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Abstract

Ensuring privacy and data protection has become a paramount concern nowadays,
leading to the implementation of cryptographic algorithms that have become more
advanced and robust as time goes by. A complex algorithm needs a powerful device
to be deployed, but the Internet of Things (IoT) is made up of all kinds of machines,
many of which are constrained by computational power or memory or battery
life. This is the field of lightweight cryptography, algorithms made specifically
to balance security with efficiency, ensuring that all systems can safeguard data
without hindering performance. The newly appointed standard is the Ascon family,
which is a group of algorithms that share the same core function to perform a
variety of functions, spanning from authenticated encryption with associated data
(AEAD) to hashing and extendable output functions (XOF). This work is focused on
improving the performance of these algorithms, through the design of a customized
accelerator. This is done in a few steps; the first optimization is performed through
an instruction extension of a generic RISC-V processor by means of ASIP Designer.
This tool provides exceptional profiling capabilities and a fast implementation
method, optimal to iteratively finding out the bottlenecks of the algorithm and
solving them, while trying different designs. The main bottleneck turns out to
be the core function of the algorithms, meaning that one accelerator can speed
up all the family. In order to solve it, many designs were proposed, ranging from
the translation in hardware of the function, to the application of optimization
techniques, like unrolling. In the end, the final processor can compute the algorithm
up to ten times faster than the baseline, a result that is five times faster than
other implementations in literature. Meanwhile, the best compromise between
occupied area and speed is characterized by a speedup of 8.6× from the reference
implementation, at the expense of a marginal area increment of the processor of
+20%. The acceleration performed until now has resulted in an application-specific
processor, which has the fastest computation, but at the expense of having changed
the nature of the processor. In order to maintain the original structure, the following
step is to design a coprocessor. This is still integrated into the pipeline of the core,
but it communicates through a specific interface. In the end, the obtained speedup
reaches up to 5.8× faster than the baseline in the hashing algorithms, and 3.6× of
the AEAD.

Keywords: Lightweight cryptography, Ascon, RISC-V, Hardware accelerator,
ASIC, FPGA.





Acknowledgements

Il successo non è mai il
risultato di uno sforzo solitario:

è il prodotto dell’amore della famiglia,
della forza degli amici

e della saggezza dei maestri

ii





Table of Contents

List of Tables vii

List of Figures ix

Acronyms xi

1 Introduction 1

1.1 Thesis objectives and organization . . . . . . . . . . . . . . . . . . . 2

2 Theoretical background 4

2.1 Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 AEAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 HASH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3 XOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.4 Sponge and Duplex Sponge Constructions . . . . . . . . . . 7

2.2 ASCON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 AEAD mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 HASH and XOF modes . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Round transformation . . . . . . . . . . . . . . . . . . . . . 12

2.3 RISC-V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

iv



2.3.1 ASIP Designer . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Accelerators and coprocessors . . . . . . . . . . . . . . . . . . . . . 16

3 Instruction Set Extension 17

3.1 Choice of implementation . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Acceleration of the most critical function . . . . . . . . . . . . . . . 19

3.2.1 Hardware acceleration . . . . . . . . . . . . . . . . . . . . . 20

3.2.2 Dedicated memory improvement . . . . . . . . . . . . . . . . 28

3.2.3 Unrolling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Impact on area . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.2 Effect on the rest of the family . . . . . . . . . . . . . . . . 35

4 Coprocessor 37

4.1 CV-X-IF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 X-HEEP microcontroller . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Design of the coprocessor . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4.1 FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4.2 ASIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Results and comparisons 50

5.1 Instruction Set Extension . . . . . . . . . . . . . . . . . . . . . . . 50

5.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3.1 FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

v



5.3.2 ASIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.4 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.5 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6 Conclusion 62

A Source Code 63

B Reports 67

Bibliography 75

vi



List of Tables

2.1 Ascon family with their parameters . . . . . . . . . . . . . . . . . . 8

2.2 Parameters that define the number of permutations performed . . . 9

2.3 Table of the round constants . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Comparison of all C implementation provided . . . . . . . . . . . . 18

3.2 Comparison of proposed partial hardware accelerators . . . . . . . . 27

3.3 LUT of the Sbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Results of the full round accelerator . . . . . . . . . . . . . . . . . . 29

3.5 Results of the approaches to unrolling . . . . . . . . . . . . . . . . . 33

3.6 Results of the designs discussed on Ascon128a . . . . . . . . . . . . 34

3.7 Results of the designs discussed on Ascon128a . . . . . . . . . . . . 35

3.8 Results of the designs discussed on Ascon-Hash . . . . . . . . . . . 36

3.9 Results of the designs discussed on Ascon-XOF . . . . . . . . . . . 36

5.1 Results of the instruction set extension . . . . . . . . . . . . . . . . 51

5.2 Results of the simulation, inputs of 16 B . . . . . . . . . . . . . . . 51

5.3 Results of the simulation, input of 32 B . . . . . . . . . . . . . . . . 52

5.4 Utilization of the FPGA design implemented . . . . . . . . . . . . . 53

5.5 Power usage of the FPGA design implemented . . . . . . . . . . . . 54

vii



5.6 Area usage of the synthesized ASIC design . . . . . . . . . . . . . . 55

5.7 Power usage of the synthesized ASIC design . . . . . . . . . . . . . 55

5.8 Comparison with other accelerators . . . . . . . . . . . . . . . . . . 58

viii



List of Figures

2.1 Representation of encryption and decryption . . . . . . . . . . . . . 5

2.2 Representation of an AEAD algorithm . . . . . . . . . . . . . . . . 6

2.3 Representation of a hashing algorithm . . . . . . . . . . . . . . . . 6

2.4 Sponge operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 Encryption and decryption for the AEAD schemes . . . . . . . . . . 9

2.6 Hashing and XOF schemes . . . . . . . . . . . . . . . . . . . . . . . 11

2.7 Second step of Round, nonlinear substitution layer . . . . . . . . . . 13

2.8 Third step of Round, linear diffusion layer . . . . . . . . . . . . . . 13

2.9 Asip Designer flow. Image source: Synopsys’ ASIP Designer™
webpage [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Microcode that performs a small part of the round function . . . . 20

3.2 Block scheme of the round accelerator . . . . . . . . . . . . . . . . . 21

3.3 Addition of the primitive to the ISA . . . . . . . . . . . . . . . . . . 26

3.4 Microcode view of the new primitive . . . . . . . . . . . . . . . . . 27

3.5 Microcode view of a whole permutation . . . . . . . . . . . . . . . . 28

3.6 Outline of P2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.7 Outline of all permutations unrolled . . . . . . . . . . . . . . . . . . 32

3.8 Diagram of the cycle count reduction . . . . . . . . . . . . . . . . . 34

ix



4.1 Signals that characterize the CV-X-IF interface . . . . . . . . . . . 38

4.2 X-HEEP architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Block scheme of the processor with the added CV-X-IF interface . . 39

4.4 Block scheme of the wrapper of the coprocessor . . . . . . . . . . . 40

4.5 ASM of the XIF controller . . . . . . . . . . . . . . . . . . . . . . . 41

4.6 Block scheme of the datapath of the coprocessor . . . . . . . . . . . 42

4.7 FSM of the CU of the datapath . . . . . . . . . . . . . . . . . . . . 42

4.8 Timing of the CU of the datapath . . . . . . . . . . . . . . . . . . . 43

4.9 Design implemented in the FPGA, register, and datapath of the
coprocessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.10 Design implemented as ASIC . . . . . . . . . . . . . . . . . . . . . 49

5.1 Comparative graph of the allocated units in the FPGA implementation 53

5.2 Power distribution of the FPGA design implemented . . . . . . . . 54

x



Acronyms

NIST

National Institute of Standards and Technology

AEAD

Authenticated Encryption with Associated Data

XOF

Extendable-Output Function

ISA

Instruction Set Architecture

ISE

Instruction Set Extension

ASIP

Application Specific Instruction Set Processor

ASIC

Application Specific Integrated Circuit

CV-X-IF

Core-V eXtension interface

xi





Chapter 1

Introduction

In the modern world, information has become the most valuable asset. Society
is based on interconnected devices that constantly exchange private information,
from sensitive data to seemingly unimportant messages. For this reason, centuries
ago, cryptographic protocols were developed to hide data in plain sight, yielding an
unreadable message to those who try to intercept the transmission. Of course, along
with cryptographic protocols, deciphering strategies have also come into existence,
creating the need for more complex protocols that make decryption without a key
an almost unsolvable challenge. A complex algorithm needs a powerful device to
be deployed, but the Internet of Things (IoT) is made up of all kinds of machines,
many of which are constrained in a handful of aspects ranging from computational
power to memory and battery life. This is the field of lightweight cryptography,
algorithms made to balance security with efficiency, ensuring that all systems can
safeguard data without hindering performance.

The NIST (National Institute of Standards and Technology) has organized CAE-
SAR, the Competition for Authenticated Encryption: Security, Applicability, and
Robustness in order to find a new cryptographic standard that could not only
provide security, but also flexibility and performance in terms of speed, size, and
energy use. The winning algorithm was announced in 2023: ASCON a family of
ciphers that has now become the standard for lightweight cryptography.

These algorithms are perfect for an ASIP (Application-Specific Instruction Proces-
sors) or a coprocessor implementation due to their simple and efficient nature.
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Introduction

The small state and simple bitwise operations map efficiently to specialized instruc-
tion sets, providing high throughput with low latency. These optimizations will also
allow increasing performance while reducing energy consumption and maintaining
flexibility, making it a perfect fit for resource-constrained environments like IoT
devices and embedded systems.

1.1 Thesis objectives and organization
The main objective of this thesis is to implement an accelerator that targets the
most computationally heavy functions of ASCON. This will be done by first finding
the bottlenecks of the algorithm, solving them iteratively, and providing a broad
range of solutions until the best result is achieved. Then, the most suitable one
will be implemented and integrated into a microcontroller to test its functionality.

The thesis will be organized as follows:

• chapter 1 is a short introduction about the motivations and the purpose of
this thesis;

• chapter 2 presents the background necessary to completely understand what
will be done in the following chapters. Section 2.1 contains an explanation of
cryptography in general and then specifically of the algorithms that will be
the protagonists of this thesis. Section 2.2 is about Ascon and operations that
characterize this family of ciphers. The following two sections, 2.3 and 2.4,
are an overview of the tools that will allow the design of the accelerator;

• chapter 3 describes the design flow that brings to the development of a
collection of suitable accelerators, and ultimately to the choice of the best one
in terms of speed-up and area usage. Section 3.1 is dedicated to the choice
of one of the different versions of the same algorithms, showing why it is the
more advantageous of the alternatives. Section 3.2 illustrates the steps made
in order to find out the criticalities of the algorithm and iteratively solve
them. Section 3.3 shows the result of the instruction set extension performed,
discussing all the benefits and the drawbacks of this design;

• chapter 4 is where the coprocessor is effectively implemented. In sections 4.1
and 4.2 a brief introduction of the microcontroller and its interface is given,
while in section 4.3 the design of the coprocessor is thoroughly explained. At
last, in section 4.4 the design is synthesized, both in FPGA and ASIC;

2



Introduction

• chapter 5 reports the results of the previous ISE in section 5.1, simulation
in section 5.2 and synthesis in section 5.3. Then, they are compared to the
data found in the literature, discussing the merits and the limitations of the
implemented design. In section 5.4 some future work proposals are laid out;

• chapter 6 is the conclusion of the thesis, it formulates the reflections on this
work while summarizing all the outcomes achieved.
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Chapter 2

Theoretical background

To better understand the work that will be explained later, it is useful to have
a bit of theoretical background. Starting from the basis of cryptography and of
the algorithms that will be the protagonists of this thesis, across the tools and
programs that allow the design of the accelerator, until the processor that will
bring this project into the real world.

