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Abstract 

The putting stroke in golf is a crucial component of the game, accounting for 

approximately 45% of the total strokes in a match. While professional players show 

96% accuracy from 1 meter, performance drops dramatically to 65% from 2 meters. 

To maintain high accuracy, training is essential with precise trajectory feedback 

provided by specialized tools. Thus, the ability to maintain this level of precision 

lies in the accurate reconstruction of the putter's trajectory. Although different 

analysis systems exist, their main limitations are the impossibility of performing 

analysis in the open field and the high cost of equipment. In this context, inertial 

sensors (IMUs) which integrate an accelerometer and a gyroscope prove to be a 

feasible solution thanks to their relatively low cost and availability in real scenarios. 

The single IMU-based trajectory is typically estimated by double integrating the 

accelerometer signals after having removed the gravity vector projection obtained 

through a sensor-fusion filter for orientation computation. However, trajectories 

obtained using this non-optimized pipeline are not accurate enough due to the non-

optimal setting of the filter parameter(s) and the rapid accumulation of 

measurement errors over time. In fact, position drifts can easily reach errors up to 

0.5 m after a very few seconds. The goal of this thesis was the accurate 

reconstruction of the trajectory of the putter equipped with a redundant multi-IMU 

configuration through a constrained optimization framework. The accelerometer 

and gyroscope measurement errors were modeled as additive terms which are 

considered constant within the single trial duration. The objective function was 

designed to find the optimal values of the latter and the parameter values of the 

sensor fusion filter by minimizing the orientation of the IMUs rigidly attached to 
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the putter throughout the trial. The following constraints were also based on the 

specific knowledge of the task to avoid drifts in the velocity and position 

components of each IMU. During the static phase before and after the stroke in 

which the club was stationary: the norm of the accelerometer signal was set to be 

close to the gravity acceleration (condition 1), the mean of the acceleration and 

velocity was set to be null (conditions 2 and 3), and the maximum velocity value 

was set to be close to zero (condition 4). During the swing phase, the position of 

the putter head must remain non-negative, with a maximum height of 0.1 m. Due 

to the irregular shape of the putter, a rigid model was developed using the Denavit-

Hartenberg convention to set the IMUs in a common and meaningful reference 

system. Model parameters were fitted through a static acquisition using the 

stereophotogrammetric system (SP). The putter was equipped with two IMUs 

(Xsens-MTw) placed on the shaft and head. Then, 22 stroke trials were recorded in 

a controlled environment. The putter reference orientation and trajectory were 

acquired by the SP. The accuracy during a putting stroke was evaluated in terms of 

root mean square error (RMSE) values for both position and orientation during the 

swing phase only. The optimal parameters allowed to achieve an average RMSE of 

1.8 deg in orientation and 0.08 m in position, in comparison with the “non-

optimized” where the errors were 1.7 deg in orientation and 0.15 m in position. 

These results seem to suggest the potentiality of a redundant IMU sensor 

configuration, marking a significant step towards integrating IMU technology into 

putting analysis. 
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Chapter 1 

Introduction 

1.1 Putting: Definition and Importance 

Golf is widely recognized as one of the most difficult sports to learn, in which the 

primary challenge lies in coordinating body movements with the golf club to 

achieve the desired shot. Moreover, it is one of the most psychologically difficult 

sport, due to the game rules [1] [2] [3]. During a four-day tournament, players must 

maintain their concentration for approximately five hours a day, despite taking only 

about 65 shots per day, averaging one shot every five minutes. Consequently, the 

ability of golfer lies in avoiding mental distractions and maintaining focus on each 

individual shot. The variables are innumerable, and the margin of error is minimal. 

The equipment itself highlights the challenge: the goal is to hole in a golf ball with 

a diameter of about 0.04 m into a hole of 0.11m of diameter from hundreds of meters 

away using a club face with an average impact surface of 0.04 m by 0.07 m. This 

scenario emphasizes how crucial it is for golfers to achieve consistent and 

repeatable movements to perform reliable shots, coordinating body and club 

motions. 

The golf game involves there being 18 holes on a course, each of which is 

characterized by an expected number of strokes to finish them, known as “par”. 

This can consist of a minimum of 3 strokes up to a maximum of 5 for professionals. 

According to the game’s rules, a player may have up to 14 different types of golf 

clubs at his disposal to achieve his goal, which consists in finishing all holes with 
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as few strokes as possible. Of the set of golf clubs available, 13 are used for the 

long and then the short game, during which the ball is expected to rise from the 

ground, and getting as close as possible to the hole by dropping the ball into the 

“Green”. In particular, the latter corresponds to the area of the course where the 

hole is, where the grass is finer and the ground is more delicate, as it coincides with 

the place where the most accurate and important shot takes place.  It is precisely 

here that the golfer relies on the fourteenth club: the “Putter” (Figure 1.1). In fact, 

of the 14 clubs previously mentioned, only the Putter is used at every hole, unless 

in exceptional cases. For this reason, it becomes evident that this type of shot, 

despite the fewer technical pitfalls compared with the others, is the most significant, 

being it the most frequently played.  

 

 

Figure 1.1: Golf player putting in the green. 

 

The Putter is characterized by certain technical features that define its functionality. 

The Grip, for instance, has a flat shape at the top, designed to provide a stable grip 
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and promote optimal hand alignment, helping to improve movement control. The 

Shaft, which is generally shorter than that of other clubs, is made of rigid materials, 

such as steel, to ensure precision and stability during stroke execution. The putter 

Head is engineered to offer balance and accuracy, with different configurations 

such as blade, mallet or semi-mallet to suit different playing styles. It also presents 

alignment lines that facilitate positioning relative to the ball and target. Focusing 

on the key geometric features, the Lie angle, usually between 70° and 74°, ensures 

optimal ground contact, while the Loft angle, of approximately 2° to 4°, is 

conceived to promote smooth ball rolling without initial bounce (Figure 1.2). 

Finally, the lower edge of the face, or edge, is often rounded to reduce friction with 

the turf, contributing to a smoother stroke. 

 

 

Figure 1.2: Lie and Loft angle of the putter [13]. 

 

Statistically, the most important shot in golf is the putting stroke [4], yet it is also 

the most underrated among amateur golfers. Putting typically accounts for 

approximately 40% of all strokes in a tournament for professional golfers and 50% 

for amateurs, underlining the importance of training to improve the reliability of the 

shot. The significance of this stroke lies in the famous motto among professional 

players: “Drive for show, putt for dough”, in which driving – the longest and most 
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thrilling shot – is more spectacular, instead of putting, which secures success and 

victory. While professional players show 96% accuracy from 1 meter, performance 

drops dramatically to 65% from 2 meters (Figure 1.3), demonstrating how sudden 

the rise in difficulty is as the distance increases [5]. 

 

 

Figure 1.3: Percentage of successful putts on the PGA Tour (Professional Golfer 

Association). 

