals on its interface. However, many of these signals are
needed in the Response Phase: to distinguish between different types of requests, to align
data, and to provide LEN5 with the tag of the completed LOAD instruction. The FIFO
queue, identical to the one used in the Instruction Module, allows the following to be stored
within it: the signal len5_be, which is needed for the identification of the request in both
the Rvalid CU and the alignment module, the 2 LSBs of the bus len5_addr, which are
needed within the alignment module for 32-bit data requests, and the TAG of the LOAD
instruction being executed, so as to provide it to LEN5 when it is completed. As for the
push signal, we have already defined how this is generated. The pop signal, on the other
hand, is directly controlled by the len5_rvalid signal. In fact, once the data is received,
signaled by bus_rvalid, it is no longer necessary to store the signals within the FIFO.

3.3.5 Byte Selector

At the time the requested data is received by the bridge, it is not yet in the correct form
to be delivered and processed by the processor. In fact, it is necessary to select and align
the received data, depending on the type of request made by LEN5. The module assigned
to this task is called the Byte Selector. It consists of two main sections, each capable of
handling a type of request, again identified from the len5_be bus, out of the FIFO.

We begin the analysis from the section responsible for DOUBLEWORD type requests,
whose data must be aligned taking into account their arrangement within memory and the
time at which the data is available on the bridge interface. The arrangement of the data
is of the Little Endian type, that is, with the LSBs of the data corresponding to the lower
value address. As presented in Section 3.3.2, by design choice it was decided to assign the
lower value address to port 0 and the higher value address to port 1, so the LSB portion
will be available at port 0 and the MSBs at port 1.

This section, visible in figure 3.9, is essentially composed of two cascaded multiplexers,

43

3 – Bridge Design

controlled through their selectors, by the signals exit0_ctr_mux and exit1_ctr_mux

generated by the Rvalid Cu. The first multiplexer is used to compose the data, in case the
two parts arrived at different times and one is saved within the Data Buffer. In the case of
the X-HEEP bus, having only one port, this always happens. Through the switch driven by
exit0_ctr_mux, it is possible to connect on the 64-bit output of the multiplexer, the union
between the bus_rdata1 bus and the contents of the Data Buffer or the contents of the
Data Buffer and the bus_rdata0 bus. Note the order of in which the buses are connected,
which is critical for restoring positional notation from the Little Endian notation of the
memory. The second multiplexer, placed between the first multiplexer and the output
connected to the processor’s data bus, uses the exit1_ctr_mux signal as a selector to
connect the combination of the module’s two input buses, bus_rdata1 and bus_rdata0

in that order, directly to the LEN5 bus, in case the requests are completed at the same
time. Otherwise, it connects the output of the first multiplexer to the data bus of LEN5.

Figure 3.9: Byte Selector - 64 bits Selection

The second section, related to 32-bit requests, does not use the signals generated by
the Rvalid CU for alignment, but instead takes advantage of the 2 LSBs of the address
provided by LEN5, which are present within the FIFO queue. As mentioned earlier, the
ram instantiated within X-HEEP ignores the last two bits of the input address, providing in
read a 32-bit data, regardless of the request made. However, the processor could access the
memory by making BYTE requests, with addresses of any value, or HALFWORD requests,
with addresses multiple of 2, still receiving a WORD as a response. The Byte Selector solves
this problem by exploiting two multiplexers, appropriately controlled by the 2 LSBs of the
address given by LEN5, generating the HALFWORD and BYTE corresponding to the
address of the request, from the WORD received, and then connecting the input bus to

44

3 – Bridge Design

the output bus, in the manner appropriate to the request made.
Going into more detail, a logical diagram of the operation of the Byte Selector can

be seen in figure 3.10. Note that no additional registers have been used; what looks like
registers in the diagram are actually the various combinations by which the input data bus
can be connected to the output data bus.

Starting with the input WORD, depending on bit 1 of the address, the module either
connects the 16 MSBs of the input bus with the 16 LSBs of the output bus, in the case where
bit[1]=1, or keeps the 16 input LSBs in the same position on the output, in the case where
bit[1]=0. In both cases, the 16 input MSBs are also connected to the 16 output MSBs. The
problem of repeating MSBs does not arise since LEN5 will take care of the sign extension,
eliminating repetitions. Similarly, starting from the combinations of signals generating the
HALFWORD, depending on bit 0 of the address, the module either connects the 8 MSBs
of the HALFWORD to the 8 LSBs of the output, in the case where bit[0]=1, or keeps the
8 LSBs in the same position, in the case where bit[0]=0. For this configuration, both the
16 MSBs of the WORD and the 8 MSBs of the HALFWORD are also copied to the same
position. Finally, all three configurations are the input to a multiplexer controlled by the
value of the 4 LSBs of the len5_be bus, which is used to select which of the configurations
to connect to the output bus, len5_rdata.

1. 4’b1111 −→ LOAD WORD
2. 4’b0011 −→ LOAD HALFWORD
3. 4’b0001 −→ LOAD BYTE

The result will be to have the BYTE or HALFWORD selected in the manner described
in 2.2, always occupying the bit portion on the right-hand side of the 64-bit output, so
that LEN5 can extend the sign and create a usable WORD.

45

3 – Bridge Design

Figure 3.10: Byte Selector - 32 bits Selection

3.3.6 Additional Signals

The signal bus_we, which is necessary for the distinction between LOAD and STORE
requests, is directly connected to the signal len5_we. With the splitting of the processor’s
LOAD/STORE interface, it becomes superfluous, being constantly at a fixed value. It is
retained for protocol compatibility.

The values of the buses bus_be0 and bus_be1 are assigned from that of the bus
len5_be. For the bus bus_be0, the value is always equal to that of the 4 LSBs of the
bus len5_be, while for the bus bus_be1, the value can vary between: the 4 MSBs of the
bus len5_be if the transaction is 64 bits or the 4 LSBs of the same bus in case of a 32-bit
transaction.

46

3 – Bridge Design

3.4 STORE Module

The last of the 3 component modules of the Bridge is the STORE Module, visible in the
figure 3.11, intended to handle STORE requests to the X-HEEP bus. For comprehensibility,
in the schematic the various signals have been divided by function, via color. In red the
signals coming from or destined for LEN5, in blue the signals coming from or destined for
the X-HEEP bus, in green the data signals used internally, and in violet the control signals.

As already mentioned in the section on the LOAD Module and described in section
2.3, its implementation is due to the impossibility of executing a single STORE DOU-
BLEWORD request to the X-HEEP bus because of the size of the data bus itself. It is
therefore necessary for the module to distinguish the type of input request from LEN5 and
based on the type of the latter, send a single 32-bit data request to the bus in the case
of STORE WORD, HALFWORD and BYTE or two simultaneous 32-bit data requests in
the case of STORE DOUBLEWORD. Output requests from the two module ports will be
made sequential by the crossbar to which the bridge connects so that the bus can handle
them.

For this module, too, it would have been possible to implement a single port and directly
serialize requests to the X-HEEP bus. However, the implementation of two ports and
simultaneous requests was preferred, as in previous cases, to make the bridge compatible
even with multiport buses supporting this type of request.

The operations performed by the module are given below:

1. Asserted the signal len5_req for a STORE, the module forwards the request to port
1 or both ports, depending on the type of request received, identified by the bus value
len5_be.

2. Correctly aligns the data to be saved in memory according to the type of STORE
request received.

3. Asserts the signal of len5_gnt when the request(s) have been accepted by the bus,
signaled by the assertion of the signals bus_gnt0 and bus_gnt1.

4. Saves within the FIFO queue the value of the signals required for the second phase
of the OBI protocol.

5. Asserts the signal len5_rvalid when the request(s) have been completed.

The implementation of the module provides the use of: two Control Units dedicated
to the management of OBI protocol requests, an Address Splitter for the generation of
addresses, a FIFO queue used to save information useful in the second phase of the OBI
protocol, and a Data Aligner necessary for the alignment of the output data to the X-HEEP
bus and the generation of the correct bus bus_be. Given the use of the same communica-
tion protocol and the modularity of the components implemented, it was possible to use

47

3 – Bridge Design

the same Control Units, Address Splitter and FIFO queue already explained in the section
on the LOAD Module. Therefore, the analysis of the components already illustrated in
the previous paragraphs and the additional signals will be left out, focusing only on the
differences present.

The signals saved within the FIFO queue differ from those saved in the internal FIFO
of the LOAD Module. In fact, it is not necessary to save the 2 LSBs of the address sent by
LEN5 since the alignment is performed in the Address Phase of the OBI protocol, when
the address is still present at the input. There is also no need to implement a Data Buffer
to save the data, in fact the data is kept as input by LEN5 until the module asserts the
len5_gnt signal. At that time, the X-HEEP bus has already taken over the data to be
written to memory, the len5_wdata bus being part of the Address Phase of the OBI
protocol, as visible in the 2.1 table. The signals needed to control the Buffer and data
routing mux, generated by the Rvalid CU, remain unused.

The alignment of data output from the module differs from that seen in the LOAD
Module. In this case, an aligner called Data Aligner is implemented, which will be explained
in detail.

48

3 – Bridge Design

Figure 3.11: Bridge STORE Module

3.4.1 Data Aligner

The Data Aligner is responsible for aligning the data to be written to memory and for
generating the bus_be signal needed to signal which portion of the supplied data is to be
written. One of the features of the ram present within X-HEEP, which the Data Aligner
exploits, is the selection of the portion of the supplied data to be updated. Through the
bus_be bus, in fact, a single BYTE or a single HALFWORD of the WORD available on
the input bus can be selected to be updated within memory without rewriting the entire
WORD. Always keeping in mind, however, that the ram works with 32-bit data, although
it can select a subset to write. This implies that the data provided will have to be a WORD
in any case.

The distinction of transaction type, as in the other modules, is made through the first
4 MSBs of the len5_be bus, available in the FIFO. For 64-bit transactions, no alignment

49

3 – Bridge Design

is necessary outside the correct arrangement of the two partial data on the ports, so as
to respect the Little Endian encoding of the memory. In this case, the two bus_be0 and
bus_be1 correspond to the 4 LSB and 4 MSB of the len5_be, respectively. For 32-bit
transactions, the Data Aligner generates the corresponding HALFWORD and BYTE from
the WORD present in the input, via appropriate connections of the len5_wdata bus to
the output bus.

It is important to note that LEN5 provides the data to be written to memory, in
positional notation with extended sign. This implies that the data will be placed on the
rightmost bits of the 64 of which the provided DOUBLEWORD is composed. We speak
of WORD being present in the input even though LEN5 sends a DOUBLEWORD, since
the Data Aligner ignores the 32 MSBs, which are only needed for the sign extension, and
only works on the 32 LSBs.

The address of the location in memory to which the data is to be written will be
compatible with the specification described in 2.2.

Leaving aside the simple case of WORD, in the other eventualities where we have data
of type HALFWORD or BYTE, it should be shifted, bringing it to occupy the portion of
the 32 bits corresponding to the address given.

However, by being able to use the partial data selection feature built into X-HEEP’s
ram, in the case of HALFWORD or BYTE, it is possible to replicate the supplied data by
saturating the 32 bits of a WORD and provide this as the data to be written to memory
along with a properly configured bus_be to select the correct portion of the data to be
saved. This saves the instantiation of a barrel shifter and limits the inserted delay.

In particular, the HALFWORD is generated by replicating the 16 LSBs of the WORD
provided by LEN5, resulting in a 32-bit data consisting of two repetitions of the 16 LSBs.
Similarly, BYTE is generated by replicating the 8 LSBs of the input WORD, resulting in a
32-bit data consisting of four repetitions of the 8 LSBs. A logical diagram of the operation
of the Data Aligner is shown in Figure 3.12. Note that none of the visible structures
implements a register; what is represented are the various connections that starting from
the input bus, generate WORD, HALFWORD and BYTE.

