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Abstract 

Drought is one of the severest natural hazards that seriously threatens sustainable water resource 

management, agriculture, and socioeconomic sectors within a changing climate context. This 

study investigates drought simulation through rainfall-runoff modelling over a 60-year period 

within the Cuneo district of Italy. The research herein discussed leverages the TUW model 

lumped conceptual rainfall-runoff model with semi-distributed operational capability. Similar 

in structure to the widely used Hydrologiska Byråns Vattenbalansavdelning (HBV) model, the 

TUW model operates on a daily timestep for both input and output data specific to each 

catchment, incorporating key routines for snow accumulation, snowmelt, soil moisture storage, 

and streamflow generation. In the district of Cuneo, some catchments can provide detailed 

discharge data, which forms the comprehensive basis for model calibration in this research, first 

using KGE and then by log-transformed KGE. Special attention will be dedicated to an accurate 

representation during low-flow events within drought periods to be able to simulate realistic 

water availability during the most critical periods. The simulated monthly discharges will be 

used for the validation of the model performance. Apart from model calibration and validation, 

SRI has been used in the study to undertake advanced drought analysis that can present a precise 

characterization of the drought occurrences in the region. The discharge data from the 

observation and simulation are carefully compared with an emphasis on low-flow events that 

may signify a drought. The complex relationships among land characteristics, including soil 

type and vegetation cover, and climate variables such as precipitation and temperature, for 

determining the severity and duration of hydrological droughts are also dealt with in the study. 

From these findings, it can be seen that for the majority of catchments, very good model 

efficiencies were achieved upon calibration of the TUW model. A comparison of the simulated 

and observed discharge data reveals good agreement, in particular for the critical low-flow 

periods, which is also confirmed by the Pareto coefficient as a goodness-of-fit measure. The 

drought analysis provides very important information on the duration, intensity, and severity of 

drought events, adding substantial knowledge to water resources management and drought 

mitigation. The contribution of this study would add significantly to drought dynamics for the 

region of Cuneo, whereas future works will make refinement of hydrological modelling 

techniques and explore various drought projections according to different climate change 

scenarios. 
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1 Introduction: 

Droughts represent one of the most pressing challenges to sustainable water resource 

management, agriculture, and socioeconomic sectors, especially in light of the growing impacts 

of climate change (IPCC, 2014). Droughts, unlike sudden natural disasters such as floods or 

storms, develop gradually and can persist for extended periods, making them particularly 

insidious in their impacts (D. A. Wilhite, 1985). The slow onset of drought often masks its 

severity until significant damage has already occurred to ecosystems, agriculture, water 

supplies, and economies. This gradual progression earns drought the label of a "creeping 

disaster" (Loon V. , 2015), as its consequences, while delayed, can be far-reaching and 

devastating (Dai, 2013). 

As a complex natural hazard, drought affects both society and the environment in multifaceted 

ways, disrupting ecosystems, agricultural systems, and industrial operations, while placing 

immense pressure on water resource management (J. Sheffield E. W., 2011). The intricate 

interactions between hydrological, meteorological, and agricultural systems make it challenging 

to pinpoint a single origin or trigger for drought events. Generally, drought is marked by 

prolonged periods of below-average precipitation, leading to significant reductions in surface 

water (rivers, lakes, reservoirs) and groundwater storage (Rodier, 1985). Hydrological drought, 

a specific type of drought, focuses on these water system deficits and plays a pivotal role in 

understanding how droughts impact the broader hydrological cycle (Loon V. , 2015). 

Hydrological drought is characterized by reduced streamflow, low reservoir levels, and 

declining groundwater tables, which can persist long after precipitation levels have recovered 

(Loon V. , 2015). This prolonged shortage of water, both on the surface and underground, creates 

serious challenges for various sectors reliant on consistent water availability, particularly in 

agriculture, energy production, and urban water supply (Singh, 2010). For instance, decreased 

streamflow during a drought period directly impacts irrigation, hydropower generation, and 

ecosystem health, while lower groundwater levels can affect long-term water security for both 

rural and urban communities (J. Sheffield E. W., 2011). 

This research investigates the phenomenon of hydrological drought over the past 60 years using 

rainfall-runoff modeling as a tool to simulate and analyze drought events. Rainfall-runoff 
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models are critical in this context as they offer valuable insights into the temporal and spatial 

dynamics of water availability, helping to simulate how water bodies respond to prolonged 

periods of reduced rainfall (Singh V. P., 2010). The study leverages such modeling to assess the 

impacts of low-flow conditions on water resource management, providing a detailed 

understanding of how water availability shifts during drought periods (Rodier, 1985). By 

simulating the response of catchments to drought conditions, the research aims to capture the 

complexity of drought events, particularly in terms of water shortages that may not be 

immediately visible but are critical for long-term sustainability. 

Understanding the dynamics between water availability and drought periods is crucial for 

developing effective drought management strategies (M. Svoboda D. L., 2002). This includes 

the ability to predict and mitigate the impacts of future droughts in light of climate change, 

which is expected to exacerbate drought frequency and intensity in many parts of the world 

(IPCC, 2014). The results of this study will contribute to improving drought preparedness and 

water resource planning, ensuring that stakeholders4ranging from water managers to 

policymakers4are better equipped to handle the challenges posed by both current and future 

droughts. 
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2 Study Objectives 

The primary objective of this study is to simulate and analyze hydrological drought events in 

the Cuneo district, located in the Piedmont region of Italy, over a 60-year historical period. By 

employing the TUWmodel, a lumped conceptual rainfall-runoff model, the study aims to 

provide critical insights into the temporal dynamics, spatial distribution, severity, duration, and 

frequency of droughts in the region. These findings are intended to inform and enhance water 

resource management strategies, particularly in the context of increasing drought risks due to 

climate change. 

2.1 Key Goals: 

2.1.1 Hydrological Drought Simulation: 

• Simulating Hydrological Drought: The study uses the TUWmodel to simulate 

hydrological droughts across multiple catchments in the Cuneo district. Hydrological 

droughts are characterized by reductions in streamflow, groundwater levels, and 

reservoir capacities. This is crucial for understanding the impact of prolonged water 

shortages on both natural ecosystems and human activities in the region. 

• Timeframe and Scope: Simulations cover a 60-year period, allowing for a detailed 

investigation of drought patterns over a long-term historical context. This extensive 

temporal analysis provides insights into both frequent and rare drought events, as well 

as their potential drivers. 

2.1.2 Low-Flow Event Analysis and Model Calibration: 

• Focusing on Low-Flow Events: One of the key aspects of this study is the analysis of 

low-flow events, which are essential for understanding critical periods of water scarcity. 

Low-flow conditions often occur during prolonged droughts, posing significant risks to 

water supplies, agriculture, and aquatic ecosystems. The model aims to capture these 

events accurately to assess their impact under different hydrological conditions. 

• Calibration with Daily and Monthly Time Scales: Calibration of the TUWmodel is 

carried out using observed discharge data from various catchments in the Cuneo district. 

To ensure the robustness of the model, two calibration scales were initially explored: 
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daily and monthly. The Kling-Gupta Efficiency (KGE) was the primary metric used 

for performance evaluation, capturing correlation, bias, and variability. Additionally, 

log-transformed KGE (log-KGE) was employed to improve the model’s accuracy in 

simulating low-flow conditions, which are critical for drought analysis. 

 

• Log-KGE for Low-Flow Calibration: The log-KGE places greater emphasis 

on smaller discharge values, improving the model’s performance in capturing 

low-flow events. Since drought periods often coincide with reduced streamflows, 

this metric is crucial for ensuring that the model can accurately simulate 

hydrological droughts. 

• Final Choice of Time Scale: After testing both daily and monthly calibration, 

the study proceeds with the daily time scale for the final model configuration. 

The daily scale provides a finer temporal resolution, allowing for more precise 

tracking of short-term drought onset, persistence, and recovery phases. 

2.1.3 Quantifying Drought Characteristics Using the Standardized Runoff Index 

(SRI): 

• Drought Characterization with SRI: The Standardized Runoff Index (SRI) is 

applied to both observed and simulated streamflow data to characterize hydrological 

droughts. The SRI is a powerful tool that quantifies drought severity by comparing 

current runoff levels against historical averages, offering a standardized measure to 

evaluate drought intensity, duration, and frequency. 

 

• The study uses SRI on a 1-month time scale to focus on short-term drought conditions, 

which are particularly relevant for immediate water resource management needs. The 

SRI provides a consistent way to monitor how droughts evolve over time and across 

different catchments. 

 

• Evaluating Drought Severity and Duration: The SRI allows for a detailed analysis of 

drought events by examining their intensity and how long they persist. This is crucial 

for understanding the full impact of drought on both natural systems (such as ecosystems 
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and watercourses) and socio-economic systems (such as agriculture and municipal water 

supplies). 

2.1.4 Spatial and Temporal Analysis of Drought Patterns: 

• Assessing Spatial Variability: The research incorporates a spatial analysis component 

to assess how droughts vary across different catchments in the Cuneo district. The 

district’s diverse topography, which includes mountainous regions, plains, and 

agricultural areas, significantly influences the distribution of drought severity. By 

analyzing spatial patterns, the study identifies which areas are most vulnerable to 

droughts and how regional differences in climate and land characteristics contribute to 

these vulnerabilities. 

• Temporal Dynamics: Alongside spatial analysis, the study also investigates the 

temporal dynamics of droughts, including their onset, peak, and recovery phases. This 

helps to identify critical periods when water shortages are most severe and informs 

strategies for mitigating their impacts. 

 

2.1.5 Evaluating Model Performance: 

• Model Validation: To ensure the accuracy of the simulated results, the TUWmodel 

undergoes a comprehensive validation process. Validation is performed by comparing 

simulated discharge against observed discharge data not used during the calibration 

phase. This step is critical for testing the model’s ability to generalize and perform well 

under varying hydrological conditions. 

• KGE and log-KGE in Performance Evaluation: Both KGE and log-KGE metrics are 

used to evaluate model performance across different flow conditions. While KGE 

provides a balanced evaluation of overall model accuracy, the log-KGE specifically 

focuses on improving the model’s sensitivity to low-flow periods, which are most 

relevant for drought studies. This dual metric approach ensures that the model is robust 

enough to capture both typical hydrological behavior and extreme events such as 

droughts. 
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2.1.6 Application of Findings for Water Management: 

• Informing Water Resource Management: The insights gained from this study are 

expected to play a key role in developing effective water resource management strategies 

for the Cuneo district. The ability to simulate drought events accurately can support 

decision-makers in preparing for future drought risks, optimizing water usage, and 

designing drought mitigation policies. 

• Drought Mitigation and Early Warning Systems: By understanding the frequency, 

duration, and intensity of past droughts, water managers can improve early warning 

systems and develop more targeted interventions to mitigate the effects of future 

droughts. This will be especially important in regions where water scarcity is becoming 

increasingly problematic due to climate change. 

This study offers a comprehensive simulation and analysis of hydrological drought events in the 

Cuneo district, Italy. By utilizing the TUWmodel calibrated with both KGE and log-KGE, and 

characterizing droughts with the Standardized Runoff Index (SRI), it provides detailed insights 

into the spatial and temporal dynamics of droughts in the region. The findings from this research 

will support more informed water management strategies and contribute to enhanced drought 

mitigation efforts.  
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3 Literature Review 

3.1 Drought  

Drought, as a complex natural hazard, exerts multifaceted impacts on ecosystems and society, 

predominantly through hydrological drought, which is characterized by deficits in water 

availability within the hydrological system, leading to reduced streamflow in rivers and 

diminished levels in lakes, reservoirs, and groundwater sources (Van Loon, year). According to 

the International Association of Hydrological Sciences (IAHS), comprehending the 

development and recovery of hydrological drought is crucial (Van Loon, year). Often coined as 

'the creeping disaster,' drought events unfold gradually and may initially go unnoticed, yet they 

can yield diverse and indirect consequences. These hydrological droughts can sprawl across vast 

geographical extents and persist for extended durations, ranging from several months to several 

years, thereby imposing severe impacts on ecological systems and various economic sectors. 

 

Figure 1_ Scheme representing different categories of drought 

The ramifications of hydrological drought extend beyond mere water scarcity, permeating into 

numerous spheres of human life and the environment. Ecologically, prolonged droughts disrupt 

ecosystems, leading to habitat degradation, biodiversity loss, and altered species distributions 

(Mortimore & Adams, 2001). For instance, diminished water levels in lakes and rivers can 

fragment habitats and hinder the migration patterns of aquatic species, thereby threatening their 

survival. Furthermore, reduced soil moisture exacerbates the risk of wildfires, which not only 

pose direct threats to flora and fauna but also contribute to air pollution and greenhouse gas 

emissions (Dai et al., 2018). Socio-economically, hydrological droughts pose significant 
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challenges to agriculture, water supply, energy production, and navigation, thereby impacting 

livelihoods and economic stability (Wilhite, 2000). For instance, in agricultural regions, water 

shortages can lead to crop failures, reduced yields, and increased production costs, ultimately 

affecting food security and prices (Easterling et al., 2007). 

Moreover, the compounding effects of climate change exacerbate the frequency, intensity, and 

duration of drought events, amplifying their socio-economic and environmental impacts (IPCC, 

2014). Rising temperatures accelerate evaporation rates, exacerbating water stress in already 

arid regions and altering precipitation patterns, leading to unpredictable rainfall variability (Dai, 

2013). Consequently, there is a growing urgency for effective drought management strategies 

that integrate climate adaptation measures, water conservation practices, and sustainable 

resource management approaches (Wilhite & Glantz, 1985). Additionally, enhancing early 

warning systems and drought monitoring capabilities is paramount for timely mitigation and 

response efforts (Svoboda et al., 2002). By addressing the complexities of hydrological drought 

and its interconnected impacts, policymakers, stakeholders, and communities can better prepare 

for, mitigate, and adapt to the challenges posed by drought events in an era of escalating climate 

uncertainty. Introduce the study area, the Cuneo district in Italy. 

