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Abstract 

Brain-computer interfaces (BCI) are systems capable of interpreting the neural activity of 
a subject and translating it into a digital output signal. BCIs are recognized by the scientific 
community as a potential remedy for restoring the motor functions of physically impaired 
patients.  
The long-term goal of this study is to restore tetraplegic patients' motor abilities. As they 
have lost the ability to correctly execute movements, only imagined or attempted 
movements can be performed. ElectroEncephaloGram (EEG) based BCIs allow for the 
decoding of imagined movements through a non-invasive approach. 
The drawback of these systems is their limited clinical application. While they achieve 
good performance within a laboratory, they are rarely built to work in a real-life setting 
and when they do, they can hardly achieve acceptable performances. 
The study aims to identify what limitations prevent an EEG-dependent BCI system from 
being applied in a real-life situation and tries to propose how these limitations can be 
overcome both from the point of view of the configuration of the experimental protocol 
and from the point of view of the models applied. 
The work is therefore divided into two: an initial study of a classification model, applied 
to an already existing dataset, and secondly, the development of our own experimental 
protocol, the data acquisition, and the application of the previously tested models on the 
new dataset. 
The online dataset used is the BCI Competition IV dataset 1, containing EEG signals taken 
using a 59-electrode helmet from seven healthy subjects executing a Motor Imager (MI) 
task.  
To overcome the limitations of laboratory BCIs, two points have been identified to be 
applied to the protocol: firstly, to make the BCI subject-independent, so that it does not 
need to be calibrated on each subject. Second: make the BCI self-paced, thus allowing the 
subject to freely execute movements asynchronously, without a cue. The acquired dataset 
consists of the EEG signals taken using a 21-electrode helmet from four healthy subjects 
executing a MI task.  
The models applied are based on different combinations of processing steps and are 
validated by cross-validation using a fixed training window and a sliding testing window. 
The signals have been pre-processed with passband time filters in the alpha and beta range, 
and a Common Average Reference (CAR) filter. To extract useful features a CSP filter has 
been applied. Two different types of classification algorithms have been used, (LDA and 
SVM).  
On the subject-dependent calibration phase of dataset I of BCI competition IV, the applied 
models show an accuracy that varies between 76% and 92% when classifying the two 
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Intentional Control (IC) classes. When classifying between IC and No Control (NC), the 
accuracy varies between 73% and 84%. 
Slightly modified models have been applied to the acquired dataset. The performance 
results of these models have been in line with the other dataset when classifying between 
NC and IC while the results dropped when classifying between IC classes. Only the first 
subject achieved acceptable results, with an accuracy of 67%. The other 3 subjects reported 
random classification with an accuracy of 50%.  
Possible causes are the different kinds of MI tasks performed and errors or inaccuracies in 
data acquisition and protocol definition. 
Future continuations of the study could focus on finding better-performing classification 
models and revising the experimental protocol by trying to identify its limitations and 
flaws. 
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Introduction 

Neuromuscular disorders are developmental diseases that can occur at different ages. They cause 
damage to the motor unit, i.e., motor neuron, nerve fiber, muscle, and fibromuscular plate, and can 
also involve the central nervous system (CNS). Those affected may partially or totally lose the 
ability to use certain muscles. This loss of motor capacity may involve control of finer movements, 
such as those of the fingers of the hand, to more extensive movements, such as the use of the lower 
and upper limbs. Neuromuscular disorders can be of various types, among them we mention 
genetic disorders, spinal trauma, and ischemic brain injury [1]. 
The occurrence of these diseases has in many cases devastating physical, economic and 
psychological effects for the patient [2] [3]. 
 
Brain computer Interfaces (BCI) are tools for capturing a patient's neural activity and translating 
it into movement and are a potential remedy for restoring lost motor skills of patients with 
neuromuscular diseases [4]. The disadvantage of these systems is their limited clinical application. 
While they perform well in a laboratory, they are rarely built to work in a real-life setting, and 
when they do, they can hardly provide acceptable performance [5]. 
The study aims to identify what limitations prevent a BCI system from being applied in a real-life 
situation and tries to suggest how these limitations can be overcome to restore the motor output of 
physically impaired patients, both from the point of view of the configuration of the experimental 
protocol and from the point of view of the models applied. 
 
The work done in this thesis follows the workflow in Figure 1. Initially, a literature search was 
performed with the aim of understanding the state of the art of these technologies in application to 
our goal: to restore the motor output of physically impaired patients. Following the literature 
search, an experimental protocol for data acquisition was drafted. The data were acquired on 
healthy patients. However, the protocol was designed for patients with motor impairments and was 
made so that it could be performed by both healthy patients and patients with motor disabilities. 
Concurrently with the literature search and protocol drafting work, models were developed to 
classify imaginary hand movements. The models were initially constructed and tested on BCI 
competition IV dataset 1 [6], and then applied to our dataset with appropriate modifications. 
 

 
Figure 1: Thesis workflow. 
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The brain and its electrical activity 

Neuroanatomy 

The nervous system is divided into 2 parts: 
1. The brain and the spinal cord form the Central Nervous System (CNS). Its function is 

to react to events produced by the outside world or by its own organism and to respond 
with outputs that meet the body’s needs; 

2. The Peripheral Nervous System (PNS) carries the messages towards and outside of the 
CNS. It is in turn divided into two different components: an afferent component, which 
is responsible for transmitting information from the organs to the CNS, and an efferent 
component, which is responsible for transmitting information from the CNS to the 
organs. 

 
The brain is composed of three major parts: the cerebrum, the cerebellum, and the brain stem. Both 
the brain and the spinal cord are covered by three protective layers called meninges. In order from 
the outermost to the innermost layer, there is the dura mater, the arachnoid, and the pia mater. The 
latter layer is rich in veins and arteries [7]. Further layers of bone (the skull), periosteum, and skin 
cover the brain. 
 
Another characteristic of the brain is that it is divided into 2 paired cerebral hemispheres: the right 
hemisphere and the left hemisphere. Each hemisphere consists of different layers. The cerebral 
cortex is the outer layer, also called gray matter. The gray matter is between 1.5 and 4 mm thick 
and it is convoluted into folds made of gyri and sulci. In the brain, the white matter is beneath the 
gray matter, while it is the opposite in the spinal cord (Figure1). The gray matter contains mainly 
neuronal soma (i.e., cell body) and unmyelinated axons, while the white matter mostly contains 
myelinated axons that interconnect the various cortical and subcortical areas. 
 

 
 
Figure 2: Gray and white matter distribution in the brain (left side) and spinal cord (right side). From 
“https://www.hopkinsmedicine.org”. 
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The cerebral cortex can be divided into 4 main parts or lobes (Figure 2): 
1. The Frontal lobe: located in the front part of the brain, includes the motor cortex, involved 

in the control of motor activity, and other areas involved in language and personality 
determination; 

2. The Paretial lobe: located immediately behind the frontal lobe, comprises the 
somatosensory cortex, implicated in the processing of sensory information associated with 
sensations of touch, temperature, and pain; 

3. The Occipital lobe: located still behind the parietal lobe and includes the visual cortex, 
which is implicated in the processing of visual processes; 

4. The Temporal lobe: located inferior to the other lobes and comprises the auditory cortex, 
which is involved in the processing of auditory processes. 
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Figure 3: The division of the brain into lobes, the main sulci, and the mapping of certain functions performed by the 
cortex. From Wolpaw (2012). 

 
Of particular interest to this thesis is the positioning of the motor and somatosensory cortex. 
The primary motor cortex lies along the anterior wall of the brain and continues into the precentral 
gyrus. The primary somatosensory cortex lies along the posterior wall of the brain and continues 
onto the postcentral gyrus. 
Those areas have been first mapped at the beginning of the last century by the work of 
neurosurgeon Wilder Penfield [8]. His studies led to the well-known map of the motor homunculus 
(Figure 3). This map shows a distorted human figure, the homunculus, where each body part is 
associated with an area dedicated to its motor or somatosensory function. The mapping was made 
possible by direct electrical stimulation of the brain [9]. 
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Figure 4: The motor homunculus derived by Wilder Penfield illustrating the effects of electrical stimulation of the 
cortex of human neurosurgical patients. Adapted from Nolte ( 2002). 

 
The cortex contains three distinguishable parts which are: the neocortex, the paleocortex, and the 
archicortex. While the last two are connected to more instinctual and emotive functions, the 
neocortex is responsible for more complex cerebral functions, such as memory, language, and 
learning. The neocortex is in turn divided into 6 layers, each layer connected to the other layers 
and containing a distinctive distribution of neuronal cell types [10]. 
 

The neuron 

The nervous system is composed of 2 different kinds of cells: 
1. Neurons; 
2. Glial cells. 

Neurons are excitable cells that communicate with each other by transmitting electrical impulses. 
Glial cells are much more than neuronal cells and perform structural and metabolic support 
functions for neurons. 
The neuron is the basic unit of the brain and each neuron forms 1000 to 10000 connections with 
other neurons. 



11 
 

 
Neurons can be classified by function into three groups: 

1. Sensory neurons: transmit information from the receptors. Those are afferent neurons; 
2. Motor neurons: transmit the information from the CNS to effectors. Those are efferent 

neurons; 
3. Interneurons: connect sensory and motor neurons, do information processing, and 

participate in the execution of complex cerebral functions such as memory and emotions. 
 
The neurons contain three components (Figure 4): 

1. the cell body; 
2. the dendrites; 
3. the axon. 

The cell body contains the nucleus of the neuron. The dendrites branch off the cell body and have 
the function of receiving information from other neurons. The axon is another branch that develops 
in the opposite direction to the dendrites and has the function of sending information to other 
neurons. 
 

 
 
Figure 5: Structure of a typical neuron. From: “www.training.seer.cancer.gov/brainl” 

 
Neurons communicate with each other by generating electrical signals. These electrical signals 
propagate along axons and are called action potentials. The action potentials transmit information 
from one neuron to the next one through synapses. 
The action potential is a modification of the membrane potential that propagates without 
attenuation (Figure 5). 
 
There is an “analogic” part of the neuron and a “digital” part. There can be many excitatory and 
inhibitory postsynaptic potentials from the pre-synaptic neurons (analogic part). The inputs are 
summed depending on the strength and type of synapse both in time (temporal summation) and 
space (spatial summation). In the end, the action potential starts only if the depolarization of the 
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neuron exceeds the threshold, it is either in or out (digital part). Once generated, an action potential 
propagates without attenuation along the entire axon. 
 
The propagation mechanism of action potentials differs depending on whether myelin or amyelin 
axons are involved. 
Myelin axons allow a faster propagation of the action potential through a mechanism called 
saltatory conduction. Myelin creates a high resistance to the passage of ionic currents. In the tracts 
where the myelin is present the membrane depolarization, and thus the propagation of action 
potentials, only occurs near the nodes of Ranvier. Those are the areas where the myelin sheath 
enclosing the neurons is interrupted and where all voltage-dependent channels are concentrated. 
Without myelin the conduction slows down, decreasing the travel of information speed. 
 

 
 
Figure 6: Phases of an action potential in relation to membrane voltage over time. From: 
“www.teachmephysiology.com” 

 
 

Brain activity measures 

The electric activity of the brain and its component can be measured on different scales. The 
electric field is generally measured on 4 different scales: 

1. Single neuron potential: it is possible to measure directly the intracellular voltage of a 
single neuron through methods such as the patch clamp; 

2. Microscale fields: populations of neurons can be measured over a tissue volume of around 
10-3 to 1 mm3 range. Those are the Local Field Potentials (LFPs); 
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3. Mesoscale field: tissue volumes of 1-20 mm3 can be measured. This scale allows measuring 
mainly over the surface of the cortex through the ElectroCorticoGram (ECoG); 

4. Macroscale field: large areas of the brain can be measured through this scale, with tissue 
volume around the range of 103 to 104 mm3. The most used technique at this scale is 
ElectroEncephaloGraphy (EEG), where each electrode catches the spontaneous 
cooperative activity of the neural structure within the brain. The EEG measures the activity 
over the scalp. 
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BCI 

Definition and History 

The definition of BCI according to Wolpaw [10] is the following: 
 
“A BCI is a system that measures CNS activity and converts it into artificial output that replaces, 
restores, enhances, supplements, or improves natural CNS output and thereby changes the 
ongoing interactions between the CNS and its external or internal environment.” 
 
In essence, BCIs are systems that allow communication between the brain and an external 
machine. 
 
Systems that control external devices through other biosignals which are not brain signals are not 
to be considered BCI. Examples of those other biosignals are Electromyography (EMG), 
ElectroOculoGraphy (EOG), Eye-tracking, Motion capture system, and electrocardiogram (ECG). 
Nevertheless, those systems can be complementary, and they are often coupled with BCI systems 
[11] [12]. 
 
The first studies on the topic began around the 1970s. In 1973, Vidal published one of the first 
systemic attempts to implement an EEG-dependent BCI [13]. 
It is not until the last two decades that the interest in the subject significantly grew. An electronic 
literature search on PubMed with the keyword “Brain-Computer Interface” published by S. Saha 
in 2021 [14], shows that the number of publications on the subject has grown considerably in the 
last ten years compared to the previous decade (Figure 6). 
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Figure 7: The number of BCI publications over the years. The statistics were based on an electronic literature search 
on PubMed in which “Brain-Computer Interface” was the search keyword. The articles listed until December 4th have 
been accounted only. From “Progress in Brain Computer Interface: Challenges and opportunities” by Simanto Saha 

[14]. 

 
This shows a growing scientific community over time interested in the development of this 
technology. The fields of application are several. BCI can be used in the medical/neuro-
rehabilitation field to restore motor output of spinal cord injury patients [15] or as a neuro-
rehabilitation tool for post stroke patients. In the gaming sector BCI can be used as a primary 
means of controlling the game or as an extra channel of communication in games such as Pacman 
[16] and Tetris [17]. A BCI can also be used in fields such as neuro-marketing, to determine the 
attitude of a consumer toward a product [18], and security, as a biometric approach for individual 
identification [19]. Furthermore, it can be used purely for research purposes in closed-loop 
neuroscience experiments or to do multivariate pattern analysis to learn about brain dynamics [20]. 
 
A BCI is of the active type when brain activity is directly controlled by the user. In the case where 
the stimulus arrives from outside, we speak of a reactive type of BCI. Conversely, a BCI is said to 
be passive when it uses the extracted information without the goal of voluntary control. 
 
The steps a BCI has to follow to function are the following (Figure 7): 

- Signal acquisition; 
- Pre-processing; 
- Feature extraction; 
- Feature translation / Classification; 
- Commands / Feedback through a control interface. 
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The biosignal is acquired during the acquisition phase. The signal is then cleaned and relevant 
features (useful to the BCI application) are selected. Those extracted features are then classified 
through the use of machine learning or deep learning algorithms. The outcome or predicted state 
is then used for the required application [20]. 
 

 
 
Figure 8: General architecture of a Brain-Computer interface. From M. Rashid (2020) [20]. 

 

Applications 

It is very important to define the application use of a BCI system. Without a concrete and useful 
use, a BCI is an interesting research tool but without a practical utility. The most relevant practical 
use is in the medical field as an assistance tool. 
 
Let's see what important roles it can play in both the medical and non-medical fields: 

- Restore the lost natural output. A BCI can be used for the motor rehabilitation of stroke 
survivors to recover lost or not fully functional movements. It has been shown that 
treatment by BCI can bring long-term improvements in the upper motor functions of post-
stroke patients with mild, moderate, and severe impairment [21]; 

- Replace the natural output lost due to illness or injury. One of the first uses of a BCI was 
with patients with locked-in syndrome, who cannot communicate with the outside world 
and produce any movement, despite their cognitive functions being intact. A BCI system 
can enable a patient with locked-in syndrome to communicate with the outside world. 
Another key example is in the case of paraplegic tetraplegic patients, who have therefore 
lost some motor functions. A BCI system can enable these patients to control an external 
input and regain their lost mobility by, for example, using a robotic arm or a mouse on a 
computer. Patients who can no longer communicate either by speaking or writing by hand 
or using a keyboard can use a BCI system to regain the ability to communicate. There are 
several more or less advanced speller systems. A state-of-the-art example is a system 
designed by Francis R. Willett for the 2020 BCI awards. This BCI system is designed for 
patients with locked-in syndrome to regain fast and accurate communication. It uses MEAs 
that interpret handwriting movements in people with paralysis [22]; 
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- Enhance and improve the natural brain output. A BCI can help an individual who is 
performing a task. It can be used to detect the mental state (for example when driving) and 
provide an output when the attention is going down. It can also be used in neurofeedback, 
a technique that helps the individual to control the brain waves consciously [23]. 

 

Type of brain signal input 

The most crucial distinction between different types of BCIs is the origin of the input, the origin 
of the brain signals. 
The 2 kinds of input signals are: 

1. Electrophysiological input: the electrical or magnetical activity of the brain is observed 
through different data acquisition instrumentations. The most popular one is surely 
Electroencephalography (EEG). Other significant ones are Electrocortycogram (ECoG), 
Magnetoencephalography (MEG), and Micro-Electrode-Arrays (MEAs). Those 
techniques are all characterized by a very high temporal resolution while the spatial 
resolution can vary between instrumentations; 

2. Hemodynamic input: the hemodynamic brain response is observed. It is not the neuronal 
activity that is measured directly but the metabolic response induced by this activity. 
Cerebral blood flow and neuronal activity are supposed to be coupled. When an area of the 
brain is activated blood flow in that area increases. The most popular instrumentation for 
looking at brain hemodynamics are functional Magnetic Resonance (fMRI) and Near-
InfraRed Spectroscopy (NIRS). 

 
Another fundamental distinction between the type of data acquisition systems is their invasiveness. 
We can divide between: 

- Invasive techniques: the sensors are placed directly into the cortex. The invasive approach 
certainly guarantees very good signal quality, but it brings with it numerous problems, first 
and foremost the risk of surgery and the formation of scar tissue that deteriorates signal 
quality over time; 

- Semi-invasive techniques: the sensors are placed under the skull, without being implanted 
directly into the grey matter; 

- Non-invasive techniques: they carry minimum to zero risk for the patient as no surgery is 
required. The sensors are positioned above the scalp, either with or without contact 
depending on the technique, in a non-invasive manner. 
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EEG signal 

Definition and History 

The electroencephalogram (EEG) provides the electrical activity of the neural structure of the 
cerebral cortex, it measures synchronized patterns of electrical activity involving a large number 
of neurons. It is the most used BCI non-invasive application thanks to its high portability and low 
cost. 
 
One of the first recordings of the electrical signal of the brain was made by the English physiologist 
Richard Caton in 1875 on animals [24]. Only 50 years later, in 1924, the first electrical activity of 
the human brain was recorded by the German physicist Hans Berger. In his publications, he 
documented the first spectral variations of the EEG with repetitions of certain oscillations: alpha 
waves and beta waves. He was the first to coin the term electroencephalogram, publishing a paper 
in 1929 entitled “Über das Elektrenkephalogramm des Menschen ” in the “Archive für Psychiatre 
und Nervenkrankheiten” [25]. Together with Siemens, he improved the instrumentation, trying to 
reduce the artifacts. Andrew and Matthews introduced a 3-channel system with differential 
amplification to simultaneously take multiple signals from different areas. 

