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Abstract 
 
The quality of resistance spot welding (RSW) is crucial in several sectors. For 

instance, one modern car contains up to 7000 spot welds. By examining electrode 

force and displacement signals, this work proposes an unsupervised machine learning 

method for the RSW process. The application of classical supervised algorithms 

requires labeled data which often are costly to gather. This solution solves the 

problem by potentially enabling automatic labeling. Therefore, the insights gained 

from the application of data clustering can be used then to improve the performance, 

robustness, efficiency, and interpretability of a subsequent supervised modeling 

strategy. 

An experimental campaign of several spot welds was done to collect force-

displacement data that were recorded by high-frequency monitoring devices, 

allowing for the extraction of crucial characteristics. These features were subjected 

to clustering methods, specifically K-means++, Hierarchical Clustering, and 

DBSCAN with the aim of distinguishing between weld affected by expulsion and 

not. 

 

Keywords: Machine learning; Resistance spot welding; Unsupervised learning; 

Clustering; Expulsion; Quality. 
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Introduction 
 
Resistance Spot Welding (RSW) is widely utilized in manufacturing, particularly in 

the automotive and aerospace industries [1]. This process is popular due to its 

simplicity but, traditionally, it requires meticulous maintenance and costly 

destructive testing to ensure quality welds. Industry 4.0 has prompted corporations to 

digitize and integrate both physical and digital resources. To achieve Industry 4.0, 

smart manufacturing requires integration across several areas, such as Artificial 

Intelligence (AI) and all process management phases. In this regard, the use of sensors 

in the manufacturing processes has considerably increased, for example in 

monitoring, quality appraisal and maintenance tasks. Those tasks use process signals 

to forecast the state of equipment components or process outcomes, allowing for 

suitable interventions. Sensor technology, the Internet of Things (IoT), and Big Data 

have enabled the change of the process. The retrieved raw data can be analyzed using 

AI to provide insightful results. Machine Learning (ML) and Deep Learning (DL) 

algorithms are widely used nowadays. 

Since, in the literature, there are just a few works on unsupervised ML regarding 

RSW, the goal of this thesis is to employ data obtained from a series of laboratory 

experiments to assess the occurrence of the expulsion phenomenon and automatically 

divide the welding points into two distinct groups based on expulsion presence.   

Expulsion, also known as spatter or flash, describes molten metal that flows from the 

weld spot during the RSW process. It is an undesired phenomenon because it may 

reduce weld quality and strength, creating porosities in the welded spot, and causing 

other damage to the welded pieces. 

Spatter is a common indicator of challenges during the welding process, and it can be 

employed as a quality indicator for process monitoring. 

In this work different clustering techniques have been implemented and compared, 

showing that unsupervised ML leads to several advantages in case of RSW, among 

which process monitoring and automatic labeling of data.
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The present thesis work is structured into 6 chapters. The first chapter begins with a 

comprehensive theoretical foundation that establishes the groundwork in artificial 

intelligence, machine learning methods, and data preprocessing techniques. The 

second introduces the fundamentals of resistance spot welding. Following, in the 

third chapter a literature review and bibliographic research section examines the 

current state of the art, analyzing existing methodologies and identifying areas for 

contribution. The work then moves to the RSW case study described in chapter four, 

presenting the practical application and defining the research objectives.  Chapter five 

handles details about the technical implementation, primarily focusing on Python and 

the other relevant tools used throughout the project. Chapter six concludes the thesis 

with the application of clustering techniques, presenting the experimental results and 

their analysis, demonstrating the practical impact of the research. Finally, conclusions 

and recommendations for future research are presented. 
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1. Artificial Intelligence 
 
Artificial intelligence (AI) is the technology that makes it possible for computers and 

other devices to reproduce human autonomy, creativity, problem-solving, learning, 

and comprehension [2]. 

 

 
Figure 1 - Artificial Intelligence. 

 
1.1 Machine Learning 

 
Machine learning (ML) is a branch of artificial intelligence (AI) and computer 

science that focuses on the using of data and algorithms to enable AI to imitate the 

way that humans learn, gradually improving its accuracy. [3] 

 

1.2 Deep Learning 
 
Deep learning is a subset of machine learning that uses multilayered neural networks, 

called deep neural networks, that more closely simulate the complex decision-making 

power of the human brain [4]. 

 

https://www.ibm.com/topics/artificial-intelligence
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1.3 Machine Learning Methods  

• Supervised machine learning (SL) – The program "learns" from a training set 

that is part of the dataset. This set serves as "training examples" for the machine 

to achieve a specific outcome when new data is presented [2]. 

• Unsupervised Learning (UL) – there is not a training set provided. Instead, the 

data is clustered into different classes by the algorithm [2]. 

 

 

 
 

Unsupervised learning models are used to perform three major tasks: clustering, 

association, and dimensionality reduction.  

Given that the interest of this thesis is focused on unsupervised methods, the 

supervised ones are not explicitly treated. 

 

 

 

 

Figure 2 - Supervised vs. Unsupervised Learning. 

https://www.scribbr.com/ai-tools/supervised-vs-unsupervised-learning/
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1.3.1 Clustering 
 
Clustering is a ML technique that organizes unlabeled data based on similarities or 

differences [5]. Clustering techniques are used to group raw, unclassified data objects 

based on information structures or patterns. 

The main techniques foreseen for this work are Centroid-based, Hierarchical, and 

Density-based clustering [5]. 

 
Centroid-based clustering 
 
Centroid-based clustering is a clustering technique that partitions or divides a dataset 

into similar groups based on the distance between their centroids. The centroid, or 

center, of each cluster is the mean or median of all the points in the cluster, depending 

on the data [5].  

 
Hierarchical clustering 
 
Hierarchical clustering, commonly known as hierarchical cluster analysis (HCA), is 

an unsupervised clustering approach that falls into two categories: agglomerative and 

divisive. Agglomerative clustering is described as a "bottoms-up approach”[6].  

Its data points are first isolated as individual groupings, and then they are iteratively 

blended based on similarity until one cluster is formed. 

Divisive clustering differs from agglomerative clustering in that it utilizes a "top-

down" approach [6]. In this scenario, a single data cluster is partitioned according to 

the disparities between data points [6].  
 
Density-based clustering 
 
Density-based clustering detects areas with a high concentration of points separated 

by empty or sparse areas. Density-based clustering may find clusters of any shape. 

This is especially useful when clusters are not characterized by a specific location or 

dispersion. Density-based clustering can also discriminate between data points that 

belong to a cluster and those that should be classified as noise [5].  
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Density-based clustering is very effective when dealing with noisy or outlier datasets, 

or when the number of clusters that the data contains is not known prior. 

 

1.3.2 Clustering algorithms 
 
K-Means 
 
The K-Means clustering algorithm is a popular centroid-based clustering technique. 

K-Means assumes that the center of each cluster defines the cluster using a distance 

metric, typically Euclidean distance, to the centroid [7]. To start the clustering, it is 

necessary to specify a number of predicted clusters, which constitutes the 'K' in K-

Means, and the algorithm searches the data for reasonable groupings that match that 

number. The ideal K clusters in a given dataset are determined by iteratively 

minimizing the total distance between each point and the assigned cluster centroid. 

To guarantee that the clustering results are significant and practical, determining the 

ideal number of clusters for K-Means clustering is essential. There are a number of 

methods for figuring out how many clusters are appropriate [7]. A few popular 

techniques: 

 

• Elbow Method: It consists in plotting the explained variation as a function of 

the number of clusters and using the elbow of the curve to determine the 

number of clusters to use[7]. But the concept of the "elbow" is vague, and thus 

is known to be unreliable. 

• Silhouette (clustering): Silhouette analysis gives information about the 

distance between the generated clusters and it assesses the quality of clustering 

[7]. 

• Gap Statistic: Comparing the total intra-cluster variance for various choices 

of k with their predicted values under the null reference distribution of the data 

is known as the gap statistic. The value that produces the biggest gap statistic 

is known as the optimal k [7]. 
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• Davies-Bouldin index: it is a metric used to quantify the degree of separation 

between clusters. A model with better separation is indicated by lower Davies-

Bouldin index values [7]. 

• Calinski-Harabasz index: it assesses clusters according to their separation 

and compactness. Better-defined clusters are indicated by higher values of the 

index, which is computed as the ratio of between-cluster variance to within-

cluster variance [7]. 

• Rand index: by considering both sets of items that are accurately allocated to 

the same or distinct clusters, the Rand index determines the percentage of 

agreement between the two clusters. Greater similarity and higher grouping 

quality are indicated by higher values. Introduced by Hubert and Arabie in 

1985, the Adjusted Rand Index (ARI) corrects the Rand Index by accounting 

for the expected similarity of all pairings resulting from chance. This provides 

a more accurate estimate [7]. 

 

After the optimal number of clusters has been identified, a two-stage iterative 

procedure based on the expectation maximization machine learning method is 

included in the following phase. Each data point is assigned to its nearest centroid in 

the expected step according to distance (often Euclidean). In the maximizing step, the 

centroid, or cluster center, is reassigned after calculating the mean of all the points 

for each cluster. Until the centroid positions converge or the maximum number of 

iterations is reached, this process is repeated. K-Means is a hard clustering strategy, 

which means that each data point is assigned to a separate cluster with no likelihood 

of membership. 

The algorithm works best when the clusters are around the same size and there are no 

noticeable outliers or fluctuations in density across the data [8]. 

K-Means frequently performs poorly when the data is highly dimensional or when 

clusters are significantly diverse in size or density. It is also particularly sensitive to 

outliers because it tries to build centroids based on the mean values of all values in 

the cluster, making it subject to overfitting to include such outliers [8]. 
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K-means++, A K-Means algorithm that optimizes the choice of the first cluster 

centroid or centroids, was created by researchers Arthur and Vassilvitskii and 

enhances the final cluster assignment's quality [8]. 

