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Summary

In the field of medical imaging, the application of generative artificial intelligence
techniques for cross-domain translation represents a research area of significant
interest. Nevertheless, a comprehensive review of the literature has revealed a lack
of established metrics that can guarantee the reliability and quality of generated
images.

This thesis investigates the use of the pix2pix image translation model for
the transformation of medical images from Magnetic Resonance Imaging (MRI)
to Computed Tomography (CT). In the initial phase of the study, a series of
experiments were conducted to evaluate the efficacy of different combinations of
loss functions and transfer learning techniques.

Subsequently, in order to identify objective metrics for an accurate evaluation of
the produced images, in addition to the utilisation of conventional Full-Reference
metrics, including MAE, MSE, PSNR and SSIM, No-Reference metrics such as
NIQE, ILNIQE and PIQE were also examined. Moreover, NIQE and ILNIQE were
introduced as loss functions during the model training process, with the objective
of improve the quality of the generated images.

The best results, according to FR metrics, were obtained from the trail using
BCE+L1 as loss function and without transfer learning, with MAE of 0.0746 ±
0.0598, MSE of 0.0239 ± 0.0397, PSNR of 18.6500 ± 3.9336 and SSIM of 0.7040 ±
0.1086. For this same trial, the NIQE value is 12.4894 ± 1.7046, ILNIQE is 45.7019
± 3.5649 and PIQE is 43.3655 ± 5.1703.

The results demonstrated the challenge of using both Full-Reference and No-
Reference metrics to assess the quality of the synthesised images, although ILNIQE
showed particular promise. However, the application of ILNIQE as a loss function
exhibited limitations due to the high computational time required, whereas NIQE, in
combination with other traditional loss functions, produced satisfactory outcomes.

It can be concluded that further developments are required in order to validate
and improve the reliability of the translated images.
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Chapter 1

Introduction

In recent years, Artificial Inteligence (AI) has grown so exponentially that it has
completely revolutionised everyday life. Its influence extends into many fields,
including medicine. Recently, however, most AI research has focused on generative
AI. Generative models, which represent one of the most promising technologies to
date, are a class of algorithms designed to create new and realistic contents. These
models are trained on a specific dataset, such as images, text or sounds, from which
they are able to extract features and patterns to create new examples that match
the observed data.

In contrast to discriminative models, which are employed for the purpose of
classification or prediction by learning the decision boundary between classes,
generative models are designed to capture the distribution of data in order to
replicate it and generate new data.

An example of a popular generative model is the Generative Adversarial Network
(GAN). A GAN consists of two neural networks, the generator and the discriminator,
which compete with one another during the training process (Fig. 1.1). The
generator has the task of generating data, while the discriminator evaluates its
authenticity by distinguishing between real and false data. The training process is
adversarial because the generator tries to create increasingly realistic data that can
fool the discriminator, which has to train more and more to be able to recognise
this data as false.

Generative models are gaining ground in many applications, including the
medical field, where they offer several advantages: they can help improve diagnosis,
create new therapies and better understand certain diseases. However, their
integration into clinical practice needs to be carefully evaluated from both a clinical
and ethical perspective to ensure their efficacy and safety.

For example, these models can be used to improve the quality of medical images,
generate new data to fill in gaps, create realistic simulations of medical procedures
to help doctors train without using patients, and synthesise new drugs.
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Figure 1.1: Representation of a Generative Adversarial Netwotk.

In particular, one of the applications of generative models in medical imaging is
image translation, a process in which one type of scan - e.g. Computed Tomography
(CT) - is translated into a scan of another type - e.g. Magnetic Resonance
Imaging (MRI). There are several reasons why this translation process can be useful:
synthesising one scan from another can certainly provide additional information
for diagnosis, while saving time and money.

In the field of medical imaging, MRI and CT are diagnostic techniques widely
used in various fields of study that provide detailed images of the human body.
MRI uses magnetic fields to create a three-dimensional image of soft and hard
tissue [1]. It can be used to visualise internal organs, the skeleton and joints. CT
uses ionising radiation to produce three-dimensional images of internal organs,
bones, blood vessels and lymph nodes. It is useful to visualize bone structures and
detect acute conditions, such as hemorrhages or fractures, but also for planning
radiotherapy for a tumour.

Both scans are often needed to make an accurate diagnosis and to plan treatment.
However, CT uses higher doses of radiation than a normal X-ray [2], so it is avoided
whenever possible.

Also for this reason, i.e. to reduce the radiation dose to the patient, image
translation from MRI to CT can offer significant advantages.

There are several studies in the literature on the translation of medical images
using GANs in particular. As explained in Section 1.1, different models have been
proposed to obtain images that are more realistic and consistent with the original
ones. However, the generated images need to be validated in order to be used in
clinical practice for correct diagnosis, and to date there is no consensus on the type
of metrics to be used to validate the images or the level of accuracy required. Clear
validation of the images is essential if these technologies are to be integrated into
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clinical practice.
Traditional metrics used to evaluate synthesised images are Full-Reference (FR),

i.e. they require a reference image against which the generated image is compared.
These metrics aim to assess the differences between the target and generated images,
but do not always reflect the visual fidelity and quality of the generated images.
Another type of metric is the No-Reference (NR) metric, which does not require a
reference image and aims to assess the quality of an image. These metrics could be
a valid alternative to the metrics used so far.

In this work, after analysing the state of the art and the applications of image
translation in the medical field, a GAN conditional model, the pix2pix, has been
used to generate CT images from MRI images. This model has shown remarkable
success in various image translation tasks (Fig. 1.2).

During the training phase, the model is presented with pairs of MRI and CT
images of the same subject and body region. The model is trained to identify
statistical correspondences between the features of the MRI and CT images. It
should be noted that the model does not directly “extract” physical information
from the MRI images, as these images do not contain the same basic data: an MRI
does not contain the electron density information needed to generate a CT image.
Instead, the model learns a mapping between CT and MRI images. Once trained,
by acquiring an MRI image, the model can generate a CT image that matches the
images observed during training.

The generated images may not capture all the nuances or abnormalities present
in real CT images. Therefore, a critical aspect of the research was to carefully
evaluate the generated images, particularly using NR metrics.

Finally, an attempt was made to optimise the pix2pix model using NR metrics
as Loss Function.

The following chapters present a comprehensive account of the methodology

Figure 1.2: An example of image-to-image translation using a pix2pix model on
the Facades dataset: from a sketch to an actual image of a building facade.
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employed in this study, the findings derived from the various experiments, a critical
analysis of the results, and finally, potential future developments or enhancements.

The following section presents a review of the existing literature on the use of
AI in the field of medical image translation.

1.1 Medical Image Translation: Review
The generation of synthetic medical images through Machine Learning (ML),
particularly using GANs, represents a notable innovation in the field of medical
diagnostics. This section presents an overview of the current state of research, an
outline of the adopted methodologies and an indication of the challenges in this
field of study.

A comprehensive systematic literature review conducted in 2023 [3] identified
689 articles using specific keywords related to medical image translation using Deep
Learning (DL) techniques. Through a series of screenings based on title, abstract
and full content, the authors selected 99 relevant articles, published between 2017
and 2023.

These studies focused primarily on the application of GAN architectures for
translation between different types of medical images, highlighting the significance
of these techniques in enhancing diagnoses, treatment planning and clinical research.

The review shows that the most prevalent synthesis among the articles (76
of them) is from MRI to CT, as shown in Figure 1.3. The majority of studies
that performed this synthesis are motivated by MRI-only radiation therapy, which
circumvents the necessity for CT radiation exposure while simultaneously reducing
costs and time.

Other motivations include the transformation of MRI datasets into MRI/sCT
paired datasets and the completion of datasets through the synthesis of missing
images.

Despite the potential clinical advantages in neurology due to the superior tissue
contrast provided by MRI, few studies have been conducted on the synthesis of
MRI images from CT. Indeed, the synthesis of MRI from CT could enhance the
efficacy and precision of treatment for patients suffering from stroke.

The majority of studies employed both GANs and Convolutional Neural Network
(CNN), but no clear consensus has emerged on which framework is more suitable
for medical image synthesis. A significant number of articles employed GANs, with
the majority introducing modifications and novel contributions to the fundamental
models with the aim of enhancing image synthesis.

Few articles used CNNs, in particular variants of U-Net, showing that this
architecture works well for image synthesis despite its main use in segmentation.