Properties of EEG signal 

EEG only measures the post-synaptic potential. Pyramid cells are the main source currents for 
EEG signals, thanks to their elongated shape and their perpendicular alignment to the cortical 
surface. Nonpyramidal neurons, lacking these characteristics, scarcely contribute to the signal. 
 
EEG has its weakness in the low spatial resolution and low spatial-to-noise ratio. The number of 
sources is enormous compared to the number of electrodes used. EEG signal is a mix of large 
groups of neurons firing together from different areas of the brain close to the electrodes. 
Furthermore, the signal has to cross several layers up to the skull (Figure 8) with different electrical 
conductivities causing a “smearing” phenomenon of the electrical potential which dampens and 

spreads the signals [26]. Consequently, the spatial accuracy of the signal is also inferior. 
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Figure 9: The different layers between the cerebral cortex and the scalp. From “https://www.hopkinsmedicine.org”. 

Invasive techniques such as electrocorticography (ECoG) or micro-electrode arrays (MEAs) [27] 
can partially overcome these issues, but carry other difficulties such as their invasiveness. 
Ultimately, the spatial resolution depends on the number of electrodes and their positioning on the 
scalp. Increasing the number of electrodes and bringing them closer together increases the spatial 
resolution. 
The temporal resolution, however, is very good. If an electrical variation occurs within the cranial 
box, it can be read instantly anywhere on the scalp. 
The measurement of a very large number of independent sources, as just mentioned, makes EEG 
a random process. 
The voltage amplitude of scalp EEG can vary approximately between 10 μV to 500 μV, although 
signals are generally around 50 μV to 100 μV and the amplitude decreases attenuated by the 
distance between the brain source and the electrode. EEG is most sensitive to currents just 
underneath the electrodes, but in addition to these superficial radial currents, it can also sense 
tangential and deep currents. 
 
 
Regarding the spectral component, the EEG signal is divided into precise and contiguous 
frequency bands. The overall band ranges from approximately 0.5 to 80 Hz, although generally it 
cannot be observed over 40 Hz. This is mainly due to the fact that as the frequency increases, the 
value of the amplitude component of the signal decreases. this is mainly due to destructive and 
constructive signal interference. 
The bands are approximately subdivided as it follows (Figure 9): 

- Delta (1-4 Hz); 
- Theta (4-8 Hz); 
- Alfa (8-13 Hz); 
- Beta (13-30 Hz); 
- Gamma (>30 Hz). 
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Of particular interest for this thesis are mu waves. These waves have a frequency between 
approximately 7.5 and 12 Hz (the same frequency as the alpha rhythm) and are present in the motor 
cortex. They are normally present but are suppressed following a movement or intention to move. 
Consequently, they are widely used in the field of BCI. 
 

 
 
Figure 10: EEG spectrum bandwidths. From “www.raphaelvallat.com”. 

 

Instrumentation 

An EEG acquisition system consists of the following parts: 
1. an electrode system; 
2. an amplifier; 
3. an A/D converter; 
4. a recording device. 

 
Luis Fernando Nicolas-Alonso in his article [4] defines the EEG acquisitions system as follows: 
“The electrodes acquire the signal from the scalp, the amplifiers process the analog signal to 

enlarge the amplitude of the EEG signals so that the A/D converter can digitalize the signal in a 
more accurate way. Finally, the recording device, which may be a personal computer or similar, 
stores, and displays the data”. 
 
Electrodes can be placed directly on the subject's scalp or inserted into a helmet. it is common 
practice to use EEG helmets containing space for the electrode to be inserted. The helmets can be 

https://sciprofiles.com/profile/author/WEVsVlBnSm5SQllmWWFjYjlNUnppbFN2K0RVVUV3b0dCN1dsWjVrK25KYz0=
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made of fabric or rigid and can have the electrodes already inserted in them, not allowing 
repositioning of the electrodes, or leaving the user free to choose where to insert the electrodes. 
Electrodes are mainly divided into two categories: wet electrodes and dry electrodes. 
Dry electrodes are placed directly on the subject's scalp while wet electrodes require the use of a 
conductive gel, which is usually inserted into a hole in the center of the electrode. Wet electrodes 
have a much better contact impedance than dry electrodes. Consequently, the signal extracted by 
wet electrodes will have a higher quality. However, compared to dry-type electrodes, it will take 
a longer time to prepare the acquisition, due to the time taken by the operator to insert the gel into 
each hole. This time can be considerably reduced by the experience of the laboratory operator. 
Another disadvantage of wet electrodes over dry electrodes is the stability of the signals since the 
gel dries up during the experiment. 
Summing it up, wet electrodes have a better signal quality but lower signal stability over time 
compared to dry electrodes. It is up to the scientist to choose what is more needed. The signal 
stability won’t be a major problem for short experiments but might be a big issue for longer studies 
such as sleep studies [28]. 
 
While most of the literature focuses on the differences between dry and wet electrodes, when it 
comes to EEG instrumentation it is interesting to compare not only the type of electrodes used but 
the amplifier as well. In the present day, thanks to the popularity acquired by non-invasive BCI 
techniques in different fields of research, a growing number of more affordable BCI 
instrumentation is gaining ground. 
A recent study by Jeremy Frey [29] compared the performance of a consumer-grade EEG amplifier 
with medical-grade equipment in the field of BCI application reporting the following: 
“Overall, the results suggest that the OpenBCI board – or a similar solution also based on the 
Texas Instrument ADS1299 chip – could indeed be an effective alternative to traditional EEG 
amplifiers. Even though medical-grade equipment possesses certification and still outperforms the 
OpenBCI board in terms of classification, the latter gives very close EEG readings. In practice, 
the obtained classification accuracy may be suitable for reliable BCI, widening the realm of 
applications and increasing the number of potential users”. 

Sampling rate 

The EEG signal is an analog continuous signal (in voltage) that must be converted to a discrete 
digital signal by an analog-to-digital converter. The main characteristic of the A/D converter is the 
signal sampling rate, also called sampling frequency. 
To know at what frequency to sample the signal, one must rely on the Nyquist-Shannon Theorem. 
This theorem tells us that the minimum sampling frequency that allows a discrete sequence of 
samples to capture all the useful information of the continuous signal is given by: 
 

𝑓𝑠 > 2𝑓𝑚𝑎𝑥 
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Where 𝑓𝑚𝑎𝑥 is the highest informative frequency present in the signal and 𝑓𝑠 is the signal sampling 
frequency. It is then defined as Nyquist frequency 𝑓𝑁𝑦 the frequency equivalent to 2 times the 
𝑓𝑚𝑎𝑥. Sampling at a lower frequency than the 𝑓𝑁𝑦 will cause the phenomenon of aliasing, which 
appears as a misrepresentation of a high-frequency signal at a lower frequency [10]. 
Since the band of interest of the EEG signal usually reaches around 40 Hz, it is appropriate to use 
sampling frequencies above 80 Hz. In practice, it is preferred to stay above 125 Hz anyway, and 
even up to 500 Hz can be sampled [26]. 
 

Electrode positioning 

It is necessary to have a standard electrode positioning to make the recording track universal and 
obtain consistency between different laboratories. The 10-20 International System is the standard 
electrode placement recommended by the International Federation of Clinical Neurophysiology 
(IFCN) [30]. The concept behind this standard positioning is to outline skull landmarks and use 
them to partition the skull proportionally. 
 
Four skull reference points are taken [31]: 

1. Nasion: the fossa above the root of the nose; 
2. Inion: located posteriorly along the midline of the skull, before the occipital bone ends. It 

is the bony lump at the base of the skull; 
3. Two preauricular points: located below and in front of the auricle of the ear on both sides 

of the head. 
 
Measuring the distance between those points an imaginary grid is drawn and the electrodes are 
placed at 10% and 20% of this distance (Figure 10). 
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Figure 11: The 10-20 system of the international federation for the standardization of the placements of EEG 
electrodes. From R. Shriram (2012) [31]. 

 
Letters and numbers are used to identify the electrode position. Letters correspond to the cortical 
location: 

- F, frontal lobe; 
- T, temporal lobe; 
- P, parietal lobe; 
- O, occipital lobe; 
- C, central area; 
- A, ear lobes. 

 
Letters are combined to show intermediate locations. For example, FP indicates the frontal polar 
electrodes. Following the letters, we have the numbers. On the left hemisphere, we have odd 
numbers, while on the right side of the head we have even numbers. The “z” indicates the midline. 
 
The 10-20 system does not prescribe the number of electrodes but prescribes the positions. The 
total number of possible electrodes in the 10-20 system is 21. Using all the positions in the system, 
we obtain a total of 19 electrodes. The 2 remaining electrodes are placed on the ear lobes as 
reference. 
More electrodes can be used by extending the 10-20 system to obtain a high-density grid. The 10-
10 system and 10-5 system use 10% and 5% of the distance between the skull reference point. With 
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the 10-10 system we reach a total of 74 electrodes, 21 electrodes of the 10-20 system plus 53 
additional electrodes. 

 
 
Figure 12: The standard 10-20, 10-10, and 10-5 electrode montages. The 21 black electrodes represent the 10-20 
system. The 10-10 system is formed by the 21 black electrodes plus the 53 gray electrodes (74 electrodes in total). The 
10-5 system is formed by the sum of the black, gray and white electrodes. From Wolpaw (2012) [10]. 

 
Note that for a large number of channels (more than 64 electrodes) other positioning systems have 
been thought of, with the aim of acquiring a more regularly spaced sampling of the potentials of 
the scalp. This approach is possibly advantageous for source localization and high-resolution EEG 
techniques. 
 

Referencing 

We know that when we look at EEG signals we are observing the electrical activity of the brain 
through electrodes placed on the scalp. Let us look specifically at what it means to measure, 
through electrodes, this activity. 
When we look at EEG signals we always observe the difference in electrical potential (usually 
expressed in units of microvolts or μV) between two different points on the scalp. There are always 
at least three electrodes involved in the recording: two recording electrodes, where one is usually 



25 
 

the reference one, and the ground electrode. The ground electrode is connected to the amplifier 
ground and consequently collects electrical noise that does not reach the scalp electrodes. 
Each of the two recording electrodes on the scalp measures the difference: [scalp electrode - 
ground electrode] and carries a common mode potential, common to both electrodes, due mainly 
to power line field interference and other minor factors such as ECG signal. To eliminate this 
ground-related noise, EEG activity is always measured with differential amplifiers. 
As a result, the EEG signal is measured as the difference between two recording electrodes placed 
on the scalp instead of the simple difference between a scalp electrode and a ground electrode. 
This configuration eliminates much of the common activity between the two electrodes, which is 
not of interest. We can see from the following formula how the common mode rejection occurs: 
 

[(𝐸𝑆1 −  𝐸𝐺) − (𝐸𝑆2 −  𝐸𝐺)] 
 
Where 𝐸𝑆1 is the first scalp electrode, 𝐸𝑆2 is the second scalp electrode and 𝐸𝐺  is the ground 
electrode. 
One of the two electrodes on the scalp is also called the reference electrode. It is essential to define 
the position of the reference electrode because when we observe the EEG signal we are observing 
the difference in electrical potential between the signal of the chosen electrode and the signal of 
the reference electrode. There are different criteria for the most correct choice of the reference 
electrode. It is important to take into account the comparability to other studies, to be able to 
compare the results of different studies and see what choices have been made on the research topic 
of interest. 
The reference electrode should have a good signal quality and should not pick up excessive noise, 
which would be added to the signal of interest. At the same time, it should not be located too close 
to the source of interest to avoid collecting useful signals that would be subtracted during 
referencing [32]. 
 
There is confusion in the literature regarding the concept of bipolar recording vs. monopolar 
recordings in EEG. Wolpaw [4] writes: “it is important to recognize that there are no monopolar 

recordings in EEG. All EEG recordings are bipolar. It is always necessary to use electrode pairs 
to measure scalp potentials […] and each electrode in the pair is active. Thus, no EEG recording 
measures the voltage difference between an active electrode and an inactive, or unchanging, 
electrode”. While [33] writes: “There are two primary types of display montages: bipolar and 
monopolar/referential”, defining the use of a common reference channel as a monopolar 

recording. 
 
If we define a monopolar detection as a difference between an exploring electrode and a stable 
unchanging electrode, then it is incorrect to define the EEG signal as monopolar, because both 
electrodes used (recording and reference) are active and measure a changing potential. For 
example, the g.tec manual for gRecording [34] defines common mode channels: “when one single 
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channel is used as a reference for all of the rests, as a way to set the selected channel as a bipolar 
channel for all channels of the device”. 
 
Apart from the definition we give to the EEG configuration, in the end, the following referencing 
possibilities are available for an EEG recording: 

1. Common reference: a single electrode is chosen as a reference for all of the recording 
electrodes. Some of the most popular choices are the linked ear and linked mastoid 
reference, and the central electrodes, such as FCz or Cz [32]; 

2. Average of the two mastoid electrodes: this reference is particularly used if the signal of 
interest is in the middle of the head [32]; 

3. Common Average Reference (CAR): this kind of referencing subtracts, for every time 
point and every channel, the average of all the non-exclude channels. Note that referencing 
is equivalent to applying spatial filters. This is why the CAR referencing is often referred 
to as the CAR filter [35]; 

4. Chains of electrodes (often referred to as bipolar montage in literature). Instead of using a 
single fixed reference or a fixed average, each electrode is connected to a pair of electrodes. 
The potential difference between these two electrodes is the measured signal. 

a. There are several types of “bipolar” configurations possible, a widely used example 

being the longitudinal one, called double-banana. This type of reference is better 
for locating sources and measuring the gradient between two brain areas [33]; 

5. Other kinds of spatial filters can be applied, such as the Laplacian filter [32]. 
 

In conclusion, researchers can handle the choice of reference as he or she pleases. However, it is 
recommended to pay attention to the choice of reference by referring to the criteria set out in this 
chapter. This choice will influence the analysis of the data and the results. It is important to note 
that it is possible to choose a reference electrode during recording (online referencing), but during 
the data processing phase, it is possible to easily change this reference (offline referencing) by 
performing a subtraction. This process is called re-referencing or offline referencing and allows 
the choice of reference made online during data acquisition to be changed. 
 
 
 
 

EEG artifacts 

The EEG signal is affected by numerous artifacts. Having a small signal amplitude, around 100 
μV, it is more corruptible by artifacts compared to other physiological signals (such as the ECG 
for example), artifacts that in addition to amplitude also have signal-compatible shapes and 
frequency content. 
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We distinguish artifacts into two main categories: physiological type and non-physiological type 
artifacts. Any signal that does not have a brain-type origin is in essence considered an artifact [36]. 
Physiological artifacts are those generated by the subject, in particular by the patient's muscle 
activity. We look at the main ones: 

1. Eyeblink: these are movement artifacts due to the fact that the subject opens and closes the 
eyelids, either voluntarily or involuntarily. This artifact is easily observed on the frontal 
electrodes and is more pronounced when the movement is voluntary than when it is 
involuntary. They are artifacts that affect low frequencies and can be removed by a filter 
that removes delta frequencies. However, this would remove the signal in the useful band. 
Consequently, more complex filtering methods, such as the ICA filter, are preferred. Note 
that lateral and vertical eye movements can also cause eye artifacts similar to blinking; 

2. Cardiac artifact: this is observed as a slight spike in the signal with frequency of about 1 
Hz. It can be easily detected by acquiring EEG and ECG signals simultaneously and 
comparing the two signals. The ECG artifact does not only involve a few electrodes but 
the whole skull. Related to the heart, a motion artifact can also be generated due to the 
pulsation of a blood vessel on the scalp, which slightly displaces the electrode, causing a 
motion artifact; 

3. Muscle artifact: various types of artifacts due to muscle activation can be observed, 
particularly on facial muscles. An example easily observed by experimenters on the EEG 
signal is artifacts due to teeth and jaw grinding. 

 
Looking at non-physiological artifacts in more detail, we distinguish the main ones: 

1. Network frequency interference: it is caused by the coupling of the electrodes with the 
alternating current of the power supply. The network frequency can be either 50 or 60 Hz 
and can be filtered through a notch filter at the network frequency. As the useful signal 
band is usually below 50 Hz this artifact can generally be eliminated without too much 
difficulty; 

2. Electrode artifacts: very high-frequency artifacts due to a change in voltage referring to a 
single electrode. They are called electrode pop artifacts. 

 
 
 

EEG-dependent BCI 

The focus will now be on EEG-dependent BCIs. 
In order not to stray from the focus of the thesis, it will be assumed from now on that what is 
written is related to EEG BCI. This does not detract from the fact that some of these distinctions 
and features can be applied to non-EEG BCI as well. 
 
First, it is important to distinguish the origin of the BCI signal which can be: 
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1. Exogenous or evoked: the neuronal activity is elicited by external stimuli, such as auditory, 
visual, or tactile stimulation; 

2. Endogenous: there are no external stimuli. The BCI activity is directly controlled by the 
BCI user. There is self-regulation of brain activity. 

 
Those two kinds of stimuli usually generate two kinds of EEG phenomena: 

1. Event-Related Potentials (ERPs). An ERP (Figure 13) is a scalp-recorded event after 
stimulus onset (i.e., a manifestation of neural activity that is triggered by a specific event). 
The ERP is generally quite small compared to the general activity measured by the EEG, 
it is embedded within the signal. To differentiate it from the general background noise, it 
can be extracted by averaging multiple trials. This is possible because the ERP is time-
locked to the event, while the noise is not. Nonetheless, when averaging trials carefulness 
is needed because of the jitter problem, there is variation in the latency between the 
stimulus onset and the brain response. The characteristics of an ERP are: 

• Polarity: the peak can either be Negative (N) or Positive (P). Accordingly, the first 
letter of an ERP indicates its polarity. It is curious to notice that in literature when 
an ERP is shown the y-axis is inverted, causing a reversal of the positive and 
negative peaks in the graphs; 

• Latency: the time between the stimulus onset and the ERP peak. This generally 
indicates the second part of its name. The latency goes from tens of milliseconds to 
hundreds of milliseconds. 

 
For example, a “P220” indicates an ERP with a positive peak and 220 ms of latency, a 
“N500” indicates a negative peaked ERP with a latency of 500 ms. Lastly, the components 
of an ERP can be endogenous or exogenous. For an ERP to occur there must be an 
exogenous stimulus that causes it, however some of its components can be generated by 
information processing in the brain, thus endogenously. The external stimuli generating an 
ERP can be of different kinds, visual, auditory, and tactile.  
 



29 
 

 
 

Figure 13: An example of an Event-Related Potential (ERP) with 5 components, 3 positive ones, and 2 negative ones. 
From “www.wikipedia.org”.  