Selecting one centroid from the dataset is the first step in the  

K-Means++ method's initialization process. It determines how far each data point is 

from the nearest cluster center for each succeeding centroid. The probability that a 

location is proportionately distant from the closest centroid previously selected is 

considered while choosing the next centroid [8]. Iterations of the process are carried 

out until the selected number of cluster centers has been initialized. 

 

 
Figure 3 - K-Means. 

 
DBSCAN 
 
DBSCAN, which stands for Density-Based Spatial Clustering of Applications with 

Noise, is a potent clustering technique that clusters data points that are densely packed 

together [9]. DBSCAN is very helpful for exploratory data analysis since, unlike 

some other clustering methods, it doesn't need a predetermined number of clusters. 

Clusters are defined by the algorithm as dense areas divided by less dense areas.  

This method enables DBSCAN to detect outliers as noise and find clusters of any 

shape. DBSCAN is based on three main ideas [10]: 

• Core Points: points that have a minimal number of other points (MinPts) 

within a given distance (ε or epsilon) [10]. 

https://www.linkedin.com/pulse/k-means-algorithm-its-real-time-usecases-shweta-agarwal/
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• Border Points: points that are within a certain distance of a core point but do 

not have MinPts neighbors [10]. 

• Noise Points: points that are neither core nor border are known as noise points. 

They cannot be included since they are too far away from any cluster [10]. 

 

The two primary parameters used by DBSCAN are: 

• ε (epsilon): the greatest distance that two points must be apart in order to be 

regarded as neighbors [10]. 

• MinPts: The bare minimum of points needed to create a dense area [10]. 

 

Altering these settings may influence how the algorithm defines clusters, allowing it 

to adapt to various dataset types and clustering requirements. 

Selection of ε (Epsilon) 
 
The ε parameter specifies the maximum distance required between two places to be 

considered neighbors. To select the appropriate ε [9]: 

• Apply domain knowledge: if a distance is relevant to the specific problem, 

utilize that as a starting point. 

•  K-Distance Graph: a more systematic approach. It consists in calculating the 

distance between each point and its k-th nearest neighbor (k = MinPts). The 

k-distances are plotted in increasing order, it can be noticed an "elbow" on the 

graph, when the curve begins to level off. The ε value at this elbow is typically 

a good choice [9]. 

Selection of MinPts 
 
MinPts defines the minimal number of points needed to establish a dense zone [10]. 

• General rule: As a starting point, set MinPts = 2 * num_features, where 

num_features is the number of dimensions in the collection [10]. 

• Noise consideration: If the data contains noise or smaller clusters has to be 

discovered, reduce MinPts [10]. 
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• Dataset size: For larger datasets increase MinPts to avoid forming too many 

tiny clusters [10]. 

 

Parameter selection can have a big impact on results. Experimenting with different 

settings and evaluating the generated clusters might help in determining the optimum 

match according to the dataset and problem. 

 

 

 
Figure 4 - DBSCAN vs K-Means. 

  

https://medium.com/@tomstaite1/outlier-detection-using-dbscan-clustering-algorithm-a-python-implementation-f5be72a690fe
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Hierarchical Clustering 
 
The goal of hierarchical clustering, also known as hierarchical cluster analysis or 

HCA, is to create a hierarchy of clusters. In general, there are two types of strategies 

[11]: agglomerative and divisive. 

 

Agglomerative 

This method is "bottom-up"; as one climbs the hierarchy, pairs of clusters are 

combined, with each observation beginning in its own cluster. 

 

 
 

As shown in Figure 5, in this example the first step is considering each animal to be 

its unique cluster. Then three different clusters are generated based on their 

similarities (birds, mammals, and more than 3 legs). The two most similar clusters 

are combined to create the Vertebrate cluster. At last, the remaining two clusters are 

merged to create the final one, the Animals cluster [12]. 

 

  

Figure 5 - Example of Agglomerative Clustering. 
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Divisive 

This method is "top-down": Splits are carried out iteratively as one descends the 

hierarchy, with all observations beginning in a single cluster. 

 

 
In this case, as shown in Figure 6, first the whole Animals dataset is considered as a 

whole. Then it is divided into two clusters. The division is applied iteratively until 

unique animals are created [12]. 

The hierarchical links between groups are shown by a dendrogram, a tree-like picture 

created via hierarchical clustering. The largest clusters, which contain all of the data 

points, are found at the top of the dendrogram, whereas individual data points are 

found at the bottom. The dendrogram can be cut at different heights to get a variable 

number of clusters. Iteratively combining or dividing clusters according to a metric 

of similarity or separation between data points produces the dendrogram. Until all 

data points are contained within a single cluster or until the predefined number of 

clusters is reached, clusters are continually split apart or combined. 

To determine the optimal number of clusters, the dendrogram can be examinate and 

assess the height at which its branches form discrete clusters. The number of clusters 

can be ascertained by slicing the dendrogram at this height. 

Figure 6 - Example of Divisive Clustering. 
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1.4 Data preprocessing 
 

Data preprocessing is an important stage in Machine Learning that involves 

converting raw data to a clean and useful format [13]. This procedure assures that the 

data is appropriate for analysis and modeling, thereby boosting the performance and 

accuracy of ML models. 

The main benefits of this procedure are: 

• Improves data quality 

• Handle missing data 

• Normalize and scales data 

• Eliminates duplicate records 

• Handle outliers 

• Enhance model performance 

 
1.4.1 Feature engineering 

 
Feature engineering is an ML method that converts raw data into a more useful set of 

inputs. Each input contains numerous qualities, known as features [14].  

Providing relevant information to models improves their forecast accuracy and 

decision-making capabilities dramatically. 

Feature engineering in ML and statistical modeling entails choosing, developing, 

converting, and extracting data features. 

Key components include: 

• creating features from existing data 

• transforming and imputing missing or invalid features 

• reducing data dimensionality using methods such as Principal Components 

Analysis (PCA) 

• selecting the most relevant features for model training based on importance scores 

and correlation matrices 
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1.4.2 Feature selection 
 
“Feature selection is the process of selecting the most useful features for building 

models in tasks like classification, regression or clustering” [15]. 

Unsupervised Feature Selection (UFS) methods do not require a supervised dataset 

[16]. According to Guyon et al. (2003) [17], Niijima and Okuno (2009) [18], and 

Devakumari and Thangavel (2010) [19], UFS approaches offer two significant 

benefits. They are unbiased and perform well when previous information is 

unavailable, and they can reduce the possibility of data overfitting when compared to 

supervised feature selection approaches, which may be unable to deal with a new type 

of dataset. Unsupervised Feature Selection methods can be divided into four main 

approaches (Alelyani et al. 2013 [20]; Dong and Liu 2018 [21]): 

• Filter method: it analyzes features based on inherent aspects of the data, rather 

than utilizing a clustering algorithm to find relevant features. Filter methods are 

known for their fast and scalable performance. 

• Wrapper method: this strategy focuses on identifying feature subsets that 

enhance the quality of the selected clustering algorithm. Wrapper approaches 

have large processing costs and are only compatible with specific clustering 

algorithms. 

• Hybrid methods: Hybrid methods combine filter, and wrapper approaches to 

achieve a balance of efficiency (computational effort) and effectiveness (quality 

of the objective job utilizing selected features). 

• Statistical: this type of feature selection entails employing statistical tests to 

assess the relationship between characteristics and the target variable (or between 

features themselves). Mutual information and correlation coefficients evaluate the 

relationship between variables, assisting in the identification of key qualities 

while excluding less important ones. 
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1.4.3 Dimensionality Reduction  

While more data generally produces more accurate findings, it can have an impact on 

the performance of Machine Learning algorithms (for example, overfitting) and make 

it difficult to visualize datasets. Dimensionality reduction is a strategy used when a 

dataset contains too many features, or dimensions. It minimizes the amount of data 

inputs to a manageable quantity while retaining the dataset's integrity to the greatest 

extent possible. It is frequently utilized at the preprocessing data stage, and there are 

a few different dimensionality reduction algorithms that can be applied. 

 
Principal component analysis (PCA) 

 
Principal Component Analysis (PCA) is a dimensionality reduction technique that 

converts high-dimensional data into a new set of uncorrelated variables known as 

principal components. These components are arranged in order of the amount of 

variance they explain in the data, with the first component accounting for the largest 

variance. PCA works by identifying the directions in the data space that maximize 

the variance and projecting the data onto these directions. The technique necessitates 

data standardization first, and the number of components retained is typically 

determined by the cumulative explained variance ratio. PCA is very effective for 

feature extraction and data visualization, but because the generated features are 

combinations of original characteristics, they can be difficult to interpret.  
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1.5 Evaluation metrics 
 
Unlike supervised learning, where there is actual data to evaluate the model's 

performance, clustering analysis lacks a strong evaluation measure that can be used 

to compare the results of various clustering algorithms.  

Furthermore, because K-means requires K as an input and does not learn it from data, 

there is no correct answer to the number of clusters that should be used in any given 

situation. Domain knowledge and intuition can be useful at times, although they are 

rarely required. It can be tested how well the models work in the cluster-predict 

methodology using different K clusters because they are employed in downstream 

modeling. 

 

The Elbow approach provides an estimate of a good k number of clusters based on 

the Sum of Squared Error (SSE) between data points and their associated cluster 

centroids. The “k” is picked at the point where SSE begins to flatten and create an 

elbow. 