Once the possible outputs have been generated, the output of the Data Aligner is
selected based on the three possible combinations of the 4 LSBs of the len5_be bus. At
the same time the bus_be1 is also generated, only port 1 being used for 32-bit requests.
The bus_be0 remains identical to the 64-bit case. The possible combinations of the 4
LSBs of the len5_be and their outputs are listed below:

1. 4’b1111 −→ STORE WORD, the selected output is the entire WORD and the bus
bus_be1 corresponds to the 4 LSBs of the bus len5_be.

2. 4’b0011 −→ STORE HALFWORD, the selected output is the HALFWORD and the

50

3 – Bridge Design

bus bus_be1 must be appropriately configured according to the 2 LSBs of the ad-
dress provided by LEN5, in order to save the HALFWORD in the correct location.
Specifically, if the len5_addr[1]=1, the HALFWORD selected will be the one oc-
cupying the 16 MSB of the 32 bits of the WORD generated by the Data Aligner
and the bus_be1=4’b1100. Conversely, the lower HALFWORD will be selected and
bus_be1=4’b0011.

3. 4’b0001 −→ STORE BYTE, the selected output is the single BYTE. In this case,
there are four possible bus_be1 bus configurations, depending on the 2 LSBs of the
memory access address.

(a) len5_addr[1]=1 and len5_addr[0]=1 → the fourth BYTE is selected and
bus_be1=4’b1000.

(b) len5_addr[1]=1 and len5_addr[0]=0 → the third BYTE is selected and
bus_be1=4’b0100.

(c) len5_addr[1]=0 and len5_addr[0]=1 → the second BYTE is selected and
bus_be1=4’b0010.

(d) len5_addr[1]=0 and len5_addr[0]=0 → the first BYTE is selected and
bus_be1=4’b0001.

Figure 3.12: Data Aligner - 32 bits Section

51

Chapter 4

Experimental Results

This chapter will discuss the results obtained from the design of the architecture, through
functional verification of module operation and its synthesis. Each component was simu-
lated using the QuestaSim simulator, while the synthesis was performed using the Synopsys
Design Compiler synthesizer.

4.1 Functional Verification

The testing phase of an architecture represents the critical part of the entire project. Build-
ing test environments capable of ensuring the proper functioning of complex architectures
turns out to be one of the longest lasting parts of the entire development process. A
popular testing methodology in the design verification landscape is Unit Testing, which is
the testing of various standalone components to ensure their proper implementation. The
use of this methodology is the obligatory choice at this stage of verification of the realized
module. Subsequently, once the Bridge has been connected to LEN5 and the processor in-
troduced within X-HEEP, it is the platform itself that will allow its final validation through
a System Test, that is, testing the interfacing of the module with the various components
of the system that talk through it.

The realized module is fully described in System Verilog. The use of the Verification fea-
tures available in the language largely facilitated the development of a modular Testbench,
including all possible relevant use cases, of the Bridge module.

The Testbench has 3 memories within it, one used for instructions and two used for
data, each of which is populated with instructions or data randomly, through the use of
the std::randomize function.

The testbench structure is organized into three sections: one related to the Instruction
Module, one related to the LOAD Module, and one related to the STORE Module. In each,

52

4 – Experimental Results

a variable number of transactions of different types are executed, covering all case scenarios
for each module. It is possible to select the test to be executed, by correctly setting the
TEST_TYPE variable, declared as a testbench parameter. Two other parameters adjust
the duration of the clock cycle and the memory depth.

Each test runs a transaction based on the OBI protocol, appropriately setting the Bridge
inputs to simulate the same behavior as the X-HEEP interface. The module outputs are
automatically checked by a series of assert, verifying the correctness of the results.

4.1.1 Instruction Module Simulation

Two tests are performed for the Instruction Module, covering the case of an instruction
request during which LEN5 is ready in both phases of the OBI protocol and the case
where LEN5 is not ready during the Response Phase.

In figure 4.1 the request and reception of the instruction can be seen. The testbench
asserts the len5_req signal, being propagated to the bus, and in the same clock cycle it
asserts the bus_gnt, accepting the request. At the next cycle the instruction is available
on the bus_rdata and the bus_rvalid is asserted. The behavior is identical to that
envisaged in 3.3.

More interestingly, the transaction shown in figure 4.2, where upon assertion of the
signal bus_rvalid from the X-HEEP bus, LEN5 turns out not to be ready to receive
the instruction, signaled by the low value of the signal len5_rready. This results in the
state transition of the CU present in the instruction module, resulting in the len5_rvalid
signal remaining at a high value, even in the clock cycles following the reception of the data,
where X-HEEP has already deasserted the bus_rvalid. At the same time, the instruction
received by the bridge is maintained on the output bus even with the presence of random
data on the input bus, thanks to the module’s internal register. With the assertion of the
signal len5_rready, the processor is again able to receive instructions, so the module’s
CU returns to the IDLE state and len5_rvalid returns to 0, in the next clock cycle. The
simulation performed coincides with the behavior projected in 3.4.

53

4 – Experimental Results

Figure 4.1: Execution of an Instruction Request and Response

Figure 4.2: Execution of an Instruction Request and Response with Rready Signal De-
assertion

54

4 – Experimental Results

4.1.2 LOAD Module Simulation

The section of tests dedicated to the LOAD Module includes six different types of tests,
starting with transactions related to 32-bit data, such as BYTE, HALFWORD and WORD,
and ending with transactions related to 64-bit data, DOUBLEWORD, executed on both
dual-port and single-port buses. In addition, one of the tests is devoted to receiving
exceptions during the execution of a DOUBLEWORD request.

We will avoid analyzing again the operation of 32-bit data requests, since they are
similar in structure to instruction requests. What it is useful to dwell on is the generation
of the output data to LEN5, verifying the operation of the Byte Selector. In the simulations
visible in figures 4.3a, 4.3b and 4.4a, there are all possible variations of the WORD output
from the bridge, depending on the byte enable.

For a LOAD Byte, the testbench generates a len5_be equal to 1, selecting the BYTE
access type, and an address equal to 1, thus requesting the 2 BYTE of the WORD supplied
from memory. Looking at the bus_rdata1 and len5_rdata buses, port 1 being the only
one on which the 32-bit data request is executed, as explained in previous chapters, note
that the second BYTE of the data input is correctly shifted to the last 8 bits of the output
DOUBLEWORD.

Similarly for a LOAD Halfword, the testbench generates a len5_be equal to 3, 0011,
selecting the Halfword data and accesses the second Halfword of the input data, via address
2. The output data correctly presents the duplicated second Halfword in the 16 LSBs of
the output DOUBLEWORD, ascertaining the correct operation of the Byte Selector.

We then proceed to simulate the 64-bit transactions. These differ from the simulations
analyzed previously; in fact, the requests can be executed on a multiport bus, thus being
able to receive both responses at the same time, or on a single port bus, as in the case of
X-HEEP, separating the reception of the halfwords. Both cases were simulated, along with
the reception of an exception related to one of the two partial data.

Figure 4.4c shows the transaction on multiport bus. Unlike the previous transactions,
in this one we note the assertion of the signals bus_req and bus_gnt on both ports,
along with the addresses coming out of the Address Splitter, one of which is identical to
the address given by the testbench, while the second is correctly added by a value of 4,
for access to the next WORD in memory. In the second stage of the protocol, signals
bus_rvalid and partial data are also provided on both ports, simultaneously, generating
the complete DOUBLEWORD on the output.

The X-HEEP bus is a single-port bus, so it will process requests separately, one at a
time. A transaction on a bus of the same type is shown in figure 4.4b. The generation of
the request and grant signals differs from the previous cases; the testbench asserts the
len5_req which is correctly forwarded to both module ports, the bus_gnt0 signal being

55

4 – Experimental Results

the first asserted, so that only the request coming out of port 0 is accepted. This causes
the Grant CU to proceed in the WAIT_GNT1 state, as found by keeping bus_req1 high,
after deassertion of len5_req by the testbench. In the next clock cycle, the testbench
also asserts the bus_gnt1, which results in the generation of the len5_gnt, and the
bus_rvalid0. Here it is possible to see the operation of the Data Register present within
the Load Module. The testbench initially loads a corrected partial data on bus_rdata0

and, at the next cycle, loads a spurious data on the same bus along with the correct
partial data on bus_rdata1. At the same time it asserts the bus_rvalid1, triggering
the assertion of the len5_rvalid signal. The output bus len5_rdata still contains the
64-bit data composed of the two correct partial data, demonstrating the correct operation
of the module.

Last, the operation of the logic responsible for the propagation of exceptions, received
during the reception of a data, was verified. Visible in figure 4.4d, a second DOUBLE-
WORD transaction was performed, with the assertion of the signal len5_except_raised0
during the reception of the first partial data. As visible, the exception is propagated im-
mediately to the processor, keeping it asserted even during the reception of the second
partial data, at which time the processor receives the len5_rvalid signal and samples
the complete data, along with the exception signal.

(a) Load BYTE Execution (b) Load HALFWORD Execution

Figure 4.3: Load BYTE and Load HALFWORD Execution

56

4 – Experimental Results

(a) Load WORD Execution
(b) Load DOUBLEWORD Execution with
a Single Channel Response at a Time

(c) Load DOUBLEWORD Execution with
Concurrently Channels Response

(d) Load DOUBLEWORD Execution with
a Single Channel Response at a Time and
an Exception Raised

Figure 4.4: Load WORD and Load DOUBLEWORD Execution

4.1.3 STORE Module Simulation

Last, the section on testing the STORE Module includes 5 tests, four necessary to cover
all transaction case histories, both 32-bit and 64-bit, the last one additional, for 64-bit
transactions executed on a multichannel bus.

Transactions for 32-bit data are structurally identical to instruction requests, with the
only difference given the presence of two output ports instead of a single one, resulting in
duplicate signals. Instead, it is useful to look at the data output to the bus. The Data
Aligner present in the Store Module, correctly replicates the BYTE, in the case of Store
Byte in the figure 4.5a, or the HALFWORD, in the case of Store Halfword in the figure
4.5b, saturating the Word provided at the output to the X-HEEP bus. At the same time,
it generates the bus_be1 depending on the type of request and the address provided by the
processor. In the cases under consideration: 1000 for the Store Byte request, the address
being 3, 1100 for the Store Halfword request, the address being 2, allowing only a portion
of the Word in memory to be updated. The WORD transaction, in figure 4.6a, is of less
interest, having the Data Aligner a marginal role on the generation of the data output and

57

4 – Experimental Results

the bus_be1.

Finally, for the DOUBLEWORD transaction, the request on a single port bus is simu-
lated, visible in figure 4.6b. Since it is identical to a LOAD DOUBLEWORD request, as
far as the generation of the signals bus_req, len5_gnt and len5_rvalid, we will not
dwell on the analysis again. The only difference is that the data is immediately available
on the outputs and arranged to respect the Little Endian disposition in memory.

In all STORE transactions reported here, the update of the data in memory cannot
be seen. The correctness of the same is checked by appropriate assert, which verifies the
equality of the input data on len5_wdata, with the contents of memory at the locations
indicated by the given address.