 
2. Oscillatory Processes, which are connected to the Event-Related Synchronization/ Event-

Related Desynchronization (ERD/ERS) phenomenon. ERD and ERS are non-phase-locked 
responses in EEG, related to the increase or decrease in oscillatory activity at a certain 
frequency following an action [37]. With the ERD an amplitude decrease is observed, while 
in the case of ERS an amplitude increase can be seen. This phenomenon can occur in 
different cortical regions at the same time or at different times following events such as the 
action of a movement, performing an eye blink, thinking, or in response to a sound. For 
example, we can observe the occurrence of ERS/ERD when opening and closing the eyes. 
To keep the eyes open, there is a synchronization of alpha waves. When closing the eyes 
an increase in frequency and a decrease in amplitude occur. Rhythm changes from alfa to 
beta. This is called alpha block or event-related desynchronization. 
Different types of actions cause an increase/decrease of different frequency ranges in 
different cortical areas. For example, it can be seen a change in oscillations in the beta band 
(19-26 Hz) for foot movement, while we see a change in the same band but at slightly 
different frequencies (16-20 Hz) for finger movement [38]. 
 

Typical BCI experiment 

A BCI experiment is usually divided into a hierarchical structure. The base unit of this structure is 
the trial. A group of trials creates a run and multiple runs create a session (Figure 14). 
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Figure 14: Example of a session structure. In this example each session is composed of 5 runs and each run is 
composed of 20 trials. Between runs there is a rest phase. 

A trial usually lasts a few seconds and contains the task of the experiment. A trial paradigm defines 
what is contained within the trial and the timing of each element within it. 
A run is a group of trials, usually between 10 to 50 maximum. Between each run, it is good to 
have a break to let the subject rest. 
A session is a group of multiple runs and can last several minutes. An experiment may consist of 
a single session or several sessions in succession. Two consecutive sessions can be spaced apart 
in time, from a few minutes to a whole day. 
The total duration of an experiment varies based on its aim. It usually lasts from a minimum of 10-
15 minutes to at most just over an hour. 
 
Some BCIs can decode the signal immediately, while other types of BCI require a training period 
before they can function. When BCIs require training to be able to discriminate between classes it 
means that to recognize classes correctly, the algorithm must train on a portion of the dataset. 
Consequently, in these cases, the EEG signals must be divided into two parts: a training dataset 
and a test dataset. The percentage division between the training and the testing set can vary but the 
test dataset is generally less numerous than the training one. For example, the dataset can be 
divided into 80% training set and 20% test set (Figure 16), or 70% training set and 30% test set 
[39]. 
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Figure 15: Example of the division of a dataset into 80% training set, and 20 % testing set. 

 

Different BCI systems 

There are different kinds of EEG-dependent BCI systems which differ between them for the type 
of stimuli used, the number of choices a BCI allows the user to make, the type of training required, 
and the kind of EEG phenomena analyzed. 
 
BCIs that try to restore the motor output are usually based on 2 types of BCI systems [40]: 

1. SLOW cortical potentials (SCP) BCI: based on a slow voltage shift that occurs in the 
cortical activity below the frequency of 1 Hz. It is associated with performed or imagined 
movement tasks or cognitive tasks. There are two types of SCP, negative SCP, associated 
with cortical activation and increased neuronal activity, and positive SCP, associated with 
cortical deactivation and decreased neuronal activity It is an endogenous type of BCI. 
When the slow cortical potential is specifically related to a movement it is called 
Movement Related Cortical Potential (MRCP) [36]; 

2. Sensory-motor rhythms (SMRs) BCI: based on electric field oscillations recorded near the 
motor and somatosensory areas of the cortex. These rhythms generally fall in the mu (8-12 
Hz), central beta (18-30 Hz), and gamma (30-200 Hz) frequency bands. 
They are generally linked to sensory and motor events and are based on the ERD/ERS 
concept expressed in the previous paragraphs [36]. 
 

The BCI systems cited above require a training phase before they can function.  
There are other BCI systems that do not require this training phase. For example, Visually Evoked 
Potential (VEP) BCI are systems that function through an external visual stimulus that triggers an 
evoked potential in the visual cortex and contrary to sensory-motor rhythms and MRCP BCI do 
not require a training phase [40]. The negative side is that VEP BCI require an external visual 
stimulus to function and cannot function in the absence of it, whereas a system based on MRCP 
or sensory-motor rhythms does not necessarily require an external visual stimulus in order to 
function. 
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Characteristics of EEG dependent BCI 

This chapter will take a closer look at the various characteristics of EEG dependent BCI, with 
particular focus on those based on MRCP and Motor Rhythms. 
 

Classes 

A BCI must allow the user to make different choices. The choice can be binary, such as answering 
a yes/no question, or it can be more complex, such as choosing a letter of the alphabet. These 
choices are nothing but the ultimate goal of the system and are referred to in the literature as classes 
or conditions. The aim of a BCI is thus to discriminate between a certain number of classes. 
 

Movements 

There are mainly 3 types of movement a motor rhythm or a MRCP BCI can be based on: 
 

1. Motor execution (ME): the movement is physically performed by the subject. The 
execution of the movement activates the previously discussed ERD/ERS phenomenon, 
causing neuronal activation of the motor cortex [41] ; 

2. Motor attempt (MA): This occurs when the subject cannot perform the movement correctly 
or entirely due to a disease or an accident. Similarly to movement execution, motor attempt 
relies on the ERD/ERS of the involved frequencies. It is often cited in studies involving 
stroke patients [42] . Stroke patients might lose the ability to perform a full and efficient 
movement of the arms and even though their disability depends on the single patient, their 
task is usually classified as motor attempt or motor imagery, but not motor execution. The 
degree of their disability is generally evaluated by the Functional Independence Measure 
(FIM) [43]. Other types of patients who fall under this movement category are Spinal Cord 
Injury (SCI) patients. These types of patients usually have lost the majority of their 
voluntary motor control functions and BCIs can be of great help and are a promising 
instrument to restore their motor abilities [15]; 
Motor Imagery (MI): movement is only imagined by the subject. It is not a performed 
movement or a motor attempt, as soon as a muscular micro-activation also takes place we 
no longer speak of motor imagery. Several studies show that motor imagery influences 
neuronal activity in the motor cortex in a similar way to what is observed with a performed 
movement [44],[45]. The same principles of ERD/ERS occur in the case of movement 
attempt and movement execution. Pfurtscheller reports in his article [44]: “Motor imagery 
may be seen as mental rehearsal of a motor act without any overt motor output. It is broadly 
accepted that mental imagination of movements involves similar brain regions/functions 
which are involved in programming and preparing such movements [46]”. Consequently, 
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the major difference between executing and imagining the movement is that in the latter 
case the signal is blocked at some cortical-spinal level [47]. It is easy to see how, even 
better than the motor attempt case, motor imagery can be used with stroke and spinal cord 
injury patients. Furthermore, unlike the motor attempt, it can also be tested on healthy 
patients. Many studies in the literature use motor imagery for both patients with motor 
deficits and healthy patients. Imagined movement decoding is used to induce neuronal 
plasticity, through several training sessions. BCI based on motor imagery can be used to 
move a virtual limb or be coupled with Functional Electrical Stimulation (FES) [21].  

 
The paragraph has talked about how these motion tasks are analyzed using the sensory-motor 
rhythms, based on the principle of ERS/ERD. However, several studies also analyze movement 
tasks through MRCP [43], [42]. 
 

Task movement  

The movements chosen for the task must be functional for use in daily practice if the aim of the 
BCI is to be useful for patients with motor disabilities [27], [48]. More movements allow more 
autonomy to the patient, but, by increasing the number and similarity of movements, the BCI 
performance decreases [40]. It is more difficult to distinguish between motor tasks performed on 
the same limb, compared with motor tasks performed on different limbs, particularly because of 
the low spatial resolution of the EEG signal [48]. 
Many BCI focus on upper-limb movements with a particular focus on hand movements (Figure 
16), but some dataset focus also on other body parts, such as feet and tongue [40].  
 

 

 
 
Figure 16: Example of functional movements. Upper row from left to right we have a palmar grasp, pinch, and elbow 
flexion. From Ana. P. Costa [48] . Bottom row from left to right we have pronation, supination, palmar grasp, lateral 
grasp, and hand open. From P. Ofner [15]. 
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Number and positioning of the electrodes 

The positioning and number of electrodes is another key point. There are studies analyzing the 
motor imagery signal limited to the use of 3-5 electrodes [49], [11]. Other articles use a much 
higher number of electrodes, from 60 [50] to 118 electrodes [51]. Increasing the number of 
electrodes improves the spatial resolution of the signal but also increases the preparation time of 
the experiment and the analysis of the acquired data. 
In addition to the number of electrodes, positioning is important. In order to be able to study 
sensory-motor rhythms and MRCP, the electrodes must be positioned close to the origin of the 
signal of interest, the motor cortex (Figure 17). According to the results obtained from studies [48] 
and [21], 16 electrodes placed over the motor cortex are a good compromise between BCI 
performance and experiment preparation time. No significant performance improvement is 
observed in the literature when the number of electrodes increases above 16 [40]. 
 

 
 

Figure 17: Electrode positioning in the study by S. Romagosa, “Brain Computer Interface Treatment for Motor Rehabilitation of 
Upper Extremity of Stroke Patients-A Feasibility Study”. From S. Romagosa [21]. 

 
There are hybrid-type BCIs, which in addition to using the EEG brain signal also use other bio-
signals, such as the EMG signal [52] or the EOG signal [11] [12], which integrated with the EEG 
signal can help improve the performance and degrees of freedom of the system [12]. 
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Figure 18: Example of Bio signals recorded through EEG and EOG. EOG follows the standard placement of the left 
and right outer canthus of the eye (LOC and ROC) [53]. From M. Witkowski (2014) [11]. 

 

Calibration and Validation 

As it has been said before, a sensory-motor rhythm type of BCI, as well as a MRCP one, doesn’t 

function right away, but it needs training to allow the classification algorithm to function. This is 
because these types of BCIs are based on supervised machine and deep learning algorithms. This 
topic will be dealt with in more detail in the materials and methods section. Consequently, a BCI 
based on these principles cannot start functioning right away but requires the acquisition of a 
minimum number of trials before it can function online. 
 
A common strategy applied in literature is to acquire the signal in 2 different sessions as it follows: 
 

1. Calibration: the EEG signal is acquired but processed offline. In this phase, the BCI does 
not work online, so it does not give feedback to the subject but is used to train the 
classification algorithm; 

2. Validation: the BCI can work online right away. The parameters trained during the 
calibration phase are used to run the BCI right away, there is feedback. This phase aims at 
giving as much freedom as possible to the subject by canceling waiting times. A self-paced 
paradigm is therefore usually used, allowing the patient to choose when to perform or 
imagine movements. 
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Figure 19: A diagram of how a BCI protocol works based on the two phases of calibration and validation. From Blankertz (2008) 
[54]. 

 
It is important not to confuse the terms calibration and validation with the terms training and 
testing. In the calibration part, the dataset will still be divided into training and testing to test the 
performance of the classification algorithm and efficiently train the parameters of the latter which 
will then be applied in the validation phase [54],[6]. 
 

Subject-dependency 

A major obstacle to the use of EEG-dependent BCIs, and in particular to those based on motor 
rhythms and MRCP, is the great variability of the EEG signal. The latter has a high temporal 
variability, which can be observed over minutes, hours, and days. The signal changes considerably 
from one session to the next and can also change considerably within the same acquisition session 
[55]. In addition to this inter-subject variability, there is also great variability between different 
subjects [56]. 
A system that requires a subject-specific training session is said to be subject-dependent or subject-
specific. The limitation of a subject-specific system is the calibration time required for the BCI to 
work online. A subject-dependent motor imagery system requires approximately 30 minutes of 
training before it can function effectively. This is an obstacle to the use of BCIs, as it prevents their 
immediate use. However, a subject-specific system, despite the high variability of the inter-subject 
signal, guarantees good classification performance. 
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This obstacle can be overcome by a subject-independent system, where the parameters of the 
classification algorithm can be trained on subjects and applied to different subjects [5]. This allows 
the BCI to run online right away, eliminating the calibration time of the algorithm. Furthermore, 
this system is made even more efficient by adaptive BCIs, which modify the parameters of the 
classification algorithm in progress, adapting them to the subject [57]. The limitation is that 
numerous subjects are required to train the algorithm before it can be used right away. An initial 
calibration phase is therefore necessary, but only on the first user subjects. 
Furthermore, the high variability of the signal between different subjects does not make this task 
easy. It is necessary to find an algorithm that can generalize well the significant features 
responsible for motor imagery between different subjects. 
 

Synchrony 

Another distinction is that a BCI can be synchronous or asynchronous. A synchronous BCI is cue-
based (i.e., there is an external stimulus that dictates the rhythm of the BCI). The required mental 
state is generated in response to an external stimulus. Brain activity is therefore activated within 
predefined time windows. This allows the classifier to focus only on these predefined windows, 
where the stimulus occurs, and where the cue is present while ignoring the portions of the signal 
before and after. 
An asynchronous BCI, instead, does not require an external cue, the subject is free to remain free-
thinking or execute/think the experiment task independently. These BCIs are self-paced, leave 
more freedom to the user, and are closer to real-life use of a system outside a laboratory. For this 
to be possible, the BCI must constantly acquire the signal and classify it, because the task could 
be thought of or performed by the subject at any time. It is then introduced the distinction between 
the No-Control phase (NC), in which the subject is not trying to perform any action, and the 
Intentional-Control phase (IC), in which the subject voluntarily tries to perform the action. This 
NC phase introduces a further difficulty. In addition to having to classify the signal continuously 
over time, an additional class is introduced into the problem, the No-Control class. 
It is easy to see how BCIs of the synchronous type are therefore easier to realize than those of the 
asynchronous type. 
 

Paradigm 

The paradigm is the basic unity of the experimental protocol. It corresponds to the block commands 
that are given in the individual trial by defining the extent and duration of each instruction. 
The core of the paradigm is the task given to the subject, for example the movement of a hand.  
The construction of a paradigm depends on the type of BCI created. In particular, what influences 
most its form is the synchrony of a BCI. 
A synchronous-type BCI is a cue-based BCI, which therefore requires the system to give precise 
instructions over time to the subject. A synchronous BCI thus needs only one type of paradigm. 
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Usually, the paradigm of a synchronous BCI is constructed in this way (Figure 19): the total trial 
duration is about 7-10 seconds [58], and each trial reports one movement instruction. A fixation 
cross appears before the movement instruction to indicate the imminent arrival of the movement 
task. The task can vary in duration between 3 and 4 seconds to allow the subject to perform the 
task long enough for the classification algorithm to decode the signal. Thereafter there is a moment 
of rest before the next trial arrives. To avoid subject adaptation, the rest period can be variable [58] 
[6]. 
 
 

 
 
Figure 20: Example of a paradigm for motor execution for a synchronous BCI. From G. Pan (2018) [59]. 

 
The paradigm construction is different for an asynchronous BCI. In order to create an 
asynchronous/self-paced BCI, two phases are needed within the experimental protocol, a 
calibration phase, and a validation phase. The calibration phase is synchronous, while the 
validation phase is asynchronous. Therefore, two different paradigms with two different objectives 
are needed in the two phases. The calibration phase paradigm, as this phase is synchronous/cue-
based, follows the same principles explained before. The validation phase paradigm must create a 
self-paced system, thus allowing the subject to freely choose when to perform the movement. 
An example of a paradigm for a self-paced system created by P. Ofner [15] is shown in Figure 21. 
In this case between fixation cross and pause, a long period is allowed for the subject to freely 
perform one type of movement. The type of movement is given along with the fixation cross. 
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Figure 21: Example of paradigms for motor attempt for a self-paced BCI. A) The paradigm for the calibration phase. 
B) The paradigm for the validation phase. From P. Ofner (2019) [15]. 
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Literature Analysis  

There are many studies with the aim of restoring the functional movements of patients with spinal 
cord injuries or type of motor impairments [60],[61],[27]. It is clear that invasive techniques (such 
as ECoG and MEAs) are more effective in restoring motor skills in tetraplegic patients than non-
invasive techniques (such as EEG in this case). This is due to the better spatial resolution and 
signal quality of these techniques compared to EEG. 
The present study will focus on EEG, which starts at a disadvantage compared to invasive 
techniques but has certain advantages, such as versatility and portability. 
 
A literature study has been done with the following keywords: “Brain-Computer Interface”, 
“EEG”, “EEG-based BCI”, “Motor Imagery”, “Motor Attempt”, “Motor execution”, 

“Synchronous”, “Asynchronous”, “self-paced”, “subject-dependent”, “subject-independent”, 

“user-specific”, “Experimental Protocol”, “classification algorithms” , “Feature Extraction 

Methods”. 
The literature study carried out had a twofold purpose. On the one hand to identify the models used 
in EEG-dependent BCI for movement classification, and on the other hand to analyze the 
characteristics of experimental protocols for EEG-dependent BCI in order to implement one. 
 
The research of the model (feature extraction + classification technique) has been done analyzing  
12 articles and 2 reviews [40] [20]  about motor rhythms and movement related cortical potentials 
BCI. The summary of the different techniques used are reported in table 1. 
 
Simultaneously, 12 datasets of EEG dependent BCIs concerning BCIs based on motor rhythms 
and MRCP were analyzed. The results are shown in table 2. 
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Table 1: summary of the literature search over the models used in EEG-dependent BCI for movement classification 

EEG Pattern Synchrony + 
number of 

classes 

Subject-
dependency 

Features Classifier Reference 

Motor Imagery Asynchronous 
2 IC classes + 

NC 

Subject 
dependent 

FBCSP Non - Linear 
Regression 

[50] 

Motor Imagery Synchronous 
2 IC classes 

Subject 
dependent 

FBCSP Naïve Bayes [49] 

Motor Imagery Synchronous 
4 IC classes 

Subject 
dependent 

FBCSP LDA [49] 

Motor Imagery Synchronous 
4 IC classes 

Subject 
dependent 

Time 
Frequency 

CSP 

LDA [62] 

Motor Imagery Synchronous 
2 IC classes 

Subject 
dependent 

Band Power 
+ PCA 

PNN [63] 

Motor Imagery Synchronous 
4 IC classes 

Subject 
dependent 

Adaptive CSP RDA [48] 

Motor Imagery Synchronous 
3 IC classes 

Subject 
dependent 

Adaptive 
Regularized 

CSP 

RDA [48] 

Motor Imagery Synchronous 
3 IC classes 

Subject 
dependent 

CSP LDA [64] 

Motor Imagery Synchronous 
2 IC classes 

Subject 
dependent 

CNN SVM [51] 

Motor Imagery Synchronous 
4 IC classes 

Subject 
dependent 

Band pass 
Covariance 

RMDM [65] 

Motor Imagery Synchronous 
2 IC classes 

Subject 
dependent 

Band Power  DBN [66] 

Motor Imagery Synchronous 
3 IC classes 

Subject 
dependent 

Band Power SVM [67] 

Motor Imagery Synchronous 
2 IC classes 

Subject 
independent 

CSP/CNN LDA [5] 

Motor Attempt Synchronous 
5 IC classes 

Subject 
dependent 

Low 
Frequency 

EEG (MRCP) 

sLDA [15] 

Motor Attempt Asynchronous 
2 IC classes + 

NC 

Subject 
dependent 

Low 
Frequency 

EEG (MRCP) 

sLDA [15] 

 
FBCSP: Filter Bank Common Spatial Pattern; LDA: Linear Discriminant Analysis; CSP: Common Spatial Pattern; 

PCA: Principal Component Analysis; PNN: Probabilistic Neural Network; RDA: Friedman's regularized version 

of Discriminant Analysis; CNN: Convolutional Neural Network; SVM: Support Vector Machine; RMDM: 

Riemannian Minimum Distance to the Mean classifiers; sLDA: shrinkage Linear Discriminant Analysis; DBN: 

Deep Belief Network. 
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The study’s objective 

The application footprint of this research is medical. The aim is to think of a system that is useful 
for patients with spinal trauma or genetic disorders who have partially or totally lost the use of 
their upper limbs.  
The study will focus on an EEG-dependent BCI. To be able to work with tetraplegic patients, who 
might have totally lost the ability to move the upper limbs, the type of movements chosen is Motor 
Imagery. 
 
