
POLITECNICO DI TORINO & TÉLÉCOM PARIS
Master degree course in Data Science and Artificial Intelligence

Master Degree Thesis

Use of Graph Databases in
Financial Crime Compliance

Supervisors
prof. Paolo Garza
prof. David Bounie

Candidate
Marco Proietto

matricola: 295671

Internship Tutors
Grégory GARBAROVITSCH

Emmanuel BOYERO

Accademic Year 2023-2024

This work is subject to the Creative Commons Licence

Summary

The following thesis explores the growing importance of graph databases,
particularly for financial crime compliance, as traditional relational databases
struggle to handle complex and interconnected datasets.

Graph databases such as Neo4j offer significant advantages in detecting
fraud and ensuring regulatory compliance by analyzing relationships between
data points in real time, enabling institutions to better combat evolving
financial crimes.

3

Acknowledgements

Ai miei genitori.
A mia madre, la donna più forte che io conosca, che ogni giorno mi ricorda
cosa sono l’amore e il sacrificio, e a mio padre, che nonostante non può di-
mostrarlo, so che è immensamente fiero di me.
Ai miei nonni e alla mia famiglia, che anche a migliaia di chilometri di dis-
tanza riesco a sentire sempre vicini a me.

Grazie, e scusatemi se sono sempre così lontano.

A mio fratello, la mia guida da sempre, senza il quale non avrei neanche
iniziato questo percorso.

Grazie per lasciarmi seguire le tue orme.

Ai compagni che ho avuto accanto in questo percorso, per le sessioni di
studio iniziate in casa e finite su Skype.

Grazie per questa opportunità immensa.

Ai miei amici, ormai sparsi in ogni angolo d’Italia, d’Europa e del Mondo.
Grazie per supportarmi e sopportarmi.

A me, che nonostante tutto, alla fine ce l’ho fatta.
Grazie.

4

Contents

List of Tables 7

List of Figures 8

1 Introduction 11

2 Use Of The Graph Databases in Financial Security 15
2.1 What is a Graph . 15

2.1.1 Types of Graphs . 16
2.2 Limitations of Relational Databases 16
2.3 Improvements by using Graph Databases 18

2.3.1 What can we do with Graphs in the financial environ-
ment? . 19

3 Neo4j 21
3.1 What is Neo4j . 21
3.2 Property Graph . 22

3.2.1 Nodes . 22
3.2.2 Relationships . 23
3.2.3 Properties . 23
3.2.4 Labels . 23
3.2.5 Types . 24
3.2.6 Elements Combination 25

3.3 Cypher Language . 25
3.4 Graph Data Science (GDS) 27

3.4.1 Graph Algorithms . 28
3.4.2 Bloom . 29
3.4.3 Neo4j Browser . 30

5

4 Used Dataset 33
4.1 ICIJ and its Dataset . 33
4.2 Company Database . 36

4.2.1 Nodes . 36
4.2.2 Relationships . 38
4.2.3 Data Distribution . 40

5 Algorithms Applications 43
5.1 Centrality . 43

5.1.1 Degree Centrality . 44
5.1.2 Page Rank . 48

5.2 Community Detection . 51
5.2.1 Weakly Connected Components 51
5.2.2 Louvain Algorithm . 53

5.3 Path Finding . 57
5.3.1 Shortest Path . 58
5.3.2 All Shortest Paths . 59
5.3.3 Breadth-First-Search (BFS) 60

5.4 Topological Link Prediction 63
5.4.1 Common Neighbors . 63
5.4.2 Preferential Attachment 65

6 Further Implementations 69
6.1 Implementation of Transactional Data into the Database . . . 69
6.2 Uses and Enrichment of Node Properties 70
6.3 Neo4j Machine Learning Package 71

7 Conclusions 73

Bibliography 77

6

List of Tables

4.1 List of Nodes of the Company Database 40
4.2 List of Relationships of the Company Database 41
5.1 Inner Centrality example 1 45
5.2 Inner Centrality example 1 46
5.3 Outer Centrality examples 47
5.4 PageRank Example . 50
5.5 Weakly Connected Components Application 53
5.6 Louvain Algorithm Application 56
5.7 Common Neighbor Application 64
5.8 Preferential Attachment Application 66

7

List of Figures

2.1 Types of graphs . 17
2.2 Graph Databases vs. Relational Databases 19
3.1 Property Graph Nodes . 22
3.2 Property Graph Relationships 23
3.3 Property Graph Properties . 24
3.4 Property Graph Labels . 24
3.5 Property Graph Summary . 25
3.6 Differences between Cypher and SQL (Example: finding cus-

tomers who have purchased a certain product) 26
3.7 Cypher Query Pipeline . 27
3.8 Neo4j Bloom Visualization . 29
3.9 Neo4j GDS Bloom Visualization (Color Shading/Size Scaling) 30
3.10 Neo4j Browser (Example of a Shortest Path) 31
3.11 Neo4j Browser (Pipeline of a Shortest Path) 32
4.1 Graph Offshore Leaks Database 35
4.2 Modified Company Database 37
5.1 Inner Centrality example 1 (Customer in pink, ABEDS in yel-

low) . 46
5.2 Inner Centrality example 2 (Manual Leaks in green) 47
5.3 Outer Centrality example 1 (Customer in pink, ICIJ Entities

in red) . 48
5.4 Outer Centrality example 2 (ABED in yellow, ICIJ Entities

in red) . 48
5.5 PageRank Example . 50
5.6 Graph Compression . 52
5.7 Weakly Connected Components Application 54
5.8 Louvain Algorithm . 55
5.9 Louvain Algorithm Application 57
5.10 Dijkstra’s algorithm Pseudo-Code 59
5.11 Shortest Path Application . 59

8

5.12 Shortest Path Application . 60
5.13 Breadth First Search Pseudo-Code 61
5.14 Breadth First Search Application 62
5.15 Common Neighbor Application 65
5.16 Preferential Attachment Application 67
6.1 Suspicious Node Detection through Similarity 71

9

10

Chapter 1

Introduction

In today’s rapidly evolving technological landscape, the ability to manage and
analyze complex data structures is becoming increasingly essential, particu-
larly within the realm of financial crime compliance where the exponential
growth of digital financial transactions has highlighted the need for advanced
security mechanisms to protect sensitive data and prevent fraudulent activi-
ties.

Traditional relational databases, while fundamental, have significant lim-
itations in managing complex, interconnected financial datasets. The use of
Graph Databases, with their native ability to represent and traverse rela-
tionships between data points, offers a perfect alternative as resolution for
these issues.

Graph databases such as Neo4j have revolutionized the way financial
institutions address the challenges of detecting fraudulent activity, ensuring
regulatory compliance, and analyzing transactional patterns in a continuous
and scalable manner.

The motivation behind this study stems from the increasing complexity
of financial networks and the need for innovative tools to effectively man-
age these complexities. In the context of financial crime compliance, data
on customers, transactions, and legal entities are often deeply intertwined,
requiring systems that can manage not only individual entities but also their
relationships.

The conventional relational database model struggles to perform well un-
der these conditions because of the need for multiple joins, which increase
query complexity and slow performance. Graph databases, on the other
hand, excel in environments where relationships and connections between
data points are priorities.

11

1 – Introduction

The effectiveness of graph databases in detecting fraud has been demon-
strated in several industries. According to a MarketsandMarkets[1] re-
port, the global market for graph databases is set to grow from $2.9 billion
in 2021 to $7.3 billion by 2028, driven in large part by the growing demand
for advanced fraud detection solutions in the financial sector.

Financial institutions are investing heavily in graph technology to com-
bat fraud, and a recent survey by the Association of Certified Fraud
Examiners (ACFE)[2] found that more than 80% of financial fraud cases
involve complex relationships that can be more easily detected using graph
analysis.

Graph databases, designed to model and analyze relationships between en-
tities, offer unique advantages over traditional databases when it comes to
identifying fraudulent activity. In a graph database, entities such as individ-
uals or accounts are represented as nodes, while connections or relationships
between them are represented as edges.

This data model allows real-time analysis of relationships and patterns, fa-
cilitating the detection of complex fraud schemes such as money laundering,
transaction layering, and identity theft, which often involve multiple entities
interacting in a network.

Furthermore financial crimes are not static, they evolve as fraudsters de-
vise new methods to exploit vulnerabilities in financial systems. The ability
to dynamically analyze and predict suspicious patterns in real time is critical
to staying ahead of the curve.

Graph databases, with their sophisticated algorithms for community de-
tection, pathfinding, and centrality analysis, enable financial institutions to
do just that.

For example, using graph-based machine learning techniques, organiza-
tions can predict potential fraudulent relationships or identify key characters
in fraud networks. As this thesis shows, graph databases not only provide
an innovative and efficient approach to data storage and querying, but also
enable advanced analytical capabilities that are essential for modern financial
compliance.

This thesis focuses on the application of graph databases in the field of finan-
cial crime compliance, using Neo4j as a tool to analyze several case studies.

12

1 – Introduction

It delves into the limitations of traditional databases, the advantages of-
fered by graph structures, and how these databases can be leveraged to im-
prove regulatory compliance and fraud detection efforts.

The importance of this research lies in its potential to improve the tools
and methods available to financial institutions, regulators and investigators,
giving them a more powerful means to combat financial crime in an increas-
ingly connected world.

13

14

Chapter 2

Use Of The Graph
Databases in Financial
Security

In this chapter i will provide an overview of graphs and their relevance in the
context of data structure, including the different types of graphs and their
characteristics.

I will talk about the challenges posed by relational databases in handling
intricate financial data, leading to the exploration of graph databases as
a viable alternative, underlying the advantages and improvements brought
by their adoption, also adding a brief introduction on possible uses in the
financial field.

2.1 What is a Graph
A Graph is a data structure that can be used to represent data introducing
also information regarding how the data are linked to each other.
It is a diagram composed by 2 sets of elements:

• Vertices (Nodes): the set that represents the elements of our Graph
(customers, companies, . . .).