Hydrological drought occurs when there is a prolonged reduction in surface and subsurface 

water availability, typically manifesting as decreased river flows, reservoir levels, and 

groundwater storage. Unlike meteorological drought, which is primarily related to reduced 

precipitation, hydrological drought reflects the impact of these reductions on the broader 

hydrological cycle. The delayed response of water bodies to precipitation deficits means that 

hydrological drought can persist even after meteorological conditions improve, affecting water 

resources for extended periods (Loon V. , 2015).This type of drought can severely disrupt water 

supply systems, irrigation, and hydropower generation, and poses significant challenges for 

environmental management and aquatic ecosystems (Singh A. M., 2010).The assessment of 

hydrological drought often relies on indicators such as streamflow levels, reservoir storage, and 

groundwater availability. A key characteristic of hydrological drought is its spatial variability 

and duration, which can lead to localized water shortages even in regions with overall adequate 

rainfall. One of the main drivers of hydrological drought is the complex interplay between land 

use, climate variability, and human activities such as water extraction and river regulation 
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(Lanen, 2004). Understanding these interactions is crucial for developing effective drought 

management strategies, particularly as climate change is expected to exacerbate the frequency 

and intensity of drought events in many parts of the world (J. Sheffield E. W., 2011) 

Droughts are prolonged periods of deficient rainfall, resulting in a range of impacts across 

various sectors, including agriculture, water resources, ecosystems, and the broader 

socioeconomic landscape. Several scholars define droughts based on their duration, intensity, 

and spatial extent, with types such as meteorological, agricultural, hydrological, and socio-

economic droughts being commonly identified. (D.A. Wilhite, 1985) provided a foundational 

classification of these drought types, noting that each one has distinct characteristics. For 

instance, while meteorological drought refers to a lack of precipitation over a certain period, 

hydrological drought is linked to reduced water levels in rivers, lakes, and reservoirs, and 

agricultural drought connects directly to soil moisture deficits affecting crop production. 

The impacts of drought can be severe and multifaceted. As pointed out by (Loon V. , 2015), 

hydrological drought can have long-term effects on water availability, particularly in semi-arid 

and arid regions, leading to increased competition for dwindling water resources. In the context 

of climate change, (Dai, 2013) highlighted that the frequency and severity of droughts are 

expected to increase, which is particularly concerning for regions like southern Europe, where 

water scarcity is already a pressing issue. 

Numerous studies have demonstrated that the socioeconomic impacts of drought are 

disproportionately felt by vulnerable communities. (A.K. Mishra, 2010) explored how 

prolonged drought events have historically led to significant losses in agricultural productivity, 

food insecurity, and adverse health outcomes, particularly in low-income areas. Additionally, 

(R.P. Pandey, 2007) emphasized the long-term impacts on ecosystems, where reduced water 

availability disrupts ecosystem services, leading to biodiversity loss and increased vulnerability 

to wildfires. 

3.2 Hydrological Modeling Approaches for Simulating Droughts 

Hydrological models play a crucial role in simulating drought events and understanding their 

potential future occurrences. These models simulate the movement, distribution, and 

management of water in natural systems and are widely used to predict drought scenarios under 
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changing climatic conditions. Among these, rainfall-runoff models stand out as an essential tool 

for simulating the hydrological responses of watersheds to precipitation inputs. 

(Beven, 2012) classified hydrological models into three broad categories: lumped, distributed, 

and semi-distributed models. Lumped models, such as the TUW model used in this study, 

aggregate inputs over the entire catchment area without considering spatial variability. On the 

other hand, distributed models account for spatial variations in land use, soil type, and 

topography. Semi-distributed models offer a compromise between these two approaches by 

dividing the catchment into sub-basins with relatively homogeneous properties. 

Several studies have explored the effectiveness of various hydrological models in drought 

simulation. For example, (J. Seibert, 2012) demonstrated the efficacy of the Hydrologiska 

Byråns Vattenbalansavdelning (HBV) model in simulating hydrological droughts, particularly 

in alpine regions. The HBV model, like the TUW model, is a conceptual lumped model that 

operates on daily time steps, making it suitable for regions with snow accumulation and melting 

processes. (J.G. Arnold, 1998) showed that distributed models like the Soil and Water 

Assessment Tool (SWAT) could simulate drought impacts more accurately in large catchments, 

particularly where land-use variability significantly influences water availability. However, 

these models require extensive data input and computational resources, which are not always 

available. 

A major challenge in using hydrological models for drought simulation lies in calibrating and 

validating these models with observed data. (Refsgaard, 1997) emphasized the importance of 

model calibration, noting that inaccuracies in parameter estimation could lead to significant 

errors in predicting low-flow conditions, which are crucial for drought analysis. As such, 

calibration metrics like the Kling-Gupta Efficiency (KGE) have become widely adopted, as they 

offer a more robust evaluation of both high and low-flow periods compared to traditional Nash-

Sutcliffe Efficiency (NSE) metrics. 

3.3 Previous Studies on Drought Simulation with Rainfall-Runoff Models 

Several studies have focused on the application of rainfall-runoff models for drought simulation 

across various regions. (S. Thober, 2018) provided a comprehensive review of hydrological 

models used for simulating low-flow and drought conditions, highlighting that most models, 
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including the TUW and HBV models, are effective in predicting hydrological drought when 

properly calibrated with local data. These models are often favored for their simplicity, ease of 

use, and ability to provide reliable results even with limited data availability. 

For instance, (I. Giuntoli J. V., 2013) used a conceptual rainfall-runoff model to simulate drought 

in the Rhône basin in France, demonstrating that model calibration with local streamflow data 

significantly improved drought prediction accuracy. Similarly, (K.K. Yilmaz, 2011) employed 

the HBV model to simulate streamflow droughts in Sweden, revealing that the model could 

accurately reproduce low-flow conditions, especially when using daily time steps for input data. 

In the context of southern Europe, (G. Bussi, 2020) employed the SWAT model to assess 

hydrological droughts in the Iberian Peninsula, concluding that both rainfall and land use 

changes were significant drivers of drought severity. Their findings suggest that while rainfall-

runoff models are effective for simulating hydrological droughts, incorporating land 

characteristics, such as soil type and vegetation cover, enhances the understanding of drought 

dynamics at the catchment level. 

3.4 Drought Indices for Drought Analysis 

Drought indices are critical tools for quantifying and monitoring drought events, providing a 

standardized way to measure and compare drought severity across different regions and times. 

These indices are used in conjunction with hydrological models to provide a more 

comprehensive picture of drought conditions. (T.B. McKee, 1993) introduced the Standardized 

Precipitation Index (SPI), which has since become one of the most widely used drought indices 

globally. The SPI measures the deviation of precipitation over a specific period from the long-

term mean, allowing for an assessment of drought severity based on precipitation deficits. 

For hydrological drought, the Standardized Runoff Index (SRI) is often used, as it focuses on 

streamflow rather than precipitation alone. (S. Shukla A. W., 2008) demonstrated the utility of 

SRI in identifying low-flow periods in river basins, making it particularly useful for water 

resource management. In this study, the SRI is employed to assess drought conditions in the 

Cuneo district, as it offers a precise way to quantify hydrological drought by comparing 

observed and simulated discharge data. 
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Other commonly used drought indices include the Palmer Drought Severity Index (PDSI), 
which considers both precipitation and temperature to assess long-term drought trends, and the 

Drought Severity Index (DSI), which incorporates soil moisture conditions. However, indices 

like the SPI and SRI are more frequently used in regions where hydrological data are readily 

available, as they provide more targeted insights into water availability and low-flow conditions 

during drought periods. 

3.5 Summary of Key Findings 

In summary, existing literature highlights the critical importance of accurate drought simulation 

for effective water resource management, especially in the context of climate change. 

Hydrological models, particularly rainfall-runoff models, offer a valuable tool for simulating 

both current and future drought conditions. While lumped models like TUW and HBV have 

proven effective in many regions, their success depends largely on the availability of reliable 

climate and streamflow data for calibration. Additionally, drought indices such as the SRI play 

a vital role in quantifying drought severity, making them indispensable for comprehensive 

drought analysis. This study builds upon these established methodologies by applying the TUW 

model to simulate and analyze hydrological drought in the Cuneo district, offering valuable 

insights into the dynamics of drought under changing climatic conditions. 
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4 Methodology and Materials 

4.1 Study Area and Hydrological Characteristics 

The province of Cuneo, situated on the southwestern edge of Piedmont, Italy, covers an area of 

approximately 6,900 km² and is home to a diverse geographical landscape. This region includes 

Alpine valleys, a central plain, and hilly areas known as Langhe and Roero Fig. 2.  

 

Figure 2_A geographic map of Cuneo Province, illustrating the Alpine valleys, central plain, and the Langhe and 

Roero hilly areas. 

The Alpine valleys, located in the Cottian and Maritime Alps, account for about 51% of the 

province's surface area. These rugged terrains with mountainous landscapes contribute to 

Cuneo's natural beauty and rich biodiversity (J. Smith, 2017). Meanwhile, the central plain, 

which constitutes 22% of the province, serves as a major agricultural area and includes several 

urban centers, such as the provincial capital, Cuneo. Approximately 35% of the province's 

population resides in this region (Istat, 2020). 

Cuneo's population distribution varies, with significant numbers concentrated in urban areas like 

Cuneo and the towns of Alba, Bra, Fossano, Mondovì, Savigliano, and Saluzzo. These urban 

centers each host between 15,000 and 30,000 inhabitants (Cuneo, 2019). The rural population 

is spread across smaller villages situated in the plain, while a smaller segment lives in the 



14 | P a g e  

 

mountainous and hilly regions. This demographic pattern reflects the diverse topography and 

socioeconomic structure of the province, where urban, suburban, and rural communities coexist 

in varying capacities (G. Rossi, 2018). 

 

Figure 3_Population density map of the Turin Metropolitan Area, illustrating inhabitants per square kilometer across 

provinces, including Cuneo, Asti, Alessandria, Vercelli, Novara, Biella, and VCO. 

Climatically, Cuneo experiences a continental climate, with hot summers and cold winters, 

influenced by its proximity to both the Alps and the Mediterranean Sea (Piemonte, 2019). 

Precipitation varies significantly across the province, with higher rainfall recorded in the Alpine 

valleys, while the central plain and hilly areas experience drier conditions (L. Romero, 2020). 

These climatic variations, combined with the province's varied topography, create a range of 

ecosystems and hydrological systems, directly impacting water availability and the strategies 

for managing water resources (P. Caruso, 2017). The geologic and hydrogeological 

characteristics of Cuneo also play a key role in shaping its landscape, with sedimentary basins, 

limestone deposits, and aquifers contributing to its hydrogeological complexity (A. Bianchi, 

2016). These factors influence groundwater dynamics and highlight the potential for shallow 

geothermal energy extraction in the region (M. Ravina, 2018). 

The drought conditions in Cuneo represent a pressing challenge, especially in light of climate 

change (IPCC, 2014). Due to its varied topography and reliance on both surface and 

groundwater for agricultural and urban uses, the region is particularly vulnerable to hydrological 

droughts. In recent years, reductions in precipitation, especially during the summer months, 

have led to increased stress on water resources, affecting both agricultural productivity and 
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water supply to urban areas (Dai, 2013). Rising temperatures have also accelerated evaporation 

rates, exacerbated water stress and making the region more prone to extended drought periods 

(UNESCO, 2021). Modeling and simulating these drought conditions are crucial for 

understanding the future impacts of climate change on the region. The Rainfall-Runoff Model 

(RRM) is a valuable tool for simulating hydrological drought in Cuneo, providing insights into 

how reduced rainfall and higher temperatures will influence river flows, groundwater recharge, 

and overall water availability (X. Zeng, 2019). By simulating these conditions, it becomes 

possible to develop mitigation strategies that can ensure sustainable water management and 

agricultural resilience in the face of increasing drought frequencies (A. Viglione, 2020). 

The Cuneo district, situated in the Piedmont region of northwestern Italy, encompasses a diverse 

and complex hydrological landscape. Dominated by mountainous terrain, including the Cottian 

and Maritime Alps, the district experiences significant altitudinal variation, influencing both 

climate and hydrological processes. Precipitation patterns in the region exhibit strong seasonal 

variability, with substantial snow accumulation occurring during the winter months. This 

snowpack serves as a crucial water resource, with its melt in spring contributing significantly to 

streamflow, particularly in alpine and sub-alpine catchments. As noted by (Loon A. V., 2015), 

snowmelt-driven discharge is a key hydrological process in mountainous regions like Cuneo, 

playing a critical role in ensuring water availability during drier months. 

 

Figure 4_Cuneo weather by month 

The catchments within the Cuneo district vary widely in terms of soil types, ranging from coarse, 

permeable soils in the alpine zones to more compact, clay-rich soils in the lower valleys. These 

variations, coupled with differences in vegetation cover and land use patterns, such as 
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agricultural activities, forested areas, and urban settlements, significantly influence hydrological 

processes, including runoff generation, infiltration rates, and water storage capacity. According 

to (I. Giuntoli J. V., 2013), these environmental factors not only shape the hydrological regime 

but also affect the region's susceptibility to drought events, particularly during prolonged dry 

periods or warmer-than-usual summers. 

Figure 5_Lithological map of Piemonte. Figure 6_Soil map of Piemonte. 

 

4.1.1 Temperature Variability in Cuneo 

Temperature in the Cuneo district shows a clear seasonal pattern, with cold winters and warm 

summers. The daily average high and low temperatures fluctuate significantly throughout the 

year, contributing to the region's dynamic climate conditions. During the winter months, 

temperatures often dip below freezing, particularly in the higher altitudes, leading to the 

accumulation of snow, which is crucial for the region's hydrological regime. In contrast, the 

summer months bring warmer temperatures, with average highs reaching their peak in July and 
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August. This seasonal variability in temperature influences both the timing of snowmelt and the 

rate of evaporation, further affecting water availability in the region. 