A significant challenge is the limited availability of large medical datasets,
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Figure 1.3: Type of synthesis from the review.

particularly those that are paired. The lack of paired and aligned images hinders
the use of supervised learning for synthesis between different modalities.

In terms of evaluation methods, 36 different methods for evaluating model
performance were identified, as summarised in Figure 1.4.

Figure 1.4: Methods for evaluating the synthetic images based on the studies
seen in the review.

5



Introduction

The most common metrics (used in more than 30 articles) include Mean Absolute
Error (MAE), Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index
(SSIM). Thus, there seems to be no standard on which metrics to use, which would
be useful for comparing performance between different studies. In addition, there
does not seem to be agreement on the level of accuracy required for synthetic
medical images.

Some models produce blurred images that mask the details of features on a
smaller scale, despite the fact that the metrics give good results. It is therefore
necessary to establish a benchmark for image quality in order to ensure the
suitability of models for use in a clinical setting.

The review concludes that further research is needed to determine which deep
learning methods are most effective and accurate in synthesising medical images
for use in a clinical context.

1.1.1 An in-depth analysis of the literature
With the aim of specifically identifying the methods and materials for medical
image translation, six articles were selected from the aforementioned review ([4],
[5], [6], [7], [8], [9]), while another four articles were identified externally ([10], [11],
[12], [13]). The ten articles selected for analysis were chosen based on the following
criteria: the year of publication, selecting only articles from 2021 onwards; the
type of architecture, limited to GANs; the presence of a public dataset composed
of paired images.

The objective of all studies is to enhance the performance of GANs by incorpo-
rating additional networks, thereby combining different methodologies to generate
superior images. Typically, these additions involve Transformer modules, as in the
articles [4], [11] and [13]. The Transformer is a deep learning model that adopts
the self-attention mechanism by differentially weighting the importance of each
part of the input data [14].

Other articles ([8], [9], [10]) have instead used a CycleGAN, a GAN used to
translate images from one class to another without the need for direct correspon-
dence between input and output images. Ideally, however, they would like to have
a correspondence between these two images in order to improve the training of
generative models. In fact, it has been demonstrated that even CycleGANs give
better results when the images are paired.

Finally, two papers ([6] and [7]) compare CycleGANs with U-Net, some of them
modified with attention blocks, and show that U-Net performs better.

All reviewed articles agree on the usefulness and necessity of generating images
of different domains from a single scan. In the context of radiotherapy based
only on MRI scans, the generation of synthetic CT (sCT) images is crucial to
obtain electron density information [8]. In fact, MRI images are widely used in
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radiotherapy because they provide superior soft tissue contrast compared to CT,
allowing better differentiation of tumors. However, CT images are useful for dose
calculation in treatment [9]. It should be noted that image acquisition in these
two modalities introduces spatial uncertainties because the images are not aligned.
These problems can be solved by synthesizing CT images from MRI images.

One problem with GANs is that they may fail to identify crucial relationships
between the input and the target, as illustrated in the article [7]. The distribution
of statistical data can have a significant impact on the output, with the potential
to influence the inclusion or exclusion of crucial structures, such as lesions, in
the generated data. GANs are particularly effective at tasks where there is no
single correct answer, such as generating images from text or the translation of
photographs into different artistic styles. In medical contexts, where the focus is
on contrast and the presence of specific structures, it is critical to ensure that the
structures of interest are accurately preserved in the generated image. Coupled
GANs, such as pix2pix, attempt to address these issues by comparing the generated
image to the true target. However, coupled GANs remain susceptible to challenges
related to the tendency of GANs to adapt to the distribution of the training data.
In fact, training GANs is notoriously difficult.

In the article [11], the model used is pre-trained on paired data and then retrained
on unpaired data, incorporating knowledge from a pre-trained non-medical model.
The application of Transfer Learning (TL), which is the technique of reusing a
model developed for one task as a starting point for a model on another related
task, demonstrated superior efficacy compared to data augmentation, a technique
used to artificially increase the available training data. This is due to the fact that
transfer learning requires less time to achieve comparable results. This approach,
which exploits the knowledge acquired from a pre-trained model, has the potential
to enhance efficiency and performance.

As previously stated, some articles were selected on the basis of the utilisation
of open-source datasets. In fact, as reported in the review, the lack of medically
paired datasets represents a significant challenge. Four datasets were identified
from the different articles. Among the paired datasets, however, only one had
already been aligned [15] using a software called Elastix [16]. The Section 2.2
explains the difference between pairing and alignment.

A further point of particular concern is the quantitative analysis of medical
image synthesis. Evaluation metrics such as MAE, PSNR and SSIM are most
commonly used, which was also evident in the review. In addition to these metrics,
Mean Squared Error (MSE) and Fréchet Inception Distance (FID) are widely used
as evaluation metrics in various studies.

Making quantitative comparisons between different articles is not always fea-
sible, either because they do not all use the same metrics or because the image
normalizations are different, resulting in incomparable values. In addition, different
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models treat different parts of the body and the direction of synthesis is not always
the same. These factors should be taken into account in order to make effective
comparisons.

Qualitative assessments are also important, including expert judgement, dose
calculation, image brightness assessment or tissue contrast assessment. Some
datasets contain images with tumor lesions, thus it is necessary to assess whether
the lesion is propagated in the generated image using segmentation algorithms.

For istance, the article [6] reveals that qualitative analysis performed by ex-
perienced radiologists showed significant variability in the scores assigned. This
highlights the challenges associated with subjective evaluation of synthetic images.
In addition, it was discovered that the quantitative metrics do not fully reflect
the visual sharpness of the images, underscoring the complexity of assessing the
realistic quality of the generated images.

The article [5] presents a test, the Visual Turing Test, designed to assess image
quality by experienced radiologists. This test was performed on 59 non-training
patients to compare the similarity of axial synthetic MRI lumbar images generated
from axial CT lumbar images and true axial MRI lumbar images. A scoring sheet
was created containing 600 axial images, 150 of which were true MRI images and
450 of which were synthetic images generated from various studies. These images
were randomly distributed on the card. Four participants participated in the study:
two board-certified radiologists and two radiology residents. Each participant was
presented with five images on a screen: one CT scan, one true MRI and three
synthetic MRI images generated by three different algorithms. The participants
had to select the two MRI images they thought were more accurate than the CT
image, sorting them by accuracy.

The results demonstrate that images generated by supervised learning, i.e. by
pairing and aligning images, exhibit the highest level of accuracy. These images
were selected as the most accurate, although they were rarely selected as the first
choice.

To conclude, since GANs may miss important details, making them less reliable
for generating accurate medical images, it is essential to have robust evaluation
methods that can accurately assess and quantify the quality of the generated images
to ensure their safety and reliability for clinical use.
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Chapter 2

Materials and Methods

This chapter describes the materials and methods used to implement a model for
translating MRI into CT images. The training process of the model is illustrated,
with a particular focus on the tuning of different loss functions and the evaluation
of the generated images.

For the model architecture, the simple and well-established pix2pix architecture
[17] was selected. The dataset used is the Gold Atlas, which provides paired and
aligned MRI and CT images.

The following section provides an overview of GANs, with a particular emphasis
on the pix2pix model and the concept of loss function. The dataset used is presented,
the model architecture is described and the training process is outlined, including
the selection of hyperparameters and the different loss functions employed. Finally,
the selected evaluation methods are presented.

2.1 Fundamentals of GANs
Generative Adversarial Networks (GANs), introduced for the first time in 2014
by Ian Goodfellow and his collaborators [18], represent a novel deep learning
architecture. The innovative idea of GANs is based on making use of two different
neural networks that are trained in a competitive manner. The first network,
called Generator, is supposed to generate data while the second network, called
Discriminator, has to distinguish between real data and data created by the
generator.

The training process of GANs is therefore a competition between the generator
and the discriminator. The generator tries to produce data that are increasingly
realistic, with the aim of deceiving the discriminator. In response, the discriminator
keeps improving its ability to recognize synthetic data. This dynamic leads to an
iterative enhancement of both networks.
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Several modifications have been proposed for GANs in later years with the
objective of improving their architecture. Some important examples include Deep
Convolutional GAN (DCGAN), which introduces the use of CNN in GANs in order
to systematically stabilize the training, and Wasserstein GAN (WGAN), using
Wasserstein Distance as a loss function to avoid stability issues.

In 2016, the first GAN network for image-to-image translation was developed,
the pix2pix. Furthermore, CycleGANs have been developed as an evolution of the
pix2pix model, enabling translations between domains without the necessity of a
direct correspondence.