• Edges (Arcs): the set composed by pairs (vi, vj) representing a link
between the 2 nodes vi and vj.

The flexibility and versatility of graphs make them an essential tool for
representing and analyzing complex relationships and dependencies within

15

2 – Use Of The Graph Databases in Financial Security

datasets. Additionally, graph theory, the mathematical study of graphs, pro-
vides a framework for understanding and solving problems related to con-
nectivity, paths, and network analysis, making them a fundamental concept
in the field of data management and analysis.

They are especially valuable in areas like social network analysis, recom-
mendation systems, and computer networks, or in any use case in which the
knowledge of the connections among the data plays a key role in understand-
ing the data behavior, such as in Financial environment.

2.1.1 Types of Graphs
Several types of graphs are available in the context of data structure depend-
ing on which information they add on top of the basic Graph structure. We
can highlights 2 types of Graphs that respectively add information about the
direction of the arcs or the weight of an arc [Figure 2.1].

Regarding the directions of the arcs, we can separate:

• Directed Graph: the Edges have directions, thus if Node vi is linked
with node vj this does not imply that Node vj is linked with node vi.
(Edges are graphically represented with Arrows)

• Undirected Graph: the Edges have no directions, a link between two
nodes can be interpreted in both ways.
(Edges are graphically represented with Lines)

Regarding the weights of the arcs we can separate:

• Weighted Graph: each Edge between nodes has a number, called
Weight, wi ∈ N. This value can represent features like Costs, Lengths,
Time... (wi can also be a negative number)

• Unweighted Graph: the Edges have no numbers on them. It can also
be seen as a Weighted Graph where all wi have a value of 1.

2.2 Limitations of Relational Databases
A relational database is a database which arranges data into tables con-
sisting of rows and columns, creating a structure where the data points are
interconnected.

16

2.2 – Limitations of Relational Databases

Figure 2.1: Types of graphs

Data is typically structured across multiple tables, which can be joined
together via a primary key or a foreign key. These unique identifiers demon-
strate the different relationships which exist between tables, and these rela-
tionships are usually illustrated through different types of data models.

Relational databases[3] are widely used in several types of companies due
to their simplicity because simple SQL queries are sufficient for handling the
data as there is no need for complex query processing or structuring. SQL
also simplifies the retrieval of data from multiple tables and enables straight-
forward transformations like filtering and aggregation. Additionally, the use
of indices in relational databases allows for swift information retrieval with-
out having to search through each row in the chosen table.

The simplicity of relational databases is also the weak point[8] of these kind
of databases, showing the limitations of this data storage systems.

As a relational database becomes wider and spread across multiple servers,
its structure may become more complex and challenging to manage, particu-
larly when dealing with large volumes of data. As the database grows in size
the limitations lead to adverse effects such as latency and availability issues
that impact overall performance.

Storing data exclusively in tabular form limits relational databases in rep-
resenting intricate relationships between objects. This represents a challenge
for applications that need multiple tables to store all the necessary data for
their application logic.

Another limitation of relational databases comes from the simplicity of the
SQL query language, which shows the difficulty in efficiently representing and
querying complex, interconnected data. Relational databases are not as well-
suited for managing highly connected data structures, such as social networks

17

2 – Use Of The Graph Databases in Financial Security

or complex hierarchical relationships. Additionally, navigating and querying
relationships between data in a relational database can be more cumbersome
and less performant compared to the specialized querying capabilities of other
types of database systems.

2.3 Improvements by using Graph Databases
A Graph Database is any storage system that uses graph structures with
nodes and edges, to represent and store data. Graph databases offer a very
useful feature in their native processing capabilities, specifically through a
property known as index-free adjacency. This property ensures that each
node is directly linked to its neighboring node. In a database engine utilizing
index-free adjacency, each node maintains direct references to its adjacent
nodes, effectively serving as an index of nearby nodes. This approach is
more cost-effective than using global indexes and is well-suited for local graph
queries, as it requires just one index lookup for the starting node, followed
by traversing relationships through direct physical pointers. In contrast, in
relational databases, achieving a similar outcome would likely involve joining
multiple tables through foreign keys and potentially additional index lookups.
Furthermore the query computation time in graph databases results to be
faster due to the fact that queries are limited to a specific section of the
graph. As a result, the execution time for each query is only related to the
size of the traversed portion of the graph needed to fulfill that query, rather
than the size of the entire graph. One of the most useful advantages of the
index-free adjacency is the fast, constant-time relationship traversal in the
graph database, despite the relational databases in which an index search is
always required leading to O(log(n)) operational times which depend on the
size of the data. The larger the data size, the longer the computational time.
[Figure 2.2]

Thus the use of graph databases and their advantage of constant relation-
ship traversal time will lead to an improvement in terms of scalability and
performances of the database.

In the financial field, where complex and interconnected data relationships
are prevalent, graph databases emerge as the optimal choice for managing
and analyzing data. Financial transactions, customer relationships, and mar-
ket data are inherently interconnected, making it essential to represent and

18

2.3 – Improvements by using Graph Databases

Figure 2.2: Graph Databases vs. Relational Databases

query these intricate relationships effectively.
Graph databases excel in capturing and navigating such complex, inter-

connected data structures, enabling efficient analysis of transaction patterns,
fraud detection, risk assessment, and customer behavior analysis.

The ability of graph databases to handle interconnected data with ease,
coupled with their native processing capabilities and index-free adjacency,
allows for swift and targeted queries that are well-suited for the dynamic
and interrelated nature of financial data.

Additionally, as financial data grows in scale and complexity, the ability of
providing localized queries, resulting in proportional execution times based
on the traversed portion of the graph, further solidifies their suitability for
the financial domain.

2.3.1 What can we do with Graphs in the financial
environment?

The uses of the Graphs to analyze and manage financial data can be multiple,
here there are some example of their possible applications:

• Knowledge Graphs: to understand what is important in the graph.

– Graph visualizations for analysts to explore.

19

2 – Use Of The Graph Databases in Financial Security

– Analyze a customer’s complete environment: capital, family and
business links, etc.

– Investigating a mixed fraud network.

• Graph Algorithms: to understand what is atypical in the behavior of
nodes.

– Identify anomalies and clusters by mapping business rules to algo-
rithms or using existing ones.

– Centrality: determining the key individuals in a network.
– Similarity: find individuals similar to a known fraudster.
– Path Finding: establish links between entities.

• Graph Native Machine Learning: to predict what is going to happen
in terms of nodes and relationships.

– Enhance models with indicators derived from graphs (e.g. new
beneficiary fraud risk model).

– Node classification: training a model to recognize a potential ter-
rorist financer based on its properties and relationships.

– Relationship prediction: model that estimates the probability of
a link between unconnected individuals.

20

Chapter 3

Neo4j

This chapter will put the focus on explaining the tool used to perform all
the operations and analysis that will further be described in the chapter 5,
"Algorithms Applications".

I will quickly describe the basic notions of Neo4j, the data structure used
by the program analyzing its components, its query language which powerful
and easy to understand, finishing with the data science library which has
been used to compute scores for the analysis further described.

3.1 What is Neo4j
Neo4j is a prominent graph database tool that has revolutionized the way
data is stored and queried in the field of computer science. Initially developed
by Neo4j, Inc., this graph database has gained widespread recognition for its
innovative approach to managing and analyzing complex relationships within
data.

The roots of Neo4j can be traced back to its inception in 2007, when it
emerged as one of the pioneering graph databases in the market. Since then,
Neo4j has evolved into a robust and versatile tool, offering a range of features
and functionalities that cater to diverse application scenarios.

One of the key features of Neo4j is its native graph storage and pro-
cessing, which enables the representation of data in the form of nodes and
relationships. This approach aligns with the inherent nature of connected
data, allowing for efficient traversal and querying of complex relationships.
Moreover, Neo4j’s query language Cypher, provides a powerful and intuitive
means to interact with the database, facilitating the seamless retrieval and
manipulation of interconnected data.

21

3 – Neo4j

In addition to its core capabilities, Neo4j boasts a rich ecosystem of tools
and libraries that support various aspects of graph data management, analy-
sis, and visualization. These include integrations with popular programming
languages, comprehensive graph algorithms, visualization tools and Graph
Data Science (GDS) libraries that includes algorithms to compute scores
and show nodes and relationships behaviors depending on data topology and
distribution as well as on pure data such as transactions, client information,
etc.

3.2 Property Graph
Neo4j relies on the use of a particular type of graph called Property Graph,
which blends together elements proper of the Graph data structure with
information proper of Databases.

In this type of graphs we can identify 5 main elements.[4]

3.2.1 Nodes
Nodes [Figure 3.1] are the elements of the graph often used to represent
entities, the elements of the databases which are interconnected to each other
through relationships.

Nodes can also be described by properties and can also be labeled with
zero or more labels.

Figure 3.1: Property Graph Nodes

22

3.2 – Property Graph

3.2.2 Relationships
In property graphs Relationships [Figure 3.2] are used to describe connec-
tions between Nodes.

They connect a Source node to a End node (a node can have relationships
to itself as well) and since relationships are always directed, they can be
seen as outgoing or incoming in relation to a node, which is helpful when
navigating the graph.

Just like nodes, relationships can have properties.

Figure 3.2: Property Graph Relationships

3.2.3 Properties
Properties [Figure 3.3] are key-value pairs to describe Nodes or Relation-
ships.

Property values may be either primitive or arrays consisting of several
elements of a single primitive type.

Properties of a node can be seen as the information stored in a tuple of a
relational database (e.g. the information of a customer).

3.2.4 Labels
A Label [Figure 3.4] is a designated element in a graph that organizes nodes
into groups, which means that nodes sharing the same label are part of the
same group.

Knowing which node belongs to which group, we can enhance queries
performances by adding constraints and enabling them to operate on specific
groups rather than the entire graph.

23

3 – Neo4j

Figure 3.3: Property Graph Properties

Nodes can be assigned multiple labels or none at all, providing the option
to include labels in the graph.