(a) Store BYTE Execution (b) Store HALFWORD Execution

Figure 4.5: Store BYTE and Store HALFWORD Execution

(a) Store WORD Execution
(b) Store DOUBLEWORD Execution with
a Single Channel Response at a Time

Figure 4.6: Store WORD and Store DOUBLEWORD Execution

58

4 – Experimental Results

4.2 Synthesis
Architecture synthesis was performed using TSMC’s 65-nm libraries: tcbn65lp and tcbn65lplvt.
Both libraries feature low-power components with different threshold voltages. In partic-
ular, the tcbn65lplvt library is of the low voltage threshold type, presenting low threshold
voltage components within it, with higher speeds but higher leakage. Both libraries were
provided to the Synopsys Design Compiler synthesizer, to allow the selection of components
best suited to the design constraints and the various critical paths present in the layout.
Each library has several different versions, taking into account the possible operating con-
ditions of the components present. By operating conditions we mean that set of factors,
such as Process Corners, Temperature, Voltage Threshold and Supply Voltage, capable of
profoundly affecting the results of the synthesis. A synthesis will first be performed in the
Worst-case Condition, setting the worst operating conditions. This is a mandatory con-
straint to obtain the minimum clock period of the system and ensure its operation in every
usage scenario. Next, to better model the standard usage scenarios, two additional synthe-
ses will be performed in the Typical-case Condition and Best-case Condition, comparing
the results.

Given the amount of commands required for the synthesis, several scripts were pro-
duced that can automate the synthesis and make the results replicable. The configuration
parameters used are listed below:

• Setting the Clock distribution tree as non-optimizable, via the command
set_dont_touch_network, leaving this task to the place and routing tool. In fact,
this step is critical, as the clock distribution must be fair throughout the device to
avoid skew and consequently failure of certain components.

• Setting a skew time for the clock signal equal to 0.07 ns, using the
set_clock_uncertainty command. Clock generators are not perfect elements; rather,
they have nonidealities that cause variations in the duration of the clock period. By
setting this parameter, any dissimilarities are taken into account, improving the ac-
curacy in calculating the minimum clock period of the module.

• Setting the input and output signal delay equal to 0.5 ns, using the commands
set_input_delay and set_output_delay. The library used already defines for each
memory element within it, a standard setup time. An additional delay is added only
on input and output of the module, to model any combinatorial delays external to
the module under analysis.

• Setting a load capacity on all nodes in the generated netlist, via set_load command.
The bridge is an interface module between LEN5 and X-HEEP. Having performed
the synthesis of the module only, due to the excessive complexity of the complete
architecture, it is impossible to estimate the load of each node and consequently the

59

4 – Experimental Results

fan-out of each gate. However, to make the synthesis meaningful, the input capacity
of a buffer (BUFFD4) with a drive strength of 4, equal to 2 fF, was attached to each
node. Its complete representation of all parameters can be found in [13].

• Synthesis performed via the directive compile_ultra, forcing the synthesizer to use
the constraints of Ultra High Effort, minimizing the area of the module and maxi-
mizing its clock frequency.

4.2.1 Bridge

The initial stage of the synthesis process sees the processing of the various components
of the bridge, using the elaborate command. The output was carefully analyzed for any
latch inferred or other errors. Having ascertained that the processing was correct, the
actual synthesis of the design was carried out using the command described above.

In order to estimate the maximum clock frequency at which the module is capable of
operating, a clock signal was generated via the command create_clock with period equal
to 0, forcing the synthesizer to perform all possible optimizations to allow the signals to
propagate in a null period. It is, of course, impossible to obtain a positive result; what is
of interest, however, is the slack time obtained after the analysis is completed. The slack
time means the difference between the set clock period and the actual propagation time of
the signals within the critical path. As given in Appendix A.11 of [11], the minimum clock
period can be calculated as:

Tclk = Tc→q + Tcomb + Tskew + Tsp

where Tc→q is the propagation time within a memory element, Tcomb is the propagation
time within a combinational logic, and Tsp is the setup time. By forcing Tclk equal to 0,
the resulting Tslack will be equal to the time it takes for the signals to propagate within
the critical path of the module, thus obtaining the module’s minimum clock period.

In practice, the results obtained do not exactly match the Tslack provided by the above
analysis, as the synthesizer uses overly stringent optimizations trying to force a null period.
Several syntheses were subsequently performed, calibrating the clock period, until slack
met was obtained, i.e., the coincidence of the period set with the propagation time in the
critical path.

Once the synthesis is completed, two types of reports are extracted, the timing report
and the area report. The first illustrates the critical path present in the module, complete
with all the elements the signal passes through, and the time it takes to propagate within
it. The second describes the area occupancy of the module divided into Combinational
Area, Noncombinational Area (NC Area) and Buff/Inv Area. As the names imply,
the first is the area occupied by combinational logic, the second is the area occupied by

60

4 – Experimental Results

sequential components, such as registers, and the last is the portion of the area occupied
by buffers/inverters.

In the timing analysis, a critical path was found to have a start point, the len5_addr

bus, and an end point, the bus_addr1 bus. This is not surprising at all, it has already
been introduced in the section on Address Splitter how the generation of the address on
port 1 related to the access case Misaligned, needs the instantiation of an adder. It is
precisely the presence of this adder that generates the critical path, otherwise absent given
the additional methods by which the Address Splitter generates addresses in the cases
different to the Misaligned access. The cycle time and maximum clock frequency for the
Bridge can be seen in table 4.1.

As for the area analysis, the values obtained are visible in table 4.2. Note how the
area of the entire Bridge is occupied for 2/3 by combinational logic; the presence of 5
Control Units, containing the state generation and control logics, together with the data
alignment modules, the Address Splitter and the counters internal to the FIFO queues, is
preponderant over the state and data registers. Wanting to go into more detail, the three
main modules of the bridge were summarized separately in order to assess their impact in
terms of timing and area on the whole structure.

4.2.2 Instruction Module

The Instruction Module appears to be the least limiting from the point of view of timing
and area. As can be seen in table 4.1, the cycle time of the module is the only one that
is less than the others, given the absence of the address splitter present on both other
modules instead. The critical path encountered in this case would be internal to the FIFO
tag, terminating with the output tag to the processor. However, as already explained in
the previous paragraphs, the FIFO tag is not used by LEN5, so it can be disabled or
completely removed to gain area as well. Therefore, it was decided to discard the critical
paths internal to the FIFOs, selecting the first critical path that included different signals.
The new critical path turns out to be internal to the Instruction CU, with start point
the status register and end point in the Instruction Register. This is most likely the path
related to the generation of the buff_en signal, which is used to enable the register in case
the processor is not available to receive the instruction.

The area of the Instruction Module, visible in table 4.2, has a completely opposite
trend to that of the Bridge analyzed earlier, presenting a lower Combinational Area than
the Non-combinational Area. This result was, however, to be expected; in fact, the
module presents a Control Unit with simple logics, having only two possible states and
few control signals; it also does not present alignment modules or the like. In contrast, the
Instruction Register, the TAG FIFO and the CU status register are present, although of

61

4 – Experimental Results

little importance being only 1 bit.

4.2.3 LOAD Module and STORE Module

The results of the LOAD Module and STORE Module synthesis, given the above consider-
ations, are easily deduced. By both presenting the Address Splitter component, the cycle
time found, present in table 4.1, coincides with that presented in the Bridge section, thus
making the Address Splitter, the limiting component in the Bridge performance.

Analysis of the LOAD Module area, visible in table 4.2, shows that the Combinational
Area is in this case predominant over the Non-combinational Area. This can be explained
given the presence of two Control Units, the Byte Selector and the Address Splitter, along
with several multiplexers for addressing data. The registers present are less incidental
than the combinational logic, although they still represent the largest contribution to the
total Non-combinational Area. Similarly, the analysis of the STORE Module shows
the same trend as the LOAD Module. It is important to note, however, the reduced
Non-combinational Area, due to the presence of a single FIFO queue and only 2 state
registers.

Module Cycle Time [ns] Max Frequency [MHz]
Bridge 1.41 709.2

Load Module 1.41 709.2
Store Module 1.41 709.2

Instruction Module 1.36 735.3

Table 4.1: Cycle Time and Max Clock Frequency for the Bridge and the three Principal
Modules

Module Total Area [µm2] Comb. Area [µm2] NC Area [µm2]
Bridge 4770.72 3012.84 1757.88

Load Module 2461.68 1642.68 819
Store Module 1520.28 1163.16 357.12

Instruction Module 788.76 207 581.76

Table 4.2: Total Area, Combinational Area and Non-combinational Area for the Bridge
and the three Principal Modules

4.2.4 Case Condition Analysis

To complete the Bridge analysis, two additional syntheses were performed, using the
typical-case and best-case versions of the libraries provided to the synthesizer. The Case

62

4 – Experimental Results

Conditions Analysis allows the synthesis parameters of the Bridge to be verified even in
the typical and best, as well as worst, varying cases of operation:

1. Process Corners, characterizing the deviation of MOS device parameters within
the library, such as diffusion doping levels, gate oxide thickness, etc., from nominal
values.

2. Temperature, capable of affecting leakage currents within the devices.
3. Threshold Voltage, affects the operating current of the devices and the switching

speed.
4. Supply Voltage, controls the speed of signal propagation within the architecture.

What is expected from the variation of the devices used is mainly the reduction of
the Cycle Time of the propagating signals within the critical path. As introduced at
the beginning of this chapter, the use of the library in the Worst-case Condition is a
mandatory constraint for calculating the minimum clock period. Nevertheless, in typical
usage scenarios, estimating the maximum working frequency of the module with the Worst-
case Condition is overly stringent, leading to a reductive evaluation of device performance.
For this reason, analyses are also introduced in the Typical-case Condition, which models
the standard use case, and in the Best-case Condition.

The results obtained, which can be seen in table 4.3, regarding the timing analysis, are
as projected. By using devices with better technological parameters and favorable envi-
ronmental conditions, it is possible to perceptibly reduce the Cycle Time and consequently
increase the maximum clock frequency. Indeed, a reduction of 10% is obtained in the min-
imum clock period, between Worst-case Condition and Typical-case Condition, proceeding
to 14% between Worst-case Condition and Best-case Condition.

The analysis of occupied area shows a downward trend. The decrease is most likely due
to the choices of generic components during the processing phase. By using increasingly
favorable conditions and higher-performance technologies, the synthesizer no longer needs
complex implementations of the generic blocks in order to meet timing constraints; instead,
basic implementations, which save area, are sufficient.

Bridge Cycle Time [ns] Max Frequency [MHz] Area [µm2]
Worst-case Condition 1.41 708.2 4770.72

Typical-case Condition 1.28 781.3 4504.32
Best-case Condition 1.22 819.7 4273.56

Table 4.3: Cycle Time, Max Clock Frequency and Area of the Bridge, as a Function of
Case Conditions

63

Chapter 5

Integration of the LEN5
processor within X-HEEP

Having finished the examination of the Bridge as a stand-alone module, this chapter will
look at the integration of the LEN5 processor within the X-HEEP platform through the
use of the developed Bridge.

Before proceeding to the key topic of this chapter, it is useful to introduce the compi-
lation and simulation process of the RTL and Software used by X-HEEP.

The platform is based on a fully automated mechanism, managed through a series of
makefiles, which first set a series of environment variables needed by the simulator and
the compiler (GCC), then a python script is called (mcu_gen.py) which, starting from
templates1 files, generates the RTL of the Microcontroller Unit (MCU), comprising all the
components within which processors, peripherals, etc. are instantiated.

Having generated the RTL, we proceed with the architecture build by exploiting Fus-
esoc.

Fusesoc can be defined as a package manager and build system for digital hardware
[14]. An extremely modular tool, supporting a variety of simulators, such as Verilator or
Questasim, and synthesizers such as Design Compiler. It uses a single file, called .core
file, where all the directives useful for compiling, simulating and synthesizing an entire
architecture are defined, and then used in the generation of an output file, suitable for the
tool in use, which will eventually be executed by the tool in question.