Since their introduction, GANs have been employed for various applications in
numerous domains due to their capability to generate outputs that seem to be of
higher quality and more credible.

However, despite their impressive capabilities, GANs present challenges and
limitations. Training a GAN is known to be highly difficult: Mode Collapse,
in which the generator produces only a limited diversity of samples, and Non-
Convergence, where the generator and discriminator never actually stabilize, are
problems that require careful consideration of the architectural and hyperparameter
choices.

2.1.1 Training of a GAN
The training process of a GAN involves an adversarial process, in which the
generator and the discriminator compete against each other in a zero-sum game.

The discriminator is a simple classifier that tries to distinguish real data from
generated data. During its training, the discriminator is presented with real data,
used as positive examples, and fake data generated by the generator, used as
negative examples. The generator is a neural network that accepts a random noise
sample as input and produces an output that is close to the original distribution.

The discriminator classifies both real and false data by penalizing misclassifica-
tions using a loss function. Then, the discriminator updates its weights through
backpropagation in order to maximize its loss function. During this phase, the
generator is not trained and its weights remain constant while it produces data to
be provided to the discriminator.

The next step consists of freezing the weights of the discriminator, meaning that
they are no longer modified. The generator is then trained by updating its weights
in order to minimize its loss function. In this case, the role of the discriminator is
to classify the image generated by the generator. Based on this classification, the
generator’s weights are updated.

The process will then repeat, as the generator would have improved in generating
the images. The figure 2.1 shows the training process of a GAN.

Both generator and discriminator are neural networks with specific parameters
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Figure 2.1: Training process of a GAN: the generator is given a noisy input from
which it produces samples labeled as false. The training samples are instead labeled
as real. All these samples, along with their corresponding labels, are shown to
the discriminator which is trained to recognize real data from false data. During
the training process of the generator, it generates data that are classified by the
discriminator. Based on the result obtained, the generator modifies its weights.

that represent the characteristics of both networks. These parameters include layer
size, number of neurons, activation functions, etc. In particular, the generator has
parameters θg, and the discriminator has parameters θd.

A prior distribution pz is defined from which the latent space z originates,
which represents the random input. The generator represents a differentiable
function G that maps the input data z, which come from distribution pz, to a new
distribution pg of pseudo-samples x. The discriminator D produces a single scalar
output, representing the probability that x comes from the training data - the real
distribution - rather than from pg.

The first step is to calculate the distribution of the training samples pdata.
This distribution is difficult to determine. Traditional methods assume that the
distribution pdata(x) follows a mixed Gaussian distribution and use it as a solution
through maximum likelihood. However, when the model is complicated, it is often
not possible to calculate this, and the resulting performance is limited due to the
limited expressive capacity of the Gaussian distribution itself.
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The discriminator is trained to maximize the probability of correctly assigning
the label to both the training samples and the samples from G. Simultaneously,
the generator is trained to minimize its loss function with the goal of making the
generated distribution pg as similar as possible to the real distribution of images
pdata.

The learning process can thus be conceptualised as a minmax optimisation
problem of a two-player game between D and G:

min
G

max
D

Ex∼pdata(x) [log D(x)] + Ez∼pz(z) [log (1 − D(G(z)))]

2.1.2 pix2pix
The pix2pix model is an approach to image translation that employs Conditional
GANs (cGANs), which represent an advancement over traditional GANs. A cGAN
uses labels to generate new data with similar characteristics to the training data.
In contrast to conventional GANs that use random noise to generate data, the
network is provided with a condition or information regarding the desired output.
This allows a more targeted and predictable outcome, rather than a random one.

Proposed by Isola et al. in 2017 [17], the pix2pix model addresses various image
transformation problems where the goal is to learn a mapping from input images
to output images through the use of paired training data.

In a pix2pix, the generator takes a target image x as input and generates
an output image G(x). The discriminator takes a pair of images as input, the
generated image and the target image. The discriminator is tasked with identifying
whether the pair of images is false or real. The goal of the discriminator’s training
is to ensure that each pair {x, G(x)} is identified as false, while the training pairs
{x, y} are correctly classified as real. In contrast, the generator is trained by trying
to make the pairs {x, G(x)} be recognised as real, with the aim of fooling the
discriminator.

The generator in pix2pix is typically a U-Net, a CNN developed specifically for
biomedical image segmentation problems [19]. The architecture of a U-Net consists
of an encoder that down-samples the input image into a feature map, and a decoder
that up-samples it back to the original resolution, using deconvolution layers.

The distinctive feature of a U-Net is the skip connections between correspond-
ing layers of the encoder and decoder, which facilitate the transfer of detailed
information from the initial stages of the encoder to the late stages of the decoder.

The discriminator is a PatchGAN, a type of discriminative network that classifies
not the entire image but small portions of the image, called patches. In this way,
the discriminator can capture more detailed information about the image, thereby
enhancing the network’s efficiency in detecting local artefacts that might otherwise
be missed if attention were focused on the entire image.
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This approach enables the discriminator to provide more precise feedback to the
generator, which can result in the generation of higher-quality images. Additionally,
it reduces the computational complexity compared to analysing the entire image.

Each image patch consists of 70x70 pixels, and the discriminator will have an
output of size NxN, where each N value classifies an individual image patch.

2.1.3 Loss Functions
A loss function, also known as a cost function or objective function, quantifies
the difference between the output of a model and the actual values. The loss
function, therefore, represents a measurement of the model’s efficacy in predicting
the expected outcome.

In the context of GANs, the loss function plays a pivotal role in guiding the
generator and discriminator training process. The selection and design of the loss
function can significantly influence the performance and behaviour of GANs.

There are different types of loss functions, some of which are explained below
for the purposes of this thesis.

• Adversarial Loss.
The adversarial loss is used in the context of adversarial training, particularly
in GANs. Each GAN comprises two loss functions, one pertaining to the
generator and the other to the discriminator, that operate in conjunction with
one another within the context of adversarial learning. The generator loss
encourages the generator to produce images that can fool the discriminator into
classifying them as real. The discriminator loss encourages the discriminator
to correctly distinguish between real and generated images.
The standard adversarial loss for the generator G and the discriminator D in
a GAN can be expressed as:

LGAN(G, D) = Ex∼pdata [log D(x)] + Ez∼pz [log(1 − D(G(z)))]

where pdata is the distribution of real data and pz is the distribution of the
input noise vector.
There are other types of adversarial loss functions, which are essentially
modifications of the original GAN. The cGAN, for instance, employs a specific
conditional loss function, defined as follows:

LcGAN(G, D) = Ex,y[log D(x, y)] + Ex,z[log(1 − D(x, G(x, z)))]

where G is the generator, D the discriminator, x the input image, y is the
ground truth image and z the random noise vector.
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The Wasserstein distance, a loss function used in WGANs, evaluates the
distance between two probability distributions: the actual data distribution
and the one generated by the model.
Finally, the Least Squares GAN (LSGAN) model uses the least squares loss
function for the discriminator.
Both WGAN and LSGAN will be explained in Section 2.3.1.

• Loss Functions for Regression: L1 and L2.
Regression is a statistical problem concerned with the prediction of real
variables called target from a set of independent variables, also known as
features. Regression algorithms are designed to predict a continuous value
based on a set of input variables.
A variety of loss functions are available for the resolution of regression problems,
including L1 and L2.
L1 Loss, also know as Mean Absolute Error (MAE), measures the mean
absolute difference between true and predicted value.

LL1 = |y − ŷ|

where y is the real value of the target, ŷ is the value predicted by the model
and |y − ŷ| is the absolute value of the error.
L2 Loss, also known as Mean Squared Error (MSE), measures the mean
squared difference between the actual value of the target y and the value
predicted by the model ŷ:

LL2 = (y − ŷ)2

where (y − ŷ)2 is the quadratic error.
The L1 loss function is less susceptible to the influence of outliers than the L2
loss function, due to the fact that it does not square the error.

• Loss Functions for Classification.
Classification is a type of problem in which the objective is to assign each
piece of data to a predefined category or class. This is employed in scenarios
where a discrete target input variable is present and the goal is to map it to
discrete output variables.
A widely used loss function for classification problems is the Cross-Entropy
Loss, also called Log Loss. The cross-entropy loss quantifies the discrepancy
between the probability distribution predicted by the model and the actual
class distribution. In the context of a binary classification, the Binary Cross
Entropy (BCE) is often used. In mathematical terms, it is defined as:
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LBCE(y, f(x)) = − [y · log(f(x)) + (1 − y) · log(1 − f(x))]

where y is the true binary label (0 or 1) and f(x) is the predicted probability
that the observation belongs to class 1 (between 0 and 1).