2.1 Cryptography
“One must acknowledge that with cryptography no amount of violence will
solve a math problem” — Jacob Appelbaum

Using a key, a cryptographic algorithm can encrypt a plaintext from the
sender into a ciphertext, creating an unrecognizable file. Through the use of
the same or a different key, the receiver can decrypt the message and recover
the original. Only these two people should be able to view the content of the
transmission because a third party would not be able to recover the key if the
algorithm is reliable enough. The process is depicted in Figure 2.1 for clarity.

Nowadays, in several areas are emerging technologies implemented in constrained
devices, spanning from sensor networks to healthcare and the Internet of Things,
where the data are highly sensitive. The concept of lightweight cryptography
comes from the need to protect the messages coming from and to these types
of equipment, where the performance of standard cryptographic algorithms is
unacceptable. The factors that make up a good lightweight cipher are high security,
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Figure 2.1: Representation of encryption and decryption

high speed, low size, low energy use, and low memory consumption. Since it is
impossible to have all of these, lightweight cryptography is made of compromises.
For example, they have a minimal size and they provide good security, but it makes
them not safe enough to withstand attacks from quantum computers. However,
this particular scenario might not be a problem, because post-quantum encryption
is important for long-term secrets that would not be shared in this kind of platform.

The family of algorithms that has been chosen as a standard for lightweight
cryptography is ASCON. This group is composed of methodologies for:

• AEAD, authenticated encryption with associated data. An encryption scheme
that assures data confidentiality and authenticity, while including associated
information.

• HASH, a transformation that converts a message of arbitrary length into one
with fixed size, used for message integrity.

• XOF, extendable-output function. It is a type of hash function that allows
the output to be of an adjustable size.

2.1.1 AEAD
Figure 2.2 represents the main scheme of an AEAD algorithm.

Like before, the plain text and the key are present, while the nonce, the additional
data, and the tag are specific to this model. The nonce (number used once) is a
number used to modify a ciphertext. Its goal is to avoid detection when related
messages with a similar ciphertext are sent. For this reason, it must also be unique
at each communication and it usually consists of a random number or a counter
value that is shared between the two recipients of the message. Of course, when the
number is generated randomly, it is needed also in the decryption step to recover
the original message. The tag is what guarantees that the message received comes
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Figure 2.2: Representation of an AEAD algorithm

from the expected sender. In fact, the tag can be generated only by knowing the
secret key. These are the elements that come into play in an AE (authenticated
encryption), an AEAD sends also the associated data. This kind of information
is authenticated but not encrypted, it is useful because it assures that third parties
cannot repeat a message they have already intercepted in a different circumstance,
by giving the context of the communication. As for the nonce case, this value takes
part both in the encryption and the decryption of the ciphertext.

As said before, an AEAD scheme ensures confidentiality and authenticity. The
former means that the message sent cannot be understood without the secret
key, while the latter denotes that it is not forgeable. This is possible because an
adversary could be able to generate a ciphertext, but not the tag [1].

2.1.2 HASH
The behavior of a hashing algorithm is represented in Figure 2.3.

Figure 2.3: Representation of a hashing algorithm

A hash function is a mathematical transformation that takes a message of an
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arbitrary length and transforms it into another compressed value of fixed length,
called “hash digest”. The obtained value is defined by the input, which turns into
a unique digest whose starting contents cannot be recovered. Hashing can be used
for key generation or number randomization [2].

2.1.3 XOF
The concept of extendable output function is related to the one of hashing. The
only difference between the two is that an XOF algorithm can output a digest of
arbitrary length, while the one of the hash is fixed. It can be useful in situations
like deriving multiple keys instead of one at a time.

2.1.4 Sponge and Duplex Sponge Constructions
The Sponge and Duplex Sponge constructions are the basis for many cryptographic
algorithms. Its working principle is represented in Figure 2.4.

Figure 2.4: Sponge operations

The principle is based on a permutation P operating on a state vector of fixed
length b. This, in turn, is made by the rate r, also known as the data block size, and
the capacity c, which is the difference between b and r. Since the variable-length
input will be processed by blocks of size r, padding ensures that the input data
length is a multiple of the block size.

The first step of the sponge operation is the initialization. This is where the
starting configuration of the state vector is determined, depending on the specific
operation. If the algorithm involves the use of a key, then it is included in this step,
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like in the AEAD schemes. On the other hand, for hash functions, the initial state
is usually a constant.

The second stage is the one of the absorbption. Here, the r-bit input message
blocks are XORed into the first r bits of the state, while the permutation P is
applied. When all the blocks are processed, the construction goes to the squeezing
operation, where the state is returned as output blocks. The number of operations
is determined by the number of bits of the outputs.

The following steps are the duplex operations. They differ from the sponge
construction because they allow for alternating input-output phases in the same
operation [3]. They can be used either for encoding or for decoding.

Just for some algorithms, like AEAD or MAC, there is also the finalization step,
that extracts the tag from the last state of the sponge.

2.2 ASCON
Ascon is a cipher suite that provides both AEAD and hashing functionalities, the
whole family with their parameters is reported in tables 2.1 and 2.2. In addition to
these, there is the rate r, also known as the block size, which is 64 bits for almost
all versions, with the exception for ascon128a, where it is 128.

Table 2.1: Ascon family with their parameters

The authenticated encryptions with associated data schemes are Ascon-128, Ascon-
128a, and Ascon-80-pq. This last one is a new version that has increased resilience to
quantum key-search [4]. The hash functions are Ascon-hash and Ascon-hasha, while
the XOF are Ascon-XOF and Ascon-XOFa. Each of them provides substantially
different functionality, but they all have in common the same primitive, which
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Table 2.2: Parameters that define the number of permutations performed

is a low-level algorithm, used to compose higher-level ones.

2.2.1 AEAD mode

This mode uses a duplex-sponge-based protocol that operates on a 320-bit state
vector that is, in turn, split into one outer part Sr and an inner part Sc. When
the permutations are performed, this vector is represented by five registers of 64-bit
each. In Figures 2.5 are reported the steps for encryption and decryption.

(a) Encryption

(b) Decryption

Figure 2.5: Encryption and decryption for the AEAD schemes
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From figures 2.5, it is clear that the core parts of the algorithms are the pa and the
pb blocks. These are the permutations and the numbers a and b define how many
times the round transformation is applied. For Ascon-128, a is equal to twelve
and b is six, while for the Ascon-128a algorithm, a stays the same and b is eight,
as seen in table 2.2. A higher number means a stronger permutation, in fact pa is
present in the initialization and finalization phases.

As it is possible to notice, the encryption and decryption are divided into four
steps:

1. initialization: the state vector of 320 bits is composed by the initialization
vector (IV) calculated as:

IVk,r,a,b ← k||r||a||b||0160−k

where k is the key size, r is the rate, a the initialization and finalization round
number and b the intermediate round number. The last bits are assigned to
the zeros padding. Then the key and the nonce are added as:

S ← IVk,r,a,b||K||N

Then, the state goes through a permutation and the key is XORed into the c

bits of the capacity:
S ← pa(S)⊕ (0320−k||K)

2. associated data: the associated data A is processed in blocks of r bits. A is
padded with a one, followed by as many zeros as needed to reach a multiple
of r:

A← A||1||0r−1−(|A| mod r)

Then each A block is XORed with Sr, followed by a b permutation:

S ← pb((Sr ⊕ A)||Sc)

In the last step, a separation constant is XORed to S;

3. plaintext/ciphertext: the ciphertext/plaintext is processed in blocks of r
bits. P/C goes through the same padding process as before, where a single
one and as many zeros as needed are added. At each iteration, the plaintext

10
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or the ciphertext is XORed to Sr and goes through a b permutation.
The last step for encryption consists of truncating the length of the last
ciphertext block to make the ciphertext C length the same as the original
plaintext P

C̃t ← ⌊Ct⌋|P | mod r

For decryption the last procedure is

åPt ← ⌊Sr⌋ℓ ⊕ åCt

S ←
1
Sr ⊕ ( åPt ∥ 1∥0r−1−ℓ)

2
∥Sc

4. finalization: The tag is extracted as:

S ← pa
1
S ⊕ (0r∥K∥0c−k)

2
T ← ⌈S⌉128 ⊕ ⌈K⌉128

For a more in-depth explanation, refer to [4].

2.2.2 HASH and XOF modes
The operation of the hashing and XOF modes are reported in Figure 2.6.

Figure 2.6: Hashing and XOF schemes

Again, the computation is split into steps:

1. initialization: similarly to the AEAD case, it uses the constant IV to initialize
the state vector. It is calculated as:

IVh,r,a ← 08||r||a||08||hS ← pa(IVh,r,a||0256)

11
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This number is constant and it has a precomputed value assigned at the start
of the algorithm;

2. absorb message: the message M is processed in blocks of r bits, padded
with the same procedure used for the AEAD scheme. After this, each of the s

message blocks of r bits goes through the function:

S ← pa((Sr ⊕Mi)||Sc)

3. squeeze hash: the hash output is extracted from the state in blocks of r bits
until the desired length is reached. The last block is truncated to

H̃t ← ⌊Ht⌋l mod r

Where l is the output size.

In this case, a is always twelve, while b is twelve in the standard version (Ascon-Hash
and Ascon-XOF) and eight in the “-a” variant (Ascon-Hasha and Ascon-XOFa), as
shown in table 2.2.

2.2.3 Round transformation
As seen before, the round transformation is the core of Ascon. It is a 320-bit
permutation, designed for high security and robustness with a very low area, thanks
to the use of simple bitwise boolean operation.

The 320-bit state vector is divided into five registers, each of 64 bits, called x0, x1,
x2, x3 and x4. These registers go through a series of operations:

1. addition of a round constant: a constant of one byte is XORed to x2:

x2 ← x2 ⊕ cr

2. nonlinear substitution layer: a 5-bit S-box is applied 64 times in parallel
in a bit-sliced pattern (vertically, across words). As seen in Figure 2.7;

3. linear diffusion layer: XORs different rotated copies of each word horizon-
tally, as depicted in Figure 2.8.

The constant added in the first step depends on which iteration is being performed
inside the permutation. All the possible values are reported in Table 2.3. If the
permutation consists of twelve rounds, then the first iteration will be used as a
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Figure 2.7: Second step of Round, nonlinear substitution layer

Figure 2.8: Third step of Round, linear diffusion layer

constant 0xf0, then 0xe1, and so forth. If, instead, the permutation is composed of
eight rounds, the first constant will be the one with index 2 (0xd2), followed by
0xb4 until the end. Similarly, the six rounds will start with the index 6.

Table 2.3: Table of the round constants

13



Theoretical background

2.3 RISC-V
RISC-V is an open-source instruction-set architecture (ISA) that started as an
educational and research instrument but is now widely used in all kinds of applica-
tions. RISC-V processors can have 32 or 64-bit parallelism (a 128-bit variant is
under development), and the central register file is usually composed of 32 fields,
with two read ports and one write port. The base ISA divides the instructions into
four formats, depending on the register usage:

• R-Type: two source registers and the destination register

• I-Type: one of the source registers and the destination register

• S-Type: only the two source registers

• U-Type: only the destination register

A further classification can be made depending on the immediate used by the
instruction, for more detail refer to [5].

The basic integer ISA can be expanded with many extensions that provide more
functionality to the base processor, ranging from typical multiplication and floating
point operations to more unusual operations like vector data and SIMD processing.
Further customization of the ISA can be done with specialized instructions thanks
to the open-source nature of the project. New custom instructions can be coded
to carry out specific tasks or calculations, resulting in enhanced performance for
certain applications. This procedure is called Instruction Set Extension (ISE)
and allows the creation of unique processors with specialized ISA.
For the purpose of this thesis, a 32-bit version of the processor will be used, and
the R-Type will be preferred for what concerns new instructions.