Once the architecture build is completed, the compilation of the software to be run on

1Files inside of which there is part of the essential Systemverilog code along with variables, in which
the script mcu_gen.py saves the configurations described in the files mcu_cfg.hjson and pad_cgf.hjson,
being able to dynamically generate the .sv

64

5 – Integration of the LEN5 processor within X-HEEP

the platform is performed, through the use of CMake, to automate the compilation process
and provide the correct parameters to the compiler gcc

Finally, the Verilator tool is used, to simulate the design and produce the .vcd files,
which can be viewed on any Waveform Viewer.

LEN5 already includes within it the .core files necessary to ensure compatibility with
Fusesoc, so two additional core files, bridge.core and bridge_top.core, were produced
and added to the existing ones. The first one presents inside the declaration of all System
Verilog files made for the Bridge together with the dependency on the core files of the
LEN5 Packages. In the second we find the declaration of the bridge_top.core file and
the dependencies on the previous core file and that of the LEN5 Packages.

5.1 LEN5 Instantiation

Before LEN5 was instantiated within X-HEEP, it was interconnected with the Bridge,
through the creation of a Wrapper and its .core file. The interface of the Wrapper coincides
with the interface of the Bridge, which will then be connected with the X-HEEP bus.

We have already introduced in section 2.3, the limitation due to the single 32-bit port
bus present inside X-HEEP. Even supporting multiple LOAD and STORE requests in
parallel, via the four output ports, the presence of a single port for the bus limits the
Bridge to performing a single transaction at a time. For this reason, the Bridge’s connection
with the X-HEEP bus is made by instantiating a 4-to-1 Crossbar (XBAR), sequencing the
outgoing requests from the Bridge’s four ports and sending them to the single data port
on the bus.

The crossbar used is a module designed to connect an N number of Masters to a single
Slave. This allows all connected Masters to send simultaneous requests to the Slave; the
crossbar takes care of collecting and forwarding them sequentially, ensuring that each
Master correctly receives the grant and rvalid, along with the requested data.

Once the various modules were assembled, the wrapper and crossbar were instantiated
within the X-HEEP cpu_subsystem, adding the ability to select LEN5 as the platform
processor in the corresponding .sv file. In addition, LEN5 was added as an option of
the –cpu parameter of the mcu_gen.py script, allowing its selection directly by setting the
mcu_cfg.hjson file.

Finally, the .core file of the Wrapper was added within that of X-HEEP.

Figure 5.1 shows the schematic of the interconnections between the various components
described above.

65

5 – Integration of the LEN5 processor within X-HEEP

Figure 5.1: LEN5 and Bridge Connection to XBAR and System BUS

5.2 X-HEEP Modifications to Ensure Compatibility
with LEN5

With the instantiation completed, the various files needed for X-HEEP to compile and
build RTL and Software were adapted. Initially, the primary makefile of the X-HEEP
platform was modified to include among the simulatable architectures, riscv64, adding it
to the already supported riscv32. To do this, an environment variable was added, called
ARCH_TARGET. Through this variable, the makefile can correctly set the compiler (gcc) to
be used, specifying the contents of the variable itself as part of the compiler prefix present
in the COMPILER_PREFIX variable. In the case under consideration, 64-bit compilation
of the source code is required, LEN5 being a processor supporting an rv64 ISA, so it is
necessary to set the variable ARCH_TARGET=riscv64. LEN5 does not yet support all ISA
rv64 extensions, so it was necessary to specify to the compiler which extensions to use, via
combination -march - -mabi2. Not all architecture-abi combinations are in fact supported,
in the case under consideration an ISA rv64im_zicsr, supporting standard instructions
along with multiplications/divisions and access to CSR, coupled with an ABI lp64 is used.
To do this, the file CMakeLists.txt was modified so that, based on the contents of the
variable ARCH_TARGET, it sets the variable COMPILER_LINKER_FLAGS with the appropriate
options to be specified to the compiler.

After the source files are compiled, the linking phase of the libraries, present inside
X-HEEP, to the object file produced by the compiler, takes over. X-HEEP has within it a
linker of reduced complexity compared to the standard gcc linker. The linker is responsi-
ble for resolving references to functions declared inside the object file, assigning definitive
addresses to the variables in the data section of memory as well as adjusting the arrange-
ment of program sections, containing instructions or data, inside the ram, including the

2It can be understood as a low-level version of an API, in which the methods of using functions and
data structures are defined

66

5 – Integration of the LEN5 processor within X-HEEP

crt0 and the interrupt vector table. To produce a LEN5-compatible .elf file, a second
linker file was made, identical to the one already within X-HEEP, with the parameter
OUTPUT_FORMAT modified, replacing elf32littleriscv with elf64littleriscv. In ad-
dition, the file CMakeLists.txt was again modified so that it selects the correct linker,
depending on the contents of the variable ARCH_TARGET. The ELF file, Executable and
Linking Format, is a type of executable file, containing, in addition to instructions and
data, several Headers with inside the information needed to execute the compiled and
linked file, once saved to disk. Each of these Headers provides information about differ-
ent parts of the file itself; the ELF Header, for example, contains the type of ELF file,
the ISA of the processor that will execute it, and the type of arrangement of the data in
memory. The Program Header, on the other hand, provides useful information about the
(segments), unions of various sections of the program, and their execution, as visible in
[16]. For compatibility with a 64-bit architecture, it is mandatory to use the elf64 format,
which, among other things, sets the length of addresses equal to 64 bits. The suffixes
little and riscv establish the convention of the arrangement of the data in memory
(Little Endian) and the architecture on which the file will run. We will not dwell further
on the ELF format, for further discussion refer to [15] together with chapter 4 and 5 of the
update found in [16].

Firmware execution starts from a boot rom. At startup, the CPU is jumped to the
start address of the boot rom, where the firmware execution mode is selected in addition to
system initialization. X-HEEP supports 3 execution modes, execution via JTAG, execution
via FLASH SPI, and firmware loading via FLASH SPI directly into the ram. The above
is reported in [7]. For the purpose of this thesis, execution via JTAG is sufficient, of which
the preloading of firmware in memory via testbench is exploited to speed up the simulation.
In order to make the boot rom compatible with LEN5, the makefile with which the rom
is generated was modified by selecting via the contents of the environment variable RISCV,
the 32-bit or 64-bit compiler to compile the rom firmware.

5.3 Simulation and Benchmark

To conclude the inclusion of the LEN5 processor within X-HEEP, the output of the applica-
tion Hello World!, already present within the platform, was simulated. The configuration
chosen for the use of the processor with X-HEEP provides a trade-off between performance
and power consumption, the bus is in fact instantiated in NtoM mode, so as to maximize
the available bandwidth, the memories are instead instantiated in contiguous addressing
mode so as to take advantage of power gating. The simulation waves will be omitted due to
space constraints, being the execution of the entire boot rom combined with the firmware,
extremely long. Through direct observation, it was ascertained that virtually every type

67

5 – Integration of the LEN5 processor within X-HEEP

of LOAD and STORE request possible was executed correctly. At the end of execution,
LEN5 was able to correctly execute the entire firmware and print the string hello world!
on the screen.

The result can be seen in the screenshot in the figure 5.2.
To evaluate the performance of the processor connected through the Bridge and the

overhead of the Bridge itself, four simple types of tests were performed: string print-
ing, sum, multiplication, and division. The number of execution cycles found within the
CSR MCycle was then used to estimate the time required to execute each test. The
CSR is accessed by editing the main.c of the Hello World! application, adding the
command pair asm volatile ("csrr %0, 0xb00” : “=r”(start)) and asm volatile
("csrr %0, 0xb00” : “=r”(stop)). Note that the execution of the two additional com-
mands will partially perturb the results of the performance analysis of the single application
Hello World!, it turns out, however, to be acceptable since the code executed is the same
for all CPUs. On the other hand, there are no incompatibility issues; since the CSR MCycle
is standard, all cpu’s supported by the platform have it and can access it, allowing the per-
formance evaluation to be done equally. The configuration settings of X-HEEP, for each
cpu tested, are identical to those used for LEN5. The results can be seen in table 5.1 and
figure 5.3.

Figure 5.2: Output of the Hello World! Application

The benchmark results show that the bridge overhead is completely negligible against an
average improvement of 7% in execution speed over the cv32e20 and 5.5% over the cv32e40

68

5 – Integration of the LEN5 processor within X-HEEP

series. This is due to both Out-of-Order execution and the presence of dynamic branch
prediction, as opposed to the static prediction found in other processors, which ensures
accurate prediction during memset and function execution phases, where a large amount
of branches are found. Keep in mind that the code executed by LEN5 was compiled with an
ISA rv64, so within it there are also LOAD/STORE instructions of type DOUBLEWORD,
requiring two consecutive memory accesses via the Bridge. While performing multiple
memory accesses, LEN5 remains the fastest processor of all those supported by X-HEEP,
resulting in the most appropriate choice for executing complex codes, where the Out-of-
Order architecture makes the difference.

Cycle Time LEN5 cv32e20 cv32e40x cv32e40p cv32e40px
printf("Hello World!") 52684 56690 55728 55731 55731

Sum + printf(...) 50008 54051 52915 52918 52918
Mul + printf(...) 58032 62113 60937 60940 60940
Div + printf(...) 50004 54051 53278 53313 53313

Table 5.1: Comparison between X-HEEP Supported CPU Cycle Time

Figure 5.3: Comparison in terms of execution cycles among processors supported by the
X-HEEP platform. The tests performed were: printing a string, sum, multiplication, and
division with relative printing of the result for each operation.

69

Part II

Development of the Debug
System within the LEN5

processor

70

Chapter 6

Debug System Design

The second part of this thesis aims to develop the internal debugging system for the LEN5
processor. It will initially introduce the JTAG standard and the implementation of the
TAP module, which is necessary for the processor to support the standard. It will conclude
by analyzing in detail the changes made on the architecture of LEN5, in order to take
advantage of the Debug Module present within X-HEEP. The ultimate goal is to obtain a
control and testing mechanism, exploitable during the development of the processor and
possibly during the execution of software exploiting LEN5 as a core, that can provide
information on the operation of the hardware.

6.1 JTAG

The JTAG standard, created by a consortium of leading companies also called the Joint
Test Action Group (JTAG), hence the name of the standard, and known nowadays as the
IEEE 1149.1 standard, was created to address a fundamental problem that has become
widespread with the evolution of technology and the move to packages in the BGA form
factor. In fact, the package structure, coupled with the increased complexity of the chip
itself, makes it difficult to perform functional tests or physical tests, such as bed-of-nails
[18]. The proposed solution to the above problem is the introduction within the architecture
of various ad hoc registers, including Boundary Scan Registers (BSR), composed of single
cells arranged on the device pins, and a control module, called Test Access Port Controller,
responsible for controlling the BSCs and registers. Boundary scan cells (BSCs) have two
modes of operation: they are transparent (functional mode) during normal operation of
the component, while being able to isolate it (test mode) during the test phase. Once the
component is isolated, it is possible to either read the values present on the pins during
the test or force specific values on them to evaluate their behavior [17]. This makes it

71

6 – Debug System Design

possible to perform functional tests on the device, called Boundary Scan, either electrical,
evaluating the correct connection of the various pins, or logical, evaluating the validity of
the component.

Added to what has just been introduced is the possibility of using the JTAG inter-
face, also called Test Access Port (TAP), as the debugging interface of the module itself.
The Test Access Port Controller module and the registers needed for the JTAG protocol
were then implemented, complying with the IEEE 1149.1 protocol specification [19]. The
structure of the module can be seen in figure 6.1.