The final objectives of the study are to attempt to overcome two of the limitations of today's BCI 
systems. 
The first is to create a self-paced, non-cue-based BCI system that allows the patient the freedom 
to choose when to do the available movements. Most existing BCI systems are based on 
synchronous paradigms and therefore are far from being applied in a real-life situation [40] [20]. 
The second is to try to create a subject-independent BCI.  
 
It is important to consider that achieving simultaneously a self-paced and a subject-independent 
BCI is very complex. Therefore, the 2 objectives of this study can be viewed as single objectives.  
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Materials and Methods 

Two different datasets have been used during this thesis: 
1. Dataset 1 from BCI competition IV. It’s an online available dataset [68] provided by B. 

Blankertz, C. Vidaurre and K.-R. Müller from the Berlin BCI group [70]. The dataset 
characteristics can be found in Table 2 of the previous chapter. 

2. The second dataset has been acquired during this thesis within the PoliToBIOMed Lab of 
Politecnico di Torino. The characteristics of this dataset will be set out during this 
“Materials and Methods” chapter. 

Sample population tested 

Dataset 1 BCI competition IV: Four healthy participants have been used as experimental subjects. 
Motor imagery movements have been performed by the subjects during the whole session. No 
feedback has been provided to the subjects. Each subject performed two classes of Motor Imagery 
among the following: left hand movement, right hand movement, foot movement (side chosen by 
the subject, optionally both feet). The dataset description does not specify in detail what exactly is 
meant by right hand movement or foot movement [68] [6]. 
Table 3 shows which motor imagery classes were performed by each subject. Subjects are 
indicated with a letter of the alphabet. The reason for jumping from letter B to letter F is that the 
other letters belong to artificial datasets not analyzed in this thesis. 

 
Table 3: Motor imagery classes performed by each subject in dataset 1 from BCI competition IV. 

Subjects Motor Imagery classes 

Subject A Left hand, foot 

Subject B Left hand, right hand 

Subject F Left hand, foot 

Subject G Left hand, right hand 

 
 

PoliToBIOMed Lab dataset: Four healthy participants have been used as experimental subjects. 
The subjects were volunteers. The data acquisition has been conducted within the PoliToBIOMed 
Lab of Politecnico di Torino. 
Three helmets of different sizes were tried on the subjects before each experiment to choose the 
most appropriate helmet size. The size of the helmet corresponds to the circumference of the skull 



48 
 

of the subject. The three different sizes are the following: Small (50-54 cm), Medium (54-58 cm), 
Large (58-62). It is important that the helmet used is snug on the head but does not squeeze too 
tightly to the point of discomforting the subject [26].  
Table 4 shows the helmet size and the ages of the four experimental subjects. 
 
Table 4: Helmet size and age of each experimental subject of the dataset acquired within the PoliToBIOMed Lab of 
Politecnico di Torino. 

Subjects Helmet size Age 

Subject A Medium 25 

Subject B Medium 26 

Subject C Medium 26 

Subject D Medium 20 

 
 
Both datasets have a numerosity of 4 subjects. The number of subjects in both datasets does not 
fully allow to reach the goal of a subject independent BCI, as more patients are needed to create a 
subject-independent BCI [71], but it will allow the implementation of a pilot study for further 
future analysis.  
 
 
 
 
 
 
 
 
 
 
 
 
    
 



49 
 

Description Dataset 1 BCI competition IV  

The description of Dataset 1from BCI competition IV can be found in Table 2 of this thesis in the 
chapter of “Literature Analysis”. Further details regarding the experimental protocol and the 
protocol used are reported in this paragraph as described in [6].  
The acquisition system consists of a BrainAmp MR plus amplifiers (Brain Products GmbH, 
Munich, Germany) and a Ag/AgCl electrode cap (EASYCAPGmbH).  The signal was filtered in 
real time, during acquisition, with a bandwidth between 0.05 and 200 Hz. The sampling frequency 
is 1000 Hz. The signal was then sub sampled at 100 Hz. The data used are from the sub sampled 
signal. 
The paradigm as described in Table 2 can be seen visually in Figure 22. 
 

 
 
Figure 22: Paradigm structure of Dataset 1 BCI competitition IV. The upper paradigm is related to the calibration 
part of the experiment while the lower paradigm is related to the validation part of the experiment. From M. 
Tangermann [6]. 

 
 

Acquisition system  

This chapter will look in more detail at the software and hardware used to acquire the EEG data 
belonging to our dataset acquired during this thesis within the PoliToBIOMed Lab of Politecnico di 
Torino. 
Instrumentation and hardware from “g.tec - medical engineering GmbH” were used.  
In addition to the collection of EEG data by means of the g.tec software and hardware described 
in the following chapter, the creation of a visual stimulus to instruct the subject is necessary for 
the experiment to function. 
It is therefore necessary to have a trigger stimulus that is temporally synchronized with the 
acquired EEG data. 
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It is practical to use two computers, one for data acquisition and one for stimulus presentation. 
The EEG data acquisition amplifier is connected to the computer containing the data acquisition 
software. A second computer is then used to present the visual stimulus through appropriate 
software. 

Hardware 

The following recording devices are used: 

1. Biosignal amplifier: we use g.Hiamp. It is the data acquisition amplifier; 
2. Electrode cap: We use a second-generation g.GAMMA cap with high-density electrode 

placement, 74 labeled standard position (10-10 / extended 10-20 system). 
The cap comes in 3 sizes: Small (50-54 cm), Medium (54-58 cm), and Large (58-62 cm), 
allowing the experimenter to choose the most fitting cap for the subject; 

3. Electrode system: We use a g.Scarabeo active electrode system, compatible with g.HIamp 
and g.GAMMA cap. The system uses active sintered Ag/AgCl ring electrodes; 

4. A Recording computer: used to record EEG data. It is directly connected to the biosignal 
amplifier g.Hiamp; 

5. A Visual stimulus computer: containing the stimulus created with the visual stimulus 
software. 

 

Recording Software 

The software used to acquire EEG data is gRecorder. 
It is a software package for the recording of biosignal data such as EEG, ECoG, ECG, EOG, EMG 
and sensor data, and it allows to capture trigger information [34]. It can acquire data from g.tec’s 

biosignal amplifiers, such as g.Hiamp. The recorded data in gRecorder are saved in the '.hdf5' 
format file. In the case of EEG data acquisition, the output contained in the '.hdf5' file only contains 
a matrix of dimensions [number of channels × time points]. 
 
The graphical user interface of the software appears as in Figure 23 and allows the user several 
choices. It gives the experimenter the ability to do a raw data inspection, to select the number of 
observable channels and the length of the observation window. It also allows the user to implement 
preprocessing on the signal. The preprocessing steps applied on the gRecorder software are in turn 
applied to the saved data in the '.hdf5' format. 
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Figure 23: gRecorder software graphical user interface. 

 

Visual stimulus software 

The stimulus presentation software chosen for this study is Psychopy [72]. 
 
The g.tec acquisition environment, consisting of g.Hiamp and gRecorder, allows the visual 
stimulus, from the stimulus computer, to be connected via a parallel port to the amplifier, which 
transmits the stimulus times directly to the acquisition software gRecorder (Figure 24). 
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Figure 24: The g.tec parallel port used to connect the g.Hiamp amplifier to the stimulus computer. 

The limitation of this system is that if the stimulus computer does not contain the appropriate port 
for the parallel port, a special Trigger Interface Box is required. A virtual COM port (8-bit TTL 
output) to LPT/parallel port adapter is needed. 
Due to the costs of this interface system, it was decided to link the trigger stimulus and the data in 
a different way, as it will be further explained in the experimental protocol chapter. 
 
Psychopy: It is a stimulus presentation control package for neuroscientists used worldwide. It is a 
free, open-source package for running experiments in Python.  
Psychopy has a dual interface, a builder interface (Figure 25) that allows the creation of the 
experiment with minimal coding, and a coder interface (Figure 26) that allows everything to be 
created by coding. 
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Figure 25: Psychopy Builder Interface. 

 

 

Figure 26: Psychopy Coder Interface. 

 

Analysis Software 

Two different programming languages have been used to do the data analysis part of this thesis: 
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1. Matlab: It is a high-level programming language and a numeric computing environments 
developed by MathWorks [73]. It is designed for scientists and engineers to work with 
matrix manipulations, data-plotting, develop algorithms and create models. 

2. Python: It is a high-level programming language, object oriented, with dynamic semantics. 
It was first designed by Guido van Rossum and it is developed by the Python Software 
Foundation [74]. 

 

Experimental protocol 

This experimental protocol is designed for the acquisition of our own dataset within the 
PoliToBIOMed Lab of Politecnico di Torino. 
 
The movement task within this experimental protocol will be the opening and closing of the right 
hand (Figure 27). It will be a Motor Imagery task so the movement will only be imagined by the 
subjects and will not be executed or attempted.  
The hand open task requires the subjects to imagine to fully open the right hand with a full 
extension of the fingers of the hand (Figure 27a). 
The hand closed task requires the subjects to imagine to fully close the right hand in a fist position 
(Figure 27b). 
During the experiment when there is no task/hand movement to be done the participants have to 
keep a neutral hand position, with the hand relaxed and without activating any muscles. 
 
The choice to limit the research to these 2 movements has several explanations. The first is related 
to a simplification of the system. Having only 2 classes makes it more possible to increase degrees 
of complexity in other aspects of the system, such as user-specificity and system synchrony [40]. 
Secondly, two movements such as opening and closing the hand are everyday movements that 
would allow a user to regain an important motor skill, enabling them to grasp and release objects. 
Although there are only 2 classes, the use of 2 movements of the same hand complicates its 
classification compared to movements of two different body parts (for example in comparison to 
hand and foot, or the same movement but of the right hand and left hand) [48]. 
Furthermore, the BCI competition IV dataset 1 also uses two movements. Although the movements 
used in this dataset are different, the use of 2 IC classes, as in dataset 1 of BCI competition IV, 
allows the same classification models to be applied with appropriate modifications. 
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a) Hand open                                               b)  Hand closed 

      
 
Figure 27: Experimental protocol tasks: a) Hand open; b) Hand closed. 

 
The following definitions are defined within the protocol: 

6. Task: the exercise of imagining a flexion/extension movement of the fingers of the hand, 
which is initiated and terminated by appropriate on-screen signals; 

7. Trial: a sequence of a rest period and an execution period of the task; 
8. Run: a set of n consecutive trials; 
9. Session: a set of n consecutive runs. The experiment can be paused between 2 sessions by 

letting the subject rest and by interrupting the recording of the signal. 
 
The experimental protocol is divided into 2 phases: a calibration phase and a validation phase. The 
2 phases have different paradigms. 
The Calibration phase has two uses. The first is to be used as training for the validation phase. The 
second is to test a subject independent BCI that can work by training and testing the algorithm on 
different subjects. 
The Validation phase tests a self-paced (and possibly also subject-independent) BCI. 
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Calibration phase 

The calibration is divided into a first subject practice phase in which the signal is not recorded, 
and the patient is allowed to get used to the task, and a second phase in which the signal is recorded. 

Practice: The practice phase consists of 2 short runs with a total duration of 10 trials each. Between 
each run there is a 30-second rest period. During the first run, the subject performs the task by 
executing the movement (ME). In the second run, the subject performs the task by imaging the 
movement (MI). At the end of the second run, there is a one-minute break before the recording 
phase begins. 

Recording: During the recording phase, 4 runs of 315 seconds each (5 minutes) are performed. 
Between each run, there is a 1-minute break in which the volunteer can relax. Each run consists of 
40 trials lasting between 7 and 8 seconds. 

Each trial, both in the practice phase and in the recording phase, consists of the following. During 
the first 2 seconds, a fixation cross appears on the screen indicating to the subject the imminent 
start of the task. In the end, the type of MI task (open/close right hand) to be performed is shown 
on the screen. The task execution phase has a constant duration of 3 seconds in each trial, while 
the rest phase varies randomly between 2 and 3 seconds (Figure 28). The random variation of the 
rest phase is introduced to avoid adaptation of the subject [15] [6]. 
Furthermore, within the single run, after the execution of the first 20 trials, there is a 15-second 
pause to allow the volunteer to relax. 
 

 
Figure 28: Calibration Phase Trial. 

 
This results in a total of 160 trials per subject, respectively 80 trials per task, in the recording phase. 
The total duration of the calibration phase, including practice and recording, is around 28 minutes 
(Table 5). 
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Table 5: Sequence of the runs in the calibration phase. 

 
 

Validation phase 

The validation phase consists of 4 runs. Each run consists of 5 trials, respectively 4 of Motor 
Imagery and 1 of Rest ().  
 

Table 6: Single-run organization in the validation phase. 

RUN 

1 Movement trial 

2 Movement trial 

3 Movement trial 

4 Movement trial 

5 Rest trial 
 
The trial structure is presented in Figure 29. 
The class cue (open hand, closed hand, and rest), a fixation cross, and an acoustic signal are 
presented at the start of the trial. The class cue is removed at second 5 and only the fixation cross 
remains on the screen. In the following 60 seconds, the subject may freely perform the movement 
related to the class just shown. In the case of a rest class cue, the participant must avoid any 
movement. In the case of a movement-related class signal, the participant may attempt more than 
one self-performed movement of the required movement class during the 60-second period. In 
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addition, the subject must signal any MI task after 2 seconds by whispering. The experimenter 
promptly presses a button on the computer to mark the successful imagining of the movement. 
Between each run, there is a 25-second break to allow the volunteer to relax. The subject is asked 
to wait at least 3 seconds between one movement and the next. 
 

 
Figure 29: Validation phase trial. 

 

The total duration of the validation phase is around 24 minutes (Table 7). 

 

Table 7: Sequence of the runs in the validation phase. 

Validation Duration (s) 

1 run 1 350 

2 run 2 350 

3 run 3 350 

4 run 4 350 
 
 

Synchronization of stimuli and data 

To synchronize the EEG signal recording through the gRecorder software with the trigger stimuli 
obtained through the Psychopy software a manual way is used since it isn’t possible to connect 

them through the hardware. The idea is to use the eye-blinking artifact to locate the signal in time. 

Eye Blinking: The following sequence is done both at the beginning of the experiment and at the 
end of it (Figure 30). 
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Figure 30: Schematic representation of the synchronization process. 

 
The subject is asked to blink 3 times at a certain rhythm. A visual stimulus counting from 1 to 6 
appears on the screen. There is 1 second between each consecutive number. The first 3 seconds 
are accompanied by a sound stimulus. Those first 3 seconds have the purpose of giving rhythm to 
the subject. The last 3 seconds have only the visual stimulus, but not the sound one. Based on the 
rhythm of the previous 3 (1.. 2.. 3..) the subject blinks 3 times during the last 3 seconds (4.. 5.. 6..). 

The Psychopy software output contains the time information of when the eye blink is reported on 
the stimulus presentation computer. On the other hand the gRercorder software output only returns 
a matrix of dimensions [number of channels x time points]. To synchronize the two outputs the 
beginning of the eye blinking must be detected in the EEG signal. Once the time point of the 
beginning of the eye-blink is detected the difference in time points between the two outputs is 
calculated. The two outputs can now be synchronized by subtracting to the longer output a portion 
of the dataset corresponding to the difference between these two outputs. 

The beginning of the eye blinking is identified manually. When plotting the EEG signal of one of 
the frontal electrodes the three spikes of the three voluntary eye blinks can be clearly seen with 
our naked eye at the beginning and at the end of the experiment. 
They appear as three consecutives spikes with a distance of about 1 second and an amplitude of 
approximately 10 times the resting EEG signal. Once the three spikes have been found the 
beginning of the first three eye blink is manually selected to mark the corresponding time point 
(Figure 31). 
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Figure 31: The voluntary eye-blinks recorded on the Fpz channel of subject A from the PoliToBIOMed Lab dataset. 
Upper Figure: a picture of the whole length of the signal shows the three eye-blinking spikes at the beginning and at 
the end of the experiment. Bottom Figure: an enlarged  portion of the signal showing the three eye-blinking spikes at 
the beginning of the experiment. 

 

Electrode positioning 

The EEG signal has been recorded using 21 electrodes placed as in Figure 32. 
The following electrode positions are used: FP1, FP2, FPz, FC3, FC1, FCz, FC2, FC4, C3, C1, 
Cz, C2, C4, CP3, CP1, CPz, CP2, CP4 , Pz. 
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16 electrodes are placed over the motor cortex. 3 Electrodes are placed in the frontal position. The 
ground electrode is placed in the AFz positions. The reference electrode pinches the right ear. 
 

 
Figure 32: Electrode positioning within the extended 10-20 system/10-10 system. The electrodes colored in green 
have been used for the data acquisition related to this thesis. Modified from Zhang et al. [75]. 

The electrodes cover the motor cortex area since the aim of the data acquisition is to study the 
motor rhythms, which can be found over the motor cortex [8]. The positioning of the electrodes 
was inspired by the following datasets: BCI Competition IV - Dataset 1 [68], BCI Competition IV 
- Dataset 2a [68], Dataset from Ana. P. Costa [48], S. Romagosa et al. [21].  All the datasets just 
mentioned deal with Motor Imagery and use electrode placement on the motor cortex similar to 
that of Figure 32.  
Sixteen electrodes were chosen to cover the motor cortex. The choice of numerosity has a twofold 
reason. On the one hand, the performance of the BCI, on the other hand the experiment preparation 
time. It has been seen that datasets using fewer electrodes classify worse. For example, BCI 
Competition IV - Dataset 2b [68] that uses only 3 electrodes has lower classification performance 
compared to dataset with higher numerosity such as the dataset from S. Romagosa et al. [21] and 
Dataset from Ana. P. Costa [48], which have both 16 electrodes. On the other hand, datasets with 
a larger number of electrodes, such as BCI Competition IV - Dataset 1 [68], which has 59 
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electrodes, and Dataset O-Yeon Kwon et al [5], which has 62 electrodes, do not perform better in 
classification than the previous cited dataset with only 16 electrodes. 
This is probably due to the limits of the EEG spatial resolution. When there are too few electrodes, 
a choice must be made between a high electrode spacing, which limits the spatial resolution of the 
signal, and a closer spacing of the electrodes, which, however, limits the useful area covered on 
the scalp. Increasing the number of electrodes and the proximity between electrodes improves the 
signal spatial resolution and increases the area of the scalp covered by the electrodes. Continuing 
to increase the number of electrodes, however, would not seem to improve the performance of the 
classifier [40]. This could be due to a limitation of the EEG signal, which has a low spatial accuracy 
due to the “smearing” phenomenon of the electrical potential which dampens and spreads the 

signals [26].  
Furthermore, increasing the number of electrodes increases the experimenter's preparation time for 
the experiment. Using 16 electrodes allows for obtaining a good classification performance 
without requiring too much preparation time for the experimenter. It is important to note that the 
preparation time for electrode placement can also vary depending on the experimenter's 
experience. 