2.3.1 ASIP Designer
If an optimized processor is targeted to a specific field or algorithm, it is called
an application-specific instruction-set processors (ASIP). Synopsys’ ASIP
Designer is a proprietary software that has been developed to ease the development
of ASIP processors. The tool comes with built-in example models, including many
RISC-V variants. As a starting point for this thesis, the trv32p5x has been
chosen: this RISC-V-based processor comes with 32-bit parallelism, 5 pipeline
stages, and hardware do-loop support. ASIP Designer development flow consists
of a compiler-in-the-loop approach, where the architecture of the model can be
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seamlessly modified, compiled, and simulated both in instruction-accurate and
cycle-accurate mode. The built-in debugger and disassembler allow for microcode
stepping, which makes finding bugs and errors much simpler. The tool uses two
main languages to describe the processor:

• nML: this class of files describes the memory resources, the pipeline stages,
and the instruction set architecture of the model. The ISA is described using
a hierarchical approach, grouping instructions associated with a specific task
into a single bundle. Every bundle is then packed with the other ones until
the complete ISA is formed.

• PDG: these files contain the description of the functional units’ behavior,
like ALU operations. The actions performed by the functional units can be
described in a C++ style, simplifying the process of creating new functions
for the processor.

The key aspects are reported in Figure 2.9.

Figure 2.9: Asip Designer flow.
Image source: Synopsys’ ASIP Designer™ webpage [6].
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On top of that, ASIP Designer offers great profiling capabilities, including the
measurements of cycle count, register accesses, instructions count, and tracing.
Once the processor is completed, the tool can generate a synthesizable HDL
description of the model either in Verilog or VHDL, which can be used for further
development using other commercial tools.

2.4 Accelerators and coprocessors
When it comes to accelerators, two main methodologies can be adopted [7]:

• Tightly coupled accelerators, or TCA, are hardware components that are
placed inside, or very close to, the pipeline of the processor. They require new
instruction and are usually fixed-function units, highly specialized in a single
task.

• Loosely coupled accelerators, or LCA, are modules that are usually sepa-
rated from the CPU and can communicate with it in various ways, including
memory mapping, I/O mapping, and interrupts.

Loosely coupled accelerators can usually be bigger and more sophisticated than
their counterpart because they can work concurrently with the main processor,
completing complex tasks like image processing in a few clock cycles. LCA usually
don’t need new instructions to operate because they are generally driven by functions
already embedded into the processor, like memory operations. Tightly coupled
ones, on the other hand, speed up simpler tasks, usually in a single clock cycle.
They are also kept smaller to prevent long critical paths, that can lead to a loss of
performance, and require ISA extension to work.

Coprocessors are TCA slightly more elaborate than usual ones, containing additional
architectural components that allow for some limited autonomy relative to the
primary instruction stream.

For the purpose of this thesis, a coprocessor will be developed, which will use
the CV-X-IF Interface. This open-source interface can be used to implement
standard RISC-V extensions (like the B, M, and F) as well as custom ones. The aim
of this protocol is to enable the design of ASIPs with tightly coupled accelerators,
without modifying the CPU of the processor.
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Chapter 3

Instruction Set Extension

The first type of accelerator that will be implemented is through the instruction
set extension of the RISC-V processor. This kind of tightly coupled acceleration
allows ascertaining the full extent of the performance improvement obtained and,
at the same time, provides a higher speed of analysis useful to compare different
design options.

The first thing that has to be done is to choose the more appropriate implementation
among the provided ones. After obtaining the starting model, the bottlenecks of
the algorithm must be evaluated and solved iteratively until the desired goal is
reached. In the end, the results are examined, also considering other factors that
come into play when dealing with accelerators.

3.1 Choice of implementation
The official repository containing the C implementation of Ascon [8] contains many
versions of it, each for a different purpose. The possible optimization criteria are
the number of bits, speed, size in program memory, register usage, and presence of
interleaving. The RISC-V that will be used is based on 32 bits, and both the size
and the register usage are not relevant points of the final result. This is because
the accelerator will be placed inside a processor that will handle many complex
cryptographic algorithms, which will require larger space and more registers than
Ascon would ever need. Because the other factors are not of significance, speed
becomes the most prominent goal. Interleaving could hinder the performance of
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the system, so the final decision would be to use the 32-bit speed-optimized version,
“opt32”.

This whole process was verified with the profiling capabilities of Asip Designer,
yielding the table 3.1.

Table 3.1: Comparison of all C implementation provided

The column of the reference implementation is misleading, the cycle count seems
lower than the one of opt32, suggesting that it is more efficient. In reality, the
reference implementation implicitly performs unrolling and it does not deal with
endianness.
Unrolling makes the computation faster, removing the overheads due to loops and
function calls. There is no option to remove unrolling in this version, while in the
others it was removed to have a more accurate comparison.
Endianness is a problem of many cryptographic algorithms: these schemes are
made to deal with data in big-endian order, while RISC-V and many other processors
store and read data in little-endian order. It is not a problem when the program
is run on more complex machines with advanced operating systems that can
automatically differentiate and handle this condition. On the other hand, when
using smaller devices, there should be functions that reorder data every time it is
written or read. The reference implementation is missing this whole ordeal, making
the code faster and smaller, but not suitable to be put into a resource-constrained
environment.
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3.2 Acceleration of the most critical function
After choosing the base model, the next step is to analyze the flow of the algorithm,
finding the bottlenecks that affect the performance of the system. This can be
easily done through the function profiling of Asip Designer, which yields (the full
report can be seen in appendix, B.2):

Calls Cycles tot Cycles tot Cycles tot Cycles tot Function
(func) (%func) (func+desc) (%func+desc)

------ ----------- ------------ ----------- ------------ -------------
108 22464 87.28% 22464 87.28% ROUND
14 854 3.32% 23318 90.60% PROUNDS
24 720 2.80% 720 2.80% memcpy
2 304 1.18% 8218 31.93% ascon_adata

... ... ... ... ... ...

It is clear that the bottleneck is the round function. The second most
computationally expensive function, PROUNDS, is the permutation that iteratively
calls the round function. The effective cost of the two is shown by the column of
total cycles of the function and its descendants. Furthermore, permutations are
also called many times during one execution, which means that accelerating its
performance would grant many benefits.

There are two main reasons why this function is so costly: the first is that, as
explained in chapter 2, round performs many combinatorial operations that, despite
their basic nature, take a long time to be performed in software. This is especially
true for 32-bit processors, which have to perform twice the operations to compute
the 64-bit data. The second reason can be found by performing an analysis of the
storage accesses, which gives (the full report can be seen in appendix B.1):

Storage Read-count Read-count Read-count Function name
(total) (function) (% of total)

------- ----------- ------------ ----------- -------------------
DMb 29464 28080 95.30% ROUND

256 0.87% ascon_adata
44 0.15% ascon_aead_decrypt

... ... ... ... ...
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Note that the behavior is the same also for writes. A significant part of all operations
made to the data memory are performed by the round function that, every time it
is called, loads and stores the state vector. This pattern can be observed through
the microcode that performs the C algorithm, which is reported in Figure 3.1.

Figure 3.1: Microcode that performs a small part of the round function

The microcode (on the left) is the translation of the small section of C code shown
on the right. It is clear that many cycles are wasted to load and store words (lw
and sw instructions) because these operations are performed each time a variable
changes its value. Inside a single round function, there are 65 lw and 36 sw. To
understand the magnitude of this expense, these numbers that have to be multiplied
by how many times inside a permutation a round is called and then again by how
many times a permutation is performed.

3.2.1 Hardware acceleration
The simple boolean operations, that were so expensive to do in software, can be
easily realized in hardware. By doing so, the computations are done in parallel and
there is no need to store intermediate results.
The round function is composed of three steps: addition of constants, Sbox, and
linear diffusion layer. Each operation contributes differently to the function and
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its importance must be evaluated, in case it is beneficial to accelerate only one
component in order to occupy less area. This hardware also needs a dedicated
register, called “reg S”, with a peculiar structure: each 64-bit segment has its own
input and output port. This is necessary because the hardware needs all 320 bits
from the state vector at the same time to perform the computations in a single
clock cycle. The outline of the proposed architecture is represented in figure 3.2.

Figure 3.2: Block scheme of the round accelerator

There is a series of steps to perform to implement this hardware:

1. Introduction of a new data type. There are two kinds of data types:
the ones known by the ASIP Designer compiler and the ones known by the
processor (called primitive data types). The uint64 t format, used by the
round transformation, is known just to the compiler because the processor
does not have the means to handle data of 64 bits. For this reason, a new
data type is implemented in the processor, called w64, which is associated
with a new compiler data type called ascon64 t.

2. Data Memory adjustments. For the same reason as before, some modifica-
tions to the data memory are necessary since the memory can only output
data with a length of 1, 2, or 4 bytes. To allow the new w64 data to be read
and written effectively, the data memory must be able to output also 8 bytes
of data. The new procedures are called ld and sd.

3. Register-S definition. This is done in the nML language, where the register
is defined as follows:
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reg S[5] <w64,t3u> syntax(eS) read (s_r) write (s_w);
enum eS {s0 "s0", s1 "s1", s2 "s2", s3 "s3", s4 "s4"};
reg S00<w64> alias S[0] read (s00r) write (s00w);
reg S01<w64> alias S[1] read (s01r) write (s01w);
reg S02<w64> alias S[2] read (s02r) write (s02w);
reg S03<w64> alias S[3] read (s03r) write (s03w);
reg S04<w64> alias S[4] read (s04r) write (s04w);

The first line implements a register file with 5 locations, containing w64 data
and addressed by the t3u data, which is an unsigned 3-bit primitive data type.
There will be one write port s w and one read port s r to load and store data
from the data memory to the register. This is made more user-friendly by the
enum eS, which allows to refer to a specific location as s < location number >.
The last part consists of the aliases definitions that add one read and one
write port for each field of the register file. Those ports are used to perform
parallel computation on the data inside the register, allowing the execution
of all the instructions contained originally in the loop body in a single clock
cycle, in parallel. Additionally, the load and store operations are declared
together with the bypass procedures. The read and write operations are the
conventional ones, where one register and the immediate are used to calculate
the address in the memory, and the second register contains the data to load
or store. On the other hand, the bypasses are more peculiar: they are used
when successive operations are performed on the register, allowing to speed up
the execution. Bypassing only applies to read-after-write (RAW) data hazards,
avoiding any pipeline stall when two instructions access the same register
field. The compiler of ASIP Designer considers the bypasses specified in nML
during scheduling, while the hardware implementation will be performed by
generating multiplexers and the corresponding decoding logic. For this reason,
bypassing should be done whenever possible, as the additional hardware is
justified by the increased performance of the processor.

4. Description of the hardware. This is done in the PDG language, which
allows describing the primitive function in a C++ style, that will be pro-
cessed and used for the generation of the hardware description. The round
transformation is described as:
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//Round const LUT
class v12_uint8_t property (vector uint8_t [12]);
const v12_uint8_t RC = {

0xf0, 0xe1, 0xd2, 0xc3,
0xb4, 0xa5, 0x96, 0x87,
0x78, 0x69, 0x5a, 0x4b

};

void round( w32 i, w64 x0_i, w64 x1_i, w64 x2_i, w64 x3_i, w64 x4_i,
w64& x0_o, w64& x1_o, w64& x2_o, w64& x3_o, w64& x4_o)

{
//assign inputs to local variables
uint64_t x0 = x0_i;
uint64_t x1 = x1_i;
uint64_t x2 = x2_i;
uint64_t x3 = x3_i;
uint64_t x4 = x4_i;
uint64_t xtemp;

uint64_t C64 = 0;
C64[7:0] = RC[i];

//const addition
x2 ^= C64;
//Sbox
...
/* linear layer */
...