𝑆𝑆𝐸 =  ∑ ∑ 𝑑𝑖𝑠𝑡2(𝑚𝑖 , 𝑥)

𝑥∈𝐶𝑖

𝐾

𝑖=1

 

where: 

• 𝑥 is a data point in a cluster 𝐶𝑖 

• 𝑚 is the representative point for cluster 𝐶𝑖 

For each point, the error is the distance to the nearest cluster. Given two clusters, the 

one with the smallest error is chosen. One easy way to reduce SSE is to increase K, 

the number of clusters. A good clustering with smaller K can have a lower SSE than 

a poor clustering with higher K. 

 

The Silhouette score indicates how similar a data point is to its own cluster when 

compared to other clusters. A higher Silhouette score value implies that the data point 

is better suited to its own cluster but poorly matched to other clusters.  

The best score value is one, while the poorest is -1. 
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The silhouette coefficient for a sample is defined as: 

 
(𝑛 −  𝑖)

 𝑚𝑎𝑥(𝑖, 𝑛)
 

Where: 

• 𝑛 is the distance between each sample and the nearest cluster that the sample 

is not a part of. 

• 𝑖 is the mean distance within each cluster. 

 

Since for this work there is prior knowledge about how the data points should be 

grouped, also the following performance metrics can be used for clustering 

evaluation. Specifically, the metrics examined are Adjusted Rand Index (ARI) and 

Purity. 

 

Adjusted Rand Index (ARI)  

The Rand Index calculates a similarity measure between two clustering by taking all 

pairs of samples and counting whether they are assigned to the same or different 

clusters in the expected and actual clustering[22]. The formula of the Rand Index is: 

 
Figure 7 - Rand Index formula. 

The raw RI score is then "adjusted for chance" to the ARI score using the following 

scheme[22]: 

 
Figure 8 - The Adjusted Rand Index formula. 

The Adjusted Rand Index spans from -1 to 1, with 0 representing random labelling, 

1 representing identical clusters, and negative values representing very poor 

labelling. 
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Purity 

Purity is a metric used to assess the quality of clustering findings, particularly when 

the ground truth labels for the data points are known. It measures the extent to 

which the clusters produced by a clustering algorithm match the true class labels of 

the data.  
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2. Resistance Spot Welding 
 
Resistance Spot Welding (RSW) is a commonly utilized joining technology in 

many industries like, for example, the automotive one [1]. The process involves 

pressing two electrodes against the sheets to weld for a set period of time (i.e., 

squeeze time). Then, the electrodes and sheet stack are subjected to a high current 

flow for a predetermined time, known as the welding time. The Joule effect 

generates heat, which is used to melt the sheets locally and form the weld nugget. 

 

 

 
 
 
 
The process's features include ease of implementation, cheap cost and automation, 

making it suitable for a wide range of applications [23]. 

 

 

 

 

 

 

Figure 9 – RSW process schematization. 
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2.1.1 RSW Principles 
 
The basic idea behind Resistance Spot Welding (RSW) is the combination of 

applied pressure with electrical resistance heating. 

Joule's Law states that when an electric current passes through two or more 

overlapping metal sheets clamped between copper electrodes, the metal intrinsic 

electrical resistance produces heat. 

The equation below defines how much energy is transferred to the welding system 

[24]: 

 

𝑄 =  ∫ 𝐼2(𝑡) 
𝑡2

𝑡1

𝑅(𝑡) 𝑑𝑡 

 
Where: 

• Q indicates heat energy generated throughout the process. 

• 𝐼 (t) is the welding current. 

• 𝑅 (t) is the sheet metals dynamic resistance.  

• 𝑡1 and 𝑡2 represent the beginning and end of the welding session. 

 

The interface between the sheets has the largest resistance, which results in 

localized heating there. A molten pool known as a weld nugget is produced by the 

generated heat, which usually reaches temperatures beyond the melting point of the 

material (about 1500°C for steel). Concurrently, the electrodes applied pressure aids 

in preserving contact and keeping the molten metal contained. 

When the current is turned off, the nugget quickly hardens under constant pressure, 

establishing a robust metallurgical link between the sheets. The copper electrodes 

also act as heat sinks, keeping the weld localized and cool enough to make a robust 

junction.  
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2.1.2 Electrodes 
 
Resistance Spot Welding (RSW) electrodes provide a variety of important tasks, 

which can be classified as mechanical, electrical, and thermal.  

Mechanically, they exert and maintain pressure on the workpieces, guaranteeing 

appropriate contact between metal sheets and controlling the molten metal pool to 

prevent expulsion.  

Electrically, the electrodes conduct and focus the current, resulting in localized 

heating at the desired welding surface. 

Thermally, they operate as heat conductors, dispersing heat away from the surface 

and regulating the cooling pace of the weld nugget.  

The electrodes are often made of copper alloys, which have great electrical and 

thermal conductivity as well as mechanical strength and wear resistance.  

Regular maintenance is critical because electrodes deteriorate, distort, and become 

contaminated during the welding process, necessitating periodic inspections of 

electrode condition, cooling water flow, and proper alignment to ensure weld 

quality. 

 

2.1.3 Welding Cycle 
 
The Resistance Spot Welding (RSW) cycle is made up of multiple sequential time-

based steps that govern the production of a quality weld nugget.  

The cycle begins with the squeeze time, during which electrodes apply pressure to 

the workpieces to guarantee good contact and alignment.  

This is followed by the weld time, during which electric current passes through the 

electrodes and workpieces, creating heat at their interface due to electrical 

resistance, forcing the metal to melt and form the welding nugget.  

The current is subsequently shut off, resulting in the hold time (or forge time), 

during which pressure is maintained on the cooling weld to guarantee appropriate 

solidification and prevent faults such as porosity or voids.  

Finally, the off time allows for electrode retraction and part repositioning before the 

next weld. 
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Some procedures may contain additional steps such as pre-weld and post-weld 

current pulses, or upslope and downslope durations for gradually increasing or 

lowering current to improve weld quality and reduce flaws. 

The complete cycle often takes fractions of a second, making RSW ideal for mass 

production. 

 

2.1.4 Weld Quality 
 
Weld quality in Resistance Spot Welding (RSW) is defined by a mix of physical, 

mechanical, and metallurgical properties that ensure the joint structural integrity 

and performance. A high-quality spot weld has: 

• an appropriate nugget size (usually 4-5 times the square root of the thinnest 

sheet thickness). 

• suitable penetration depth. 

• sufficient strength under both static and dynamic loading conditions. 

Common weld faults include porosity, cracks, partial fusion, excessive indentation, 

and molten metal expulsion.  

Environmental considerations such as zinc coating condition (in galvanized steels), 

surface cleanliness, and correct electrode maintenance have a substantial impact on 

the final weld quality. Regular quality control and process monitoring are required 

to ensure consistent weld quality in production environments.  

Figure 10 - Schematization of a spot weld cycle. 
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Resistance Spot Welds can be evaluated using a variety of destructive and non-

destructive testing methods, with a primary focus on nugget size, penetration, and 

strength properties. 

Non-destructive testing methods include ultrasonic testing, which detects internal 

defects and measures nugget diameter; electrical resistance measurements, which 

monitor weld production in real time; and visual inspection for surface defects such 

as electrode depression, surface fractures, or expulsion [1].  

Peel tests, chisel tests, and weld cross-sectioning for metallurgical inspection are 

instead the most popular destructive testing methods. 

 

2.1.5 Expulsion 
 
According to the ISO 17677-1 (2021) [25] definition expulsion, also known as a 

splash, spatter, or flash, is the phenomenon of molten metal particles being ejected 

at the electrode's point of contact with the welded material or at the sheets' faying 

surfaces. In particular, the expulsion between the faying surfaces of the workpieces 

is highly undesirable because it has a considerable impact on weld quality due to 

liquid metal loss. As a result, flaws like porosities within the nugget and significant 

indentation may arise from splash, causing the weldment's mechanical strength to 

be significantly reduced. Instead, expulsion at the electrode-material contact point 

can compromise surface quality and also electrode life, but only on the sheet 

surface; weld strength is unaffected. 

An improper welding schedule is the most frequent reason for weld expulsion [26]. 

In industry, welding parameters are sometimes set close to the limits of flash, like 

high welding current, to achieve larger weld nugget sizes and meet quality criteria. 

The weld nugget is very important in influencing the general strength and 

mechanical qualities of the weld. Weldings are typically performed under splash 

conditions due to the variability of expulsion boundaries for characteristics, such as 

electrode wear. Reducing expulsion in RSW can help minimize nonconforming and 

low-quality welds. Monitoring and controlling expulsions are critical for adjusting 

welding conditions and reducing defects. 
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The principal causes of this phenomenon include: 

• high welding current. 

• insufficient electrode force. 

• poor part fit. 

• old electrodes. 

• inappropriate timing parameters. 

In order to lower the frequency of expulsion, it is crucial to be able to monitor it and 

adjust welding conditions or take other corrective measures. Existing publications 

indicate that the study of expulsion has received attention in two areas. 

Studying its mechanism is the first step. For expulsion prediction and root cause 

analysis, a few mathematical models and criteria were put forth [27], [28]. 

The other focuses on evaluating and detecting ejection. It has been demonstrated 

that the majority of commonly used welding process signals, such as: 

• electrical signals: including dynamic resistance, power input, and 

secondary voltage. 

• mechanical signals: such as vibration, force, and displacement. 

• acoustic signals: such as ultrasound and acoustic emission. 
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3. State of the art 
 
The research procedure utilized to gather information for this thesis is described 

below. In order to create some personal knowledge on the topics, the essential 

definitions (e.g., resistance spot welding and machine learning technologies) were 

retrieved on the web, seeking for the most credible, informative, and trusted websites. 

The study was conducted in a top-down method, beginning with high-level keywords 

and progressing to more specific inquiries using the Scopus instrument.  