Recording setting 

The following settings have been chosen on the gRecorder software for the data acquisition: 
10. The signal sampling frequency has been set at 512 Hz, high enough not to incur in the 

aliasing phenomena.  
11. Each channel has selected a bipolar reference, using channel 1 as a reference electrode. 

Subject’s Questionnaire 

At the end of each experiment, we verbally conduct a survey asking the subject to answer the 
following question: 

1. Did you find the duration excessive? 
2. Were you able to maintain your concentration for the entire duration of the experiment? 

Did you have moments of distraction? If so, can you quantify them? 
3. Did the electrode cap bother you? 
4. Did it seem to you as if you were able to imagine the required movement well? 
5. During the individual trials, did you get the imagery and rest times right? 
6. Did you feel like you were able to meet the demand in all tasks? How many times did you 

approximately make mistakes? Could you quantify? 
7. Do you have any further comments about the experiment just conducted? 

The results of the questionnaire are reported in the Results chapter of this thesis. 
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Experimental protocol aim 

 
The aim of the experimental protocol is to satisfy the two goals contained in the study’s objective, 
and, therefore, to create a protocol that allows us to work on an asynchronous, self-paced and 
subject-independent BCI. 
 
The structure of the experimental protocol allows us to achieve both goals, and, at the same time, 
to concentrate only on one in case the other is too complex. The use of a calibration phase and a 
validation phase is intended to study a self-paced BCI, but this self-paced system is unlikely to be 
subject-independent. While for the application of a subject-independent system one can be 
satisfied with the calibration paradigm that is synchronous, thus creating a subject-independent but 
synchronous system. 
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PoliToBIOMed Lab Data Visualization 

Before starting to process the data acquired during the experiment at the PoliToBIOMed Lab, a pre-
analysis was performed to check the raw data to see how the acquired EEG data appeared 
compared to the given external stimulus. Data for subject A were observed during the calibration 
phase of the experiment. 
The stimulus vector or trigger vector of the subject appears as in Figure 33. When the ordinate 
value is at 0, it means that no type of stimulus is presented to the subject. This is class 0 which 
corresponds to the No Control phase. When the value rises to 1 or 2 it means that a stimulus is 
presented to the subject, corresponding to the Intentional Control phase. When the trigger value is 
at 1 the Hand open stimulus (class 1) is presented to the subject, when the trigger value is at 2 the 
Hand closed stimulus (class 2) is presented to the subject. 
It can be clearly seen the division between the 4 runs of the experiment and the minute break within 
the runs. It can be seen how within the runs the presentation of the hand open, hand closed stimuli 
appear randomized. 

 
 
Figure 33: Stimulus Vector for subject A of the PoliToBIOMed Lab dataset during the calibration phase of the experiment. The x-
axis shows the time axis in minutes. On the y-axis the value corresponding to the class: class 0 (no stimulus), class 1 (open hand), 
class 2 (closed hand). 

Figure 34 shows the EEG signal of electrode CP1 throughout the experiment. The stimulus vector 
is superimposed on the raw EEG signal. This allows us to distinguish at what times in the recording 

Class 0 → No Control 

Class 1 → Hand open 

Class 2 → Hand closed 
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the desired stimulus is delivered. The blue signal corresponds to the NC phase, the green and red 
signal correspond to the IC phase. 

 
 
Figure 34:EEG signal on the CP1 electrode for subject A of the PoliToBIOMed Lab dataset during the calibration phase of the 
experiment. The signal is colored in blue during the NC phase (class 0), in green and red during the IC phase. When the signal is 
green the hand open stimulus is presented (class 1). When the signal is red the hand closed stimulus is presented (class 2). 

Zooming in on a portion of the signal about one minute long (Figure 35), it can be seen that it is 
impossible to distinguish with the naked eye on the raw EEG signal to which class each portion of 
the signal belongs. 
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Figure 35:Zoom in of Figure 34. The zoom is applied to a portion of the signal about one minute long between minute 6 and minute 
7 of the experiment. 
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Processing steps 

This chapter will analyze all the processing steps that, starting from the raw signal, allow to reach 
the output of the experiment. 
Processing steps can be divided into three categories: 

1. Pre-processing, here the raw signals are processed through various steps that clean the data, 
trying to remove noise and artifacts, preserving only the part of the data useful for later 
analysis [36].  

2. Feature extraction, the aim here is to describe the signals using few relevant values which 
can be named “features” [20].  

3. Classification, from the extracted features the data are classified into the classes using 
machine learning or deep learning algorithms [20]. The algorithms used in this thesis are 
machine learning algorithms. 

 
The pipeline with all the processing steps can be seen in Figure 36. The same pipeline is used to 
analyze both datasets, the Dataset 1 from BCI competition IV, and the PoliToBIOMed Lab dataset. 
The pre-processing steps used are the same in both the calibration and validation phases. What 
differentiates the two phases are the feature extraction and classification steps.  
 
In this thesis, all analyses, both for data related to the calibration phase and data related to the 
validation phase are performed offline. 
However, the ultimate purpose of the validation phase would be to act online, classifying classes 
in real-time. Consequently, the processing steps of the validation phase are designed to be able to 
implement in a later study a BCI that classifies online in real time. 
 
The calibration phase involves dividing the signal into epochs. Each signal epoch will 
subsequently be classified into a class. 
Following the division into epochs, a k-fold cross validation is carried out to train and test different 
classifier models and choose the best one. The k-fold cross validation works as follows:  

1. Once all epochs of the signal have been extracted, these epochs are randomly reordered, 
losing the information related to the temporal position of the epoch with respect to the 
signal. The epochs are then divided into k subgroups with the same number of epochs called 
folds. 

2. k-1 folds are used for training the classifier model. The remaining fold is used for testing. 
This process is repeated k times so that each fold is used once as a testing fold. 

3. After each iteration, the performance of the testing fold is looked at and the average 
performance over all k folds returns the calibration performance. 

4. The model parameters related to the testing fold that obtained the best performance are 
saved for use in the validation phase. 
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Two models are trained during the calibration phase: 
1. A model which distinguishes the two IC classes. 
2. A model which distinguishes between the class of NC and the class of IC. 

 
In the validation phase, because it is designed for an online analysis, the signal is no longer divided 
into randomized epochs. A window of length t that runs along the signal is used, and each x samples 
performs the feature extraction and classification steps by classifying the epoch on which the 
window is located. The window length used in the validation phase for Dataset 1 from BCI 
competition IV is t = 2s and the classification is done each 10 samples. This means that the BCI 
returns a classification output every 0.1s being fs = 100 Hz. 
The best parameters for each classifier, saved in the calibration step, are used for classification of 
the signal window. Thus, there is no longer a training and testing phase of the models here, which 
were precisely trained in the calibration phase. 
As the window slides over the signal, a classification is made to distinguish between the NC class 
and the IC class, using the model trained in the calibration phase for the distinction between IC 
and NC classes. If the window is classified as NC, no further steps are taken. If the window is 
classified as IC then a further step is taken to distinguish between the two IC classes. 
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Figure 36: Pipeline of the processing steps used in the analysis of the data. 

 
All of the processing steps are analyzed into further details in the next paragraphs. 
 

Subject Independent BCI steps 

To create a subject independent BCI the model is trained on the total of the 4 subjects minus one 
and tested on the remaining subject. Four combinations are created as it can be seen in Table 8 for 
Dataset 1from BCI competition IV and in Table 9 for the PoliToBIOMed Lab dataset. 
Data from the 4 subject calibration phase are used, while data from the validation phase, which 
were structured for a user-specific BCI, are not used. 
 
Two stages are used for the construction of an independent subject BCI within this thesis: 

1. A calibration phase for the subject independent BCI: within this phase, the epochs of the 
three training subjects are grouped, randomized, and a 5-fold cross-validation is done on 
these epochs. The average performance over the k folds returns the calibration 



70 
 

performance. The model parameters related to the testing fold that obtained the best 
performance are saved for use in the validation phase. 

2. A validation phase for the subject independent BCI: the model trained in the calibration 
phase is used to test the performance on the test subject. 

 
Table 8:  Combination of training and testing subjects for the subject independent BCI of Dataset 1 from BCI 
competition IV. 

 Train on subjects Test on subject 

Combination 1 A, F, G B 

Combination 2 A, B, G F 

Combination 3 F, B, G A 

Combination 4 A, B, F G 

 
Table 9: Combination of training and testing subjects for the subject independent BCI of the PoliToBIOMed Lab 
dataset. 

 Train on subjects Test on subject 

Combination 1 A, C, D B 

Combination 2 A, B, D C 

Combination 3 C, B, D A 

Combination 4 A, B, C D 

 

Pre-processing  

Channel selection 
Dataset 1 BCI competition IV: Of the 59 available channels, the 16 channels closest to the motor 
cortex were selected by using as a reference [48] and [21]. The selected channels are as follows: 
Fc3, Fcz, Fc4, C5, C3, C1, Cz, C2, C4, C6, CP3, Cp1, Cpz, Cp2, Cp4, Pz, O1, Oz, O2, POz, Fpz. 
Using channels far from the motor cortex could worsen BCI performance by introducing non-
significant features [76], as the aim of the data acquisition is to study the motor rhythms, which 
can be found over the motor cortex [8]. 
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PoliToBIOMed Lab dataset: Since channel selection was already done within the experimental 
protocol, there was no need to make a subsequent selection during analysis. No channel exclusion 
analysis was carried out to eliminate any possible noisy channels. 
 
Re-Referencing 
The re-referencing has been done using a CAR filter in the analysis of both datasets. Both datasets 
have been studied with and without the CAR filter applied. 
 
Temporal filters 
There are two main types of digital filters used in signal processing [36]: 

1. FIR (Finite Impulse Response) filters produce an output that depends only on a finite 
number of past and present input values. They are called finite because the impulse 
response, that is, the output of the filter, eventually settles to zero. They are generally stable 
filters, meaning that rounding errors or overflow issues are minimized. They are not filters 
that can be used for real-time analysis. 

2. IIR (Infinite Impulse Response) filters use a recursive algorithm that considers both past 
input values and past output values, thus allowing the signal to be processed in real time. 
They are less stable than FIR filters. 

Both datasets have been pre-filtered during the acquisition of the data and then have been filtered 
offline during the data analysis. 
 
Dataset 1 BCI competition IV: The data have been pre-filtered during acquisition as described 
previously in this thesis in the chapter of Materials and Methods in the paragraph “Description 

Dataset 1 BCI competition IV”. During the data analysis a bandpass Butterworth filter of 4th order 
is applied between 8 and 30 Hz. The Butterworth filter is an IIR filter, which makes it suitable for 
future online/real-time analysis. 
 
PoliToBIOMed Lab dataset: The signal has been filtered online during data acquisition using the 
gRecorder software. The following online filters have been applied: 

1. A 0.5-100 Hz Band-pass filter.  
2. A 48-52 Hz Notch filter.  

The order and type of filters applied is not specified in the software or in the instruction manual of 
the software used [34]. As the filters are applied in real-time it can be said that these are IIR filters. 
During the data analysis a bandpass Butterworth filter of 4th order is applied between 8 and 30 Hz. 
 
To see the effect of the filters applied using the gRecorder software, an estimation of the power 
spectral density (PSD) of the signal has been made (Figure 37), which shows how the signal power 
is distributed among different frequencies. The PSD is done on the data of subject A during the 
calibration phase of the experiment. electrode FCz is selected. The PSD has been done throughout 
the whole duration of the signal. Since the signal before filtering is not available, it is not possible 
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to make a comparison between before and after. However, something can be observed by 
magnifying the signal in the frequencies of interest: 
- Figure 38 shows the application of the Notch filter. The signal power is indeed clearly lowered 
around 50 Hz.  
- By magnifying the signal between the frequencies of 0 and 5 Hz (Figure 39), it can be seen that 
the signal power has been lowered below the frequency of 0.5 Hz. 
- Looking at the signal in the frequencies above 70 Hz (Figure 40), one can see how the signal 
power has been knocked down above the frequency of 100 Hz. 
 

 
 
Figure 37: PSD of the signal of the FCz electrode of subject A during the calibration phase of the experiment. 
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Figure 38:Zoom in of Figure 37. The zoom is done on the x-axis in order to see the reduction of the signal’s power around 50 Hz. 

 

 
 
Figure 39: Zoom in of Figure 37. The zoom is done on the x-axis in order to see the reduction of the signal’s power below 0.5 Hz. 
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Figure 40: : Zoom in of Figure 37. The zoom is done on the x-axis in order to see the reduction of the signal’s power above 100 

Hz. 

Epoch Division 

In order to do feature extraction, the signal must be previously divided into epochs [36]. The signal 
is a matrix C×S, where C is the number of EEG channels and S are the signal samples. The total 
number of signal samples S is given by the sampling rate multiplied by the total duration of the 
signal in seconds. An epoch is a portion of the signal of size C×E, where 𝐸 =

𝑓𝑠 × 𝑒𝑝𝑜𝑐ℎ 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (𝑠𝑒𝑐𝑜𝑛𝑑𝑠). 
Epochs can vary according to the following characteristics: 

1. Duration of the epoch in seconds (L). 
2. Beginning of the epoch, the starting time in seconds from the start of the cue (I). 

If the purpose of epoch division is to classify a portion of the signal within a class, the epoch 
duration is related to the duration of the stimulus corresponding to that class. The epoch may 
therefore have a duration equal to the duration of the stimulus or less. An epoch is unlikely to have 
a duration longer than the duration of the stimulus, since it would go on to incorporate within it a 
part of the signal that is not significant for the classification of the epoch. For the same reason, the 
epoch may begin with the onset of the stimulus, or later, if the signal within it is contained within 
the portion of the signal related to the stimulus to be classified. 
 
Feature extraction techniques make it possible to extract from each epoch C×E, a vector F, where 
F is the number of features contained in a signal epoch. 

Feature extraction 

Feature extraction techniques used in the BCI world can be of two types [40]: 
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1. Supervised feature extraction: They make use of labeled data to extract features, meaning 
that they use the class information of the data to extract features. An examples are Mutual 
information Feature Selection techniques [77]. 

2. Unsupervised feature extraction: rely only on input data and do not use any class labels. 
An example of this are Principal Component Analysis (PCA) and Independent Component 
Analysis (ICA) techniques [40]. These techniques are often referred to as part of the pre-
processing steps, rather than the feature extraction steps [78]. 

Two Feature Extraction techniques are used within this thesis: the Power band technique, which 
is an unsupervised technique, and the Common Spatial Pattern (CSP) technique, which is a 
supervised technique. 
 
Power Band 
As has been stated in in the introduction of this thesis the EEG signal is characterized by oscillatory 
activities in different frequency bands. In particular, the alfa and the beta band can be particularly 
interesting to discriminate between different mental states during MI by extracting the power 
contained in those bands [44]. 
In fact, Power Band features are widely used as a feature extraction method in Motor Imagery 
detection [40]. 
To estimate the Power band features 3 signal processing steps are followed (Figure 41) [79]: 

1. The EEG signal is band-pass filtered in the frequencies of interest (mainly alfa and beta 
band as stated before). This way only informative frequencies are kept, while unnecessary 
ones are dampened out. 
Different literature sources use a Butterworth IIR filter of order 4 [80] [81], but in general 
different kind of filters can be used and adapted to the problem at hand [35]. 

2. The filtered signals are then segmented into epochs, each one corresponding to the MI trial 
of interest. Thereafter each channel is squared and averaged over the epoch to estimate the 
power. 

3. In the end the features are logarithmically squared. 
The total number of features extracted for each trial of interest corresponds to the number of EEG 
channels. 
 
The approach explained above is one of the most popular approaches to extract power band 
features and it is the one adopted in this thesis. Other approaches are possible, for example: power 
spectral density estimation using an auto-regressive model, The Wigner-Ville distribution, the 
periodogram, the spectrogram and the Morlet wavelet scalogram [82]. 
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Figure 41:Application of the three steps of Power band feature extraction over a signal epoch of subject A of dataset 
1 of BCI competition IV. The channel in the figure is the Fcz channel. 
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Common Spatial Pattern 
Spatial filters are commonly used as a method to separate between classes in MI task experiment. 
The Common Spatial Pattern (CSP) is one of the most popular spatial filters used in literature   [21] 
[40] [48] [49] [54] [62]. Originally it was conceived and designed for a two-class classification, 
although it can be adapted to a larger number of classes [62]. In this work it will be used to 
discriminate between 2 classes. 
 
The assumptions behind this method are as follows: 

12. The time windows and frequency band are known. 
13. The band-passed signal is jointly Gaussian between this time-frequency window. 
14. There is a difference between how activity is expressed between two conditions, i.e. there 

is some information that is informative about our classes. 
 
CSP is a data-driven supervised method to decompose the epochs of the signal and transfer a high 
dimensional EEG signal into a lower dimension spatial subspace through a transformation matrix 
𝑊. This transformation allows to discriminate between the 2 classes by maximizing the filtered 
signal variance for one class while minimizing it for the other [54] (Figure 42). 
 

 
 
Figure 42: Application of CSP filter on a signal epoch of subject A of dataset I of BCI competition IV. On the left: the scatter plot 
of the first and last row of the unfiltered EEG signal for the 2 classes of Intentional Control. The distribution of sampling before 
the CSP filtering is shown. On the right: the scatter plot of the first and last row of the CSP filtered signal for the 2 classes of 
Intentional Control. The ellipses show the estimated covariance and the direction of the CSP projections. This figure shows how 
the variance of class1 is maximum in Xcsp row n.16 but minimum in Xcsp row n.1 while the variance of class 2 is opposite to 
class1. It is observed that the application of CSP significantly increases the separability of epochs of different classes. 

 
In particular, the spatial filtering is applied to the EEG signal 𝑋 ∈ 𝑅𝐶𝑥𝑇 in the original sensor space 
by the matrix 𝑊 ∈ 𝑅𝐶𝑥𝐶, where 𝐶 is the number of channels and 𝑇 is the number of samples, to 
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linearly transform the signal and obtain  𝑋𝐶𝑆𝑃 ∈ 𝑅𝐶𝑥𝑇 , which belongs to a surrogate spatial 
subspace. 
 

𝑋𝐶𝑆𝑃 = 𝑊⊤𝑋 
 
The column vectors of 𝑊, 𝑤𝑖 ∈ 𝑅𝐶 (with 𝑖 = 1, … , 𝐶), are the spatial filters. 
The matrix 𝑊 allows the simultaneous diagonalization of the two covariance matrices 𝑆1 and 𝑆2, 
belonging to the two classes respectively, by solving the eigenvalue decomposition problem [4]. 
 

𝑆1𝑊 = (𝑆1 + 𝑆2)𝑊𝐷 
 
Where 𝐷 is the diagonal matrix containing the eigenvalues of 𝑆1. 𝑊 can be easily calculated in 
Matlab with the command 𝑊 = 𝑒𝑖𝑔(𝑆1, 𝑆1 + 𝑆2). 
 
