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Abstract 

The Job Shop Scheduling Problem (JSSP) is a fundamental challenge in operations 

management, characterized by its NP-hard nature and the complexity of coordinating job 

sequences across multiple machines. This thesis addresses integrating transport resources, 

such as Automated Guided Vehicles (AGVs) and conveyor systems, into traditional JSSP, 

which adds a significant layer of complexity by introducing additional variables like transport 

times and availability constraints. A Deep Q-network (DQN) based methodology is 

developed to tackle these challenges, leveraging a neural network to approximate Q-values 

and guide decision-making in complex, stochastic environments. This approach is 

complemented by a Mixed Integer Linear Programming (MILP) formulation to establish 

foundational scheduling constraints. Through extensive simulation and benchmarking, this 

study demonstrates the effectiveness of DQN in optimizing scheduling in JSSP settings 

involving transport resources, contributing to both the theoretical understanding and practical 

implementation of machine learning-driven scheduling solutions in manufacturing contexts. 
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1. Introduction 

The Job Shop Scheduling Problem (JSSP) is a core challenge in operations 

management. It is characterized by its NP-hard nature and the complexity of coordinating job 

sequences across multiple machines. JSSP involves allocating a set of jobs, each with specific 

processing requirements and sequences, to a limited set of machines. The goal is often to 

optimize performance metrics, such as makespan, machine utilization, and job tardiness. This 

problem is seen in manufacturing and production systems, where efficient scheduling directly 

impacts operational efficiency, productivity, and cost-effectiveness. 

Introducing transport resources, such as Automated Guided Vehicles (AGVs) 

(Jungbluth et al., 2022; Amirteimoori et al., 2023; Fontes et al., 2023; Dehnavi-Arani et al., 

2019) or mobile robots (Homayouni & Fontes, 2021; Yao et al., 2023; Li et al., 2020), adds 

complexity to traditional JSSP. These resources are essential for transferring jobs between 

machines, further complicating the scheduling process by introducing additional variables 

like transport times and availability constraints (Homayouni & Fontes, 2021). Integrating 

transport resources into scheduling models necessitates a dual optimization approach: 

minimizing machine idle times while ensuring timely material movement within the 

production line. This hybrid focus on machine processing and transport logistics reflects the 

complexity of modern job shop environments, where production efficiency is contingent 

upon effective material handling strategies (Fontes et al., 2022). 

To address these challenges, recent research has turned to advanced machine learning 

techniques, particularly Reinforcement Learning (RL), which offers a dynamic and adaptive 

approach to scheduling. The Deep Q-Network (DQN) algorithm presents a promising 

solution among RL methods. DQN leverages a neural network to approximate Q-values, 

guiding decision-making in complex, stochastic environments. In this thesis, a DQN-based 

methodology is developed to optimize scheduling in JSSP settings involving transport 
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resources. This model allows the system to dynamically learn optimal policies for job 

sequencing and transport assignment, aiming to minimize makespan and streamline 

workflow. 

This thesis integrates a structured Mixed Integer Linear Programming (MILP) 

formulation to establish foundational scheduling constraints, which serve as a baseline for the 

DQN environment—combining MILP and DQN bridges' exact and heuristic methods, 

balancing computational efficiency with solution quality. Through extensive simulation and 

benchmarking against traditional models, this study seeks to demonstrate the effectiveness of 

DQN in handling the intricacies of transport-integrated JSSP. This work thus contributes to 

both the theoretical understanding and practical implementation of machine learning-driven 

scheduling solutions in manufacturing contexts, laying the groundwork for scalable and 

adaptive job shop optimization strategies. 

2. Literature review 

2.1. Introduction 

The Job Shop Scheduling Problem (JSSP) is a critical issue in operations management 

due to its significant impact on manufacturing efficiency and productivity (Muthiah et al., 

2016). In a manufacturing environment, JSSP involves allocating jobs to machines where 

each job consists of a sequence of operations that must be processed on specific machines. 

The objective is to determine the optimal sequence in which these jobs should be executed to 

minimize various performance metrics such as makespan (Yao et al., 2023), total completion 

time (Li et al., 2020), and tardiness (Zambrano-Rey et al., 2023). The complexity of JSSP 

arises from the requirement that each job must be processed in a predetermined order and that 

each machine can handle only one operation at a time, leading to intricate interactions and 

dependencies among jobs. Classified as NP-hard, finding an optimal solution becomes 

computationally infeasible as the size of the problem increases, necessitating the development 
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of heuristic and metaheuristic approaches to find satisfactory solutions within a reasonable 

timeframe (Zhang et al., 2021). 

The significance of JSSP in manufacturing and production systems cannot be 

overstated, as it directly influences operational efficiency, resource utilization, and overall 

productivity. Effective scheduling allows manufacturers to optimize production processes, 

reduce lead times, and enhance responsiveness to customer demands. In today's competitive 

manufacturing landscape, where customization and rapid delivery are paramount, efficient 

job scheduling is critical in aligning production schedules with market requirements. 

Moreover, it can lead to significant cost savings by minimizing idle time, reducing work-in-

progress inventory, and maximizing machine utilization. As manufacturing systems evolve 

toward more flexible and dynamic operations, the importance of JSSP continues to grow, 

necessitating ongoing research and innovation in scheduling techniques (Zhang & Zheng, 

2023; Momenikorbekandi & Abbod, 2023). 

Transport resources are integral to effectively executing job shop scheduling, as they 

facilitate the movement of materials and components between different machines and 

workstations. These resources may include automated guided vehicles (AGVs) and manual 

handling equipment, all of which are essential for ensuring that jobs are processed promptly 

(Li et al., 2023). Integrating transport resources into JSSP introduces additional complexity, 

as scheduling must account not only for the processing times on machines but also for the 

travel times associated with moving materials. This necessitates the development of hybrid 

scheduling models that optimize both machine operations and transport logistics. By 

effectively managing transport resources, manufacturers can enhance workflow efficiency, 

reduce bottlenecks, apply defined scheduling rules, and improve overall production 

throughput (Han, 2023; Song et al., 2022). 
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Advancements in computational technology over recent years have significantly 

enhanced the ability to address complex scheduling problems. Observations such as Moore's 

Law, which notes the doubling of computational capacity approximately every two years, 

have facilitated developing and applying sophisticated algorithms and machine learning 

techniques to JSSP. This technological progress, particularly in the past five years, has 

accelerated research into new methodologies that leverage increased computational power to 

achieve more efficient and effective scheduling solutions. 

This literature review aims to synthesize recent advancements in the field of job shop 

scheduling, focusing on the integration of transport resources and the application of various 

algorithmic techniques. By examining the evolution of scheduling methods over the past 

eight years—with an emphasis on the technological advancements in the most recent five 

years—we provide a comprehensive overview of the current state of research, highlighting 

the strengths and limitations of existing approaches. Furthermore, we explore the role of 

machine learning and reinforcement learning techniques in addressing the complexities of job 

shop scheduling, particularly their potential to enhance decision-making processes in 

dynamic and uncertain environments. Ultimately, this review seeks to identify gaps in the 

current body of knowledge and propose directions for future research that could lead to more 

effective and efficient scheduling solutions in manufacturing systems (Alabajee et al., 2020; 

Zhang et al., 2022; Awad & Abd-Elaziz, 2021; Zhao et al., 2021; Bozzi, 2023; 

Latthawanichphan et al., 2019). 

2.2. Historical Context and Evolution of JSSP 

The historical context of the Job Shop Scheduling Problem (JSSP) reveals a rich 

evolution of research and methodologies aimed at addressing its inherent complexities. 

Initially conceptualized in the 1950s, the JSSP has undergone significant transformations as 

manufacturing practices have evolved. Early studies primarily focused on deterministic 
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scheduling models, where job arrival times and processing durations were known in advance. 

However, as manufacturing environments became more dynamic and unpredictable, 

researchers began to explore flexible job-shop scheduling (FJSP) models that accommodate 

variations in job characteristics and machine capabilities. The introduction of metaheuristic 

approaches, such as genetic algorithms and simulated annealing, marked a pivotal shift in the 

field, enabling practitioners to tackle more extensive and more complex scheduling instances. 

Recent advancements have further integrated machine learning techniques, particularly 

reinforcement learning, into scheduling frameworks, allowing real-time adaptation to 

changing production conditions. This historical trajectory underscores the ongoing relevance 

of JSSP research in the context of modern manufacturing challenges as scholars continue to 

innovate and refine scheduling methodologies to meet the demands of increasingly complex 

production systems (Zeng & Wang, 2018; Zhang et al., 2021; Yu et al., 2020). 

2.2.1. Early approaches to JSSP 

Early approaches to the Job Shop Scheduling Problem (JSSP) laid the groundwork for 

understanding the complexities of scheduling jobs within manufacturing environments. 

Initially, researchers focused on deterministic models that assumed fixed processing times 

and machine availability, which allowed for the development of straightforward heuristic 

methods. One of the pioneering contributions was Johnson's algorithm, which provided 

optimal solutions for two-machine flow shop scheduling, setting a precedent for subsequent 

research in JSSP. However, as the complexity of manufacturing systems grew, these early 

methods proved inadequate for addressing the intricacies of real-world scheduling scenarios. 

The limitations of deterministic models prompted researchers to explore more sophisticated 

techniques, such as branch-and-bound algorithms and dynamic programming, which aimed to 

provide exact solutions for smaller instances of JSSP. Despite their effectiveness, these exact 

methods faced scalability challenges, leading to the exploration of heuristic and metaheuristic 
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approaches that could yield satisfactory solutions for larger and more complex job-shop 

scenarios. The evolution of these early approaches significantly impacted the development of 

more advanced scheduling methodologies, highlighting the need for flexibility and 

adaptability in modern manufacturing systems (Kirilov & Guliashki, 2017). 

2.2.2.  Development of flexible job shop scheduling (FJSP) 

The development of Flexible Job Shop Scheduling (FJSP) marked a significant 

advancement in scheduling methodologies, addressing the limitations of traditional JSSP by 

allowing for greater flexibility in machine assignments and job processing sequences. 

Introduced in the early 1990s, FJSP acknowledges that modern manufacturing systems often 

require jobs to be processed on multiple machines, enabling manufacturers to optimize 

resource utilization and respond more effectively to changes in production requirements. This 

flexibility is particularly beneficial in environments where machine breakdowns or varying 

job priorities occur, as it allows for dynamic reallocation of resources. The FJSP problem is 

inherently more complex than the classic JSSP, as it introduces additional decision variables 

related to machine selection and job routing. Researchers have employed various 

optimization techniques, including genetic algorithms, simulated annealing, and tabu search, 

to tackle the complexities of FJSP. The growing interest in FJSP has led to a plethora of 

studies that explore hybrid approaches, combining traditional optimization methods with 

machine learning techniques to enhance scheduling performance in dynamic environments. 

This evolution has improved scheduling efficiency and contributed to the development of 

more resilient manufacturing systems capable of adapting to fluctuating market demands (Xia 

& Wu, 2005; Ba et al., 2016). 

2.2.3. Introduction of transport resources in scheduling 

Introducing transport resources in scheduling has become a critical consideration in 

optimizing job shop environments, as it directly impacts the efficiency of material handling 
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and job processing. Transport resources, such as automated guided vehicles (AGVs) and 

conveyor systems, facilitate the movement of materials between machines and workstations, 

influencing overall workflow and production throughput.  

As manufacturing systems have evolved towards more integrated and automated 

operations, the need to incorporate transport logistics into scheduling models has gained 

prominence. Researchers have begun to develop hybrid scheduling frameworks that 

simultaneously optimize machine operations and transport logistics, recognizing that delays 

in material handling can lead to significant bottlenecks in production.  

The integration of transport resources into scheduling algorithms not only enhances the 

efficiency of job processing but also improves responsiveness to changes in production 

schedules and resource availability. This shift towards a more holistic approach to scheduling 

reflects the complexities of modern manufacturing systems, where effective coordination 

between processing and transport resources is crucial for achieving operational excellence. 

The impact of incorporating transport resources into scheduling has been profound, leading to 

improved production efficiency and reduced lead times in various manufacturing contexts 

(Kumar et al., 2003; Ren et al., 2020).  