Figure 3.4: Property Graph Labels

3.2.5 Types
In property graphs Types can be seen as the equivalent of the Labels but
related to Relationships.

24

3.3 – Cypher Language

Differently from the previous ones they are compulsory and exclusive,
which means that each relationship must have one and only one Type in
order to be crated and stored into the graph

3.2.6 Elements Combination
Combining together the elements of the graph we can identify Paths which
connect a node defined as START to another node defined as END through
one or more relationships.

Since relationships by definition are always directed, we can specify dur-
ing the process if we want to considerate only the nodes that follow the
direction of the relationships as belonging to the path, or we can indicate the
presence of a relationship as simply a connection between 2 nodes, keeping
in the path also the relationships that go in the opposite direction from the
one followed up to now.

Traversing a graph involves moving through its nodes, adhering to cer-
tain rules as you follow the connections between them. Typically, you only
need to visit a portion of the graph, as you are already aware of the locations
of the nodes and relationships that are of interest to you.

Figure 3.5: Property Graph Summary

3.3 Cypher Language
Cypher is the query language used by Neo4j on the property graphs.

It is a declarative language designed and developed with the same declara-
tive capabilities of SQL but used onto a graph database structure, providing
functionalities for both querying and modifying data.

25

3 – Neo4j

Similar to SQL, Cypher uses a query method called Linear [5]. This
method is based on a process in which the user can write the query in which
the operations are executed one after the other in a step-by-step manner,
usually from the start to the end. Each section of the query is processed in
the sequence it is written, and the result of one operation becomes the input
for the following one.

A Cypher query accepts a property graph as its input and generates a
table as its output. These tables can be seen as offering associations for
parameters that reveal certain patterns in a graph, with further processing
applied to them.

Cypher compared to SQL offers queries which are often much more con-
cise and natural than their SQL equivalents when it comes to relationships
between entities, leading to a more compact and easy-to-read schema. [Fig-
ure 3.6]

Figure 3.6: Differences between Cypher and SQL
(Example: finding customers who have purchased a certain product)

Since Cypher is a Declarative Language in which we define what to do
and not how it has been done, there should be a pipeline to manage the
query planning[6].

Initially, the Cypher query is processed by the Cypher Parser, which then
creates a plan for executing the query using the Cypher Query Planner.

26

3.4 – Graph Data Science (GDS)

This plan determines which operators will be used to complete the query
and the final result is returned to the user by the Cypher Runtime. The Cost
Estimator also selects the most affordable plan from the list of potential ex-
ecution plans.

The full pipeline is summarized in the following Figure 3.7

Figure 3.7: Cypher Query Pipeline

3.4 Graph Data Science (GDS)
Neo4j offers to its users a Graph Data Science (GDS)[7] library contain-
ing algorithms and Cypher procedures to compute scores and perform more
accurate analysis on the datasets.

The algorithm and functions provided are used to calculate measurements
for graphs, nodes, or connections. They can offer understanding into impor-
tant elements within the graph, such as centrality and rankings, as well as
the inherent structures like communities.

A lot of graph algorithms involve iterative methods that often navigate
the graph for calculations using random walks, breadth-first or depth-first
searches, or pattern matching. Because of the exponential increase in poten-
tial paths as the distance grows, many of these approaches also have a high
level of algorithmic complexity.

Each algorithm can be analyzed before being executed to have an out-
put containing the complexity in terms of time and computational resources
needed, to have an initial estimation of the complexity of the algorithm.

27

3 – Neo4j

The GDS library is continuously updated by researchers and programmers,thus
we can find algorithms and procedures in 3 different states:

• Production-quality: the algorithm has been evaluated for stability
and scalability.

• Beta: the algorithm is being considered for the production-quality tier.

• Alpha: the algorithm is still being updated and developed, it can be
changed or deleted at any time

3.4.1 Graph Algorithms
In this section of the library we can find a lot of different algorithms which
implements procedures which use the key functionalities of graphs to perform
analysis.

Here we can find algorithms that provides information for:

• Centrality: it measures the relative importance of nodes within a
graph.

• Community Detection: it identifies groups of nodes with dense con-
nections.

• Similarity: it assesses the likeness between nodes.

• Path Finding: it determines the shortest or optimal routes between
nodes

• Directed Acyclic Graph Algorithms: they handle graphs with di-
rected edges and no cycles.

• Node Embeddings: it represent nodes as low-dimensional vectors.

• Topological Link Prediction: it predicts the likelihood of future con-
nections between nodes based on their network structure.

These algorithms will be the key part for the chapter 5 "Algorithms Applica-
tions", thus their explanations, uses and mathematical details will be further
described in that chapter.

28

3.4 – Graph Data Science (GDS)

3.4.2 Bloom
Next to algorithms and procedures to compute scores, Neo4j offers a tool
named Bloom which is an illustrative, codeless search-to-visualization design
that offers an intuitive interface for users to visually explore and interact with
their graph data, expanding or removing the relationships of the nodes and
moving the points into the space.

In this tool each Node and Relationship can be personalized adding col-
ors and sizes depending on the Labels and Types each Node/Relationship
belongs to, making the data visualization much easier as shown in the Fig-
ure 3.8.

Bloom allows users to create and execute graph queries, view graph pat-
terns, and analyze the connections and relationships within the data.

Figure 3.8: Neo4j Bloom Visualization

Bloom and GDS can work side to side to merge together the functionalities
of both tools to graphically visualize the scores computed by some algorithm
introduced in the section "Graph Algorithms" (3.4.1).

The sizes and the intensities of the color of a node will be proportional
to the computed scores, making the analysis on the databases much faster
to perform thanks to the extreme ease of finding the most important nodes
through graphical visualization, as shown in the Figure 3.9.

29

3 – Neo4j

Bloom works with the concept of Scene. A scene is everything that is
showed in the working window, thus each analysis or GDS operation is related
only on the current scene instead of the whole database.

Figure 3.9: Neo4j GDS Bloom Visualization (Color Shading/Size Scaling)

3.4.3 Neo4j Browser
Neo4j Browser [Figure 3.10] is the tool parallel to Bloom. Designed for
developers, it enables them to run Cypher queries and display the outcomes
in a visual and numeric format.

It works as a classic declarative sheet, in which the user writes Cypher
queries and gets as output a result based on the whole database, rather than
Bloom which relies only on the portion of the Data showed in the Scene.

It is able to perform 3 main functions:

• Creating and executing Graph Queries using Cypher.

• Generating exportable, tabular representations of query outcomes.

• Visualizing query results that include nodes and relationships in the
graph. The results can be seen as graph representations, tables or text
format.

• Visualizing the detailed information about the operations pipeline
performed during the execution of the query [Figure 3.11].

30

3.4 – Graph Data Science (GDS)

Figure 3.10: Neo4j Browser
(Example of a Shortest Path)

31

3 – Neo4j

Figure 3.11: Neo4j Browser
(Pipeline of a Shortest Path)

32

Chapter 4

Used Dataset

This chapter will introduce the basic knowledge to understand the database
that will be used to perform all the analysis in the chapter 5 "Algorithms
Applications".

It starts with a short introduction of ICIJ, the consortium that provided
the starting database used by the company as foundations to build its own
analysis database on top of it.

I will talk about the Nodes and Relationships that compose the database,
listing Labels, Properties and amount of samples for each type, explaining
the behaviors and the role of each element of the Graph.

4.1 ICIJ and its Dataset
The International Consortium of Investigative Journalists or ICIJ[9]
is a worldwide organization of 290 investigative journalists and 140 media
outlets across more than 100 countries headquartered in Washington, D.C.

The goal of this consortium is to promote transparency and accountability
through collaborative investigative reporting, as well as to provide support
and resources to journalists worldwide. Additionally, the organization advo-
cates for press freedom and the protection of investigative journalists.

The ICIJ makes available to everyone the data retrieved from them as down-
loadable Dataframes and one of the most important dataframe related to
financial crimes is the ICIJ Offshore Leaks Database[10].

This database reveals the hidden details of Companies and Trusts estab-
lished in tax havens, showing the people associated with them, including the
names of the real owners of these opaque structures when available.

33

4 – Used Dataset

Altogether, the interactive application reveals more than 750,000 names
of people and companies linked to secret offshore entities.

This data comes from leaked documents rather than a standardized cor-
porate registry, so there may be duplicates, even within the same leak. In
addition, some companies are listed as shareholders in another company or
trust, a setup that often serves to hide the real people behind the offshore
entities.

The database does not reveal large amounts of raw documents or personal
data. It contains a substantial amount of information about company own-
ers, attorneys, and intermediaries in secret jurisdictions, but does not reveal
details such as bank accounts, e-mail exchanges, or financial transactions in
the documents.

The ICIJ makes this information public in the interest of the public. Al-
though many activities conducted through offshore entities are legal, exten-
sive reporting by the ICIJ and its media partners over the past eight years
has shown that the anonymity provided by the offshore economy facilitates
money laundering, tax evasion, fraud, and other illicit activities. Even when
it is legal, transparency advocates argue that the use of an alternative and
parallel economy undermines democracy by favoring a select few over the
majority.

The Offshore Leaks Database holds data on over 810,000 offshore entities
connected to investigations like the Pandora Papers, Paradise Papers, Ba-
hamas Leaks, Panama Papers, and Offshore Leaks, linking individuals and
businesses in over 200 countries and territories.

All these leaks are large-scale journalistic investigations that have exposed
the use of offshore tax havens and the financial activities of wealthy individ-
uals, corporations, and public figures in illicit activities such as tax evasion,
money laundering, and others.

The leaks have been revealed in different years and are related to different
areas of the world and people.

Briefly:

• Pandora Papers: They are a massive financial leak of 11.9 million
documents made public in October 2021 that revealed the offshore fi-
nancial dealings on more than 330 world leaders, politicians, celebrities
and business tycoons.