• Perceptual Loss.
The Perceptual loss function is a loss function used in ML to compare high-
level features between images using pre-trained network, such as VGG or
CNN. Unlike traditional pixel-based loss functions, a perceptual loss function
is designed to capture perceptual and semantic differences, thereby resulting in
images that are more visually natural. It is particularly useful in applications
such as style transfer, super-resolution and image synthesis. However, it
requires a pre-trained network, which can be computationally expensive, and
the choice of comparison levels can affect the results.

The choice of loss function can profoundly influence the behavior and performance
of GANs. Some loss functions can lead to more stable training of GANs. For
instance, the WGAN uses a different loss formulation that improves stability and
convergence compared to the standard adversarial loss.

Loss functions like perceptual loss can lead to higher quality and more realis-
tic images because they focus on high-level features rather than just pixel-wise
differences.

Specific loss functions can help mitigate mode collapse, a common problem in
GANs where the generator produces limited diversity in the generated images.

In the case of pix2pix, the generator’s adversarial loss function is modified by
the addition of the L1 loss function, resulting in more powerful outcomes. The
combined loss function is:

Lpix2pix = LGAN(G, D) + λLL1(G)

where λ is a weighting factor that balances the contribution of the L1 loss and the
adversarial loss.

By carefully selecting and tuning the loss function, it is possible to improve the
stability, convergence and overall quality of the generated images, leading to better
performance.

2.1.4 Biomedical image translation challenges for GANs
The application of GANs in the context of biomedical image translation presents a
multitude of advantages, but also presents significant challenges that need to be
addressed to ensure effectiveness and safety, especially in a clinical setting.
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Generative models are capable of producing images of remarkable realism.
However, they can also introduce unintended alterations by adding, removing,
or modifying details not present in the source image, a phenomenon known as
hallucination.

This characteristic presents a significant risk in a clinical context, where even
minor inaccuracies could potentially compromise a patient’s diagnosis or treatment
plan. Therefore, the reliability of GANs is contingent upon the capacity to develop
systems that mitigate these errors, and ensuring the reliability of the generated
images remains an open challenge.

A further limitation is the requirement for a substantial dataset for the training
of GANs. Although GANs are capable of learning rapidly with a relatively small
amount of data, the use of limited datasets can result in overfitting issues, reducing
the model’s ability to generalise correctly to new data.

Training GANs is a notoriously challenging process, with issues pertaining to
model convergence and stability. There is a risk of mode collapse, where the
generator produces nearly identical images despite different inputs. However, there
is evidence that adversarial networks that perform translation between image
domains show greater stability than traditional GANs because feature maps are
strongly conditioned by an existing reference image [20].

2.2 Dataset
Several options were evaluated regarding the choice of dataset. For the pix2pix
model, it is advisable to use a paired and aligned dataset. Among the datasets
identified in the literature ([21], [22], [23], [24], [25]), only four are paired. However,
the pairing of images does not necessarily include their alignment: two biomedical
images are considered paired if they represent the same anatomical area or tissue
of the same subject, but were acquired using different imaging modalities or at
different times.

Image alignment is a specific technical process that involves bringing two or
more images into a common spatial reference frame. This involves transforming
one or more of the images to precisely match the same anatomical region of the
reference image. The primary goal is to accurately overlay the images to allow for
direct comparison. Alignment can be performed by automatic or manual techniques
using transformation algorithms to minimize differences between images.

Software tools are available to achieve alignment of paired images, such as
the Elastix software [16] used to align the Gold Atlas dataset. These software
tools require the input of several parameters, which are not easy to define. The
choice of these parameters can significantly affect the final alignment result and,
consequently, the quality of the images generated by the translation model.

18



Materials and Methods

In order to achieve the objectives of this study, the Gold Atlas dataset was
selected as it comprises paired and aligned MRI and CT scans.

2.2.1 Gold Atlas

The Gold Atlas dataset [23] contains pelvic scans from 19 male patients from 3
different diagnostic centers. In total, there are 1925 T1-weighted MR scans, 1788
T2-weighted MR scans, 2975 CT scans, and 1788 CT images aligned from the
T2-weighted MR scans. The images are in dicom format.

The dataset can be downloaded from [15]. Some examples of images are shown
in Figure 2.2.

MRI images

(a) Center 1 (b) Center 2 (c) Center 3

CT images

(d) Center 1 (e) Center 2 (f) Center 3

Figure 2.2: MRI and CT images aligned from the 3 different acquisition centers.
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2.2.2 Data Preparation
The training and test sets were constructed by randomly sampling images from
each centre, with 80% of the images allocated to the training set and 20% to the
test set. The training set comprises 1429 images, while the test set consists of 359
images.

During image registration, especially in the case of aligned CT images, it is
common to obtain some images that are completely black. These images contain no
useful information and can interfere with model training. Therefore, it is important
to identify and remove such images from the dataset.

After removing the black images, the training set contains 1402 paired images,
while the test set contains 354 paired images.

Subsequently, the images were normalised. Prior to this, they were converted
into PyTorch tensors with pixel values between 0 and 1. Normalisation was achieved
by subtracting the mean from each pixel and dividing by the standard deviation,
both of which were 0.5. This resulted in the values being mapped in the range [-1,
1].

This type of normalisation is common for deep learning models because it helps
to stabilise and optimise the networks.

2.3 Model Architecture
The model used to translate MRI scans into CT images is based on the pix2pix
architecture with a U-Net256 generator and a 70x70 PatchGAN discriminator [26].

The MRI image is used as input to the generator that generates a synthetic CT
image. PatchGAN evaluates the pair generated CT image and input MRI image
and determines whether it is real or not.

The training goal is to minimize the generator loss function and maximize
the discriminator loss function, thus progressively improving the quality of the
generated images.

The training process of the model is schematised in the Figure 2.3.

2.3.1 Loss Functions
Three classic loss functions were employed in this study: Binary Cross Entropy
(BCE), Least Squares GAN (LSGAN) and Wasserstein GAN with Gradient Penalty
(WGANGP). The L1 loss function was added for BCE and LSGAN.

In addition, two no-reference metrics, Integrated Local Natural Image Quality
Evaluator (ILNIQE) and Natural Image Quality Evaluator (NIQE), which are
discussed in detail in the Section 2.5, were used as loss functions.

The different loss functions are discussed in detail below.
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Figure 2.3: Training scheme and loss functions of pix2pix. Real image A is given
as input to the generator, which produces a false image B. The corresponding real
image B, or target image, and the generated image B are given to the discriminator,
which classifies the pair as real or false, thus giving a prediction for the false image.
By applying the True criterion, according to which the image should be classified as
real, the first Loss Function, Loss GAN, is calculated. In addition, the false image
produced is compared with the reference image and the L1 norm is calculated,
resulting in L1 Loss. Loss GAN and L1 Loss together give the overall loss function
for generator training. In regard to discriminator training, its loss function is the
average of two loss functions. The first, Loss Fake, is derived by applying the
criterion that the prediction made by the discriminator on a fake image must be
False. The second, Loss Real, is obtained by providing the discriminator with the
real input image A and the target image B, and applying the criterion that its
prediction must be True.

Binary Cross Entropy (BCE)

BCE measures the error between predicted probabilities and actual binary labels.
The combination of BCE and L1 Loss is commonly used in binary regression and

classification applications that require an additional penalty for prediction errors.
This loss function is particularly useful in models that must balance classification
accuracy with consistency in predicting continuous values.

The combined BCE+L1 loss function is given by the weighted sum of these two
components:

LBCE+L1 = BCE + λ · L1

where λ is a hyperparameter that balances the contribution of L1 loss against BCE.
Usually, λ is equal to 100.

Least Squares GAN (LSGAN)

LSGAN is a variant of GANs that uses a loss function based on the squares of the
residuals, instead of the traditional binary loss function, to provide feedback that
is more stable and less susceptible to explosive gradients.
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The loss function for the discriminator in LSGAN is:

LD = 1
2
1
Ex∼pdata [(D(x) − 1)2] + Ez∼pz [(D(G(z)))2]

2
where D(x) is the probability that the input x is real, and G(z) is the generated
image.

The combination of LSGAN and L1 Loss is used to improve the quality of the
generated images.