2.3. Traditional Algorithms for JSSP 

Traditional approaches to solving the Job Shop Scheduling Problem (JSSP) are divided 

into exact algorithms, heuristic methods, and metaheuristic approaches, each balancing 

solution quality and computational efficiency. Exact algorithms, such as branch-and-bound 

and integer programming, guarantee optimal solutions by exhaustively exploring the solution 

space. These methods are particularly useful in small-scale scenarios but face challenges in 

scalability due to the NP-hard nature of JSSP. For instance, branch-and-bound uses tree 

structures to evaluate and prune suboptimal solutions systematically, while integer 

programming formulates the problem as an optimization model to minimize performance 
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metrics under defined constraints (Muthiah et al., 2015; Lu et al., 2012). While effective for 

more minor problems, the exponential growth of the solution space in larger instances 

necessitates hybridization with heuristic methods to improve computational feasibility. 

Heuristic methods prioritize speed and adaptability, making them particularly suitable for 

dynamic environments. Priority dispatching rules, such as Shortest Processing Time (SPT) 

and Earliest Due Date (EDD), are widely used to guide scheduling decisions based on 

specific criteria, enabling quick and practical solutions. Although these methods do not 

guarantee optimality, their simplicity and flexibility make them a strong foundation for more 

advanced algorithms (Amjad et al., 2018; Azzouz et al., 2017; Parveen & Ullah, 2011). 

Metaheuristic approaches, including simulated annealing and ant colony optimization, extend 

this flexibility by employing adaptive search strategies that balance exploration and 

exploitation of the solution space. Simulated annealing uses probabilistic acceptance criteria 

to escape local optima, while ant colony optimization leverages pheromone-based 

reinforcement learning to improve solutions iteratively. Both methods have proven effective 

in dynamic and complex scheduling contexts, with enhancements and hybridizations further 

boosting their performance (Xing et al., 2010; Fan & Su, 2022; Kumar et al., 2018; Sun et al., 

2010). 

These approaches collectively offer versatile solutions for JSSP, with exact algorithms 

excelling in precision, heuristics providing practicality, and metaheuristics achieving a 

balance between quality and scalability. Continued advancements in hybrid techniques and 

computational strategies are driving improvements in efficiency, adaptability, and the ability 

to address the diverse constraints of modern scheduling challenges. 

2.4. Machine Learning Techniques in JSSP 

Applying machine learning (ML) to the Job Shop Scheduling Problem (JSSP) has 

revolutionized scheduling processes, enabling adaptive and data-driven approaches to 
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optimize real-time decision-making. ML techniques such as supervised learning, 

unsupervised learning, and reinforcement learning (RL) allow systems to learn from 

historical data, adapt to dynamic conditions, and address the complexities of modern 

manufacturing environments. These methods significantly reduce computational complexity 

while enhancing the quality and responsiveness of scheduling solutions. RL has emerged as a 

potent tool, offering the ability to develop adaptive strategies through interactions with 

dynamic environments and enabling continuous improvement over time (Liu et al., 2020; 

Wang et al., 2019). 

Supervised learning in JSSP involves training models on historically labeled data to 

predict optimal job assignments and sequences. Supervised learning effectively models the 

relationships between job characteristics and scheduling outcomes by using algorithms such 

as decision trees, neural networks, and support vector machines. These approaches can 

significantly improve efficiency and accuracy, though their success depends on the quality of 

the training data and their ability to generalize to unseen scenarios (Song et al., 2022; Chen et 

al., 2022). On the other hand, unsupervised learning identifies patterns and relationships 

within data without requiring labeled outputs. Techniques such as k-means clustering and 

Principal Component Analysis (PCA) are beneficial for grouping jobs with similar 

characteristics or reducing the dimensionality of complex scheduling data, which helps 

inform better scheduling decisions (Han & Yang, 2020; Tassel et al., 2022). 

Reinforcement learning (RL) has proven exceptionally effective in addressing dynamic 

scheduling environments where job arrivals and machine availability fluctuate unpredictably. 

Unlike supervised or unsupervised learning, RL enables agents to interact with their 

environment, learning optimal strategies through cumulative rewards based on their actions. 

The development of deep reinforcement learning (DRL), which integrates neural networks 

with RL, has further expanded its capabilities, allowing for the modeling of complex state 
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spaces and the discovery of high-quality scheduling policies. DRL has been successfully 

applied to dynamic job shop scenarios, demonstrating its ability to adapt to changing 

conditions and optimize performance metrics like makespan and tardiness (Han & Yang, 

2021; Zhao & Zhang, 2021). Additionally, attention mechanisms in DRL enhance scheduling 

models by focusing on critical features of the environment, improving interpretability and 

solution quality (Xu et al., 2022). 

Recent advancements in multi-agent reinforcement learning (MARL) have addressed the 

challenges of coordinating multiple agents in complex scheduling scenarios. By enabling 

agents to share knowledge and learn cooperative strategies, MARL improves resource 

allocation and minimizes makespan in dynamic environments. For example, agents in MARL 

systems can effectively manage competing priorities in job-shop settings, optimizing their 

decisions based on collective experiences (Wu et al., 2021; Chen et al., 2022). Hybrid 

approaches combining RL with traditional optimization techniques, such as genetic 

algorithms or simulated annealing, further enhance scheduling outcomes by leveraging the 

complementary strengths of each method. These models allow for thoroughly exploring the 

solution space and refined decision-making processes, resulting in superior scheduling 

performance in complex job shop environments (Kim et al., 2022; Canese et al., 2021). 

Despite these advancements, challenges remain in scaling ML techniques for large job 

shops, managing uncertainty in dynamic environments, and integrating transport resources 

into scheduling frameworks. As the number of jobs and machines increases, traditional 

algorithms often need help with the exponential growth of solution spaces, necessitating more 

scalable approaches (Ramasubbareddy et al., 2021; Zhou, 2024). Dynamic job shop settings 

introduce additional complexities, as job arrivals, processing times, and machine availability 

frequently fluctuate. Addressing these uncertainties requires algorithms capable of adapting 

to real-time changes while maintaining efficiency (Zhou et al., 2023; Lv, 2024). Furthermore, 
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integrating transport resources, such as automated guided vehicles (AGVs), into scheduling 

frameworks is critical for addressing bottlenecks and improving overall operational 

efficiency. Research has shown that optimizing production and transport processes together 

can significantly enhance scheduling performance (Li et al., 2022; Zhou et al., 2022). 

2.5. Conclusion 

The Job Shop Scheduling Problem (JSSP) remains a critical and intricate issue in 

operations management, significantly affecting manufacturing efficiency and productivity. 

Initially, research on JSSP concentrated on deterministic models, providing structured 

scheduling solutions suitable for controlled settings. However, as production requirements 

evolved, more dynamic scheduling models like Flexible Job Shop Scheduling (FJSP) 

emerged, allowing greater adaptability through the application of metaheuristic algorithms 

such as genetic algorithms, simulated annealing, and newer techniques like ant colony 

optimization (Zhang & Zheng, 2023; Kirilov & Guliashki, 2017). 

Recent studies have emphasized integrating transport resources, such as automated guided 

vehicles (AGVs), into scheduling processes. While this integration adds complexity, it is 

essential for reducing lead times and avoiding bottlenecks, ultimately enhancing overall 

production efficiency (Kumar et al., 2003; Song et al., 2022). 

Machine learning, especially reinforcement learning (RL), has emerged as a 

transformative approach to overcoming the limitations of traditional scheduling algorithms in 

JSSP. Techniques such as deep reinforcement learning (DRL) and hybrid RL models enable 

adaptive and responsive scheduling, particularly valuable in dynamic and uncertain 

conditions. These advancements demonstrate that RL-based methods can surpass traditional 

scheduling approaches by utilizing real-time data and learning from past scheduling patterns 

(Chang et al., 2022; Zhao & Zhang, 2021). By addressing scalability, adaptability, and 

resource integration challenges, machine learning techniques are driving significant 
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improvements in the efficiency and applicability of scheduling solutions in modern 

manufacturing systems.  

Table 1.  

Approaches taken to address the JSSP problem. 

Technique Description Strength Limitations Applications / 
Focus Areas 

Heuristic 
Methods 

Use rule-based 
scheduling 
decisions, like 
priority dispatching 
(e.g., SPT, EDD). 

Fast, low 
computational 
cost; suitable for 
quick, feasible 
solutions. 

It may not reach 
the global 
optimum; it is 
sensitive to rule 
choice. 

Real-time 
scheduling with 
quick decision 
needs. 

Metaheuristic 
Approaches 

Techniques that 
explore solution 
space adaptively, 
such as Genetic 
Algorithms and 
Simulated 
Annealing. 

It can escape 
local optima and 
is effective in 
large-scale, 
complex 
scheduling. 

Computationally 
intensive; 
requires tuning 
for optimal 
performance. 

Large-scale 
JSSP with 
complex 
transport needs 
and resource 
constraints. 

Exact 
Algorithms 

Optimization 
methods like Integer 
Programming, 
Branch, and Bound 
guaranteed 
optimality. 

Global 
optimality is 
useful in small-
medium-sized 
problems with 
high precision 
needs. 

Computationally 
infeasible for 
significant 
problems due to 
high 
complexity. 

Suitable for 
small JSSPs or 
scenarios where 
optimality is 
critical. 

Hybrid 
Models 

Combine 
techniques, e.g., 
Genetic Algorithms 
with Simulated 
Annealing or RL 
with heuristics. 

The balance 
between solution 
accuracy and 
computational 
efficiency is 
adaptable to 
different 
complexities. 

Complex to 
design; 
performance 
depends on 
chosen 
combination and 
settings. 

Flexible 
scheduling with 
complex 
constraints and 
dynamic 
resources. 

Reinforcement 
Learning (RL) 

Machine learning 
approach where an 
agent learns optimal 
scheduling policies 
via trial-and-error. 

Learns adaptive 
policies over 
time; handles 
dynamic, real-
time changes. 

It requires 
extensive 
data/training 
and is 
challenging to 
model complex 
states and 
reward 
structures. 

Dynamic JSSP 
where job or 
transport 
conditions 
change 
frequently. 

Deep 
Reinforcement 
Learning 
(DRL) 

RL enhanced with 
deep learning for 
handling high-
dimensional state 

Scalability and 
adaptability in 
complex, large 
JSSP instances; 

High 
computational 
requirements; 
prone to 

Large-scale 
JSSPs with 
complex 
transport and 
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spaces (e.g., DQN, 
PPO). 

effective in 
dynamic 
environments. 

overfitting with 
limited data. 

processing 
requirements. 

Multi-Agent 
Systems 
(MAS) 

Systems of agents 
representing 
resources 
(machines, vehicles) 
that cooperate in 
scheduling. 

Flexibility in 
distributed 
decision-
making; 
supports 
decentralized 
scheduling. 

Coordination 
complexities 
may yield 
suboptimal 
global 
outcomes. 

Distributed 
manufacturing 
systems with 
decentralized 
job and 
transport 
management. 

Hybrid DRL 
& MAS 

DRL combined with 
MAS for agent-
based learning in 
complex scheduling 
environments. 

It balances 
learning 
efficiency with 
decentralized 
decision-making 
and is suitable 
for distributed 
systems. 

High 
computational 
cost: complex 
implementation 
and tuning 
required. 

Distributed 
systems with 
multiple job and 
transport 
resources; 
adaptable 
scheduling. 

3. Objective 

This thesis aims to develop a comprehensive model for the Job Shop Scheduling Problem 

(JSSP) that optimizes both machine and transport resource allocation. The primary objectives 

are to minimize the makespan and enhance resource utilization, addressing the unique 

challenges posed by dynamic manufacturing environments. This research builds upon the 

frameworks established by Fontes et al. (2023), Ren et al. (2020), and Jungbluth et al. (2022), 

which approached similar problems using diverse algorithmic techniques and evaluated 

performance through makespan as the critical metric. Makespan, widely recognized as a 

benchmark for scheduling efficiency, serves not only as a measure of total completion time 

across all jobs but also as a foundation for deriving additional metrics such as lateness, which 

combines expected due dates with job completion times (Zambrano-Rey et al., 2023). 