34

4.1 – ICIJ and its Dataset

• Paradise Papers: They refer to a leak of 13.4 million confidential
electronic documents made public in November 2017 that exposed the
offshore financial activities of numerous individuals and entities to avoid
taxes and engage in complex financial arrangements.

• Bahamas Leaks: They refer to a financial leak made public in Septem-
ber 2016 that exposed the offshore financial activities of 175,000 compa-
nies, trusts, and foundations registered in the Bahamas.

• Panama Papers: They refer to a massive leak of financial documents
from Panamanian law firm Mossack Fonseca, which revealed the offshore
financial activities of numerous individuals and entities. The leak has
been made public in April 2016.

• Offshore Leaks: They refer to leaked documents, obtained by German
newspaper Süddeutsche Zeitung, that uncovered numerous high-profile
individuals and corporations around all the world.

The Offshore Leaks Database is available also as downloadable dump[11]
directly insertable into Neo4j, on which we can perform all the wanted
analysis using the relationships between companies, people and leaks.

The Structure of the Graph Offshore Leaks Database is the one showed in
the figure 4.1.

Figure 4.1: Graph Offshore Leaks Database

35

4 – Used Dataset

Officers are connected through various relationships (such as directors, share-
holders, beneficiaries) to Entities (known as shell companies).

Intermediaries, such as banks and law firms, oversee the establishment
and functioning of these shell companies. Furthermore, all these entities
have addresses that are potential subjects for investigation.

Every node contains attributes for countries and their corresponding coun-
try codes, allowing for their association with particular geographic regions
and a variety of other data.

4.2 Company Database
To pursue its analysis, the company used the ICIJ Offshore Leaks Database
as base to build its own database from it.

Natixis decided to slightly modify the ICIJ databease making it lighter
by reducing the number of different labels and relationships and adding on
top of the new database, the company data of its clients.

In particular some Nodes found in the figure 4.1 have been suppressed like
the "Address" one, while others like "Officer", "Intermediary" and "Other"
have been transformed into relationships that link together a new type of
node that generally describes an entity that has been called as "ICIJ Entity".

Furthermore the information about the Customer and the people that
have links with them have been inserted into new types of nodes.

After all the modifications and removals, the Graph database associated to
the company database, used to perform all the analysis described in the next
chapter and has a structure showed by the property graph in Figure 4.2.

4.2.1 Nodes
The Natixis Database is composed of 4 types of Nodes, reducing by one the
amount of nodes of the original database.

The nodes that compose the company Property Graph are the following
ones:

• ICIJ Entity: This type of node represents any instance of any company
or person that has been ever appeared in any leak described by ICIJ.
(There could be several ICIJ Entities related to the same customer or
person)

36

4.2 – Company Database

Figure 4.2: Modified Company Database

With the word "instance" we can refer at any physical or moral per-
son that is related to a company, but we can also directly refer to the
company itself or a subpart that composes it.
These nodes are described by a lot of properties that add information
about the instance itself such as the Name, the Address and the Coun-
tries the instance is from. It is further described by attributes that
add information about the Leak Papers, as sourceId property which
gives the name of the Paper the entity has been derived from, Valid
Until which gives information about eventual deadlines or the Status
property that gives information about the state of the entity (Active,
Inactive, Suspended, Removed, etc).

• ABED: It is a french acronym that stands for Actionnaires Bénéficiaires
Effectifs Dirigeants, which means "Effective Shareholders Beneficiaries
Officers".
In other words these nodes represent any physical or moral person related
to a Customer.
These nodes are described by properties like FirstName, LastName and
Id and also by a further attribute called Type that indicates if the ABED
is and Individual or a Legal Entity.

• Manual Leak: These nodes represent manually selected Leaks from

37

4 – Used Dataset

press articles.
These nodes have been created because using the full amount of articles
for the analysis would have been to costly in terms of resources and
computational time.
In particular the Leaks manually inserted concern 2 main topics:

– The "Cyprus Confidential"[12] which is a recent inquiry con-
ducted by ICIJ and other media collaborators, revealing the ex-
tensive financial sector that has supported the Putin government,
enabling it to exert influence over neighboring countries while also
posing a threat to Western interests.

– The "ISF Gate"[13] which refers to the alleged use of opaque Cana-
dian trusts by wealthy French families to conceal assets and reduce
their tax burden, particularly to evade the French wealth tax (ISF).

Like ABEDs these nodes are described by attributes such as FirstName,
LastName, Id and Type but also from an attribute called Role that
describes the type of the physical or moral person the leak refers to. It
can have values like "Artist", "Owner", "Investor", "Holding Company"
and much more.

• Customer: These nodes represent the actual physical companies the
ABEDs refers to.
These nodes are described by 3 properties that describe its naming which
are FullName, Id and Geographical Location.
Then a 4th property called Risk has been added, indicating the risk of
the company with a value that can be Low, Medium or High.

4.2.2 Relationships
The Natixis Database is composed of 16 types of Relationships.

The relationships that compose the company Property Graph are the fol-
lowing ones:

• UBO (Ultimate Beneficial Owner), AM ROLE, BOARD MEM-
BER, CEO, DIRECTOR, LEGAL ROLE, OTHER: All these types
of relationships describe interactions coming from internal resources.
It is mainly a group of relationships from an ABED to a Customer that
explains which is the role of a particular ABED into the company rep-
resented by the Customer node.

38

4.2 – Company Database

(For example a relationship of type CEO means that the ABED is the
Ceo of that Company).
Some details of these Relationships are further described by the prop-
erty called "detailed type" that adds more information on the type of
relationship between moral/physic person and the company.
(Possible values can be "Shareholder", "Executive Director", "President",
"General Member", etc).

• CONNECTED TO, INTERMEDIARY OF, OFFICER OF,
SAME COMPANY, SAME NAME, SIMILAR: All these Rela-
tionships link together only ICIJ Entity nodes.
Relationships like CONNECTED TO, INTERMEDIARY OF, OFFI-
CER OF, SAME COMPANY and SAME NAME are self-explanatory,
describing the type of relationship that holds between the two linked
nodes or if 2 entities share the same name; SIMILAR instead expands a
bit the information given by the SAME NAME relationship, saying that
2 nodes have a similar Name and Address at the same time.
All these relationships share a common property called "Link" that de-
scribes the reason why the nodes are linked together.
(Possible values might be: "Related Entity", "Nominee Shareholder of",
"Nominee Investment Advisor of", etc).
Then CONNECTED TO, INTERMEDIARY OF, OFFICER OF and
SAME COMPANY share between them other 2 common attributes
called "sourceID" and "valid until" that respectively indicate the Leak
Paper the relationship has been derived from and eventual deadlines or
expiration dates that could be present.

• RELATED TO: This relationship connects a Manual Leak with an-
other Manual Leak.
It has no particular attributes, thus it simply explains a link between 2
Manual Leaks.

• RAFY: This particular relationship explains a name-matching link be-
tween a Customer and an ICIJ Entity.
It is an internal relationship that links a Customer with its instances
found in ICIJ leaks basing on an algorithm developed by the company
to asses how similar two entities are basing on their names and other
information.

39

4 – Used Dataset

For privacy reason the mechanism behind the algorithm will not be ex-
plained.
It has only one substantial attribute called "Score" that indicated the
Similarity Score between the 2 nodes involved in the Relationship.
Higher scores indicates an high level of similarity between the entities.
(In our case only scores with a minimum value of 70/100 can be trans-
lated into a RAFY relationship).

• TRANSACTIONS: This Relationship indicates a money exchange
from a Customer to an ICIJ Entity or vice versa.
It is a Relationship that is currently being implemented by the com-
pany, thus so far it does not link too many entities, therefore this type
of relationship has not been used in the analysis performed during the
project.
It contains 2 main properties called "Currency" and "Amount" that
add information on the nature of the transaction between the nodes.

4.2.3 Data Distribution
The distribution of Nodes and Relationship in the dataset is not homoge-
neous. Certain types of Entities are present in much higher number than
others.

All the numbers of samples of the different Nodes and Relationships present
in the database are showed in the following tables 4.1 and 4.2:

Table 4.1: List of Nodes of the Company Database

Node Type Number of Samples
ICIJ Entities 1.321.614
ABED 79.995
Customer 31.303
Manual Leaks 160

40

4.2 – Company Database

Table 4.2: List of Relationships of the Company Database

Relationship Type Number of Samples
OFFICER OF 1.497.324
INTERMEDIARY OF 560.3565
SAME NAME 90.513
UBO 46.750
SIMILAR 44.986
DIRECTOR 27.135
RAFY 24.500
BOARD MEMBER 20.776
ENTITY IN 16.466
SAME COMPANY 15.725
CONNECTED TO 12.540
LEGAL ROLE 9.522
CEO 7.000
OFFICER IN 5.675
OTHER 5.220
INTERMEDIARY IN 937
TRANSACTION 315
AM ROLE 276
RELATED TO 109

41

42

Chapter 5

Algorithms Applications

This chapter is the actual explanation of all the analysis and computations
performed during the project.

It winds its way through 4 different applications of Graph algorithms, ex-
plaining the theoretical fundamentals at the base of any used algorithm and
how that algorithm has been applied on the Dataset provided by the com-
pany for analysis.

The used algorithms belong to 4 different groups of Graph Algorithms that
present notions of Centrality, Community detection, Path Finding and Topo-
logical Link Prediction.

5.1 Centrality
In graph analysis, Centrality[14] plays a crucial role in identifying the key
nodes of a graph, evaluating the importance of different nodes within the
graph based on relationships and/or other nodes.

Centrality includes several metrics, each of which offers a unique perspec-
tive on the importance of a node and provides valuable analytical information
about the graph and its nodes.

The concept of Centrality is a crucial information while performing anal-
ysis on graphs because the distribution of data, in particular Nodes and
Relationships, in the majority of cases is uneven.

Thus having a way to asses the value of "importance" of a node in a graph
that may contain thousands or millions of Nodes is an important way to
indicate which node takes up critical position in the data distribution.