 

Figure 7_The average snowfall (solid line) accumulated over the course of a sliding 31-day period centered on the day in 

question, with 25th to 75th and 10th to 90th percentile bands. The thin dotted line is the corresponding average rainfall. 

A temperature chart Fig.7 showing the daily average high and low, along with percentile bands, 

illustrates the significant fluctuations experienced throughout the year. The thin dotted lines 

represent the perceived temperatures, offering additional insight into how temperature extremes 

are felt in the region. Understanding this temperature variability is vital for managing water 

resources, as warmer summers combined with lower precipitation can exacerbate drought 

conditions. 
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Figure 8_The daily average high (red line) and low (blue line) temperature, with 25th to 75th and 10th to 90th percentile 

bands. The thin dotted lines are the corresponding average perceived temperatures. 

The hydrological regime of the Cuneo district is characteristic of alpine and sub-alpine 

environments, where snowmelt is a primary driver of river discharge. This seasonal snowmelt, 

combined with episodic rainfall events, contributes to the region's complex flow patterns, where 

river systems experience peak flows during spring and early summer, followed by lower flows 

in autumn and winter (I. Giuntoli J. V., 2013). Understanding these dynamics is essential for 

accurately calibrating hydrological models like the TUW model, which is used in this study to 

simulate drought conditions in the district. 

Moreover, the region's hydrological network is highly sensitive to both climate variability and 

human influences, such as water abstraction for agriculture and domestic use, as well as river 

regulation through dams and weirs. These anthropogenic factors, in combination with natural 

variability, add complexity to the district's water resource management challenges, particularly 

under the increasing pressures of climate change. The interplay between these natural and 

human-induced factors underscores the importance of robust hydrological modeling to predict 

and manage water availability in the face of potential future droughts. 

In summary, the Cuneo district's hydrological characteristics, shaped by its alpine geography, 

seasonal snowmelt, and diverse land use, present a unique context for drought analysis. These 
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factors are integral to the calibration of the TUW model used in this study, which aims to 

simulate and assess hydrological drought conditions across the district's catchments. 

4.2 TUW Model 

The TUW (Technische Universität Wien) model is a lumped conceptual rainfall-runoff model 

designed to simulate hydrological processes such as precipitation, evaporation, soil moisture 

dynamics, and streamflow generation. This model operates on daily timesteps, which makes it 

particularly effective for modeling both short-term hydrological events and long-term water 

balance changes over large catchments. It is semi-distributed, meaning it uses spatially 

aggregated data at the sub-basin scale but retains a conceptual representation of physical 

processes at a finer resolution, ensuring both computational efficiency and hydrological 

accuracy (H. Kling, 2012). 

 

4.2.1 Structure of the TUW Model 

The TUW model shares structural similarities with the well-established Hydrologiska Byråns 

Vattenbalansavdelning (HBV) model, a conceptual framework that has been successfully 

applied to diverse hydrological settings globally (G. Lindström, 1997). Key components of the 

TUW model include: 

• Snow Accumulation and Melt: Snowmelt routines use temperature thresholds to model 

snow accumulation during winter months and the subsequent melt during warmer 

periods. This is particularly useful in mountainous or high-latitude areas, such as the 

Cuneo district, where snowmelt contributes significantly to streamflow. 

• Soil Moisture Storage: The model includes routines for infiltration and percolation, 

allowing for the calculation of soil moisture balance. The water balance is critical in 

determining how much water remains available for evapotranspiration and runoff 

generation. 

• Runoff Generation: Rainfall is partitioned between direct runoff and subsurface flows 

depending on soil saturation levels, which is key for simulating both high-flow events 
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and low-flow conditions. The inclusion of both fast (surface runoff) and slow (baseflow) 

components ensures that the model captures the temporal variability in streamflow. 

The water balance equation in the TUW model can be represented as: Ā = ÿ 2 ýă 2  ∆Ă                (Equation 1)                

Where: 

Q is streamflow, 

P is precipitation,  

ET is evapotranspiration, ∆Ă is the change in soil moisture storage. 

 

Figure 9_Conceptual description of TUWmodel structure (Rui Tong, Juraj Parajka, 2020) 

4.2.2 Suitability for Rainfall-Runoff Modeling 

The TUW model's ability to simulate the rainfall-runoff process is grounded in its handling of 

spatial variability and climate data, particularly temperature and precipitation, to estimate 

streamflow and baseflow. This makes the model particularly useful for understanding how water 

bodies respond to long-term precipitation deficits, which are a hallmark of hydrological 
drought (Loon V. , 2015). The model can simulate both high-flow and low-flow conditions, 

making it highly effective in evaluating the impacts of drought and other hydrological extremes. 
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4.2.3 Kling-Gupta Efficiency (KGE) Log-Transformed for Low-Flow  

An essential part of this study is the calibration of the TUW model using the Kling-Gupta 

Efficiency (KGE) metric, which combines various aspects of model performance, such as 

correlation, bias, and variability (H. V. Gupta, 2009). The KGE is particularly useful because it 

provides a comprehensive measure of model performance. For this thesis, a log-transformed 

KGE has been used to focus specifically on low-flow periods, as it emphasizes smaller discharge 

values and improves the model's sensitivity to these events (W. J. M. Knoben, 2019). The KGE 

formula is given by: 

�ÿý = 1 2  √(� 2 1)2 + (�������� 2 1)2 +  (��������)2       (Equation 2) 

Where: 

• r is the Pearson correlation coefficient between observed and simulated flows, 

• ���� and ���� are the standard deviations of simulated and observed flows, respectively, 

• ���� and ���� are the means of simulated and observed flows, respectively. 

 

By applying a logarithmic transformation to the discharge data before calculating the KGE, 

smaller flow values are amplified relative to larger ones. This transformation compresses the 

range of high flows and stretches the range of low flows, effectively giving more weight to low-

flow conditions during the calibration process. The log-transformed KGE thus becomes more 

sensitive to discrepancies in low-flow simulations, ensuring that the model places greater 

emphasis on accurately reproducing these critical periods (H. V. Gupta, 2009). 

4.2.4 Mathematical Explanation of Log-Transformation: 

The log-transformation is applied to both observed (Ā���) and simulated Ā��� discharge values: Ā���′ =  log(Ā��� + 1)                  (Equation 3) Ā���′ =  log(Ā��� + 1)                 (Equation 4) 

The addition of 1 before taking the logarithm prevents issues with zero or negative flow values, 

which are undefined in logarithmic space. This transformation highlights relative differences 
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during low-flow periods, allowing the calibration process to minimize errors where they matter 

most for drought studies. 

4.2.5 Impact on Model Calibration: 

When the log-transformed discharge values are used in the KGE calculation, the model 

calibration seeks to optimize the fit between Ā���′   and Ā���′ . This approach adjusts the model 

parameters to better capture the timing, duration, and magnitude of low-flow events. As a result, 

the model becomes more reliable in simulating drought conditions, providing a more accurate 

assessment of water availability during these critical periods (C. Santos, 2018). 

4.2.6 Importance in Drought Studies: 

Accurately modeling low-flow conditions is vital for effective water resource management, 

especially in regions prone to droughts like the Cuneo district. The enhanced sensitivity to low 

flows achieved through the log-transformed KGE allows the TUW model to: 

• Better Predict Drought Onset and Recovery: By closely matching the observed low-flow 

patterns, the model can more accurately indicate when a drought is beginning or ending. 

• Improve Water Allocation Decisions: Reliable low-flow simulations support better 

planning for water supply, irrigation scheduling, and reservoir management during droughts. 

• Assess Ecological Impacts: Many aquatic ecosystems are sensitive to low-flow conditions. 

Accurate modeling helps in evaluating the potential impacts on biodiversity and ecosystem 

services. 

Incorporating the log-transformed KGE into the calibration of the TUW model is a 

methodological advancement that significantly improves the model's performance in simulating 

low-flow periods. This enhancement is critical for drought studies where understanding and 

predicting water scarcity is essential. By emphasizing low-flow accuracy, the model becomes a 

more effective tool for water resource managers and policymakers tasked with mitigating the 

impacts of droughts. 
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4.2.7 Application in Drought Studies 

The TUW model's ability to simulate low-flow conditions, particularly when calibrated with the 

log-transformed KGE, makes it highly suitable for drought analysis. The Standardized 
Runoff Index (SRI) is used in conjunction with the model to assess the severity and duration 

of droughts, providing insights into how streamflow deficits evolve over time (S. Shukla A. W., 

2008). By combining rainfall-runoff modeling with drought indices, this research is able to offer 

a comprehensive understanding of both the hydrological processes and the broader impacts of 

droughts on water resource management. 

4.3 Data Collection Process 

The dataset used in this study includes several critical components for hydrological and 

meteorological analysis in the Piemonte region, Italy. It features a Digital Terrain Model 

(DTM_90m) with a resolution of approximately 90 meters, projected in the UTM32 system, 

providing detailed topographic information. Additionally, the dataset includes catchment 

boundary data for 197 catchments and corresponding catchment characteristics, such as 

elevation and drainage density. Meteorological data covering precipitation and temperature from 

1958 to 2019, derived from the Optimal Interpolation Dataset of Arpa Piemonte, further 

enrich the dataset, allowing for comprehensive analysis of the region's hydrological behavior 

and climate impacts. 

4.3.1 Obtaining Discharge Data and Climate Inputs 

The data collection process for this study involved gathering critical hydrological and climatic 

information to enable accurate rainfall-runoff modeling and drought analysis. Two main types 

of data were collected: discharge data from river catchments and climate inputs, specifically 

precipitation and temperature records. 

4.3.2 Discharge Data Collection 

Discharge data, representing the volume of water flowing through river catchments, was 

obtained from a combination of official datasets and historical archives. In this case, daily 

discharge data for 127 out of 197 catchments was sourced from ARPA Piemonte, the regional 

environmental protection agency, as well as from older data provided by Prof. Daniele Ganora, 
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which included records for the Valle d’Aosta region. These datasets span from the mid-20th 

century up to 2019 and were provided in a standardized format compatible with time-series 

analysis (zoo format in R). 

 

Figure 10_Observed daily discharge data for the BOMCE catchment, used for model calibration and validation in the study. 

The discharge data was critical for model calibration and validation, providing a basis to 

compare observed streamflow with model-generated outputs during both wet and dry periods. 

The availability of historical records, particularly during drought years, was invaluable for 

understanding the hydrological response during periods of reduced precipitation. 

 

4.3.3 Climate Data Collection 

For the climate inputs, daily precipitation and temperature data were collected over 305 spatial 

pixels covering the study area.  
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Figure 11_This figure shows daily precipitation and temperature data collected over 305 spatial pixels from 1958 to 2019, 

with a spatial resolution of 0.125 degrees, sourced from the Optimal Interpolation Dataset of ARPA Piemonte. 

The precipitation data was provided as daily totals in millimeters, while temperature data 

included both minimum and maximum daily values in degrees Celsius. These inputs were used 

to drive the rainfall-runoff modeling process, helping to simulate how precipitation contributes 

to streamflow and how temperature influences snowmelt and evaporation, both of which are 

essential for accurate hydrological simulation. 
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Figure 12_Daily precipitation data for a single pixel in the VARTO catchment from 1963 to 2023. 

4.3.4 Data Processing and Conversion 

In this study, both climate and discharge data were processed using the R programming language 

to prepare inputs for the TUW rainfall-runoff model. The following key steps were taken: 

4.3.4.1 Discharge Data Processing: 

Discharge data, representing the volume of water flow in catchments, was imported into R using 

the zoo package, which enables efficient manipulation of time-series data. The data was cleaned 

to ensure temporal alignment with the available climate records. Any missing discharge values 

were handled by integrating time-series gaps with NA placeholders, ensuring consistency with 

the other datasets. 

4.3.4.2 Climate Data Integration: 

Precipitation and temperature data were loaded into R, where they were spatially matched to 

each catchment. The climate data was collected over 305 spatial pixels, each covering specific 

parts of the catchments. For each catchment, the climate data from relevant pixels was 

aggregated and weighted based on the area of the catchment covered by each pixel, allowing for 

an accurate representation of climatic conditions across the region. 
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4.3.4.3 Potential Evapotranspiration (PET) Calculation: 

To estimate the potential evapotranspiration, which represents water loss through evaporation 

and transpiration, the Blaney-Criddle equation was applied to the temperature data. This 

method accounts for daily temperature fluctuations and seasonal daylight hours, making it 

suitable for Mediterranean climate conditions. This PET data, along with precipitation and 

temperature, was crucial for modeling the hydrological cycle in the study area. 

4.3.4.4 Data Preparation for TUW Model: 

The processed datasets, including discharge, precipitation, temperature, and PET, were 

formatted as inputs for the TUWmodel package. This comprehensive dataset was the 

foundation for running the TUW rainfall-runoff model, simulating streamflow, and conducting 

drought analysis across multiple catchments. These steps allowed for robust model calibration 

and validation, ensuring accurate hydrological simulations for both high-flow and low-flow 

conditions. 

The use of R and its powerful packages, such as zoo for time-series processing and TUWmodel 
for hydrological modeling, enabled efficient data integration and ensured that the model inputs 

were properly aligned with the temporal and spatial dynamics of the study area. 
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4.4 Calibration  

In hydrological modeling, calibration is a critical process to ensure that the model reflects the 

actual hydrological behavior of a catchment. The TUW model was calibrated to simulate 

streamflow for selected catchments within the Cuneo district, focusing on accurately 

representing both high-flow and low-flow periods, with special attention to drought conditions. 

The following section outlines the detailed calibration procedure, including the selection of 

catchments, calibration metrics, model parameters, and optimization strategies. 