A critical component of this study is exploring the intrinsic relationship between resource 

utilization and makespan. Resource utilization, which measures the efficiency of deploying 

machines and transport resources, directly impacts the makespan by reducing idle times and 

mitigating bottlenecks. By ensuring optimal resource usage, this research hypothesizes that 

scheduling models can achieve significant reductions in makespan, thereby enabling faster 
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production cycles and improved operational performance. Through this integrated approach, 

the proposed model aims to enhance system efficiency and ensure its practical applicability in 

real-world, high-variability manufacturing contexts. 

4. Methodology 

After defining the aim of this thesis, the methodology will focus on using a hybrid 

approach to solve the JSSP with transport resources. This approach combines a mixed integer 

linear programming (MILP) model for core constraints with a Deep Q-network (DQN)- based 

Reinforcement Learning (RL) method to optimize dynamic scheduling. This integrated 

technique evaluates both static and dynamic problem aspects. The MILP model rigorously 

defines constraints and decision variables, providing a clear foundation for the RL 

environment. This model precisely structures job sequencing, machine availability, and 

Automated Guided Vehicle (AGV) transport operations as the defined transport resource 

based on literature and other benchmark instances as mentioned in the Literature Review. 

The DQN-based RL solution is designed to minimize makespan and dynamically adjust 

to changes in job assignments and transport logistics. We benchmark our hybrid model’s 

makespan, scalability, and resource efficiency through extensive experiments and 

simulations. The results indicate improvements in performance and adaptability compared to 

traditional methods, enhancing better results each time. Overall, the combination of MILP 

and DQN-based RL offers a robust framework for addressing the complexities of JSSP with 

transport resources, demonstrating the potential for enhanced efficiency and reduced 

operational costs. 

4.1. Problem Setup and Formulation 

The JSSP with transport resources involves assigning multiple jobs with specific machine 

sequences, transporting needs to machines (e.g., M1 to M4), and a Loading/Unloading (LU) 

area. Each machine handles only one job at a time, while AGVs move jobs between machines 
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based on a predefined layout. The main objective is to minimize the makespan, which 

requires coordinating job scheduling, machine availability, and transport logistics under 

dynamic conditions. The MILP model was designed to formalize the core logic and 

constraints that ensure job sequencing, machine availability, and AGV transport operations. 

The model includes the following core components. 

4.1.1. Decision Variables 

Binary and continuous variables representing job assignments, machine and AGV 

allocations, and start/end times for each operation were defined to capture time costs 

associated with transport and machine operations (Azadeh et al., 2020). 

Figure 1.  

Transport times exposed by Bilge & Ulusoy (1995). 

 
Note. Figure reproduced from A multi-agent system simulation-based approach for collision 

avoidance in integrated job-shop scheduling problems with transportation tasks 

(Abderrahim, 2023, p. 215). Reproduced under fair use. 

https://doi.org/10.1016/j.jmsy.2023.03.011 

4.1.2. Objective Function 

The model’s objective function minimizes makespan by calculating the time needed to 

complete all job sequences while reducing downtime and transport times. The makespan is 

https://doi.org/10.1016/j.jmsy.2023.03.011
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typically minimized alongside energy consumption to provide a multi-objective optimization 

model, where energy costs include the energy needed for AGV transport as well as for 

machine operations (Meng et al., 2023). 

4.1.3. Constraints 

- Job Sequencing: Constraints enforce that each job follows its predefined sequence, 

only starting subsequent operations after preceding operations are completed. 

- Machine and AGV Constraints: Each machine can only process one job at a time, and 

each AGV can transport only one job between machines, echoing constraints often 

used in MILP models for transport-dependent scheduling (Azadeh et al., 2020; Meng 

et al., 2023). 

- Transport Path Constraints: Transport between machines is scheduled based on 

layout-specific transport times, ensuring AGVs are managed efficiently and comply 

with machine location constraints. 

These constraints were structured to guide the DQN environment, ensuring that the model 

respects essential scheduling principles and dynamically optimizes job completion within 

real-time constraints. While the MILP model was not executed due to computational 

requirements, it is the logical basis for implementing a constrained RL environment. 

4.2. Deep Q-Network (DQN) Implementation 

Following the MILP formulation, the RL-based approach is implemented using a DQN 

model, which is well-suited to real-time decision-making under the JSSP’s complex state and 

action spaces. The DQN-based environment (JobShopEnv) simulates real-time scheduling 

with the following state components: 

• Machine Statuses: Each machine’s availability, tracking when it is free or occupied. 

• AGV Statuses and Locations: Each AGV’s availability, along with its current 

position, is updated as it moves between jobs. 
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• Job-Machine Assignments: Tracks the next required machine for each job based on 

its sequence. 

• Time Management: The model tracks current time and machine availability times, 

facilitating state transitions based on progress updates. 

Each element is dynamically updated, allowing the DQN model to learn and optimize 

scheduling through state-action pairs while minimizing the overall makespan.  

The design and iterative refinement of the Deep Q-Network (DQN) model for the Job 

Shop Scheduling Problem (JSSP) reflects a systematic approach to addressing complex 

scheduling tasks with transport resources. Each model development phase contributed 

specific enhancements to the network architecture, data handling, and learning mechanisms, 

leading to a robust final model. 

The DQN model began with a foundational setup: a two-layer neural network designed to 

approximate Q-values in an essential scheduling environment. This version aimed to establish 

a baseline architecture to evaluate machine-job assignments, utilizing a simple replay buffer 

and standard stochastic gradient descent (SGD) for optimization. Although effective for 

initial experimentation, this architecture was limited by its: 

• Simple Network Structure: Consisting of only two hidden layers (128 and 64 

neurons), the initial version was unable to generalize well across varying job 

sequences and transport requirements. 

• Single Layout Constraint: Focused on a single layout configuration, this model had 

limited adaptability, which restricted its utility in diverse operational scenarios. 

The initial version proved invaluable in identifying essential requirements for a more 

sophisticated network, explicitly highlighting the need for enhanced flexibility, improved 

state representation, and a scalable data-loading mechanism. Based on insights from this 
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model, the second version introduced architectural and functional enhancements to address its 

predecessor’s limitations. 

• Expanded Network Architecture and RMSProp Optimization: A third hidden 

layer was added to increase the model’s interpretive capacity for complex job 

patterns, while the switch to RMSProp optimization provided better training stability, 

particularly in high-dimensional action spaces. Ending on a four-layer architecture 

able to handle more data robustness and identify optimal policies. 

• Integration of Azure Blob Storage: The model now dynamically loads data for 

multiple layouts from Azure Blob Storage to handle more complex scheduling 

scenarios. This added adaptability allowed the model to support various 

configurations for transport and machine assignments, broadening its application 

scope and usability in real-world scenarios where data is not stored locally but on 

cloud services. 

These modifications resulted in substantial gains in performance and stability. However, 

testing also revealed areas where the model’s learning process could be further optimized, 

specifically by focusing on impactful transitions to improve decision-making. This insight led 

to the addition of a prioritized learning approach in the final version. The final DQN model 

stands as a culmination of iterative refinement, incorporating a sophisticated architecture and 

advanced training techniques that enable effective decision-making across diverse scheduling 

environments. 

• Four-Layer Neural Network with Prioritized Replay Buffer: This final 

architecture includes four layers (with neurons of 256, 128, and 64), enhancing the 

model’s ability to process high-dimensional state representations and complex 

scheduling patterns. Additionally, a prioritized replay buffer was implemented to 
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focus learning on significant transitions, which optimized the quality of the model’s 

training and increased the precision of its scheduling decisions. 

• Double DQN Implementation for Stability: By adopting Double DQN, the model 

addresses the issue of Q-value overestimation and achieves more reliable Q-value 

predictions. This enhancement proved particularly useful in dynamic environments 

where machine and AGV availability fluctuate, allowing the model to make more 

accurate decisions under varying conditions. 

The development of this final model also incorporated an epsilon-decay strategy, which 

adjusted the exploration rate dynamically during training, balancing exploration and 

exploitation for optimal learning efficiency. Through these advancements, the final DQN 

model effectively manages job sequencing, machine assignments, and AGV allocations, 

demonstrating significant improvements in adaptability, stability, and overall performance. 

The progression from a basic DQN framework to this sophisticated final model illustrates 

the importance of iterative experimentation and targeted adjustments. Each phase of 

development contributed to creating a DQN model equipped to meet the complex 

requirements of job shop scheduling with transport resources, reinforcing the value of 

adaptive, data-driven approaches in engineering scheduling solutions. 

4.3. Performance Evaluation 

The DQN’s effectiveness is evaluated by comparing its makespan results against optimal 

values reported in previous studies, providing a basis for calculating the optimality gap. The 

optimality gap is measured as the difference between the DQN’s makespan and the known 

optimal from other MILP-based methods. This comparison allows us to gauge the DQN’s 

scheduling effectiveness relative to established optimization methods while respecting the 

scope and constraints initially laid out by the MILP model (Azadeh et al., 2020; Meng et al., 

2023). 
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In sum, this methodology utilizes a hybrid approach that combines the structured 

constraint formulation of a MILP model with a flexible, real-time DQN-based RL solution. 

By grounding the DQN environment in MILP-defined constraints and benchmarking its 

results against established literature, this thesis provides a comprehensive framework for 

tackling the JSSP with transport resources in a way that balances optimization with real-

world applicability. 

5. MILP Model 

In the following section, we analyze the Mixed Integer Linear Programming (MILP) 

model proposed by Fontes et al. (2023) to address the Job Shop Scheduling with Transport 

(JSPT) problem, known to be NP-hard. This model simultaneously tackles several 

interrelated combinatorial optimization challenges, specifically machine scheduling, vehicle 

assignment, and vehicle routing, effectively integrating them into a unified solution 

framework (Fontes et al., 2022). The importance of the model is that among the ones 

reviewed in the literature, the selected one includes the transportation times on the last 

transport task – from the previous machine to the Loading/Unloading (LU) area. This 

transport is vital because it allows for better calculation of the makespan. In the same way, 

these results are the most recent respect to the previous model published addressing the 

problem by the same authors.  

The model’s objective is twofold: (i) to obtain an optimal solution for more minor 

problem instances constrained by computational limits by minimizing expected job tardiness, 

and (ii) to ensure jobs return to the LU area as the final step in the transport schedule. As a 

result, each job operation requires a corresponding transport task to move the job to the 

designated machine, with the exception of the last task, which returns the job to the LU. To 

minimize exit time (makespan) for each job, a “dummy” operation with zero processing time 

is introduced for the final transport task. Upon returning to the LU, this operation signals the 
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job’s completion. Thus, the completion time of this dummy operation represents the exit time 

for each job, marking when all necessary operations and transport tasks are concluded. This 

section details the specific notations, parameters, and decision variables used in this model, as 

structured by Fontes et al. (2023). 

5.1. Sets and indices 

J: Set of jobs, indexed by j and l. 

M: Set of machines, indexed by m. 

f, t: First and last dummy jobs, each composed of as many operations as the number of 

machines, respectively, the first and last operations of the machines that process them. 

Jj: Set of nj operations of the job j ∈ J ∪ {𝑓, 𝑡}, indexed by i and k.  

𝑛𝑗 + 1: Dummy last operation of the job j ∈ J processed at the LU (Loading unloading) with 

0 processing time.  

Jj
′: Set of job operations j ∈ J including the dummy operation, i.e., 𝐽𝑗

′ = Jj ∪ {nj + 1}. 

5.2. Parameters 

Oij: Operation i ∈  Jj
′ of job j ∈ J. 

Mij: Machine that processes operation Oij, i ∈ Jj
′, j ∈ J, where M(nj+1)j, is by definition, the 

LU. 

Tij: Transport task to deliver job j to machine Mij, i ∈ JJ
′, j ∈ J. 

Pij: Processing time of operation Oij, i ∈ Jj
′, j ∈ J with P(nj+1)j = 0 . 

𝜏𝑖𝑗
𝑘𝑙: Travel time from the machine Mij to machine Mkl, i ∈ Jj

′, k ∈ Jl
′, j, l ∈ J. 

A: Number of available vehicles. 

LN: A sufficiently large positive integer.   