43

5 – Algorithms Applications

Nodes with high centrality scores are often associated with strong leader-
ship, widespread popularity, or a huge reputation within the graph. When a
node possesses greater centrality, it indicates its proximity to the network’s
core, potentially resulting in increased power, influence, and accessibility
within the network.[15]

There are several metrics to asses Centrality scores within graphs. Here
we will put our focus on 2 of them: the Degree Centrality and the Page
Rank score.

5.1.1 Degree Centrality
We start by examining the most basic and well-known centrality metrics, the
Degree Centrality.

According to Freeman’s definition[16], degree centrality consists of count-
ing the number of edges that are connected to a specific node.

The Degree Centrality of a Node i in a graph G:=(N, R), where N is
the set of nodes and R is the set of Relationships is written with the following
syntax:

CD(i) = deg(i) (5.1)

Since with Neo4j we work only with directed graphs we need to split the
concept of degree into 2 parts called Inner Degree and Outer Degree,
that relies on the direction of the Relationships.

• The Inner Degree consists of the amount of Incoming Relation-
ships that ends into a node i. The syntax is the following:

deg−(i) (5.2)

• The Outer Degree consists of the amount of Outgoing Relation-
ships that starts from a node i. The syntax is the following:

deg+(i) (5.3)

Using both of these degree values we can asses 2 different values of Centrality
in our graph, the Inner Centrality and the Outer Centrality.

44

5.1 – Centrality

INNER CENTRALITY APPLICATION

Example 1:

As first example of application of Inner Centrality score on our database
we decided to see the amount of relationships of types UBO, AM ROLE,
BOARD MEMBER, CEO, DIRECTOR, LEGAL ROLE and OTHER that
goes from ABED nodes into a Customer node.

The goal of this analysis relies on the concept that big companies which
have a huge number or employees and people related to them should have
as well a high number of ABEDs linked to them. Small companies instead
should have a smaller amount of links with ABEDs due to its smaller amount
of employees.

The goal is thus analyze the Graph Database finding anomalies related to
this concept, in other words finding if there is the presence of small compa-
nies that are nonetheless linked with a high number of ABEDs.

As we can see from the Figure 5.1 the company (which actual name has been
changed) showed is a small Canadian vinyl manufacture company. This com-
pany being a small producer of niche products should be related to a small
number of ABEDs while during the analysis we saw that it is linked with 97
ABEDs as shown by its innerDegree score in the Table 5.1.

This is an abnormal behavior for this type of enterprise, thus this com-
pany can be chosen as a candidate to perform further in-depth study of its
situation, looking for other abnormal situations or traces of illegal behaviors.

Table 5.1: Inner Centrality example 1

Company Name innerDegree Score
Vinyl Company 97

Example 2:

As second example we changed topic and Nodes, focusing only on Manual
Leaks and the RELATED TO Relationships between them.

The key concept is finding among the Manual Leaks the one which appears
to be more important among the others, thus the one most often referred to
by other leaks.

This can be important because if in the future we find Companies or
ABEDs appeared into these types of Leaks we can directly indicate which

45

5 – Algorithms Applications

Figure 5.1: Inner Centrality example 1 (Customer in pink, ABEDS in yellow)

are the one to put our focus on in the first time, which will be the ones
related to the "Most Important Leaks".

The example shows the most related Manual Leak and its results are shown
in the Figure 5.2 and the score is stored in the Table 5.2.

Table 5.2: Inner Centrality example 1

Manual Leak innerDegree Score
"Famille" Bontoux-Halley 11

OUTER CENTRALITY APPLICATION

Regarding the Outer Centrality we developed 2 examples in which we put
the focus on the RAFY Relationship between Customers/ABEDs and ICIJ
Entities.

The main concepts of these analysis are that when a Customer or an
ABED is linked with ICIJ Entities through the RAFY relationship, it means

46

5.1 – Centrality

Figure 5.2: Inner Centrality example 2 (Manual Leaks in green)

that it has been found in that Leak (because RAFY is a name-matching re-
lationship with at least 70% of similarity).

Using the outDegree score, thus the number of outgoing RAFY relation-
ships from Customer/ABED to ICIJ Entities we can find the Customers and
the ABEDs that can be addressed as the most suspicious ones, because they
have appeared the most in papers containing illegal activity records.

The results of the analysis are showed in the 2 Figures 5.3 and 5.4, while
the scores are showed in the Table 5.3.
(Also in these examples the names of the most suspicious Company and the
most suspicious ABED have been omitted for privacy reasons)

Table 5.3: Outer Centrality examples

Customer/ABED outerDegree Score
Most Suspicious Customer 128
Most Suspicious ABED 96

47

5 – Algorithms Applications

Figure 5.3: Outer Centrality example 1 (Customer in pink, ICIJ Entities in
red)

Figure 5.4: Outer Centrality example 2 (ABED in yellow, ICIJ Entities in
red)

5.1.2 Page Rank
Another metric that is possible to use to asses the Centrality value of a Node
in a graph is the PageRank algorithm.

48

5.1 – Centrality

PageRank[17] is an algorithm used to measure the importance of nodes
within a graph, particularly in the context of web pages and hyperlinks.

The fundamental concept behind PageRank involves the introduction of a
measure of node authority that is not based on the content of the node itself,
but rather on the structure of the graph.

This authority is analogous to the concept of citations in scholarly lit-
erature. Specifically, a nodes’s authority is determined by the number of
incoming links (similar to citations) and the authority of the linking node.
Additionally, selective and relevant citations are considered to have a greater
impact on a page’s score than uniform citations. As a result, PageRank
calculates the score of a page by considering the set of pages that link to it.

In simple words the main idea behind the algorithm may be summarized
as "A node directly connected to an important node will be impor-
tant as well".

The algorithm is summarized[18] by the following formula:

PR(A) = (1 − d) + d

A
PR(T1)
C(T1)

+ ... + PR(Tn)
C(Tn)

B
(5.4)

In this formula:

• Let’s assume that a node A is linked to by other nodes T1, ..., Tn.

• The damping factor, denoted as d, is a value that falls within the
range of 0 (inclusive) to 1 (exclusive), with the commonly used setting
being 0.85.

• C(A) represents the outDegree score of node A.

PAGERANK APPLICATION

The decision of using the PageRank instead of simple inDegree or outDegree
may be crucial in those situations in which the score we want to get it’s an
actual score and not a simple count of relationships as it happens in Degree
Centrality.

Another constraint that might us opt for this algorithm is the case in which
we want that the importance of a node is defined also by the importance of
the nodes it is surrounded with.

Furthermore the Bloom tool of Neo4j has PageRank in its GDS library,

49

5 – Algorithms Applications

thus we can also have a graphical representation of the various scores of our
Graph.

An example is shown in the Figure 5.5 and in the Table 5.4.
In this example we used the same use-case showed in the example 1 of

Inner Centrality. The printed score is the one of the Node that has the
highest PageRank score, represented in the Figure with the red circle.

The different intensities of colors represent the different values of PageR-
ank scores, where a darker color implies a highest score value.
(Here the Company whose name has been omitted for privacy reasons consists
of an American Holding Company in the telecommunication sector).

Table 5.4: PageRank Example

Customer PageRank Score
American Holding Company 9.24015

Figure 5.5: PageRank Example

50

5.2 – Community Detection

EFFICIENCY COMPARISON

From all the performed analysis we can measure very fast execution times
that goes from 90 ms for the easy tasks like the Manual Leaks connections, to
298 ms for the first example that links together around 100.000 Nodes with
almost 100.000 Relationships, making the computation very time-efficient
along with ease of visualization.

In general, a well-optimized relational database performs the links between
the Nodes would need few seconds of processing, since the Relationships of
the Graph would be replaced by Table Joins.

5.2 Community Detection
Identifying communities in graphs is an important and well-researched issue[19],
involving finding closely connected groups of nodes and effectively distin-
guishing them from the rest.

Communities are prevalent and inherent in various real-world networks,
such as social networks, collaboration networks, and web graphs, thus al-
gorithms for Community Detection, also known as graph clustering, are
essential for analyzing and comprehending large-scale networks.

Community detection techniques demonstrate how nodes are organized
into clusters or communities, with nodes within each community sharing
similar characteristics in terms of properties and/or topology. Additionally,
it serves as an important tool for reducing the complexity of networks.

In our analysis we never use Node Properties as metric to compute our re-
sults, we only rely on the topology of the graph. Also in this chapter we
will use only the information related to how Nodes are interconnected to
each others through relationship to separate Nodes into communities using
Weakly Connected Components and the Louvain algorithm.

5.2.1 Weakly Connected Components
Given a directed graph, a Weakly Connected Component or WCC is
a sub-graph of the original one in which all the nodes that belong to that
sub-graph are weakly connected to each other.

Two nodes v and w can be defined as being weakly connected to each
other if, while considering all relationships of the graph as undirected, there

51

5 – Algorithms Applications

exists a path that connects the two nodes together.
Furthermore all the graph can be divided and subgrouped into several

Weakly Connected Component, where there are no Relationships between
nodes belonging to different components.

This allows us to build and define a "compact" version of the graph, in
which each component is independent to the others, as showed in the Figure
5.6 where the full graph can be seen as the composition of 2 smaller graphs.

Figure 5.6: Graph Compression

WEAKLY CONNECTED COMPONENTS APPLICATION

In our analysis we decided to apply the WCC algorithm to the ICIJ Entity
nodes, and on the relationships of types INTERMEDIARY OF, OFFICER
OF, and SAME NAME that interconnect them.

We opted to use the algorithm on these type of nodes because they are the
most numerous in the algorithm, with a proportion of 16 times bigger than
the second more popular ones, thus they are the one that are more costly in
terms of computing resources to perform analysis on.

If we want to perform an analysis on how the different ICIJ Entities are
related to each other, for example to know starting from an Entity which are
the other ones that could be even remotely connected or related to it for any
reason, performing an algorithm would become easily infeasible in terms of
time computing when we add more and more Leak Papers in the Dataset,
that translates into millions and millions of nodes.