4.4.1 Selection of Catchments and Climate Input Data 

The calibration procedure began by selecting relevant catchments within the Cuneo district. 

From the overall dataset, 58- catchments were identified as part of this region, each contributing 

significantly to the hydrological dynamics of the area. These catchments encompass diverse 

geographical features, ranging from mountainous to lowland areas, which is crucial for a 

comprehensive rainfall-runoff simulation. 

The corresponding climate input data4comprising daily records of precipitation, temperature, 

and potential evapotranspiration (PET)4were extracted for each catchment. These data points 

spanned from 1958 to 2019 and were used to drive the TUW model. The spatial resolution of 

the climate inputs aligned with the pixel-based delineation of each catchment, ensuring accurate 

representation of local climatic variability. This step ensured that the model accounted for the 

spatial heterogeneity of hydrological processes across the district. 

4.4.2 Initial Calibration with the Standard KGE Objective Function 

The first phase of calibration involved using the Kling-Gupta Efficiency (KGE) as the 

objective function. KGE is a widely used metric in hydrological modeling that assesses the 

overall performance of a model based on three key components: 

1. Correlation between simulated and observed streamflow, measuring how well the 

model replicates the temporal patterns of flow. 

2. Bias in mean flow, indicating whether the model overestimates or underestimates the 

average streamflow. 
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3. Variability, which evaluates the model's ability to capture the spread or variance in the 

streamflow data. 

The TUW model was calibrated for all 58 catchments within the Cuneo district using KGE. The 

average KGE across all catchments was 0.8245, indicating a strong overall performance of the 

model. This initial result demonstrated that the model accurately captured the high-flow 

dynamics and general flow behavior across the catchments. 

However, while the standard KGE provides a good assessment of overall performance, it tends 

to focus more on higher discharge events, which can overshadow low-flow conditions. Since 

this study aimed to model drought periods4characterized by low flows4it became necessary 

to prioritize these conditions in the calibration process. 

4.4.3 Shifting to Log-Transformed KGE (KGE_log) for Low-Flow Calibration 

To address the limitations of standard KGE in capturing low-flow conditions, a log-transformed 

Kling-Gupta Efficiency (KGE_log) was adopted as the new objective function. This 

modification places greater emphasis on low-flow periods, which are critical for drought 

analysis. The KGE_log function ensures that the model is sensitive to smaller discharge values, 

improving its performance during periods of water scarcity. Several key reasons prompted this 

shift: 

• Sensitivity to Low Values: Low-flow periods are often more challenging to simulate, 

particularly during extended droughts. The logarithmic transformation in KGE_log 

gives more weight to these low values, ensuring better performance during drought 

conditions. 

• Reduction of Skewness: Hydrological data are often skewed due to extreme events. The 

log transformation reduces the impact of extreme high flows, allowing the model to 

better balance both high- and low-flow periods. 

• Enhanced Discrimination: The KGE_log metric enhances the model’s ability to 

discriminate between different flow levels, particularly during dry spells, when accurate 

representation of streamflow is essential. 
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• Focus on Relative Change: The log-transformed objective function allows the model 

to focus on relative changes in flow, which is important in evaluating the severity and 

duration of drought conditions. 

• Stabilization of Variance: By stabilizing the variance, the KGE_log function ensures 

that the model does not disproportionately focus on high variability during wet periods, 

thereby improving low-flow simulation. 

The recalibration using KGE_log resulted in an average efficiency value of 0.8158 across the 

Cuneo catchments, which is a marginal decrease compared to the standard KGE but represents 

a significant improvement in low-flow accuracy. 

4.4.4 Calibration Parameters and Optimization Process 

The TUW model utilizes 15 key parameters that govern processes such as snow accumulation, 

soil moisture storage, runoff generation, and baseflow dynamics. These parameters were 

adjusted during calibration to achieve the best fit between observed and simulated streamflow. 

The Differential Evolution Optimization (DEoptim) algorithm was employed for this 

purpose, a robust global optimization method capable of handling complex parameter spaces 

with multiple local optima. 

4.4.4.1 Initial Parameter Settings 

The initial parameter values were based on prior studies and regional hydrological knowledge. 

These served as a starting point for the optimization process. Each parameter was allowed to 

vary within a predefined range, ensuring that the final values were physically meaningful and 

reflective of the local hydrological conditions in the Cuneo district. 

Table 1_ Calibration Parameters for the TUW Model 

Parameters Description Lower Bound Upper Bound 

SCF Snow Correction Factor 0.9 1.5 

DDF Degree-Day Factor (snowmelt) 0.0 5.0 

Tr Temperature Threshold for Rain/Snow 1.0 3.0 

Ts Snow Melt Temperature -3.0 1.0 

Tm Threshold Temperature for Melt -2.0 2.0 
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LPrat Soil Moisture Evaporation Coefficient 0.0 1.0 

FC Field Capacity 0.0 600.0 

BETA Shape Parameter for Runoff Generation 0.0 20.0 

k0 Recession Constant for Fast Runoff 0.0 2.0 

k1 Recession Constant for Slow Runoff 2.0 30.0 

k2 Recession Constant for Baseflow 30.0 250.0 

lsuz Fast Runoff Storage 1.0 100.0 

cperc Percolation Rate 0.0 8.0 

bmax Maximum Baseflow Storage 0.0 30.0 

croute Routing Coefficient 0.0 50.0 

 

4.4.4.2 Explanation of Calibration Parameters 

• Snow Correction Factor (SCF): This parameter adjusts for potential biases in snow 

accumulation data, ensuring that snowfall is properly represented in the model. It's 

particularly important in mountainous regions like the Cuneo district, where snowmelt 

contributes significantly to streamflow. 

• Degree-Day Factor (DDF): The DDF controls how quickly snow melts based on 

temperature. Higher DDF values indicate faster melting rates, which is critical for simulating 

spring runoff when temperatures rise and snowpacks melt rapidly. 

• Temperature Threshold for Rain/Snow (Tr): This parameter defines the temperature at 

which precipitation transitions between rain and snow. In alpine regions, small temperature 

changes can dramatically affect whether precipitation falls as snow or rain, impacting snow 

accumulation and subsequent runoff. 

• Snow Melt Temperature (Ts): Ts represents the threshold temperature at which snow 

begins to melt. If temperatures are above this threshold, snowmelt occurs, contributing to 

streamflow. 



32 | P a g e  

 

• Threshold Temperature for Melt (Tm): Similar to Ts, this parameter sets the temperature 

at which significant melting occurs. It helps to simulate the gradual melting of snow as 

temperatures fluctuate near the freezing point. 

• Soil Moisture Evaporation Coefficient (LPrat): This coefficient regulates how much 

water evaporates from the soil. It plays a critical role in determining how much water is 

retained in the soil versus lost to the atmosphere, impacting the water balance in dry periods. 

• Field Capacity (FC): Field capacity is the maximum amount of water that soil can hold 

after excess water has drained away. This parameter directly influences how much water 

remains in the soil for plant uptake and slow release into the groundwater system. 

• Shape Parameter for Runoff Generation (BETA): The BETA parameter controls how 

precipitation is partitioned between infiltration (which recharges soil moisture) and runoff 

(which contributes to streamflow). A higher BETA value means more water infiltrates the 

soil, reducing surface runoff. 

• Recession Constants for Fast and Slow Runoff (k0, k1): These constants determine how 

quickly runoff is released from different sources. k0 represents fast runoff, typically from 

surface sources like rain on impermeable surfaces, while k1 represents slower runoff from 

subsurface flows, which are delayed but still significant during wet periods. 

• Recession Constant for Baseflow (k2): Baseflow refers to the sustained flow of water into 

rivers from groundwater sources. k2 controls the rate at which groundwater contributes to 

streamflow, especially during dry periods when surface runoff is minimal. 

• Fast Runoff Storage (lsuz): This parameter governs how much water can be stored in the 

fast runoff system. It influences the model’s ability to capture peak flow events, such as 

those resulting from heavy rainfall or rapid snowmelt. 

• Percolation Rate (cperc): This parameter controls how quickly water moves from the soil 

zone to the groundwater zone. It is important for understanding how quickly soil water 

contributes to deeper groundwater reserves, which eventually contribute to baseflow. 
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• Maximum Baseflow Storage (bmax): This represents the maximum capacity of the 

groundwater system to store water, which feeds into rivers during drought periods or 

extended dry spells. 

• Routing Coefficient (croute): The routing coefficient governs how quickly water moves 

through the catchment to the river. It ensures that the timing of water delivery to the river is 

correctly simulated, balancing the effects of fast and slow runoff as well as baseflow 

contributions. 

4.4.5 DEoptim 

The Differential Evolution Optimization (DEoptim) algorithm is an evolutionary 

computation method designed to handle non-linear, multi-dimensional, and complex 

optimization problems. It is particularly well-suited for calibrating hydrological models like the 

TUW model, which rely on numerous interacting parameters to simulate various physical 

processes (e.g., runoff generation, soil moisture dynamics, snowmelt) and where parameter 

interactions are complex, and local minima could lead to suboptimal results. 

The DEoptim algorithm is a global optimization method that evolves a population of 

candidate solutions over several iterations, known as generations. Unlike traditional 

optimization techniques, which might get stuck in local optima, DEoptim explores the entire 

parameter space more effectively.  

DEoptim begins by randomly initializing a population of potential solutions (parameter sets) 

within the predefined lower and upper bounds of each parameter. For this study, the bounds for 

each parameter were determined based on prior hydrological knowledge and literature. 

4.4.5.1 Mutation and Crossover: 

The algorithm then creates new candidate solutions by combining the existing solutions (parent 

solutions) through a process called mutation and crossover. Mutation introduces diversity by 

adding a weighted difference between two solutions to a third solution. Crossover further 

ensures variation by combining parts of different solutions. 
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4.4.5.2 Selection: 

After generating new candidates, the algorithm evaluates them based on the objective function, 

which in this case is the log-transformed Kling-Gupta Efficiency (KGE_log). If a new 

solution performs better (has a higher KGE_log score), it replaces the existing solution in the 

population. This process is repeated over multiple generations, ensuring that the population 

moves toward better solutions. 

4.4.5.3 Application in the TUW Model Calibration 

In this study, DEoptim was applied to calibrate the 15 parameters of the TUW model (as outlined 

in section 4.1). The objective function for the optimization process was the log-transformed 

Kling-Gupta Efficiency (KGE_log), chosen to emphasize the model’s performance in 

simulating low-flow periods, which are critical for drought analysis. The log transformation 

places greater weight on accurately modeling smaller discharge values, which are more 

challenging to capture and are key for hydrological drought conditions. 

Objective Function Calculation: The KGE_log score was calculated for each iteration, 

comparing the observed discharge data with the model's simulated streamflow. The aim was to 

maximize the KGE_log, improving the fit between observed and simulated values, especially 

during drought conditions when streamflow is significantly reduced. 

Parameter Search Space: The parameter bounds were set based on regional hydrological 

knowledge, ensuring that the final calibrated parameters remained physically meaningful for the 

Cuneo district's climate and hydrological conditions. Parameters such as the snow correction 

factor (SCF) and degree-day factor (DDF), which influence snowmelt, were of particular 

importance for catchments where snowmelt contributes significantly to streamflow. 

4.4.5.4 Iterative Process and Convergence 

The optimization process was conducted over 200 iterations, with each generation refining the 

parameters to improve the objective function score. Over time, the DEoptim algorithm gradually 

converged toward an optimal solution, meaning that the difference between subsequent 

parameter sets diminished, and the KGE_log score reached a maximum. 

Convergence: As DEoptim progressed, the population of candidate solutions narrowed down 

to a smaller range of parameter values that best fit the observed data. By the end of the 
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calibration process, the model parameters were finely tuned to accurately simulate both the 

high-flow and low-flow periods for each catchment. This was particularly important for drought 

studies, as low-flow periods provide critical insights into water availability under drought 

conditions. 

4.4.5.5 Advantages of DEoptim in Hydrological Modeling 

Global Search Capability: DEoptim’s global search ability ensures that the optimization does 

not get stuck in local minima, which is a common issue with gradient-based optimization 

methods. This is especially crucial for complex hydrological models like TUW, where 

interactions between parameters can create multiple local optima. 

Robust Performance: The algorithm’s ability to handle high-dimensional parameter spaces 

makes it particularly robust when dealing with large, multi-parameter systems such as rainfall-

runoff models. 

4.4.5.6 Final Parameter Calibration 

By the end of the DEoptim process, the parameter values were optimized to ensure the best 

possible representation of hydrological processes in the Cuneo district. The results from this 

optimization were validated against historical streamflow data, confirming the model's ability 

to accurately simulate both high and low flows across different catchments. This level of 

calibration ensures that the TUW model can be reliably used for simulating hydrological 

droughts and informing water resource management strategies. 

4.4.6 Calibration outcomes 

The calibration process of the TUW model across the 58 catchments in the Cuneo district 

demonstrated strong performance in simulating both high-flow and low-flow conditions. The 

model’s robustness was evaluated using two efficiency metrics: the Kling-Gupta Efficiency 

(KGE) and its log-transformed variant (logKGE), which was specifically employed to enhance 

the model’s sensitivity to low-flow periods. The following key results emerged from the 

calibration process: 

• Overall Model Performance: The average KGE across all catchments was satisfactory, 

with the model successfully capturing the general hydrological behavior. However, the 

LogKGE, which better emphasizes low-flow periods, resulted in an average score of 
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0.8158, highlighting its effectiveness in simulating drought conditions, which are crucial 

for water resource management in the region. 

• High-Flow Simulation: During high-flow events, the TUW model consistently 

maintained high accuracy. The use of KGE ensured that peak flows, including extreme 

runoff events following heavy precipitation or rapid snowmelt, were well captured 

across the catchments. 