5.3. Decision variables 

wij
kl: Binary variable taking the value 1 if operation Okl is processed immediately after the 

operation Oij on the same machine and 0 otherwise, k ∈ Jl, l ∈ J ∪ {t}, i ∈ Jj, j ∈ J ∪ {f}. 
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xij
kl: Binary variable taking the value 1 if transport task Tkl is done immediately after transport 

task Tij by the exact vehicle and 0 otherwise, k ∈ J𝑙
′, l ∈ J, Tij, i ∈ J𝑗

′ , j ∈ J. 

uij: Binary variable taking the value 1 if transport task Tij is the first task of a vehicle and 0 

otherwise, i ∈ Jj
′ , j ∈ J 

zij: Binary variable taking the value 1 if the transport task Tij is the last task of a vehicle and 0 

otherwise, i ∈ Jj
′ , j ∈ J. 

5.4. Auxiliary variables 

TDj: Maximum tardiness expected for each job, j ∈ J. 

cij: Completion time of operation Oij, i ∈ Jj
′, j ∈ J. 

Vij: Vehicle arrival time at the machine Mij, i ∈ Jj
′, j ∈ J.  

5.5. Objective Function 

Minimize ET   (1) 

5.6. Constraints 

Subject to: 

𝐸𝑇 ≥ 𝑐(𝑛𝑙+1)𝑙, ∀𝑙 ∈ 𝐽  ( 2 ) 

∑ 𝑤𝑖𝑙
𝑘𝑙

𝑖<𝑘∈𝐽𝑙
+ ∑ ∑ 𝑤𝑖𝑗

𝑘𝑙
𝑖∈𝐽𝑗𝑗∈𝐽\{𝑙} + ∑ 𝑤𝑖𝑓

𝑘𝑙
𝑖∈𝐽𝑓

= 1, ∀𝑙 ∈ 𝐽 ∪ {𝑡}, 𝑘 ∈ 𝐽𝑙  ( 3 ) 

∑ 𝑤𝑘𝑙
𝑖𝑙

𝑖>𝑘∈𝐽𝑙
+ ∑ ∑ 𝑤𝑘𝑙

𝑖𝑗
𝑖∈𝐽𝑗𝑗∈𝐽\{𝑙} + ∑ 𝑤𝑘𝑙

𝑖𝑡
𝑖∈𝐽𝑡

= 1, ∀𝑙 ∈ 𝐽 ∪ {𝑓}, 𝑘 ∈ 𝐽𝑙  ( 4 ) 

∑ ∑ 𝑧𝑖𝑗𝑖∈𝐽𝑗
′𝑗∈𝐽 = ∑ ∑ 𝑢𝑖𝑗𝑖∈𝐽𝑗

′𝑗∈𝐽   ( 5 ) 

∑ ∑ 𝑢𝑖𝑗𝑖∈𝐽𝑗
′𝑗∈𝐽 ≤ 𝐴  ( 6 ) 

𝑢𝑘𝑙 + ∑ 𝑥𝑖𝑙
𝑘𝑙

𝑖<𝑘∈𝐽𝑗
′ + ∑ ∑ 𝑥𝑖𝑗

𝑘𝑙
𝑖∈𝐽𝑗

′ = 1𝑗∈𝐽\{𝑙} , ∀𝑙 ∈ 𝐽, 𝑘 ∈ 𝐽𝑙
′  ( 7 ) 

𝑧𝑘𝑙 + ∑ 𝑥𝑘𝑙
𝑖𝑙

𝑖>𝑘∈𝐽𝑗
′ + ∑ ∑ 𝑥𝑘𝑙

𝑖𝑗
𝑖∈𝐽𝑗

′ = 1𝑗∈𝐽\{𝑙} , ∀𝑙 ∈ 𝐽, 𝑘 ∈ 𝐽𝑙
′  ( 8 ) 

𝑐𝑘𝑙 − 𝑣𝑘𝑙 − 𝑃𝑘𝑙 ≥ 0, ∀𝑙 ∈ 𝐽, 𝑘 ∈ 𝐽𝑙
′  ( 9 ) 

𝑐𝑘𝑙 − 𝑐𝑖𝑗 − 𝑃𝑘𝑙 ≥ 𝐿𝑁(𝑤𝑖𝑗
𝑘𝑙 − 1), ∀𝑗, 𝑙 ∈ 𝐽, 𝑖 ∈ 𝐽𝑗 , 𝑘 ∈ 𝐽𝑙  (if 𝑗 = 𝑙 ∶ 𝑘 > 𝑖)  ( 10 ) 
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𝑣𝑘𝑙 − 𝑐(𝑘−1)𝑙 − 𝜏(𝑘−1)𝑙
𝑘𝑙 ≥ 0, ∀𝑙 ∈ 𝐽, 𝑘 ∈ 𝐽𝑙

′ \ {1}  ( 11 ) 

𝑣1𝑙 − 𝜏𝐿𝑈
1𝑙 ≥ 0, ∀𝑙 ∈ 𝐽  ( 12 ) 

𝑣𝑘𝑙 − 𝑣𝑖𝑗 − 𝜏𝑖𝑗
(𝑘−1)𝑙 − 𝜏(𝑘−1)𝑙

𝑘𝑙 ≥ 𝐿𝑁(𝑥𝑖𝑗
𝑘𝑙 − 1), ∀𝑗, 𝑙 ∈ 𝐽, 𝑖 ∈ 𝐽𝑙

′, 𝑘 ∈ 𝐽𝑙 
′ \ {1}, (𝑖𝑓 𝑗 = 𝑙 ∶ 𝑘 > 𝑖) 

 ( 13 ) 

𝑣1𝑙 − 𝑣𝑖𝑗 − 𝜏𝑖𝑗
𝐿𝑈 𝑙 − 𝜏𝐿𝑈 𝑙

𝑘𝑙 ≥ 𝐿𝑁 (𝑥𝑖𝑗
1𝑙 − 1), ∀𝑗, 𝑙 ∈ 𝐽 ∶ 𝑗 ≠ 𝑙, 𝑖 ∈ 𝐽𝑗

′  ( 14 ) 

𝑤𝑖𝑗
𝑘𝑙, 𝑥𝑖𝑗

𝑘𝑙 ∈ {0,1}, ∀ 𝑗, 𝑙 ∈ 𝐽 ∪ {𝑓, 𝑡}, 𝑖 ∈ 𝐽𝑗
′ , 𝑘 ∈ 𝐽𝑙

′  ( 15 ) 

𝑇𝐷, 𝑐𝑘𝑙, 𝑣𝑘𝑙 ≥ 0, ∀𝑙 ∈ 𝐽, 𝑘 ∈ 𝐽𝑙
′  ( 16 ) 

0 ≤ 𝑢𝑘𝑙 , 𝑧𝑘𝑙 ≤ 1, ∀𝑙 ∈ 𝐽, 𝑘 ∈ 𝐽𝑙
′  ( 17 )   

5.7. Development of the model 

Based on the model presented by Fontes et al. (2023)  and its way of elaborating on the 

multiple constraints, below will be described each one of them and its interpretation. The 

objective is to minimize the maximum exit time (ET), and its value is determined as the most 

extensive completion time of the last (dummy) operation over all of the jobs, as in inequality 

 ( 2 ). Constraints  ( 3 ) and  ( 4 ) Impose that each operation be immediately 

followed and immediately preceded by precisely one other operation on the same machine. 

Constraint  ( 5 ) ensures the same number of first and last tasks for the vehicles, whereas 

constraint  ( 6 ) ensures it is at most the number of available vehicles simultaneously in 

the system. Constraints  ( 7 ) and  ( 8 ) impose each task to be immediately 

followed and immediately preceded by precisely one other task, respectively. Given that, a 

set of determined tasks is set through constraints  ( 5 ) to  ( 8 ), vehicles are handled 

implicitly. Hence, an additional index is not required. 

For the completion time, two constraints must be satisfied. On the one hand,  ( 9 

) indicates that an operation can only be finished after the job arrives at the machine 

processing it and its processing time has elapsed. On the other hand,  ( 10 ) ensures that 

the completion of an operation requires the completion of the previous operation on the same 
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machine in addition to its own processing time in the current one. Likewise, a job can only 

arrive at a machine to have a specific operation processed after its previous operation has 

been completed (c(k−1)l) . The job has already been transported from the machine of the 

previous operation to the current one (𝜏(𝑘−1)𝑙
𝑘𝑙 ) as stated in constraint ( 11 ), except for being 

the first job operation (k=1). In that case, constraint ( 12 ) ensures that the arrival time of the 

vehicle to the first operation must have completed the whole travel to the first machine where 

the job will be processed, as it will arrive as soon as the job has been transported from the 

L/U area to the first processing machine. 

Furthermore, if a vehicle has transported some other job (j ∈ J: j ≠ l)Immediately before 

the current one, then it needs to (i) deliver such a job to the corresponding machine (𝑣𝑖𝑗); (ii) 

pick up the current job from where the previous operation was processed (𝜏𝑖𝑗
(𝑘−1)𝑙) or the LU 

if it is the first operation (𝜏𝑖𝑗
𝐿𝑈) and (iii) deliver it to the corresponding machine (𝜏(𝑘−1)𝑙

𝑖𝑗  or 

𝜏𝐿𝑈
𝑘𝑙 ), enforced by constraints  ( 13 ) and  ( 14 ). Finally, from constraint ( 15 ) to ( 17 ) It 

defines the nature of the variables. 

6. Deep Q-Network (DQN) 

The Job Shop Scheduling Problem (JSSP) is a classic optimization problem in operations 

research, involving assigning jobs to resources (machines) over time, aiming to optimize 

performance measures such as makespan, total tardiness, or throughput. When transport 

resources, such as Automated Guided Vehicles (AGVs), are introduced to move jobs between 

machines, the complexity of the problem increases significantly. This added complexity 

necessitates advanced solution methods capable of handling the dynamic and stochastic 

nature of the environment. 

Deep Reinforcement Learning (DRL) has emerged as a promising approach for solving 

complex scheduling problems due to its ability to learn optimal policies through interaction 

with the environment. Specifically, the Deep Q-Network (DQN) algorithm, introduced by 



29 

Mnih et al. (2015), combines Q-learning with deep neural networks to approximate the 

optimal action-value function. 

The neural network-based job shop scheduling model evolved through three versions. 

Each iteration has progressively optimized both the environmental setup and training 

mechanisms to handle complex job scheduling scenarios involving multiple machines, 

automated guided vehicles (AGVs), and transport times, which are essential for minimizing 

makespan in dynamic scheduling environments. 

6.1. Job Shop Scheduling Environment: Structural Setup and Data 
Organization 

The JobShopEnv class, which simulates the scheduling environment, was designed to 

support 4 primary machines and a Loading-Unloading (LU) area, with multiple AGVs 

facilitating transport between areas. The environment's state space captures various elements: 

• Machine and AGV Statuses: Tracking machine availability and AGV locations. 

• Job Sequences and Processing Times: Each job follows a defined sequence of 

machines, with varying processing times and machine assignments. 

• Transport Times: Each layout is defined by transport time matrices (df1, df2, df3, 

and df4) representing the time between locations for each of the four layouts. 

Each version of the code improves the efficiency and accessibility of this data. By the 

final version, the t_times () function uses a dictionary to simplify the selection of transport 

times based on layout input, reducing redundancy. 

6.2. Key Functions and Methods 

1. Environment Initialization and State Reset 

The environment is initialized with critical variables: 

o machine_status: A binary array where 0 indicates a free machine, and 1 

indicates a busy machine. 
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o agv_status and agv_locations: Track AGV availability and location to manage 

job transport. 

o job_next_machine: Tracks each job’s sequence to manage its progression 

through the job shop. 

In each version, the reset () method reinitializes these variables at the beginning of an 

episode, preparing the environment for each new cycle. Given the hardware constraints, 

additional logging in later versions supports debugging and performance monitoring. 

2. State Representation and Sequence Completion Check 

o _get_state (): Concatenates data into a single state vector, including machine 

and AGV statuses, job-machine times, AGV locations, and locations. 

o _check_done (): Verifies whether all jobs have completed their assigned 

machine sequences. 

3. Step Function and Transition Dynamics 

The step(action) method is central to the environment's dynamics. Each action is 

represented by a tuple (job, machine, AGV) that assigns a job to a machine with a specific 

AGV. The function validates machine and AGV availability, calculates transport and 

processing times, and updates the state. 