//assign outputs
x0_o = x0;
x1_o = x1;
x2_o = x2;
x3_o = x3;
x4_o = x4;

}

As it is possible to notice, the structure is almost the same as the one of the
C source code. Some steps were omitted to avoid redundancy. The inputs
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and the outputs of the function are primitive data types, including the w64
mentioned before, while inside the code all types known by the compiler
are allowed. The most noticeable aspect here is the definition of the LUT
containing all the round constants. To properly construct the array, a new
PDG class is needed, namely v12 uint8 t which is a vector of twelve uint8 t
elements. This, together with the const keyword, allows the implementation
of a fast look-up table.

5. Introduction of the round primitive. Now that the hardware is fully
described, it is possible to define the microinstructions that will execute the
round transformation. These are written in nML as follows:

fu ascon;
trn asconA <w32>;
opn Ascon_Accel (op: e_ascon_rrr, rd: mX22w_EX, rs: mX21r_EX) {

action{
stage ID..EX: aguA`EX` = rs;
stage ID..WB:
switch (op) {

case round:
stage EX: aguR = add(aguA, aguB=0) @agu;
stage EX..WB: rd = aguR`EX`;

}
stage EX:

asconA = aguA;
switch (op) {

case round:
round(asconA,
s00r=S00, s01r=S01, s02r=S02, s03r=S03, s04r=S04,
S00=s00w, S01=s01w, S02=s02w, S03=s03w, S04=s04w)

@ascon;
}

}
syntax : op PADMNM " " rd "," PADOP1 rs;
image: op[9..3] :: rs :: "00000" :: op[2..0] :: rd :: opc32.OP;

}

The first row is the declaration of the functional unit (keyword fu) ascon,
followed by the 32-bit transitory (represented by the keyword trn) asconA,
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which is the nML counterpart of a VHDL signal. This will be used to represent
temporarily the index of the iteration. The following block is the definition of
the actual microinstructions, which are defined in a single opn statement. The
round parentheses contain the opcode for all the instructions defined in that
statement, together with their source and destination registers. Those are
represented by predefined modes of the general register file of the processor
(register X) which describe its read and write behavior. Here the r and w
characters determine whether they are read or written, the numbers are
representative of the multi-port structure of the internal X register file and
are important for the instructions that have more than one source register.
With the action attribute, the behavior of the instruction is described. It
is divided into phases, where at each stage of the pipeline is indicated what
the instruction must do. In this case, in any of the stages between ID and
EX, including both ends, the value of the source register is read and assigned
to asconA. Then, between the EX and WB stages, a placeholder value is
inserted as a destination register. After this, to be performed just in the
execution stage, there is the body of the round primitive. The line of code
associates the data to its right position inside the register S and also indicates
that the operation will be performed inside the ascon functional unit. The
last two lines represent the syntax and image attributes. The first attribute
specifies the assembler syntax for the corresponding instruction and is used
for a more understandable version of the assembler instruction. The image
attribute defines the binary encoding for the corresponding instruction, whose
fields are common to all the instructions of a certain type which, in this
case, is the arithmetic instructions with only one source and one destination
register. Nothing is written in one source and the destination registers, but
these locations are necessary to maintain the r-type instruction format. In the
other source register, the index of the iteration to perform is passed to the
accelerator. This is made to avoid sending at each round the constant value,
in such a way that the hardware is more self-sufficient with its look-up table.

6. Declare and add to the ISA all the custom instructions of the processor.
This is done in two instances:

opn ascon_instr(
Ascon_Accel //round primitive

| load_instr_regS
| store_instr_regS
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);

opn A (
alu_instrs

| mpy_instrs
| div_instrs
| ctrl_instrs
| zol_instrs
| swbrk_instr
| ascon_instrs //custom instr.

);

The opn keyword is used to identify an instruction that the processor can
execute, grouping instructions of the same kind. In this case, first, all instruc-
tions added until now are under the ascon instr operation, which in the left
column is included in the arithmetic instructions of the processor.

In Figure 3.3, under the arithmetic operations, the newly added instructions are
reported.

Figure 3.3: Addition of the primitive to the ISA

In Figure 3.4 there is the microcode just modified. Now there are just the new
primitive function round and five loads and stores (partially shown) for the five
64-bit entries of the state vector.
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Figure 3.4: Microcode view of the new primitive

In Table 3.2 are represented the combinations: “REF” is the reference imple-
mentation with no dedicated hardware, "Sbox” implements both the addition of
constants and Sbox, “Linear layer” handles just the linear diffusion layer, and
“Round complete” implements the whole function.

Table 3.2: Comparison of proposed partial hardware accelerators

The results indicate that, to have the biggest speed-up, the whole function needs to
be implemented in hardware. If one were to be in a really constrained environment,
he could think to accelerate only the Sbox, but chances are the result will not be
satisfactory enough. A 58% speed-up in clock cycles is a wonderful result, along
with the reduction of 52% of the storage accesses.
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3.2.2 Dedicated memory improvement

The reduction of 52% on the storage accesses is a good result, but the round
function alone is still responsible for 91.53% of the total reads (always referring
to table 3.2). This happens because each time the function is called, the state
vector is loaded. For example, if a permutation with a equal to 12 is carried out, it
means that the state vector will be loaded through five cycles twelve times, which
will waste 60 cycles. If the register were used in a more advanced way, one could
perform only the first five cycles to load the data, storing the partial results
of the permutation inside this memory area. This is done in software because
the register is already predisposed to support this behavior. The starting situation
is the one of code A.2, from there the round function is deleted and the round
primitive is used directly in the PROUND function. In this way, avoiding the
function call and the constant conversions between C and processor datatypes, the
inputs and outputs of the S register can be directly connected between one cycle of
the loop and the following one. The new full code is in the appendix, A.3 and the
microcode that performs a a whole permutation is in figure 3.5.

Figure 3.5: Microcode view of a whole permutation

It is not possible anymore to use the term instruction set extension because, due to
the improvement in the register usage, one of the laws on ISE was violated. Each
instruction should store its result inside the data memory each time is performed,
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not into a local register. The optimization that is being performed is a tightly
coupled acceleration.

Another interesting design choice involves the replacement of the logic in the
substitution layer with a LUT. This, theoretically, should make the computation
faster and easier because the calculations have to be performed only once and
then stored inside the memory. On the other hand, it increases the susceptibility
to side-channel attacks as the computation of the state vectors becomes more
predictable. The LUT that performs the Sbox is represented in Table 3.3.

Table 3.3: LUT of the Sbox

The results coming from all the implementations discussed are reported in Table
3.4.

Table 3.4: Results of the full round accelerator

With the improvement of the dedicated memory, the number of storage accesses
has decreased significantly, consequently affecting the cycle count that dropped
by 88%, meaning an acceleration of ×8.6. The last column shows the effect of
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using round as an inline function. The number of cycles is reduced, as the overhead
for the function calls and returns disappear, but as a consequence, the size of the
program memory becomes bigger. The difference in the two parameters is minimal
and both are valid. On the other hand, it can be observed that using a LUT as a
Sbox has no effect in terms of cycle count because in both cases they perform the
computation in one clock cycle.

In the appendix, codes A.1 and A.3 are the source files that implement the round
function before and after the optimization. It is possible to note how lighter the
code becomes when dedicated instructions are used in these situations, where the
functions are complicated and used often.

The function and storage reports now are (the full reports are in appendix B.3 and
B.4):

Calls Cycles tot Cycles tot Cycles tot Cycles tot Function
(func) (%func) (func+desc) (%func+desc)

----- ----------- ------------ ----------- ------------ --------------
14 890 28.42% 890 28.42% PROUNDS
24 720 22.99% 720 22.99% memcpy
1 664 21.20% 1469 46.90% aead_decrypt

... ... ... ... ... ...

Storage Read-count Read-count Read-count Function name
(total) (function) (% of total)

------- ----------- ----------- ------------ -------------------
DMb 1760 560 31.82% PROUNDS

492 27.95% ascon_aead_decrypt
S 610 610 100.00% PROUNDS
... ... ... ... ...
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3.2.3 Unrolling
Despite the great improvements, PROUND is still the most computationally
expensive function in terms of cycles. As it includes a loop, it is natural to try
to apply unrolling. This technique consists of repeating the body of the loop
multiple times, changing the termination code and getting rid of redundant branch
instructions, increasing instruction-level parallelism [9]. This also means that more
area will be occupied, but it will be possible to perform more than one round
function in one clock cycle.

The first decision to be made concerns how many times to unroll the function,
which corresponds to how many round iterations will be performed in the same
clock cycle. The block that performs the unrolling will be called “Px”, where x
stands for how many rounds are executed inside. It must be remembered that the
goal of this thesis is to implement an accelerator that works on the whole Ascon
family, whose number of rounds performed in a permutation differs significantly.
A first approach to unrolling will involve the greatest common divisor between
the parameters. Referring to Table 2.2, it is possible to see that the potential
combinations are: 6, 8, and 12, whose shared common factor is 2. The rough
picture of P2 is represented in Figure 3.6, to demonstrate that the hardware gets
duplicated.

The other possible choice is to implement an unrolling for all kinds of permutation.
This means that the data will pass through a series of blocks where they are
deviated based on the number of permutations to be performed. A representation
of this behavior is in Figure 3.7.

This structure allows reusing the blocks to occupy as much area as possible. For
example, if one had to perform all twelve rounds, the data would pass through the
P4, P2, and P6 blocks, while for six it would pass directly to the P6 blocks.

The results coming from the simulations of these approaches are summarized in
Table 3.5.

It is possible to observe that also the case of P6 was explored. This is noteworthy
for ascon128 because this algorithm performs permutations of six and twelve rounds
that would benefit from this decision.

The results confirm that unrolling is beneficial for the acceleration of the algorithm
in terms of the cycle count. This is due to two factors: the first is that a permutation
can be performed in one clock cycle instead of the six, eight, or twelve more, and
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Figure 3.6: Outline of P2

Figure 3.7: Outline of all permutations unrolled

the second concerns the parameter count primitive. This value reports how many
times the new instruction is called. In the base implementation, the round function
is called 108 times, while adding P2 halves this number, which decreases with
higher unrolling factors. Having fewer function calls means having less overhead
both for the calls and returns, reducing the cycles needed to perform the algorithm.
Returning to the P6 case, it is clear that it brings great benefits to the algorithm
because the major part of permutations (that are pb of six rounds, as was discussed
in chapter 2) are completely performed in one cycle, while in the few cases where
pa is needed, it is heavily accelerated.
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Table 3.5: Results of the approaches to unrolling

With unrolling, as reported in the following function report (also present in appendix
B.5), the round function is not the most critical anymore.

Calls Cycles tot Cycles tot Cycles tot Cycles tot Function
(func) (%func) (func+desc) (%func+desc)

------ ----------- ------------ ----------- ------------ --------------
24 720 26.32% 720 26.32% memcpy
1 664 24.27% 1271 46.45% aead_decrypt
1 633 23.14% 1240 45.32% aead_encrypt

14 494 18.06% 494 18.06% PROUNDS
... ... ... ... ... ...

The new most critical function is memcpy, which has the functionality of transferring
data from the memory. Of course, this instance cannot be substituted, so the
iterative optimization has now ended.

3.3 Results
A summary of all implemented designs is reported in Table 3.6.

The speedup can also be visually represented through Figure 3.8, where the whole
circle is the total cycle count of the reference implementation, and each slice
represents how many cycles are reduced with that design.