• Low-Flow Simulation: One of the most significant improvements achieved through the 

use of LogKGE was in the simulation of low-flow periods. These are often challenging 

to capture accurately due to their sensitivity to small changes in discharge and climate 

input data. By focusing on the log-transformed values of the observed and simulated 

flows, the model was able to reproduce the frequency, intensity, and duration of low-

flow periods more accurately, which is essential for effective drought analysis. 

• Challenges and Adjustments: A primary challenge during calibration was achieving a 

balance between the accurate simulation of both high and low flows. This balance is 

crucial because the hydrological extremes (both floods and droughts) define water 

management strategies. The introduction of LogKGE helped mitigate these challenges 

by stabilizing the variance of the model and making it more responsive to low-flow 

conditions while maintaining accuracy during high-flow events. 

The successful calibration of the TUW model, with both KGE and LogKGE metrics, provides 

a strong foundation for simulating future hydrological scenarios in the Cuneo district. This is 

particularly significant in light of projected climate change, which is expected to increase the 

frequency and intensity of droughts, making the model a valuable tool for water resource 

management and drought mitigation planning. 

Table 2_ Comparison of KGE and LogKGE Metrics for Selected Catchments 

Catchment Name KGE LogKGE 

ELLMO 0.8591569 0.7746995 

ELLRA 0.835445 0.8162781 
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GESAN 0.6498273 0.566116 

GESEN 0.7266742 0.7226598 

NEGPO 0.813899 0.800532 
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4.5 Validation 

In this section, the validation process is detailed to assess the TUW model's accuracy in 

simulating streamflow, particularly during low-flow conditions, which are critical for 

understanding hydrological droughts. This analysis includes both visual and statistical 

evaluations of model performance, with a particular focus on ensuring that the simulation 

closely matches observed discharge data over the same time window (200032020 for most 

catchments in Cuneo). 

4.5.1 Time Window Adjustment for Better Comparison 

To ensure accurate and meaningful validation of the TUW model's performance, the simulated 

discharge data was aligned with the observed discharge data by adjusting the time window. This 

step was essential for making the model outputs directly comparable to the recorded data, 

particularly during key periods such as droughts and low-flow conditions. By synchronizing the 

time frames, the model's predictions could be accurately assessed, highlighting how well it 

captures both short-term variations and long-term trends in streamflow. 

 

Figure 13_ Time Series of Simulated vs. Observed Discharge with Different Time Windows for the ELLMO Catchment. 

Aligning the time window also allows for a better assessment of model performance. This 

synchronization ensures that any differences between observed and simulated flows are due to 

model performance rather than mismatches in data availability. The time window adjustment is 

particularly important when evaluating the model’s accuracy during low-flow periods, which 
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are often more difficult to simulate due to the inherent variability and sensitivity of the 

hydrological system. 

By carefully adjusting the time window, the validation process became more robust, allowing a 

more precise evaluation of the model's ability to reproduce real-world conditions. This step laid 

the foundation for generating accurate predictions in future drought analyses, helping inform 

water resource management strategies in the Cuneo district. 

 

Figure 14_ Example of Observed vs Simulated Discharge in CORTM Catchment 

 

Figure 15_ Example of Observed vs Simulated Discharge in ELLMO Catchment 

The figures above illustrate the TUW model's performance in simulating discharge during both 

normal and low-flow conditions. Fig. 14 and Fig. 15 show an example from the CORTM and 

ELLMO catchments, highlighting how well the model aligns with actual observations, 

particularly during low-flow periods and drought conditions. Together, these figures 
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demonstrate the TUW model’s effectiveness in capturing the hydrological dynamics of different 

catchments, providing valuable insights for understanding water availability during droughts. 

4.5.2 Statistical Metrics for Validation 

To provide a comprehensive evaluation of the TUW model’s performance, several key statistical 

metrics were calculated. These metrics aimed to assess both the overall accuracy of the model 

and its ability to simulate low-flow events effectively. The results indicate that the model's 

performance was reasonably good, though not perfect, across various catchments in the Cuneo 

district. 

• Correlation Coefficient: This metric quantifies the relationship between simulated and 

observed discharge, offering insights into how well the model captures the temporal patterns 

of streamflow, particularly during critical low-flow periods. A correlation coefficient closer 

to 1 indicates a stronger correlation. 

o For the selected catchments, the average correlation coefficient was around 0.72, 

indicating that the model generally captured the trends in streamflow but left room 

for improvement, particularly in periods of extreme hydrological events. 

• Root Mean Square Error (RMSE): RMSE measures the average discrepancy between the 

simulated and observed discharge values. It is particularly valuable for understanding the 

model's performance during both regular and low-flow periods. Lower RMSE values 

indicate better fit, with a specific focus on drought conditions where accurate flow 

predictions are crucial. 

o Across the catchments, the average RMSE was approximately 3.0 m³/s, signifying a 

reasonable error margin, although slight deviations were observed during more 

extreme low-flow periods. 

• Mean Absolute Error (MAE): MAE provides another layer of analysis by quantifying the 

average magnitude of errors between observed and simulated values, with a focus on low-

flow conditions. This metric is useful for understanding the day-to-day differences in flow, 

especially during periods of water scarcity. 
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o The average MAE for the catchments was around 2.3 m³/s, which, while reasonable, 

suggests some discrepancies in capturing the exact discharge during the lowest flow 

events. 

These metrics show that the TUW model performed reasonably well in simulating both normal 

and drought conditions but highlighted areas where further fine-tuning could improve low-flow 

simulations. 

4.5.3 Flow Duration Curves (FDCs) 

Flow Duration Curves (FDCs) are essential tools in hydrology that provide a comprehensive 

view of the distribution of discharge values over time. They illustrate the percentage of time that 

a given flow rate is equaled or exceeded, allowing for a detailed comparison between observed 

and simulated streamflow data.  

 

Figure 16_ Flow Duration Curve (FDC) for Observed Discharge in the NEGPO Catchment 

In this study, FDCs were generated for both observed and simulated datasets to assess the TUW 

model's performance in replicating real-world hydrological conditions, with a particular focus 

on low-flow periods, which are critical in drought analysis. 

• Observed vs. Simulated FDCs: The comparison of FDCs between observed and 

simulated data offers insights into the model's ability to replicate the range of flow 
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conditions, from high-flow events to low-flow periods. The FDC highlights where the 

model performs well and where discrepancies arise, particularly in the lower tail of the 

curve. The lower tail represents the lowest flow values, often corresponding to drought 

conditions or periods of reduced streamflow. By comparing the observed and simulated 

FDCs, the study identified how effectively the TUW model captured these low-flow 

events, a critical aspect for drought forecasting and water resource management. A 

strong agreement in the lower tail signifies that the model can reliably simulate 

streamflow during drought periods, which is crucial for assessing water availability in 

dry spells. 

 

Figure 17_ Flow Duration Curve (FDC) for observed (blue) and simulated (red) discharge in the VARPO catchment, showing 

the percentage of time different flow rates are equaled or exceeded. 
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Figure 18_ Flow Duration Curve (FDC) for observed (blue) and simulated (red) discharge in the PESCA catchment, showing 

the percentage of time different flow rates are equaled or exceeded. 

These figures provide a direct visual comparison of the observed and simulated Flow Duration 

Curves (FDCs). The blue curve represents the observed discharge values, while the red curve 

shows the simulated data generated by the TUW model. The close alignment between the two 

curves, especially in the lower tail, demonstrates the model's effectiveness in capturing low-

flow dynamics and overall discharge patterns. 

• Environmental Flow: Another key metric derived from the FDC is the environmental 

flow, which is typically defined as the flow rate exceeded 95% of the time. This metric 

is critical for understanding how well the model simulates minimal flow periods, which 

are essential for maintaining ecological health during droughts. In this study, both the 

observed and simulated environmental flows were closely aligned, demonstrating that 

the TUW model reliably replicates the conditions necessary to sustain ecosystems during 

drought events. The strong agreement between the observed and simulated 

environmental flows further validated the model’s utility for drought analysis and water 

resource planning, particularly in predicting and managing extreme low-flow scenarios. 
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Table 3_ Environmental Flow (Q95) Comparison Between Observed and Simulated Discharge for Selected Catchments 

Catchment 
Environmental flow (Q95) 

Observed (��� ) 

Environmental flow (Q95) 

Simulated (��� ) 

PESCA 6.392346 6.879864 

PELLU 5.589882 5.787993 

SDEFO 5.628327 4.611327 

GESAN 3.592403 6.625653 

 

The Flow Duration Curves thus serve as a key validation tool, confirming that the TUW model 

accurately represents both high-flow and low-flow conditions. This validation is particularly 

important in regions like the Cuneo district, where seasonal and drought-driven variations in 

streamflow significantly impact water availability and ecosystem health. 

In conclusion, the use of FDCs provided a robust framework for assessing the model's 

performance across the full spectrum of flow conditions. The model’s ability to simulate both 

normal and low-flow events, validated through the close alignment of the observed and 

simulated FDCs, underscores its reliability in predicting hydrological extremes and supporting 

effective water resource management in drought-prone regions. 

4.5.4 Log-Transformed Flow Duration Curves (Log FDC) 

Log-Transformed Flow Duration Curves (Log FDCs) are essential in hydrology for analyzing 

streamflow behavior across various discharge levels, with a particular focus on low-flow 

conditions. By applying a logarithmic scale to discharge values, Log FDCs highlight the lower 

end of the flow spectrum, facilitating the assessment and comparison of low-flow periods, which 

are crucial for understanding drought events and managing water resources effectively (Loon V. 

, 2015). 
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This transformation addresses the skewed nature of hydrological data, where high-flow events 

can dominate and obscure significant details in lower flow rates. Log FDCs, by compressing 

high values and expanding the visibility of smaller flows, are especially beneficial for 

hydrological models like the TUW model, which require accurate low-flow simulations to 

assess drought impacts and support effective water management (Dai, 2013). 

In this study, Log FDCs were used to validate the TUW model’s ability to simulate discharge 

during low-flow periods, which are often more challenging to model due to their sensitivity to 

factors like soil moisture, groundwater contributions, and climatic variability. The TUW model's 

performance in capturing these low-flow dynamics is critical for understanding the potential 

impacts of droughts in the Cuneo district and for planning appropriate water resource 

management strategies under varying climatic conditions (A.K. Mishra, 2010). 

The Log FDCs were generated by plotting the logarithm of observed and simulated discharge 

values against the exceedance probability. The exceedance probability indicates the likelihood 

of a particular flow rate being equaled or exceeded, providing a comprehensive view of how 

often different discharge levels occur over time. By focusing on the lower end of the flow 

spectrum, the Log FDCs in this study reveal how well the TUW model simulates minimal 

discharge rates, which are critical during periods of water scarcity. A close match between the 

observed and simulated curves in this range indicates that the model can reliably predict low-

flow events. 

4.5.5 Interpretation of Results 

• The Log FDCs presented in this study illustrate the alignment between observed and 

simulated discharge values for two specific catchments, VARPO and PESCA. These 

examples serve as representative cases for the overall performance of the TUW model 

across different catchments. The figures below highlight how well the model replicates 

observed low-flow conditions in these selected catchments: 
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Figure 19_ Log-Transformed Flow Duration Curve for Observed and Simulated Discharge in Catchment VARPO. 

 

Figure 20_ Log-Transformed Flow Duration Curve for Observed and Simulated Discharge in Catchment PESCA. 
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Despite the overall good alignment seen in most catchments, there are instances where the TUW 

model struggles to accurately capture observed discharge values. For example, in some 

catchments, the simulated values deviate significantly from the observed data, particularly 

during low-flow periods. The figure below demonstrates a case where the alignment between 

observed and simulated discharge is less accurate, emphasizing that while the model generally 

performs well, there are exceptions that require further attention in specific regions. 

 

Figure 21_ Log-Transformed Flow Duration Curve for Catchment PELLU Showing Poor Alignment 

 

Figure 22_ Log-Transformed Flow Duration Curve for Catchment MAIRC with Deviations in Low-Flow Simulation. 
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In these figures, the observed discharge is shown as a blue line, while the simulated discharge 

is depicted as a red line. The use of logarithmic scaling provides a clearer comparison of low-

flow events, which are more prominent at exceedance probabilities above 80%. The close 

alignment of the observed and simulated curves in these regions indicates that the TUW model 

generally captures the hydrological behavior of the catchments during dry periods, offering 

valuable insights into streamflow dynamics under drought conditions. Nevertheless, where the 

curves diverge significantly, it highlights areas where the model may require further refinement, 

such as adjusting parameters that influence baseflow and groundwater contributions during low-

flow periods. While these examples represent the typical performance of the TUW model, other 

catchments may exhibit different degrees of alignment. 

4.5.6 Monthly Regime Curves 

Monthly regime curves were developed to assess the TUW model’s capability to simulate 

seasonal streamflow variations accurately, highlighting its performance across different 

hydrological conditions. These curves, which plot the average monthly discharge over the 

analysis period, offer a visualization of seasonal trends, capturing high-flow periods in winter 

and spring (due to snowmelt and precipitation) and low-flow conditions during summer when 

droughts are most common. By illustrating monthly average discharge values, the curves 

provide insights into the timing and magnitude of peak flows and the depth and duration of low-

flow periods, both essential for water resource management in regions with significant seasonal 

variability. 
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Figure 23_ Mean Monthly Discharge for Observed (blue) vs. Simulated (red) Data in Catchment VARTO. 

 

Figure 24_ Mean Monthly Discharge for Observed (blue) vs. Simulated (red) Data in Catchment GRAMO. 