The evolution of step () across versions highlights vital improvements: 

o Error Handling and Resource Checking: In NNCodeRMS.py and 

NNCodeRMSV2.py, the method handles cases where resources are busy, 

advancing the environment's time to the following available resource and 

avoiding idle states. 

o Transport and Processing Time Calculation: 

▪ Transport Time (TT):  

𝑇𝑇 = 𝑇𝑒𝑚𝑝𝑡𝑦 + 𝑇𝑙𝑜𝑎𝑑𝑒𝑑  (18) 
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▪ where: 

▪ 𝑇𝑒𝑚𝑝𝑡𝑦: Transport time from the AGV’s location to the job’s 

location. 

▪ 𝑇𝑙𝑜𝑎𝑑𝑒𝑑: Transport time from the job’s location to the target 

machine. 

▪ Processing Time (PT): Specific to each job-machine pair, calculated 

from data tables for each job’s processing requirements on each 

machine. 

These updates allow the model to track the dynamic scheduling scenario accurately, 

responding to job and machine availability in real-time. 

6.3. Neural Network Architecture and Training Methodology 

The neural network, DQNScheduler, is structured as a Deep Q-network (DQN) to 

approximate Q-values for each action-state pair. The DQN's architecture underwent 

enhancements to accommodate the increasing complexity of scheduling scenarios: 

1. Initial Model Utilized a three-layer architecture with 128 and 64 neurons in hidden 

layers, optimized with the Adam optimizer. 

2. Expanded Model: Increased hidden layer neurons to 256, 128, and 64, providing a 

more detailed mapping of the complex scheduling landscape. RMSprop optimizer 

replaced Adam to stabilize gradients, specifically under the sparse reward structure 

inherent in job shop scheduling. 

3. Final Model: Incorporated a Double DQN with a target network to address the 

overestimation bias often present in Q-learning. By decoupling action selection from 

target generation, Double DQN improved the model’s accuracy and convergence. 
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o Target Network Update: The target network’s parameters are periodically 

synchronized with the leading DQN network, providing a stable target for Q-

value updates and reducing instability. 

6.4. Experience Replay and Prioritization  

A critical component of the model's improvement is the Replay Buffer: 

1. Simple Replay Buffer (First and Second Versions): Stores recent experiences and 

samples them randomly for batch updates. The train_dqn_batch function selects a 

batch of experiences to compute the loss, defined as the mean squared error (MSE) 

between the predicted Q-values and target Q-values: 

loss =
1

N
∑ (Q(si, ai) − (ri  + γ max

a′
Q′(si+!, a′)))

2

  N
i=1   (19) 

where Q (s, a) is the predicted Q-value for state s and action a. 𝛾 is the discount factor, 

and Q’ is the target network Q-value. 

2. Prioritized Replay Buffer (Final Version): In this version, introduced prioritized 

replay with adjustable prioritization (α) and importance sampling (β) to focus learning 

on high-error experiences, which likely represent more impactful transitions. This 

prioritization is managed by calculating the TD error for each experience: 

priority = (|TD error| + ϵ)α  (19) 

where 𝛼 controls prioritization strength and 𝜖 avoids zero probability for any 

experience. Importance weights, w, adjust the loss for bias introduced by prioritized 

sampling: 

wi = (
1

N
∗

1

P(i)
)

β

   (20) 

where P(i) is the probability of sampling experience iii, and β\betaβ increases over 

time to reduce sampling bias. 

6.5. Training the Model and Epsilon-Greedy Policy 
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Training dynamics evolved to optimize exploration-exploitation balance, with different 

epsilon decay strategies across versions: 

1. Early Exploration (First Version): The initial model maintained a constant decay 

rate to balance exploration and exploitation. The train_dqn_batch function updates 

the model with the sampled experiences. 

2. Adaptive Decay (Second and Final Versions): In these versions, decay rates adjust 

based on the training phase: 

o Higher Decay Rates in early episodes prioritize exploration. 

o Reduced Decay Rates in later episodes shift focus to exploitation, 

consolidating the learned policy. 

The final version introduces the Double DQN structure, splitting Q-value 

maximization and action selection across two networks to avoid Q-value overestimation: 

𝑦 =  𝑟 + 𝛾 𝑚𝑎𝑥𝑎` 𝑄(𝑠′, 𝑎′)𝑦)  (21) 

where Q is the policy network, and Q′ is the target network. 

6.5.1. Epsilon Decay greedy policy 

The epsilon-greedy policy is a fundamental strategy in reinforcement learning that 

balances exploration (trying new actions) and exploitation (selecting the best-known actions 

based on learned Q-values). This balance is particularly crucial in job shop scheduling, where 

the model must efficiently search through a vast action space of job-machine-AGV 

assignments while quickly adapting to high-value scheduling patterns that minimize 

makespan. 

1. Epsilon (ε) Parameter and Decay Strategy 

The epsilon-greedy policy is controlled by an epsilon parameter (ε), representing the 

probability that the model will select a random action rather than the action with the highest 

Q-value. Initially, epsilon is set high (e.g., ε = 1.0) to encourage exploration across diverse 
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actions. As training progresses, epsilon is gradually decayed to a lower threshold (e.g., 

𝜖𝑚𝑖𝑛 = 0.1 ), shifting the focus toward exploitation. The epsilon-greedy policy balances 

exploration and exploitation: 

π(a|s) = {
random action,    with probability ϵ

arg maxa Q(s, a),   with probaility 1 − ϵ
  (22) 

In this way, the epsilon value decays over time to reduce exploration as the agent learns. 

2. Decaying Epsilon Across Episodes 

Each version of the model implemented a different epsilon decay strategy to optimize 

exploration-exploitation trade-offs: 

o Constant Decay Rate (First Version): In this version, epsilon decayed 

steadily, encouraging exploration in early episodes and moving to exploitation 

in later ones. However, this fixed rate limited flexibility in training adaptation. 

o Adaptive Decay Rate (Second and Final Versions): From the second 

version onwards, adapted the decay rate dynamically, depending on the 

training phase: 

▪ Exploration Phase (First 90% of Episodes): As a primary basis, the 

focus was on exploring the solution space to focus on exploitation 

based on the possible solution at the end. 

▪ Exploitation Phase (Last 10% of Episodes): Once the solution space 

was explored, it was essential to improve the possible results obtained. 

o Adaptive Decay Rate (Final Version): In this version, the decay rate was 

expanded dynamically across the phases: 

▪ Explorative Phase (First 30% of Episodes): A slow decay rate (e.g., 

0.999) maintained a high epsilon value to maximize exploration. This 

phase ensured a thorough search through potential job-machine-AGV 

configurations, helping the model learn the broader action space. 
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▪ Balanced Phase (30-50% of Episodes): A moderate decay rate (e.g., 

0.995) gradually reduced exploration, allowing the model to begin 

exploiting known high-reward actions while still discovering 

alternative strategies. 

▪ Exploitation Phase (Final 50% of Episodes): A faster decay rate 

(e.g., 0.990) minimized epsilon, steering the model toward 

exploitation. This phase consolidated learning, prioritizing the 

refinement of high-value strategies identified earlier. 

3. Action Selection and Behavior Adjustment 

At each decision step, the model generates a random number between 0 and 1: 

o If the number is less than epsilon, the model performs exploration by 

selecting a random action. This prevents the model from getting trapped in 

suboptimal, repetitive schedules and helps it discover potential high-reward 

actions. 

o If the number is more significant than epsilon, the model performs 

exploitation by selecting the action with the highest Q-value for the current 

state. This Q-value is derived from the neural network’s predictions, reflecting 

the cumulative expected reward for each action. 

In the final version, the epsilon-greedy policy further benefited from prioritized 

experience replay. The model reinforced learning in challenging or impactful states by re-

sampling experiences with high TD (temporal difference) errors, accelerating convergence to 

optimal job scheduling strategies even as epsilon decreased. 

4. Impact on Scheduling Performance 

The epsilon-greedy policy, especially with adaptive decay, played a critical role in 

balancing initial exploration with later exploitation. This approach improved the model’s 
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ability to identify effective job-machine-AGV combinations, minimizing makespan across 

diverse layouts and job sets. By managing exploration strategically, the policy ensured that 

the final model could generalize across various scheduling environments and specialize in 

efficient, makespan-minimizing schedules as training progressed. 

In summary, the epsilon-greedy policy’s adaptive decay facilitated a progressive 

exploration-exploitation transition, critical to uncovering and solidifying high-quality 

scheduling policies. This strategy contributed to the model’s robust learning curve, driving its 

capacity to minimize makespan effectively within the job shop environment. 

6.6. Performance and Results  

The progressive refinement across code versions produced a neural network model 

capable of: 

• Efficient Makespan Minimization: Through dynamic action selection based on real-

time state representation. 

• Scalable Action-Space Handling: By incorporating prioritized experience replay and 

the Double DQN architecture, the model effectively learns optimal actions even in 

large, sparse action spaces. 

The final version demonstrates robustness in handling high-dimensional scheduling tasks 

with real-time decision-making. The model achieved minimized makespan values, with 

improved stability and convergence facilitated by the prioritized replay buffer and target 

network architecture. Performance metrics were logged using TensorBoard, providing 

detailed insights into reward trajectories across training episodes. 

Finally, this neural network-based scheduling model integrates complex operations 

research concepts within a deep learning framework, showcasing progressive improvements 

that advance both model robustness and computational efficiency. Each enhancement in 

neural network architecture and scheduling environment reinforces the model’s capacity to 
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handle dynamic and realistic job shop scenarios with high precision and minimal 

computational overhead. 

7. Results 

Based on the model and results from various authors, this section will discuss the 

findings, compute the optimal gap between this model and others addressing the same issue, 

and detail the constraints encountered during development and testing. The reinforcement 

learning model was created in VS Code and deployed on a MacBook Pro with an M1 chip 

and 8GB of RAM. The optimal gap will be evaluated against the results in Table 3, using the 

following formula for percentage calculation: 

𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑔𝑎𝑝 =
𝑉𝑎𝑙𝑢𝑒 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑜𝑛 𝐷𝑄𝑁 𝑀𝑜𝑑𝑒𝑙

𝑉𝑎𝑙𝑢𝑒 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑜𝑛 𝑀𝐼𝐿𝑃 𝑀𝑜𝑑𝑒𝑙
− 1    (23) 

This measure will be applied as a math formula to contrast the results. For this purpose, 

this will be evaluated on the benchmark instances created for the problem explained by Bilge 

& Ulusoy (1995); in the Literature Review section, Table 1 enumerates some  

solutions deployed across the multiple papers enunciated to compare with. 

The table below presents three versions of the model. The first uses the Adam 

optimizer and shows the best feasible time achieved. The second is a more advanced model 

with the RMSprop optimizer, applying the same methodology to preserve the results. The 

final version also uses the RMSprop optimizer but with bolder hyperparameters and a 

modified environment to ensure the MILP Model's presentation. Later, these results will be 

compared to those of the MILP Model and the times calculated from the following simplified 

Lower Bound calculated out of the following formulas: 

𝐶𝑗 = ∑ 𝑝𝑗𝑚𝑚∈𝑀𝑗
+ ∑ 𝑡𝑗,𝑚→𝑚′𝑚∈𝑀𝑗,𝑚′→𝑛𝑒𝑥𝑡 (𝑚)   (24) 

Where 𝐶𝑗 is the completion time of a job, 𝑝𝑗𝑚 is the processing time of a job in the 

machines assigned to it, and 𝑡𝑗,𝑚→𝑚′ is the transport time associated to the job from a 
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machine to the following one. The calculation is made for all the jobs in order to be compared 

against the following one: 

𝑇𝑙𝑠 = max
𝑗∈𝐽

𝐶𝑗   (25) 

Where 𝑇𝑙𝑠 is the optimal time to be reeached when all resources are available or 

mostly commonly known as the Lower Bound (LB), indicating the minimum possible 

feasible time. In this scenario, this time includes the transport times from Loading/Unloading 

(LU) Area to the machines, and the last transport task to return the job to the LU Area. 

Table 2.  

Results for the BU instances to minimize the exit time (ET) for 2 AGVs. 