The loss function for the generator in LSGAN is:

LG = 1
2Ez∼pz [(D(G(z)) − 1)2]

The combined LSGAN+L1 loss function is given by:

LLSGAN+L1 = LG + λ · L1

where λ is a hyperparameter controlling the relative importance of L1 Loss with
respect to the generative loss of LSGAN. As before, λ is usually equal to 100.

Wasserstein GAN with Gradient Penalty (WGANGP)

The WGANGP is an advanced variant of GANs that uses the Wasserstein distance
as a measure of loss. This approach provides greater stability and convergence than
traditional GANs by using the Wasserstein distance to calculate the divergence
between the generated and true image distribution.

The loss function for WGANGP is based on the Wasserstein distance between
the distributions and can be expressed as

LD = Ex∼pdata [D(x)] − Ez∼pz [D(G(z))]

where D(x) is the score of the discriminator for the real image, and D(G(z)) is the
discriminator score for the generated image.

In addition, WGANGP includes a gradient penalty term to help keep the
discriminator value function in a stable region. The gradient penalty is given by

LGP = Ex̂∼p̂

è
(∇x̂D(x̂)∥2 − 1)2

é
where x̂ is an interpolated sample between the real and generated images.

Thus, the total loss function for WGANGP is

LWGANGP = LD + λ · LGP

where λ is a hyperparameter that offsets the gradient penalty term. λ was chosen
equal to 10.
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Natural Image Quality Evaluator (NIQE) and Integrated Local Natural
Image Quality Evaluator (ILNIQE)

NIQE and ILNIQE are metrics used to assess image quality, particularly without
the need for a reference image. These metrics, which will be detailed in Section
2.5, evaluate the quality of an image by analysing the natural statistical properties
of high quality images.

Both these metrics are used as perceptual loss functions: the metric is applied
to the generated image and the reference image, after which the difference between
the two values is calculated and the result is used in backpropagation.

In order to use these metrics as loss functions, the implementation in Python
was employed, [27] for NIQE and [28] for ILNIQE.

The calculation of both these metrics requires some parameters obtained after
the training process that is performed in MatLab, as explained in Section 2.5.

2.4 Training details
On the choice of hyperparameters there has been the problem of overfitting. In
comparison to conventional neural networks, GANs appear to exhibit a reduced
propensity for overfitting. This is primarily due to the fact that the generator
does not receive the anticipated output directly, but rather receives feedback from
the discriminator. The generator does not have access to the training set: the
information about the training data comes from the discriminator. In other words,
the generator is unable to directly replicate examples from the training set [29].

Furthermore, the adversarial process serves as a form of regularisation, as the
generator is required to continuously enhance its performance in order to remain
aligned with the evolving discriminator. The generator’s capacity for constant
improvement and adaptation renders it more challenging for it to overfit.

For these reasons, there was minimal attention devoted to the tuning of hyper-
parameters, with the following parameters maintained at a fixed value: learning
rate of 0.0002, batch size of 1, Adam as optimizer with λ1 equal to 0.5 and λ2 equal
to 0.999. The total number of epochs is typically set at 500.

2.4.1 Transfer Learning
TL is a machine learning technique whereby a model that has been trained on a
specific task is reused as the basis for another related task. In contrast to training
a model from the outset, a pre-trained model based on a substantial dataset
is employed and adapted to a novel task, frequently utilising a smaller dataset.
The benefit of TL is that the pre-trained model has already acquired pertinent
features from the initial data, which can be reused and adapted to the new task,
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accelerating the training process and enhancing performance, particularly when
the data available for the new task is limited.

In the context of this study, a number of pre-trained models [30] were employed
and subsequently subjected to a fine-tuning process on the specific medical dataset.

In particular, only the generator weights were extracted from the pre-trained
model. This approach permitted the generator training process to start from
a point where the model had already acquired useful knowledge regarding the
translation of images from one domain to another, thus obviating the necessity to
start from scratch. Subsequently, the aforementioned weights were fine-tuned using
the specific medical dataset.

The pre-trained models employed in this study comprise those designed for
day-to-night translation (day2night), label-to-photo image translation (label2photo),
map-to-satellite image translation (map2sat) and its inverse (sat2map).

2.5 Evaluation methods
In the field of medical imaging, most evaluation metrics for such images are full
reference [31], meaning they require an original reference image to assess quality.
These metrics compare the generated image to the reference image to determine
the fidelity and quality of reproduction. The most common full reference metrics
used in the biomedical field, and also in this study, are Peak Signal-to-Noise Ratio
(PSNR), Structural Similarity Index (SSIM), Mean Absolute Error (MAE) and
Mean Squared Error (MSE).

There are also metrics called No-Reference (NR) metrics, or Blind Image Quality
Assessment (BIQA), that do not require a reference image to evaluate image quality.
These metrics are especially useful when a reference image is not available.

NR metrics fall into two categories: opinion aware and opinion unaware metrics.
Opinion aware metrics are designed to be aware of the subjective opinions of users.
These metrics are trained on datasets containing distorted images accompanied by
subjective scores assigned by human observers. The training process is supervised,
which means that the algorithm learns to assess the quality of the images based on
the collected human judgements.

However, in order to obtain an opinion aware metric, it is necessary to have many
image samples and their subjective scores, which can be expensive and laborious to
collect. In addition, these metrics tend to have a relatively weak generalising ability,
as they are closely linked to the data on which they are trained. Despite these
limitations, opinion aware metrics generally perform better than other metrics
precisely because they more closely reflect human perceptions of image quality.

Opinion unaware metrics do not require the use of subjective scores for their
training. This means that there is no need to collect human ratings for images,
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making the development process less costly and less complex. Due to this feature,
opinion unaware metrics tend to have a superior generalisation capability, adapting
better to a variety of scenarios and data not seen during training.

For the purposes of this research, it would not have been easy to obtain sub-
jective scores from experienced radiologists, so only opinion unaware metrics were
considered. Some examples of these metrics, which were used in this research,
include Natural Image Quality Evaluator (NIQE), Integrated Local Natural Im-
age Quality Evaluator (ILNIQE) and Perception-based Image Quality Evaluator
(PIQE).

Mean Absolute Error (MAE)

MAE is a linear error measure that represents the distance, in absolute value,
between the predicted value and the actual value. It is particularly useful when a
simple and easily interpretable measure is desired, and it is resistant to outliers.

Given a set of n samples, MAE is calculated by averaging the absolute error
between the predicted value ypred,i and the real value ytrue,i of each i-th sample:

MAE = 1
n

nØ
i=1

|ypred,i − ytrue,i|

Lower MAE values indicate greater similarity between the two images.

Mean Squared Error (MSE)

MSE is a metric that measures the mean of the squares of the differences between
predicted and real values. The MSE is a more robust measure of error than
the MAE, as it penalises larger errors more severely by squaring the differences.
Consequently, the MSE is a preferred metric in contexts where large errors are
particularly costly, such as in the medical field.

The formula for calculating the MSE is as follows:

MSE = 1
n

nØ
i=1

(ypred,i − ytrue,i)2

where ypred,i is the predicted value for the sample i, ytrue,i is the true value for the
sample i and n is the total number of samples.

Lower MSE values indicate greater similarity between the two images.

Peak Signal-to-Noise Ratio (PSNR)

PSNR is a metric that is primarily employed for the assessment of the quality of
compressed or reconstructed images and videos. The PSNR metric compares the
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maximum power of a signal with the power of noise that affects the fidelity of the
representation. The value is expressed in terms of the logarithmic decibel scale
(dB), with higher values indicating greater similarity to the original image and thus
superior quality.

The formula for calculating PSNR is as follows:

PSNR = 10 · log10

A
MAX2

I

MSE

B

where MAXI is the maximum possible pixel value (e.g., 255 for an 8-bit image) and
MSE is the Mean Squared Error between the original image and the reconstructed
image.

Structural Similarity Index (SSIM)

SSIM is an advanced metric used to measure the perceived similarity between
two images. Unlike MAE, MSE and PSNR, which are based on pixel-per-pixel
differences, SSIM evaluates images in terms of luminance, contrast and texture,
providing a more accurate assessment of visual quality.

The formula for calculating SSIM is as follows:

SSIM(x, y) = (2µxµy + C1)(2σxy + C2)
(µ2

x + µ2
y + C1)(σ2

x + σ2
y + C2)

where:

• x and y are the images to be compared;

• µx and µy are the averages of the images x and y;

• σ2
x and σ2

y are the variances of the images x and y;

• σxy is the covariance between x and y;

• C1 and C2 are two constants to stabilize the division in cases where µ2
x + µ2

y

and σ2
x + σ2

y are very small.