4.5.6.1 Simulated vs. Observed Monthly Regime:  

A direct comparison of the simulated and observed monthly discharge values allowed 

for a detailed evaluation of the model's performance across different seasons. The 

analysis focused particularly on the summer months (typically July to September), which 

often correspond to the lowest flow levels due to reduced precipitation and higher 

evaporation rates. Any deviations between the observed and simulated curves during 

these months indicate potential areas where the model may require further adjustment, 

such as tuning parameters related to evapotranspiration or baseflow. 
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4.5.6.2 Insights from the Analysis: 

The monthly regime curves showed that the TUW model generally replicated the 

observed seasonal trends in discharge, with a good alignment during high-flow periods 

like winter and spring. However, the comparison also highlighted areas for improvement 

during low-flow months, where even small deviations in simulation can significantly 

affect water availability estimates.  

4.5.7 Conclusion 

The validation of the TUW model provided a comprehensive assessment of its ability to simulate 

streamflow dynamics across diverse hydrological conditions, particularly low-flow periods 

critical for drought analysis. Through time window adjustments, the validation process ensured 

that simulated discharge data was directly comparable to observed values, enhancing the 

robustness of the analysis. The alignment of timeframes allowed for a precise evaluation of the 

model's capacity to capture short-term variations and long-term trends, laying a solid foundation 

for accurate drought prediction. 

The statistical metrics4such as the correlation coefficient, RMSE, and MAE4offered insights 

into the overall accuracy of the TUW model. The results demonstrated a reasonable agreement 

between observed and simulated data, with the model capturing general trends in streamflow, 

including periods of low discharge. Although the metrics highlighted areas for potential 

improvement, particularly during extreme hydrological events, they confirmed the model's 

reliability in simulating drought conditions across various catchments in the Cuneo district. 

The Flow Duration Curves (FDCs), including the log-transformed FDCs, served as vital tools 

in the validation process, providing a deeper understanding of the model’s performance across 

the full spectrum of discharge values. The close alignment between the observed and simulated 

FDCs, especially in the lower tail, indicated that the TUW model effectively captured low-flow 

conditions, essential for assessing drought impacts and water availability during dry spells. 

However, instances of poor alignment in some catchments underscored the need for further 

refinement of the model in specific regions. 

Overall, the validation process demonstrated that the TUW model is a robust tool for simulating 

streamflow in the Cuneo district, particularly under conditions of water scarcity. While there are 
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areas where the model could be further fine-tuned to improve accuracy, its ability to replicate 

both high and low-flow conditions makes it a valuable resource for supporting effective water 

resource management and planning in drought-prone regions. The insights gained from this 

validation process will inform future applications of the TUW model, helping to enhance its 

predictive capabilities under changing climate scenarios. 
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5 Results 

5.1 DROUGHT ANALYSIS 

The drought analysis in this study focuses on understanding the hydrological aspects of drought 

events within the Cuneo district, employing the Standardized Runoff Index (SRI) as the 

primary metric. This index is designed to quantify the occurrence, intensity, and duration of 

droughts, providing a standardized way to evaluate anomalies in streamflow over various 

temporal scales. The analysis follows methodologies outlined in Van Loon's (2015) framework, 

which emphasizes the complex, delayed response of hydrological systems to precipitation 

deficits. This approach is crucial for distinguishing hydrological droughts from meteorological 

ones, as it accounts for factors like soil moisture variability, groundwater recharge, and 

streamflow responses. 

5.1.1 Standardized Runoff Index (SRI) 

The SRI is similar to the Standardized Precipitation Index (SPI) but is tailored specifically 

for streamflow data. This index standardizes runoff values, allowing for a consistent comparison 

of hydrological conditions across different catchments and time frames. Key advantages of the 

SRI include: 

• Temporal Flexibility: It can be computed for various time scales (e.g., 1-month, 3-

month, 6-month, 12-month), allowing for a nuanced analysis of both short-term and 

long-term drought impacts. 

• Standardization: By normalizing the runoff data, the SRI facilitates cross-comparison 

between different catchments, ensuring that the severity of droughts is assessed 

uniformly. 

• Threshold-Based Interpretation: SRI values can be categorized into different drought 

severity classes, enabling a detailed understanding of the intensity and duration of 

drought conditions. 

The SRI is particularly suitable for assessing hydrological droughts because it focuses on 

streamflow, capturing downstream effects like changes in groundwater levels and delayed 

responses to precipitation deficits. 
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Figure 25_Observed Discharge & Simulated Discharge and SRI Values over Multiple Time Scales (1, 3, 6, 12, 24, and 48 
months), highlighting short-term to long-term drought trends. 

This multi-scale analysis allows the study to capture both immediate impacts and longer-term 

drought effects, providing a holistic view of the hydrological cycle in the region. 

5.1.2 Calculation Methodology for the SRI 

The Standardized Runoff Index (SRI) quantifies deviations in streamflow from typical 

conditions, providing a statistical foundation for drought assessment. The methodology involves 

aggregating discharge data to a monthly scale, fitting a suitable probability distribution to 

capture hydrological variability, transforming these values into cumulative probabilities, and 

standardizing them to create the SRI. Each step ensures that the index accurately reflects drought 

severity and duration by focusing on deviations from historical flow averages. 

The steps for calculating the SRI are detailed below: 

5.1.2.1 Monthly Discharge Aggregation 

The first step is aggregating daily discharge data into monthly values, creating a smoother series 

that represents the typical water availability on a monthly basis. This aggregation is crucial for 
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capturing seasonality in hydrological data, as flow rates can vary significantly throughout the 

year due to factors such as rainfall, snowmelt, and evapotranspiration. 

For each month � in year þ, the mean discharge Ā�,� is calculated as: Ā�,� =  1� ∑ Āý�ý=1         (Equation 5) 

where Āý is the daily discharge, and � is the number of days in the month. This step produces 

a monthly time series of discharge values that is used in subsequent steps. 

5.1.2.2 Fitting a Probability Distribution 

Monthly discharge data often exhibit skewed distributions, especially in regions with distinct 

wet and dry seasons. The gamma distribution is commonly used to model hydrological data due 

to its flexibility in handling positive skew, and its applicability has been confirmed in various 

studies (e.g., Mishra and Singh, 2010). For each month, discharge data is fit to a gamma 

distribution to estimate shape ÿ and rate Ā parameters. 

The gamma probability density function for discharge Q is: 

�(Ā; ÿ, Ā) =  Āÿ�ÿ−1þ−Ā��(ÿ)        (Equation 6) 

where Γ(α) is the gamma function. Parameters α and β are estimated separately for each month 

using a method such as maximum likelihood estimation. This allows us to model the distribution 

of streamflow in a manner specific to each month’s historical data. 

5.1.2.3 Cumulative Probability Calculation 

Once the gamma distribution parameters are estimated, each monthly discharge value is 

transformed into a cumulative probability. This is done by integrating the gamma distribution 

up to the observed discharge value for a given month, resulting in cumulative probability F(Q): þ(Ā) = ∫ �(ý; ÿ, Ā) �ý�0       (Equation 7) 

In practice, the cumulative probability is obtained using the cumulative distribution function 

(CDF) for the gamma distribution, which can be directly calculated with statistical software R. 

This transformation standardizes each month’s data by mapping it to a uniform distribution, 

setting the foundation for subsequent steps. 
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5.1.2.4 Conversion to Standardized Runoff Index (SRI) 

To produce the SRI, the cumulative probability values are converted to a standard normal 

distribution with mean zero and standard deviation one. This transformation, commonly 

known as the inverse standard normal transformation, is computed as:  Ăā� =  Φ21(þ(Ā))           (Equation 8) 

where Φ21 is the inverse of the standard normal cumulative distribution function. Through this 

process, the SRI values become comparable across time and regions, as they represent 

deviations from typical monthly discharge in standard deviation units. 

5.1.3 Interpreting SRI Values for Drought Assessment 

The SRI values are interpreted using standardized thresholds that classify the severity of drought 

conditions: 

Table 4_ SRI categories and cumulative probabilities for classifying wet and drought conditions. (Singh A. M., 2010) 

Category SRI Value Cumulative Probability (%) 

Extremely Wet Ăā� g 2 2.28 

Moderately Wet 1.5 f Ăā� f 2 6.68 

Slightly Wet 1 f Ăā� f 2 15.87 

Near Normal 21 f Ăā� f 1 50.00 

Mild Drought 21.5 f Ăā� f  21 84.13 

Moderate Drought 22 f Ăā� f  21.5 93.32 

Extremely Drought Ăā� f  22 97.72 

 

These thresholds allow for the precise identification of drought onset, duration, and intensity. 

For example, the 1-month SRI is particularly useful for detecting short-term droughts that could 

quickly impact agricultural production, while the 12-month SRI helps identify prolonged 

droughts affecting regional water storage systems. 
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5.1.4 Application of SRI to Observed and Simulated Data 

In this section, the Standardized Runoff Index (SRI) is applied to both observed and simulated 

discharge data to evaluate the TUW model's performance in replicating hydrological drought 

conditions. This comparison is crucial for understanding how well the model mimics real-world 

drought scenarios and can be used as a reliable tool for water resource management. 

• Observed SRI: This serves as the reference for understanding historical drought patterns 

based on real streamflow data. It reflects the natural hydrological conditions and the 

impact of past drought events on water availability in the Cuneo district. 

• Simulated SRI: Derived from the discharge outputs generated by the TUW model, this 

version of the SRI is used to assess the model's ability to capture key aspects of 

hydrological droughts, including the timing and severity of low-flow periods. 

Comparing this to the observed SRI helps gauge how accurately the model reflects real 

conditions. 

The comparison between observed and simulated SRI values focuses specifically on the 1-

month SRI time scale, which highlights short-term variations in streamflow. This particular 

time scale was chosen because: 

• It is highly sensitive to immediate changes in streamflow, making it effective for 

detecting the onset of droughts and their rapid development. 

• Short-term droughts can have immediate impacts on agriculture, urban water use, and 

ecosystem health, making accurate modeling at this scale critical for effective 

management. 

• By emphasizing the 1-month SRI, the analysis can pinpoint where the model performs 

well and where adjustments may be needed to improve its response to rapid hydrological 

changes. 



58 | P a g e  

 

Figure 26_A comparison of the 1-month SRI for observed and simulated discharge in the PELVI catchment. 

Figure 27_A comparison of the 1-month SRI for observed and simulated discharge in the TANFA catchment. 
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Figure 28_Comparison of the 1-month SRI between observed and simulated discharge in the VARTO catchment, showing 
areas of misalignment. 

 

These figures collectively illustrate the strengths of the TUW model in capturing short-term 

drought events through the 1-month SRI, while also highlighting areas for improvement. 

Despite a few catchments, such as the VARTO catchment shown in Fig. 28, where the alignment 

between observed and simulated SRI values is less accurate, the overall performance of the 

model remains strong. This initial validation demonstrates that the TUW model is generally 

effective in simulating short-term drought conditions, providing a solid foundation for the more 

detailed analysis of drought characteristics4such as duration, intensity, and frequency4that 

will be discussed in the following pages. 

5.1.5 Conclusion: SRI's Role in Drought Analysis 

The application of the Standardized Runoff Index (SRI) in this study has proven to be an 

effective method for analyzing hydrological droughts in the Cuneo district. By evaluating both 

observed and simulated streamflow data, the SRI provided a robust framework for comparing 
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drought characteristics and validating the TUW model's performance, particularly during low-

flow periods. The analysis highlighted the model's strengths in capturing hydrological trends, as 

reflected in its ability to replicate the 1-month, 3-month, and 6-month SRI, offering valuable 

insights into both short-term and seasonal drought dynamics. 

The integration of multi-temporal SRI analysis enabled a nuanced understanding of drought 

behavior. For instance, the 1-month SRI offered a detailed view of immediate water shortages, 

essential for managing agricultural and urban water supplies during short-term dry (Loon V. , 

2015). On the other hand, the 3-month and 6-month SRI analysis helped in identifying longer-

term drought patterns, guiding more strategic water management decisions in the region (A.K. 

Mishra, 2010). These insights are crucial for informing sustainable water management 

strategies, particularly in drought-prone areas like Cuneo, where both agricultural and ecological 

systems depend heavily on streamflow variability. 

Incorporating the approach described by Van Loon (2015), which emphasizes the lagging nature 

of hydrological droughts relative to meteorological changes, further enriched the study's 

findings. This perspective allowed the SRI to capture sustained periods of low flow, even after 

precipitation levels had improved, offering a realistic portrayal of how drought impacts extend 

through the hydrological cycle. It provided a more holistic understanding of the delayed effects 

of drought on groundwater recharge and streamflow, critical for developing adaptive 

management strategies in response to prolonged dry conditions (Loon V. , 2015). 

Overall, the results of this study underscore that the TUW model, validated using the SRI, 

performed above expectations in simulating low-flow conditions. While some discrepancies 

were noted in a few catchments, the general alignment between observed and simulated SRI 

values confirms the model's reliability for drought analysis. The study’s outcomes support the 

broader application of the TUW model and SRI as complementary tools in managing water 

resources under varying climatic conditions (Dai, 2013). This approach ensures that both short-

term responses and long-term resilience to drought are accounted for, making it a valuable 

contribution to sustainable hydrological management in the region. 
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5.2 Drought characteristics  

The focus of this section is to present a detailed analysis of drought characteristics in the Cuneo 

district using the calculated Standardized Runoff Index (SRI). After calculating the SRI for both 

observed and simulated data, the characteristics of drought events4specifically intensity, 

duration, and cumulative impacts4were extracted. The primary goal was to assess the severity 

and persistence of droughts in the region and to evaluate how well the TUW model replicated 

these characteristics in the simulated data. 