 

This research, therefore, focuses on the study of the putting stroke. To evaluate this 

motion, two fundamental aspects must be considered: 

• Biomechanics of the golfer: If the impact moment relies on the kinematics 

of the putt, then the latter depends on the golfer’s biomechanics during the 

swing, creating an integrated system where the player and the club function 

as one. 
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• Kinematics of the putt: through this analysis, various parameters can be 

extracted, which are essential to determine whether the club's path complies 

with the standards needed for swing repeatability and, consequently, shot 

consistency. Differently from other clubs, the putting swing has a reduced 

speed, as it is executed at a close distance and requires great precision. The 

technical gesture in its phases is illustrated below in Figure 1.4. 

 

 

Figure 1.4: Putting swing phases comprehend Backswing (a), Downswing (b), 

Impact (c) and Follow-through (d) [18]. 

 

The precision in executing this stroke, therefore, depends on the golfer’s ability to 

obtain a repeatable and consistent swing. As noted, the hole and ball dimensions 

are so small that every little variation in the swing could result in significant errors, 

which increase as the distance between the hole and ball increases. 

As consequence of all these factors, effective putting training concentrates manly 

on developing:  

• The techniques to strike the ball ensuring that it travels consistently in a 

straight line and reaches the intended distance.  

• The ability to interpret the slopes and green conditions to take advantage on 

its contours effectively. 
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To execute an effective putt, the player must first analyse the Green to understand 

its contours and visualizes a feasible path for the ball to hole in. A strategic aiming 

point is then identified, and the distance to this target is evaluated. The objective is 

to direct the ball accurately toward the chosen point so that, through the impact with 

the putter and the subsequent interaction with the Green’s surface, the ball follows 

the intended trajectory. 

 

1.2 Market Overview 

In literature and at the professional level, the inertial sensors developed are a tool 

mainly used to study the kinematics of the putter. The analysis of the golfer's 

biomechanics, on the other hand, is usually approached through the implementation 

of optical systems, sometimes assisted by ultrasonic sensors, for application 

simplicity. However, these systems present significant challenges: setup, 

calibration, acquisition and, above all, processing of data is extremely time-

consuming, as many things must be set up and evaluated manually.  

Up to now, the optical systems on the market evaluate the goodness of the shot by 

mainly analysing the kinematics of the club and the data at impact (e.g., SAM 

PuttLab [6] and Quintic Ball Roll [7]). The more sophisticated ones can even assess 

and evaluate the Green and the ball's trajectory during the shot, comparing the 

trajectory of the shot obtained against the one recommended and estimated by the 

sensor according to the hole reading, such as distances and slopes (e.g., Trackman 

4 [8]). However, this instrumentation has limitations in use, as it is not portable and 

often requires a vast dedicated playing area. 

Inertial sensors, on the other hand, have the convenience of being easily mounted 

on the putter. However, a detail not to be overlooked is the invasiveness of the 
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instrumentation that must be added to the club structure; indeed, it is necessary to 

use and position such instrumentation so that it does not affect the golfer’s 

performance [12]. 

It is possible to note that the biomechanical part is neglected giving more relevance 

to the effectiveness of the shot, because there is no fixed rule for putting and every 

player can potentially develop his own technique aimed at improving the 

repeatability of the shot. Therefore, there is no standard on putting technique: some 

professional players, for instance, tend to have an “Address” and “Grip” that 

compensate for the peculiarities of their swing. It is precisely for this reason that 

the parameters (impact and swing metrics) identifying a correct execution are 

valued more importantly.  

 

1.3 Literature Overview 

In golf putt analysis, the increasing adoption of Inertial Measurement Unit (IMU) 

has emerged as a response to the significant limitations of optical tracking systems. 

These restrictions reside on the necessity of specialized facilities with a limited 

testing area, and all the challenges related to camera calibration, marker placement, 

and the expensive required equipment. Advancements in microelectronics have 

driven the development of IMU technology, allowing the possibility to integrate 

Micro Electro Mechanical System (MEMS) into compact units (Figure 1.5), such 

as accelerometers and gyroscopes. Thus, IMUs offer many advantages, including 

portability, compactness, lightweight and a wireless system. 
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Figure 1.5: Inertial Measurements Unit (Xsens-MTw). 

 

Thanks to their compact size and affordability, IMUs can be effectively employed 

as wearable devices in open field scenarios beyond the controlled environment of a 

laboratory.  

In this regard, many studies have been conducted to test the potential of IMUs in 

this area of analysis. First, it is important to evaluate where these can be placed on 

the putter, in order to prevent the club structure and thus the golfer's feel from being 

compromised. In this context, the study conducted by Kawano et al [12] stands out 

as an analysis of great interest, in which several configurations were tested to assess 

which had the least impact on the swing, providing an evaluation in terms of sensor 

placement and weight. This kind of technology is mainly implemented to perform 

swing phase analysis, neglecting trajectory and focusing on obtaining interesting 

swing phase and impact parameters [14] [15], through sensor calibration, signal 

filtering and zero-crossing methods. This is mainly caused by the limitations of 

IMUs, which lie precisely in the recording of measurement errors and consequently 

lead to drift errors in position integration. Several studies have attempted to estimate 

the complete trajectory of the golf club, but with many difficulties, particularly 
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concerning the recording duration. Most of these have exploited the Kalman filter 

to trace the sensors’ orientation and then, once the bias was removed from the 

sensors, estimate the position, either from the grip [17] or from the head [16]. 

Consequently, during the analysis of the putting stroke, IMUs enable the assessment 

of kinematics parameters [9], including the club’s path and orientation. Although 

their accuracy may not match that of optical system as the Stereophotogrammetric 

(SP), they could offer a practical alternative for real-time feedback and training 

applications, as demonstrated in previous studies: these researches, where a putter 

with integrated IMU sensor was designed [10] [11], demonstrated errors of the 

order of a few centimeters in the data estimation phase. 

Thus, the use of IMU has emerged as a possible solution in putting analysis. IMUs, 

which can capture crucial kinematic data, provide direct insights into the putter’s 

motion and the golfer’s technique, without relying on any external acquisition 

system, allowing the possibility of data collection in various environments and real-

time analysis. 

Therefore, the main challenge of this work consists in overcoming the limitations 

encountered in the literature for the analysis of putting, where the usage of low-cost 

inertial sensors implies registration quality problems, especially for long 

recordings. Indeed, it is known from the literature [28] that errors and measurement 

inaccuracies induce errors in terms of drift for position estimation, precisely 

because these errors, when integrated, tend to progressively accumulate over time. 

As a result, part of the estimate precision and accuracy is lost after a few seconds: 

indeed, as illustrated later, the unconstrained standard methods can lead to meters 

of drift, even on paths of a few centimeters. 
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1.4 Aim of the Thesis 

This study aims at addressing the challenge of developing a putting analysis system, 

through the implementation of inertial sensors, that overcomes the limits of existing 

technologies, in terms of cost and usage in the open field.  

The primary focus resided in the development of the proposed method, which 

concentrates on the estimation of putting stroke kinematics by relying on a small 

number of IMUs in a redundant configuration.  