One parameter that was greatly improved by the accelerators is the storage accesses
in memory, due to the introduction of the dedicated memory. It is possible to
observe that this number stays constant through all the designs proposed because
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Table 3.6: Results of the designs discussed on Ascon128a

Figure 3.8: Diagram of the cycle count reduction

unrolling does not affect this. One possible solution that would reduce this number
would be to directly use the register file as a dedicated memory, reserving some
spaces for the state vector and introducing multiplexers that alternate the storage
in the reserved spaces between the round function execution and the normal usage;
as proposed in [10]. The downside of this solution is that the core of the processor
was changed, greatly impacting the flexibility of the RISC-V.
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3.3.1 Impact on area
Table 3.6 also adds another parameter to the picture: the area increment due to
the introduced hardware. The reported value is calculated for the whole processor.
Unrolling all possibilities deals with the biggest speedup but at the cost of too much
area. A more reasonable solution, considering that the objective is to accelerate
a function for lightweight cryptography, would be to choose either the standard
acceleration or the P2. The difference in occupied area and performance is not too
substantial, based on the kind of application they are both valid. In this case, the
simple round is more advantageous because adding 10% more area just to achieve
a 1% more speedup is not a good enough deal, remembering that the resources
are constrained. For what concerns the idea of substituting the Sbox with the
LUT, the synthesis highlights a negligible difference between the implementations.
In fact, the LUT modification uses less than 100 fewer cells, meaning that this
implementation is not worth reducing the resistance to side-channel attacks.

3.3.2 Effect on the rest of the family
Tables 3.7, 3.8 and 3.9 report the effects of the designed accelerators in the Ascon
family.

Table 3.7: Results of the designs discussed on Ascon128a

Notice that Ascon-Hash and Ascon-XOF have the same performances because
the XOF outputs a message of the same length of the hash. It is possible to see
that the same hardware affects differently the four algorithms, based on how many
times the round function is called. The hash and XOF functions are the ones that
benefit the most from the accelerator because they perform twelve rounds for each
permutation. Again, just optimizing one round at a time deals a great performance
increment alone, reaching up to 93% speedup.
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Table 3.8: Results of the designs discussed on Ascon-Hash

Table 3.9: Results of the designs discussed on Ascon-XOF
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Chapter 4

Coprocessor

The designed accelerator achieves a great performance, but its integration requires
significant changes to the core’s architecture, meaning that it is not flexible when
it is used in other applications. If, instead, one wants to maintain flexibility while
still being integrated into the pipeline of the core, the right choice is to adopt
a coprocessor. The only modification that is needed in this case is to add the
interface, so that whichever core with the required connection can use this and
other accelerators, that all communicate with the same protocol.

4.1 CV-X-IF
The eXtension interface provides tightly coupled and low-latency access to the CPU.
Each opcode that is not used by the processor can be assigned to the interface,
through the use of a handshake protocol.

The most important signals that characterize the interface are:

• issue elements: issue_valid indicates that the dispatcher wants to pass on
an instruction, issue_req is the instruction opcode from the ID stage of the
core, issue_ready signals if the instruction is effectively one to be performed
by the accelerators and issue_resp indicates if the received opcode refers to
one of the coprocessors attached to the interface;

• commit elements: signals if the offloaded instruction has a valid commit or
kill information;
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• results elements: results_ready signals if the results can be accepted
by the core, results_valid indicates that the coprocessor has a valid result
and results is a data packet containing all the results.

The direction and timing of the aforementioned signals are reported in Figure 4.1.

Figure 4.1: Signals that characterize the CV-X-IF interface

4.2 X-HEEP microcontroller
The accelerator will be placed in the microcontroller X-HEEP (eXtendable Het-
erogeneous Energy-Efficient Platform). This device is a 32-bit RISC-V-based
microprocessor characterized by power domains targeted for ultra-low-power edge-
computing applications. The processor architecture is reported in figure 4.2, where
it is possible to distinguish between the CPU subsystem domain, memory banks
domain, peripheral subsystem domain, and always-on peripheral subsystem domain.

38



Coprocessor

Figure 4.2: X-HEEP architecture

This processor supports the CV-X-IF interface. The architecture of the CPU is
modified as reported in Figure 4.3.

Figure 4.3: Block scheme of the processor with the added CV-X-IF interface

From this figure is clear what has been said before: the accelerator is still tightly
coupled inside the pipeline of the processor, but the CPU retains most of its original
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architecture. Of course, the obtained performance will not be the same as in the
ISE case, because, at each interaction, there is a handshake protocol to respect
instead of directly executing the instruction.

4.3 Design of the coprocessor
The coprocessor has been designed with a modular approach, each block has been
tested and validated before being integrated into the structure.

The top structure is the wrapper, represented in figure 4.4.

Figure 4.4: Block scheme of the wrapper of the coprocessor

It is composed of:

• XIF CONTROLLER, its role is to unpack the data that comes from the
dispatcher. It works as a control unit with the ASM of Figure 4.5, where, at
the corresponding state, it gives commands to store the input data into the
register S or to perform the round permutation. At the end of the permutation,
it creates the packet to send back to the dispatcher;
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Figure 4.5: ASM of the XIF controller

• regS, is the register that stores the state vector. It is composed of ten registers,
each of 32 bits, addressed through four index bits. Its input data are given
through the source registers of the instruction rs0 and rs1, while rs2 is used
for the index. The enable is active in the “LOAD regS” state;

• round datapath, is where the round is computed. Its structure is expanded
in Figure 4.6.

In turn, it consists of a control unit and a datapath. The CU implements the
FSM in Figure 4.7, with the timing in Figure 4.8. From these, it is possible
to see that the computation can start only when the command is given with
the instruction from the microcontroller and the datapath has finished its last
computation. This is made to avoid errors if the program wrongly calls the
instruction when the one before is not finished.
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Figure 4.6: Block scheme of the datapath of the coprocessor

Figure 4.7: FSM of the CU of the datapath
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Figure 4.8: Timing of the CU of the datapath

Another important parameter is the number of rounds to be performed, for
simplicity, “#rounds” in Figure 4.6. This is given with the permutation
instruction and indicates how many rounds have to be executed, a factor that
affects the starting value of the internal counter. If twelve rounds are done,
then the counter will start at zero, if eight the starting number will be two,
and six for six permutations, like in the example in Figure 4.8. In this way,
the condition to stop the permutation remains the same for all possibilities
and, also, the same counter can be used to choose the appropriate constant to
send to the round block.

The last noteworthy aspect of the datapath in Figure 4.6 is the logic that
precedes the “data in” of the round block, which consists of the equation:

data in = (ready · state vector in) ⊕ data out

The input data can either be the state vector in, coming from the instruction
and saved in the register S, or from the last output of the round datapath. If
the operation to be performed is the first round of the permutation, the ready
signal will be one and data out will be all zeros, simplifying the equation:

data in = (1 · state vector in) ⊕ 0

Meaning that the data in will be equal to the state from the reg S. On the
other hand, if a round transformation was already executed, the ready signal
will be zero, making the output of the parenthesis zero and the data in equal
to the data out. In the equation:

data in = (0 · state vector in) ⊕ data out
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Now that the hardware part of the coprocessor is completed, also the software
must be modified to give the correct instructions to the dispatcher. The full round
function is reported in the appendix as code A.4.

The first operation to be performed is storing the state vector inside the register
S. This is done in five instructions, each giving as the two source registers the 64
bits of the x vector and, as an immediate, the location of the register S where the
lowest 32 bits are put. The remaining part will be inserted in the following position
inside the memory. The code that implements these loads is:

asm volatile (".insn r 0x4b, 0x004, 0, x0, %[rs1], %[rs2], %[i]\r\n": :
[rs1] "r" (s->x[0] ), [rs2] "r" ((s->x[0] >> 32) ), [i] "r" (0): );

asm volatile (".insn r 0x4b, 0x004, 0, x0, %[rs1], %[rs2], %[i]\r\n": :
[rs1] "r" (s->x[1] ), [rs2] "r" ((s->x[1] >> 32) ), [i] "r" (2): );

asm volatile (".insn r 0x4b, 0x004, 0, x0, %[rs1], %[rs2], %[i]\r\n": :
[rs1] "r" (s->x[2] ), [rs2] "r" ((s->x[2] >> 32) ), [i] "r" (4): );

asm volatile (".insn r 0x4b, 0x004, 0, x0, %[rs1], %[rs2], %[i]\r\n": :
[rs1] "r" (s->x[3] ), [rs2] "r" ((s->x[3] >> 32) ), [i] "r" (6): );

asm volatile (".insn r 0x4b, 0x004, 0, x0, %[rs1], %[rs2], %[i]\r\n": :
[rs1] "r" (s->x[4] ), [rs2] "r" ((s->x[4] >> 32) ), [i] "r" (8): );

The asm command allows giving an assembler instruction using C expressions,
directly assigning the data without the need to explicitly know in which memory
location they are stored. The volatile keyword prevents the rescheduling of the
instructions, and is used in these and the following instructions because they need
to be performed in the correct order to work. The other sections associate one-half
of the x vector to each source register and the memory location inside the register
S as an immediate. After storing all the state vector, the command to start the
permutation is given:

asm volatile (".insn r 0x4b, 0x004, 1, x0, %[rs1], %[rs2], x0\n\t" : :
[rs1] "r" (1) , [rs2] "r" (nr): );

The first source register represents the start of the computation, while the second
indicates how many rounds have to be performed. During the execution, other
instructions must not be scheduled, because the state vector is not the correct one
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yet. For this reason, it is necessary to add as many bubbles as the cycles needed
for the execution:

for(int i=0;i<nr;i++){
asm volatile ("nop");

}

After the execution, the results are stored as:

for(int i=0; i<10; i+=2){
asm volatile (".insn r 0x4b, 0x004, 2, %[rd_low], %[rs1], x0,
x0\r\n": [rd_low] "=r" (x_low) : [rs1] "r" (i): );
asm volatile (".insn r 0x4b, 0x004, 2, %[rd_high], %[rs1], x0,
x0\r\n": [rd_high] "=r" (x_high): [rs1] "r" (i+1): );
s->x[i/2] = ((uint64_t) x_high << 32) | x_low;

}

To test the functionality of both the hardware and the software code, they were
tested alone, creating a function that calls just one round transformation. The
coprocessor was added to the X-HEEP microcontroller, where it was tested with
all possible number of iterations. The standard version of the microcontroller uses
1053 cycles to carry out a permutation of six rounds, with the coprocessor the
cycles come down to 117. This is a speedup of ×9 on the permutation only, which
is an optimal outcome.

The components are ready to be put together in the RISC-V and be validated.
The correct way of testing cryptographic primitives is to use the generalized key
agreement testing (GenKat) files, which provide test vectors for inputs and outputs,
in this case: key, plaintext, nonce, associated data, and ciphertext. If the result of
the computation is the same as the one of the GenKat, it means that the addition
of the coprocessor did not produce unwanted errors. The Ascon submission already
provided a series of these files, as they were added during the standardization
processes, but more were generated to fully test the architecture and to assure
reliability. This procedure was performed just on the ascon128 version because it
is long to perform and just one well-constructed process can tell if any changes
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were brought to the algorithm. The other algorithms were tested, just for safety,
in a simpler manner comparing the original message to the one decrypted. This
method is the one followed to obtain the results in chapter 5, where all outcomes
will be discussed.

4.4 Synthesis
The processor can now be integrated into a hardware platform such as Field
Programmable Gate Arrays (FPGAs) or Application-Specific Integrated Circuits
(ASICs). This is a key step of the design because the performance evaluation
cannot be done only in terms of clock cycles, but it also needs to be assessed in
regard to occupied area, operating frequency, and throughput.