Instance Set Layout MILP LB PSOSA ALS MA 

EX11 1 1 114 82 114 114 114 

EX12 1 2 90 76 90 90 90 

EX13 1 3 98 78 98 98 98 

EX14 1 4 140 97 140 140 140 

EX21 2 1 116 92 116 116 116 

EX22 2 2 82 80 82 82 82 

EX23 2 3 89 84 89 89 89 

EX24 2 4 134 98 134 134 134 

EX31 3 1 121 90 121 121 121 

EX32 3 2 89 79 89 89 89 

EX33 3 3 96 79 96 96 96 

EX34 3 4 148 102 148 148 148 

EX41 4 1 136 95 136 136 138 

EX42 4 2 100 73 100 100 100 

EX43 4 3 102 70 102 102 102 

EX44 4 4 163 114 163 163 163 

EX51 5 1 110 77 110 110 110 

EX52 5 2 81 67 81 81 81 

EX53 5 3 89 67 89 89 89 

EX54 5 4 134 97 134 134 134 

EX61 6 1 129 102 129 130 129 

EX62 6 2 102 92 102 102 102 

EX63 6 3 105 92 105 105 105 

EX64 6 4 151 104 151 151 151 

EX71 7 1 146 94 134 133 134 

EX72 7 2 86 80 86 87 86 
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EX73 7 3 93 80 93 95 93 

EX74 7 4 169 114 161 161 161 

EX81 8 1 167 154 167 167 167 

EX82 8 2 155 146 155 155 155 

EX83 8 3 155 146 155 155 155 

EX84 8 4 178 160 178 178 178 

EX91 9 1 127 99 127 127 127 

EX92 9 2 106 95 106 106 106 

EX93 9 3 107 95 107 107 107 

EX94 9 4 149 105 149 149 149 

EX101 10 1 153 130 153 153 153 

EX102 10 2 139 118 139 139 139 

EX103 10 3 139 118 139 139 139 

EX104 10 4 183 134 183 183 183 

Note. Adapted from "A hybrid particle swarm optimization and simulated annealing algorithm for the 

job shop scheduling problem with transport resources" by Fontes et al. (2023), European Journal of 

Operational Research, 306(3), 1155. https://doi.org/10.1016/j.ejor.2022.09.006. 

The following images represent the possible combinations in which the models were 

trained and the obtained makespan for each one of the scenarios: 

Figure 2. 

Makespan given AGVs ranges for each layout and its sets. 

 
 

https://doi.org/10.1016/j.ejor.2022.09.006
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Figure 3. 

Makespan given AGVs ranges for each layout and its sets. 

 

 
Figure 4. 

Makespan given AGVs ranges for each layout and its sets. 
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Figure 5. 

Makespan given AGVs ranges for each layout and its sets. 

 

 

Figure 6. 

Makespan given AGVs ranges for each layout and its sets. 
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Figure 7. 

Makespan given AGVs ranges for each layout and its sets. 

 

 

Figure 8. 

Makespan given AGVs ranges for each layout and its sets. 
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Figure 9. 

Makespan given AGVs ranges for each layout and its sets. 

 

Figure 10. 

Makespan given AGVs ranges for each layout and its sets. 
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Figure 11. 

Makespan given AGVs ranges for each layout and its sets. 

 

 

 

Figure 12. 

Makespan given AGVs ranges for each layout and its sets. 
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Figure 13. 

Makespan given AGVs ranges for each layout and its sets. 

 
A common issue is that the availability of AGVs or other transport resources alone isn't 

enough to run the model efficiently. Increasing model robustness led to longer execution 

times: 20 hours for the first model, 26 for the second, and 46 for the final version under 200 

scenarios. Per scenario, times rose from 6 to 8 to 14 minutes. Using multiple GPUs or faster 

cores can improve these metrics. Additional calculations will assess diverse error metrics, and 

a simplified Lower Bound will facilitate robust benchmark analysis where AGVs match the 

number of simultaneous jobs. 

8. Analysis 

Once the results are obtained, the most important part is to evaluate the performance of 

the algorithm employed to obtain the results. Therefore, the mean squared error (MSE) as an 

error measurement performs a vital part in the improvements and measurement of the results, 

the same as the difference obtained against other solutions and MILP Models implemented. 

In this model, Spearman's rank correlation coefficient was chosen to analyze the 

relationship between the number of jobs and the percentage difference in makespan obtained 
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in each configuration. Spearman's coefficient is particularly useful here because it measures 

the strength and direction of a monotonic relationship between two variables, without 

assuming a linear association or requiring normally distributed data, given that each set has a 

different number of jobs and processing times. This makes it well-suited for our dataset, 

where an increase in the number of jobs may correlate with changes in makespan differences 

in a way that is not strictly linear but potentially consistently increasing or decreasing. 

Limited resources like AGVs contribute to this difference when the number of jobs exceeds 

the available AGVs, making scenario evaluation difficult. The table below shows Spearman’s 

correlation coefficient values, and statistical measures against the optimal time to be reached 

when all resources are available for four scenarios: 

- Scenario 1: Second model with RMS optimizer 

- Scenario 2: First model with Adam optimizer 

- Scenario 3: Second model with RMS optimizer, excluding set 8 from all layouts 

- Scenario 4: First model with Adam optimizer, excluding set 8 from all layouts 

- Scenario 5: Third model with RMS optimizer 

- Scenario 6: Third model with RMS optimizer, excluding set 8 from all layouts 

Table 3. 

Analysis of deployment against optimal calculated 

Scenario Max Difference Min Difference Mean Difference 
Spearman's Correlation 

Coefficient 
P-value 

Scenario 1 115.38% 1.06% 36.42% 0.6202 0.000019663 

Scenario 2 127.69% 0.00% 39.07% 0.6977 0.000000561 

Scenario 3 96.08% 1.06% 31.74% 0.6165 0.000048505 

Scenario 4 92.16% 0.00% 32.18% 0.7097 0.000001258 

Scenario 5 123.77% 0.00% 36.42% 0.6145 0.000014992 

Scenario 6 67.31% 0.00% 29.01% 0.6093 0.000049054 
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The formula for Spearman’s rank correlation, denoted as 𝜌, is based on ranking each 

variable and computing the correlation of these ranks. It is calculated as: 

𝜌 = 1 −
6 ∑ 𝑑𝑖

2

𝑛(𝑛2−1)
  (26) 
 

Where 𝑑𝑖 represents the difference between the ranks of each pair of observations, 

and n is the total number of observations. By ranking both variables, Spearman's 𝜌 is less 

sensitive to outliers than Pearson’s correlation coefficient, making it more robust for data that 

may have irregular distributions or outlying values. The value of 𝜌 ranges from -1 to 1. A 𝜌 

value close to 1 indicates a strong positive monotonic relationship (as one variable increases, 

the other also increases), while a value close to -1 suggests a strong negative monotonic 

relationship. A 𝜌 near zero implies little to no monotonic association. Thus, Spearman’s 

coefficient enables us to interpret whether an increase in job numbers is associated with an 

increase or decrease in the makespan difference percentage, providing insight into how 

scaling the job count may affect the model’s deviation from optimal results. In this case, it 

indicates that there is a moderate to strong positive relationship for both variables (number of 

jobs and difference obtained from the optimal time with no resource limitation). 

Once the difference against the LB proposed is calculated and its behavior has been 

already identified, indicating a positive relationship between the number of jobs and the 

difference obtained in percentage. The MSE must be evaluated on the different instances to 

analyze whether the improvement was effectively implemented. As mentioned above, Table 

1 shows the Exit Times (ET) obtained for different types of models in a 2 AGV scenario. The 

following table resumes the error measurement and its impact on the performance: 
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Table 4. 

MSE for 2 AGVs instances compared on benchmark 

MSE Model 1 Model 2 Model 3 

MILP 9013,425 8163,45 2903,525 

LB 14506,475 13596,05 6295,775 

PSOSA 9097,425 8258,45 2967,725 

ALS 9080,35 8243,125 2956,8 

MA 9084,925 8247,75 2964,225 

 

Figure 14. 

MSE across benchmark models with the final version 

 
The Mean Squared Error (MSE) plays a critical role in model evaluation, especially 

within neural networks. As shown in the previous table, MSE values offer a precise and 

quantitative assessment of a model's accuracy. The following formula indicates how this error 

metric is considered: 

MSE =
1

n
∑ (yi − ŷi)

2n
i=1    (27) 

Where n refers to the number of data points, yi is the actual point obtained on the 

neural network developed for this case, and ŷi is the predicted or estimated value of the i-th 

data point. For this instance, the data point to be reached based on different algorithms. 
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A lower MSE signifies that the predicted values are closely aligned with the actual 

values, reflecting better model performance. There are several benefits to using MSE as an 

error metric. Firstly, it disproportionately penalizes larger errors due to the squaring of 

individual errors, prompting the model to minimize substantial deviations and thereby 

enhance reliability. Secondly, MSE is differentiable, which is vital for optimization 

algorithms employed in training neural networks. It provides a smooth gradient that aids 

effective backpropagation and convergence to optimal solutions. 

Furthermore, evaluating neural networks with MSE is essential for comparing 

different models. Employing consistent and standardized error metrics like MSE allows for 

fair comparisons across various models and datasets. In operations research and statistics, this 

comparison is crucial for selecting the most suitable model for a specific task. It enables 

researchers and practitioners to objectively assess performance enhancements and make data-

driven decisions. Table 4 illustrates the MSE for different models, demonstrating significant 

improvements in model evolution. This progress highlights the importance of iterative 

evaluation and refinement in achieving top-tier model performance. Continuous assessment 

with metrics like MSE ensures that each iteration improves upon previous versions, reducing 

errors and boosting accuracy. 

In summary, MSE is indispensable in the statistical evaluation of neural networks. It 

offers a robust framework for minimizing prediction errors, optimizing model training, and 

facilitating objective comparisons. Focusing on MSE ensures that models are not only 

accurate but also reliable and effective in real-world applications. These principles are 

demonstrated by the results, which show a reduction in mean difference—a critical factor in 

cost-impact decisions for practical applications. 
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Table 5. 

Performance Metrics of Different Models against MILP Makespan 

Model Mean Difference Standard Deviation 

Model 1 90,625 28,654 

Model 2 87,850 21,384 

Model 3 49,325 21,969 

Figure 15. 

Performance Metrics of Different Models against MILP Makespan 

 

 
As detailed in the Results section, the optimal Gap calculated based on (23) is 

determined for each instance. The current model shows significant improvement, highlighted 

by substantial reductions in the relevant metrics. This enhancement is attributed to the 

increase in the number of episodes and the expansion of the buffer, which facilitates learning 

from past experiences and developing effective policies to address the problem. Although the 

average gap continues to decrease, it does not reach the optimal solution due to 

computational time constraints associated with broader data sets. There is a trade-off between 

optimality, generalization, and computational time; improving one of these aspects impacts 

the others due to their interdependence. If greater optimality is sought, computational times 

will rise, and generalization might be affected. Similarly, enhancing generalization could lead 

to longer computation times and suboptimal optimization, potentially improving but not 
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guaranteeing a perfect result. Higher computational times support the exploration and 

exploitation of the other two aspects, contingent on having appropriate resources. 

Table 6. 

Optimal Gap Metrics 

Model Mean Optimal Gap Standard Deviation 

Model 1 76,48% 0,27189 

Model 2 74,78% 0,24720 

Model 3 41,63% 0,21275 

 

The improvement in results was attributed to dynamic hyperparameter tuning and 

optimized data processing techniques within the neural network’s tensor, which included 

modifications that significantly enhanced performance metrics. The alterations in 

hyperparameters led to the discovery of more efficient scheduling policies, consequently 

reducing the makespan and increasing the stability of training through larger batch sizes and 

replay buffers. Moreover, adjusting the epsilon decay rate facilitated the agent's convergence 

to superior policies by ensuring sustained exploration. However, these advancements 

necessitated greater computational resources, as larger batch sizes and replay buffers 

escalated memory consumption, posing a challenge to systems with limited RAM. 

Additionally, the networks' complexity and the extended training duration demanded 

meticulous resource management and patience. 
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Figure 16. 

Makespan obtained for 2 AGVs comparing models vs MILP. 