The choice of the number and placement of sensors needed was made taking into 

consideration the limits of the devices, where sensors alone are unreliable because 

they are corrupted by too many errors. In this sense, after the evaluation of several 

configurations performed in the literature, this study proposes a redundant 

configuration of IMUs to mitigate the errors recorded by the individuals, assuming 

that these are different from each other. More particularly, the gyroscopes' errors 

are un-related [28], whereas those of the accelerometer are mainly related to 

calibration residuals, which result in further errors in the subsequent steps, where 

orientation must be estimated in order to remove gravity. 

Consequently, a redundant configuration was studied to enhance accuracy and 

minimize errors, where two inertial sensors were placed in the Shaft e Head of the 

putter. This configuration enables the extraction of swing parameters from the 

IMUs placed on the putter, allowing for an estimation of the putter’s trajectory 

without affecting the swing feeling. 

The challenge of this thesis resides in the fact that two IMUs alone do not provide 

sufficient data to derive complete and accurate putter trajectory due to the lack of 

information and the limits of this technology, as the trajectories estimated by these 
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IMUs are affected by errors. Therefore, to overcome these difficulties, an optimised 

approach and a model of the putter must be introduced to address these gaps. 

 

1.5 Thesis Outline 

The thesis is structured as follows: 

Chapter 2 presents an overview on IMUs and orientation estimation techniques, 

utilizing Sensor Fusion Algorithm (SFA) in both standard and proposed pipelines. 

In Chapter 3, the employed methods are elucidated. This section explores the 

interaction between the developed Denavit-Hartenberg (DH) model and IMU 

sensor data, focusing on the combination of these components within an 

optimization framework aimed at the reconstructed putter kinematics. 

Chapter 4 details the experimental session and a comprehensive description of the 

data acquisition process. 

In Chapter 5, the results obtained with the implemented optimization framework 

are reported, presenting Root Mean Square Error (RMSE) values in terms of 

orientation and position to evaluate the accuracy. 

In Chapter 6, a critical evaluation of the results presented in Chapter 5 is carried 

out. 

In Chapter 7, a summary of the main findings is presented, laying the foundation 

for future research. 
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Chapter 2 

State of the art 

2.1 Inertial Measurement Units 

IMU sensors rely on the combination of tri-axis accelerometers and gyroscope, 

which are orthogonally installed, recording the combined linear and gravitational 

accelerations and the angular velocity in relation to their Local Coordinate System 

(LCS) [20]. It is possible to acquire a complete estimation of the LCS orientation 

relative to the Global Coordinate System (GCS) through the application of SFAs, 

which accurately combine the sensors’ signals by evaluating the orientation related 

to the local direction of the gravity vector [21].  

As disclosed in Equation 2.1, accelerometers record the “specific force” (𝒂), 

representing the vector difference between the body’s acceleration (𝒂𝒃𝒐𝒅𝒚) and the 

gravity acceleration (𝒈). All quantities are expressed within the LCS of the sensor, 

with the following output: 

𝒂 = (𝒂𝒃𝒐𝒅𝒚 − 𝒈)           (2.1) 

 During the free-fall of the sensor, the 𝒂𝒃𝒐𝒅𝒚 term is equal to 𝒈 and consequently, 

the accelerometer output results zero. On the other hand, when the device is 

stationary and unaltered by external forces or acceleration, the 𝒂𝒃𝒐𝒅𝒚 contribution 

is null, allowing the accelerometer to sense only the gravitational acceleration, in 

the same manner as an inclinometer. Thus, when the sensor is moving, it becomes 

challenging to accurately estimate the inclination of the accelerometer, since the 
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body’s acceleration overlaps with the gravitational component. To this end, it is 

possible to distinguish these contributions and obtain a reliable estimate with the 

integration of additional information.  

This additional information is generally modelled as error components in the 

accelerometer signal. This provides the basis for studies that rely on models to 

separate the different components, for instance the bias and its fluctuations or the 

scaling matrix [22] [23] [24] [25]. 

Then, a simplified model was carried out, as shown in Equation 2.2, evaluating the 

needs and circumstances of the situation under analysis, as it will be further 

discussed in the next sections. For this reason, the different error components were 

merged into a single one, the accelerometer bias 𝒃𝒂, which is considered constant 

during the trial, thus simplifying the computational load of the proposed method. 

                                           𝒂 = 7𝒂𝒃𝒐𝒅𝒚 − 𝒈8 + 𝒃𝒂	                          (2.2) 

Just as for the accelerometer, the gyroscope also requires modelling the sensor 

output (Equation 2.3). Gyroscopes detect angular velocity along their axes. Various 

models for gyroscope output exist in the literature, primarily differing in the 

complexity of the different error contribution [22,23,25,26,27,28,29,30,31]. As 

performed before for the accelerometer, a simplified gyroscope output model is 

proposed: 

                                𝝎 =	𝝎𝒃𝒐𝒅𝒚 + 𝒃𝝎          (2.3) 

with 𝒃𝒈 that representing the gyroscope bias, considered constant within the single 

trial duration. Moreover, 𝒃𝝎 stands out as the most significant term of impact on 

the orientation estimation. Indeed, the integration of the angular velocity affected 

by errors introduces drift on the estimated orientation, which is crucial to correctly 
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remove the gravity vector from the accelerometer signal to avoid displacement drift 

thought the double integration, necessary to obtain the position [19]. 

 

2.2 Orientation Estimation based on a Sensor 

Fusion Approach 

By relying on SFA, it is possible to estimate the orientation combining the 

characteristics of the individual IMU sensors. This method exploits the integration 

of accelerometer and gyroscope measurements, allowing to obtain an estimate of 

the three-dimensional orientation of an IMU and, more generally, of the rigid body 

to which it is attached. To determine the absolute orientation of the IMU in three-

dimensional space, it is necessary to define the rotation between its LCS and the 

GCS. This is essential to eliminate the gravitational contribution from the 

accelerometer signals, enabling the integration of linear velocity and displacement. 

In the literature, the SFAs presented are numerous, many of which can be classified 

into the complementary or Kalman filter families, differing mainly in orientation 

parametrization (e.g., orientation matrices, quaternions, Euler angles), variants of 

the Kalman filter (e.g., linear, extended, etc.) and in the fusion strategies 

implemented (based on optimization or algebraic approaches). One of the most used 

filters is the Madgwick one [32], a complementary filter that relies on quaternions 

to estimate the orientation. This filter is appreciated for its application simplicity 

and involves a low computational cost since it requires the calibration of a single 

parameter 𝜷. 

The essential method to obtain the orientation from the IMU data consists initially 

in integrating the angular velocity, then refined with the accelerometer 

measurements. Consequently, the accelerometer data are employed in an optimized 
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gradient descent algorithm that, through the quaternion derivative, allows the 

calculation of the direction of the gyroscope measurement error. The parameter 𝜷 

plays a crucial role, being related to the zero mean of the gyroscope measurement 

errors; a higher value of 𝜷 increases the importance of the signals coming from the 

accelerometer. The accuracy of IMU orientation, determined through various SFAs, 

has been the focus of numerous studies in recent years. However, the results 

obtained have often been conflicting [20,33,34,35,36,37,38,39]. Indeed, the 

difficulty in achieving consistent and generalizable results lies in the necessity to 

calibrate, for each SFA, the parameters that regulate the sensor fusion process. 