6.1.1 TAP Controller and Registers

The JTAG interface has five mandatory signals to be specified, described below:

• TCK → Clock signal of the TAP module, BSCs and additional registers.
• TRST_NI → Reset signal, active denied.
• TMS → Control signal needed by the FSM within the TAP module to evolve state.
• TDI → Sequential data input to the TAP module.
• TDO → Sequential data output from the TAP module.

In addition, there are additional signals, which are necessary for monitoring, sending
and receiving data from the BSR.

• bsr_data_o → Data sequentially sent to the BSR.
• bsr_data_i → Data sequentially received by the BSR.
• bsr_shift_o → Control signal required for BSR shift.
• bsr_capture_o → Control signal needed for loading the values present on the

device pins, into the BSR.
• bsr_update_o → Control signal necessary for loading the values contained in the

BSR, onto the device pins.
• bsr_enable_o → Enable of the BSR.

The TAP consists of a TAP Controller, an Instruction Register, and two Data Registers,
named IDCode Register and Bypass Register, respectively.

The instruction register is actually composed of two registers, a standard register and a
shift register. In the shift register, the instruction necessary for the TAP to select the data
register to be connected to the output of the module itself is entered by a shift operation.
Once the shift register is filled, the instruction is saved in the standard register, the value
of which selects which Data Register to connect to the multiplexer that handles the output
of the TAP module and enables the Data Register corresponding to the instruction within
it.

72

6 – Debug System Design

The IDCode register is itself a dual register, consisting of a shift register and a standard
register, containing the JTAG-compatible device identification value. The shift register
allows the device ID code to be loaded and shifted onto the signal td_o.

The Bypass register is a single Flip-Flop, used to connect input and output with as
little delay as possible. In fact, modules supporting the JTAG interface can be connected
in cascade, and by taking advantage of the bypass register, it is possible to communicate
with a specific module by passing through those preceding it, with minimal delay.

Finally, the TAP controller is based on an FSM required to manage the multiplexer
that controls module output and register control signals.

In order to be JTAG-compliant, the module must necessarily support three instructions,
BYPASS, EXTEST, and SAMPLE/PRELOAD, which condition its operation, as visible
in [19]. In the case of the module implemented in this thesis, support for the previous three
plus an additional one has been included. The supported instructions are listed below1:

• BYPASS → signals td_i and td_o are connected through the Bypass register. The
instruction allows bypassing the module in question, testing other modules connected
in cascade, with minimal overhead.

• EXTEST → signals td_i and td_o are connected to the BSR. The instruction
allows the signals present on the device pins at a given instant to be saved by the
signal capture_dr, shift other values to the BSR by shift_dr, and load values to
the device pins by update_dr.

• SAMPLE/PRELOAD → the signals td_i and td_o are connected to the BSR.
This instruction maintains the normal operation of the device, allowing the values of
the signals on the pins to be saved in real time, via the signal capture_dr or new
values to be loaded on the device pins via the signal update_dr. It also allows the
BSR to be preloaded for the EXTEST instruction, via shift_dr.

• IDCODE → signals td_i and td_o are connected to the IDCode register. The
instruction allows the device ID code to be displayed by first loading it via the
capture_dr signal and then shifting the contents of the register via the shift_dr

signal.

1The instruction descriptions, and in general the descriptions of the specifications and protocol
components given in this document, are those found in [19]. Refer to it for more details

73

6 – Debug System Design

Figure 6.1: TAP Module

The implementation of the internal components of the TAP Module is described next.

TAP Controller

The TAP Controller is responsible for generating the register control signals and selecting
the correct output of the module, via a multiplexer placed between the outputs of the
Instruction Register and Data Register, and the output of the TAP module. The imple-
mentation is based on a 16-state FSM, described in the protocol specification, controlled
by the TMS signal value only. Internally there are eight signals generated, we find:

1. The signal test_logic_reset, necessary to reset the Instruction Register by loading
it with the IDCODE instruction.

2. The three control signals of the Instruction Register, capture_ir, shift_ir and
update_ir, necessary correspondingly for the parallel loading on the shift register
in question of a fixed value with the last 2 LSBs forced to 01, the shift of the value
contained in the shift register to td_o and the parallel loading of the contents of the
shift register within the standard register.

3. The three control signals of the Data Registers, capture_dr, shift_dr and update_dr,

74

6 – Debug System Design

whose functions vary according to the Data Register selected. In the case of the ID-
Code Register, capture_dr enables the parallel loading within the shift register of
the IDCode value present in the standard register, while shift_dr performs the shift
of the shift register to the output td_o. The signal update_dr is not used. In the
case of the Bypass Register, the signal capture_dr resets the Flip-Flop with value
0, the signal shift_dr loads the value present on td_i into the register, making it
available on td_o. The signal update_dr is not used in this register either. Finally
in the BSR, the signal capture_dr allows the parallel loading into the BSR of the
values present on the outputs of the device, the signal shift_dr allows its shift to
td_o, the signal update_dr allows the parallel loading of the value present in the
BSR, on the inputs of the device.

4. The signal output_sw_ctrl, used to select the output of the TAP module, depending
on the branch of the FSM being executed and consequently on the register to be
connected to the output, Instruction or Data.

The possible states and their operation, visible in the state diagram in figure 6.2, are
illustrated below. The control signals are set, as the default value, to the value 0, except
for the signal output_sw_ctrl, which is set to the value 1. Should the value change, it
will be specified in the corresponding state; otherwise, the value will be equal to the default
value.

• Test_Logic_Reset → State in which test logic is disabled and the device can
continue normal execution. The signal test_logic_reset is asserted, resetting the
Instruction Register and leaving the device unaffected.

• Run_Test_Idle → In the current implementation, this state is empty. In fact, no
operation is performed while the FSM is inside it. Its presence is exploited in case
RUNBIST instruction is supported, which, in this state, performs a self-test on the
device.

• Select_Ir_Scan → Temporary state in which it can be decided to continue in the
instruction branch and use the Instruction Register or return to the Test_Logic_Reset
state. No operations are performed while in this state.

• Capture_Ir → During this state, the shift register, part of the Instruction Register,
is loaded by asserting the signal capture_Ir.

• Shift_Ir → State used for shifting the value present in the Instruction Register, by
the assertion of the signal shift_ir.

• Exit_1_Ir → First temporary state of the instruction branch, in which the decision
can be made to suspend the shift of the data in the Instruction register, passing
into the Pause_Ir state, or to continue execution by updating the standard register
contained in the Instruction Register, via the Update_Ir state.

75

6 – Debug System Design

• Pause_Ir → In this state, the shift of the input instruction, inside the Instruction
Register, is suspended.

• Exit_2_Ir → Second temporary state of the instruction branch. Here you can de-
cide whether to resume the instruction shift, switching back to the Shift_Ir state, or
end the instruction branch by updating the standard Instruction Register by switch-
ing to the Update_Ir state.

• Update_Ir → Final state of the instruction branch, allows the value contained in
the shift register to be loaded into the standard Instruction Register by asserting the
signal update_Ir.

• Select_Dr_Scan → Temporary state used to select whether to continue in the
data branch and use the Data Registers or to switch to the Select_Ir_Scan state
in which it will be possible to select the instruction branch and use the Instruction
Register. No operation on the registers is performed, however, the output_sw_ctrl
signal is deasserted, setting the TAP output to the Data Registers.

• Capture_Dr → State used for parallel loading of the selected Data Registers, if it
supports the function, by asserting the signal capture_dr. The signal output_sw_ctrl
is kept deasserted.

• Shift_Dr → Mirror state to that introduced for the instruction branch. Here the
shift of the data register, selected by the instruction in the Instruction Register, occurs
by assertion of the signal shift_dr. The signal output_sw_ctrl is kept deasserted.

• Exit_1_Dr → First temporary state of the data branch, here you can decide
whether to suspend the data shift within the selected register, switching to the
Pause_Dr state or complete the execution by loading on the parallel output of the
selected register, the data present within it, switching to the Update_Dr state. Also
in this state, the signal output_sw_ctrl is kept deasserted.

• Pause_Dr → Pause state in which the data shift in the shift register selected by the
Instruction Register is suspended. The signal output_sw_ctrl is kept deasserted.

• Exit_2_Dr → Second temporary state of the data branch, in which you can
decide whether to resume the data shift in the selected shift register, returning to the
Shift_Dr state, or terminate execution by switching to the Update_Dr state. Also in
this state the signal output_sw_ctrl is kept deasserted.

• Update_Dr → End state of the data branch, here it is possible to load the data
present in the selected shift register, on its parallel output, by assertion of the signal
update_dr. The signal output_sw_ctrl is kept deasserted. In this implementation,
the only register supporting the update will definitely be the BSR, having to make its
contents available to the device pins. The IDCode Register and the Bypass Register,
on the other hand, do not support update, the former since it is not allowed to
overwrite the value of the device’s IDCode, this being constant. The second, being

76

6 – Debug System Design

used only to bypass the TAP itself, has no second register where its contents can be
saved.

Again, as with instructions, descriptions of the various states along with the signals they
generate are visible in [19].

Figure 6.2: TAP Controller State Diagram

Instruction Register

The structure of the Instruction Register consists of two registers. The first is a normal
register, the size of which is defined through a module configuration parameter, supporting
the signals of: clock, as stated in the specification the register works on the falling edge
of the clock, reset, and two additional signals, test_logic_reset and update_ir. The
first signal is used in the test_reset phases of the module, in which the device to which it is
connected is allowed to work under normal conditions. When asserted, it forces the loading

77

6 – Debug System Design

into the register of the IDCODE instruction. The second signal is actually the enable of
the register itself, when asserted it enables the loading into the register of the data present
on its input, coming from the second structure that makes up the Instruction Register, the
shift register. In all other cases, the register holds the data within it constant.

The contents of the register are used as a selector for a multiplexer placed on the outputs
of the Data Registers, selecting which of the registers to connect to the second multiplexer
placed on the output of the TAP. It also serves as the generator of the enable signal of the
Data Register corresponding to the instruction inside it. The supported instructions, as de-
scribed earlier, are four: IDCODE, BYPASS, EXTEST, and SAMPLE/PRELOAD. In the
case of the IDCODE instruction, the signal idcode_enable, enabling the IDCode Regis-
ter, is asserted and the multiplexer is set on the register outputs by connecting the IDCode
Register to the output. Similarly, for the BYPASS instruction, the signal bypass_enable
is generated and the Bypass Register is connected to the module output. The last two
instructions are related to the BSR, so the bsr_enable will be generated and connected
the latter to the output.

The shift register is a more complex register than the previous one, supporting both
parallel and serial inputs and outputs. The serial input is directly connected to the input
of the TAP module, td_i, so that instructions are loaded into the register serially; the
parallel input, on the other hand, is connected to a fixed value, presenting the last 2 LSBs
fixed at 01, as given in the specification [19]. The serial output is connected directly to the
mux present on the module output, controlled by the TAP controller, while the parallel
output is connected to the standard register input. Its size is managed by a configuration
parameter of the TAP module, in the same way as the previous register. In addition to the
clock and reset signals, the register supports a enable, which is constantly connected
to 1 in the case of the Instruction Register but its presence is important since the shift
register module is also reused for one of the Data Registers. In addition, there are two
other signals, capture and shift, connected to the signals capture_ir and shift_ir,
respectively, which are needed to parallel load the register, in the Capture_Ir state of the
controller, and to shift the contents of the register to the serial output, in the Shift_Ir
state of the controller. In all other cases, the register holds the value within it, constant.

Data Registers

The Data Registers section consists of two registers, IDCode Register and Bypass Register.
The former is itself composed of a normal register combined with a shift register, as in the
case of the Instruction register, while the latter is a single Flip-Flop.