SSIM ranges from -1 to 1, where 1 indicates identical images.

Natural Image Quality Evaluator (NIQE)

NIQE evaluates image quality based on statistical models of natural image features
[32], without the need for a reference image. It builds a simple space domain
natural scene statistic model and then extracts features from it to construct a
“quality aware” collection of statistical features.
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The Multivariate Gaussian (MVG) model is used to estimate the global distri-
bution of natural high quality images, which is compared with the corresponding
MVG model of the distorted image to predict the final quality score.

The formula can be expressed as follows:

NIQE(I) =

öõõô(µI − µr)T

A
ΣI + Σr

2

B−1

(µI − µr)

where:

• I is the image to be evaluated;

• µI and ΣI are respectively the mean and the covariance matrix of the statistical
features of the image I;

• µr and Σr are respectively the mean and the covariance matrix of the statistical
features of a natural image model.

A lower NIQE score indicates better image quality.
In order to estimate the global distribution of high-quality images, a natural

image model was constructed comprising all CT images in the Gold Atlas dataset,
including both acquired and aligned images. The dataset was employed for the
purpose of training the NIQE metric.

The training of this metric and its calculation were both performed in the
MatLab environment using the niqe function [33].

Integrated Local Natural Image Quality Evaluator (ILNIQE)

ILNIQE is an advanced metric that combines multiple local and global image
features to provide a reference-free quality assessment [34]. ILNIQE is an extension
of NIQE that improves the quality score by taking into account local variations
within the image. Unlike NIQE, which uses a global model, ILNIQE performs a
local evaluation, analysing different regions of the image to provide a more detailed
assessment. In addition, colour, gradient and frequency features are included in
the feature extraction step. As with NIQE, a lower ILNIQE score indicates better
image quality.

Once more, the metric was initially trained using the identical dataset of CT
images employed for the NIQE metric.

The training and the calculation of this metric were both performed using the
MatLab implementation provided by the authors in the original paper [34].
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Perception-based Image Quality Evaluator (PIQE)

PIQE is a metric that evaluates image quality based on human perception by
analyzing non-overlapping blocks of the image to estimate local distortion [35].

The following steps are involved in the PIQE algorithm:

1. Calculate the Mean Subtracted Contrast Normalised (MSCN) coefficient for
each pixel in the image.

2. Divide the input image into non-overlapping blocks and identify the spatially
highly active blocks based on the variance of the MSCN coefficients.

3. In each block, assign a distortion score due to block artefacts and noise using
the MSCN coefficients.

4. Aggregate the distortion scores to calculate the overall PIQE score.

The final result is a score representing the quality of the image, where lower values
indicate superior quality and higher values indicate higher perceived distortion.

In contrast to NIQE and ILNIQE, PIQE does not necessitate training. The
function developed by Matlab has been used [36].

2.5.1 Addition of artificial distortions
In order to assess the ability and efficacy of NR metrics to evaluate CT images, a
series of distortions were added to the original CT images (Figure 2.4) to simulate
different levels of image degradation. The original CT images include both those
acquired and those subsequently aligned, amounting to 4731 images in total. The
introduced distortions include:

• Noise: White gaussian noise, with a mean of 0 and variance of 0.005, was
applied. This type of distortion introduces random variations in pixel intensity,
similar to the noise that can occur during image acquisition.

• Brightness: The brightness of the image was increased by adding a value of
0.2 to each pixel. This results in an overall brighter image.

• Contrast: A contrast factor of 1.5 was applied, increasing the difference
between light and dark pixels. This distortion makes the bright areas of the
image brighter and the dark areas darker, enhancing the distinction between
different regions of the image.

• Dilation: A disc-shaped structural element with a radius of 1 pixel was
employed for the purpose of dilation. This results in the structures appearing
larger, causing a blurring effect.
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(a) Original image (b) Noisy image (c) Brightest image

(d) Increased contrast (e) Dilated image

Figure 2.4: The images were modified by introducing artificial distortions that
were not present in the original image (a). White Gaussian noise was added (b),
the brightness was increased (c), the contrast was increased (d) and dilation was
applied (e).

29





Chapter 3

Results

This chapter presents the findings of the experiments conducted, illustrating the
methodology employed for each macro-experiment and the results obtained.

The initial phase of the study involves the tuning of loss functions and the
utilisation of several pre-trained models from which TL was carried out. Once
the optimal combinations for the model had been identified based on the classic
Full-Reference (FR) metrics, the generated images were evaluated using NR metrics.
This was done to ascertain how they were evaluated differently compared to the
previous metrics and to determine the reliability of their evaluation. Ultimately,
two of these NR metrics were employed as loss functions.

3.1 MRI to CT translation: tuning of Loss Func-
tions and Transfer Learning

In the initial trials, a number of pre-trained models, renowned for their efficacy in
processing large datasets, were selected. The weights of these models were loaded
from the pre-trained checkpoints, thus providing a robust foundation for fine-tuning
on the experiment-specific dataset. Furthermore, a number of loss functions were
evaluated for each pre-trained model.

Following the training phase, the models were evaluated on the test set in order
to ascertain their capacity to generalise to data that had not been seen during
training. The results of the various combinations were then compared in order
to ascertain which loss function yielded the most optimal results for different
pre-trained model.

Three distinct loss functions were evaluated at this stage: BCE, LSGAN and
WGANGP. For each loss function, different pre-trained models were used to perform
TL, as shown in the Table 3.1.
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Loss Function Transfer Learning (TL)
BCE+L1 no TL
BCE+L1 label2photo
BCE+L1 sat2map
BCE+L1 map2sat
BCE+L1 day2night

LSGAN+L1 no TL
LSGAN+L1 map2sat
LSGAN+L1 day2night
WGANGP no TL

Table 3.1: Combination of loss functions and pre-trained models employed for
transfer learning.

The outcomes for the BCE and LSGAN loss functions are presented in Table 3.2,
where the best values for each metric are highlighted. In both cases, the optimal
results are obtained when TL is not employed.

BCE + L1
TL MAE MSE PSNR SSIM

None 0.0746 ± 0.0598 0.0239 ± 0.0397 18.6500 ± 3.9336 0.7040 ± 0.1086
sat2map 0.0797 ± 0.0617 0.0266 ± 0.0428 18.0038 ± 3.6949 0.6739 ± 0.0984

label2photo 0.0792 ± 0.0691 0.0279 ± 0.0488 18.308 ± 4.0935 0.6827 ± 0.1136
day2night 0.0811 ± 0.0612 0.0276 ± 0.0427 17.8112 ± 3.7579 0.6605 ± 0.1082
map2sat 0.0812 ± 0.0574 0.0249 ± 0.0376 17.8966 ± 3.3251 0.6052 ± 0.1049

LSGAN + L1
TL MAE MSE PSNR SSIM

None 0.0744 ± 0.0637 0.0245 ± 0.0441 18.5832 ± 3.7475 0.6992 ± 0.1056
map2sat 0.0809 ± 0.0600 0.0277 ± 0.0406 17.6582 ± 3.6754 0.6819 ± 0.1071

day2night 0.1086 ± 0.0957 0.046 ± 0.0716 16.4509 ± 4.6892 0.637 ± 0.1682

Table 3.2: A comparative analysis of the performance of various transfer learning
models using the Binary Cross-Entropy (BCE) loss function with L1 regularisation
and the Least Square GAN (LSGAN) loss function with L1 regularisation. The
mean value and standard deviation are given for each metric.
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With regard to WGANGP, the images generated at an early stage of training
are characterised by a high degree of noise, and there is no discernible improvement
as the training progresses, regardless of whether TL is employed.

For this reason, it was decided not to continue with the use of WGANGP as
loss function, which proved to be unsuitable for the purposes of this study. Figure
3.1 shows examples of images generated using WGANGP as loss function.

Figure 3.2 illustrates the results of some test images generated based on the best
proof, which employs a BCE loss function and does not utilise TL. It is evident
that the first generated image (b) exhibits a high degree of visual disturbance,
although this may be attributed to the fact that it was derived from a particularly
dark input image. Indeed, most of the images generated that are disturbed have
dark images as input.

Conversely, in the second case (e) the generated image displays a notable degree
of visual realism when compared to the target image.

Further examples of images generated by the other tests are provided in the
Appendix A.