A critical aspect is represented by the choice of parameter values, which is 

influenced by both intrinsic factors (e.g., intensity of sensor noise) and external 

factors (e.g., amplitude of the motion) [40]. Research proves that optimal parameter 

selection can significantly improve the accuracy of the estimated orientation, but 

finding suitable values is not simple. Indeed, there is no standardized configuration 

procedure that can be universally applied, which further complicates the process of 

generalizing the results. A possible approach could be to identify optimal parameter 

values minimizing the error between the estimated and reference orientations by 

analysing specific recordings. Additionally, it has been highlighted how each fusion 

algorithm tends to achieve optimal performances only within a narrow range of 

parameters [41]. In this context, variations in the experimental conditions could lead 

to significant errors if the calibrated parameters for different scenarios are 

maintained. This phenomenon demonstrates the necessity for a specific tuning of 

the parameters based on the experimental conditions [37,42], in order to ensure 

adequate performances for each SFA. 
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2.3 General Description of the Analysed Situation 

The scenario under analysis evaluates the club's trajectory during a putting stroke, 

equipped with two inertial sensors placed in strategic positions: Shaft and Head of 

the golf club. At first, it is essential to reconstruct a detailed model of the golf club 

to be able to establish the initial conditions of the sensors mounted on it. Since the 

golf club is considered a rigid body, the initial positions of the sensors remain 

constant with each other throughout the trial. Due to the complex geometry of the 

putter, highlighted in Figure 2.1, we adopted an initial optimisation framework to 

define the structural parameters of the putter. This allowed us to establish the 

orientation matrices that locate and orient the sensors mounted on the putter. 

To obtain an accurate estimation of the trajectory, an additional optimisation 

framework was required. This second approach is fundamental to clean the sensor 

signals of any errors and, through the SFA, ensure consistent orientation estimation. 

This step is crucial to avoid error drift in the subsequent integration steps required 

to determine the position of the putter. This methodological approach aims to 

minimise error accumulation and ensure measurement accuracy during the 

kinematic analysis of the stroke.   
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Figure 2.1: Putter Odyssey White Steel 2-Ball Blade. 

 

2.3.1 Standard Pipeline 

The use of SFAs allows the orientation of the sensors to be accurately estimated, 

making it possible to analyse the putting stroke even in the open field. Accurate 

estimation of the orientation of the sensors is the first step to an effective kinematic 

analysis of the shot. However, for this to be possible, it is necessary to align the 

LCSs of each sensor with respect to the GCS, taking into consideration the specific 

placement of each sensor in relation to the different sections of the golf club. 

Consequently, in order to obtain an accurate estimate of the kinematics of the putter, 
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it is crucial to establish and maintain a rigid and time-invariant relationship between 

the various segments of the club, which behaves as a rigid body divided into several 

segments connected by joints with zero degrees of freedom. A further challenge 

arises in estimating the kinematics without the use of a magnetometer, which limits 

the information on the relative orientation between IMUs in the horizontal plane. 

Without the direction of the Earth's magnetic field, it is not possible to define a 

single horizontal axis in the GCS, which has the vertical axis aligned with the 

gravity vector and one of the horizontal axes oriented in the direction of the Earth's 

magnetic field projected onto the horizontal plane. In the absence of magnetometric 

data, the alignment is achieved by having the x-axis of the GCS coincide with the 

x-axis of the single IMU. 

As a basic approach (Figure 2.2), a standard method using Madgwick's filter was 

adopted to estimate the orientation of the sensors [32]. Subsequently, by removing 

the gravitational component and integrating the signals, the position of the 

individual sensor in space during the trial can be derived. For this procedure, the 

parameter 𝜷 (constant for both sensors) and the bias of the gyroscope 𝒃𝝎, obtained 

from a recording made under static conditions, were predetermined for each sensor. 

Additionally, the putter model proves to be useful in developing a more reliable 

model of the club's rigid structure, facilitating calculations for sensor fusion. 

 

 

Figure 2.2: Schematization of the standard pipeline (𝑖<= − 𝑠𝑒𝑛𝑠𝑜𝑟𝑠). 
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This method, however, has limitations. The absence of specific constraints leads to 

measurement errors due to inaccurate estimates of 𝒃𝝎 and the lack of a corrective 

for possible accelerometer bias errors 𝒃𝒂. These errors, when integrated, tend to 

accumulate exponentially, compromising the accuracy of the estimate. In addition, 

the choice of a constant 𝜷 parameter for all sensors is inefficient, as each sensor 

would require a specific 𝜷 value to guarantee greater accuracy, adapting the 

solution to the characteristics of each device. 

 

2.3.2 Proposed Pipeline 

The estimation of the orientation of each sensor through Madgwick's filter, although 

useful, may not guarantee sufficient accuracy for a correct analysis of the 

displacement and, consequently, the kinematics of the putter. In this context, it 

becomes crucial to introduce an optimisation framework to identify the optimal 

combination of key SFA parameters, such as 𝜷 and the modelled error terms for the 

accelerometer and gyroscope, respectively 𝒃𝒂 and 𝒃𝝎. This approach is aimed at 

improving the performance of the SFA itself, enabling a more accurate estimation 

of the club's displacement in space. The aim of this study is, therefore, to improve 

the performance of the inertial sensors for kinematic analysis of putting directly on 

playing fields, by exploiting a redundant system of IMUs and an optimisation 

framework. This approach addresses the difficulties arising from the lack of 

complete data to derive the necessary kinematic equations.
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Chapter 3 

Methods 

3.1 Putter Model 

For the reconstruction of the golf club trajectory, it was essential to use a model 

implemented through MATLAB R2022b (The MathWorks Inc, MA, USA), to 

characterize the analysed putter. At this early stage, the optimisation of the 

structural parameters of the putter was essential to accurately define the putter 

model following the DH convention. This enabled to estimate precisely the sensor 

orientations based on their specific positioning on the putter. 

 

3.1.1 The Denavit-Hartenbeg Convention 

In order to accurately model the golf club, it was necessary to adopt a convention 

to define a rigid kinematic chain of the putter. For this purpose, the DH convention 

was applied, which is based on the construction of a kinematic chain using “links” 

to connect the “joints” to each other, as presented in Figure 3.1 [43]. This 

methodology is fundamental for establishing the orientation and position of the 

links within the structure. The transformation matrix 𝑨𝒊𝒊@𝟏 of the 𝑖<= link with 

respect to the previous (𝑖 − 1)<= is a 4𝑥4 matrix, which integrates both the 3𝑥3 

orientation matrix and the 1𝑥3 translation vector. The parameters defining the 

transformation matrix (Equation 3.1) are: 

• 𝒂𝒊 distance between 𝑂F and 𝑂FG ; 
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• 𝒅𝒊 coordinate of 𝑂FG along 𝑧F@I ; 

• 𝜶𝒊 angle between axes 𝑧F@I and 𝑧F about axis 𝑥F to be take positive when 

rotation is made counter-clockwise; 

• 𝜽𝒊 angle between axes 𝑥F@I and 𝑥F about axis 𝑧F@I to be take positive when 

rotation is made counter-clockwise. 