The standard register within the IDCode register supports only the signals clock and
reset, storing within it the IDCode value of the device, in the reset phase of the module,

78

6 – Debug System Design

and then keeping it constant. In fact, the IDCode value cannot be changed and is provided
as an external parameter of the TAP module.

The internal implementation of the shift register is identical to that already illustrated
for the Instruction Register, the only differences lie in the signal, input and output con-
nections. The serial input of the register is connected to the input of the module, td_i,
the parallel is instead connected to the output of the standard register, to load the ID-
Code value of the device. The serial output is connected to the multiplexer controlled by
the instruction in the Instruction register, being able to supply the IDCode via shift to
the output of the TAP module. The parallel output is not used, as the standard register
cannot be updated, the IDCode being constant. The signal enable, is connected to the
signal idcode_enable generated by the instruction present inside the Instruction Reg-
ister, enabling the register only in the case of IDCODE instruction. Instead, the signals
shift and capture are connected to the signals shift_dr and capture_dr, being able
to shift the value of the IDCode during the state of Shift_Dr or load it to the register
in the state of Capture_Dr. In the remaining cases, the IDCode register keeps the value
within it constant.

Finally, the Bypass register is implemented as a single-bit register with only serial input.
Its output is directly connected to the multiplexer controlled by the Instruction register. In
addition to the signals clock and reset, it supports the signal bypass_enable, asserted
when the BYPASS instruction is present in the Instruction register, the signal shift_dr,
which allows the loading of the value present on td_i inside the register, and the signal
capture_dr, which from specification resets the value of the register to 0. In all other
cases, the Bypass Register keeps the value present within it fixed.

Additional Signals

The last remaining signals are those related to the BSR, which is connected externally to
the TAP module. The signals of capture_dr, shift_dr, and update_dr are propagated
externally, together with the input data from the TAP module, via the td_i signal. The
output of the BSR is fed back into the TAP module and connected to the multiplexer
managed by the Instruction Register, like the other Data Registers.

In conclusion, the value assignment of the output td_o of the TAP module, is done on
the falling edge of the clock, as stated in the specification.

After careful consideration of the inclusion in LEN5, of support for the JTAG protocol,
it was decided to avoid deep structural changes to the core, preferring support for the
approach called Execution Based, requiring minimal changes on the core, on which the
debug module present inside X-HEEP is based. Therefore, a simulation phase of the TAP
module was not performed and its correct operation cannot be guaranteed, although it is

79

6 – Debug System Design

compliant with the IEEE 1149.1 standard specification.

6.2 Adaptation of LEN5 for X-HEEP’s Debug System
Support

This section will outline the changes made to the architecture of LEN5, for debug mode
support and to allow it to work in tandem with the Debug Module present within X-
HEEP and with other Debug Modules of the same kind. Keep in mind, however, that at
this stage of development, the purpose is not to integrate all debug mode components into
the processor, but to introduce only its basic support.

The module present within X-HEEP conforms to the specifications outlined in [20];
the implementation used is called Execution Based, as the name suggests, it is based on
using the processor pipeline to execute code placed at any location in memory, avoiding
substantial changes to the processor architecture itself. For this reason, we will not dwell
on the analysis of the debug module, the processor being completely transparent to its
operation.

Before analyzing the changes made to the processor, it is necessary to introduce in
general, the process of entering debug mode. What will be illustrated can be found in the
RISC-V debug specification [20]. The LEN5 processor, called hart in the debug environ-
ment, supports two methods of entry at present. The first method is the reception of the
debug_req signal, referred to as halt request, sent by the debug module, which acts
as an interrupt for the processor. Upon receipt of the request, the processor will have to
save the current PC and the cause of the debug mode entry within two CSRs, specifically
introduced to store debug mode information. Next, the processor will have to modify its
PC with a memory address provided to it externally, via the signal dm_halt_address_i,
corresponding in the present case to the debug rom.

The second method involves the execution of the EBREAK instruction. Depending on
the configuration of the processor, it is possible to enter debug mode, with the associated
PC and debug mode entry cause saved within the CSRs, when an instruction of this type
is executed outside debug mode.

Each debug mode entry method has a different priority, the EBREAK instruction has
priority 3 while the debug_req has priority 1. In the event that there are multiple simul-
taneous requests for debug mode access, in the case under consideration the execution of
an EBREAK with at the same time the arrival of a debug_req, the processor will have to
access by setting the higher priority cause in the respective CSR.

Let proceed then to the analysis of the changes made to LEN5 for debug mode support.

80

6 – Debug System Design

6.2.1 Control Status Registers (CSRs)

For debug mode support, the RISC-V specification, [20], calls for the introduction of specific
CSRs within the processor, named DPC, DCSR, Dscratch0 and Dscratch1. Each of these
registers is accessible only while in debug mode, otherwise a exception is propagated,
signaling invalid access. In addition, a custom CSR, dm, has been placed within LEN5,
used as a flag for storing the processor execution mode, debug mode or normal mode.
Accessible in Read/Write, it is used for: blocking counters, having hardwired the value
stopcount=1 in the DCSR, recognizing the current state of the processor in the case
of debug_req, handling the DRET instruction in the issue stage, handling the ECALL,
EBREAK, MRET instructions and exceptions in the Commit Stage and for regulating
access to the registers below.

The CSRs Dscratch0 and Dscratch1 are normal 64-bit registers, the use or non-use of
which depends on the connected debug module. From specification, implementation is
optional, they are, however, inserted for compatibility, in case the processor is connected
to a debug module that requires their use. Both are read/write accessible.

The CSR DPC, Debug Program Counter, is also a 64-bit register that is read/write
accessible. It is used to save the current PC when the processor enters debug mode and
as a source register from which to retrieve the PC to resume code execution when the
processor exits debug mode.

The last of the mandatory CSRs to be specified is the DCSR, a 32-bit register used to
configure the behavior of the processor while in debug mode, by means of the value present
within its fields2. Each of these fields has different access modes, read-only, read/write, or
WARL.

• xdebugver → Identifies the type of external debugging supported by the proces-
sor. Hardwired to value 4, indicating support for debugging present in the RISC-V
specification. Read Only.

• ebreakm → Indicates whether or not the EBREAK instruction should force entry
into debug mode when executed in M-Mode. Accessible in Read/Write.

• ebreaks → Indicates whether or not the EBREAK instruction should force entry
into debug mode when executed in S-Mode. Accessible in Read/Write.

• ebreaku → Indicates whether or not the EBREAK instruction should force entry
into debug mode when executed in U-Mode. Accessible in Read/Write.

• stepie → Indicates interrupt enable during single step execution in debug mode.

2The descriptions of the DCSR fields in this document are as given in [20], rely on it for further
details.

81

6 – Debug System Design

Hardwired to 0 in order to disable receiving interrupts, as they are not currently sup-
ported by LEN5. Accessible in WARL, being hardwired the value read is necessarily
legal.

• stopcount → Indicates the enabling of counters present in CSRs. Hardwired to 1
to disable counters during Debug Mode. Accessible in WARL.

• stoptime → Indicates the enabling of timers present in CSRs. Hardwired to 1 to
disable timers, as they are not present in LEN5. Accessible in WARL.

• cause → Specifies the reason for entering debug mode. In the case of the LEN5
processor, two values can be found within it, 1 if the cause of entry is the EBREAK
instruction or 3 if the cause is the receipt of the debug_req. Read Only from the out-
side, set only at the time of debug mode access via assertion of the debug_csr_write
signal by the Commit CU.

• mprven → Specifies whether the Privilege Mode present in CSR mstatus also
applies in debug mode or not. Hardwired to 1 to apply the contents of mstatus,
currently in fact LEN5 only supports M-Mode. Accessible in WARL.

• nmip → If set, signals the presence of an unmaskable interrupt. Read Only from
outside, set only at the time of debug mode access.

• step → Indicates the enablement of single step execution. This mode is not currently
supported by LEN5. Accessible in Read/Write.

• prv → Specifies the Privilege Mode of the processor upon entering Debug Mode.
Accessible in Read/Write.

6.2.2 Issue Stage Modification

As much as the signal debug_req is considered an interrupt request, there is no specifica-
tion on how this should be interpreted by the processor for debug mode entry. Therefore,
it was decided to implement the debug_req signal as an exception, placing it in the Issue
Stage and propagating it in the processor pipe until it reaches the Commit Stage, within
which debug mode entry will be handled.

The Issue Stage is responsible for receiving the incoming instruction from the Issue
Queue, decoding it, and fetching the operands3. Having done so, it sends the data to
the Reorder Buffer (ROB), which stores the instruction order for the next commit. The
debug_req is received by the Issue CU, where it acts as an enable, along with the denied
content of the CSR dm, for a new register called the Debug Sampler, whose operation
is essentially that of a flag, necessary to keep the debug_req pending, until the Issue
CU is able to process it. Debug mode entry is in fact second in priority to resolving any

3For more on the Issue Stage, refer to [3].

82

6 – Debug System Design

mispredictions, which would otherwise cause the instruction to be executed in the wrong
order.

Checking the current state of the processor in the register enable is necessary to avoid
sampling debug_req while it is in debug mode, otherwise there would be a risk of having
the processor re-enter debug mode as soon as it exits a previous debug mode.

The Issue CU’s internal future-state precomputation logic, which is present to simplify
the future-state computation logic found in every FSM, was modified by adding a check
for the presence of either an input debug_req or a pending debug_req (OR operation
between the two requests). In case either one is present and not already in debug mode,
signaled by the CSR DM, the state of the Issue CU will evolve into a new state called
S_ISSUE_DEBUG.

Once the CU enters S_ISSUE_DEBUG, it asserts the commit_valid, signaling the
ROB to place within it the instruction received along with the debug request. In fact,
the instruction will never actually be entered into the ROB, but this does not generate
any error since, with the entry into debug mode, the current PC is saved in the CSR
DPC and once the PC is restored with the exit from debug mode, the current instruction
will be re-executed. Along with the previous signal, the signals debug_req_clr and
issue_debug_sel_o are asserted. The former resets the Debug Sampler, having the CU
handled the debug_req and initiated the debug mode input process. The second is the
selector of a multiplexer added on the Issue Stage outputs, connected to the ROB input.
The multiplexer in question allows a dummy entry, called DEBUG_REQ_ROB_ENTRY,
to be loaded into the ROB, within which are set:

• order_crit = 1, which is necessary to signal the inability to commit out-of-order at
the commit stage. Debug mode entry must wait for the commit of instructions that
arrived earlier in order to respect the correct order of execution. In fact, the execution
of certain instructions has different routines when executed in debug mode, moreover,
failure to comply with this constraint would cause the ROB to flush with still inside
uncommitted instructions prior to the address saved in the CSR DPC, corresponding
to the instruction with which the debug_req arrived and to which the processor will
jump once it exits debug mode.

• except_raised = 1, saves in the ROB the arrival of an exception concurrently with
the instruction.

• except_code = E_DEBUG, identifier of the type of exception received, in the case
of debug_req a custom code named E_DEBUG has been integrated.

• curr_pc equal to the PC of the current instruction that will not be entered in the
ROB.

The remaining fields of the entered entry are initialized to 0, as they are not needed to

83

6 – Debug System Design

handle the debug_req. Next, the CU proceeds to the S_STALL state, in which it remains
stalled waiting for the debug_req to be handled by the commit stage. Once complete, the
commit sends the comm_resume signal, unlocking the issue stage from stall.