 
Moreover, evaluating finer-tuning options for each instance and scenario would 

enhance the performance metrics and accuracy of the model, given the nature of a MILP 

model and every optimization problem. The logic behind a MILP model, which serves as the 

primary benchmark due to its hybrid approach, is to assess all possible combinations to 

identify the optimal result. Dynamically modifying hyperparameters can help escape local 

optima and identify global optima, thereby improving performance against benchmark 

instances. Performance improvements should be proportionately increased across all 

scenarios rather than focusing solely on the evaluated ones, considering this could result in 

higher computational requirements such as increased GPU or CPU consumption and memory 

usage. By dynamically and randomly evaluating the scenarios, some results exhibited 

significant improvement. However, in extreme situations where resources are less critical, the 

model's behavior varies depending on the encoding and decoding methods used. 

Consequently, it could be adjusted to achieve consistent outcomes and allow for ongoing 

modifications.  
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One notable benefit of training these models is their capacity to make predictions for 

similar scenarios without starting from scratch, as well as their ability to personalize or 

generalize based on the intended use. Additionally, the model can benefit from Transfer 

Learning (TL), which facilitates generalization according to the desired application. 

Evaluating results using different optimizers is essential due to their differing characteristics. 

While both Adam and RMSProp are designed to adjust learning rates, Adam uses momentum 

concepts, whereas RMSProp normalizes gradients using their root mean square (Ruder, 

2016). This difference leads to varied performance depending on the specific application and 

data structure. Therefore, dynamic fine-tuning and model selection are crucial to minimize 

variability, enhance accuracy, and continually measure error metrics for ongoing 

improvement. 

9. Conclusions 

This thesis presents a novel approach to the Job Shop Scheduling Problem (JSSP) with 

transport resources, using a Deep Q-Network (DQN)-based methodology that integrates 

complex machine scheduling and Automated Guided Vehicle (AGV) coordination within a 

dynamic reinforcement learning framework. By simulating realistic conditions for job 

scheduling and transportation within a flexible production environment, this model 

significantly advances current research in operations management and optimization. 

The development process included multiple iterations of the DQN model to enhance 

robustness and computational efficiency. The model architecture, incorporating prioritized 

experience replay and a Double DQN framework, enables it to learn high-quality scheduling 

policies effectively. By balancing exploration and exploitation through an adaptive epsilon-

greedy policy, the model dynamically navigates the large action space of JSSP with transport, 

identifying optimal job-machine-AGV combinations that minimize makespan across various 

job sets and layouts. Key methodological steps, such as systematic hyperparameter tuning 
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and prioritized experience replay, allowed the model to handle high-dimensional state spaces 

and complex scheduling scenarios. This iterative approach—starting from initial neural 

network structures and progressing through refined architectures—ensures that the model is 

computationally efficient, scalable, and adaptable to real-world manufacturing environments 

with limited computational resources, like an 8 GB RAM MacBook M1. 

The model was benchmarked against traditional MILP models, demonstrating its 

capability to approximate optimal scheduling solutions with a smaller optimality gap in 

shorter times, particularly in configurations with constrained transport resources. 

Performance metrics, including mean squared error (MSE) and optimality gap, indicate that 

the DQN model not only improves scheduling efficiency but also achieves results that align 

with established optimization benchmarks. Moreover, Spearman's correlation analysis 

illustrates the model's reliability across varying job counts, reinforcing its adaptability in 

scaling scenarios. 

Further refinement could involve extending the training on additional complex scenarios 

or leveraging Transfer Learning (TL) to apply the model across different job shop 

environments, ensuring broader applicability in real-world settings. Enhancing computational 

capacity, such as through distributed systems or GPU utilization, may also yield further 

improvements in model performance, particularly for larger datasets and more complex 

scheduling configurations. This work lays a strong foundation for integrating machine 

learning in production scheduling, with implications for practitioners aiming to streamline 

operations through advanced scheduling models that incorporate transport resources. The 

findings encourage ongoing exploration of reinforcement learning-based scheduling and 

hybrid optimization methods to address the growing demands of agile manufacturing 

environments through implementing fine-tuning policies and scenarios and measuring the 

errors to outperform better. 
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10. Future Work 

Potential areas for further research include leveraging cloud computing resources to 

overcome hardware limitations by utilizing parallelization. This can be achieved by 

distributing computations across multiple servers or using high-performance cloud-based 

GPUs, which would enable the training of more complex models or enhance the efficiency of 

existing ones. 

Broadening the model to encompass multi-agent systems is another promising direction. 

This would involve simulating multiple agents (such as various AGVs or scheduling 

managers) coordinating within an environment, potentially resulting in more robust and 

flexible scheduling solutions. Implementing this approach could incorporate algorithms 

designed for multi-agent reinforcement learning, considering the interactions and shared 

objectives of multiple agents. 

Validating the developed methodology in real-world industrial scenarios using actual data 

would demonstrate its practical utility. Collaborating with industry partners to access real 

scheduling data and constraints could reveal additional insights and challenges that are not 

present in simulated environments. Such real-world applications would also facilitate 

evaluating the model's scalability and adaptability to different industrial contexts, providing 

valuable feedback for further refinement. 

Furthermore, integrating the proposed environment with other constraints unrelated to 

scheduling, such as predictive maintenance, battery limitations, and dynamic routing without 

fixed transport times, but with real-time decision-making by an AGV, could offer a more 

comprehensive scenario (Dehnavi-Arani et al., 2019). These aspects are addressed in the 

literature but are not yet unified. 



56 

11. References 

Abderrahim, A. B. (2023). A multi-agent system simulation-based approach for 

collision avoidance in integrated job-shop scheduling problem with transportation tasks. 

Journal of Manufacturing Systems, 68, 209–226. 

https://doi.org/10.1016/j.jmsy.2023.03.011 

Alabajee, M., Fadhil, A., & Alsarraj, R. (2020). Job shop scheduling problem: 

Literature review. Tikrit Journal of Pure Science, 25(4), 91–100. 

https://doi.org/10.25130/tjps.v25i4.277 

Amirteimoori, A., Tirkolaee, E. B., Simic, V., & Weber, G.-W. (2023). A parallel 

heuristic for hybrid job shop scheduling problem considering conflict-free AGV routing. 

Swarm and Evolutionary Computation, 79, 101312. 

https://doi.org/10.1016/j.swevo.2023.101312 

Amjad, M., Ahmad, A., Rehmani, M. H., & Umer, T. (2018). A review of EVs 

charging: From the perspective of energy optimization, optimization approaches, and 

charging techniques. Transportation Research Part D: Transport and Environment, 62, 

386-417. https://doi.org/10.1016/j.trd.2018.03.006 

Awad, M., & Abd-Elaziz, H. (2021). A new perspective for solving manufacturing 

scheduling based problems respecting new data considerations. Processes, 9(10), 1700. 

https://doi.org/10.3390/pr9101700 

Azadeh, K., Roshanaei, V., Hatami, S., & Maleki, A. (2020). A MILP model for 

energy-efficient job shop scheduling problem with transport resources. INRIA HAL 

Science. https://inria.hal.science/hal-02992767 

Azzouz, A., Ennigrou, M., & Ben Said, L. (2017). A self-adaptive hybrid algorithm 

for solving flexible job-shop problem with sequence dependent setup time. Procedia 

Computer Science, 112, 457-466. https://doi.org/10.1016/j.procs.2017.08.023 

https://doi.org/10.1016/j.jmsy.2023.03.011
https://doi.org/10.25130/tjps.v25i4.277
https://doi.org/10.1016/j.swevo.2023.101312
https://doi.org/10.1016/j.trd.2018.03.006
https://doi.org/10.3390/pr9101700
https://inria.hal.science/hal-02992767
https://doi.org/10.1016/j.procs.2017.08.023


57 

Ba, L., Li, Y., & Yang, M. (2016). Modelling and simulation of a multi-resource 

flexible job-shop scheduling. International Journal of Simulation Modelling, 15(1), 

157–169. https://doi.org/10.2507/ijsimm15(1)co3 

Bilge, U., & Ulusoy, G. (1995). Time window approach to simultaneous scheduling 

machines and material handling system in an FMS. Operations Research, 43(6), 1058–

1071. https://doi.org/10.1287/opre.43.6.1058 

Bozzi, A. (2023). Dynamic MPC-based scheduling in a smart manufacturing system 

problem. IEEE Access, 11, 141987–141996. 

https://doi.org/10.1109/access.2023.3341504 

Canese, L., Cardarilli, G. C., Di Nunzio, L., Fazzolari, R., Giardino, D., Re, M., 

& Spanò, S. (2021). Multi-agent reinforcement learning: A review of challenges and 

applications. Applied Sciences, 11(11), 4948. https://doi.org/10.3390/app11114948 

Chang, J., Yu, D., Hu, Y., He, W., & Yu, H. (2022). Deep reinforcement learning 

for dynamic flexible job shop scheduling with random job arrival. Processes, 10(4), 760. 

https://doi.org/10.3390/pr10040760 

Chen, Z., Zhang, L., Wang, X., & Gu, P. (2022). Optimal design of flexible job 

shop scheduling under resource preemption based on deep reinforcement learning. 

Complex Systems Modeling and Simulation, 2(2), 174–185. 

https://doi.org/10.23919/csms.2022.0007 

Chen, T., Bu, S., Li, X., Kang, J., Yu, F., & Han, Z. (2022). Peer-to-peer energy 

trading and energy conversion in interconnected multi-energy microgrids using multi-

agent deep reinforcement learning. IEEE Transactions on Smart Grid, 13(1), 715–727. 

https://doi.org/10.1109/tsg.2021.3124465 

Dehnavi-Arani, S., Sabaghian, A., & Fazli, M. (2019). A job shop scheduling and 

location of battery charging storage for the automated guided vehicles (AGVs). Journal 

https://doi.org/10.2507/ijsimm15(1)co3
https://doi.org/10.1287/opre.43.6.1058
https://doi.org/10.1109/access.2023.3341504
https://doi.org/10.3390/app11114948
https://doi.org/10.3390/pr10040760
https://doi.org/10.23919/csms.2022.0007
https://doi.org/10.1109/tsg.2021.3124465


58 

of Optimization in Industrial Engineering, 12(2), 121-129. 

https://doi.org/10.22094/JOIE.2018.543203.1511 

Fan, H., & Su, R. (2022). Mathematical modelling and heuristic approaches to job-

shop scheduling problem with conveyor-based continuous flow transporters. Computers 

& Operations Research, 148, 105998. https://doi.org/10.1016/j.cor.2022.105998 

Fontes, D. B. M. M., Homayouni, S. M., & Gonçalves, J. F. (2023). A hybrid 

particle swarm optimization and simulated annealing algorithm for the job shop 

scheduling problem with transport resources. European Journal of Operational 

Research, 306(3), 1140–1157. https://doi.org/10.1016/j.ejor.2022.09.006 

Fontes, D. B. M. M., Homayouni, S. M., & Resende, M. G. C. (2022). Job-shop 

scheduling—joint consideration of production, transport, and storage/retrieval systems. 

Journal of Combinatorial Optimization, 44(2), 1284–1322. 

https://doi.org/10.1007/s10878-022-00885-8 

Han, B., & Yang, J. (2020). Research on adaptive job shop scheduling problems 

based on dueling double DQN. IEEE Access, 8, 186474–186495. 

https://doi.org/10.1109/access.2020.3029868 

Han, B., & Yang, J. (2021). A deep reinforcement learning based solution for 

flexible job shop scheduling problem. International Journal of Simulation Modelling, 

20(2), 375–386. https://doi.org/10.2507/ijsimm20-2-co7 

Homayouni, S. M., & Fontes, D. B. M. M. (2021). A MILP model for energy-

efficient job shop scheduling problem and transport resources. Advances in Production 

Management Systems: Artificial Intelligence for Sustainable and Resilient Production 

Systems. IFIP Advances in Information and Communication Technology, 630, 378-387. 

https://doi.org/10.1007/978-3-030-85874-2_1 

https://doi.org/10.22094/JOIE.2018.543203.1511
https://doi.org/10.1016/j.cor.2022.105998
https://doi.org/10.1016/j.ejor.2022.09.006
https://doi.org/10.1007/s10878-022-00885-8
https://doi.org/10.1109/access.2020.3029868
https://doi.org/10.2507/ijsimm20-2-co7
https://doi.org/10.1007/978-3-030-85874-2_1


59 

Jungbluth, S., Gafur, N., Popper, J., Yfantis, V., & Ruskowski, M. (2022). 