Figure 3.1: Images generated at different epochs of the training process using the
WGANGP loss function.
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(a) Input MRI (b) Generated CT (c) Target CT

(d) Input MRI (e) Generated CT (f) Target CT

(g) Input MRI (h) Generated CT (i) Target CT

Figure 3.2: Images generated using the optimal test parameters, specifically a
BCE loss function and no transfer learning. In instances where the input image is
particularly dark (a), the model produces an image (b) that is markedly disturbed.
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3.2 Evaluation of images with No-Reference met-
rics

The following experiment is designed to evaluate the previously generated images
using NR metrics, to highlight any differences in evaluation compared to the FR
metrics. The table 3.3 shows the results obtained and the best values for each
metric are highlighted.

In contrast to the findings of FR metrics, the results of NR metrics indicate a
divergent trend across different tests, suggesting that there is no consensus on the
optimal test based on the obtained values.

BCE + L1
TL NIQE ILNIQE PIQE

None 12.4894 ± 1.7046 45.7019 ± 3.5649 43.3655 ± 5.1703
sat2map 12.4772 ± 1.6389 47.1191 ± 4.1651 43.3568 ± 5.1836

label2photo 11.7013 ± 1.6330 51.7022 ± 5.9915 43.5101 ± 5.2716
day2night 13.5151 ± 1.8433 52.7218 ± 6.0553 41.9557 ± 5.8597
map2sat 15.5571 ± 1.9670 58.7143 ± 7.3563 28.3280 ± 6.2557

Table 3.3: A comparison of No-Reference metrics for different types of transfer
learning on the test using BCE+L1 as loss function. The mean value and standard
deviation are given for each metric.

In order to compare the evaluation of the different metrics, examples of generated
images with the results of the used metrics are shown in the Figure 3.3. The images
were generated using BCE+L1 as loss function and without TL, which represents
the optimal test result at least according to traditional metrics.

The FR metrics appear to indicate a consensus regarding the optimal quality
image (the second one), whereas the NR metrics do not. However, it is possible to
conduct multiple comparisons between the values of the metrics and the quality of
the images. For instance, the SSIM metric assigns the same value (0.57) to both
the first and third images, despite the significant differences in quality.

3.2.1 Addiction of distortions
At this point, distortions were added to the original CT images to see how the NR
metrics evaluate these distorted images. Table 3.4 shows the results of the metrics
for different types of distortion. For better visualisation, the metric values have
been graphed in the Figure 3.4.

As expected, all values are better in the case of original images. Noise corrupted
images are rated very poorly by the NIQE and ILNIQE metrics, where the deviation
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Figure 3.3: The generated images are presented alongside the input and target
images, along with the corresponding metrics.

from the other types of distortion is significant, while PIQE rates the quality as
better.

It is possible to compare NR metric values on distorted images with those on
generated images. According to NIQE, the performances on generated images
are comparable to images with added noise. According to ILNIQE, generated
images are more comparable to images modified by adding brightness, contrast
and dilation. According to PIQE, generated images have even better quality than
original images.
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DISTORTIONS NIQE IL-NIQE PIQE
Original 3.3354 ± 0.9296 10.9848 ± 1.2006 48.9643 ± 13.3857

Noise 13.1102 ± 1.5888 87.5214 ± 11.1443 60.2569 ± 1.6544
Brightness 9.4724 ± 1.0862 39.6495 ± 7.1086 61.7990 ± 5.1047
Contrast 9.3102 ± 1.8813 36.8218 ± 7.5531 63.7549 ± 6.0060
Dilation 10.9482 ± 1.1422 37.8523 ± 4.5924 64.2619 ± 4.5485

Table 3.4: No-Reference metric values under different types of distortion compared
to the original images. The mean value and standard deviation are given for each
metric.

Figure 3.4: NR metrics for the different distortions applied to the original images.

3.3 ILNIQE as Loss Function

Among the NR metrics employed for the performance evaluation, ILNIQE proved
to be the most effective in assessing the realistic quality of the generated images.
Therefore, it was chosen as loss function. In particular, finetuning was performed
on the pre-trained model using BCE+L1 as the loss function and without TL,
which results as the optimal approach from the previous iterations. Training was
then continued using ILNIQE as the new loss function for the generator.

The primary issue at this point is that the metric ILNIQE requires a processing
time that is excessively long. The function, implemented in Python, requires over
40 seconds to calculate the quality of a single image. An initial test was conducted
by training the model for a single epoch, which took 38 hours.
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3.4 NIQE as Loss Function
In light of the above-mentioned limitations of ILNIQE, NIQE was employed as loss
function for the generator, and several experiments were conducted. Initially, an
attempt was made to commence training from scratch using solely NIQE as loss
function. However, these attempts proved unsuccessful, as the model was unable
to generate realistic images (Figure 3.5).

Figure 3.5: Images generated by the model trained using NIQE as the only loss
function for the generator.

Subsequently, NIQE was combined with the BCE function and an attempt
was made to train the model for 100 epochs and then continue the training by
fine-tuning the model using only BCE as loss function. In this case, the images
generated during the first 100 epochs with NIQE loss exhibited poor quality (Figure
3.6) which, however, improves when training was continued using only BCE loss.

The final experiment employs a pre-trained model with a BCE+L1 loss function

Figure 3.6: Images generated during the initial 100 training epochs of the model
with NIQE associated with BCE as the loss function for the generator.
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and no TL, and fine tuning using NIQE in combination with BCE as loss function
for the generator. Several tests were carried out by changing the weights of NIQE
within the loss function. The new loss function, therefore, can be expressed as
follows:

L = λNIQE ∗ NIQE + BCE

where λNIQE represents the weight associated with NIQE, and varies from 0 to 1
in increments of 0.1.

The Table 3.5 presents the results of the final test in terms of performance.
Figure 3.7 shows the images obtained from the optimal test, wherein the λNIQE

value was set to 0.3. In some cases, the model went into Mode Collapse and all the
images of the generated test set were identical.

The images of the other tests are shown in the Appendix A.

λNIQE MAE MSE PSNR SSIM
1 0.0803 ± 0.0544 0.0249 ± 0.0355 17.8964 ± 3.4390 0.6781 ± 0.0993

0.9 0.2841 ± 0.0830 0.2202 ± 0.0812 6.8362 ± 1.4969 0.2959 ± 0.0416
0.8 0.2013 ± 0.0441 0.1008 ± 0.0336 10.1872 ± 1.3733 0.4020 ± 0.0544
0.7 0.3309 ± 0.0495 0.2134 ± 0.0452 6.8088 ± 0.9588 0.2565 ± 0.0418
0.6 0.0795 ± 0.0539 0.0260 ± 0.0357 17.8076 ± 3.5859 0.6783 ± 0.0959
0.5 0.0821 ± 0.0623 0.0279 ± 0.0417 17.7476 ± 3.7530 0.6676 ± 0.1175
0.4 0.0807 ± 0.0602 0.0267 ± 0.0413 17.8269 ± 3.5778 0.6672 ± 0.1075
0.3 0.0734 ± 0.0578 0.0249 ± 0.0399 18.2946 ± 3.6704 0.6939 ± 0.0938
0.2 0.1994 ± 0.0543 0.0858 ± 0.0361 11.1794 ± 2.4498 0.5366 ± 0.0969
0.1 0.0842 ± 0.0577 0.0268 ± 0.0388 17.7122 ± 3.5605 0.6698 ± 0.0985
0 0.0746 ± 0.0598 0.0239 ± 0.0397 18.6500 ± 3.9336 0.7040 ± 0.1086

Table 3.5: A metric comparison conducted by varying the weight λNIQE of the
loss function NIQE during the final training phase. The overall loss function is
given by the sum of BCE and NIQE multiplied by λNIQE.
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(a) Input MRI (b) Generated CT (c) Target CT

(d) Input MRI (e) Generated CT (f) Target CT

Figure 3.7: Generated images (b)(e) compared with respective input (a)(d) and
target (c)(f) images, when training with a pre-trained model and using λNIQE ∗
NIQE + BCE as the loss function, with λNIQE sets to 0.3.
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Chapter 4

Discussions and Conclusions

After a careful review of the literature regarding techniques already implemented
for the translation of medical images from one domain to another, several challenges
were identified, including the limited availability of aligned datasets and the lack
of consensus on which metrics to use or the required level of accuracy.