The second debug mode entry is the execution of an EBREAK. As specified in the previ-
ous section, the processor can be configured, through the ebreakm field in the DCSR, to en-
ter debug mode in case an EBREAK instruction is executed outside of it. The issue decoder
was modified to signal the Issue CU, by sending a specific code (ISSUE_TYPE_EBREAK),
that the instruction in question had been recognized. Upon receiving the code from the
issue decoder, it will be the Issue CU that will check whether the EBREAK instruction
should force entry into debug mode, via the ebreakm field of the DCSR, before checking
for the presence of a debug_req, so as to respect the entry priority. In case the check is
positive, the CU will evolve to a new specific state (S_ISSUE_EBREAK_DM), in which
it resets the Debug Sampler and asserts the signal commit_valid, signaling the ROB to
insert the instruction within one of its entries, otherwise the EBREAK will be treated as
an exception. In this way, the instruction is actually entered into the ROB, along with the
order_crit = 1 signal, the skip_eu = 1 signal, the exception signal, and the associated
E_BREAKPOINT code, and is not replaced by the dummy entry, allowing the commit
stage to handle it appropriately. Also in this case, the CU proceeds to the S_STALL
state, waiting for the instruction commit and the comm_resume sent by the commit stage
to unlock the issue stage.

The exit from debug mode is not governed by a signal like the entry; rather, an ad hoc
instruction, found within the ISA’s rv_sdext extension, called dret, is used. To support
the instruction, the issue decoder was again modified by adding recognition of the opcode
of the dret. When recognized, the issue decoder generates several signals:

• skip_eu = 1, is asserted to signal the bypass of the execution unit, no computation
being necessary for the dret.

• order_crit = 1, as in the case of debug mode entry, the exit must also be executed
in order, so that all instructions issued during debug mode and present in the ROB,
are committed while it is still active.

• opcode_except = ∼dm, as described by the risc debug mode specification [20],
the instruction dret must cause an exception, if executed outside the debug mode.
Therefore, the signal is generated directly from the negated value of csr dm, which is
used to indicate debug mode execution or not.

• except_code = E_ILLEGAL_INSTRUCTION, code of the exception propagated
by the dret, in case it was executed outside debug mode.

• issue_type = ISSUE_TYPE_NONE, used to signal to the issue CU what type of
instruction is being issued, so that it can generate the ready and valid signals needed

84

6 – Debug System Design

for the issue queue and commit stage. In this case, the CU signals the commit stage
that the instruction is valid for insertion into the ROB, via the signal comm_valid_o
and unlocks the issue queue at the moment the commit stage signals that it has
inserted the instruction into the ROB, iq_ready_o = comm_ready_i.

6.2.3 Commit Stage Modification

Actual entry into debug mode is handled by the Commit Stage, which is responsible for
committing instructions in the ROB, forwarding instruction operands to previous stages,
and handling exceptions4. The first module to deal with the presence of the exception
derived from the debug_req is the Commit Decoder, which is responsible for recognizing
the instruction ready to commit, detects the assertion of the exception present in the
dummy entry within the ROB, signaling its presence to the Commit CU by generating
the code comm_type = COMM_TYPE_EXCEPT. The Commit CU was modified by adding
support for four new states:

• COMMIT_DEBUG
• COMMIT_DEBUG_SAVE_PC
• DEBUG_WRITE_CODE
• DEBUG_LOAD_PC

In addition, an extra check has been inserted into the future state precomputation
logic which, upon receiving the code sent by the decoder, checks for coincidence between
the except_code propagated along with the exception and the E_DEBUG code. If so,
it will generate as a future state, the new state COMMIT_DEBUG. Once it enters the
COMMIT_DEBUG state, the Commit CU will finalize the entry into debug mode by
executing the steps described in the opening paragraph. The following describes the state
steps with the operations performed by the CU:

1. COMMIT_DEBUG → A write is performed in the CSR DM, setting the flag to
signal entry into debug mode, also the execution pipeline flush is performed, having
to subsequently update the PC with the address of the debug rom, from which to
resume execution. Finally, the debug sampler present in the issue stage is reset, to
prevent another debug_req from being saved in the time between stalling the issue
and writing to the CSR DM.

2. COMMIT_DEBUG_SAVE_PC → A write to the CSR DPC is executed, sav-
ing within it the value of the PC received along with the debug_req.

4For more on the Commit Stage, refer to [3]

85

6 – Debug System Design

3. DEBUG_WRITE_CODE → A write is executed in the DCSR CSR, saving the
cause of debug mode entry in the cause field of the DCSR, in this case debug_req

(value 3), and the active execution mode, M-MODE. Note that the CU simultaneously
asserts the csr_debug_write signal, which is mandatory to keep the cause and nmip
fields of the DCSR in Read Only, preventing writes from outside, as visible in the
specification [20]. In addition, front-end flushing is performed, so that the PC can be
modified with that of the debug rom, provided externally via the dm_halt_address
bus.

4. DEBUG_LOAD_PC → The address present on the dm_halt_address bus is
sent to the fetch stage as input, to be loaded into the PC to access the debug rom.

5. CLEAR_COMM_REG → The commit register is reset, via the signal comm_reg_clr.

All writing within the CSRs is done through the use of a multiplexer, called the CSR
Multiplexer, instantiated in the Commit Stage and controlled by the Commit CU, via the
signal comm_csr_sel. It was necessary to expand the number of inputs present, to make
it possible to write the debug mode access cause and the current execution mode, in the
case of DCSR access, and to write a value of 1, in the case of CSR DM access, to signal
that debug mode has been entered.

The forwarding to the fetch stage of the address contained in the dm_halt_address

bus, on the other hand, is done by a second multiplexer, called exception multiplexer,
instantiated on the output of the exception adder. Again, it was necessary to expand the
number of multiplexer inputs to support the different instances of PC modification, due
not only to the loading of the PC present in a given CSR and the execution of an exception
handler, but also to the access in debug rom and the handling of an exception during debug
mode.

In fact, the RISC-V debug specification requires that exception handling while in
debug mode differs from standard handling. Specifically, the arrival of an exception
must not cause any CSR to be updated, and the exception handler loaded must be
the one provided via the address on the input dm_exception_addr bus. To do this,
support for two additional states has been included in the Commit CU, named COM-
MIT_EXCEPT_DM and EXCEPT_LOAD_PC_DM. At the moment when the com-
mit decoder signals the arrival of an exception, if it is not due to a debug_req and
therefore the except_code is not E_DEBUG, the CU checks the value present inside
the CSR DM and, if this signals debug mode execution, the state is updated to COM-
MIT_EXCEPT_DM. Otherwise, the state advances to COMMIT_EXCEPT, handling
the exception in the standard way. In the new state, the CU deals with flushing the execu-
tion pipe and front-end, having to jump to another memory location. It then transitions to

86

6 – Debug System Design

the EXCEPT_LOAD_PC_DM state, in which it selects the exception multiplexer input
corresponding to the bus dm_exception_addr, sending it to the fetch stage for PC up-
date. Finally, the CU evolves into the CLEAR_COMM_REG state, emptying the commit
register.

Once debug mode accessibility is built in, the RISC-V debug specification provides a set
of mandatory behaviors in case the Debug Module, connected to the processor, supports
execution from Program Buffer, ch.4 of [20]. This being the case for the Debug Module of
X-HEEP, the following was incorporated:

• All debug mode operations should be performed in M-Mode, except that it is possible
to override the value in mprv present in the CSR mstatus, via the value in the DCSR
mprven field. → the mprven field is hardwired to 1, so the value in mprv is also applied
in debug mode, but since LEN5 currently supports only M-Mode, the specification is
automatically met.

• All interrupts are masked. → At the time of writing this thesis, LEN5 has no support
for interrupts, so this specification is also respected automatically.

• Exceptions do not update any CSRs and terminate the execution of the Program
Buffer. → As explained earlier, 2 states have been added within the Commit CU
that take care of exception execution in debug mode, without updating the CSRs and
loading the PC with the value present in the bus dm_exception_addr.

• No action is taken if there is a trigger match. → LEN5 has no Trigger Module inside
it, so the specification is met.

• Counters and Timers can be blocked if specified in the stopcount and stoptime fields
of the DCSR. → As introduced in the section on CSRs, these two fields are hardwired
to value 1, locking both counts during debug mode by checking the contents of the
dm flag.

• The instruction wfi behaves like a nop. → As specified earlier, LEN5 does not yet
support the interrupt mechanism, which is why wfi instructions are already inter-
preted as nop.

• All instructions that change privilege levels have undefined behavior in debug mode,
except for the EBREAK instruction, which causes the PC to be changed to that
contained in the dm_halt_address bus, without changing any CSR. → For both
instructions that modify privilege levels, such as ECALL and MRET, additional states
have been inserted within the Commit CU, such as COMMIT_ECALL_DM and
COMMIT_MRET_DM. In both cases, the CU commits the instruction without
updating the CSRs, after which it switches to the EXCEPT_LOAD_PC_DM state,
loading the value on the dm_exception_addr bus to the PC.
The handling of the EBREAK instruction, however, is more complex. This, in fact,

87

6 – Debug System Design

can not only be executed with a different routine while in debug mode, as just de-
scribed, but can also cause entry into debug mode if executed outside it, depending
on the configuration contained in the DCSR, as explained in the introduction to this
section and in the section on issue stage.
To comply with both specifications, the commit decoder was modified, adding an
additional check in the case of exception. Until now, in fact, in case an exception was
present in the ROB, the code sent to the CU would be COMMIT_TYPE_EXCEPTION,
regardless of the type of instruction, forcing the Commit CU to execute the routine for
exceptions, loading the address of the exception handler. Thanks to the added check,
the decoder is now able to identify whether the instruction with which the exception
arrived, is an EBREAK, and if so, send the code COMMIT_TYPE_EBREAK to the
CU. The Commit CU can handle the instruction, through the introduction of four
additional states, COMMIT_EBREAK_DM, COMMIT_EBREAK_FORCE_DM,
EBREAK_SAVE_PC, and EBREAK_WRITE_CODE, respectively.
Upon receiving the EBREAK identifier from the decoder, the future state precom-
putation logic checks whether the processor is in debug mode; if so, the Com-
mit CU evolves to COMMIT_EBREAK_DM state, committing the instruction and
flushing the execution pipeline and front-end. Thereafter, the CU evolves to DE-
BUG_LOAD_PC state, loading the initial address of the debug rom contained in
the dm_halt_address bus into the PC.
In the case, however, that the processor is not in debug mode, the CU checks the
value in the ebreakm field of the DCSR and if equal to 1, signaling the requirement
to switch to debug mode by executing an EBREAK, the state evolves to COM-
MIT_EBREAK_FORCE_DM. In this state, the CU accesses the CSR DM, set-
ting the flag and signaling entry into debug mode, simultaneously flushes the exe-
cution pipeline and resets the debug sampler in the issue stage, to again prevent a
debug_req from being received between the issue stage stall and the assertion of
the CSR DM flag. The next state is EBREAK_SAVE_PC, in which the CU saves
the PC of the EBREAK instruction within the CSR DPC and then proceeds to the
EBREAK_WRITE_CODE state, in which the instruction is committed, the cause
of debug mode entry is saved within the cause field of the DCSR, in this case it
is EBREAK (value 1), the current execution mode (M-MODE) is saved in the prv
field, and then the front-end is flushed. Once the EBREAK execution routine is com-
pleted, the CU evolves to DEBUG_LOAD_PC state, sending the address present on
the dm_halt_address bus to the fetch-stage, to load it into the PC and complete
the debug mode access.
Last, if the processor were not to be in debug mode and the DCSR configuration did
not force entry into debug mode for EBREAKs, the instruction in question would be

88

6 – Debug System Design

executed as a normal exception, evolving the CU state to COMMIT_EXCEPTION,
saving the PC in the MEPC CSR and the cause of the exception in the MCAUSE
CSR, and then computing the exception handler address from the value present inside
the MTVEC CSR.

• The completion of the Program Buffer is considered output for the instruction fence.
→ Unfortunately, this condition is not satisfiable, as LEN5 does not yet support the
fence instruction.