Initially, the research aimed to provide a comprehensive overview of works on RSW, 

Expulsion, Machine Learning, and Clustering. Keywords were searched within the 

'Article title, Abstract, and Keywords' of research articles, and then merged for more 

targeted results. 

The following section describes some of the steps used during the research process: 

 

 
Figure 11 - Resistance spot welding search, Scopus. 

 

A search so general led to 3,896 documents being found. An increasing number of 

articles have been developed in the last 20 years, reflecting the increasing interest in 

the subject. In addition, most of the documents found are from China, US and Japan. 

Talking about the application field, the main concerning areas are Engineering, 

followed by Material Science. 
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Figure 12 - Resistance Spot Welding articles per year. 

 

  

Figure 10 - Resistance Spot Welding articles per country 

Figure 13 - Resistance Spot Welding articles by subject area. 

Figure 14 - Resistance Spot Welding articles per country. 
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Figure 15- Machine Learning search, Scopus. 

The second general search of “machine learning” shown in Figure 15 led to 706,447 

documents being found. The number of documents per year saw an increase starting 

from 2003. Most of the documents found are from US, China and India. Talking about 

the application field, the main concerning areas are Computer Science and 

Engineering. 

 

 

Figure 16 - Machine Learning articles per year. 

 

Figure 17 - Machine Learning articles by subject area. 
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Figure 18 - Machine Learning articles per country. 

 
 

3.1 Bibliographic research 
 

Three specific queries have been inserted on Scopus in order to retrieve information 

regarding RSW and machine learning applications for quality assurance. The most 

relevant articles have been selected and resumed in the following tables. Documents 

from the last 2-3 years have been taken into consideration about the topics described 

afterwards.  

One of the interesting aspects is that there are fewer results for clustering, since the 

majority of the papers focus on supervised algorithms. This result justifies the need 

for deeper studies regarding the unsupervised approaches and, therefore, this work. 

Tables 1,2,3 show the titles, keywords and short descriptions for each article 

considered. 

 
First query: 

• Query: (“resistance spot welding” or “rsw”) AND “quality” AND 

“monitoring” 

• 190 documents found. 
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The documents in Table 1 have been chosen as the most relevant, focusing on the use 

of machine learning and time series signals (e.g., electrode force, electrode 

displacement and dynamic resistance). These publications cover the most popular 

ways for quality control monitoring through ML in the resistance spot welding 

process. The works date back to the last two years. 

 

Title Keywords Short description Ref. 
Dynamic 
resistance 
signal–based 
wear monitoring 
of resistance 
spot welding 
electrodes 

Artificial neural 
networks; 
Dynamic 
resistance; 
Electrode 
wear; 
Resistance 
spot welding 

The authors focused on predicting electrode wear 
in resistance spot welding for automotive 
manufacturing using dynamic resistance signals. 
They analyzed the relationship between dynamic 
resistance patterns and electrode tip geometry 
changes during consecutive welding processes. 
After establishing a clear correlation between 
resistance curves and tip geometries, they 
developed a machine learning model to predict 
electrode wear. 

[29] 

Quality 
monitoring for a 
resistance spot 
weld process  
of galvanized 
dual-phase steel 
based on the 
electrode 
displacement 

Data analysis; 
Electrode 
displacement; 
Process 
monitoring; 
Quality 
assurance; 
Resistance 
spot welding 

The authors developed a new methodology to 
monitor resistance spot welding quality using 
electrode displacement measurements on a 
galvanized dual-phase steel. Their approach builds 
on previous research and consists of three main 
steps: detecting manufacturing issues, evaluating 
weld expulsion, and monitoring nugget diameter. 
They used electrode velocity and indentation 
displacement measurements during both welding 
and hold times as key parameters for process 
evaluation. 

[30] 

Comparison and 
explanation of 
data-driven 
modeling for 
weld quality 
prediction in 
resistance spot 
welding 

Neural 
networks; 
Process 
monitoring; 
Quality 
prediction; 
Resistance 
spot welding 

The study focused on enhancing resistance spot 
welding (RSW) quality through process monitoring 
using neural networks. The researchers compared 
two modeling approaches: a feature-based 
Multilayer Perceptron (MLP) and a raw sensing-
based convolutional neural network (CNN), while 
also evaluating the impact of electrical and 
mechanical sensing data on model performance. 
Both models successfully predicted weld quality 
metrics and detected expulsion using current and 
resistance signals, with improved performance 
when force and displacement measurements were 
included. 

[31] 

An Approach to 
Inline Monitoring 
of the Electrode 

Data mining; 
electrode wear 
state 

The research focused on developing an inline 
monitoring system for electrode wear in Resistance 
Spot Welding (RSW) for automotive manufacturing. 

[32] 
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State in 
Resistance Spot 
Welding 

monitoring; 
feature 
construction; 
industrial data 
analytics; 
resistance spot 
welding 

Rather than using traditional predetermined 
intervals for electrode tip dressing, they developed 
a data-driven approach using dynamic electrical 
resistance measurements between dressing cycles 
to determine optimal dressing timing. 

Online 
evaluation of 
resistance spot 
welding quality 
and defect 
classification 

dynamic 
resistance; 
medium-
frequency 
direct current; 
mild steel; 
quality 
evaluation; 
resistance spot 
welding 

The research developed an online monitoring 
system for resistance spot welding (RSW) quality 
evaluation and defect classification in mild steel 
welding. The researchers designed a finite impulse 
response low-pass filter using Blackman window 
function to process dynamic resistance signals, and 
studied how welding parameters affected nugget 
diameter and shear strength to determine optimal 
settings. They focused on detecting two main defect 
types - expulsion and incomplete fusion - by 
extracting time-domain features from dynamic 
resistance curves. 

[33] 

A machine 
learning 
approach for 
efficient and 
robust 
resistance spot 
welding 
monitoring 

Deep learning; 
Machine 
learning; 
Nugget 
diameter; 
Resistance 
spot welding 

The research developed an improved method for 
predicting weld nugget diameter in resistance spot 
welding using a combination of unsupervised deep 
learning and Gaussian process regression. The 
researchers used autoencoders to extract features 
from dynamic resistance curves, creating a low-
dimensional representation of the process 
information. These features were then linked to 
nugget diameter predictions using Gaussian 
process regression. The new approach 
demonstrated higher prediction accuracy 
compared to traditional geometric attribute 
methods while maintaining low implementation 
costs. 

[34] 

Quality 
Monitoring of 
Resistance Spot 
Welding Based 
on a Digital Twin 

digital twin; 
quality 
monitoring; 
spot welding; 
wavelet 
analysis 

The research focused on applying digital twin 
technology to monitor resistance spot welding of 
2219/5A06 aluminum plates of varying thicknesses. 
The researchers developed a digital twin system to 
bridge the physical and virtual aspects of the 
welding process, enabling virtual-real interaction 
and process optimization. To enhance information 
exchange within the digital twin system, they 
established a data acquisition system and 
proposed a real-time data processing method using 
wavelet threshold analysis. This approach aimed to 
overcome the limitations of physical models in 
monitoring the highly nonlinear coupled welding 
process quality. 

[35] 

Machine 
learning with 
domain 
knowledge for 

Condition 
monitoring; 
Feature 
engineering; 

The research developed machine learning pipelines 
for quality monitoring in Resistance Spot Welding 
using real production data instead of laboratory 
settings. The researchers created 12 different ML 

[36] 
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predictive 
quality 
monitoring in 
resistance spot 
welding 

Industry 4.0; 
Machine 
learning; 
Predictive 
maintenance; 
Quality 
monitoring; 
Resistance 
spot welding 

pipelines combining four feature engineering 
settings with three ML methods (linear regression, 
multi-layer perception, and support vector 
regression). Their approach uniquely treated 
welding as a continuous process rather than 
independent events, enabling quality prediction of 
upcoming welds. The method incorporated 
engineering knowledge in both feature design and 
result interpretation 

Table 1- Research paper analyzed for Query 1. 

The papers focus on monitoring welding quality through the prediction of different 

targets. All approaches mainly use supervised classification and regression 

approaches. For examples, in [29], [32] the electrode wear problem is treated while 

in [30], [31], [34], [35], the target variable is the welding nugget, being one of the 

most important quality features when dealing with RSW. Other works focuses on 

expulsion and incomplete fusion [30], [33]. Finally, one work selected predicts 

through different ML with feature extraction an aggregate welding quality parameter 

[36]. 

 
Second query: 

• Query: (“resistance spot welding” or “rsw”) AND “machine learning” 

• 48 documents 

The publications from Table 2, on the other hand, illustrate how machine learning 

models may help not only in monitoring, but also for process optimization and quality 

assessment. 
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Title Keywords Short description Ref. 

Improving RSW 
nugget 
diameter 
prediction 
method: 
unleashing the 
power of multi-
fidelity neural 
networks and 
transfer 
learning 

Multi-fidelity 
neural 
networks; 
Nugget 
diameter 
prediction; 
Resistance spot 
welding (RSW); 
Transfer 
learning 

The research developed a novel machine 
learning approach for predicting nugget 
diameter in RSW by combining low-fidelity 
simulation data with high-fidelity experimental 
data through transfer learning. They first 
trained a model using data from finite element 
simulations and design of experiments, then 
fine-tuned it with actual experimental data. 
This dual-fidelity approach demonstrated 
improved prediction accuracy while reducing 
the need for extensive experimental trials, 
offering a cost-effective method for predicting 
critical RSW process parameters. 

[37] 

Machine 
learning tool for 
the prediction 
of electrode 
wear effect on 
the quality of 
resistance spot 
welds 

Artificial 
intelligence; 
Electrode 
degradation; 
Electrode wear; 
Machine 
learning; 
Predictive 
maintenance; 
Resistance spot 
welding 

The study develops a machine learning tool to 
assess electrode wear's impact on resistance 
spot welding quality, using experimental data 
from electrode displacement and force 
sensors. Neural network analysis achieved 
90% accuracy in predicting weld quality based 
on electrode wear conditions. 