Reinforcement learning-based scheduling of a job-shop process with distributedly 

controlled robotic manipulators for transport operations. IFAC PapersOnLine, 55(2), 

156–162. https://doi.org/10.1016/j.ifacol.2022.04.186 

Kim, S., Neale, V., Chowdhary, G., & Tran, H. (2022). Disentangling successor 

features for coordination in multi-agent reinforcement learning. 

https://doi.org/10.48550/arxiv.2202.07741 

Kim, S., Neale, V., Chowdhary, G., & Tran, H. (2022). Disentangling successor 

features for coordination in multi-agent reinforcement learning. arXiv preprint. 

https://doi.org/10.48550/arxiv.2202.07741 

Kirilov, L., & Guliashki, V. (2017). An algorithm for generating a dispersed 

population of feasible schedules for flexible job shop problems. Information 

Technologies and Control, 15(3), 16–19. https://doi.org/10.1515/itc-2017-0029 

Kumar, R., Tiwari, M., & Shankar, R. (2003). Scheduling of flexible 

manufacturing systems: An ant colony optimization approach. Proceedings of the 

Institution of Mechanical Engineers Part B: Journal of Engineering Manufacture, 

217(10), 1443–1453. https://doi.org/10.1243/095440503322617216 

Latthawanichphan, J., Songserm, W., & Wuttipornpun, T. (2019). An instance 

generator for scheduling problems featuring options for unequal stages and unequal 

parallel machines. International Journal of Technology and Engineering Studies, 5(4), 

106–112. https://doi.org/10.20469/ijtes.5.10001-4 

Li, H., Duan, J., & Zhang, Q. (2020). Multi-objective integrated scheduling 

optimization of semi-combined marine crankshaft structure production workshop for 

green manufacturing. Transactions of the Institute of Measurement and Control, 43(3), 

579–596. https://doi.org/10.1177/0142331220945917 

https://doi.org/10.1016/j.ifacol.2022.04.186
https://doi.org/10.48550/arxiv.2202.07741
https://doi.org/10.48550/arxiv.2202.07741
https://doi.org/10.1515/itc-2017-0029
https://doi.org/10.1243/095440503322617216
https://doi.org/10.20469/ijtes.5.10001-4
https://doi.org/10.1177/0142331220945917


60 

Li, W., Han, D., Gao, L., Li, X., & Li, Y. (2022). Integrated production and 

transportation scheduling method in hybrid flow shop. Chinese Journal of Mechanical 

Engineering, 35(1). https://doi.org/10.1186/s10033-022-00683-7 

Li, Y., Chen, X., An, Y., Zhao, Z., Cao, H., & Jiang, J. (2023). Integrating machine 

layout, transporter allocation and worker assignment into job-shop scheduling solved by 

an improved non-dominated sorting genetic algorithm. Computers & Industrial 

Engineering, 179, 109169. https://doi.org/10.1016/j.cie.2023.109169 

Lv, S. (2024). GABB: The plan-based job scheduling optimized by genetic algorithm 

for HPC systems with shared burst buffers., 19, 109. https://doi.org/10.1117/12.3034965 

Momenikorbekandi, A., & Abbod, M. F. (2023). A novel metaheuristic hybrid 

parthenogenetic algorithm for job shop scheduling problems: Applying an optimization 

model. IEEE Access, 11, 56027-56045. https://doi.org/10.1109/ACCESS.2023.3278372 

Meng, L., Zhang, B., Gao, K., & Duan, P. (2023). An MILP model for energy-

conscious flexible job shop problem with transportation and sequence-dependent setup 

times. Sustainability, 15(1), 776. https://doi.org/10.3390/su15010776 

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., et al. (2015). Human-level 

control through deep reinforcement learning. Nature, 518(7540), 529–533. 

Moin, N., Sin, O., & Omar, M. (2015). Hybrid genetic algorithm with multiparents 

crossover for job shop scheduling problems. Mathematical Problems in Engineering, 

2015, 1–12. https://doi.org/10.1155/2015/210680 

Muthiah, A., Rajkumar, A., & Rajkumar, R. (2016). Hybridization of Artificial 

Bee Colony algorithm with Particle Swarm Optimization algorithm for flexible Job 

Shop Scheduling. https://doi.org/10.1109/iceets.2016.7583875 

https://doi.org/10.1186/s10033-022-00683-7
https://doi.org/10.1016/j.cie.2023.109169
https://doi.org/10.1117/12.3034965
https://doi.org/10.1109/ACCESS.2023.3278372
https://doi.org/10.3390/su15010776
https://doi.org/10.1155/2015/210680
https://doi.org/10.1109/iceets.2016.7583875


61 

Parveen, S. and Ullah, H. (2011). Review on job-shop and flow-shop scheduling 

using. Journal of Mechanical Engineering, 41(2), 130-146. 

https://doi.org/10.3329/jme.v41i2.7508 

Ren, J., Ye, C., & Li, Y. (2020). A two-stage optimization algorithm for multi-

objective job-shop scheduling problem considering job transport. Journal Européen des 

Systèmes Automatisés, 53(6), 915-924. https://doi.org/10.18280/jesa.530617 

Ramasubbareddy, S., Swetha, E., Luhach, A., & Srinivas, T. (2021). A multi-

objective genetic algorithm-based resource scheduling in mobile cloud computing. 

International Journal of Cognitive Informatics and Natural Intelligence, 15(3), 58–73. 

https://doi.org/10.4018/ijcini.20210701.oa5 

Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv 

preprint arXiv:1609.04747. https://doi.org/10.48550/arXiv.1609.04747 

Song, L., Liu, C., & Shi, H. (2022). Discrete particle swarm algorithm with Q-

learning for solving flexible job shop scheduling problem with parallel batch processing 

machine. Journal of Physics Conference Series, 2303(1), 012022. 

https://doi.org/10.1088/1742-6596/2303/1/012022 

Song, L., Liu, C., Shi, H., & Zhu, J. (2022). An improved immune genetic algorithm 

for solving the flexible job shop scheduling problem with batch processing. Wireless 

Communications and Mobile Computing, 2022, 1–17. 

https://doi.org/10.1155/2022/2856056 

Tassel, P., Kovács, B., Gebser, M., Schekotihin, K., Kohlenbrein, W., & Schrott-

Kostwein, P. (2022). Reinforcement learning of dispatching strategies for large-scale 

industrial scheduling. Proceedings of the International Conference on Automated 

Planning and Scheduling, 32, 638–646. https://doi.org/10.1609/icaps.v32i1.19852 

https://doi.org/10.3329/jme.v41i2.7508
https://doi.org/10.18280/jesa.530617
https://doi.org/10.4018/ijcini.20210701.oa5
https://doi.org/10.48550/arXiv.1609.04747
https://doi.org/10.1088/1742-6596/2303/1/012022
https://doi.org/10.1155/2022/2856056
https://doi.org/10.1609/icaps.v32i1.19852


62 

Wang, Y., Liu, H., Zheng, W., Xia, Y., Li, Y., Chen, P., … & Xie, H. (2019). 

Multi-objective workflow scheduling with Deep-Q-network-based multi-agent 

reinforcement learning. IEEE Access, 7, 39974–39982. 

https://doi.org/10.1109/access.2019.2902846 

Wu, S., Wang, T., Li, C., & Zhang, C. (2021). Containerized distributed value-

based multi-agent reinforcement learning. https://doi.org/10.48550/arxiv.2110.08169 

Xu, Z., Zhang, B., Li, D., Zhang, Z., Zhou, G., Chen, H., … & Fan, G. (2022). 

Consensus learning for cooperative multi-agent reinforcement learning. 

https://doi.org/10.48550/arxiv.2206.02583 

Yao, Y., Liu, Q., Li, X., & Gao, L. (2023). A novel MILP model for job shop 

scheduling problem with mobile robots. Robotics and Computer-Integrated 

Manufacturing, 81, 102506. https://doi.org/10.1016/j.rcim.2022.102506 

Yu, H., Gao, Y., Wang, L., & Meng, J. (2020). A hybrid particle swarm 

optimization algorithm enhanced with nonlinear inertial weight and Gaussian mutation 

for job shop scheduling problems. Mathematics, 8(8), 1355. 

https://doi.org/10.3390/math8081355 

Zambrano-Rey, G. M., González-Neira, E. M., Forero-Ortiz, G. F., Ocampo-

Monsalve, M. J., & Rivera-Torres, A. (2023). Minimizing the expected maximum 

lateness for a job shop subject to stochastic machine breakdowns. Annals of Operations 

Research. https://doi.org/10.1007/s10479-023-05592-z 

Zeng, R., & Wang, Y. (2018). A chaotic simulated annealing and particle swarm 

improved artificial immune algorithm for flexible job shop scheduling problem. Eurasip 

Journal on Wireless Communications and Networking, 2018(1). 

https://doi.org/10.1186/s13638-018-1109-2 

https://doi.org/10.1109/access.2019.2902846
https://doi.org/10.48550/arxiv.2110.08169
https://doi.org/10.48550/arxiv.2206.02583
https://doi.org/10.1016/j.rcim.2022.102506
https://doi.org/10.3390/math8081355
https://doi.org/10.1007/s10479-023-05592-z
https://doi.org/10.1186/s13638-018-1109-2


63 

Zhao, Y., Wang, Y., Tan, Y., Zhang, J., & Huang, Y. (2021). Dynamic jobshop 

scheduling algorithm based on deep Q network. IEEE Access, 9, 122995–123011. 

https://doi.org/10.1109/access.2021.3110242 

Zhao, Y., & Zhang, H. (2021). Application of machine learning and rule scheduling 

in a job-shop production control system. International Journal of Simulation Modelling, 

20(2), 410–421. https://doi.org/10.2507/ijsimm20-2-co10 

Zhou, W. (2024). Integrated scheduling algorithm with dynamic adjustment on 

machine idle time. https://doi.org/10.21203/rs.3.rs-4302637/v1 

Zhou, W., Zhou, P., Yang, D., Cao, W., Tan, Z., & Xie, Z. (2023). Symmetric two-

workshop heuristic integrated scheduling algorithm based on process tree cyclic 

decomposition. Electronics, 12(7), 1553. https://doi.org/10.3390/electronics12071553 

Zhou, W., Zhou, P., Zheng, Y., & Xie, Z. (2022). A heuristic integrated scheduling 

algorithm via processing characteristics of various machines. Symmetry, 14(10), 2150. 

https://doi.org/10.3390/sym14102150 

Zhang, C., & Zheng, R. (2023). Event-driven dynamic job-shop scheduling method 

with strong process constraints. Journal of Computing and Electronic Information 

Management, 10(3), 72–79. https://doi.org/10.54097/jceim.v10i3.8705 

Zhang, F., Mei, Y., Nguyen, S., Zhang, M., & Tan, K. (2021). Surrogate-assisted 

evolutionary multitask genetic programming for dynamic flexible job shop scheduling. 

IEEE Transactions on Evolutionary Computation, 25(4), 651–665. 

https://doi.org/10.1109/tevc.2021.3065707 

Zhang, M., Lü, Y., Hu, Y., Amaitik, N., & Xu, Y. (2022). Dynamic scheduling 

method for job-shop manufacturing systems by deep reinforcement learning with 

proximal policy optimization. Sustainability, 14(9), 5177. 

https://doi.org/10.3390/su14095177 

https://doi.org/10.1109/access.2021.3110242
https://doi.org/10.2507/ijsimm20-2-co10
https://doi.org/10.21203/rs.3.rs-4302637/v1
https://doi.org/10.3390/electronics12071553
https://doi.org/10.3390/sym14102150
https://doi.org/10.54097/jceim.v10i3.8705
https://doi.org/10.1109/tevc.2021.3065707
https://doi.org/10.3390/su14095177


64 

12. Annexes 

Code Repository on GitHub with three versions of the model developed: 

https://github.com/jpuerto1604/JSSwTransport  

https://github.com/jpuerto1604/JSSwTransport