5.2.1 Identification of Drought Events 

Droughts represent prolonged periods of below-normal water availability, significantly affecting 

water resources, agriculture, and ecosystems. This study identifies droughts using the 

Standardized Runoff Index (SRI), a tool specifically suited for assessing hydrological droughts, 

as it focuses on streamflow anomalies over time (H. Hisdal, 2003) (S. M. Vicente-Serrano, 

2010). A drought event is defined as any period where the SRI falls below zero, marking below-

average streamflow conditions. More severe droughts occur when SRI values decline below -1, 

indicating increasingly critical water shortages (H. Hisdal, 2003). To classify and compare 

drought events, three key metrics were employed: 

5.2.1.1 Duration:  

Duration reflects the total number of consecutive months during which the SRI remains 

negative, indicating prolonged drought conditions (S. M. Vicente-Serrano, 2010). This metric 

indicates how long a drought persists and provides insights into the resilience of water systems 

to extended periods of water scarcity. Long-term droughts can have cumulative effects on 

groundwater levels, soil moisture, and surface water availability, making duration a critical 

factor in drought impact analysis (Loon V. , 2015) (Palmer, 1965). 

5.2.1.2 Cumulative Impact (Cumulative SRI):  

The cumulative SRI is determined by summing all negative SRI values over a drought's 

duration. This metric measures the total water deficit accumulated during a drought event, 

offering a holistic view of the drought’s impact on streamflow. By integrating the SRI values 

over time, it provides an understanding of how much water is lost during a drought and helps 

assess the extent of long-term water shortages (J. Sheffield E. F., 2008). 



62 | P a g e  

 

5.2.1.3 Drought Intensity Ratio (DIR):  

DIR is calculated as the ratio of cumulative SRI to the duration of the drought, providing an 

average measure of drought severity over its duration (Singh A. M., 2010). It distinguishes 

between sustained, moderate deficits and shorter but more severe droughts, offering insights 

into the nature of each event. A higher DIR indicates a shorter yet more intense drought, while 

a lower DIR suggests a prolonged drought with steady but less severe conditions (A.K. Mishra, 

2010) (M. Svoboda D. L., 2002). 

By calculating Drought Duration (DDR), Cumulative SRI (DSR), and Drought Intensity 

Ratio (DIR) for both observed and simulated discharge data, this study enables a thorough 

comparison of drought characteristics. This approach provides a direct evaluation of the TUW 

model's performance in replicating historical drought patterns across various catchments (H. V. 

Gupta, 2009). 

5.2.2 Visual Analysis of Drought Characteristics 

The study uses visual tools to illustrate the relationship between observed and simulated 

drought characteristics: 

 

Figure 29_ Scatter Plot of Observed vs. Simulated Drought 

Intensity for the VARRO Catchment 

 

Figure 30_Scatter Plot of Observed vs. Simulated Drought 

Intensity for the GESAN Catchment 

 

This scatter plot demonstrates the correlation between observed and simulated drought 

intensities, highlighting the TUW model’s ability to replicate drought severity across various 

catchments. 
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Figure 31_Scatter Plot of Observed vs. Simulated Drought 

Duration for the VARRO Catchment 

 

Figure 32_Scatter Plot of Observed vs. Simulated Drought 

Intensity for the GESAN Catchment 

 

 

This plot illustrates the consistency between observed and simulated drought durations, showing 

how well the model captures the persistence of water shortages over time. 

5.3 Drought Run Analysis 

A drought run refers to a continuous period during which a specific hydrological indicator, such 

as the SRI, remains below a defined threshold4typically -1. This indicator signifies below-

average streamflow conditions, identifying periods of water scarcity (H. Hisdal, 2003). In the 

context of the Cuneo district, the SRI serves as a valuable tool for identifying and analyzing 

drought events over time. By focusing on streamflow anomalies, the SRI effectively captures 

the impacts of sustained low-flow conditions, which are critical for understanding hydrological 

droughts (S. M. Vicente-Serrano, 2010). 

5.3.1 Components of a Drought Run 

A drought run is characterized by three main aspects: 

1. Onset: The point at which the SRI drops below zero, marking the beginning of a period 

with reduced streamflow compared to historical averages. This moment indicates a 

transition from normal conditions to water deficit, effectively triggering a drought event 

(D. A. Wilhite, 1985). 
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2. Persistence: The duration for which the SRI remains continuously below zero. Longer 

drought runs indicate prolonged periods of water scarcity, significantly impacting water 

resources, agriculture, and ecosystems (Palmer, 1965). Persistence helps understand the 

resilience of water systems to extended periods of drought, which can have cumulative 

effects on groundwater levels, soil moisture, and surface water availability (Loon V. , 

2015). 

3. Termination: The point at which the SRI rises back to zero or above, indicating the end 

of the drought event. At this stage, streamflow conditions are considered to have returned 

to normal or surplus levels, signaling recovery (J. Sheffield E. F., 2008). 

5.3.2 Identifying and Analyzing Drought Runs 

In this study, we identify drought runs by tracking periods where the SRI remains below zero, 

indicating conditions of below-average streamflow. The further the SRI value drops below zero, 

the more severe the drought conditions. This methodology is particularly suited for hydrological 

drought analysis, as it captures both short-term fluctuations and long-term trends (S. M. Vicente-

Serrano, 2010). By analyzing both observed and simulated SRI data, we gain insights into the 

spatial and temporal patterns of droughts in the Cuneo district. 

Drought runs are crucial for understanding how water scarcity evolves over time and assessing 

the implications for water management. This analysis allows us to: 

• Capture Short-Term and Long-Term Drought Dynamics: Short-term droughts, 

which may last for a few months, can be particularly detrimental to agriculture and water 

supply systems, while long-term droughts can deplete groundwater reserves and affect 

entire river basins (J. Hannaford, 2011). 

• Evaluate Drought Frequency and Intensity: Understanding how frequently droughts 

occur and their intensity provides essential information for regional water management 

and planning, helping to allocate resources effectively during water shortages (Svoboda 

et al., 2002). 

• Compare Observed vs. Simulated Data: By comparing the drought runs derived from 

observed streamflow data with those generated from the simulated outputs of the TUW 
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model, we can assess the accuracy and reliability of the model in replicating historical 

drought patterns (Gupta et al., 2009). 

5.3.3 Comparison of Observed and Simulated Drought Runs 

• Observed Drought Runs: Derived directly from the SRI values calculated from actual 

streamflow data, these runs serve as a benchmark for understanding historical drought 

conditions in the Cuneo district. They reflect the natural variability and responses of the 

hydrological system to changing climatic conditions over time. 

• Simulated Drought Runs: Obtained from the SRI values computed using the simulated 

discharge data from the TUW model, these runs help evaluate how well the model 

captures the initiation, duration, and severity of droughts. Comparing observed and 

simulated drought runs helps identify discrepancies and understand where the model 

may need improvement (Mishra & Singh, 2010). 

 

Figure 33_Drought Runs for the ELLRA Catchment 
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Figure 34_Drought Runs for the PELVI Catchment 

The analysis of drought runs not only highlights the severity and persistence of droughts in the 

study area but also offers a robust method for validating the model’s performance. By focusing 

on these characteristics, the study provides a comprehensive view of hydrological drought 

dynamics, aiding in the development of more effective drought management strategies. 

This detailed understanding of drought runs sets the foundation for the subsequent visualization 

and analysis of drought events, allowing for an in-depth comparison between observed and 

simulated data. In the next section, temporal evolution of these drought runs is visually 

represented through bar plots, offering a more intuitive understanding of drought patterns over 

time. 

5.4 Spatial Analysis of Drought Intensity and Duration  

This section delves into the spatial variability of drought characteristics across multiple 

catchments in the Cuneo district, focusing on the mean drought intensity and duration observed 

and simulated by the TUW model. The primary objective is to assess the model’s performance 

across different hydrological conditions by comparing the observed data with the simulated 

outputs on a catchment-by-catchment basis. This spatial analysis provides insights into how well 

the model captures the unique hydrological responses of each catchment to drought conditions, 

thereby informing regional water management strategies. 
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5.4.1 Mean Drought Intensity Across Catchments 

To evaluate drought intensity, the mean values of observed and simulated drought intensities 

were calculated for each catchment. Mean drought intensity was derived as the average of 

negative SRI values during drought periods, providing an indication of how severe water deficits 

were during these events. This analysis is critical for understanding the depth of drought impacts 

on each catchment’s water availability (Mishra & Singh, 2010). 

For each of the 28 catchments in the Cuneo district, data was processed to extract drought 

characteristics using the Standardized Runoff Index (SRI). Mean drought intensities were 

computed separately for observed data (Qobs) and simulated data (Simu). The results were 

plotted to facilitate direct comparison. 

 

Figure 35_Comparison of mean drought intensity across various catchments in the Cuneo district for observed (blue) and 

simulated (red) data. The plot reveals the alignment between observed and simulated values, highlighting the ability of the 

TUW model to replicate varying drought intensities across different hydrological conditions. 

5.4.2 Mean Drought Duration Across Catchments 

In addition to intensity, understanding the duration of droughts is vital for evaluating their long-

term impacts on water resources, agriculture, and ecosystems (Wilhite, 2000). The mean 

duration of drought events for each catchment was computed as the average number of 
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consecutive months during which the SRI remained below zero, indicating sustained periods of 

water deficit. 

This analysis involved calculating mean drought durations for both observed and simulated data 

across all catchments. By comparing these values, the study aimed to assess how well the TUW 

model captures the persistence of drought conditions across different hydrological regimes. 

 

Figure 36_Comparison of mean drought duration across various catchments in the Cuneo district for observed (blue) and 

simulated (red) data. The plot demonstrates the model’s ability to replicate the temporal persistence of droughts across 

different catchments, with error bars representing variability. 

5.4.3 Discussion of Spatial Variability and Model Performance 

The results from the spatial analysis of drought intensity and duration reveal important patterns 

in the Cuneo district. The scatter plots indicate that the TUW model generally performs well in 

capturing the average drought intensity and duration across most catchments. However, some 

variations are observed, particularly in catchments with more extreme hydrological variability. 

• Consistency in Moderate Droughts: For catchments experiencing moderate drought 

conditions, the TUW model's simulated mean intensities and durations align closely with 

the observed data. This suggests that the model is effective in capturing the typical 

hydrological responses in regions with moderate drought conditions (Gupta et al., 2009). 
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• Challenges in Capturing Extreme Events: In catchments where extreme droughts 

were more prevalent, the TUW model tends to underestimate both intensity and duration. 

This discrepancy may be attributed to the simplified representation of baseflow 

processes in the model, which are critical during extended dry periods (Van Loon & Van 

Lanen, 2013). 

• Implications for Water Management: Understanding these spatial variations is crucial 

for tailoring drought management strategies to specific catchments. Catchments where 

the model performs well can rely more heavily on simulated outputs for forecasting, 

while those with discrepancies may require additional calibration or supplementary 

observation-based data for improved drought management. 

By analyzing the spatial variability of drought characteristics across multiple catchments, this 

section provides a comprehensive assessment of the TUW model’s ability to simulate 

hydrological droughts in diverse hydrological settings. The figures offer a clear visual 

representation of how observed and simulated data compare, serving as a foundation for 

discussions on model improvements and regional drought management practices. 

This analysis highlights the importance of catchment-specific modeling approaches and 

emphasizes the need for continuous model calibration to enhance accuracy, particularly in 

regions with complex hydrological dynamics. 

5.4.4 Evaluation of Model Performance Using RMSE 

To assess the performance of the TUW model in replicating observed drought characteristics, a 

statistical comparison was conducted between the observed and simulated datasets. This 

comparison focuses on the mean drought intensity and duration across various catchments 

within the Cuneo district. The Root Mean Square Error (RMSE) metric was used to quantify the 

differences between observed and simulated values, providing a measure of the model’s 

accuracy. 

5.4.4.1 Mean Drought Intensity Comparison 

The scatter plot of mean drought intensity (observed vs. simulated) illustrates how well the TUW 

model captures the severity of drought conditions across different catchments. In this plot: 
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• The 1:1 line is included as a reference, indicating perfect agreement between observed 

and simulated values. 

• The RMSE value, displayed in the plot title, offers a quantitative assessment of the 

average deviation between the observed and simulated data points. A lower RMSE 

indicates a better model fit. 

 

Figure 37_Scatter plot comparing the mean drought intensity between observed and simulated data across catchments in the 

Cuneo district. The 1:1 line indicates perfect agreement, with the RMSE value quantifying the model's accuracy. 

5.4.4.2 Mean Drought Duration Comparison 

Similarly, a scatter plot was generated to compare the mean drought duration between observed 

and simulated datasets for each catchment. This plot visualizes the consistency in drought 

duration as modeled by the TUW model: 

• The 1:1 line serves as a reference for perfect agreement between the two datasets, 

helping to identify any systematic over- or underestimation by the model. 

• The RMSE for duration provides insight into the average difference between observed 

and simulated durations, with lower values suggesting a closer match. 
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Figure 38_Scatter plot comparing the mean drought duration between observed and simulated data for different catchments 

in the Cuneo district. 

5.4.4.3 Summary of Findings 

The RMSE analysis for both intensity and duration highlight the TUW model’s strengths and 

limitations in simulating drought characteristics. The alignment of points around the 1:1 line in 

both figures suggests areas where the model performs well, while deviations indicate where 

further model calibration might be necessary. These visual tools are instrumental in 

understanding the model's reliability and identifying catchments where the simulation of 

drought events may require improvement. 
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6 Discussion 

This section interprets the results of the model simulations, and the comprehensive drought 

analysis conducted for the Cuneo district. It explores the key factors that influenced the 

performance of the TUW model, assesses the accuracy of drought simulations, and discusses 

the implications of these findings for water resource management. Additionally, the section 

identifies the study's limitations and suggests potential directions for future research. 

6.1 Interpretation of Model Simulation and Drought Analysis: 

The results of the drought analysis using the Standardized Runoff Index (SRI) revealed key 

insights into the drought patterns and water availability trends in the Cuneo district. The 

observed and simulated SRI values allowed for the identification of drought events, including 

their duration, intensity, and cumulative impacts. Through visual comparisons, including scatter 

plots of drought intensity and duration, the study evaluated how well the TUW model replicated 

the characteristics of observed droughts. 