Applying the WCC separation on the Graph allows us to need to focus
only on the sub-graph in which the starting entity comes from, knowing by
the definition of WCC that there will not be any relationship that will link
a sub-graph to another one.

52

5.2 – Community Detection

In Neo4j Browser we can see for any ICIJ Entity the Id of the component it
belongs to and the total amount of Components present in the graph, and in
Bloom we can see the sub-partition of the graph as nodes of different colors,
as shown in the Table 5.5 and in the Figure 5.7.
(Since it is impossible to show the all Graph in a single Bloom scene in the
figure it is represented only a part of the whole Graph)

From the Table 5.5 we can see how the compacted Graph becames much
easier to handle, counting only 57 components that can be seen as 57 Su-
pernodes, each one containing Nodes and Relationships belonging to the
component.

Table 5.5: Weakly Connected Components Application

ICIJ Entity ComponentId
Morpho 0
Anymar De Talhouët de Boisorhand 3
Ulysse 3
Antoine De Rochechouart de Mortemart 5
Victoria 5
Victurnien 5
... ...
... ...
... ...

Total Number of Components 57

5.2.2 Louvain Algorithm
The Louvain[20] method, a multi-phase, iterative heuristic for optimizing
Modularity presented by Blondel, et al in 2008.

This method is popular for its fast speed and ability to produce high-
quality communities, making it one of the most commonly used tools for
detecting communities in a series.

It is based on the concept of Modularity, a metric that can be seen as

53

5 – Algorithms Applications

Figure 5.7: Weakly Connected Components Application

the one measuring the "strength" of the group division inside the graph.
it is a Greedy Algorithm which means that it aims to make the “locally

optimal” choice at each stage, thus it may not produce an optimal solution,
but it leads to locally optimal solutions in a reasonable amount of time.

The Modularity of a clustering C is expressed by the following formula:

Q(C) =
Ø
k

mk

m
−
Ø
k

3vk

v

42
≥ 0 (5.5)

where m represents the total number of relationships in the Graph, v is equal
of 2*m and k is the number of different clusters in the Graph.

Louvain algorithm is utilized to maximize the Modularity for each commu-
nity by employing a two-step recursive algorithm, which combines communi-
ties into a single node and performs Modularity clustering on the condensed
graphs.

The algorithm mechanism is showed in the following pseudo-code and in
the Figure 5.9:

54

5.2 – Community Detection

LOUVAIN PSEUDO-CODE:

• Phase 1: Modularity is optimized by allowing only local changes to
node-communities memberships;

• Phase 2: The identified communities are aggregated into Super-Nodes
to build a new network;

• Go To Phase 1.

– The phases are repeated iteratively until no increase in modularity is possible.

Figure 5.8: Louvain Algorithm

LOUVAIN APPLICATION

For our analysis we applied the Louvain algorithm in the use case of links
between Customers and ABEDs, similar to what we did in the examples for
Inner Centrality.

Louvain method is focused on finding densely connected communities
within a network instead of focusing on finding disconnected components,
helping to understand the structure and organization of complex networks.

Louvain gives us a "Lighter" division of our Nodes in the graph and using
simple words we can say that the algorithm divides Nodes into partitions

55

5 – Algorithms Applications

in which "each group can be seen as the set of nodes in which the
majority of the information shared by the nodes is stored".

We can see the lighter division strength of the Louvain algorithm by see-
ing our results, in particular we can see how the total number of components
is now 28494, instead of the 57 of the WCC example.

We can see it also graphically, where Nodes have been assigned to different
groups even if there is one Relationship that connects them, that happens be-
cause the majority of information shared by the nodes is mainly kept among
the nodes represented by the same color.

The results of the analysis are shown in the Table 5.6 and in the Figure
5.9 using the same format of the previous example on WCCs.
Also here the names of the Customers have been omitted The number used
as Ids of the components are randomly selected in the Neo4j algorithm, that
is the reason we have numbers greater than the total amount of components

Table 5.6: Louvain Algorithm Application

ICIJ Entity ComponentId
Customer x 77922
Customer y 67584
Customer z 61467
Customer w 61467
Customer k 61467
... ...
... ...
... ...

Total Number of Components 28494

EFFICIENCY COMPARISON

Regarding the Community Detection algorithms’ computational costs we can
see how there is a huge difference and improvement due to the use of Graph
Databases. Here to compute the WCCs on the entire database we need to
take in account 1321614 Nodes, and the amount of time needed to compute

56

5.3 – Path Finding

Figure 5.9: Louvain Algorithm Application

the WCCs is around 400 ms.
If we wanted to perform the same process to a Relational database the ex-
pected computational time might go from several seconds to even minutes
basing on the size of the Data. This because relational databases are not
suitable to be used to perform these types of analysis.

5.3 Path Finding
Algorithms that belong to the Path Finding group are the ones in which
the final goal is finding a Path from a Source Node to a Destination
Node, listing all the traversed nodes and relationships.

Fundamentally, a Path Finding algorithm navigates through a graph by
beginning at a single node and investigating nearby nodes until it reaches the
end point, usually with the goal of identifying the most cost-effective path.

Another goal could be the one of exploring the possible routes that can
be travelled starting from a single node.

57

5 – Algorithms Applications

In our analysis we will perform 2 applications belonging to the first type
of goal, called Shortest Path and All Shortest Paths, and one belonging to
the second type of goal, called Breadth-First-Search.

5.3.1 Shortest Path
In the realm of graph theory, the Shortest Path problem involves deter-
mining the most efficient route between two points in a graph by minimizing
the total cost of Relationships along the path.

Since in Neo4j we deal with unweighted relationships, the total cost can
be easily defined as the "number of traversed nodes" through the path.

There are a lot of possible algorithms that can be used to compute the
Shortest Path in a graph. In our case the shortestPath() function of Neo4j
relies on the Dijkstra’s algorithm to compute it.

Dijkstra’s algorithm is the most commonly used algorithm to compute the
Shortest Path.

It operates by keeping track of a queue of nodes sorted by their distance
from the starting point, then iteratively chooses the node with the smallest
known distance and adjusts the distances of neighboring nodes based on this
selection.

This cycle continues until the shortest path is found for all nodes. A simple
pseudo-code[21] is shown in the Figure 5.10.

SHORTEST PATH APPLICATION

For our application of the Shortest Path algorithm we put our focus in finding
the path that links together 2 Customers.

An idea for our application might be finding out the minimum number of
nodes that will be affected by the behavior of 2 Customers that have been
detected as suspect, and then set as Source and Destination nodes.

From the result of the algorithm shown in the Figure 5.11 we can see how for
this kind of analysis the direction of the Relationships that appear in the
path does not matter. This because we are only interested in the presence
or not of a link among 2 Nodes, not on the direction this link goes to.

From the Figure 5.11 that shows the result of the algorithm we can see
that the minimum number of steps (traversed nodes) to go from the Source

58

5.3 – Path Finding

Figure 5.10: Dijkstra’s algorithm Pseudo-Code

node (Customer 1) to the Destination one (Customer 2) is 8.
This is an information that we will use again in the next application.

(Here the names of the Customers (pink nodes) and the ABEDs (blue nodes)
have been omitted, while the names of the ICIJ Entities are shown)

Figure 5.11: Shortest Path Application

5.3.2 All Shortest Paths
This analysis is strictly correlated to the previous one.

59

5 – Algorithms Applications

The result of this algorithm obtained from the allShortestPaths() func-
tion of Neo4j will show all the possible paths that go from the Source node
to destination Node with a total cost that is the minimum possible.

ALL SHORTEST PATHS APPLICATION

The application of the All Shortest Paths algorithm in our case is just an
extension of what we did in the previous application.

If we wanted to perform a wider analysis to see more Nodes that appear in
the path between 2 potentially suspicious Customers, we can use All Shortest
Paths to see all the paths of cost 8 that goes from the Source Customer to
the Destination one, as shown in the Figure 5.12.

Figure 5.12: Shortest Path Application

5.3.3 Breadth-First-Search (BFS)
Breadth-first search (BFS)[22] is a basic algorithm used to explore a
graph.

Given a graph G = (N, R) with a designated starting node i, BFS sys-
tematically traverses the edges of the graph to find and "discover" all nodes
that can be reached from i.

It calculates the shortest distance from i to each other reachable node.
Additionally, BFS constructs a "Breadth-First Tree" rooted at i, which

60

5.3 – Path Finding

includes all reachable vertices.

In BFS , progress is monitored by assigning each node one of three colors:
white, gray or black.

Initially, all nodes are white, and those that cannot be reached by the
initial node i remain white throughout the process. When a reachable node is
encountered for the first time during the search, it turns gray, signifying that
it is on the frontier, at the boundary between discovered and undiscovered
nodes.

All gray nodes are stored in a queue. As the search continues, the edges
of each gray node are explored and neighboring nodes are discovered.

Once all edges of a node have been explored, the node crosses the frontier
and goes from gray to black.

The algorithm is also described by the Pseudo-code showed in Figure 5.13.

Figure 5.13: Breadth First Search Pseudo-Code

BREADTH FIRST SEARCH APPLICATION

For our application of the Breadth First Search algorithm we decided to set
as an initial Node an ABED, seeing all the other nodes that appear in the
tree having the ABED as source.

61

5 – Algorithms Applications

This kind of application can be applied to any type of Entity but it gives
more information when applied to entities such as ABEDs or Customers.

The key idea at the base of this analysis is seeing, given as source an ABED
or a Customer that has been detected as "suspect", all the other entities that
can be ever be "touched" by its behavior, and thus the nodes that might
have been influenced somehow by an illegal activity performed by the start-
ing ABED/Customer.

That’s why using BFS we have as result only the nodes that are directly
or indirectly reachable from the node chosen as Source.

From the result showed in the Figure 5.14 we can see how in this type of
analysis the direction of the Relationships matters, since all the relationships
follow a outgoing direction starting from the source node (SOURCE ABED).