4.4.1 FPGA
FPGAs are reconfigurable structures that allow rapid prototyping and development
of designs. For this reason, they are ideal for scenarios requiring flexibility and
shorter manufacturing cycles. This integration emphasizes flexibility and adaptabil-
ity but at the cost of reduced performance and higher power consumption compared
to ASICs. The design will be integrated into the Xilinx® Artix®-7 family of FPGAs,
which are the perfect fit for cost-sensitive applications that need high-end features,
providing high performance with low power consumption [11].
The design suite used to implement the design is Vivado, also developed by Xilinx.
It includes a comprehensive IDE for synthesis, simulation, and analysis, as well as
advanced optimization techniques for power and performance [12].

The chosen board has a clock of 300 MHz, that is used to generate the internal
clock of the design, which, to have the biggest throughput possible, will be the
maximum operating frequency. This value is unknown, but it is possible to find it
by putting a constraint on the clock frequency and seeing if it is met or if the slack
is negative. This step was repeated until the slack was as small as possible, and
the obtained maximum frequency was 40 MHz, as shown in the report below:

Setup Hold
------------------------------- ---------------------------------
Worst Negative Slack: 0.407 ns Worst Hold Slack: 0.010 ns
Total Negative Slack: 0.000 ns Total Hold Slack: 0.000 ns
Number of Failing Endpoints: 0 Number of Failing Endpoints: 0
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Total Number of Endpoints:74425 Total Number of Endpoints: 74425

The implemented design is reported in Figure 4.9, where it is possible to see the S
register and the datapath.

Figure 4.9: Design implemented in the FPGA, register, and datapath of the
coprocessor
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4.4.2 ASIC
ASICs are designed for specialized, high-performance applications where power
efficiency and optimization are of the utmost importance. Processor integration re-
quires careful design and verification processes to ensure reliability, as the processor
becomes a fixed component of the chip. The library used is the UMC 65nm, which
is made for a power-efficient and affordable solutions [13]. The tool suite used to
create the ASIC is Design Compiler, a sophisticated synthesis tool from Synopsys
that converts high-level RTL descriptions into optimized gate-level netlists. It
performs area, timing, and power analysis to ensure that designs meet specified
constraints.

As before, the design will be synthesized at its maximum operating frequency,
found by modifying the clock until the slack is exactly zero. The achieved result is
637 MHz, as seen in the following timing report:

Point Incr Path
---------------------------------------------------------------

... ... ...
data arrival time 1.55
clock INPUT_CLK (rise edge) 1.57 1.57
clock network delay (ideal) 0.00 1.57
horcrux_wrapper_i/horcrux_top_i/i_horcrux

/ascon_32out_reg[rd2][1]/CK (DFQBRM1RA) 0.00 1.57 r
library setup time -0.02 1.55
data required time 1.55
--------------------------------------------------------------
data required time 1.55
data arrival time -1.55
--------------------------------------------------------------
slack (MET) 0.00

The following images represent the blocks that were not reported in the FPGA
implementation before, like the top entity of the implemented design in figure 4.10a,
where it is possible to see all signals sent and received to use the CV-X-IF interface.
Figure 4.10b shows the controller and the block with the register and datapath.
Lastly, in Figure 4.10c there is a more detailed view of the datapath.
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(a) Top entity (b) Internal structure

(c) Zoom of the datapath

Figure 4.10: Design implemented as ASIC
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Chapter 5

Results and comparisons

In this chapter, the results obtained from the project’s simulation, synthesis, and
implementation phases are reviewed in detail and analyzed. The performance and
resource utilization of the coprocessor will be examined to evaluate the effectiveness
of the proposed design. While the coprocessor developed in this thesis represents a
novel contribution to the field, with no directly comparable work available, an effort
will be made to benchmark its results against similar designs found in the current
literature. This comparison will underline the proposed approach’s strengths and
weaknesses, offering a comprehensive understanding of its advantages and potential
limitations. Finally, the possibilities for future work will be laid out, including
potential improvements, optimizations, and extensions of the current design.

5.1 Instruction Set Extension

The results derived from the instruction set extension performed in chapter 3 are
reported in Table 5.1 in another arrangement, to give a clearer visualization and
facilitate a comparative analysis with the other evaluations. The inputs processed
by the algorithms in this case are 16 bytes long. This is an important parameter
when evaluating the cycle count because a bigger message needs more permutations
to be fully processed, meaning more cycles.
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Table 5.1: Results of the instruction set extension

5.2 Simulation
The simulation was carried out with QuestaSim. The testbench used is not the
one mentioned before for the genkat file, but another that performs a single test.
The results obtained applying an input of 16 and 32 bytes are reported in Table
5.2 and Table 5.3 respectively.

Table 5.2: Results of the simulation, inputs of 16 B

These tables represent all the schemes tested for Ascon, with the number of cycles
used to perform both the original and the accelerated algorithm. The first thing
to notice is a confirmation of what has been said before: changing the length of
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Table 5.3: Results of the simulation, input of 32 B

the input modifies the cycle count. This is an important factor when comparing
results because often other papers do not provide the size of the inputs, but only
parameters normalized to this number. These values are not completely truthful
because, as it is possible to observe from Tables 5.2 and 5.3, the ratio between the
cycle count increase and the input data increment is not the same.
Another important aspect comes from the comparison of the results of chapter 3, in
Table 5.1 and the ones of Table 5.2, where it is possible to observe the big difference
in the improvements of the accelerator. The main reason for this change is not due
to the performance of the coprocessor but caused by the CV-X-IF. When an ISE is
performed, the computation of the operation is the same as every other instruction,
with no overhead in the forwarding of data except the cycles for loading and storing
the state vector to the register. When using this coprocessor many cycles are
wasted for loading and storing data. This is especially the case for store operations,
as just one 32-bit word can be written in the central register file per clock cycle. In
addition, each time an instruction is dispatched, there is a handshake protocol to
respect that increases the processing time. All of this translates in a reduction of
the speedup by a factor of 2, which is again reduced when the inputs increase
in size. This may appear as an unfortunate outcome, but comparing it to the work
[14] that accelerates ascon128v1.2 with an ISE only to x2, it is a good achievement.
Another paper that deals with an instruction set extension is [15], where their best
result is to achieve a speedup of ×3.65 for ascon128v1.2, in line with the x3.56
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obtained in table 5.2. In this case is also important to remember that this work is
more similar to the ISE of chapter 3 which still yields better results.

5.3 Synthesis
After confirming that both the software and the hardware parts work, the next
step was to synthesize the processor, to evaluate other factors, like the occupied
area and the operating frequency.

5.3.1 FPGA
The results of the synthesis and the successive implementation of the mi-
croprocessor are reported in Tables 5.4 and 5.5, and in Figures 5.1 and 5.2. The
implementation results are the most important because they come from a physical
mapping to the resources of the target FPGA, which means that many parameters,
like the influence of the interconnections, are effectively taken into account. The
results shown refer to a synthesis at 40 MHz that is the maximum achievable
frequency of this design.

Table 5.4: Utilization of the FPGA design implemented

Figure 5.1: Comparative graph of the allocated units in the FPGA implementation

Table 5.4 and Figure 5.1 report the utilization of the available resources. The
term CLB stands for Configurable Logic Block, a fundamental building element

53



Results and comparisons

consisting of a collection of resources that implement combinatorial and sequential
logic. The whole processor, denoted as x heep top, takes up just 26.56% of the
CLB of the whole FPGA, while the coprocessor uses only the 1.26% of the
configurable logic blocks. This demonstrates how little is the impact on the
occupied area of the accelerator, also in terms of lookup tables (that takes the
0.57%) and registers (0.18%) usage.

Table 5.5: Power usage of the FPGA design implemented

Figure 5.2: Power distribution of the FPGA design implemented

In Table 5.5 is reported the dynamic power consumption. The processor elements
alone consume just 9% of the total dynamic power, the rest is distributed as in
figure 5.2. It is clear that it is not possible to optimize further these numbers, but
it is possible to notice that the coprocessor is using just the 1% of the total
power.

From the implemented design, also the bit stream to be loaded in the physical

54



Results and comparisons

board was generated and inserted in the Artix-7 FPGA, and then the various
algorithms were tested. The trials were successful, and the same performance
reported in Table 5.3 was achieved.

The low area and power consumption results demonstrate the effectiveness of this
coprocessor in constrained environments, where the resources are limited and each
addition to the hardware requires careful consideration of all parameters. If the
achieved performance result is not satisfactory, it could be possible to switch the
microprocessor to a faster one to achieve higher throughput. The coprocessor alone
can reach up to 667 MHz, meaning that it could be used for much faster processors.

5.3.2 ASIC
The results obtained with the profiling of the synthesized ASIC microcontroller are
summarized in Tables 5.6 and 5.7.

Table 5.6: Area usage of the synthesized ASIC design

Table 5.7: Power usage of the synthesized ASIC design

Again, it is possible to determine that the coprocessor has a small contribution to
the power and area usage, taking up the 5% of the total processor area and
the 1% of the power usage. The processor was synthesized at the maximum
frequency of 637 MHz.

It is difficult to compare the FPGA and ASIC results, as they deal with different
kinds of cells. Three parameters that can be assessed are the percentage of
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the occupied area, the proportion of power usage, and the operating frequency.
Although the different syntheses share the same values for the first two parameters,
the third differs considerably, being 637 MHz for the ASIC and 40 MHz for
the FPGA. This distinction is also partially because the FPGA value takes into
consideration the non-idealities of the physical designs that extend the critical
path. However, the magnitude of this discrepancy is too big and implies that the
ASIC is the best choice, trading off the adaptability of the FPGA for much higher
throughput.
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5.4 Comparisons
To finally understand whether the results obtained are satisfactory, a comparison
with other works present in the literature is of the utmost importance. To do
so, the parameters that will be evaluated are the technology used, the maximum
operating frequency, and the throughput. The last one is the main figure for the
evaluation of the performance, and it is calculated as:

TP = InputBits

Cycles
· fmax

This parameter is often explicitly presented in the papers describing other works,
if this is not the case, then this value was speculated using the formula above, only
when all the involved variables are known.
Another parameter that is used to compare ASIC results is the Gate Equivalent.
The area results of a synthesis depend on the technology used, making the absolute
area useless for comparisons. For this reason, the occupied area is instead expressed
as:

GateEquivalent = total area

area NAND2

The NAND2 represents the average gate inside the integrated circuit and, for this
reason, its area is used to normalize the total one. In this case, with the UMC 65
nm library, a single NAND2 occupies 1.44 µm2.

Now that all parameters are clear, it is possible to summarize other works as in
Table 5.8.

There is a great variety of proposed designs that can be divided into:

• Instruction set extension of a RISC-V. This is the case of [14], [15] and
[10]. These designs are the closest to the implementation of this thesis, still
there is a difference because in this case the ISA of the processor is effectively
modified, while the proposed does not apply any change to the architecture.

[14] aims to explore hardware acceleration through Instruction Set Exten-
sions in a low-end 32-bit RISC-V core (Ibex). It implements four different
parametrizations of Kyber symmetric primitives, one of which uses Ascon
(Kyber-Ascon), creating the extension Xascon. The Ibex core and Xascon
were synthesized in ASIC with a 28 nm library. The area result is really
low, because the Ibex RISC-V is made for embedded and IoT applications,
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Table 5.8: Comparison with other accelerators

but the throughput of 0.04 Gbps is lower than the proposed 0.067 Gbps.
The results obtained by the design is similar, the main difference is the area
occupation, but this factor depends more on the chosen microprocessor than
the implemented design.

Cheng et al. [15] propose ISEs for the ten submitted algorithms of the final
round LWC competition. The implementations evaluated were: software only,
Zbkb/x, and Zbkb/x+ ISE. The last one shows 2.28× and 1.18× performance
gains compared to the other two. The metrics are evaluated in FPGA, with
the extended Rocket RV32GC processor. The maximum operating frequency
is 50 MHz and the occupied area of the core and accelerator, in terms of LUT,
is 4234. The difference between the base core and the accelerated version
is 1180 LUTs, a result close to the 1322 LUTs of the proposed accelerator.
Also, the throughput determines a similar performance, although the designed
coprocessor is faster, despite the additional cycles dedicated to the handshake
protocols.