This thesis thus has two principal objectives. Firstly, to assess the feasibility
of translating biomedical images using the simple generative model pix2pix, with
modifications to the loss function employed by the networks and the incorporation of
transfer learning. Secondly, it attempts to ascertain whether No-Reference metrics
can be reliable for evaluating the generated images, with a view to potentially
utilising them for optimising the model.

Initially, therefore, the impact of three different loss functions - BCE, LSGAN
and WGANGP - was evaluated in combination with the use of different pre-trained
models used to perform transfer learning. The results demonstrated that both BCE
and LSGAN, combined with L1, appear to be suitable for the translation task,
with BCE+L1 loss function performing better. In both cases, however, the use of
transfer learning did not lead to performance improvements. It seems probably that
the pre-trained models used have a correspondence between one domain to another
that is too different from that between MRI and CT. A more accurate assessment
of the type of correspondence is required in order to identify more suitable models.

WGANGP, on the other hand, is rather unsuitable, although its implementation
should be investigated further as it is widely used to generate high-quality images
and to avoid stability problems.

The CT images generated up to this point have achieved a satisfactory level of
visual quality when compared to the reference images. However, some images are
severely compromised, with large dark areas within them. This may be attributed
to the very dark input MRI images. In order to achieve the desired result, it
may be necessary to implement a pre-processing stage involving more appropriate
normalisation or brightness enhancement, specifically tailored for these images.
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Without the input of a clinical expert, it is difficult to say whether or not the
synthesised images can be considered realistic. Moreover, although FR metrics
appear to remain the most effective for assessing the quality of generated images,
they require a reference point for comparison. However, this reference is not always
readily available.

Therefore, the research concentrated on the utilisation of metrics that have not
been previously employed in the scientific literature for the assessment of generated
medical images: the NR metrics, which do not require a reference image for their
calculation. Of these, NIQE, ILNIQE and PIQE were chosen because their training
does not require subjective scores on the quality of the images associated with the
training images. In fact, PIQE requires no training at all. Nevertheless, obtaining
these scores would be appropriate in view of further investigation of NR metrics,
in order to make more accurate evaluations of medical images. This would require
crowdsourcing involving experienced radiologists who would be asked to rate the
images shown according to specific parameters.

Among the NR metrics used, there is no consensus on which test is the best.
The only one that agrees with the results previously obtained is ILNIQE.

To further evaluate these metrics, a series of distortions were introduced to the
original CT images, including noise, increased brightness, increased contrast and
pixel dilation. Subsequently, the performance obtained on the distorted images
was compared to that obtained on the generated images.

It is expected that the generated images are at least of lower quality than the
original ones. This is true for NIQE and ILNIQE, but not for PIQE, which can
therefore be considered unsuitable. In fact, according to PIQE, even noisy images
are considered to be of higher quality than images with added contrast, even if
only slightly.

ILNIQE proves to be the most accurate, assessing the quality of generated images
as superior to noisy images but worse than brighter images or those with added
contrast or dilation. Further considerations would be needed on the applicability
of this metric, perhaps with the assistance of clinical experts.

Given the promising results obtained with ILNIQE, an attempt was made to use
this metric as a loss function with the goal of optimising the model. Unfortunately,
it was not possible to train the network for a sufficient number of epochs, as the
computational time required is too high, despite the high-performance capabilities
of the available computers. This factor represents a significant obstacle to the
practical applicability of the method. As a result, the focus was redirected to NIQE
as the loss function.

After several attempts and combinations of NIQE and BCE, it became evident
that it is always preferable to start training with BCE as the loss function and
then introduce NIQE for fine-tuning. Indeed, in cases where training began directly
with NIQE, performance was unacceptable, and the images were very degraded.
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The results of the various tests performed indicate that the translation of medical
images from MRI to CT is feasible even with a simple generative model, with which
satisfactory results can be obtained.

However, these images still have to be critically analysed before they can be
used in a clinical setting. It remains uncertain whether the NR metrics employed
offer a realistic assessment, although there appear to be promising foundations for
optimising generative models through these metrics.

45





Chapter 5

Future Works

The findings presented in this thesis establish a foundation for future research in the
domain of medical image translation through the utilisation of generative models.
Nevertheless, there are a number of topics that warrant further investigation, as
well as possibilities for future research. This section will present some potential
future insights.

Dataset Limitations

One ongoing challenge is the limited availability of paired medical datasets. While
several datasets have been developed through research, they have been isolated
to specific anatomical regions. It may be feasible to integrate these datasets in
order to train models on different body parts at the same time, thereby obtaining
a generalised model. Nevertheless, it is also evident that this would necessitate the
acquisition of a considerably larger number of images, thereby underscoring the
continued necessity for the creation of a large dataset.

An additional method for increasing the amount of images is through the
utilisation of Data Augmentation, which remains a viable option in the event of
a scarcity of data. This technique involves the generation of new images from
the original ones through the application of various forms of distortion, rotation,
translation, and other geometric transformations. Additionally, modifications can
be made to aspects such as brightness and contrast. It is recommended to evaluate
this approach for future implementations, with due care taken to maintain coupling
and alignment between images.

Optimization of the Model

The pix2pix model remains a good, simple and cost-efficient approach to image
translation. However, this approach can be enhanced by incorporating more
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sophisticated modules or by identifying novel, more appropriate loss functions.
Furthermore, although research has not demonstrated significant enhancements

resulting from the use of transfer learning, it is possible that more specialised pre-
trained models could give better results, thus further reducing the computational
cost for training.

Image Quality Assessment

A future development would certainly be to explore other metrics for the evaluation
of synthesised images, particularly for medical applications. This is because the
majority of existing metrics have been developed for natural images, and may not
fully align with the specific requirements of medical images. It would therefore be
beneficial to identify more appropriate metrics or to adapt existing ones to the
clinical context.

Given that numerous NR metrics necessitate the input of subjective scores for
their training, it would be appropriate to obtain these scores from experienced
radiologists.

Moreover, it may be worthwhile to consider the implementation of new metrics
that are specifically tailored to the evaluation of medical images.

Clinical Validation

The input of radiologists and other medical professionals in this field is pivotal.
The subsequent phase will entail transitioning into a clinical setting, where the

models will be validated through collaboration with healthcare institutions and
radiologists. This is a crucial step to guarantee that the generated images are
accurate and useful in practice.

In this regard, an ambitious attempt is the incorporation of explainability into
generative models for medical image translation. It is imperative that medical
professionals have confidence in and comprehend how these models make decisions.
The creation of interpretability tools that can provide information regarding the
rationale behind the generation of specific images or the manner in which particular
features are translated will enhance the clinical adoption and reliability of these
models.
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Appendix A

Generated Images

The following appendix will present the images generated by the various tests
performed. In all cases, reference is made to the same MRI input image and target
CT image shown in the Figure A.1.

(a) Input MRI (b) Target CT

Figure A.1: The input (a) and reference (b) images are provided for comparison
purposes, with the objective of facilitating an evaluation of the results of the various
tests.
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A.1 Tuning of Loss Functions and Transfer Learn-
ing

The images presented in Figures A.2 and A.3 illustrate the generated test images
of the models when trained with different parameters, specifically when the loss
function is modified and applying or not transfer learning from different pre-trained
models.

BCE+L1

(a) Target CT (b) NO TF (c) label2photo

(d) sat2map (e) map2sat (f) day2night

Figure A.2: Images generated by the various tests utilising BCE as the loss
function. The CT image (a) is the reference. In trial (b), no transfer learning was
employed. The pre-trained models used are: label2photo (c), sat2map (d), map2sat
(e) and day2night (f).
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LSGAN+L1

(a) Target CT (b) NO TF (c) map2sat (d) day2night

Figure A.3: Images generated by the various tests utilising LSGAN as the loss
function. The CT image (a) is the reference. Two pre-trained models were employed
for the various tests: map2sat (c) and day2night (d). In trial (b), no transfer
learning was employed.
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A.2 NIQE as Loss Function
The Figure A.4 illustrates the images generated by varying the λNIQE value in the
test in which the loss function NIQE is used in combination with BCE, as detailed
in Section 3.4.

(a) Target CT (b) λNIQE = 1 (c) λNIQE = 0.9 (d) λNIQE = 0.8

(e) λNIQE = 0.7 (f) λNIQE = 0.6 (g) λNIQE = 0.5 (h) λNIQE = 0.4

(i) λNIQE = 0.3 (j) λNIQE = 0.2 (k) λNIQE = 0.1

Figure A.4: Images generated by varying the weight λNIQE associated with NIQE
when the loss function NIQE+BCE is used.
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