 

𝐴FF@I = 	 M

𝑐𝑜𝑠(𝜽𝒊) −𝑠𝑖𝑛(𝜽𝒊)	cos(𝜶𝒊) 𝑠𝑖𝑛(𝜽𝒊)	sin(𝜶𝒊) 𝒂𝒊	cos(𝜽𝒊)
𝑠𝑖𝑛(𝜽𝒊) 𝑐𝑜𝑠(𝜽𝒊)	cos(𝜶𝒊) −𝑐𝑜𝑠(𝜽𝒊)	sin(𝜶𝒊) 𝒂𝒊	sin(𝜽𝒊)
0 𝑠𝑖𝑛(𝜶𝒊) 𝑐𝑜𝑠(𝜶𝒊) 𝒅𝒊
0 0 0 1

U     (3.1)  

 

According to the DH convention, each joint is modelled with a single Degree of 

Freedom (DoF), called 𝝋, which describes the rotation of the joint. Furthermore, as 

revolute joints are used, while the first three parameters are constant and depend on 

the geometric configuration of the links between two consecutive joints, 𝜽𝒊 is 

typically time-varying to adapt to different chain configurations. However, in the 

specific case of the putter, which is a rigid body, 𝜽𝒊 is also kept constant to preserve 

the integrity of the kinematic chain, being uniquely defined by the geometry of the 

model. 
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Figure 3. 1: Denavit-Hartenberg convention [43]. 

 

3.1.2 Developed Putter Model 

In order to model the putter equipped with two IMU sensors (Shaft and Head), a 

kinematic chain connecting the sensors was created respecting the geometry of the 

rigid body under analysis. For this structure, 10 links and 11 joints were adopted 

(Figure 3.2). Since the putter is a rigid body, only the first three joints, starting with 

the top of the club, were defined as rotary (three DoFs: 𝜑I, 	𝜑Y, 	𝜑Z), thus 

incorporating all possible movements that can be executed during a stroke. 

Consequently, the downstream joints, and thus also the sensors, will move in 

response to these movements. The model of the putter is therefore characterised by 

a series of 14 parameters describing the measurements of its geometry (Table 3.1). 
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Figure 3. 2: Denavit-Hartenberg model of the putter 
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Link 𝜽𝒊 𝒅𝒊 𝒂𝒊 𝜶𝒊 

1 𝜑I + 𝜋/2 0 0 𝜋/2 

2 𝜑Y + 𝜋/2 0 0 𝜋/2 

3 𝜑Z + 𝜋/2 0 0 0 

4 0 −𝑙^_ 0 0 

5 𝜋/2 −𝑙`= 0 𝛼b 

6 −𝜋/2 0 0 −𝛼c 

7 0 −𝑑e 𝑎e 0 

8 0 0 𝑎g 0 

9 𝜋 𝑑h 𝑎h 0 

10 𝜋/2 0 𝑎Ii 0 

 

Table 3.1: Parameters of the putter model 

 

3.1.3 Optimised Putter Model 

To ensure greater accuracy in the subsequent calculations and to avoid errors due 

to incorrect manual measurements of the putter's characteristic parameters, it was 

necessary to implement a preliminary optimisation of the club geometry estimation, 

given the complexity of its structure (Figure 3.2).  

To this end, an objective function was implemented to improve the accuracy in 

estimating the characteristic parameters of the putter geometry compared to manual 

measurement. These parameters are crucial for precisely defining the DH model 

and correctly determining the orientation of the IMUs placed on the club. Out of 

the 14 characteristic parameters of the putter, 3 were known, while the other 11 

were optimised. 
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The optimisation was carried out by means of a static acquisition with 16 markers 

using a SP system. The objective function, in this case, minimises the distance 

between the estimated points of the model and those detected by the SP system, 

ensuring a better correspondence between the estimated and actual geometry. As a 

results of this approach, the residual obtained equals to 2.55 × 10@c.  

 

3.2 IMU-Based Information 

Thanks to the accelerometers and gyroscopes, it is possible to monitor the linear 

acceleration and angular velocity of the individual sensors during the entire trial. 

This data is crucial for obtaining an accurate estimate of the putter trajectory via the 

SFA. For this reason, the importance of the integration of the optimisation 

framework will be discussed in more detail in the following paragraphs, both to 

make the best use of the SFA and to correct any errors in the data collected by the 

IMUs during the trials, as the integration of such data tends to generate an 

increasing cumulative error. 

 

3.2.1 Orientation Estimation 

The estimation of the orientation of the two IMUs is obtained through the SFA 

method proposed by Madgwick in [32], which relies on a complementary 

quaternion-based orientation filter. This approach was adopted for its 

implementation simplicity, as it is based on the setting of a single parameter, 𝜷. As 

a result, the computational load is reduced, a prerequisite for the subsequent 

optimisation steps. 
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To determine the orientation using IMU data, the first phase concerns the 

integration of the angular velocity provided by the gyroscope. However, as this 

process is subject to cumulative errors, the estimated orientation is corrected using 

the accelerometer readings. The correction is made using an optimised gradient-

descent algorithm, which utilises the accelerometer data to calculate the direction 

of the gyroscope measurement error as a quaternion derivative. In this regard, it is 

crucial to correctly set 𝜷, the primary parameter of the filter that governs its 

behaviour. This value represents the zero mean of the gyroscope's measurement 

errors; therefore, when it assumes values greater than zero, it tends to give greater 

importance to the accelerometer's contribution. For this study, the chosen value for 

𝜷 was set at 0.001. 

The algorithm follows an iterative cycle in which, at each time step, the orientation 

is updated based on that calculated at the previous step. To start this process 

correctly, it is essential to select a suitable initial quaternion. It is reasonably 

assumed that, at the beginning, the rigid body connected to the IMUs is in a 

stationary condition, before any motion begins. This assumption permits to adopt 

an initialisation method that uses only the accelerometer data and initially avoids 

considering the gyroscope data. Subsequently, the orientation was estimated by 

combining the information provided by the accelerometer and gyroscope (Figure 

3.3). To improve the accuracy of the calculations, the gyroscope offset was reduced 

by averaging the angular velocity values recorded during static conditions. 
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Figure 3. 3: Overview of the orientation estimation (𝑖<= − 𝑠𝑒𝑛𝑠𝑜𝑟𝑠). 

 

3.3 Definition of the Optimisation Framework 

In this section, the optimisation framework will be examined, focusing on the 

optimisation algorithm used and, on the optimisation implemented. The purpose of 

this approach is to obtain a more precise estimate of the essential SFA parameters, 

necessary for an accurate reconstruction of the trajectory. In addition, a constraint 

function will be illustrated, designed to impose conditions during optimisation that 

favour an estimation of the trajectory that is closer to reality. 