[10] is an interesting work that achieves a speedup of 97% on the clock cycles
needed to perform the ascon128 algorithm. The implemented extension, called
ASCON-p, performs a hardware acceleration similar to the proposed one, but
modifies the approach of the state vector storage. Instead of adding a dedicated
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register that occupies an area and many cycles to charge data, [10] reuses the
internal register file of the processor, dedicating some register exclusively to
the state vector during the execution of the round transformation, modifying
the register file substantially. This is done by extending to ten the number of
input and output ports and adding 500 GE of muxes that toggle the input
data from the usual input to the result of the previous transformation. The
area value presented pertains to the RI5CY core, while the coprocessor alone
occupies 4.7 kGE, less than the proposed 10 kGE because the additional
register was not introduced. The throughput of 0.002 Gbps is still inferior to
the proposed 0.043 Gbps.

• Standalone implementations, single instance. This is the case of [16],
[17], and [18], where a single algorithm of the Ascon family is chosen and
entirely implemented in the accelerator. These works lack the flexibility of
the design implemented in this thesis, trading off this parameter for higher
performances. The area and throughput results seem better than the proposed
because they do not account for the overhead of moving data between the
main core and the crypto-processor, which affects the overall efficiency.

[16] implements a variety of loosely coupled accelerators, each specialized for
an application, like low area and power for RFID, high throughput designs
and wireless sensor nodes. Furthermore, they demonstrate how the design can
be protected against first-order differential power analysis (DPA) attacks. As
mentioned before, this work is different from the proposed one and provides
higher throughput, while occupying just 7 kGE, which is somewhat comparable
to the 10 kGE of the designed coprocessor alone.

[17] works on just the hash function, proposing unrolling to execute several
rounds in one clock cycle. After an evaluation of the design space, they
concluded that computing four rounds per clock cycle achieves the maximum
throughput. Performing more would lead to a higher critical path that would
hinder the attained performance, limiting the maximum operating frequency.
The area utilization of [17] is of 770 LUTs, comparing it with the proposed
one of 1322 LUTs, there is a difference due to the addition of the eXtension
interface logic. The frequency result has a significant impact on the throughput,
which is higher because just the standalone component was considered. For
comparison, if the proposed coprocessor had been implemented as standalone,
the maximum operating frequency would have exceeded [17], reaching 667
MHz and resulting in much higher throughput.
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[18] proposes an architecture for the ascon128 scheme, whose main objective
is to implement a lightweight design for IoMT (internet of medical things)
devices based on a single round transformation per clock cycle. The area
utilization result is again really close to the proposed coprocessor alone, while
the achieved throughput is higher.

• Standalone implementations, reconfigurable. This is the case of [19]
and [20], which are standalone implementations that include interfaces and
connections in the design. They are also able to implement more algorithms
in the same accelerator. As before, the performances of these works are higher
than the proposed because they do not involve the implementation of the
processor and the overhead of performing some operations in software. They
also do not account for the overhead involved in transferring data between
the main core and the coprocessor.

[19] presents one of the first coprocessors that realizes all ASCON main
functionalities. The processor is self-contained, and it includes the AMBA
AHB (High-performance Bus) and APB (Advanced Peripheral Bus) interfaces,
two asynchronous FIFOs, a Register File, a Control and Interrupt Generator
block to be integrated into a SoC. This work was synthesized both in FPGA
and ASIC technologies. The FPGA implementation yields better results than
the proposed ones, but again the causes all relate to the fact that the area is
greatly increased by the whole structure of the microcontroller not present in
[19] as it is a standalone coprocessor, while the throughput of the proposed
is heavily limited by the processor and not by the accelerator. On the other
hand, the ASIC presents results close to the proposed ones.

[20] is a compact processor that is reconfigurable, to support six different
algorithms of the Ascon family. Its main goal is to achieve the maximum
throughput possible while still being compact, and therefore be embedded as
an IP for SoCs. The reconfigurable setup uses the same sponges interface, and
the difference between instances is handled with padding FIFOs, a variable
permutation, and an XOR operand selection & shift stage. Although the
architecture was implemented also in FPGA, only the throughput of the ASIC
implementation is reported in [20]. As said before, the main concern for this
design is high performance, in fact, it is the highest among the works presented
in Table 5.8, but at the expense of the area that is the highest of the works
similar to it.
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In the end, the comparison with other works determined that, though the operations
carried out are similar, there is a big difference between standalone and accelerators
coupled to the processor. The detached architectures inevitably have higher
throughput because they do not take into account the overheads involved in the
connection to another system. On the other hand, compared to more similar works,
the proposed coprocessor is faster despite having additional costs deriving from the
exchange of data. However, it occupies more area because it has to accommodate
extra hardware to perform all the operations that, in a tightly coupled accelerator,
would have been done by the core of the processor.

5.5 Future work
The work proposed until now is just a glimpse of the possibilities that lie ahead.
First of all, in November 2024 the new version of Ascon (v 1.3) was released and
a good starting point for future work would include the analysis of the improved
version. Another opportunity would be to evaluate the performances of also the
MAC (message authentication code) and PRF (pseudorandom function) algorithms
of the Ascon family, as they are one of the few alternatives in the lightweight
cryptography world.

For what concerns the coprocessor, another approach could be to effectively im-
plement the unrolling proposed to speed up the round execution or to act on the
interface. This can be done either by switching to another one, or by utilizing the
full potential of the CV-X-IF, using more advanced functions that allow loading
and storing data in fewer operations.

In terms of security, an analysis of the robustness of side-channel attacks is essential
to understand whether the coprocessor has some criticalities and weak points to
breaches. In the case they are present, future work should focus more on this
aspect, implementing strategies to improve the security of the whole system.
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Chapter 6

Conclusion

This thesis presents one of the few coprocessors for the instruction set extension of
a RISC-V made to accelerate the main algorithms of the Ascon family. Starting
from the exploration of the design space, aimed to find the best tradeoff between
performance improvement and resource utilization, then physically implementing
the design and testing it in a real application.

The results demonstrate the proposed coprocessor’s efficacy in reducing compu-
tation time for ASCON operations, accelerating by 3.6× and 6× the AEAD and
hash schemes respectively, achieving higher throughput than other similar works.
However, these enhancements come at the expense of increased hardware area due
to the additional functionalities integrated into the design. Despite these trade-
offs, the coprocessor achieves a remarkable balance between speed and resource
requirements, making it highly suitable for deployment in resource-constrained
environments.

There are still many possibilities for future enhancements, including the exploration
of other Ascon family algorithms and additional hardware optimizations. There is
still more work to be performed on the security evaluation, that is currently being
assessed.

The results of this study contribute positively to the fast-evolving field of lightweight
cryptography, offering an effective strategy to cope with the need to conduct
cryptographic processes with good performance and high flexibility, addressing the
security concerns of resource-limited devices.
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Appendix A

Source Code

#include "round.h"

void ROUND(ascon_state_t* s, uint8_t C) {
uint64_t xtemp;
/* round constant */
s->x[2] ^= C;
/* s-box layer */
s->x[0] ^= s->x[4];
s->x[4] ^= s->x[3];
s->x[2] ^= s->x[1];

xtemp = s->x[0] & ~s->x[4];
s->x[0] ^= s->x[2] & ~s->x[1];
s->x[2] ^= s->x[4] & ~s->x[3];
s->x[4] ^= s->x[1] & ~s->x[0];
s->x[1] ^= s->x[3] & ~s->x[2];
s->x[3] ^= xtemp;
s->x[1] ^= s->x[0];
s->x[3] ^= s->x[2];
s->x[0] ^= s->x[4];
s->x[2] = ~s->x[2];
/* linear layer */
s->x[0] ^=

(s->x[0] >> 19) ^ (s->x[0] << 45) ^ (s->x[0] >> 28) ^ (s->x[0] << 36);
s->x[1] ^=

(s->x[1] >> 61) ^ (s->x[1] << 3) ^ (s->x[1] >> 39) ^ (s->x[1] << 25);
s->x[2] ^=

(s->x[2] >> 1) ^ (s->x[2] << 63) ^ (s->x[2] >> 6) ^ (s->x[2] << 58);
s->x[3] ^=

(s->x[3] >> 10) ^ (s->x[3] << 54) ^ (s->x[3] >> 17) ^ (s->x[3] << 47);
s->x[4] ^=
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Source Code

(s->x[4] >> 7) ^ (s->x[4] << 57) ^ (s->x[4] >> 41) ^ (s->x[4] << 23);
printstate(" round output", s);

}

void PROUNDS(ascon_state_t* s, int nr) {
int i = START(nr);
do {

ROUND(s, RC(i));
i += INC;

} while (i != END);
}

Code A.1: round.c before ISE
#include "round.h"

void ROUND(ascon_state_t* s, int i) {
ascon64_t x0, x1, x2, x3, x4;

ascon64_t* state1 = (ascon64_t*) chess_copy(s->x);

x0 = state1[0];
x1 = state1[1];
x2 = state1[2];
x3 = state1[3];
x4 = state1[4];

round( i, x0,x1,x2,x3,x4,
x0,x1,x2,x3,x4);

state1[0] = x0;
state1[1] = x1;
state1[2] = x2;
state1[3] = x3;
state1[4] = x4;

}
}

void PROUNDS(ascon_state_t* s, int nr) {
int i = START(nr);
do {

ROUND(s, i);
i += INC;

} while (i != END);
}

Code A.2: round.c during ISE
#include "round.h"
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void PROUNDS(ascon_state_t* s, int nr) {
int i = START(nr);

ascon64_t x0, x1, x2, x3, x4;
ascon64_t* state1 = (ascon64_t*) chess_copy(s->x);

x0 = state1[0];
x1 = state1[1];
x2 = state1[2];
x3 = state1[3];
x4 = state1[4];

do {
round( RC(i), x0,x1,x2,x3,x4,

x0,x1,x2,x3,x4);
i += INC;

} while (i != END);

state1[0] = x0;
state1[1] = x1;
state1[2] = x2;
state1[3] = x3;
state1[4] = x4;

}

Code A.3: round.c after ISE
#ifndef ROUND_H_
#define ROUND_H_

#include "ascon.h"
#include "printstate.h"

static inline void ROUND(state_t* s, int nr) {
uint32_t x_low;

uint32_t x_high;

asm volatile (".insn r 0x4b, 0x004, 0, x0, %[rs1], %[rs2], %[i]\r\n": :
[rs1] "r" (s->x[0] ), [rs2] "r" ((s->x[0] >> 32) ), [i] "r" (0): );ñ→

asm volatile (".insn r 0x4b, 0x004, 0, x0, %[rs1], %[rs2], %[i]\r\n": :
[rs1] "r" (s->x[1] ), [rs2] "r" ((s->x[1] >> 32) ), [i] "r" (2): );ñ→

asm volatile (".insn r 0x4b, 0x004, 0, x0, %[rs1], %[rs2], %[i]\r\n": :
[rs1] "r" (s->x[2] ), [rs2] "r" ((s->x[2] >> 32) ), [i] "r" (4): );ñ→

asm volatile (".insn r 0x4b, 0x004, 0, x0, %[rs1], %[rs2], %[i]\r\n": :
[rs1] "r" (s->x[3] ), [rs2] "r" ((s->x[3] >> 32) ), [i] "r" (6): );ñ→

asm volatile (".insn r 0x4b, 0x004, 0, x0, %[rs1], %[rs2], %[i]\r\n": :
[rs1] "r" (s->x[4] ), [rs2] "r" ((s->x[4] >> 32) ), [i] "r" (8): );ñ→

asm volatile (".insn r 0x4b, 0x004, 1, x0, %[rs1], %[rs2], x0\n\t" : :
[rs1] "r" (1) , [rs2] "r" (nr): );ñ→
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for(int i=0;i<nr;i++){
asm volatile ("nop");