(Here the names of the Customer (pink node) and the ABED (blue node)
have been omitted, while the names of the ICIJ Entities are shown)

Figure 5.14: Breadth First Search Application

62

5.4 – Topological Link Prediction

EFFICIENCY COMPARISON

Regarding the Path Finding algorithms an efficiency comparison between
Relational and Graph database would be trivial. This happens because Path
Finding is one of the key features of the Graphs, mainly relying on the
Relationship concept.
Using a relational database to implement a path finding algorithm will lead
to several difficulties to fulfill the need to model the relationships among the
data. This may require proper database design and may require the use of
complex joins and recursive queries to find paths, placing a significant load
on database performances.

5.4 Topological Link Prediction
Topological Link Prediction is a fundamental problem in the field of
graph theory and network analysis[23].

Its goal is to predict the probability of future or missing connections be-
tween nodes in a graph by exploiting the structural properties of the graph
itself.

Thus the algorithms belonging to this family rely only on the structure
of the Graph, called Topology, consisting of the links between the several
Nodes that compose the Graph.

For our analysis we will use two algorithms belonging to the Topological
Link Prediction algorithm family, the Common Neighbors and the Preferen-
tial Attachment.

(Both of these algorithms are still on a Beta state, thus they are still be-
ing developed by the Neo4j programmers).

5.4.1 Common Neighbors
The Common Neighbors analysis is pretty self-explanatory. It consists of
finding the Nodes that share at least one common Relationship among two
Nodes chosen as Source.

In other words consists of the Intersection of the sets of One-Step Re-
lationships that link the Source Nodes with other nodes in the Graph.
The idea behind this analysis can be seen also in the following Formula[24]:

CN(x, y) = |N(x) ∩ N(y)| (5.6)

63

5 – Algorithms Applications

where x and y are the 2 nodes chosen as Sources and N(x) and N(y) are
respectively the One-Step Relationships Set of the x Node and the y Node.

This algorithm can give us a further information together with the knowledge
of the neighbor nodes: when in a Graph two nodes share a lot of neighbors
there could be a high probability that a direct link between the 2 nodes will
be added in the future.

If we think the Graph as an example of social interaction between people
the idea can be described in this form:
"Two strangers who have a friend in common are more likely to
be introduced than those who don’t have any friends in common".

The Algorithm provided by Neo4j will show in the Browser the nodes that
have been detected as Neighbors and a Score, which represents the amount
of neighbors detected by the algorithm.

COMMON NEIGHBORS APPLICATION

For our application of the Common Neighbors algorithm we assumed a use
case in which we detected 2 potentially suspicious Customers that have been
chosen as Sources (showed in the Figure 5.15 with pink nodes), and we want
to detect the ABEDs that have interacted to both these nodes.

This because ABEDs that belong at the same time to several Customers
detected as suspicious might be the cause of illegal behaviors inside the com-
pany, or they can be related to these behaviors and thus being suspicious as
well.

The results of this analysis are shown in the Figure 5.15 and in the Table
5.7.
(Here both Customers and ABEDs names have been obscured for privacy
reasons)

Table 5.7: Common Neighbor Application

Common Neighbor Score
5

64

5.4 – Topological Link Prediction

Figure 5.15: Common Neighbor Application

5.4.2 Preferential Attachment

Preferential Attachment[25] refers to the phenomenon in networks that
expand over time, where the likelihood of a new edge connecting to a node
with n neighbors is proportional to n.

This linear relationship is central to the Barabási-Albert model[26] whose
base concept is:
"the more connections a node has, the higher its chances of at-
tracting new links".

Thus, nodes with a higher degree are more likely to gain additional links
as they are added to the network.

In Neo4j[27] the algorithm uses the Cartesian Product of the One-Step
Relationships Set of the 2 Nodes chosen, as Sources as shown in the follow-
ing Formula:

PA(x, y) = |N(x)| ∗ |N(y)| (5.7)

where x and y are the 2 nodes chosen as Sources and N(x) and N(y) are
respectively the One-Step Relationships Set of the x Node and the y Node.

65

5 – Algorithms Applications

PREFERENTIAL ATTACHMENT APPLICATION

For our application of Preferential Attachment algorithm we chose as use
case the one of links between Customers (pink nodes in the Figure 5.16) and
all other Nodes (yellow = ABEDs, green = manual leaks).

This application allows us to understand, given a pair of Nodes as input,
how "high connected" they are inside the Graph.

This value has given as a Score based on the Cartesian Product of the 2
One-Step Relationships Sets of the source nodes, thus the score will be the
product of the amounts of inner/outer relationships of each source node.

The higher the score, the more connected the chosen nodes are.

The results are showed in the Figure 5.16 and in the Table 5.8.
(Here Customers names have been omitted for privacy reasons)

Table 5.8: Preferential Attachment Application

Customer Number of inner/outer Relationships
Source Customer A 15
Source Customer B 11

Preferential Attachment Score 15 ∗ 11 = 165

EFFICIENCY COMPARISON

Also here the comparison between the two types of Graphs is trivial, since
the concept of "Neighbor" is proper of a Graph.
The issues that will be encountered would be the same ones shown in the
"Path Finding" section because it is necessary to model the Relationships
from scratch as a new data type, greatly reducing the efficiency.

66

5.4 – Topological Link Prediction

Figure 5.16: Preferential Attachment Application

67

68

Chapter 6

Further Implementations

The project discussed in this document is only the beginning of a wider study
project that the company planned to continue in the next years.

The topics discussed in this document cover only the introduction of the
potentiality that a Graph Database can offer in terms of analysis and re-
search.

Here we focused only on the information that were proper of Graphs, such
as Nodes and Relationships, without using information proper of Relational
Databases that are build inside Neo4j as Properties.

Therefore the Database used for the analysis is just an initial form of what
it has been planned to be. So far only few types of Nodes and Relationships
have been declared and the Data Analysts of the company continuously work
to enrich it in terms of new features and bigger sample sizes.

Regarding the used tool Neo4j, during our analysis we just focused on the
use of the Graph Data Science (GDS) library or simple Cypher queries, but
the tool has other libraries and features that can be used to improve and
enrich our analysis.

6.1 Implementation of Transactional Data into
the Database

The first further implementation that is currently in phase of development
is the implementation of Transactional Data in the Graph Database.

With this we talk about all the relationships named TRANSACTION dis-
cussed in the section "Relationships" (4.2.2) that describe a money exchange

69

6 – Further Implementations

between two entities.

By introducing and developing this type of Relationship we have a direct
connection between entities that is not a membership or relationship link like
the ones discussed so far.

With the knowledge of the Transactions between entities, enriched with
amounts, currencies and other information, we can describe the behavior of
an entity just analyzing its habits and average quantities of exchanged money
with other entities.

With this we can easily follow the money transfers starting from a Node
that has been detected as suspicious from the analysts, or we can also directly
help the analysts to graphically detect anomalous transaction by analyzing
the TRANSACTION relationships of a Node in terms of Degree and Amount.

If for example a Customer has as habits to make an average number of trans-
actions per month, if we see that the outer degree of the TRANSACTION
relationship of that node, thus the number of money exchange to another
Customer that client did in that month, is too different from its average,
that could be a wake-up call to perform further analysis on that Client. A
same example can be made taking in account the average Amount instead
of the degree.

6.2 Uses and Enrichment of Node Properties
Another further implementation that can be done on this project in the one
consisting of Enrich the Properties of a Node and furthermore use these
properties as a metric for the analysis.

Currently the majority of the Properties that describe our entities are
purely descriptive information of the personal data of Clients and ABEDs,
or information on the Leak Paper a Manual Leak or a ICIJ Entity has been
derived from.

By adding as properties metrics that has been computed with the algo-
rithms discussed in the previous chapter we can add information of the actual
behavior of that node in the Data population of the Graph.

With these kind of metrics and also adding other Properties that can fur-
ther describe the behavior of a Node, we can asses the similarity of two Nodes
by merging together information proper of its position in the graph, through

70

6.3 – Neo4j Machine Learning Package

the amount and the type of Relationships with other Nodes (Topology), but
also information proper of the Node itself.

By implementing these kind of improvements if the analysts detect a Node
as suspect we can compute the similarity of other nodes to the suspicious
one and if the score is high we can label other nodes as potentially suspects,
as shown in the Figure 6.1.
(The red Node has been detected as "suspected", the orange Node is the "poten-
tial suspect" due to a Similarity of 0.8, the green Nodes have been exonerated
due to their low Similarity)

Figure 6.1: Suspicious Node Detection through Similarity

6.3 Neo4j Machine Learning Package
The last further implementation that might be added to this project is the
one based on the further exploration and exploitation of the Neo4j GDS li-
brary, using the package dedicated to Machine Learning[28] (currently in
Beta/Alpha).

71

6 – Further Implementations

Enriching our Database with Properties that can be used as metrics to know
the behavior of a node will be the basis to use elements of the Neo4j Machine
Learning Package.

Elements such as Node Classification/Regression pipelines allow us to pre-
dict the class of unlabeled nodes based on existing node properties and re-
lationships, allowing us for example to train a model to recognize a person
likely to finance terrorism on the basis of their properties and relationships.

Node Classification and Regression are the equivalent of a classic Regres-
sion or Classification on a regular Relational Database, in our case we can
use the potentialities of a Graph Database to add more functionalities to our
Machine Learning applications such as the Link Prediction.

Link Prediction involves training a model to predicts the probability of a
relationship forming between non-adjacent nodes, using the features created
during training.

Thus using the Machine Learning package would allow us to compute a
pipeline that, whenever a new Node is added to the Database, it perform a
Classification and Link Prediction algorithms that will allow us to directly
know if a node is suspect or not and which are the Nodes that are more
probable it will link to in the future, making the analysis faster and faster.

72

Chapter 7

Conclusions

Research and analysis developed through the several chapters emphasized
how Graph Databases, and in our case the Neo4j tool, provide a more effec-
tive solution for managing complex and interconnected data structures than
traditional relational databases.