 

3.3.1 The Sequential Quadratic Programming Algorithm 

The optimisation framework implemented relies on the Sequential Quadratic 

Programming (SQP) algorithm, an iterative method particularly suited for 

constrained non-linear optimisation. This approach involves solving a series of 

optimisation subproblems using a quadratic model of the objective function and a 

linearisation of constraints. The process is based on a quadratic approximation of 

the Lagrangian function, formulated as a Quadratic Programming (QP) problem. 

The solution of each subproblem provides a new iteration point, progressively 

improving the optimisation. Therefore, the SQP method can be considered a quasi-
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Newton method that exploits the properties of QP subproblems to converge to an 

optimal solution, as illustrated in Figure 3.4. 

Consider a general non-linear programming problem formulated as follows: 

𝑚𝑖𝑛n	𝑓(𝑥)	

𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜			ℎ(𝑥) ≥ 0,			𝑔(𝑥) = 0 

The Lagrangian associated with the problem is given by: 

ℒ(𝑥, 𝜆, 𝜎) = 𝑓(𝑥) − 𝜆ℎ(𝑥) − 𝜎𝑔(𝑥)     (3.2) 

where	𝝀 and 𝝈 are the Lagrange multipliers. To find a solution 𝛁𝓛(𝒙, 𝝀, 𝝈) = 0  that 

satisfies the optimal conditions, the SQP algorithm computes a search direction 𝒅𝒌 

from a current iteration (𝒙𝒌, 𝝀𝒌, 𝝈𝒌), solving the QP subproblem. In the absence of 

constraints, the algorithm reduces to Newton's method, which goal is to find a point 

at which the target gradient equals to zero [44]. The implementation of the SQP 

algorithm involves the following main steps [45]: 

• Updating the Hexian matrix. 

• Solving the quadratic programming subproblem to obtain the search 

direction. 

• Initialisation of the optimisation parameters. 

• Line search and evaluation of the merit function to ensure convergence. 

Consequently, the algorithm requires well-defined initial conditions and a clear 

objective function to be minimised in order to work properly. 
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Figure 3. 4: General scheme illustrating the basic SQP algorithm [33]. The terms 

f(x), h(x), and g(x) are each potentially non linear; x is potentially a vector of 

many variables for the optimization, in which case h(x) and g(x) are systems. 

𝛻nnY 	denotes the Hessian matrix. 

 

3.3.2 Objective Function 

The implemented framework (Figure 3.5) is significantly complex, as it requires 

the optimisation of multiple parameters to minimise the objective function. The 

variables to be optimised for each IMU sensor are: 

• 𝜷 parameter of the Madgwick filter 

• Residual Gyroscope bias 𝒃𝝎 along the three axes 

• Accelerometer bias 𝒃𝒂 along the three axes 

With two sensors placed on the putter, the total number of parameters to be 

optimised is 14. For each parameter, an upper and lower limit was defined 

according to the situation analysed. In addition, 𝜷 and 𝒃𝒂 were initialised to null 
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values; instead, 𝒃𝝎 was initialised equal to the bias value recorded under static 

conditions for both sensors. In addition, the putter model was exploited to orient the 

rotation matrix with respect to the putter reference system. Consequently, the 

objective function 𝒇𝒐𝒃𝒋 at this phase aims to minimise the relative difference in 

orientation between the two sensors throughout the trial [48]. Specifically, once the 

optimised bias was removed from the accelerometer and gyroscope signals, and the 

Madgwick filter with the optimised 𝜷 value was applied, it was possible to obtain 

the accurate orientation of each sensor. Thanks to the optimised parameters, it was 

then possible to repeat the previously defined steps to estimate the orientation 

precisely and, consequently, reconstruct the trajectory of the putter. 

 

 

 

Figure 3. 5: Overview of the optimization framework (𝑖<= − 𝑠𝑒𝑛𝑠𝑜𝑟). 

 

Before reaching the final version of the framework, various combinations of the 

parameters to be optimised were tested to find the optimal configuration. The tested 
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partial combinations and their improvements will be discussed in detail in Section 

5. 

 

3.3.3 Constraint Function 

As will be evident in Section 5, in which the results obtained will be discussed, the 

use of the objective function alone for the optimisation is not sufficient to obtain an 

accurate estimate of the putter trajectory, since even a minimal residual error in the 

data recorded by the IMU, once integrated, leads to a progressive accumulation of 

error in the calculated displacement. To avoid drift errors, it was therefore necessary 

to introduce a non-linear constraint function. The latter, during optimisation, 

evaluates the acceleration, velocity and position vectors, verifying that certain 

conditions are satisfied at specific stages of the swing. The constraints imposed 

during the trials (Figure 3.6), designed to achieve more valid parameter 

optimisation, are described below. 

During static phases before and after the stroke: 

• Inequality constraint: norm of the accelerometer signal between 9.80 −

9.82	𝑚/𝑠Y 

• Equality constraint: average acceleration equal to a 0	𝑚/𝑠Y 

• Equality constraint: average velocity equal to a 0	𝑚/𝑠 

• Inequality constraint: maximum of the velocity magnitude between 0 −

0.005	𝑚/𝑠 

During the entire swing phase: 

• Inequality constraint: position of the putter head along the axis 

perpendicular to the ground between 0 − 0.1	𝑚 
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Figure 3. 6: Constraint Function and an example of the Head position along the x-
axes 

 

3.4 Estimated Orientation and Trajectory 

Following the optimisation, it is possible to proceed with the evaluation of the putter 

trajectory. With the optimised parameters, an accurate estimation of the orientation 

during the entire trial is obtained. This allows to remove the gravitational 

component from the accelerometer signal of each sensor, based on its orientation, 

and subsequently integrate the signal to calculate the velocity and position of the 

IMUs, thus determining the trajectory of the club. 

To verify the accuracy of the calculated data, the results were compared with those 

obtained through the SP marker system equipped on the putter. For a quantitative 

evaluation of the estimation, the RMSE was calculated, which measures the 

differences between the results derived from the IMUs and those provided by the 

SP. 
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As will be discussed in Section 5, the RMSE calculation was implemented to 

compare orientation and position for each IMU, ensuring a comprehensive analysis 

of the differences
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Chapter 4 

Experimental procedure 

4.1 Setup 

This experimental study was carried out within the PolitoBIOMed Lab, a laboratory 

of the Polytechnic of Turin equipped with advanced instrumentation for the study 

and analysis of motion, as shown in Figure 4.1. Two main systems were used for 

data acquisition: 

1) Vicon-Vero SP system as the gold standard, consisting of: 

• 12 Vicon infrared cameras to reduce artefacts caused by natural 

light, ensuring accurate tracking; 

• 3 RGB cameras for video recording of the experiments; 

• An active wand was used to calibrate the system, using known 

geometric marker configurations (Figure 4.1); 

• 16 passive markers, coated with retro-reflective material, were 

placed on the putter, as shown in Figure 4.2; 

• Nexus software (v. 2.11) was utilized for extracting files. 