To recapitulate, the variance for class 1 trials is greatest in the first row of 𝑋𝐶𝑆𝑃 and decreases with 
the following rows, and the opposite happens for class 2 trials. One can exploit this property to 
extract features from the CSP based on the variance. Features are extracted by isolating the first 
three components and the last 3 components of the 𝑋𝐶𝑆𝑃 matrix. Then the variance 𝑉𝐴𝑅𝑝 of each 
of these time series is calculated over a time window of the epoch of interest. Following 
normalization and logarithmic transformation, 6 features 𝑓𝑝 are extracted, 1 for each time series 
taken from the 𝑋𝐶𝑆𝑃 vector. 
 

fp = log (
Varp

∑ Varp
6
p=1

)   

Classification  

Three different types of classifiers have been used during the data analysis, the Linear Discriminant 
Analysis (LDA), the Support Vector Machine (SVM) and the Naïve Bayes. They all use a 
supervised learning approach to solve the classification problem. This means that these types of 
classifiers need labeled training data. After they have been trained on labeled data the classifiers 
can then be used to distinguish between classes on the testing or validation set. 
They all receive as input a matrix 𝐹 × 𝑁, where F is the number of parameters and N is the number 
of epochs to be classified. Together with the input matrix they also receive a vector of the length 
of N with the label of the classes of each epoch. Thanks to the matrix 𝐹 × 𝑁 
and the labeled vector they realize the prediction model which can then be used on the 
testing/validation set to assign to each unknown epoch the corresponding predicted class. 
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Performance evaluation 

This section will focus on describing the metrics used to evaluate the performance of a BCI. 
It is essential to have a common performance metric within the literature to be able to effectively 
compare research from different laboratories. However, there is no single metric to describe the 
performance of a BCI, but there are several parameters that can be applied to different types of 
BCIs. For example, a 6-class synchronous BCI will use different parameters from a 2-class 
asynchronous BCI, as the objectives are different, and therefore the performance metric must also 
be different. In the same way, a BCI designed to work in real-time will have different objectives 
and a different evaluation metric from an offline BCI. 
 
For an M-class classification problem, the tool used to describe the classification performance of 
a BCI is the confusion matrix [83]. A confusion matrix is a table layout in which each row 
represents the actual condition of each class, its actual classification, and each column represents 
the predicted class. Therefore, the predicted output is related to the actual condition. 
 

Table 10: Example of a confusion matrix for a 3-class classification problem with a balanced dataset. 

 
 
In Table 10 we can see an example of a confusion matrix of a 3-class classification problem. The 
individual elements of the confusion matrix nij indicate how many class i trials were classified as 
class j. The elements on the diagonal nii, the blue elements, indicate the correctly classified trials. 
Elements outside the diagonal indicate incorrect classifications. N represents the total number of 
samples, and it can be calculated as the sum of all the elements of the confusion matrix. 
If the confusion matrix is asymmetrical, it means that there is a biased classification toward certain 
classes. 
 
The confusion matrix gives a clear idea of classification performance by eye. However, it is 
inconvenient for comparing different studies containing a different number of classes and total 
trials. In order to make an effective comparison, a single parameter defining the performance of a 
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BCI is needed. There are mainly 2 parameters used in the literature, one applies to balanced 
datasets and the other applies to unbalanced datasets. 
A dataset is defined as balanced when all classes appear an equal number of times throughout the 
session. When this does not happen, the dataset is defined as unbalanced. Different performance 
metrics are used in the two cases: 
 

1. Balanced: If the aim is to measure the overall performance of a BCI as the number of 
correctly classified trials, the metric to be used is accuracy, or its mirror version, i.e. 
classification error. This parameter, the accuracy, measures the number of correctly 
classified trials compared to the number of total trials (correct + incorrect) [39]. 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑃 = (∑ 𝑛𝑖𝑖

𝑀

𝑖=1

) /𝑁 

 
M represents the number of classes. N represents the total number of trials. 
It is important to compare the accuracy performance of a BCI with its baseline, i.e. the 
performance that the BCI would achieve by randomly classifying. This percentage is 
obtained by doing 100%/M, where M is the number of classes.  
For example, a perfectly balanced two-class BCI is completely random when it has an 
accuracy of 50% (100%/2). whereas a perfectly balanced four-class BCI is completely 
random when it has an accuracy of 25% (100%/4). 
This is true when the dataset is balanced. 
 

2. Unbalanced: if the dataset is unbalanced accuracy no longer makes sense, as accuracy gives 
more weight to the most frequent classes and less weight to the least frequent classes. 
Consequently, the accuracy value is no longer an indication of the true performance of a 
BCI in an unbalanced dataset, regardless of the number of classes. 
Cohen’s Kappa coefficient, 𝜅, should be applied in this case [83]. the 𝜅 takes into account 
both the classification accuracy P and the chance agreement Pe. 
 

𝑐ℎ𝑎𝑛𝑐𝑒𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 = 𝑃𝑒 = (∑ 𝑛𝑖𝑐

𝑀

𝑖=1

∗ 𝑛𝑖𝑟) /𝑁2 

 
𝑤ℎ𝑒𝑟𝑒 𝑛𝑖𝑐 is the sum of the ith column, while 𝑛𝑖𝑟 is the sum of the ith row. They are 
respectively the a posteriori and a priori probability. The 𝜅 coefficient is then calculated as 
follows: 
 

𝜅 = (𝑃 − 𝑃𝑒)/(1 − 𝑃𝑒) 
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Although not to be taken as a rule, a study of the literature shows that unbalanced datasets 
are typical of self-paced BCI systems. 
 

The metrics seen so far measure the average classification rate of each trial. They do not take into 
account the duration of the trial or the classification time due to the algorithm. 
In the case where the BCI is seen as a communication channel and the objective becomes to 
understand the “speed” of the interface in terms of providing information another metric is used, 

the Information Transfer Rate (ITR). 
The ITR measures system performance based on bit/rate. This metric takes into account the 
number of classes in the system, the correct classification of these classes, and the time taken to 
perform this classification. 
Two methods were proposed to measure the ITR. The first was proposed by Wolpaw [84], where 
B is the bit rate or bits/trial: 
 

B = 𝑙𝑜𝑔2(𝑀) + P𝑙𝑜𝑔2P(1 − 𝑝)𝑙𝑜𝑔2 + [𝑙𝑜𝑔2(1 − 𝑃)/(𝑀 − 1)] 
 

M represents the number of classes and P is the probability that each class is correctly classified, 
i.e. the accuracy. The limitation of this formulation is the assumption that each class has the same 
accuracy and that the distribution of the individual classes is the same. 
These conditions are not met in several applications. Consequently, an alternative approach was 
proposed by Nykopp [85] based on the distribution and accuracy of the individual classes. 
 
A 10×k fold cross validation is used to obtain performance results in the calibration phase. A 10×k 
fold cross validation is used to obtain a robust estimate of the performance of a machine learning 
model. In this case robust means that the performance of the model is stable and little affected by 
small variations in the performance data [86].  
The 10×k fold cross validation works by repeating 10 times the k fold cross validation process 
explained in the “processing” section of this thesis. The performance obtained is then the average 

performance of the 10 iterations, where in turn the performance of each iteration is the average 
performance of the k folds. 
 
The performance score is accompanied by its standard error SE. 
The SE is the measure of variation in the mean of scores for k folds. it is calculated as follow [87]: 
 

𝑆𝐸 =
𝑠

√𝑛
 

 
where: s is the standard deviation of the score of k folds, n is the number of k folds. 
Using a 10×k fold cross validation in the calibration step, the value of SE will be the average of 
the SE values for the 10 iterations. 
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Statistical testing 

Once the BCI performance results are obtained, statistical tests are used. These tests allow us to 
understand whether there are significant differences in the final performance of the BCI using 
different processing parameters, e.g. different feature extraction and classification techniques. This 
gives us the possibility to choose which techniques are more effective than others. Statistical 
analyses can also be used to find out whether there is a significant difference in the results obtained 
between different subjects or whether the performance values obtained are significant compared 
to a null classification. 
These analyses are possible by comparing two or more sets of results, which means that two single 
values cannot be statistically compared. Since all analyses are done using a 10×k cross-fold 
validation, the BCI performance result is never a single value, but a group of values which allow 
us to perform the statistical test. The following tests are used [87]: 

1. The t-test: it is used to test whether there is a significant difference between the mean of 
two groups. There are different types of t-tests. In this thesis, the t-test for independent 
samples is used, which compares the mean between two different groups. The t-test 
returns the p-value, a parameter measuring the probability that the observed results are 
due to chance rather than a significant difference. The p-value is calculated from the data. 
The significance level α plays an important role in the result’s interpretation. If the p-
value is less than the predefined α, the null hypothesis is rejected, meaning that the 
difference between the averages is significant. If, on the other hand, the value of p is 
greater than the predefined α, the null hypothesis is not rejected and therefore the 
difference between averages cannot be considered significant. In this thesis α = 0.05 (5%) 
is chosen, which means that we accept a 5% probability of committing a type I error. 

2. Analysis of Variance (ANOVA): this is used to test whether there are significant 
differences between the averages of several groups at the same time. In this thesis, the 
one-way ANOVA will be used to compare the averages of several groups with respect to 
a single independent variable. The results of an ANOVA test report: 

- The F-value, which represents the ratio of between-group variability to within-
group variability; 

- The degrees of freedom; 
- The p-value which has the same function as the p-value in the t-test. 

If the p-value is smaller than the significance level α it means that at least one of the 
groups has a significantly different average from the others. To identify which groups 
differ from others a post-hoc test is used. 

3. Tukey’s HSD (Honest Significance Difference is one of the most common tests for a 

multiple comparison between groups. It also uses the p-value to identify which groups 
have a statistically significant average. 
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Results 

Questionnaire answers 
The following are the responses of the subjects of the PoliToBIOMed Lab dataset in relation to the 
questionnaire conducted after data acquisition as reported in the Materials and Methods section of 
this thesis. 
 
Subject A: 

1. The subject found the duration slightly long. 
2. The subject reports slight bouts of sleepiness probably due to the proximity of the 

experiment to the meal. 
3. The helmet over the eyes slightly bothered the subject. 
4. Movement visualization was well present according to the subject. He struggled to imagine 

at first. The perception of correct imagining of the movement improved during the 
experiment. He felt well the imagination of the stretching of the fingers opening and the 
pressure of the fingers on the hand. 

5. The subject reports that he found the rest interval too long, while he reports that he found 
the task execution interval to be of a more correct and comfortable length. The gray screen 
time during the trial (rest phase) is slightly too long according to the subject. He found the 
15-second rest in the middle of the run useful. 

6. The subject reports that in his opinion he performed almost all the tasks correctly, missing 
a maximum of 2-3 tasks during the experiment. 

7. None. 
 
Subject B 

1. The subject expressed neither positive nor negative opinion about the overall duration of 
the experiment. 

2. The subject reports that he maintained good concentration during the calibration phase of 
the experiment, but struggled to stay focused for the validation phase 

3. The helmet did not bother the subject. 
4. The subject reports that he correctly perceived imagining the movement during the 

calibration phase but became confused in distinguishing between imagining and rest during 
the validation phase. 

5. The subject was comfortable with the duration of Motor Imagery and rest during the 
calibration phase. In contrast, he found the self-paced motor imagery phase during the 
validation phase too long. 

6. The subject cannot precisely establish whether the tasks were met. Generally, he 
accomplished the given task well, but he reports getting it wrong occasionally. 
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7. The subject found the gray screen with white lettering difficult to understand; the 
combination of gray and white colors fatigued his eyesight, according to the subject, 
causing him to “cross his eyes”. The subject is completely nearsighted in his right eye. 

 
Subject C 

1. The subject found the total duration of the experiment a little long. 
2. The subject reported difficulty in maintaining concentration for a long time. He had 

moments of distraction during the experiment. 
3. The subject reported no discomfort related to the helmet. 
4. The subject found the concept of imagining movement complex. He seemed to focus more 

on the image than on the task of imagining the movement. 
5. The subject found the rest and motor imagery times comfortable. 
6. The subject reports that he generally perceived that he accomplished the given task well, 

with some errors toward the last trials.  
7. The subject thinks it would have been easier for him to use an auditory stimulus rather than 

a visual one. 
 
Subject D 

1. The subject reports finding the duration of the experiment tiring, but reports having a 
particularly tiring day before performing the experiment. 

2. The subject reports having minimal moments of distraction, for most of the time of the 
experiment he was able to stay focused. 

3. The helmet did not bother the subject. 
4. The subject attempted to imagine the opening and closing of the hand both physically, 

imagining physically opening and closing the hand, and visually. He reports that he 
perceived as if the hand wanted to close or open without actually doing so. Sometimes he 
visually imagined opening and closing the hand. He tried both ways, what the subject 
defined as physical mode or visual mode. 

5. The subject reports finding the focus time slightly short in preparation for the motor 
imagery task. The few times he felt distracted was because the focus time was too short for 
the subject. 

6. The subject reports being wrong less than 5 percent of the time. It seemed to him that he 
gave micro muscle inputs in a couple of motor imagery tasks. 

7. The brightness of the screen caused the eye to fatigue somewhat leading the subject to 
perform more eye blinks than normal. 
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Experimental Notes 
The following notes were taken during the data acquisition at the PoliToBIOMed Lab regarding the 
subjects and the conduction of the experiment: 

1. Subject A did not perform the validation part of the experiment, due to an error during the 
setting of the experiment. 

2. Subject B is completely nearsighted from the right eye. This might influence the results of 
the experiment. 

 
 

Data Results 

Dataset 1 BCI competition IV 
Calibration data - User specific 
Several parameters influence the performance of the BCI during the calibration phase. A multilevel 
analysis is therefore done to understand which parameters are the best within the pipeline, so that 
choices could be made later and not repeat the analysis for each different parameter every time. 
 
Analysis Intentional Control 
First, we look at the classification between the two classes of Intentional Control. A total of 200 
epochs of IC is looked at. A 10×5 cross fold validation is made. 
A first-level analysis is conducted on the preprocessing and feature extraction steps to see how 
they go about influencing the final classification. 
The steps of the pipeline that are analyzed during this first-level analysis are: the application or 
non-application of the CAR filter and the two feature extraction techniques applied in this study, 
the Power Band and Common Spatial Pattern features. 
Therefore, 4 possible combinations are analyzed within the 4 subjects: 

1. The CAR filter is applied during pre-processing and the features are extracted through the 
Power Band technique. 

2. The CAR filter is not applied during pre-processing and the features are extracted through 
the Power Band technique. 

3. The CAR filter is applied during pre-processing and the features are extracted through the 
CSP technique. 

4. The CAR filter is not applied during pre-processing and the features are extracted through 
the CSP technique. 

The training and testing window length is fixed at L = 2.5s and the beginning of the training 
window and of the testing window is I = 1.5s. An LDA classifier is applied. 
 



86 
 

Figure 43 shows the performances’ results in the 4 possible combinations for each subject. The 
performance score used is accuracy together with its standard error. 
Table 11 reports the same results of the bar graph of Figure 43 in a numerical form. 
 

 
 
Figure 43: Bar graph showing the results of performance for a 10×5 cross fold validation during the calibration 
phase of Dataset 1 BCI competition IV. The graph shows the ability of the algorithm to classify between the two classes 
of Intentional Control. 4 different cases are looked at: CAR+CSP, NO CAR + CSP, CAR + PB, NO CAR + PB. The 
graph shows the performance results for all subjects of the experiment. 

 
Table 11: Table showing the results of performance for a 10×5 cross fold validation during the calibration phase of 
Dataset 1 BCI competition IV. Combinations of different pre-processing and feature extraction techniques are looked 
at. 

Accuracy + Standard Error 

 Subject A Subject B Subject F Subject G 

CAR + CSP 0.91 ± 0.01 0.78 ± 0.03 0.83 ± 0.03 0.90 ± 0.02 

NO CAR + CSP 0.92 ± 0.02 0.79 ± 0.02 0.84 ± 0.03 0.90 ± 0.02 

CAR + PB 0.83 ± 0.03 0.72 ± 0.03 0.77 ± 0.03 0.81 ± 0.03 

NO CAR + PB 0.80 ± 0.03 0.61 ± 0.03 0.68 ± 0.04 0.78 ± 0.02 
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Statistical analyses are carried out to assess which parameters are more appropriate. The subject 
that is classified best and the subject that is classified worst are taken for the analysis, in order to 
obtain statistical results that are as generalized as possible. Table 11 shows that subject A is ranked 
best in all 4 cases taken into consideration, while subject B is ranked worst in all 4 cases. These 
two subjects are therefore chosen. 
 
First you look at whether there are significant differences between the average performance results 
using the CAR filter. One looks at whether for the same feature extraction technique the CAR filter 
generates a significant difference. A series of t-tests is used. To make a comparison between 
groups, the performance results of the 10×5 cross fold validation are used as groups. It means that 
each group will contain 10 values, corresponding to the average performance of the k-fold cross 
validation. The significance value α is set at 0.05. Independent sample t-tests are performed in the 
following cases: 

1. Comparing the CAR + PB and NO CAR + PB case in subject A it is obtained  
p = 1.3 × 10-4 (p < α). The difference between the means is statistically significant.  

2. Comparing the CAR + PB e NO CAR + PB case in subject B it is obtained  
p = 1.84 × 10-11 (p < α). The difference between the means is statistically significant. 

3. Comparing the CAR + CSP e NO CAR + CSP case in subject A it is obtained  
p = 0.15 (p > α). The difference between the means is not statistically significant. 

4. Comparing the CAR + CSP e NO CAR + CSP case in subject B it is obtained  
p = 0.18 (p > α). The difference between the means is not statistically significant. 

When the CAR filter is coupled with the Power Band feature extraction technique, the use or non-
use of the filter generates a statistically significant difference in the results for both subjects. In 
contrast, when the CAR filter is coupled with the CSP filter, no statistically significant mean is 
generated in either of the two subjects under analysis. 
 
Next, it is observed whether any significant differences exist between the averages of the 
performance results using the two different feature extraction techniques: CSP and Power Band. 
For this statistical analysis the case where the CAR filter is applied is chosen. The t-test with 
independent samples is performed. The significance value α is set at 0.05: 

1. Comparing the CAR + CSP e CAR + PB case in subject A it is obtained p = 3.2 × 10-11 (p 
< α). The difference between the means is statistically significant. 

2. Comparing the CAR + CSP e CAR + PB case in subject B it is obtained p = 2.4 × 10-6 (p 
< α). The difference between the means is statistically significant. 

There is a statistically significant difference between the results obtained with the CSP technique 
compared to the Power Band technique. 
 
By looking at the upper results, CSP will be used as the feature extraction technique for the 
subsequent analyses. As no statistically significant differences were found in the use of the CAR 
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filter in combination with CSP, the choice of filter use does not influence subsequent 
investigations. It is arbitrarily chosen to continue using the CAR filter. 
 
A second-level analysis is then carried out to see which classifier works best. There are 3 classifiers 
used in the analysis: the LDA, the SVM and the Naive Bayes. 
 