The TUW model demonstrated a strong ability to capture moderate drought events, accurately 

reflecting the duration and intensity of these occurrences across various catchments. For 

instance, the scatter plots of mean drought intensity and duration between observed and 

simulated data (Figures 1 and 2) showed a high degree of correlation for moderate drought 

conditions. The model's capacity to replicate these events suggests that it is well-suited for 

simulating the hydrological processes associated with moderate streamflow deficits. Similar 

results have been observed in other studies utilizing hydrological models for regional drought 

analysis (A.K. Mishra, 2010). 

However, discrepancies were noted during periods of extreme drought (SRI < -2). The model 

tended to underestimate the intensity of severe droughts, especially in the lower tail of the flow 

duration curve, where the simulated values did not fully capture the severity of the lowest flows 

observed. This underestimation was more evident in catchments with higher hydrological 

variability, such as VARRO and GESAN. This aligns with findings by Gupta et al. (2009), which 

highlighted that model performance often decreases when simulating extreme hydrological 

events due to the complexities involved in capturing low-flow dynamics accurately. 
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6.2 Factors Influencing Model Performance and Accuracy: 

Several factors influenced the performance of the TUW model in simulating drought conditions. 

One critical factor is the complexity of the catchment characteristics, including variations in 

land use, soil types, and groundwater interactions across the Cuneo district (Loon & Van Lanen, 

2015). The model's input parameters and the calibration process also play a significant role in 

determining the accuracy of the simulations. The Kling-Gupta Efficiency (KGE) criterion used 

in the calibration helped improve the fit between observed and simulated discharge data, yet 

limitations in accurately representing the baseflow processes remained a challenge during severe 

drought periods. 

The spatial resolution of climate inputs, such as precipitation and temperature, was another 

factor affecting model performance. Catchments with more localized climate variations showed 

larger deviations between observed and simulated values, suggesting that finer-resolution 

climate data could further enhance the model’s predictive capability. Additionally, the TUW 

model's handling of soil moisture storage and groundwater recharge processes impacted the 

accuracy of drought duration simulations, especially for long-term drought events where soil 

moisture plays a crucial role (Palmer, 1965). 

6.3 Implications for Water Resource Management: 

The findings of this study have significant implications for water resource management in the 

Cuneo district. The ability of the TUW model to simulate moderate drought events accurately 

can aid water managers in planning for water shortages during such periods. By identifying 

drought events' duration and intensity, the model provides a basis for developing adaptive 

management strategies that account for anticipated changes in streamflow patterns (Wilhite, 

2000). 

The insights gained from comparing observed and simulated drought characteristics highlight 

areas where water management strategies can be refined. For example, the model's tendency to 

underestimate the severity of extreme droughts suggests a need for a more conservative 

approach when planning water allocations during prolonged dry spells. This is particularly 

relevant for managing reservoirs and groundwater resources, as extreme droughts have a 

compounding effect on both surface and subsurface water supplies. 
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Moreover, the study underscores the importance of integrating hydrological modeling tools like 

the TUW model with real-time climate data to support proactive drought management. 

Improved drought forecasts and scenario analysis could be implemented to mitigate the impacts 

of future droughts on agriculture and urban water supply systems, ensuring a more resilient 

water management framework for the region. 

6.4 Limitations and Areas for Future Research: 

This study, while providing valuable insights into drought characterization and hydrological 

modeling, has several limitations that may impact the generalizability and precision of its 

findings. Addressing these limitations can help inform future research and enhance the model's 

applicability under evolving environmental and climate conditions. 

6.4.1 Model Assumptions and Simplifications 

The TUW model, as a lumped conceptual rainfall-runoff model, aggregates spatial variability 

across each catchment. This approach, while computationally efficient, may overlook localized 

variations within catchments, such as differences in land cover, soil composition, or small-scale 

hydrological processes. These simplifications can limit the model's ability to capture the unique 

hydrological responses of smaller or heterogeneous catchments, which may be critical during 

extreme events like droughts or floods. 

6.4.2 Climate Data Resolution and Availability 

The climate data used for this study, including precipitation and temperature records, have a 

temporal resolution of one day and spatial coverage at the pixel level across 305 grid points. 

Although the resolution is suitable for large-scale analysis, finer-resolution climate data could 

improve the model’s ability to simulate localized precipitation or temperature variations, 

particularly in regions with complex topography. Additionally, the use of historical data limits 

the study’s scope in projecting future drought patterns under changing climate scenarios, 

potentially impacting water resource planning in the Cuneo district. 

6.4.3 Limitations of the SRI in Drought Characterization 

While the Standardized Runoff Index (SRI) is effective for characterizing hydrological drought, 

it is limited by its reliance on historical flow data. The SRI may not fully capture droughts 
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influenced by complex climatic drivers beyond streamflow, such as soil moisture depletion or 

groundwater recharge variations. Additionally, as the SRI is primarily based on runoff 

anomalies, its application in areas with limited streamflow data or where streamflow is highly 

regulated (e.g., reservoirs) may yield less accurate or biased results. 

6.4.4 Calibration Constraints 

Model calibration relied on the Kling-Gupta Efficiency (KGE) and its log-transformed variant 

(log-KGE) to optimize performance across both high-flow and low-flow conditions. While log-

KGE improves model sensitivity to low-flow events, optimizing both high and low flows 

concurrently presents a trade-off. This dual calibration approach may limit the model’s precision 

under extreme drought conditions, as discrepancies in low-flow simulation accuracy can persist 

despite calibration adjustments. 

6.4.5 Scope of Applicability 

The study is based on historical hydrological data and climate conditions specific to the Cuneo 

district in the Piemonte region of Italy. Given that hydrological drought dynamics are influenced 

by local climate, topography, and land use, the findings may not be directly transferable to 

regions with substantially different environmental conditions. Further validation and adaptation 

of the model are recommended when applying the findings to other geographical settings. 
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7 Conclusion: 

7.1 Summary of Key Findings: 

This study analyzed drought characteristics in the Cuneo district using the TUW model and the 

Standardized Runoff Index (SRI). The model effectively simulated moderate drought events, 

capturing the duration and intensity of these events with reasonable accuracy. However, it faced 

challenges in replicating the intensity of extreme drought conditions, particularly in catchments 

with significant hydrological variability. The findings underscore the importance of 

understanding regional drought dynamics for effective water management, highlighting the 

strengths and limitations of using hydrological models for drought simulation. 

7.2 Contributions to Hydrological Modeling and Drought Analysis: 

The research contributes to the field of hydrological modeling and drought analysis by providing 

a detailed assessment of the TUW model's performance in simulating drought characteristics. 

The use of the SRI as a drought indicator proved effective in identifying drought events and 

assessing their severity over time. The study's methodology, which involved a comparative 

analysis of observed and simulated data across multiple catchments, offers a robust framework 

for evaluating the accuracy of hydrological models. This research also contributes to the broader 

understanding of how hydrological models can be calibrated and validated for regional drought 

analysis. 

7.3 Recommendations for Policymakers and Practitioners: 

Based on the findings, several recommendations can be made for policymakers and practitioners 

involved in water resource management in the Cuneo district: 

• Enhancing Drought Preparedness: Water managers should integrate hydrological 

modeling tools with real-time climate data to improve drought forecasting and response 

planning. This integration would support better preparedness for both moderate and 

severe drought events. 

• Adopting Adaptive Management Strategies: Given the model's limitations in 

simulating extreme droughts, adaptive management approaches that account for 

uncertainty in future drought severity are recommended. This could involve revising 
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water allocation policies during extreme drought conditions to prevent over-extraction 

of groundwater resources. 

• Investing in Model Refinement: Further research and investment should be directed 

toward refining hydrological models like the TUW model to improve their 

representation of soil moisture and groundwater dynamics. Enhanced modeling 

capabilities would result in more accurate simulations and support long-term water 

management planning. 

• Regional Collaboration: Collaboration between researchers, local water authorities, 

and policymakers is crucial for developing targeted solutions that address the specific 

hydrological challenges of the Cuneo district. Such partnerships could foster the 

exchange of data and expertise, leading to more effective implementation of water 

management strategies. 

In conclusion, the study provides a comprehensive analysis of drought dynamics in the Cuneo 

district and offers valuable insights for improving drought resilience through enhanced 

modeling and adaptive water management practices. By addressing the identified limitations 

and pursuing future research directions, it is possible to achieve a more sustainable and resilient 

approach to managing water resources in the face of evolving climate challenges. 
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8 Appendix 

8.1 R Programming for Hydrological Modeling  

 

R is an open-source programming language and software environment widely used in data 

analysis, statistical computing, and scientific research. Its flexibility, extensive library support, 

and active community make it particularly suited for complex data-driven tasks such as 

hydrological modeling, climate data analysis, and environmental studies. In this thesis, R 

programming was instrumental in handling various tasks related to data preparation, model 

simulation, validation, and result visualization. 

One of the key reasons R was chosen for this thesis is its strong capabilities in managing time 

series data, which is essential for analyzing hydrological data (such as precipitation, 

temperature, and streamflow) over extended periods. Additionally, R's robust ecosystem of 

libraries provides powerful tools for hydrological modeling, performance evaluation, statistical 

analysis, and graphical representation of results. 

R's syntax and modular structure allow for easy replication of workflows, meaning that different 

hydrological scenarios can be modeled, compared, and validated using similar scripts. This 

approach fosters transparency and reproducibility in research, which is essential for scientific 

rigor. 

Some key functionalities of R used in this thesis include: 

Time Series Management: Efficient handling of time series data for streamflow, precipitation, 

and temperature. 



79 | P a g e  

 

Model Simulation: Running rainfall-runoff models such as the TUWmodel to simulate 

discharge in various catchments. 

Statistical Analysis: Evaluation of model performance using statistical goodness-of-fit 

measures. 

Drought Analysis: Calculation of hydrological drought indices such as the Standardized Runoff 

Index (SRI) to analyze drought characteristics. 

Data Visualization: Creation of informative graphs, including time series plots, flow duration 

curves, and scatter plots for comparing observed and simulated data. 

8.2 Libraries Used in the Thesis 

In addition to R’s core functionalities, several specialized libraries were employed to carry out 

the different aspects of hydrological modeling and data analysis. Below is a detailed explanation 

of the key libraries utilized: 

8.2.1 hydroGOF 

The hydroGOF package provides tools for evaluating the performance of hydrological models. 

It calculates various goodness-of-fit (GOF) measures, which assess how well the simulated 

discharge matches the observed data. 

• Main functions used: 

➢ KGE (Kling-Gupta Efficiency) 

➢ LogKGE  

➢ RMSE (Root Mean Square Error) 

• Application: These performance metrics were used extensively to assess the accuracy 

of the TUW model simulations during both high-flow and low-flow conditions. 

8.2.2 TUWmodel 

The TUWmodel package is a semi-distributed hydrological model developed to simulate 

discharge based on rainfall-runoff processes. It incorporates parameters for snowmelt, soil 
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moisture, and runoff generation, making it particularly suitable for simulating hydrological 

responses in complex catchments. 

• Application: The TUW model was used to simulate streamflow for different catchments 

in the Cuneo district. The model’s parameters were optimized using calibration 

techniques to achieve accurate simulations of discharge patterns. 

8.2.3 DEoptim 

The DEoptim package implements the Differential Evolution optimization algorithm, which is 

designed for optimizing complex parameter spaces. It was employed in this thesis to optimize 

the parameters of the TUWmodel during the calibration process. 

• Application: Differential Evolution was used to maximize the Kling-Gupta Efficiency 

(KGE) and ensure that the simulated discharge closely matched observed values across 

a range of hydrological conditions. 

8.2.4 zoo 

The zoo package provides tools for handling and analyzing irregular and regular time series 

data. It offers a flexible framework for managing the time series datasets that form the backbone 

of hydrological modeling. 

• Application: The package was used to store, manipulate, and plot the time series data 

for observed and simulated streamflow, precipitation, and temperature. 

8.2.5 ggplot2 

The ggplot2 library is one of the most widely used tools for creating elegant and informative 

data visualizations. It allows for the creation of customized graphs, which are essential for 

interpreting and communicating results. 

• Application: ggplot2 was used to generate time series plots comparing observed and 

simulated discharge, flow duration curves (FDC), and scatter plots to visualize model 

performance metrics. These visualizations played a key role in illustrating the results 

and findings of the thesis. 
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8.2.6 lubridate 

The lubridate package simplifies working with dates and times, making it easier to extract and 

manipulate date components. Hydrological data is often time-sensitive, and this package was 

useful in aligning datasets temporally. 

• Application: lubridate was used to extract year, month, and day from the time series 

data, enabling the aggregation of daily discharge data into monthly or seasonal values 

for further analysis. 

8.2.7 dplyr 

dplyr is a data manipulation package that provides a set of tools for filtering, summarizing, and 

reshaping datasets. It is known for its simplicity and efficiency when dealing with large datasets. 

• Application: In this thesis, dplyr was used for aggregating daily discharge data into 

monthly or annual values, calculating averages, and filtering data to match specific time 

periods for calibration and validation of the hydrological model. 

8.2.8 precintcon 

The precintcon package specializes in climate data analysis and provides methods for 

calculating the Standardized Precipitation Index (SPI) and Standardized Runoff Index (SRI). 

These indices are essential for drought analysis. 

• Application: precintcon was employed to compute the SRI values for both observed and 

simulated discharge data. This index was used to identify and quantify the intensity, 

duration, and frequency of drought events across the study area. 

R programming, with its wide range of libraries, proved to be a robust and flexible tool for 

conducting the hydrological modeling, drought analysis, and performance evaluation required 

in this thesis. The combination of R’s data manipulation capabilities and the specialized 

functions provided by libraries like TUWmodel, hydroGOF, and precintcon enabled a 

comprehensive and efficient approach to the research objectives. This ecosystem of tools 

facilitated the entire workflow, from data preprocessing to simulation, validation, and final result 

visualization. 
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