2) Xsens-MTw IMU-based system: two IMUs were fixed on specific putter 

segments (Shaft and Head) for motion tracking, operating at a sampling rate 

of 100 Hz. Each IMU within the system includes (Figure 4.3): 

• 3D accelerometer with a selectable full-scale range up to ±16𝑔; 

• 3D gyroscope with a full-scale range selectable up to ±2000	°/𝑠. 
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Figure 4.1: PolitoBIOMed Lab with Vicon-Vero System and Active Wand. 

 

 

Figure 4.2: Putter equipped with SP markers and IMUs attached to plates. 
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Figure 4.3: Performance of IMU Xsens-MTw [46]. 

 

In order to fix the IMU sensors on the putter, it was necessary to use plates (Figure 

4.2), which provide a stable support surface for the sensors and allow the 

application of markers visible to SP, which are essential for validating the position 

of the sensors. The IMU sensors and markers were fixed to the plates with double-

sided tape; the plate mounted on the putter head was also attached with double-

sided tape, while the one positioned on the shaft, just below the grip, was fastened 

with Velcro Straps and Elastic Bands. To ensure maximum realism during the trials, 

a putting practice mat was also employed (Figure 4.4). 

 

 

Figure 4. 4: PuttOUT mat for putting practice [47]. 
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4.2 Protocol 

The proposed validation protocol involves several preliminary steps to ensure the 

reliability of the measurements. To mitigate temperature-related effects, an initial 

sensor warm-up was performed, followed by gyroscope bias calculation and marker 

preparation. Before experimentation, the SP system was configured through a 

masking process, full calibration and laboratory reference system setup. 

The putter was equipped with optoelectronic markers and IMU sensors, as shown 

in Figure 4.2, and a static acquisition was performed to allow manual labelling of 

the markers, ensuring an accurate match with the points detected by the camera 

system. During the post-processing phases, Nexus software was used to fill in the 

gaps due to marker occlusion, execute the dynamic pipelines and finally export the 

data in ASCII format for subsequent analysis. 

The study was conducted on a healthy 27-year-old male subject, an amateur golfer, 

who took 22 strokes to analyse the swing and thus the club trajectory. The shots 

included several variations to ensure a thorough analysis and to verify that the 

system was applicable under different conditions and with all types of putting 

swings. 

The trials were captured and analysed with great precision using the combination 

of the SP and IMU systems, according to the following procedure: 

1) 10-minute warm-up of the IMUs; 

2) Preliminary acquisition under static 16-marker conditions of five minutes 

of the IMUs to estimate the gyroscope bias; 

3) Starting the acquisition with the IMU software; 

4) Start recording with Nexus at 11 markers; 

5) Execution of the first shot; 
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6) Stopping recording with Vicon; 

7) Stopping the acquisition of IMUs; 

8) Repeat steps 3-7 to acquire additional shots. 

During the trial acquisitions, it was necessary to reduce the number of markers from 

16 to 11, as some of them were not visible to the infrared cameras for excessively 

long time intervals. 

Once the acquisition procedure is complete, the data recorded by the two inertial 

sensors and the SP system are saved for further processing. For the IMU, the data 

are organised in a matrix of size 𝑁�_��� × 7  for each sensor, where the columns 

represent, in order, the following variables: time series, accelerometer signal along 

the three axes and gyroscope signal along the three axes. As for the SP, the data are 

instead stored in a matrix of size 𝑁�_��� × (𝑁��_��_ × 3), where the position of 

each marker is defined along the three directions. 
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Chapter 5 

Results 

In this chapter, the results obtained are presented, with a comparison between the 

proposed optimisation framework and the standard approach discussed above. The 

SP system was used as the gold standard for data verification. Furthermore, a partial 

configuration of the optimisation framework will be analysed to highlight the 

importance of introducing a constraint function in improving the performance of 

the proposed approach. To this end, three distinct situations were considered: 

1. Standard pipeline; 

2. Partial optimised pipeline: optimisation limited to two parameters (𝜷, 𝒃𝝎) 

without the use of a constraint function; 

3. Optimised pipeline: optimisation of three parameters (𝜷,𝒃𝝎, 𝒃𝒂) with the 

integration of a constraint function. 

Finally, a comparison is presented between the results obtained by analysing only 

the swing phase and those for the entire trial (static and dynamic phases). 

 

5.1 Orientation 

Below the results of the orientation estimation are reported, in the dynamic swing 

phase only, comparing the three methods with the gold standard. The analysis was 

conducted for each IMU and, in Table 5.1, the mean and standard deviation of the 

RMSEs obtained in terms of orientation (Equation 5.1) for each trial are presented, 

evaluating the orientation error angle (𝜽𝒆𝒓𝒓) between the estimated (𝑹𝑰𝑴𝑼) and 



Results 

40 
 

actual (𝑹𝑺𝑷) rotation matrix. A comparison of the methods is presented. In addition, 

a representative example of the proposed optimised pipeline is provided by showing 

the orientation RMSEs for each sensor in all trials (Figure 5.1). 

 

  �
	𝜃�__ = 𝑅𝑜𝑡𝑀𝑎𝑡2𝐴𝑥𝐴𝑛𝑔(𝑅��∗ ⊗ 𝑅���)

𝑅𝑀𝑆𝐸 = 𝑅𝑀𝑆(𝜃�__)
               (5.1) 

 

 

Table 5. 1: Mean and Standard deviation of the RMSEs obtained in terms of 

orientation for each trial, with a comparison between the methods. 

 

 

Figure 5. 1: RMSE obtained from the orientation of each IMU for all the trial, 

analysing the Proposed Pipeline. 
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5.2 Position 

Analogously to Section 5.1, the trajectory comparison is conducted in the swing 

phase only. The mean and standard deviation of the RMSEs obtained in terms of 

position (Equation 5.2) for each trial are shown in Table 5.2, evaluating the distance 

error (𝒅𝒆𝒓𝒓) between the estimated (𝒑𝑰𝑴𝑼) and actual (𝒑𝑺𝑷) position. A comparison 

of the different methods for both IMUs is presented. 

An example of position RMSE for each sensor across all trials is also shown, 

compared to the full optimised method (Figure 5.2). Consequently, for both sensors, 

the position profiles obtained in the various trials were compared (e.g., Figure 5.3). 

Finally, the difference in the results considering the entire trial versus the swing 

phase alone was highlighted (Table 5.3), demonstrating the advantages of the 

proposed method, as will be discussed in Section 6. 

 

�	𝑑�__ =	∥ 𝑝�� − 𝑝��� ∥𝑅𝑀𝑆𝐸 = 𝑅𝑀𝑆(𝑑�__)
                 (5.2) 

 

 

Table 5. 2: Mean and Standard Deviation of the RMSEs obtained in terms of 

position for each trial, with a comparison between the methods. 
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Figure 5. 2: RMSE obtained from the position of each IMU for all the trial, 

analysing the Proposed Pipeline. 