• All instructions that modify the PC, either by pointing to a location inside the Pro-
gram Buffer or outside, or that depend on the PC value, could be considered illegal.
→ By choice of implementation, it was decided to keep the standard operation of
this type of instruction.

The exit from debug mode, as already introduced in the issue stage, is controlled by
the instruction dret. Therefore, its support was introduced, within the commit decoder,
which signals to the Commit CU the occurrence of the instruction via the code COM-
MIT_TYPE_DRET. Two additional states, DRET_LOAD_PC and COMMIT_DRET,
have been introduced within the Commit CU. As soon as the CU receives code from the
decoder, it evolves into the COMMIT_DRET state, where the instruction is committed,
a write to the CSR DM is executed, deasserting the flag signaling debug mode execution,
and the execution pipeline and front-end are flushed, having to load the PC to which to
jump to exit debug mode. Following this, the CU proceeds to the DRET_LOAD_PC
state, here it performs a read of the DPC CSR and through the selection of the output in
the exception mux corresponding to the input data from the CSRs, sends the PC contained
within it to the fetch stage, ending debug mode.

Two unfinished specifications remain. It is necessary to include support for the in-
struction fence, for sorting the memory accesses after the Program Buffer execution is
terminated, also the single step execution mode must be integrated. Unfortunately, due
to timing problems, the development of debug mode had to be stopped. Therefore, im-
plementations of the two missing specifications and testing of the operation of the debug
mode of LEN5 will be left for future development.

89

Chapter 7

Concluding remarks

The work illustrated in this thesis led to the integration of a processor based on an Out-of-
Order architecture within a Low Power Heterogeneous SoC, through the development of an
interfacing module capable of ensuring effective communication without impacting system
performance and through the inclusion of debug mode support within the processor itself.
The results obtained are very encouraging, leading to a tangible improvement of the SoC
in terms of performance and, at the same time, opening concrete development scenarios
for the processor itself, exploiting the platform as a development environment.

7.1 Further Improvements
Several aspects of the Bridge module can be improved, beyond a general optimization of
the various components, the most important changes could be:

• Implementation of Outstanding Requests. The Bridge currently does not allow re-
quests to be accumulated internally to be sent to the bus when it is available to accept
them. More advanced buses may implement the feature and request support for it.

• Misaligned Access Support. Although the Bridge supports recognition of misaligned
accesses, it is not yet possible to handle them in a consonant manner. It would be
possible to modify the address splitter and CUs to support misaligned accesses on
WORD and HALFWORD.

Regarding Debug mode, it has already been discussed in the related section regarding
the still missing specifications:

• Support of the Fence instruction. LEN5 does not yet support this type of instruction,
which is required at the end of the execution of the Program Buffer contained in X-
HEEP.

90

7 – Concluding remarks

• Single step mode. To be fully compliant with the RISC-V specification, it is neces-
sary to introduce the possibility of single step execution of instructions, within the
processor.

• Trigger Module. Required for trigger and breakpoint support.

Finally, I would like to join the collective wish of the creators of LEN5. That this step of
integrating the processor within a SoC would increase even more its notoriety in the aca-
demic community, prompting more and more students and researchers to take an interest
in its development and improvement.

91

Bibliography

[1] Marco- Andorno. Design of the frontend for LEN5, a RISC-V Out-of-Order processor.
Dec. 2019

[2] Matteo Perotti. Design of an OS compliant memory system for LEN5, a RISC-V Out-
of-Order processor. Dec. 2019

[3] Michele Caon. Design of the execution pipeline for LEN5, a RISC-V Out-of-Order
processor. Dec. 2019

[4] History of RISC-V url: https://riscv.org/about/history/

[5] Abigail Opiah. What is RISC-V and why is it important? January 11, 2024
url: https://riscv.org/news/2024/01/what-is-risc-v-and-why-is-it-important/

[6] S. Machetti, P. D. Schiavone, T. C. Müller, M. Peón-Quirós, D. Atienza. X-HEEP: An
Open-Source, Configurable and Extendible RISC-V Microcontroller for the Exploration
of Ultra-Low-Power Edge Accelerators. arXiv preprint arXiv:2401.05548 (2024).

[7] X-HEEP Documentation. 2023 url: https://x-heep.readthedocs.io/en/latest/
index.html

[8] Silicon Labs, Inc. OBI-v1.2. 2023
[9] David Patterson, John L. Hennessy. Computer Architecture: A Quantitative Approach.

Morgan Kaufmann Pub, 2017
[10] RISC-V Foundation. RISC-V: The Free and Open RISC Instruction Set Architecture.

2019 url: https://riscv.org/

[11] David Patterson, John L. Hennessy. Computer Organization and Design: The Hard-
ware/Software Interface: Risc-V Edition. Morgan Kaufmann Pub, 2017

[12] Andrew Waterman and Krste Asanovic. The RISC-V Instruction Set Manual. Volume
I: User-Level ISA. RISC-V Foundation, May. 2017

[13] TCBN65LP TSMC 65nm Cole Library Data Book, version 1.4. Sep. 2008
[14] Olof Kindgren. FuseSoC Documentation, Release 0.0.0. 2024 url: https://github.

com/fusesoc/fusesoc.github.io

[15] TIS Committee. Tool Interface Standard (TIS) Executable and Linking Format (ELF)
Specification, Version 1.2. Linux Foundation. May 1995

92

https://riscv.org/about/history/
https://riscv.org/news/2024/01/what-is-risc-v-and-why-is-it-important/
https://x-heep.readthedocs.io/en/latest/index.html
https://x-heep.readthedocs.io/en/latest/index.html
https://riscv.org/
https://github.com/fusesoc/fusesoc.github.io
https://github.com/fusesoc/fusesoc.github.io

Bibliography

[16] System V Application Binary Interface - DRAFT. Linux Foundation, 24 Apr. 2001
url: https://refspecs.linuxfoundation.org/elf/gabi4+/contents.html

[17] What is JTAG and how can I make use of it? url: https://www.xjtag.com/
about-jtag/what-is-jtag/

[18] Technical Guide to JTAG url: https://www.xjtag.com/about-jtag/
jtag-a-technical-overview/

[19] IEEE Standard Test Access Port and Boundary-Scan Architecture. 14 Jun. 2011
[20] RISC-V External Debug Support. Version 0.13.2. RISC-V Foundation, Mar. 2022

93

https://refspecs.linuxfoundation.org/elf/gabi4+/contents.html
https://www.xjtag.com/about-jtag/what-is-jtag/
https://www.xjtag.com/about-jtag/what-is-jtag/
https://www.xjtag.com/about-jtag/jtag-a-technical-overview/
https://www.xjtag.com/about-jtag/jtag-a-technical-overview/

Acronyms

CISC Complex Istruction Set Computer. 3, 95

CPU Central Processing Unit. 9

CSR Control Status Register. 66

CU Control Unit. 23

FIFO First In First Out. 21, 27

FSM Finite State Machine. 23

ISA Istruction Set Architecture. 3, 15

LSB Least Significant Bit. 29

MSB Most Significant Bit. 35

MUX Multiplexer. 28

OoO Out-of-Order. 2

PC Program Counter. 21

RISC Reduced Istruction Set Computer. 3, 96

ROB Reorder Buffer. 4, 82

WAR Write after Read. 4

WARL Write-Any Read-Legal. 81

WAW Write after Write. 4

94

Glossary

Aligned Access Aligned Access refers to access to a memory to retrieve a data therein,
which is arranged on sections of memory with addresses multiple of the number of
bytes of which the data is composed. This allows single accesses to be made for a
single piece of data. 14

BSR Boundary Scan Register, a register placed between the pins and logic of a component,
allows its monitoring in the testing and debugging phases, as well as the possibility
of forcing signals on its interface. 71

CISC Complex Istruction Set Computer. Architecture based on the execution of complex
instructions that can read, modify, or save a data directly into memory. 3

Commit Final stage of execution of an instruction, the result is written to the Register
File/Memory. 5

Fetch Reading the instruction present in instruction memory, pointed by the Program
Counter. 3

GCC GNU Compiler Collection, cross-platform compiler supporting various languages,
including C, C++, Java, and various architectures, such as x86, x86-64, ARM, RISC-
V. 64

High-Performance Computing High Performance Computing, commonly referred to
by the acronym HPC, is the set of technologies used to create computing systems
with very high computing performance. i

ISA An acronym for Instruction Set Architecture, it defines the set of instructions that a
computer can interpret and execute at the Hardware level. 2

Issue Instruction decoding and assignment to a Functional Unit. 2

95

Glossary

JTAG An acronym for Joint Test Action Group, it is a consortium of 200 companies
manufacturing integrated circuits and printed circuit boards in order to define a
standard protocol for functional testing of these devices. i

LEN5 LEN5 is a single issue, out-of-order execution processor based on RISC-V architec-
ture. i, 2

LOAD Instruction belonging to the basic RISC-V ISA. One of only two instructions that
can access memory. It performs the read of a data. 3

Misaligned Access Misaligned Access refers to access to a memory to retrieve a data
therein, which is arranged on sections of memory with addresses that are not multiples
of the number of bytes of which the data itself is composed. This forces multiple
accesses to be made for a single piece of data. 14

Out-of-Order Out-of-Order execution refers to the execution of instructions, issued and
present in the ROB, not necessarily in the order defined by the user, but rather at
the time when the source registers are available and there are no hazards with other
previous instructions or the instruction appears order critical. 2

RISC-V RISC-V is an open-source instruction set architecture (ISA) operated by the
nonprofit RISC-V Foundation organization. RISC stands for “Reduced Istruction
Set Computer” (computers with a reduced instruction set), while “V” is the Roman
numeral to signify the fifth generation of the architecture. 2

STORE Instruction belonging to the basic RISC-V ISA. One of only two instructions
that can access memory. It performs the write of a data. 3

TAP Test Access Port, interface designation of JTAG. 72

X-HEEP X-HEEP is an eXtendable Heterogeneous Energy-Efficient Platform, a config-
urable, extensible and heterogeneous microcontroller platform, complete with every
component: CPU, memories and peripherals. i, 2

96

	List of Tables
	List of Figures
	I Development of the Bridge Module
	General Introduction
	LEN5 - Out of Order Processor
	X-HEEP - eXtendable Heterogeneous Energy-Efficient Platform
	Purpose of Integrating an OoO Processor in a Low-Power Heterogeneous SoC

	LEN5 and X-HEEP Interfaces
	OBI Protocol
	Addressing Method and Memory Alignment
	Bridge Motivation

	Bridge Design
	Bridge Top
	Instruction Module
	Instruction CU
	Instruction Buffer and Tag FIFO
	Instruction Bus MUX and Additional Signals

	LOAD Module
	Grant Control Unit
	Address Splitter
	Rvalid Control Unit
	Data Buffer and Load FIFO
	Byte Selector
	Additional Signals

	STORE Module
	Data Aligner

	Experimental Results
	Functional Verification
	Instruction Module Simulation
	LOAD Module Simulation
	STORE Module Simulation

	Synthesis
	Bridge
	Instruction Module
	LOAD Module and STORE Module
	Case Condition Analysis

	Integration of the LEN5 processor within X-HEEP
	LEN5 Instantiation
	X-HEEP Modifications to Ensure Compatibility with LEN5
	Simulation and Benchmark

	II Development of the Debug System within the LEN5 processor
	Debug System Design
	JTAG
	TAP Controller and Registers

	Adaptation of LEN5 for X-HEEP's Debug System Support
	Control Status Registers (CSRs)
	Issue Stage Modification
	Commit Stage Modification

	Concluding remarks
	Further Improvements

	Bibliography
	Acronyms
	Glossary