[1] 

Prediction of 
Nugget 
Diameter and 
Analysis of 
Process 
Parameters of 
RSW with 
Machine 
Learning Based 
on Feature 
Fusion 

Bayesian 
algorithm; 
feature fusion; 
welding quality 
prediction 

The research focuses on predicting welding 
quality in automotive body-in-white (BIW) 
production, emphasizing the importance of 
considering both welding process and material 
parameters for safety assurance. The study 
employs principal component analysis (PCA) 
for dimensionality reduction of material 
parameters and uses greedy feature selection 
to identify key characteristics. A 
comprehensive prediction model is developed 
that integrates both process parameters and 
material characteristics, improving upon 
conventional methods that only consider 
process parameters. 

[38] 

Implementation 
of Machine 
Learning 
Algorithms for 
Weld Quality 
Prediction and 
Optimization in 
Resistance 
Spot Welding 

adaptive neuro-
fuzzy inference 
system, 
artificial 
 neural network, 
dual-phase 
steel, genetic 
algorithm, 
 multi-objective 
optimization, 
resistance spot 
welding 

The paper focuses on improving resistance 
spot welding (RSW) quality in automotive 
manufacturing, specifically examining 1.40-
mm-thick DP780 steel sheets. The research 
investigates three critical welding parameters: 
welding current, welding time, and electrode 
force, evaluating their effects on nugget 
diameter, peel strength, tensile shear strength, 
and mean dynamic contact resistance. 

[39] 
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A study on the 
machine 
learning 
method for 
estimating 
resistance spot 
welding button 
diameter using 
power curve 
and steel type 
information 

Artificial neural 
network; Button 
diameter; 
Correlation 
analysis; 
Multiple linear 
regression 
analysis; 
Monitoring data; 
Resistance spot 
welding 

The research addresses the high inspection 
costs in resistance spot welding quality 
evaluation in the automotive industry by 
developing a real-time prediction method. The 
study focuses on predicting weld button 
diameter using power data collected during 
welding and implementing a deep neural 
network model. The artificial neural network 
model demonstrated high accuracy with a 
coefficient of determination of 0.99 and a root 
mean square error of just 0.06 mm. The 
approach offers a cost-effective alternative to 
traditional inspection methods in automotive 
manufacturing. The results indicate that power 
monitoring combined with deep learning can 
effectively predict weld quality in real-time. 

[40] 

Applications of 
ultrasonic 
testing and 
machine 
learning 
methods to 
predict the 
static & fatigue 
behavior of 
spot-welded 
joints 

RSW joint of 
multiple sheets; 
Ultrasonic test 
;Image 
processing 
;Static strength; 
Fatigue 
behavior; 
Artificial neural 
network; 
Genetic 
algorithm 

This novel develops an integrated search 
system to assess the relationship between 
Ultrasonic Testing (UT) results and the strength 
of spot-welded joints in automotive 
applications. The study examines three-sheet 
resistance spot welds made from different low 
carbon steels, using pulse-echo data extracted 
through Image Processing Technique (IPT) 
combined with mechanical testing. An 
Artificial Neural Network (ANN) model, 
optimized by Genetic Algorithm (GA), was 
developed to predict static strength and 
fatigue life of three-sheet RSW joints based on 
UT results 

[41] 

Infrared (IR) 
quality 
assessment of 
robotized 
resistance spot 
welding based 
on machine 
learning 

Infrared 
camera; 
Machine 
learning; Quality 
assessment; 
Resistance spot 
welding 

The research introduces an automated quality 
assessment approach for resistance spot 
welding using machine learning analysis of 
infrared (IR) camera data integrated into a 
robotized welding system. The study evaluated 
different process parameters and quality 
criteria through two experimental approaches, 
finding that model prediction accuracy 
depends on the proximity of process 
parameter points. Analysis revealed that 
maximum IR intensity and temporal features of 
IR cooldown profiles provided the best class 
separation for quality prediction. The research 
demonstrates the advantages of IR monitoring 
for weld quality assessment, but notes that in 
rapid industrial welding scenarios, limited 
temporal IR data might affect prediction 
accuracy. The findings suggest that model 
selection is crucial when dealing with time-
constrained industrial applications. 

[42] 

Table 2 - Research papers analyzed for Query 2. 
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As for the first query, targets are mainly the same (e.g., nugget, electrode wear) but 

some of the selected works use different data, for example ultrasonic [41] and infrared 

[42]. Other papers propose innovative ML techniques, such as transfer learning (TL) 

[37] and adaptive neuro-fuzzy inference [39]. 

 

Third query: 

• Query: (“resistance spot welding” or “rsw”) AND “clustering” 

• 11 documents 

The results of the last query are fewer than the previous ones, primarily due to the 

fact that most researchers focus on the application of supervised machine learning. 

The two most relevant works have been summarized in Table 3. 

Title Keywords Short description Ref. 

A parallel 
strategy for 
predicting the 
quality of 
welded joints 
in automotive 
bodies based 
on machine 
learning 

Back 
propagation 
neural network 
(BPN); K-means 
clustering 
algorithm; 
Parallel 
strategies; 
Principal 
component 
analysis (PCA); 
Quality 
prediction; 
Resistance spot 
welding 

The research addresses the challenge of real-
time quality assessment in resistance spot 
welding by developing a parallel strategy using 
machine learning for different data subsets. 
The methodology employs PCA dimensionality 
reduction followed by k-means clustering to 
classify sub-datasets, with the elbow method 
determining optimal cluster numbers. Machine 
learning models are then applied in parallel to 
predict weld quality based on each sub-
dataset's unique distribution characteristics. 
The approach outperforms traditional BP 
neural networks in predicting weld joint quality 
across all types, particularly with complex data 
distributions. 

[43] 

Functional 
clustering 
methods for 
resistance spot 
welding 
process data in 
the automotive 
industry 

dynamic 
resistance 
curve; 
functional 
clustering; 
functional data 
analysis; 
Industry 4.0; 
resistance spot 
welding 

The study explores the use of clustering 
methods for analyzing dynamic resistance 
curves (DRCs) in RSW, offering an alternative 
to costly offline testing in automotive 
manufacturing. The research demonstrates 
how functional clustering methods can 
effectively analyze DRCs without requiring 
specific feature extraction, providing a more 
efficient quality assessment approach. Data 
collected from Centro Ricerche Fiat's lab tests 

[44] 
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show that DRC clusters strongly correlate with 
electrode wear status, which impacts weld 
quality. This approach aligns with Industry 4.0's 
digital transformation, enabling online quality 
assessment through process parameter 
monitoring. The methodology offers a 
practical, cost-effective solution for real-time 
weld quality evaluation in large-scale 
production environments. 

Table 3 - Research papers analyzed for Query 3. 

 

 

Figure 19 - Keywords cloud related to papers inserted in previous tables. 

 

From Figure 19 it can be observed that there is a strong interest in the application of 

ML for the RSW process. Despite the keyword “machine learning” is one of the 

most frequent in the selected papers, works related to unsupervised applications in 

RSW are just a few, as it can be seen in Table 3 resulted from the third query. 
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4. Case study 
 
This chapter describes the procedures followed, starting from the experimental 

campaign. After the data acquisition phase, feature engineering is performed before 

applying the clustering algorithms. 
 

4.1 Experimental method 
 
4.1.1 Welding machine, materials, and electrodes 

 
The experimental welding operations were carried out using a medium-frequency 

direct current RSW machine (Fig. 20) in "current constant" mode and a TE700 

(Tecna) control unit. This study focuses on two embedded sensors: (i) a 

piezoelectric surface strain sensor mod. 9232A (Kistler Italia) that records electrode 

force during welding, and (ii) a magnetostrictive linear position sensor mod. 

Temposonics R-series with a 2 μm resolution that measures electrode displacement. 

Both signals were registered at a 40 kHz sample rate using a National Instruments 

NI-9862 CAN interface module and handled with LabVIEW software. 
 

 

 

 

Figure 20 - RSW machine in J-Tech laboratory. 
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The material used is GI50/50-U zinc-coated DP590 steel, which is commonly used 

in the automobile industry. 

The welds were done using two Cu-Cr-Zr electrodes with a truncated cone shape 

and a nominal contact diameter of 4.5 mm, as specified by ISO 14373:2015 [45]. 

The top electrode moved to clamp the sheet stack, but the bottom electrode stayed 

fixed. A water flow rate of 4 l/min was used to cool both electrodes, as 

recommended by ISO 14373:2015 [45]. 

The thickness of the single sheets is 0.8. According to ISO 14273:2016 [46], the 

individual test piece dimensions are (45x105) mm and the weld overlap is 35 mm, 

as shown in Figure 21. 

 
Figure 21 - Geometry for the shear tension tests. 

 
4.1.2 Experimental setup and procedures 

 
The partial weldability lobe at constant welding time was evaluated using ISO 

14327:2004 [47] and ISO 18278-1:2022 [48] standards. The lobe's lower limit 

corresponds to a weld size of 3,5√t (t = material thickness), while the upper limit 

applies to welding conditions with expulsion. Welding time parameters were set in 

accordance with ISO 14373:2015 [45] and are shown in Table 4. 
 
 

Up slope time (ms) Current time (ms) Down slope (ms) 

25 150 25 
Table 4 - Welding time parameters. 