 

 

Figure 5. 3: Position profiles obtained from one stroke for both sensors (x-axes 

[frame], y-axes [meters]). 

 

 

Table 5. 3: Differences in terms of RMSE position (mean and standard deviation) 

between the swing phase and the entire trial. 
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Chapter 6 

Discussion 

The aim of this study is to overcome the limitations of current technologies for putt 

analysis, making it applicable in open field conditions without implementation 

constraints. The main objective is to evaluate the trajectory of the putter using a 

redundant configuration with two IMUs, strategically placed on the Shaft and Head 

of the club. To achieve this, 22 putting strokes were recorded, executed with 

different techniques to ensure a more comprehensive analysis of possible swing 

types. A healthy 27-year-old male participant and amateur golfer took the strokes 

using the putter instrumented with the two IMU sensors and the SP system markers. 

The data collected from the inertial sensors were integrated into the optimisation 

framework, together with the results of the first DH model framework. The 

optimised trajectory was finally compared with that derived from the SP system, in 

order to evaluate the orientation and position of the sensors during the trials. 

 

6.1 Outcomes and research limitations 

As illustrated in Section 5, the results obtained were analysed taking into 

consideration the orientation and position of the IMUs to assess the potential of the 

proposed approach. 

The first comparison concerns the orientation estimation, which is essential to 

correctly remove the gravity vector from the accelerometer signal. Table 5.1 shows 

the average RMSE of the orientation for the dynamic phases of the trials in the three 
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compared methods. It is observed that the standard method performs slightly better 

in terms of orientation, as the optimised frameworks mainly aim at reducing 

position errors, sacrificing part of the accuracy in orientation estimation, as 

discussed later. Furthermore, Figure 5.1 presents a comparison between the two 

IMUs for each shot compared to the full optimisation approach. The results 

demonstrate some variability, alternating between optimal performance and more 

inaccurate estimation, with performance corrupted more by estimation error. 

However, it is noticeable that the IMU placed on the Shaft, despite its complex 

position, offers more stable results. 

Regarding position estimation, Table 5.2 shows the average RMSE for the dynamic 

phases of the trials. As anticipated, the optimised pipeline sacrifices orientation 

accuracy to improve position estimation. This approach reduces drift errors 

generated by the integration of residuals into the acceleration vector, demonstrating 

significantly better performance than the standard method. However, the partial 

optimisation pipeline shows that relying on only one framework is not sufficient to 

obtain accurate results, necessitating the introduction of the constraint function to 

better guide the optimisation process. 

A further comparison between the two IMUs for each shot is displayed in Figure 

5.2. A correlation can be seen between orientation and position errors: inaccurate 

orientation estimation negatively affects position, generating drift errors. On 

average, the IMU positioned on the Head of the putter performs better, with an error 

of approximately 0.01-0.02 m lower than the Shaft. In many cases, the position 

error is around 0.05 m, highlighting the potential of the proposed method, which 

could provide greater reliability and accuracy with further refinement. 
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Figure 5.3 presents an example of an analysis of sensor position profiles against 

those recorded by the SP system. The constraints imposed in the optimisation help 

to correctly estimate known phases, such as stationarity during the static phases, 

before and after the swing. 

Finally, Table 5.3 demonstrates the importance of the constraint function in 

preventing excessive drift errors, which would otherwise quickly accumulate. The 

integration of an effective constraint function is crucial to ensure proper parameter 

optimisation, preventing the accumulation of errors in the acceleration vector and 

improving the final trajectory estimate. 

 

6.2 Future development 

Given that this is a developing method, many aspects presented in this study require 

further study and evaluation, aimed at improving the performance of the proposed 

approach. In this sense, as results show, it is important to find other solutions that 

can mitigate the drifts, mainly caused by the residual accelerometer and gyroscope 

bias. Consequently, with an eye towards future scientific developments, it may be 

beneficial to investigate the IMU error model in greater depth, attempting to 

estimate in detail all the possible errors’ contributions recorded by the 

accelerometer and gyroscope. Indeed, this model could be integrated into the 

optimization framework in order to obtain a more accurate estimate of these errors. 

Furthermore, given the low speeds involved, it is very important to thoroughly 

analyse the accelerometer signal, as any incorrect saturation points or readings are 

unlikely to occur: instead, the signal may be minimally affected by the vibrations 

deriving from the impact with the bat. 
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Another important aspect to concentrate on to enhance the method’s performance 

relies on focusing on the constraint function, to introduce new constraints aimed at 

facilitating the optimization in finding feasible solutions. However, this would 

generate an high computational load: in fact, introducing too many parameters to 

optimise and boundary conditions to the constraint function would require a too 

long processing time, while the method proposed in this study necessitates about 5 

minutes per trial. 

Finally, many other elements can be introduced, either to help the optimization to 

better navigate the solution space, or to provide a more detailed analysis. For 

instance, an investigation into the correlation between the swing and the shot taken 

may be carried out, to propose an estimation of the ball's trajectory as a consequence 

of the data at impact. Furthermore, by integrating an additional IMU sensor into the 

golf glove it would be possible to determine a correlation between the golfer's 

biomechanics and the putter trajectory. 

Lastly, it would be critical to expand the dataset by acquiring additional trials from 

various players. This would enrich the information available, enabling a more 

comprehensive evaluation of different swing possibilities, while also facilitating the 

implementation of boundary conditions. 
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Chapter 7 

Conclusion 

Golf stands out as a sport where the precision and repeatability of the technical 

gesture are fundamental elements for enhancing performance. For this reason, given 

the complexity of this sport, it is essential to be able to train in a targeted manner. 

In this sense, a significant golf limitation consists in the need to analyze the 

technical gesture exclusively in dedicated spaces, such as simulators or practice 

ranges, making it difficult to carry out evaluations in the open field during a game. 

This research aims to propose an innovative solution for open-field monitoring of 

the putting stroke, the most frequent and decisive shot in tournaments. Emerging 

technologies, such as wearable devices and sensory fusion techniques, offer 

promising alternatives, laying the basis for feasible solutions for a more effective 

and accessible analysis.  

In the present study, an innovative method was developed to perform this analysis. 

By implementing a minimal redundant configuration of inertial sensors, the putter 

was modelled following the DH convention, integrated into an optimization 

framework. This approach permits to estimate the orientation and position of the 

putter and evaluate its performance through the SP system. The results obtained, 

measured in terms of RMSE, showed good accuracy in orientation. However, 

significant limitations still emerge in the estimation of position, which do not yet 

achieve the necessary level of precision required for a complete and accurate 

analysis of the technical gesture. Therefore, in the future scientific field it will be 
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crucial to find solutions to reduce the errors introduced by IMU signals, in order to 

limit the accumulative drifts in position estimation.  

Despite these limitations, this study has demonstrated the potential of the proposed 

approach for analyzing open-field putting, opening up new perspectives for the 

application of similar technologies to other shots in golf and even other sports
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