}

for(int i=0; i<10; i+=2){
asm volatile (".insn r 0x4b, 0x004, 2, %[rd_low], %[rs1], x0,

x0\r\n": [rd_low] "=r" (x_low) : [rs1] "r" (i): );ñ→

asm volatile (".insn r 0x4b, 0x004, 2, %[rd_high], %[rs1], x0,
x0\r\n": [rd_high] "=r" (x_high): [rs1] "r" (i+1): );ñ→

s->x[i/2] = ((uint64_t)x_high << 32) | x_low;
}

}

#endif /* ROUND_H_ */

Code A.4: round.h for the coprocessor
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Appendix B

Reports

Storage profiling information for ::iss generated by Checkers U-2022.12#33f3808fcb#221128 on Thu Aug 29 18:37:17 2024

Program being simulated:

/home/thesis/federica.bader/Desktop/AEAD_accelerator/step2_primitives/Release/Reference

Total cycle count : 25746
Report cycle count : 25746
Total instruction count : 24810
Report instruction count : 24810
Total size in program memory: 7320

Command used to generate this report: ::iss profile storage_access_save -file
"/home/thesis/federica.bader/Desktop/AEAD_accelerator/step2_primitives/storage_access_report_start.txt" -function_details Off
-field_details Off -function_summary Off -data "" -cycle_count 0 -instruction_count 0 -hide_instruction_bits Off

Function storage access summary:

Storage Read-count Read-count Read-count Write-count Write-count Write-count Function name
(total) (function) (% of total) (total) (function) (% of total)

-------------------- ----------- ----------- ------------ ----------- ----------- ------------
--------------------------------------------------
DMb 29464 28080 95.30% 17000 15552 91.48% ROUND _Z5ROUNDP13ascon_state_th

256 0.87% 216 1.27% ascon_adata
_Z11ascon_adataP13ascon_state_tPKhy

44 0.15% 32 0.19% ascon_aead_decrypt
_Z18ascon_aead_decryptPhPKhS1_y
44 0.15% 32 0.19% ascon_aead_encrypt
_Z18ascon_aead_encryptPhS_PKhyS

148 0.50% 148 0.87% ascon_decrypt
_Z13ascon_decryptP13ascon_state_tPhP
132 0.45% 112 0.66% ascon_encrypt
_Z13ascon_encryptP13ascon_state_tPhP
152 0.52% 88 0.52% ascon_final
_Z11ascon_finalP13ascon_state_tPK11asc

32 0.11% 32 0.19% ascon_gettag
_Z12ascon_gettagP13ascon_state_tPh

176 0.60% 192 1.13% ascon_initaead
_Z14ascon_initaeadP13ascon_state_tP

72 0.24% 104 0.61% ascon_loadkey
_Z13ascon_loadkeyP11ascon_key_tPKh
64 0.22% 52 0.31% ascon_verify
_Z12ascon_verifyP13ascon_state_tPKh
20 0.07% 24 0.14% crypto_aead_decrypt
_Z19crypto_aead_decryptPhPyS_P
20 0.07% 24 0.14% crypto_aead_encrypt
_Z19crypto_aead_encryptPhPyPKh
20 0.07% 180 1.06% main _main

192 0.65% 192 1.13% memcpy memcpy
4 0.01% 0 0.00% printf printf
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8 0.03% 20 0.12% vfprintf vfprintf
PMb 203640 128 0.06% 0 0 0.00% P _Z1PP13ascon_state_ti

5856 2.88% 0 0.00% PROUNDS
_Z7PROUNDSP13ascon_state_ti

178008 87.41% 0 0.00% ROUND _Z5ROUNDP13ascon_state_th
48 0.02% 0 0.00% _main_init _main_init
40 0.02% 0 0.00% _start_basic _start_basic

2400 1.18% 0 0.00% ascon_adata
_Z11ascon_adataP13ascon_state_tPKhy

280 0.14% 0 0.00% ascon_aead_decrypt
_Z18ascon_aead_decryptPhPKhS1_y
288 0.14% 0 0.00% ascon_aead_encrypt
_Z18ascon_aead_encryptPhS_PKhyS

1704 0.84% 0 0.00% ascon_decrypt
_Z13ascon_decryptP13ascon_state_tPhP
1680 0.82% 0 0.00% ascon_encrypt
_Z13ascon_encryptP13ascon_state_tPhP

512 0.25% 0 0.00% ascon_final
_Z11ascon_finalP13ascon_state_tPK11asc
664 0.33% 0 0.00% ascon_gettag
_Z12ascon_gettagP13ascon_state_tPh

1744 0.86% 0 0.00% ascon_initaead
_Z14ascon_initaeadP13ascon_state_tP
1392 0.68% 0 0.00% ascon_loadkey
_Z13ascon_loadkeyP11ascon_key_tPKh

848 0.42% 0 0.00% ascon_verify
_Z12ascon_verifyP13ascon_state_tPKh

40 0.02% 0 0.00% clib_hosted_io clib_hosted_io
176 0.09% 0 0.00% crypto_aead_decrypt
_Z19crypto_aead_decryptPhPyS_P
112 0.05% 0 0.00% crypto_aead_encrypt
_Z19crypto_aead_encryptPhPyPKh

1256 0.62% 0 0.00% main _main
5376 2.64% 0 0.00% memcpy memcpy

40 0.02% 0 0.00% printf printf
1048 0.51% 0 0.00% vfprintf vfprintf

X 71453 14 0.02% 33553 0 0.00% P _Z1PP13ascon_state_ti
1088 1.52% 544 1.62% PROUNDS
_Z7PROUNDSP13ascon_state_ti

63828 89.33% 30780 91.74% ROUND _Z5ROUNDP13ascon_state_th
15 0.02% 2 0.01% _main_init _main_init
5 0.01% 1 0.00% _start_basic _start_basic

724 1.01% 294 0.88% ascon_adata
_Z11ascon_adataP13ascon_state_tPKhy

68 0.10% 28 0.08% ascon_aead_decrypt
_Z18ascon_aead_decryptPhPKhS1_y
68 0.10% 29 0.09% ascon_aead_encrypt
_Z18ascon_aead_encryptPhS_PKhyS

538 0.75% 210 0.63% ascon_decrypt
_Z13ascon_decryptP13ascon_state_tPhP
514 0.72% 205 0.61% ascon_encrypt
_Z13ascon_encryptP13ascon_state_tPhP
186 0.26% 96 0.29% ascon_final
_Z11ascon_finalP13ascon_state_tPK11asc
188 0.26% 86 0.26% ascon_gettag
_Z12ascon_gettagP13ascon_state_tPh
558 0.78% 250 0.75% ascon_initaead
_Z14ascon_initaeadP13ascon_state_tP
390 0.55% 174 0.52% ascon_loadkey
_Z13ascon_loadkeyP11ascon_key_tPKh
262 0.37% 121 0.36% ascon_verify
_Z12ascon_verifyP13ascon_state_tPKh

2 0.00% 0 0.00% clib_hosted_io clib_hosted_io
52 0.07% 17 0.05% crypto_aead_decrypt
_Z19crypto_aead_decryptPhPyS_P
40 0.06% 14 0.04% crypto_aead_encrypt
_Z19crypto_aead_encryptPhPyPKh

538 0.75% 66 0.20% main _main
2352 3.29% 624 1.86% memcpy memcpy

3 0.00% 3 0.01% printf printf
20 0.03% 9 0.03% vfprintf vfprintf

Report B.1: Storage access report of the starting algorithm of Ascon
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Storage profiling information for ::iss generated by Checkers U-2022.12#33f3808fcb#221128 on Sun Sep 15 20:10:43 2024

Program being simulated:

/home/thesis/federica.bader/Desktop/AEAD_accelerator/step3_improvingRound/Release/Improved_Round

Total cycle count : 3140
Report cycle count : 3140
Total instruction count : 2588
Report instruction count : 2588
Total size in program memory: 7468

Command used to generate this report: ::iss profile storage_access_save -file
"/home/thesis/federica.bader/Desktop/AEAD_accelerator/step3_improvingRound/storage_access_report_ImprovedRound.txt"
-function_details Off -field_details Off -function_summary Off -data "" -cycle_count 0 -instruction_count 0 -hide_instruction_bits
Off

Function storage access summary:

Storage Read-count Read-count Read-count Write-count Write-count Write-count Function name
(total) (function) (% of total) (total) (function) (% of total)

-------------------- ----------- ----------- ------------ ----------- ----------- ------------
--------------------------------------------------
DMb 1760 560 31.82% 1820 560 30.77% PROUNDS
_Z7PROUNDSP13ascon_state_ti

492 27.95% 436 23.96% ascon_aead_decrypt
_Z18ascon_aead_decryptPhPKhS1_y
444 25.23% 384 21.10% ascon_aead_encrypt
_Z18ascon_aead_encryptPhS_PKhyS

20 1.14% 24 1.32% crypto_aead_decrypt
_Z19crypto_aead_decryptPhPyS_P
20 1.14% 24 1.32% crypto_aead_encrypt
_Z19crypto_aead_encryptPhPyPKh
20 1.14% 180 9.89% main _main

192 10.91% 192 10.55% memcpy memcpy
4 0.23% 0 0.00% printf printf
8 0.45% 20 1.10% vfprintf vfprintf

PMb 24640 6896 27.99% 0 0 0.00% PROUNDS
_Z7PROUNDSP13ascon_state_ti

48 0.19% 0 0.00% _main_init _main_init
40 0.16% 0 0.00% _start_basic _start_basic

5312 21.56% 0 0.00% ascon_aead_decrypt
_Z18ascon_aead_decryptPhPKhS1_y
5064 20.55% 0 0.00% ascon_aead_encrypt
_Z18ascon_aead_encryptPhS_PKhyS

24 0.10% 0 0.00% clib_hosted_io clib_hosted_io
176 0.71% 0 0.00% crypto_aead_decrypt
_Z19crypto_aead_decryptPhPyS_P
112 0.45% 0 0.00% crypto_aead_encrypt
_Z19crypto_aead_encryptPhPyPKh

1256 5.10% 0 0.00% main _main
5376 21.82% 0 0.00% memcpy memcpy

40 0.16% 0 0.00% printf printf
296 1.20% 0 0.00% vfprintf vfprintf

S 610 610 100.00% 610 610 100.00% PROUNDS
_Z7PROUNDSP13ascon_state_ti
X 7742 1484 19.17% 2343 304 12.97% PROUNDS
_Z7PROUNDSP13ascon_state_ti

15 0.19% 2 0.09% _main_init _main_init
5 0.06% 1 0.04% _start_basic _start_basic

1664 21.49% 668 28.51% ascon_aead_decrypt
_Z18ascon_aead_decryptPhPKhS1_y
1567 20.24% 635 27.10% ascon_aead_encrypt
_Z18ascon_aead_encryptPhS_PKhyS

2 0.03% 0 0.00% clib_hosted_io clib_hosted_io
52 0.67% 17 0.73% crypto_aead_decrypt
_Z19crypto_aead_decryptPhPyS_P
40 0.52% 14 0.60% crypto_aead_encrypt
_Z19crypto_aead_encryptPhPyPKh

538 6.95% 66 2.82% main _main
2352 30.38% 624 26.63% memcpy memcpy

3 0.04% 3 0.13% printf printf
20 0.26% 9 0.38% vfprintf vfprintf

Report B.4: Storage access report of the accelerated algorithm Ascon
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