The limitations of relational databases, as discussed in earlier chapters,
primarily revolve around their inability to efficiently process and query in-
terconnected data without significant performance degradation. Relational
databases require multiple joins, which not only increase query complexity
but also slow down execution times, particularly in large-scale financial net-
works.

In contrast, graph databases eliminate these issues by representing data as
nodes and edges, allowing for faster and more intuitive querying, especially
when analyzing relationships between entities.

This advantage seems to be very useful in the financial sector, where fraud
detection, anti-money laundering (AML) initiatives and regulatory compli-
ance require the ability to store data and understand the intricate relation-
ships between entities such as customers, transactions, and intermediaries,
becoming crucial when investigating suspicious patterns or tracing fraudu-
lent transactions across a network where data points looks unrelated to each
other.

Introducing graph algorithms such as Centrality, Community Detection, Link
Prediction and Path Finding into the financial crime compliance workflow sig-
nificantly improves an organization’s ability to detect anomalies and reduce
risk.

Centrality measures help identify key players or influential nodes in a

73

7 – Conclusions

network—individuals or organizations that are central to a web of suspicious
activities, as well as identifying clients or people who possess characteristics
that are abnormal for their type, being a red flag for possible illicit activities.

Community detection algorithms, such as the Louvain method and WCCs,
allow investigators to group related entities and identify potential clusters of
illegal activity or fraudulent schemes.

Furthermore, topological link prediction algorithms can estimate the like-
lihood of future connections between entities, providing early warnings of
potential risk.

In the analysis performed on the company’s adapted dataset and on the
Offshore Leaks database it derives from, these algorithms were applied to
identify suspicious relationships between customers, entities, and intermedi-
aries involved in potentially illicit financial activities, and to compute metrics
and graphic representations of nodes distributions and importance.

The use of Neo4j’s Cypher query language and its Graph Data Science (GDS)
library provided a means to gain a deeper understanding of the data set, re-
vealing connections that were previously hidden and enabling more effective
and accurate detection of fraudulent activity.

A significant finding of this research is that graph databases demonstrate
superior performance, particularly in terms of scalability and ease of query-
ing, compared to conventional systems based on SQL when handling complex,
interconnected data.

Illegal financial activities typically involve intricate networks of intermedi-
aries, shell companies and offshore entities, highlighting the relational nature
of financial crime. This investigation shows how graph databases perfectly
match these complex relationships, making them suitable for compliance ac-
tivities involving the monitoring of convoluted chains of ownership, monetary
transactions and corporate associations.

In the future, the integration of native machine learning from graph databases
into financial crime compliance systems is a substantial advance. By using
graph algorithms to predict fraudulent activities and assess risk, financial in-
stitutions can not only respond to financial crimes after they have occurred,
but also take proactive measures to prevent them.

For example, predictive models trained on graph data can forecast suspi-
cious behavior patterns, thus enabling preventive action against fraud.

Summing up, the examination conducted in this thesis and its results showed

74

7 – Conclusions

the significant benefits of adopting graph databases for financial crime com-
pliance, including their operational effectiveness and ability to unmask in-
tricate fraudulent schemes. Graph databases offer a detailed, relationship-
focused perspective on data, which is essential for today’s compliance re-
sponsibilities. As financial networks become more complex and fraud tactics
more sophisticated, the capabilities provided by graph databases will be in-
dispensable.

In the future, further integrations of graph databases with machine learn-
ing may be developed, focusing on monitoring financial transactions in real
time, expanding the ability to identify fraud as it occurs. In addition, as
graph database technology advances, there will be opportunities to create
even more customized algorithms specifically designed for compliance objec-
tives, increasing even more their relevance in the financial sector.

Ultimately, the shift to graph databases represents more than just a techno-
logical improvement. It is an essential transformation to address the growing
needs for financial crime compliance in the digital age. In this evolving in-
terplay between data and malfeasance, it is connections that help us prevent
consequences and lead us toward a more open and equitable financial future.

75

76

Bibliography

[1] Graph Database Market by Model Type (RDF, LPG, Hypergraph), Offer-
ing (Solutions, Services), Analysis Type (Community Analysis, Connec-
tivity Aralysis, Centrality Analysis, Path Analysis), Vertical, and Region
- Global Forecast to 2028. 1

[2] ACFE - Data Analysis Techniques for Fraud Examiners.2
[3] IBM - Relational Databases3

[4] Neo4j Documentation4

[5] Francis, Nadime, et al. "Cypher: An evolving query language for property
graphs." Proceedings of the 2018 international conference on management
of data. 2018.

[6] He, Zhenzhen, Jiong Yu, and Binglei Guo. "Execution time prediction for
cypher queries in the neo4j database using a learning approach." Symme-
try 14.1 (2022): 55.

[7] Neo4j GDS Documentation5

[8] DatabaseTown - Relational Database Benefits and Limitations (Advan-
tages & Disadvantages) 6

[9] About the ICIJ - International Consortium of Investigative Journalists.7
[10] ICIJ Offshore Leaks database.8

1https://www.marketsandmarkets.com/Market-Reports/graph-database-
market-126230231.html?gad_source=1&gclid=Cj0KCQjwlvW2BhDyARIsADnIe-
IgitT4qv6V4G5Brju__4g-A76eSrK07am2A9QSxaC24qMAQMzaNoQaAhpMEALw_wcB

2https://www.acfe.com/
3https://www.ibm.com/topics/relational-databases
4https://neo4j.com/docs/2.1.5/
5https://neo4j.com/docs/graph-data-science/current/
6https://databasetown.com/relational-database-benefits-and-limitations/
7https://www.icij.org/about/
8https://offshoreleaks.icij.org/pages/about

77

Bibliography

[11] ICIJ Pandora Papers Dataset with Neo4j. 9

[12] ICIJ Cyprus Confidential 10

[13] « ISF gate » : comment de grandes fortunes françaises ont pratiqué
l’évasion fiscale au Canada. 11

[14] Stergiopoulos, George, et al. "Risk mitigation strategies for critical in-
frastructures based on graph centrality analysis." International Journal of
Critical Infrastructure Protection 10 (2015): 34-44.

[15] Zhang, Junlong, and Yu Luo. "Degree centrality, betweenness centrality,
and closeness centrality in social network." 2017 2nd international con-
ference on modelling, simulation and applied mathematics (MSAM2017).
Atlantis press, 2017.

[16] Linton C. Freeman, Centrality in social networks conceptual clarifica-
tion, Social Networks, Volume 1, Issue 3, 1978, Pages 215-239.

[17] Bianchini, Monica, Marco Gori, and Franco Scarselli. "Inside pagerank."
ACM Transactions on Internet Technology (TOIT) 5.1 (2005): 92-128.

[18] PageRank - Neo4j Data Science. 12

[19] Li, Ye, et al. "Community detection in attributed graphs: An embedding
approach." Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 32. No. 1. 2018.

[20] Ghosh, Sayan, et al. "Distributed louvain algorithm for graph community
detection." 2018 IEEE international parallel and distributed processing
symposium (IPDPS). IEEE, 2018.

[21] Mehlhorn, Kurt, Peter Sanders, and Peter Sanders. Algorithms and data
structures: The basic toolbox. Vol. 55. Berlin: Springer, 2008.

[22] Cormen Thomas H.; et al. (2009). "22.3". Introduction to Algorithms.
MIT Press.

[23] Huang, Zan. "Link prediction based on graph topology: The predictive
value of generalized clustering coefficient." Available at SSRN 1634014
(2010).

9https://neo4j.com/developer-blog/digging-into-the-icij-pandora-papers-dataset-with-
neo4j/

10https://www.icij.org/investigations/cyprus-confidential/
11https://www.lemonde.fr/les-decodeurs/article/2021/12/16/isf-gate-

comment-de-grandes-fortunes-francaises-ont-pratique-l-evasion-fiscale-au-
canada_6106313_4355770.html

12https://neo4j.com/docs/graph-data-science/current/algorithms/page-rank/

78

Bibliography

[24] Neo4j Documentation, Common Neighbors. 13

[25] Kunegis, Jérôme, Marcel Blattner, and Christine Moser. "Preferential
attachment in online networks: Measurement and explanations." Pro-
ceedings of the 5th annual ACM web science conference. 2013.

[26] Barabasi, A.-L., and Albert, R. Emergence of scaling in random ´ net-
works. Science 286, 5439 (1999), 509–512.

[27] Neo4j Documentation, Preferential Attachment. 14

[28] Neo4j Documentation, Machine Learning. 15

13https://neo4j.com/docs/graph-data-science/current/alpha-algorithms/common-
neighbors/

14https://neo4j.com/docs/graph-data-science/current/alpha-algorithms/preferential-
attachment/

15https://neo4j.com/docs/graph-data-science/current/machine-learning/machine-
learning/

79

	List of Tables
	List of Figures
	Introduction
	Use Of The Graph Databases in Financial Security
	What is a Graph
	Types of Graphs

	Limitations of Relational Databases
	Improvements by using Graph Databases
	What can we do with Graphs in the financial environment?

	Neo4j
	What is Neo4j
	Property Graph
	Nodes
	Relationships
	Properties
	Labels
	Types
	Elements Combination

	Cypher Language
	Graph Data Science (GDS)
	Graph Algorithms
	Bloom
	Neo4j Browser

	Used Dataset
	ICIJ and its Dataset
	Company Database
	Nodes
	Relationships
	Data Distribution

	Algorithms Applications
	Centrality
	Degree Centrality
	Page Rank

	Community Detection
	Weakly Connected Components
	Louvain Algorithm

	Path Finding
	Shortest Path
	All Shortest Paths
	Breadth-First-Search (BFS)

	Topological Link Prediction
	Common Neighbors
	Preferential Attachment

	Further Implementations
	Implementation of Transactional Data into the Database
	Uses and Enrichment of Node Properties
	Neo4j Machine Learning Package

	Conclusions
	Bibliography