 

According to the ISO 17677-1:2021 [25] nomenclature, the weld time is calculated 

by adding upslope, downslope, and current. According to this, the weld time is 200 
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milliseconds. Focusing on the upper limit, 39 spot welds were performed utilizing 

13 different combinations of welding current (I = 6.5 kA - 7 kA - 7.5 kA - 8 kA) 

and welding pressure (P = 0.8 bar – 0.9 - 1 bar - 1.1 bar). According to the standard 

ISO 14373:2015 [45], the initial points were made with 7 kA and 1 bar. To translate 

the pressure into force, the welding machine's technical parameters, which state that 

the highest applied pressure is 6.5 bar and equals to 12.42 kN, can be used. For 

example, using the percentage, one bar represents approximately 1.91 kN. 

The presence of ejection was visually checked. Figure 22 shows a specimen, after a 

shear tension test, affected by expulsion that can be observed as the black area. 

 

 

 

 
The following table resumes the process parameters and the presence of expulsion 

for each specimen considered for this study.  

Figure 22- Specimen affected by expulsion. 
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Table 5 - Process parameters.  

ID Current (kA) Pressure (bar) Expulsion 
1  

7  
  
1 
  

No 
2 No 
3 No 
4  

7,5  
 
1  

Yes 
5 No 
6 Yes 
7  

8  
 
1  

Yes 
8 Yes 
9 Yes 
10  

6,5  
 
1  

No 
11 No 
12 No 
13  

6,5  
 

0,8  
Yes 

14 No 
15 No 
16  

7  
 

0,8  
Yes 

17 Yes 
18 Yes 
19  

6,5  
 

1,1  
No 

20 No 
21 No 
22  

7  
 

1,1  
No 

23 No 
24 No 
25  

7,5  
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4.2 Signals extraction 
 
Several parameters can be evaluated during the RSW process to determine weld 

quality. Online signal monitoring is crucial for Industry 4.0, reducing the need for 

destructing tests and saving costs on quality testing samples. 

Welding current or voltage are commonly utilized process indications due to their 

close correlation with the Joule effect. 

Explanatory features (predictor variables) can be extracted from process signals to 

map electrode wear metrics (target variables) [49]. The RSW machine uses sensors 

to capture various signals.  The most commonly utilized wear monitoring 

parameters include: 

• electrode displacement 

• force 

• secondary current 

• voltage 

• resistance 

 

The electrode displacement was monitored using a Temposonics R-series 

magnetostrictive linear position sensor with a precision of 2 μm and a frequency of 

40 kHz. The signal was captured using the NI-9862 CAN interface module and 

controlled with LabVIEW software. A DAT format file was generated for each 

weld, containing one row every 2.5 * 10-5 second. The files provide information on 

the previously described signals, as well as details about the process and machine 

status.  

With the aim of having clearer curves, the mean was calculated every 40 points. 

This means that there is one point every 0,001 s, as it was possible due to the 

sampling frequency (40 kHz). The values were stored in a vector for each welding. 
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4.2.1 Electrode Force 
 
Electrode force is one of the most crucial parameters in Resistance Spot Welding 

(RSW), influencing weld formation and quality through a variety of mechanisms.  

The force, usually provided via pneumatic or hydraulic systems, must be sufficient 

to ensure intimate contact between the workpieces and sustain that contact throughout 

the welding cycle. Adequate electrode force aids in the removal of surface 

imperfections, the breakdown of surface impurities, and the containment of molten 

metal during nugget formation to prevent expulsion. Too little force can cause high 

contact resistance, leading to surface heating, expulsion, and electrode sticking, 

whereas too much force can induce superfluous indentation, limit heat generation due 

to low contact resistance, and produce undersized welds. 

The ideal electrode force varies according to material type, thickness, surface 

condition, and welding current, ranging from a few hundred to several thousand 

Newtons. Electrode force also influences dynamic resistance during welding 

because it impacts the contact area and resistance at both the electrode-workpiece 

interface and the faying surface where the weld forms, which is critical for 

consistent weld quality.  
 

 
Figure 23 - Example of an electrode force acquired during the experimental campaign.
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In Figure 23, an example illustrating the trend of the force recorded by the sensors 

used in the laboratory for the case study that will be presented in the next chapter. 

When welding current is applied, it rapidly increases and reaches a peak before 

stopping. The initial increase is due to thermal expansion of the weld nugget 

generated by the Joule action. As the weld zone softens, heat increases and 

electrode force decreases, resulting in lower resistance. 

 

4.2.2 Electrode Displacement 
 
Electrode displacement in Resistance Spot Welding (RSW) refers to the dynamic 

movement of electrodes throughout the welding process, which is an important 

indicator of weld formation and quality. The displacement curve typically exhibits 

four distinct phases as Zhang et al. [24] show in his work: initial compression as the 

electrodes clamp the sheets, thermal expansion as the materials heat up, sudden 

depression as the nugget forms and the material softens, and final solidification 

contraction. This movement pattern, which is frequently measured in micrometers, 

can be tracked in real time to provide useful information on welding progress and 

potential issues. For example, excessive displacement could imply ejection or 

material softening, whereas inadequate movement could indicate poor nugget 

formation. Figure 24 shows an example of electrode displacement recorded during 

the experimental campaign. 

  
Figure 24 - Example of an electrode displacement acquired during the experimental campaign. 
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4.3 Feature engineering 

A vector is created to collect data recorded from the electrode force sensor. 

𝐹𝑖 =  [𝑓1
𝑖, … , 𝑓𝑗

𝑖 , … , 𝑓𝑁
𝑖 ]   (𝑘𝑁) 

The following features have been extracted for the Force signal: 

• f_max: maximum force value. 

• f_max_time:  time in correspondence of the maximum force. 

𝑓max_𝑡𝑖𝑚𝑒
𝑖 = index(𝑓𝑚𝑎𝑥

𝑖 ) ∙ 0.001 (s) 

• f_avg_inc_befmax: difference between the maximum force and the first 

value divided by the corresponding time interval. 

𝑓avg_inc_befmax
𝑖 =

𝑓max
𝑖 −  𝑓1

𝑖

𝑖𝑛𝑑𝑒𝑥(𝑓𝑚𝑎𝑥
𝑖 )  ∗ 0.001

   (
kN

s
) 

• f_avg_dec_aftermax: difference between the maximum force and the last 

value over the time interval. 

𝑓avg_dec_aftermax
𝑖 =

𝑓max
𝑖 −  𝑓𝑁

𝑖

[𝑖𝑛𝑑𝑒𝑥(𝑓𝑁
𝑖) − 𝑖𝑛𝑑𝑒𝑥(𝑓𝑚𝑎𝑥

𝑖 )] ∙ 0.001
    (

kN

s
) 

• f_stds: standard deviation of the force values. 

𝑓𝑠𝑡𝑑𝑠
𝑖 =  √

1

𝑁 − 1
 ∑(𝑓𝑗

𝑖 − 𝑓𝑚𝑒𝑎𝑛
𝑖 )

2
𝑁

𝑗=1

   (𝑘𝑁) 

 
Figure 25 - Features extracted for the Force signal.  

f_max 

f_stds 

f_max_time 
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Accordingly, a vector is created to collect data recorded from the electrode 

displacement sensor and the following features have been computed for the 

Displacement signal:  

𝐷𝑖 =  [𝑑1
𝑖 , … , 𝑑𝑗

𝑖 , … , 𝑑𝑁
𝑖 ]    (𝜇𝑚) 

• d_max: maximum displacement value. 

𝑑𝑚𝑎𝑥
𝑖 = max(𝐷𝑖)    (𝜇𝑚) 

• d_max_time: time in which the maximum displacement occurs. 

𝑑max_𝑡𝑖𝑚𝑒
𝑖 = index(𝑑𝑚𝑎𝑥

𝑖 ) ∙ 0.001   (𝑠) 
 

• d_avg_inc_befmax: difference between the maximum displacement and the 
first value divided by the corresponding time interval. 
 

𝑑𝑎𝑣𝑔_𝑖𝑛𝑐_𝑏𝑒𝑓𝑚𝑎𝑥
𝑖 =

𝑑𝑚𝑎𝑥
𝑖 −  𝑑1

𝑖

𝑖𝑛𝑑𝑒𝑥(𝑑𝑚𝑎𝑥
𝑖 )  ∗ 0.001

   (
𝜇𝑚

𝑠
) 

 
• d_avg_dec_aftermax: difference between the maximum displacement and 

the last value over the time interval. 
 

𝑑slope_aftermax
𝑖 =

𝑑max _𝑙𝑎𝑠𝑡
𝑖

[𝑖𝑛𝑑𝑒𝑥(𝑑𝑁
𝑖 ) − 𝑖𝑛𝑑𝑒𝑥(𝑑𝑚𝑎𝑥

𝑖 )] ∙ 0.001
   (

𝜇𝑚

𝑠
) 

 
• d_stds: standard deviation of the displacement values (ddof=1). 

 

𝑑𝑠𝑡𝑑𝑠
𝑖 =  √

1

𝑁−1
 ∑ (𝑑𝑗

𝑖 − 𝑑𝑚𝑒𝑎𝑛
𝑖 )

2𝑁
𝑗=1    (𝜇𝑚) 

 

 

d_max 

d_stds 

d_max_time 

Figure 26 - Feature extracted for the Displacement signal. 
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5. Tools 
 
In this chapter the programming language, the software program, and the libraries 

utilized will be discussed. 

 

5.1 Python 
 
Python is a high-level, multi-purpose programming language. Its design philosophy 

prioritizes code readability through the use of extensive indentation. Python has 

continuously ranked as one of the most popular programming languages, and it is 

widely used in the machine learning community. 

5.2 Libraries 
 
In Python, a library consists of modules, functions, and objects that offer predefined 

tools for specific tasks. Libraries improve software development by providing 

access to complicated functionalities without the need to design them from the start. 
 

Pandas is a robust data manipulation library that uses DataFrames and Series to 

handle structured data, making it ideal for analyzing tabular data such as Excel 

sheets or CSV files.  