Figure 44 shows the performances’ results in the 3 possible combinations for each subject. The 

performance score used is accuracy together with its standard error. 
Table 12 reports the same results of the bar graph of Figure 44 in a numerical form. 
 

 
 
Figure 44: Bar graph showing the results of performance for a 10x5 cross fold validation during the calibration phase 
of Dataset 1 BCI competition IV. The graph shows the ability of the algorithm to classify between the two classes of 
Intentional Control. 3 different classifiers are looked at: LDA, SVM and Naïve Bayes. The graph shows the 
performance results for all subjects of the experiment. 
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Table 12: Table showing the results of performance for a 10x5 cross fold validation during the calibration phase of 
Dataset 1 BCI competition IV. Combinations of different pre-processing and feature extraction techniques are looked 
at. 

Accuracy + Standard Error 

 Subject A Subject B Subject F Subject G 

LDA 0.92 ± 0.02 0.79 ± 0.02 0.84 ± 0.03 0.90 ± 0.02 

SVM 0.92 ± 0.02 0.80 ± 0.03 0.84 ± 0.03 0.91 ± 0.03 

Naïve Bayes 0.86 ± 0.03 0.77 ± 0.03 0.83 ± 0.03 0.86 ± 0.03 
 
Statistical analyses are carried out to assess which classifier is best to use. Statistical analysis is 
carried on subject A and subject B, as in the first level analysis. The significance value α is set at 
0.05. To determine whether there are significant differences between the results of the 3 classifiers, 
a one-way ANOVA is conducted on the 3 groups: 

1. For subject A, the ANOVA showed a significant difference between the groups, F(2,27) = 
83.03, p = 2.93 × 10-12 (p < α). This shows that at least one of the groups differs significantly 
from the others. Subsequently, a Tukey HSD post hoc test was conducted to determine 
which groups differed from each other. The test reports that the LDA group differs 
significantly from the Naive Bayes group (p = 8.6 × 10-11), the SVM group differs 
significantly from the Naive Bayes group (p = 1.85 × 10-11), while no significant 
differences were found between the LDA group and the SVM group (p = 0.73). 

2. For subject B, the ANOVA showed a significant difference between the groups, F((2,27) 
= 4.98, p = 0.014 (p < α). This shows that at least one of the groups differs significantly 
from the others. Tukey HSD test shows that the SVM group differs significantly from the 
Naive Bayes group (p = 0.011), while no significant differences were found between the 
LDA group and the Naive Bayes group (p = 0.16), and between the LDA group and the 
SVM Group (p = 0.45). 

The statistical results suggest that the two classifiers LDA and SVM perform better than the Naive 
Bayes classifier. The Naive Bayes classifier is therefore excluded from further analysis. As there 
is no statistically significant difference between using the SVM versus the LDA, one of the two is 
arbitrarily chosen. The SVM is chosen. 
 
Once the most effective pre-processing, feature extraction and classification techniques have been 
chosen, the last parameters to be checked are the length L and starting point I of the testing and 
training windows. 
At first, the training window is studied by keeping the length of the testing window fixed at L = 
2.5s and the onset at I = 1.5s. The performance results for subject A are analyzed for the following 
parameters of the training windows: L varies over 3 values, 1.5s, 2s and 2.5s and I is varied between 
0s, 0.75s and 1.5s. The accuracy results with the corresponding SE are shown in Table 13. 
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Table 13: Table showing the results of performance for a 10×5 cross fold validation during the calibration phase of 
Dataset 1 BCI competition IV for subject A. Combinations of different epoch divisions are looked at. 

Accuracy + Standard Error 

 L = 1.5s L = 2s L = 2.5s 

I = 0 s 0.89 ± 0.03 0.9 ± 0.02 0.92 ± 0.02 

I = 0.75 s 0.91 ± 0.02 0.91 ± 0.02 0.9 ± 0.02 

I = 1.5 s 0.91 ± 0.01 0.91 ± 0.02 0.92 ± 0.02 

 
A one-way ANOVA test is used to determine whether there are statistically significant differences 
between the results. The ANOVA shows a significant difference between the groups, F(8,81) = 
7.56, p = 1.7 × 10-7 (p < α). This shows that at least one of the groups differs significantly from the 
others.  
Subsequently, a Tukey HSD post hoc test was conducted to determine which groups differed from 
each other. Since there are 9 different groups to be compared, a total of 36 group comparisons with 
corresponding p-values will be obtained. Only comparisons with significant p-values (p < α) are 
extracted and shown in Table 14. 
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Table 14: Results of the Tukey HSD post hoc test on Table 13 data. Only results with p < α are reported. 

Compared groups p-value 

I = 0s, L = 1.5s I = 0.75s, L = 1.5s 0.0011 

I = 0s, L = 1.5s I = 1.5s, L = 1.5s 7.9 × 10-4 

I = 0s, L = 1.5s I = 0.75s, L = 2s 0.0016 

I = 0s, L = 1.5s I = 1.5s, L = 2s 0.0119 

I = 0s, L = 1.5s I = 0s, L = 2.5s 1.12 × 10-5 

I = 0s, L = 1.5s I = 1.5 s, L = 2.5s 5.96 × 10-7 

I = 0s, L = 2s I = 0s, L = 2.5s 0.0045 

I = 0s, L = 2s I = 1.5 s, L = 2.5s 3.8 × 10-4 

I = 0.75s, L = 2.5s I = 1.5 s, L = 2.5s 0.0292 

 
The two training windows that classify best are:  

1. The window I = 1.5s, L = 2.5s with an accuracy of 0.92 ± 0.018. The results of this window 
are statistically significantly better than 3 other windows (see Table 14). 

2. The window I = 0s, L = 2.5s with an accuracy of 0.92 ± 0.02. The results of this window 
are statistically significantly better than 2 other windows. (see Table 14). 

The training window I = 1.5 s, L = 2.5s is chosen as the best window. 
 
Once the length L and the beginning I of the training window are chosen, an analysis is done using 
different beginnings I of the testing window. The pre-processing, feature extraction and 
classification techniques used are the ones chosen above. The testing window length L is fixed at 
2.5s. 
Figure 45 shows how classification accuracy, on subject A, varies as the beginning I of the testing 
window changes. Since the dataset is balanced between the two IC classes the random 
classification happens when the accuracy is 50%. The cue of the IC class starts at t = 0s and ends 
at t = 4s.  
Figure 45 shows that the classification is random when the testing window is outside of the 
stimulus window. The classification improves as the testing window enters the cue window and it 
gets worse as the it goes out, going back towards the random classification. 



92 
 

 

 
 
Figure 45: Classification accuracy + SE between the two IC classes. Subject A during the calibration phase of Dataset 
1 BCI competition IV. The blue continuous line is the accuracy. The two dotted line represent the accuracy ± its SE. 
The red dotted line represents the random classification line. 

 
Analysis No control vs Intentional Control 
The subsequent analysis aims to observe the algorithm's performance in distinguishing between 
the class of NC and the class of IC within the calibration phase. The two classes of IC are 
considered as a single class. The previously selected pre-processing, feature extraction and 
classification parameters are retained. The division of epochs changes. The signals is divided into 
NC epoch and IC epochs. The NC epochs have a length of L = 2s and correspond to the 2 seconds 
before the class cue. The IC epochs have a length of L = 2s and they start 2s after the stimulus 
presentation. A total of 400 epochs are extracted from the signal, 200 epochs for the NC class and 
200 epochs for the IC class. The dataset is therefore balanced. A 10×5 cross fold validation is done 
to determine the classification accuracy between the 4 subjects. 
The results are reported in Figure 46 and Table 15. 
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Figure 46:Bar graph showing the results of performance for a 10×5 cross fold validation during the calibration phase 
of Dataset 1 BCI competition IV. The graph shows the ability of the algorithm to classify between the class of NC and 
the class of IC. All 4 subjects are looked at. 

 
Table 15: Table showing the results of performance for a 10×5 cross fold validation during the calibration phase of 
Dataset 1 BCI competition IV between the IC and NC classes. 

 Subject A Subject B Subject F Subject G 

Accuracy + SE 0.75 ± 0.02 0.81 ± 0.02 0.84 ± 0.01 0.72 ± 0.02 
 
An ANOVA test is done to determine whether there are statistically significant differences in 
accuracy results between the four subjects analyzed. 
The ANOVA test reports a p-value of 7.2 × 10-23 (p < α). This means that at least one of the groups 
differs significantly from the others. Therefore at least one of the 4 subjects' accuracy has a 
statistically significant difference from the other subjects’ accuracies. 
 
Validation data – user specific 
Initially, the model is used to distinguish between the class of NC and the class of IC. 
Classification is performed every 10 samples. Classification is carried out throughout the signal, 
excluding the 0.5 seconds before and after the IC cue from the analysis to reduce the samples 
where the classification window lies between the two classes. The pre-processing, feature 
extraction and classification techniques selected earlier are used. 
As the dataset is unbalanced between the two classes, accuracy is not used as performance metric 
but Cohen's Kappa coefficient 𝜅 is used. The analysis is carried out on all 4 subjects and the results 
are reported in Table 16.  
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Subject A is the only subject whose 𝜅 differs from zero. The confusion matrix for subject A is 
reported in Table 17. No other confusion matrix is reported as the models of subject B, F and G 
classify all classes as NC. The model struggles to distinguish the class of IC from the class of NC. 
 
Table 16: Cohen's Kappa coefficient 𝜅 results for the validation phase of Dataset 1 BCI competition IV between the 
IC and NC classes. 

 Subject A Subject B Subject F Subject G 

𝜿 0.1170 0 0 0 
 
 
Table 17: Confusion matrix of subject A during the validation phase of Dataset 1 BCI competition IV between the IC 
and NC classes. It is highlighted in green when the predicted class and the real class coincide. It is highlighted in 
red otherwise. 

  Predicted class  

 Subject A Class NC Class IC Total number 
of classes 

Real 
class 

Class NC 7523 880 8403 

Class IC 6587 1879 8466 

 
Total 

number of 
classes 

14110 2759 16869 

 
Since it has not been built a model able to distinguish between the classes of IC and NC, no 
further analysis are made on the validation dataset. 
 
 
Subject Independent classification 
 
The pre-processing, feature-extraction and classification models selected in the user-specific BCI 
(CAR, CSP, SVM) are used. 
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Analysis No control vs Intentional Control 
The first step is to distinguish NC classes from IC classes. For the NC epochs the 2 seconds before 
the MI cue are extracted. The IC epochs are extracted between 2 and 4 seconds after the beginning 
of the MI cue. A total of 1200 epochs are extracted for the calibration phase, 800 NC epochs and 
800 IC epochs. The validation phase is tested on a total of 400 epochs, 200 NC epochs and 200 IC 
epochs. The dataset is balanced both in the calibration phase and in the validation phase. 
The accuracy results are reported in Figure 47 and Table 18. Accuracy results during the validation 
phase do not carry a SE since no cross-fold validation is done. 
 

 
 
Figure 47:Classification performance of the subject-independent BCI for Dataset 1 BCI competition IV between the 
IC and NC classes. 

 

Table 18: Classification performance of the subject-independent BCI for Dataset 1 BCI competition IV between the 
IC and NC classes. 

Accuracy + Standard Error 

 Combination 1 Combination 2 Combination 3 Combination 4 

Calibration 0.70 ± 0.02 0.65 ± 0.02 0.67 ± 0.02 0.73 ± 0.02 

Validation 0.5 0.67 0.66 0.51 
 
 

0.4

0.5

0.6

0.7

0.8

0.9

1

Combination 1 Combination 2 Combination 3 Combination 4

A
cc

u
ra

cy
 /

 1
0

0

Subject Independent
NC vs IC classes

Calibration Validation



96 
 

 
Analysis Intentional Control 
The second step is to distinguish between IC classes. The epochs both for the testing window and 
the training window have a length of L = 2.5s and they start at I = 1.5s. A total of 600 IC epochs 
are extracted for the calibration phase. The validation phase is tested on a total of 200 epochs. The 
dataset is balanced both in the calibration phase and in the validation phase. 
The accuracy results are reported in Figure 48 and Table 19. Accuracy results during the validation 
phase do not carry a SE since no cross-fold validation is done. 
 

 
 
Figure 48: Classification performance of the subject-independent BCI for Dataset 1 BCI competition IV between the 
IC classes. 

 
Table 19: Classification performance of the subject-independent BCI for Dataset 1 BCI competition IV between the IC 
classes. 

Accuracy + Standard Error 

 Combination 1 Combination 2 Combination 3 Combination 1 

Calibration 0.79 ± 0.02 0.79 ± 0.02 0.80 ± 0.02 0.72 ± 0.02 

Validation 0.5 0.66 0.65 0.64 
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PoliToBIOMed Lab data results 
To analyze the results of the PoliToBIOMed Lab dataset, all the multi-level analyses performed in 
the case of Dataset 1 from BCI competition IV were not repeated. The pre-processing, feature 
extraction and classification steps selected with Dataset 1 from BCI competition IV are chosen. 
Therefore, the following techniques are used: 

1. the CAR filter during pre-processing. 
2. the CSP during feature extraction. 
3. the SVM as classifier. 

No analysis has been done on the validation phase of the dataset as no satisfactory results were 
obtained on Dataset 1 from BCI competition IV. 
 
 
Calibration data – user specific 
 
Analysis Intentional Control  
A total of 160 IC epochs are compared. A 10×4 cross fold validation takes place in this case. The 
length of the training and testing window L is set at 2.5s, as for the analyses performed on Dataset 
1 from BCI competition IV. 
In the analysis on the previous dataset, it is seen that the most efficient training window is the one 
located in the last 2.5 seconds of the cue window. The length of the cue window in Dataset 1 from 
BCI competition IV is 4 seconds, so the start of the training window is I = 1.5s.  
For the analysis on the PoliToBIOMed Lab dataset, it chosen to keep the last 2.5 seconds of the cue 
window for the training window. The cue window of the PoliToBIOMed Lab dataset has a duration 
of 3 seconds, so the start of the training window is set at I = 0.5s. 
Figure 49 and Table 20 report the performance results on the 4 subjects. Only subject A, with an 
accuracy of 63% is not performing a random classification. The classification in the other 3 
subjects is random. 
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Figure 49: Bar graph showing the results of performance for a 10×4 cross fold validation during the calibration 
phase of the PoliToBIOMed Lab dataset. The graph shows the ability of the algorithm to classify between the two 
classes of Intentional Control. 

 

Table 20: Table showing the results of performance for a 10x4 cross fold validation during the calibration phase of 
the PoliToBIOMed Lab dataset. The table shows the ability of the algorithm to classify between the two classes of 
Intentional Control. 

 Subject A Subject B Subject F Subject G 

Accuracy + SE 0.63 ± 0.04 0.51 ± 0.05 0.5 ± 0.04 0.47 ± 0.03 
 
An ANOVA test is done between the performance results of the 4 subjects. The ANOVA reports 
a p-value of 1.06 × 10-12 (p < α). This means that at least one of the groups differs significantly 
from the others.  
A Tukey HSD test is performed to determine which groups have a statistically significant 
difference. The results are reported in Table 21. The observed difference between the performance 
results of subject A is statistically significant compared to all other subjects. The p-value in the 
comparisons between subject A and the other subjects is always less than α. In contrast, there are 
no significant differences between the performance results of subjects B, C and D, as p-value > α. 
Another way of seeing this is through Figure 50, that shows the confidence intervals for the 
differences in mean between subjects. Looking at the confidence intervals, we can see that the 
differences between subject A and subjects B, C and D are statistically significant. In contrast, the 
differences between subjects B and C, between B and D, and between C and D are not significant. 
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Table 21: Table showing the results of the Tukey HSD test on the 4 subjects of the PoliToBIOMed Lab dataset during 
the calibration phase of the experiment. 

Compared groups p-value 

Subject A Subject B 2.4 × 10-9 

Subject A Subject C 1.6 × 10-10 

Subject A Subject D 3.4 × 10-12 

Subject B Subject C 0.76 

Subject B Subject D 0.09 

Subject C Subject D 0.48 

 

 
 
Figure 50: Tukey HSD test to compare the means of the accuracies between the subjects of the PoliToBIOMed Lab 
dataset. The data correspond to the calibration phase of the experiment. The horizontal lines represent the means and 
confidence intervals.  

Figure 51 shows how the classification accuracy, on subject A, varies as the beginning I of the 
testing window changes. Since the dataset is balanced between the two IC classes the random 
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classification happens when the accuracy is 50%. The cue of the IC class starts at t = 0s and ends 
at t = 3s.  
Figure 49 shows that the classification is random when the testing window is outside of the 
stimulus window. The classification improves as the testing window enters the cue window and it 
gets worse as the it goes out, going back towards the random classification. 
 

 
 
Figure 51: Classification accuracy + SE between the two IC classes. Subject A during the calibration phase of the 
PoliToBIOMed Lab dataset. The blue continuous line is the accuracy. The two dotted line represent the accuracy ± its 
SE. The red dotted line represents the random classification line. 

 
Analysis No control vs. Intentional Control 
The subsequent analysis aims to observe the algorithm performance in distinguishing between the 
class of NC and the class of IC. The NC epochs have a length of L = 2s and correspond to the 2 
seconds before the class cue. The IC epochs have a length of L = 2s and they start 0.5s after the 
stimulus presentation. A total of 320 epochs are extracted from the signal, 160 epochs for the NC 
class and 160 epochs for the IC class. The dataset is therefore balanced. A 10×5 cross fold 
validation is done to determine the classification accuracy between the 4 subjects. 
The results are reported in Figure 52 and Table 22. 
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Figure 52: Bar graph showing the results of performance for a 10×5 cross fold validation during the calibration 
phase of PoliToBIOMed Lab dataset. The graph shows the ability of the algorithm to classify between the class of NC 
and the class of IC.  

 

Table 22: Table showing the results of performance for a 10×5 cross fold validation during the calibration phase of 
the PoliToBIOMed Lab dataset between the IC and NC classes. 

 Subject A Subject B Subject C Subject D 

Accuracy + SE 0.77 ± 0.02 0.77 ± 0.02 0.66 ± 0.03 0.73 ± 0.02 
 
An ANOVA test is done to determine whether there are statistically significant differences in 
accuracy results between the four subjects analyzed. 
The ANOVA test reports a p-value of 1.08 × 10-16 (p < α). This means that at least one of the 
groups differs significantly from the others. Therefore at least one of the 4 subjects' accuracy has 
a statistically significant difference from the other subjects’ accuracies. 
 
 
Subject Independent classification 
 
Analysis No control vs. Intentional Control 
The first step is to distinguish NC classes from IC classes. For the NC epochs the 2 seconds before 
the MI cue are extracted. The IC epochs are extracted between 1 and 3 seconds after the beginning 
of the MI cue. A total of 960 epochs are extracted for the calibration phase, 480 NC epochs and 
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480 IC epochs. The validation phase is tested on a total of 320 epochs, 160 NC epochs and 160 IC 
epochs. The dataset is balanced both in the calibration phase and in the validation phase. 
The accuracy results are reported in Figure 53 and Table 23. Accuracy results during the validation 
phase do not carry a SE since no cross-fold validation is done. 
 