 

NumPy focuses on numerical computing, providing efficient arrays and 

mathematical functions that provide the basis for many scientific computing 

activities. 

 

Matplotlib is Python's major plotting toolkit, allowing you to generate a variety of 

charts, graphs, and visualizations with extensive customization possibilities.  

The Os library is part of Python's standard library and provides functions for 

interacting with the operating system. It allows to work with files, directories, and 

system paths in a platform-independent way. 

 



53 
 

Scikit-learn is a comprehensive machine learning framework that provides tools for 

data preprocessing, model selection, and implementing various algorithms such as 

classification. 

 

5.3 Anaconda and Jupyter Notebook 
 
Anaconda Navigator is a graphical user interface (GUI) that allows to interact with 

packages and environments without having to input conda commands into a 

terminal window. 

Jupyter Notebook is an open-source web application for creating and sharing 

documents containing live code, equations, visualizations, and narrative text. 

It runs in every web browser and supports code in 40+ programming languages, 

though it's most commonly used with Python. 

Jupyter Notebook comes included with Anaconda, making them a powerful 

combination for data science work. 

 

 
Figure 27 - Anaconda Navigator. 
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6. Clustering application 
 
The features that were extracted from both force and displacement signals, better 

explained in Chapter 4.3, served as input variables for the clustering algorithm, with 

the aim to automatically distinguish between two distinct groups in the dataset. The 

first group corresponds to the samples without expulsions while the second one 

contains the welding points affected by the splash phenomenon. 
 

6.1 Result without Feature Selection 
 
Once the features for both Force and Displacement signals are extracted, the input 

data is used as the starting point for K-Means++, DBSCAN, and Hierarchical 

Clustering algorithms. First of all, the data is standardized, this is an important step 

because otherwise features with larger scales would dominate the model's learning. 

Standardization in fact helps in faster convergence during optimization, reduces the 

chance of getting stuck in local optima and makes training more stable. 

6.1.1 K-Means++ 
 
The first algorithm to be implemented is K-Means++. 

In order to determine the optimal number of clusters (K) for K-Means, the Elbow 

Method technique is implemented. The Elbow Method is a visual way for 

determining the optimal 'K' (number of clusters) in K-means clustering. 

It works by computing the Within-Cluster Sum of Squares (WCSS), which is the 

sum of the squared distances between data points and the cluster center.  

However, there is a point where raising K no longer results in a significant fall in 

WCSS, and the pace of decline decreases. This point is commonly referred to as the 

elbow. 
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The code plots the Within-Cluster Sum of Squares (WCSS) against different values 

of K. WCSS measures how compact the clusters are (lower means better 

clustering). The "elbow" in the resulting plot suggests the optimal K, which in our 

case is set to 2. After determining the optimal K value, it is possible to proceed with 

the algorithm's implementation. 

 

 
Figure 29 - K-Means++ application. 

First, 2 clusters are created, “K-means++” is used as initialization for better 

centroids. Two operations are then combined: 

• Fit: in order to find the cluster center. 

• Predict: to assign each data point to nearest cluster. 

The outcome is an array of cluster labels (0 or 1) for each data point. 
 

 
Figure 30 – K-Means++ outcome. 

 

Figure 28 - The Elbow Method. 
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6.1.2 Hierarchical Clustering 
 
Hierarchical Clustering is applied as the second algorithm. First, the clustering is 

performed using the Ward method, as shown in the code below. 

 

 
 

Then the dendrogram is plotted in order to better analyze the results. 

 

 
The dendrogram clearly shows two main clusters (indicated by the orange and green 

branches). The red dashed horizontal line is the cut-off line that determines them. 

The height of the vertical lines represents the dissimilarity between clusters.  

Figure 31 - Part of the code implemented for applying the Hierarchical Clustering in Python. 

Figure 32 - Hierarchical Clustering Dendrogram. 
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The left cluster (orange) is composed of fewer samples with lower height 

connections. Instead, the other cluster (green) contains more samples with 

connections at different heights. 

The outcome, also in this case, is an array for clusters label for each data point. 

 

 
Figure 33 - Hierarchical clustering results. 

 
 

6.1.3 DBSCAN 

The third algorithm implemented is DBSCAN. 

At first, the k-distance graph is implemented, which is a technique used to  

determine the optimal Eps parameter for DBSCAN clustering.  

 

 

 
 

In particular, it helps visualize the distance distribution between points and it shows 

where density changes significantly in the dataset. 

Figure 34 - K-distance graph code. 
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The x-axis displays points arranged according to their distance from their kth 

nearest neighbor. The y-axis depicts these distances. The "elbow" point can be 

identified where the curve changes sharply. This elbow point is frequently an 

excellent option for the Eps parameter in DBSCAN. 

 

 
The algorithm was then implemented with the following code. 

Different values of eps and combinations of features were tested to reach the best 

configuration. In the picture below are represented the standard deviation and the 

average decrease after max of the displacement. 

Figure 35 - K-distance graph. 

Figure 36 - DBSCAN application. 
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From Figure 37 it can be noticed that 1 cluster was identified, containing the yellow 

points, which correspond to the "good points" that didn’t register the expulsion 

phenomenon. All the others instead are categorized as noise. 

 
Figure 38 - DBSCAN Clustering in 3D. 

 

Figure 37 - DBSCAN Clustering in 2D. 
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Looking at Figure 37, it seems that there is a noise point in the middle of the yellow 

ones (i.e., good points, no expulsion). This happens due to the 2D representation 

but, if another dimension is added (Figure 38), it is clear that the misleading 

interpretation is not correct. Therefore, all the features have to be taken into account 

to explain the above consideration. 

 

6.1.4 Performances 
 
The Silhouette Analysis is performed to interpret and validate data consistency 

within clusters. The approach offers a concise graphical depiction of how 

effectively each object has been classified. 

Since there is prior knowledge about how the data points should be grouped, some 

supervised performance metrics can be used for clustering evaluation. Specifically, 

the other metrics examined are Adjusted Rand Index (ARI) and Purity. 

 

K-Means++ 

Silhouette: 

 
Figure 39 - Silhouette analysis for K-Means++ results. 
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The red dashed line indicates the overall average silhouette score which is 0.46. 

This result suggests reasonably good cluster separation, though there's room for 

improvement. Both clusters show positive silhouette coefficients (all values > 0). 

No negative values mean no points are likely misclassified. 
 

Adjusted Rand Index (ARI) 
 
The ARI result for K-Means++ is: 
 

 
Figure 40 - ARI result for K-Means++. 

 
This implies that K-Means++ is capturing some structure but missing significant 

patterns, and that it has moderate agreement with ground truth. 

 

Purity 

 
Figure 41 - Purity result for K-Means++. 

This implies that is establishing "pure" clusters, where the points primarily belong 

to the same true class. 
 
Hierarchical Clustering 

Silhouette 

 
Figure 42 - Silhouette result for Hierarchical Clustering results. 
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Cluster Assignments and Silhouette Scores: 
========================================= 
Average Silhouette Score: 0.460 
 
Mean Silhouette Score by Cluster: 
================================ 
Cluster 0: 0.500 
Cluster 1: 0.342 
 

The result of the Silhouette Analysis is 0.46 is reasonable, but it can suggest there 

might be some overlap between clusters. 
 

Adjusted Rand Index (ARI) 

 
Figure 43 - ARI result for Hierarchical Clustering. 

This implies inconsistency with the actual class structure. It is most likely dividing 

what should to be single clusters, perhaps forming more clusters than are required. 
 

Purity 

 
Figure 44 - Purity result for Hierarchical Clustering. 

Approximately 82% of points are assigned to the appropriate class members. 

Clusters are comparatively "clean" on their own. Little, uniform clusters are 

forming. 
 

DBSCAN 
 

Silhouette 

 
Figure 45 - Silhouette score for DBSCAN. 

 
This result implies moderate cluster cohesiveness, some overlap between the 

clusters and the fact that some points may be quite near to surrounding clusters. 

 

 



63 
 

Adjusted Rand Index (ARI) 

 
Figure 46 - ARI result for DBSCAN. 

This shows very strong accord with ground truth. DBSCAN accurately captures 

actual structure. 

 

Purity 

 
Figure 47 - Purity result for DBSCAN. 

 
This suggests that it’s creating pure clusters. 
 
 

 

 

 

 

 

 

 

Comparing the results of the performance for the algorithms it can been seen that 

for K-Means++ the high purity (0.821) but low ARI (0.397) suggests that it is 

creating "pure" clusters but it’s likely over-segmenting the data. 

The same can be observed for Hierarchical clustering, where clusters are internally 

“pure”, but the overall structure doesn’t match the true data partitioning well. 

For DBSCAN instead ARI and Purity metrics are consistently high. This suggests 

robust clustering, even if the Silhouette score is moderate. This can be due to 

possible reasons, like non-spherical cluster shape or varying density, but it is not 

necessarily a bad result. 

 

 

 

Analysis Silhouette ARI Purity 

K-Means++ 0.459 0.397 0.821 

Hierarchical 0.460 0.397 0.821 

DBSCAN 0.346 0.897 0.974 

Table 6 - Performance results. 
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6.2 Results with Feature Selection 
 

6.2.1 PCA 

PCA analysis has been run through a Python script. Figure 48 shows the explained 

variance by principal components. 

 

 
Figure 48 - PCA results. 

 
Analyzing the feature loadings for the first 5 components (Figure 49), it can be 

observed that: 

 
1. PC1: 

• Strongest positive loadings: d_stds (0.402), f_stds (0.386), 

f_avg_inc_befmax (0.346) 

• Strongest negative loadings: d_max_time (-0.347), d_max (-0.278)  

• This suggests PC1 primarily captures variation in standard deviations and 

increasing trends before maximums. 

2. PC2: 
• Strongest negative loading: f_max_time (-0.772) 

• Notable negative loading: f_avg_dec_aftermax (-0.470)  

• PC2 seems to be heavily influenced by timing features, particularly for f-

related measurements. 
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3. PC3: 
• Strongest positive: d_avg_inc_befmax (0.574) 

• Strongest negative: f_max (-0.560)  

• This component contrasts increasing trends before maximum in d-

measurements with maximum values in f-measurements. 

4. PC4: 
• Strongest positive: d_max (0.700) 

• Notable positive: f_max (0.461)  

• This component appears to capture maximum values across both d and f 

measurements. 

5. PC5: 
• Strongest positive: d_avg_dec_aftermax (0.633) 

• Strongest negative: d_avg_inc_befmax (-0.552), f_avg_inc_befmax (-

0.470)  

• This component contrasts decreasing trends after maximum with 

increasing trends before maximum. 

 

 
Figure 49 - PCA feature loadings 

 
The first five components explain 93,25% of variance. Therefore, the most 

important features for each considered component are: 

• PC1 (56.2%): d_stds, f_stds, f_avg_inc_befmax, d_max_time, d_max 

• PC2 (15.5%): f_max_time, f_avg_dec_aftermax 
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• PC3 (10.2%): d_avg_inc_befmax, f_max 

• PC4 (6.8%): d_max, f_max 

• PC5 (4.6%): d_avg_dec_aftermax, d_avg_inc_befmax, 

f_avg_inc_befmax  

 
In conclusion, from the above PCA analysis, the most important features are d_stds, 

f_stds, f_avg_inc_befmax, d_max_time, d_max, f_max_time, f_avg_dec_aftermax, 

f_max, d_avg_dec_aftermax, d_avg_inc_befmax, meaning that in order to explain 

more thant 90% of variance, all ten features are necessary. 
 

6.2.2 Mutual information 
 
Mutual information is determined between two variables and represents the 

decrease in uncertainty for one variable given a known value for the other. 

Figure 50 - Mutual information between features. 
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Figure 51 - Mutual information results. 

 
Therefore, according to mutual information feature selection, it is possible to 

eliminate d_max and f_stds since they have a pair with high mutual information 

and, at the same time, their average MI is higher than the one of their pairs. 

In conclusion, from the above MI analysis, the most important features are d_stds, 

f_avg_inc_befmax, d_max_time, f_max_time, f_avg_dec_aftermax, f_max, 

d_avg_dec_aftermax, d_avg_inc_befmax. 
 

6.2.3 Performances 
 
The performances have been analyzed after the FS and the results are the same as 

before features selection. This could imply that for the initial features this step did 

not provide any additional benefit. The algorithm was able to discover the 

underlying patterns and group the data points equally well with or without it.  
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6.3 Discussion 
 
Table 7 summarizes all three clustering methods results, with and without the 

feature selection. It can be seen that the application of the feature selection, in this 

case, did not change the results. First of all, it has to be mentioned that the real class 

(i.e., expulsion/no expulsion) is known a priori from the visual inspection 

performed during the experimental campaign. Second, the final association 

between, for example, non-expulsion and class 0, is based on a majority criteria: if 

the majority of non-expulsion points are assigned to the class 0, this class will 

correspond to the non-expulsion class. The two classes identified by the above 

methods have been associated with the real class based on the previous 

considerations. Knowing that, the “accuracy” (i.e., percentage of correct real class 

assignment) of each algorithm can be measured. 

The results reveal that DBSCAN exceeds K-Means++ and Hierarchical Clustering 

on this dataset, with an error rate of only 2.56%, compared to the 17.95% of the 

others. This shows that the data has a distinct density-based structure, which 

DBSCAN can effectively capture, whilst the other two algorithms struggle to 

appropriately group the data points. DBSCAN's exceptional performance can be 

due to its capacity to find clusters of any shape and size. K-Means++ and 

Hierarchical Clustering, on the other hand, make assumptions about the shape and 

size of clusters that may not be appropriate for this dataset. It is important to 

highlight that the ideal clustering algorithm is determined by the specific properties 

of the data, the clusters' underlying structure, and the desired clustering objectives.  
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Sample Expulsion K-Means++ K-Means++ 
with FS 

Hierarchical Hierarchical 
with FS 

DBSCAN DBSCAN 
with FS 

1 No 0 0 0 0 0 0 
2 No 0 0 0 0 0 0 
3 No 0 0 0 0 0 0 
4 Yes 0 0 0 0 -1 -1 
5 No 0 0 0 0 0 0 
6 Yes 1 1 1 1 -1 -1 
7 Yes 1 1 1 1 -1 -1 
8 Yes 1 1 1 1 -1 -1 
9 Yes 1 1 1 1 -1 -1 
10 No 0 0 0 0 0 0 
11 No 0 0 0 0 0 0 
12 No 0 0 0 0 0 0 
13 Yes 0 0 0 0 -1 -1 
14 No 0 0 0 0 0 0 
15 No 0 0 0 0 0 0 
16 Yes 0 0 0 0 -1 -1 
17 Yes 0 0 0 0 -1 -1 
18 Yes 0 0 0 0 -1 -1 
19 No 0 0 0 0 0 0 
20 No 0 0 0 0 0 0 
21 No 0 0 0 0 0 0 
22 No 0 0 0 0 0 0 
23 No 0 0 0 0 0 0 
24 No 0 0 0 0 0 0 
25 Yes 0 0 0 0 -1 -1 
26 No 0 0 0 0 0 0 
27 No 0 0 0 0 -1 -1 
28 No 0 0 0 0 0 0 
29 No 0 0 0 0 0 0 
30 No 0 0 0 0 0 0 
31 No 0 0 0 0 0 0 
32 No 0 0 0 0 0 0 
33 Yes 0 0 0 0 -1 -1 
34 Yes 1 1 1 1 -1 -1 
35 Yes 1 1 1 1 -1 -1 
36 Yes 1 1 1 1 -1 -1 
37 Yes 1 1 1 1 -1 -1 
38 Yes 1 1 1 1 -1 -1 
39 Yes 1 1 1 1 -1 -1 

Table 7 - Clustering results. In red are highlighted the wrong class assignments for each sample. 
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Moving forward to the practical insights of the results, in Figure 52, all 39 “Force 

vs Time” curves of the dataset have been plotted. 

 
Figure 52 – Force vs Time Curves. 

Looking at Figure 52 no immediate clear division is possible. A solution to extract 

meaningful information from the data and potentially uncover any hidden patterns 

is given by the methods shown above. Applying the best algorithm in terms of 

accuracy (i.e., DBSCAN), Figure 53 shows the same curves colored according to its 

classification. 

 

Figure 53 - Force vs Time Curves based on DBSCAN results. 
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Figure 53 illustrates the differences between the no-expulsion and expulsion events, 

and the DBSCAN classification appears to have effectively separated the two 

distinct force response patterns: the green curves represent cases without expulsion 

(class 0), and the red curves represent situations with expulsion (noise, “class” -1). 

The green curves (no expulsion) are characterized by gradual force increases and 

decreases. The peak forces are generally lower compared to the expulsion cases. 

The red curves (expulsion) instead show sharp spikes and rapid force fluctuations. 

Similar considerations can be made for displacement curves. The Plotting of the 

“Displacement vs Force Curves” can be seen in Figure 54. 

 

 
Figure 54 - Displacement vs Time curves. 

 
Significant oscillations, sharp peaks, and quick shifts during the observed period 

can be noticed but the overall nature of the curve patterns makes the identification 

of specific patterns challenging. 
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Figure 55 - Displacement vs Time Curves. 

 

Figure 55, which incorporates the DBSCAN classification results, clearly separates 

these curves into two distinct curves. Like for the Force graph, the green curves 

represent cases with no expulsion, while the red curves indicate cases with 

expulsion. It is worth noting that the expulsion displacement curves show a rapid 

drop in the second part of the welding time (i.e., 100-200 ms), corresponding to an 

electrode instant and negative shift when expulsion happens. 
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Conclusions 
 
This thesis proposes a machine learning method leading to several advantages for 

the RSW process. The work introduces an alternative use of unsupervised 

techniques since, as better explained in the Discussion section (6.3), the real classes 

(i.e., expulsion/no expulsion) are known a priori from the experimental campaign.  

Regarding the applied methods and their accuracy without feature selection, K-

Means++ and Hierarchical methods have a percentage error of almost 18% but 

DBSCAN reduces the error to 3%. In general, K-means++ and Hierarchical 

clustering have shown several drawbacks, both being based on distance metrics. 

DBSCAN major characteristics provide considerable advantages for the dataset. As 

a density-based clustering technique, it effectively identifies the non-expulsion 

points and considers all the others as noise. 

The three algorithms have been used after feature selection that has been performed 

using the PCA and mutual information techniques. In total, eight out of ten features 

have been identified but the results have not changed. 

As a first result, since it is one of the most expensive phases, both in terms of time 

and costs, the method can be used for data labeling, useful for further supervised 

machine learning applications (e.g., classification). Another important result is that 

the proposed procedure can be employed for extracting new features from 

displacement and force curves since it highlights the unique patterns of each class.  

Thirdly, this application can enable process monitoring by automatically spotting 

out the non-conforming welding points. Fourthly, clustering can be employed for 

post process quality control, avoiding costly destructive testing methods. 

Future implementation could focus on the creation of new features in order to reach 

100% accuracy. Furthermore, new experiments could be implemented to test the 

proposed methodology on a larger scale. Lastly, since in this work expulsion was 

induced by varying process parameters, another future work could focus on 

replicating the approach in presence of other defects (e.g., initial gap and edge 

welding) that commonly cause expulsion in production lines. 
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