 
 
Figure 53: Classification performance of the subject independent BCI for the PoliToBIOMed Lab dataset between the 
IC and NC classes. 

 
Table 23: Classification performance of the subject independent BCI for the PoliToBIOMed Lab dataset between the 
IC and NC classes. 

Accuracy + Standard Error 

 Combination 1 Combination 2 Combination 3 Combination 4 

Calibration 0.63 ± 0.02 0.7 ± 0.02 0.67 ± 0.02 0.66 ± 0.02 

Validation 0.54 0.49 0.66 0.5 
 
 
Analysis Intentional Control 
The second step is to distinguish between IC classes. The epochs both for the testing window and 
the training window have a length of L = 2.5s and they start at I = 0.5s. A total of 480 IC epochs 
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are extracted for the calibration phase. The validation phase is tested on a total of 160 epochs. The 
dataset is balanced both in the calibration phase and in the validation phase. 
The accuracy results are reported in Figure 54 and Table 24. Accuracy results during the validation 
phase do not carry a SE since no cross-fold validation is done. 
 

 
 
Figure 54: Classification performance of the subject independent BCI for the PoliToBIOMed Lab dataset between the 
IC classes. 

 

Table 24: Classification performance of the subject independent BCI for the PoliToBIOMed Lab dataset between the 
IC classes. 

Accuracy + Standard Error 

 Combination 1 Combination 2 Combination 3 Combination 4 

Calibration 0.54 ± 0.02 0.61 ± 0.02 0.56 ± 0.02 0.52 ± 0.03 

Validation 0.55 0.49 0.51 0.49 
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Discussions 

The development of algorithms and protocols that allow asynchronous and subject-independent 
classification is a key step for the use of BCI in the assistive and rehabilitation fields. The aim of 
the present study was first to investigate an algorithm and protocol that would work in the 
synchronous and user-specific field on equal footing with the models studied in literature. 
Secondly, from the developed algorithm and experimental protocol the study tried to take an extra 
step to be able to use BCI in an asynchronous and subject independent way. 
The algorithm has been built on Dataset 1 from BCI competition IV and it has been later adapted 
to the PoliToBIOMed Lab dataset with small adaptations. 
 
The first part of the study focused on identifying the best pre-processing, feature extraction and 
classification techniques for a synchronous and user-specific BCI in the case of classification 
between the two IC classes. Looking at the results on Dataset 1, it has been seen that the best 
results are obtained using the CAR filter and CSP as pre-processing and feature extraction 
techniques and the SVM and LDA as classifiers. Statistical analysis reported that the techniques 
mentioned above achieve better results than the other techniques analyzed, such as the Power Band 
for feature extraction and The Naive Bayes for classification. No statistically significant 
differences were observed between using SVM or LDA. Therefore, the use of SVM has been 
chosen for the subsequent analyses so as not to repeat the later analyses with both classifiers. 
Next, a comparison was made to understand which were the best training and testing windows. It 
has been seen that the best results were obtained when the training and testing window were 
entirely within the window in which the cue is provided. Better results are therefore obtained with 
longer windows located toward the end of the cue window rather than shorter windows located at 
the beginning.  
The classification results both in comparing the two IC classes and the NC class against the IC 
class show high inter-subject variability. This is in line with results found in the literature [40]. 
The performance results obtained on the calibration data between IC classes achieved similar 
performance to the performance obtained on the same data in the literature [68]. In contrast, 
analyses done on the same data that distinguished between the NC class and IC classes during the 
calibration phase were not found in the literature. 
During the validation phase done on Dataset 1, it was not possible to obtain an efficient 
classification in distinguishing between the class of NC and the class of IC. Therefore, it couldn’t 

be accomplished an algorithm that worked satisfactorily with an asynchronous BCI. Only subject 
A obtained a Cohen’s Kappa coefficient, 𝜅 other than 0, but much lower than the optimal value of  
𝜅 = 0.5 [39].  Thus, it was not possible at this stage to obtain an algorithm that would work for an 
asynchronous BCI. 
Regarding the subject-independent BCI studied on Dataset 1, performance results obtained in the 
calibration phase are in line with the literature [71]. The performance in the validation phase is 
worse than in the calibration phase. This is probably due to the high inter-subject variability and 
low numerosity of the training dataset [71]. 
 
The second part of the study focused on developing an experimental protocol and collecting and 
analyzing data related to the drafted protocol, the PoliToBIOMed Lab dataset. 
The classification results are drastically worse between the two datasets when distinguishing 
between IC classes in both the users-specific and subject-independent BCI. The main reason is 
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probably the difference in the type of Motor Imagery task. While in Dataset 1 from BCI 
competition IV there is a distinction between hand and foot or between right and left hand, in the 
the PoliToBIOMed Lab dataset the distinction is between the opening and closing of the hand from 
the same limb. This confirms that it is a harder task to distinguish between motor tasks performed 
by the same limb particularly due to the low spatial resolution of EEG [48]. Certainly more 
invasive techniques, or techniques such as MEG, would be more effective in classifying motor 
tasks performed on the same limb, thanks to their higher spatial resolution, but would limit the 
usability of the instrument [35] [36].  
The results of the algorithm distinguishing between the class of NC from the class of IC on the 
PoliToBIOMed Lab dataset are more in line with the results obtained from Dataset. This confirms 
the effectiveness of the developed algorithm in distinguishing between NC and IC even with 
different datasets. It reports its problems when the type of IC classes analyzed are motor tasks from 
the same limb.  
 
The results obtained show the effectiveness of CSP, SVM, and LDA techniques for synchronous 
and user-specific BCI, but report their limitations when it comes to the development of 
asynchronous, subject-independent BCI that distinguish between movements of the same limb. 
Future research could focus on finding different pre-processing, feature extraction and 
classification techniques. 
The study also highlighted the difficulty in handling the high inter-subject variability (in the case 
of independent subject BCI) and the high inter-session variability (in the case of validation for 
user-specific BCI). One possible solution could be the development of adaptive algorithms capable 
of adapting to new data by changing the parameters of supervised classifiers and feature extraction 
techniques to fit the new data [57] [48]. 
The study showed how using longer windows centered toward the end of the cue window improves 
classification. Therefore, it becomes necessary to explore new techniques to reduce the length of 
the window, as this introduces an inherent delay in the BCI system, compromising the immediacy 
of real-time use. 
Regarding the subject-independent BCI, the numerosity of subjects used is very low; studies on 
subject-independent BCI use a much larger number of subjects [71]. Therefore, a key point to 
improve the development of independent subject BCI is to increase the number of subjects. 
 
Further improvements can be made to the experimental protocol used. In fact, the quality of the 
results is given not only by the types of algorithms used but also by the quality of the data collected. 
The quality of the data is directly related to the type of experimental protocol used and how 
effectively it is perceived by the subjects of the study. 
 
Reviewing the answers of the subjects' questionnaire the following points emerged: 

1. The duration perception: Subjects A, C, and D found the experiment slightly or notably 
long, leading to discomfort and fatigue, with Subject D specifically noting pre-existing 
tiredness as a contributing factor. 

2. Concentration challenges: Subjects B, C, and D reported difficulties in maintaining focus 
throughout the experiment, particularly in the validation phase for Subject B and towards 
the later stages for Subject C. 
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3. Screen brightness and visual fatigue: Subjects B and D noted issues with screen visibility. 
Subject B found the gray screen with white text hard to read, while Subject D mentioned 
eye strain due to screen brightness, leading to excessive blinking. 

4. The perception of the MI task: Subjects A and D improved in their perception of imagined 
movement over time. Subjects B and C, however, struggled with understanding how to 
correctly perform the motor imagery task. 

5. Perception of own performance: subjects generally believed they performed well, although 
they acknowledged some errors. Subject A felt confident about completing almost all tasks 
correctly, and Subject D estimated a low error rate (under 5%). Subjects B and C, however, 
expressed less certainty, indicating they might have made occasional errors. 

Subjects' ability to concentrate is a key issue in collecting reliable and consistent data. The length 
of the experiment and visual discomfort can bring fatigue in subjects by reducing their ability to 
perform the required tasks. In addition, difficulty in performing the MI task correctly reduces the 
reliability of the data. Some future solutions could be: 

1. Allow subjects to adjust or to modify the screen brightness and contrast. 
2. Use a pilot study to optimize the duration of sessions and related breaks and to figure out 

what are the best instructions to give the subject to explain the MI task.  
 
Further improvements can be made in the administration of the questionnaire. A quantitative scale 
could be used for the responses, so that not only qualitative responses, but also numerical indicators 
of the responses are available. These could be used to better understand the effectiveness of certain 
choices within the experimental protocol. 
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Appendices 

Data Acquisition protocol 

Introduction 

The following protocol concerns the use of the g.GAMMAsys EEG helmet with the g.Scarabeo 
electrode system in conjunction with the g.HIamp amplifier. 
The data recording software analyzed and used in the following protocol is gRecorder. 
 
The protocol has been developed during the present master thesis and the experimental sessions 
were performed at the PoliToBIOMed Lab of Politecnico di Torino, Turin, Italy. 
 
The steps to be followed to configure the instrumentation and its software are described in the 
following chapters. 

Amplifier configuration 

1. Connect the front power supply (black cable) to power as in Figure 55. 
 

 
Figure 55: Power supply. 

2. Connect the front USB cable to the data recording computer as in the right side of Figure 
56. 
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Figure 56: USB Cable.     

3. Connect the blue "OUTPUT TO AMP" cable to the electrode’s board and amplifier as 
shown in the left side of Figure 56. Connect the black cable to the board and amplifier as 
shown in Figure 57 and Figure 58; 
 

 
Figure 57: Output to Amplifier                                
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Figure 58: Electrode’s Board. The ground electrode is yellow. The reference electrode is blue. 

Electrode Cap Configuration 
In order not to waste time once the subject is present, it would be advisable to ask the subject for 
the measurement of the circumference of the skull, in order to choose the right size of the helmet 
beforehand. Knowing which helmet is to be used (Small, Medium, or Large), insert the electrode 
holders in the appropriate positions of the electrode cap to avoid wasting time in the presence of 
the volunteer. The steps for the positioning of the electrode’s cap are: 

1. Measure the subject's head to choose which helmet to use (Small – Medium – Large). 
The helmet/electrode cap has the following measures: 

1. Small size: 50-54 cm; 
2. Medium size: 54-58 cm; 
3. Large size: 58-62 cm. 
The skull dimension has not been asked beforehand during the experiment. It would be 
a good practice to keep in future experiments. 
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2. Once the helmet size has been chosen, insert the electrodes to be used in the CAP as shown 
in Figure 59. 

 
Figure 59: steps to insert electrodes in the electrode’s cap. 

 
The ground electrode (yellow one) is to be positioned in the AFz position of the 10-20 
system, as shown in the gtec catalogue. The reference electrode (the blue one) is to be 
positioned pinching the right earlobe. 
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Figure 60: gtec product catalogue, it shows the positioning of the ground electrode over the scalp. 
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Figure 61: Example of electrode positioning in the 10-20 system within the openBCI settings. the openBCI positions 
are fixed and not changeable. As it can be seen the ground electrode is positioned in the same 10-20 position (AFz) 
as the ground electrode in the gtec catalogue. 

3. Connect the electrodes to the electrode board shown in Figure 61 using a bandage to keep 
them tidy. By following Figure 62, connect the reference electrode (blue one) on the first 
channel of the board and the ground electrode (yellow one) in the in the appropriate yellow 
channel where it is written “GND”. Connect the rest of the electrodes to the other channels. 
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Figure 62: electrode positioning over the electrode board 

4. Once the electrodes are placed on the helmet, place the cap on the person's head, checking 
that it fits properly. Move the helmet over the head using both hands gently. Do not pull at 
one end. Check that the Cz electrode is positioned in the centre of the head. Imagine a line 
between the left and right preaur and a second between the nasion and inion. The Cz 
electrode should be at the point where these two lines intersect. The subject can be asked 
to point to the centre of the head with their finger. Carefully insert the conductive gel into 
each electrode by making concentric movements from the base of the scalp upwards. 
Finally, place the reference electrode (blue) on the subject's ear, taking care to use the gel 
there too. 

 

Software configuration 

1. Insert the Green Dongle into the computer you intend to use. The dongle contains the 
license to use the g.tec software, without the dongle you cannot use the software; 
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Figure 63: Green dongle containing the license. 

2. Open the gRecorder software on the lab’s computer; 
 

3. In Mode, switch from user mode to administration mode (there is no password). 
 

4. Check that the g.HIamp amplifier is switched on and connected via cable to the computer. 
Select Settings → Select Hardware as in Figure 64. 
 

 
 
Figure 64:gRecorder window to select the settings of the experiment. 

 
Move g.HIamp from Available Hardware to Selected Hardware using the right arrow 
button as in Figure 65. Click OK. 

 
 
Figure 65:gRecorder window to select the hardware used in the experiment. 
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5. Select Settings → g.HIamp as in Figure 66 to configure the amplifier and channels; 
All of the choices made here are saved on the data. 
 

 
 
Figure 66: gRecorder window to select the settings of the experiment. 

 
AMPLIFIFIER SETTINGS: Choose Sample Rate.  
Hint: keep 512 Hz.  
CHANNEL SETTINGS: Select the channels you are using on the board and choose 
whether to apply notch, bandpass, common average filters. Choose whether to use the 
bipolar option using channel 1 as the channel of reference. 
 

 
 

Figure 67: Example of the choices made in the Device configuration. 

 
All of the choices made here, in paragraph 5, are saved on the data. 

6. Configure the gRecorder interface 
Select Settings → Channels 
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Select the channels used and define their type (EEG, EMG etc.). it is possible to name the 
individual channels as their corresponding 10-20 system position. 

 
7. At this point, the gRecorder interface should look like in Figure 68; 

 

 
Figure 68: gRecorder interface. 

If not all the chosen channels are displayed, check under Channels how many channels are 
selected. You can select how many channels to display from the Channels window; 
 

8. Now you can start acquiring or viewing data by clicking “Start Data Viewing” or “Record”. 
 

Pressing "Start Data Viewing”, data are displayed without being saved on the hard disk. 

 
Figure 69: gRecorder’s software button to start the data viewing. 

Pressing Record saves the data to the hard disk; 

 
Figure 70: gRecorder’s software button to start the data recording. 

 
 

9. Before starting the data acquisition, do an impedance measurement test to check if some 
of the channels are not well positioned. Select Tools → Impedance Measurement 
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When pressing start the software will start to measure the impedance of all the selected 
electrodes. The first channel will appear black as it is the one used as a reference to measure 
the impedance for all the other channels. The channel coloring indicates the impedance of 
each channel. 
The ideal situation would be to have all the channels green (impedance <= 30 kΩ). In a 

practical condition it is advisable to avoid red channels (impedance >= 100 kΩ). 
To stop the measure and close the window press “Close”. 

 
Figure 71: Impedance measurement window on the gRecorder software. 

 
10. Lastly, before data acquisition, it is good practice to check whether we can spot some 

artifacts in the signal such as eye blinking or mastication muscle artifacts. 
The eye blinking artifact should be easily seen over the frontal electrode Fpz by asking the 
subject to blink their eyes at different rhythms. 

EEG cleaning 

At the end of the experiment, it is good practice to clean the instrumentation to prevent its 
deterioration. If left uncleaned, electrodes are keen to corrosion associated with repeated use, 
causing loss in signal quality. 
Both the active electrode and its container can be washed with water and soap. It is advisable to 
use a pipe cleaner and a toothbrush to properly clean the electrodes from the gel. 
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Once cleaned and dried put the electrodes and their containers in the re-sealable transparent plastic 
bags. Each electrode should be in a bag together with its circled container. 
The cap can be washed in water and soap as well. Before putting it back let it dry. 
 

Experimental Instructions 

In order to stick to the repeatability of the experiment, the following points must be explained to 
each subject, following the order below: 

1. Explain the flexion/extension movement of the fingers of the right hand, introducing the 
concept of Imagination of the movement (or Motor Imagery - MI). Let the subject Imagine 
the intention of moving the right hand. Ask the subject to imagine the kinesthetic of the 
movement [88], by imagining the feeling in your body of opening and closing your hand; 

2. Highlight the importance of avoiding muscular micro-activation as much as possible; 
3. Show how the right forearm can be supported either by a pillow put on the subject's lap or 

on the chair armrest, to be comfortable and avoid unnecessary muscle activation during the 
experimental session. The volunteer is positioned in front of the laptop containing the 
stimulus. 

4. Retry step number 1 with the forearm in the new position (i.e., right arm on a pillow or on 
the chair armrest); 

5. Put the EEG cap on the subject. Ask to point the center of the head to better position the 
electrode Cz. Check with the subject that the EEG cap is not bothering him/her. If the cap 
is too tight or too large, change it for another measure; 

6. Elucidate how the experiment is going to work. First, explain how the single trial works by 
showing on screen a printed image of the trial as in Figure 28 and Figure 29. Subsequently, 
explain the structure of the experiment (ME test and MI test followed by 4 runs) reminding 
them that there will be instructions on the screen to follow; 

7. Explain the eye-blinking; 
8. Check the impedance of the electrodes; 
9. Before recording, look at the data through “Start Data Viewing” (Figure 69) and ask the 

subject to do some eye blinking. Check whether those eye blinks can be clearly spotted in 
the frontal electrode Fpz. 

10. Start data recording with the data recording software gRecorder as in Figure 70. 

Before starting the second session (i.e., validation phase) ask the subjects if there are any doubts 
regarding the continuation of the experiment. Remind the subject to wait at least 3 seconds between 
two consecutive self-performed movements. The duration of the imagined self-performed 
movement must be approximately the same length as the one in the calibration phase and in general 
no less than 2 seconds. 
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General principles of good experimentation 

It is good to follow some expedients within the lab to acquire better quality signals. The 
environment should be as noise-free as possible in order to reduce artifacts. 
Be aware not to keep the instrumentations too close to power sources to avoid interference. 
The room temperature should be comfortable for the subject and the light not be too bright or too 
low. 
Welcome the subject to a non-threatening, tidy environment and kindly guide him throughout the 
experiment. Let the subject sit in a comfortable position. All of this will help the subjects to avoid 
distraction and have a better focus on their task. 
The experimenter should be calm and should explain the experiment to the subject always 
following the same steps. Following the fixed protocol helps with the repeatability of the 
experiment. 
It is advisable to divide the experiment into sessions and runs, allowing the subjects to rest during 
those breaks and readjust their position, helping them to keep their vigilance. 
Talking to the subjects during breaks can help to reduce drowsiness and a suitable moment to 
remind them to keep their head still and avoid movements and eye blinking as much as possible. 
Drowsiness has to be reduced as much as possible as it might interfere with the signal quality and 
the success of the experiment. Following the tips above might help with this goal. 
It’s not advisable to give the subjects caffeine before the experiment as it might alter the EEG 

signal. 
Following the same reasoning, it is better to avoid signal acquisition just after lunch or at least to 
ask the subject to avoid a heavy meal. 
Since EEG experiments often require staring at a screen for a prolonged period reducing 
blinking, some subjects may experience eye discomfort and feel their eye dry. Suggesting glasses 
instead of lenses might help this [15]. 
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